1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
  26 #define SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "oops/oop.hpp"
  30 #include "utilities/debug.hpp"
  31 #include "utilities/globalDefinitions.hpp"
  32 #include "utilities/ostream.hpp"
  33 
  34 // A growable array.
  35 
  36 /*************************************************************************/
  37 /*                                                                       */
  38 /*     WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING   */
  39 /*                                                                       */
  40 /* Should you use GrowableArrays to contain handles you must be certain  */
  41 /* the the GrowableArray does not outlive the HandleMark that contains   */
  42 /* the handles. Since GrowableArrays are typically resource allocated    */
  43 /* the following is an example of INCORRECT CODE,                        */
  44 /*                                                                       */
  45 /* ResourceMark rm;                                                      */
  46 /* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size);         */
  47 /* if (blah) {                                                           */
  48 /*    while (...) {                                                      */
  49 /*      HandleMark hm;                                                   */
  50 /*      ...                                                              */
  51 /*      Handle h(THREAD, some_oop);                                      */
  52 /*      arr->append(h);                                                  */
  53 /*    }                                                                  */
  54 /* }                                                                     */
  55 /* if (arr->length() != 0 ) {                                            */
  56 /*    oop bad_oop = arr->at(0)(); // Handle is BAD HERE.                 */
  57 /*    ...                                                                */
  58 /* }                                                                     */
  59 /*                                                                       */
  60 /* If the GrowableArrays you are creating is C_Heap allocated then it    */
  61 /* hould not old handles since the handles could trivially try and       */
  62 /* outlive their HandleMark. In some situations you might need to do     */
  63 /* this and it would be legal but be very careful and see if you can do  */
  64 /* the code in some other manner.                                        */
  65 /*                                                                       */
  66 /*************************************************************************/
  67 
  68 // To call default constructor the placement operator new() is used.
  69 // It should be empty (it only returns the passed void* pointer).
  70 // The definition of placement operator new(size_t, void*) in the <new>.
  71 
  72 #include <new>
  73 
  74 // Need the correct linkage to call qsort without warnings
  75 extern "C" {
  76   typedef int (*_sort_Fn)(const void *, const void *);
  77 }
  78 
  79 class GenericGrowableArray : public ResourceObj {
  80   friend class VMStructs;
  81 
  82  protected:
  83   int    _len;          // current length
  84   int    _max;          // maximum length
  85   Arena* _arena;        // Indicates where allocation occurs:
  86                         //   0 means default ResourceArea
  87                         //   1 means on C heap
  88                         //   otherwise, allocate in _arena
  89 
  90   MEMFLAGS   _memflags;   // memory type if allocation in C heap
  91 
  92 #ifdef ASSERT
  93   int    _nesting;      // resource area nesting at creation
  94   void   set_nesting();
  95   void   check_nesting();
  96 #else
  97 #define  set_nesting();
  98 #define  check_nesting();
  99 #endif
 100 
 101   // Where are we going to allocate memory?
 102   bool on_C_heap() { return _arena == (Arena*)1; }
 103   bool on_stack () { return _arena == NULL;      }
 104   bool on_arena () { return _arena >  (Arena*)1;  }
 105 
 106   // This GA will use the resource stack for storage if c_heap==false,
 107   // Else it will use the C heap.  Use clear_and_deallocate to avoid leaks.
 108   GenericGrowableArray(int initial_size, int initial_len, bool c_heap, MEMFLAGS flags = mtNone) {
 109     _len = initial_len;
 110     _max = initial_size;
 111     _memflags = flags;
 112 
 113     // memory type has to be specified for C heap allocation
 114     assert(!(c_heap && flags == mtNone), "memory type not specified for C heap object");
 115 
 116     assert(_len >= 0 && _len <= _max, "initial_len too big");
 117     _arena = (c_heap ? (Arena*)1 : NULL);
 118     set_nesting();
 119     assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are");
 120     assert(!on_stack() ||
 121            (allocated_on_res_area() || allocated_on_stack()),
 122            "growable array must be on stack if elements are not on arena and not on C heap");
 123   }
 124 
 125   // This GA will use the given arena for storage.
 126   // Consider using new(arena) GrowableArray<T> to allocate the header.
 127   GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
 128     _len = initial_len;
 129     _max = initial_size;
 130     assert(_len >= 0 && _len <= _max, "initial_len too big");
 131     _arena = arena;
 132     _memflags = mtNone;
 133 
 134     assert(on_arena(), "arena has taken on reserved value 0 or 1");
 135     // Relax next assert to allow object allocation on resource area,
 136     // on stack or embedded into an other object.
 137     assert(allocated_on_arena() || allocated_on_stack(),
 138            "growable array must be on arena or on stack if elements are on arena");
 139   }
 140 
 141   void* raw_allocate(int elementSize);
 142 
 143   // some uses pass the Thread explicitly for speed (4990299 tuning)
 144   void* raw_allocate(Thread* thread, int elementSize) {
 145     assert(on_stack(), "fast ResourceObj path only");
 146     return (void*)resource_allocate_bytes(thread, elementSize * _max);
 147   }
 148 
 149   void free_C_heap(void* elements);
 150 };
 151 
 152 template<class E> class GrowableArrayIterator;
 153 template<class E, class UnaryPredicate> class GrowableArrayFilterIterator;
 154 
 155 template<class E> class GrowableArray : public GenericGrowableArray {
 156   friend class VMStructs;
 157 
 158  private:
 159   E*     _data;         // data array
 160 
 161   void grow(int j);
 162   void raw_at_put_grow(int i, const E& p, const E& fill);
 163   void  clear_and_deallocate();
 164  public:
 165   GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
 166     _data = (E*)raw_allocate(thread, sizeof(E));
 167     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
 168   }
 169 
 170   GrowableArray(int initial_size, bool C_heap = false, MEMFLAGS F = mtInternal)
 171     : GenericGrowableArray(initial_size, 0, C_heap, F) {
 172     _data = (E*)raw_allocate(sizeof(E));
 173 // Needed for Visual Studio 2012 and older
 174 #ifdef _MSC_VER
 175 #pragma warning(suppress: 4345)
 176 #endif
 177     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
 178   }
 179 
 180   GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false, MEMFLAGS memflags = mtInternal)
 181     : GenericGrowableArray(initial_size, initial_len, C_heap, memflags) {
 182     _data = (E*)raw_allocate(sizeof(E));
 183     int i = 0;
 184     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
 185     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
 186   }
 187 
 188   GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
 189     _data = (E*)raw_allocate(sizeof(E));
 190     int i = 0;
 191     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
 192     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
 193   }
 194 
 195   GrowableArray() : GenericGrowableArray(2, 0, false) {
 196     _data = (E*)raw_allocate(sizeof(E));
 197     ::new ((void*)&_data[0]) E();
 198     ::new ((void*)&_data[1]) E();
 199   }
 200 
 201                                 // Does nothing for resource and arena objects
 202   ~GrowableArray()              { if (on_C_heap()) clear_and_deallocate(); }
 203 
 204   void  clear()                 { _len = 0; }
 205   int   length() const          { return _len; }
 206   int   max_length() const      { return _max; }
 207   void  trunc_to(int l)         { assert(l <= _len,"cannot increase length"); _len = l; }
 208   bool  is_empty() const        { return _len == 0; }
 209   bool  is_nonempty() const     { return _len != 0; }
 210   bool  is_full() const         { return _len == _max; }
 211   DEBUG_ONLY(E* data_addr() const      { return _data; })
 212 
 213   void print();
 214 
 215   inline static bool safe_equals(oop obj1, oop obj2) {
 216     return oopDesc::equals(obj1, obj2);
 217   }
 218 
 219   template <class X>
 220   inline static bool safe_equals(X i1, X i2) {
 221     return i1 == i2;
 222   }
 223 
 224   int append(const E& elem) {
 225     check_nesting();
 226     if (_len == _max) grow(_len);
 227     int idx = _len++;
 228     _data[idx] = elem;
 229     return idx;
 230   }
 231 
 232   bool append_if_missing(const E& elem) {
 233     // Returns TRUE if elem is added.
 234     bool missed = !contains(elem);
 235     if (missed) append(elem);
 236     return missed;
 237   }
 238 
 239   E& at(int i) {
 240     assert(0 <= i && i < _len, "illegal index");
 241     return _data[i];
 242   }
 243 
 244   E const& at(int i) const {
 245     assert(0 <= i && i < _len, "illegal index");
 246     return _data[i];
 247   }
 248 
 249   E* adr_at(int i) const {
 250     assert(0 <= i && i < _len, "illegal index");
 251     return &_data[i];
 252   }
 253 
 254   E first() const {
 255     assert(_len > 0, "empty list");
 256     return _data[0];
 257   }
 258 
 259   E top() const {
 260     assert(_len > 0, "empty list");
 261     return _data[_len-1];
 262   }
 263 
 264   E last() const {
 265     return top();
 266   }
 267 
 268   GrowableArrayIterator<E> begin() const {
 269     return GrowableArrayIterator<E>(this, 0);
 270   }
 271 
 272   GrowableArrayIterator<E> end() const {
 273     return GrowableArrayIterator<E>(this, length());
 274   }
 275 
 276   void push(const E& elem) { append(elem); }
 277 
 278   E pop() {
 279     assert(_len > 0, "empty list");
 280     return _data[--_len];
 281   }
 282 
 283   void at_put(int i, const E& elem) {
 284     assert(0 <= i && i < _len, "illegal index");
 285     _data[i] = elem;
 286   }
 287 
 288   E at_grow(int i, const E& fill = E()) {
 289     assert(0 <= i, "negative index");
 290     check_nesting();
 291     if (i >= _len) {
 292       if (i >= _max) grow(i);
 293       for (int j = _len; j <= i; j++)
 294         _data[j] = fill;
 295       _len = i+1;
 296     }
 297     return _data[i];
 298   }
 299 
 300   void at_put_grow(int i, const E& elem, const E& fill = E()) {
 301     assert(0 <= i, "negative index");
 302     check_nesting();
 303     raw_at_put_grow(i, elem, fill);
 304   }
 305 
 306   bool contains(const E& elem) const {
 307     for (int i = 0; i < _len; i++) {
 308       if (safe_equals(_data[i], elem)) return true;
 309     }
 310     return false;
 311   }
 312 
 313   int  find(const E& elem) const {
 314     for (int i = 0; i < _len; i++) {
 315       if (_data[i] == elem) return i;
 316     }
 317     return -1;
 318   }
 319 
 320   int  find_from_end(const E& elem) const {
 321     for (int i = _len-1; i >= 0; i--) {
 322       if (_data[i] == elem) return i;
 323     }
 324     return -1;
 325   }
 326 
 327   int  find(void* token, bool f(void*, E)) const {
 328     for (int i = 0; i < _len; i++) {
 329       if (f(token, _data[i])) return i;
 330     }
 331     return -1;
 332   }
 333 
 334   int  find_from_end(void* token, bool f(void*, E)) const {
 335     // start at the end of the array
 336     for (int i = _len-1; i >= 0; i--) {
 337       if (f(token, _data[i])) return i;
 338     }
 339     return -1;
 340   }
 341 
 342   void remove(const E& elem) {
 343     for (int i = 0; i < _len; i++) {
 344       if (_data[i] == elem) {
 345         for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
 346         _len--;
 347         return;
 348       }
 349     }
 350     ShouldNotReachHere();
 351   }
 352 
 353   // The order is preserved.
 354   void remove_at(int index) {
 355     assert(0 <= index && index < _len, "illegal index");
 356     for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
 357     _len--;
 358   }
 359 
 360   // The order is changed.
 361   void delete_at(int index) {
 362     assert(0 <= index && index < _len, "illegal index");
 363     if (index < --_len) {
 364       // Replace removed element with last one.
 365       _data[index] = _data[_len];
 366     }
 367   }
 368 
 369   // inserts the given element before the element at index i
 370   void insert_before(const int idx, const E& elem) {
 371     assert(0 <= idx && idx <= _len, "illegal index");
 372     check_nesting();
 373     if (_len == _max) grow(_len);
 374     for (int j = _len - 1; j >= idx; j--) {
 375       _data[j + 1] = _data[j];
 376     }
 377     _len++;
 378     _data[idx] = elem;
 379   }
 380 
 381   void insert_before(const int idx, const GrowableArray<E>* array) {
 382     assert(0 <= idx && idx <= _len, "illegal index");
 383     check_nesting();
 384     int array_len = array->length();
 385     int new_len = _len + array_len;
 386     if (new_len >= _max) grow(new_len);
 387 
 388     for (int j = _len - 1; j >= idx; j--) {
 389       _data[j + array_len] = _data[j];
 390     }
 391 
 392     for (int j = 0; j < array_len; j++) {
 393       _data[idx + j] = array->_data[j];
 394     }
 395 
 396     _len += array_len;
 397   }
 398 
 399   void appendAll(const GrowableArray<E>* l) {
 400     for (int i = 0; i < l->_len; i++) {
 401       raw_at_put_grow(_len, l->_data[i], E());
 402     }
 403   }
 404 
 405   void sort(int f(E*,E*)) {
 406     qsort(_data, length(), sizeof(E), (_sort_Fn)f);
 407   }
 408   // sort by fixed-stride sub arrays:
 409   void sort(int f(E*,E*), int stride) {
 410     qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
 411   }
 412 
 413   // Binary search and insertion utility.  Search array for element
 414   // matching key according to the static compare function.  Insert
 415   // that element is not already in the list.  Assumes the list is
 416   // already sorted according to compare function.
 417   template <int compare(const E&, const E&)> E insert_sorted(const E& key) {
 418     bool found;
 419     int location = find_sorted<E, compare>(key, found);
 420     if (!found) {
 421       insert_before(location, key);
 422     }
 423     return at(location);
 424   }
 425 
 426   template <typename K, int compare(const K&, const E&)> int find_sorted(const K& key, bool& found) {
 427     found = false;
 428     int min = 0;
 429     int max = length() - 1;
 430 
 431     while (max >= min) {
 432       int mid = (int)(((uint)max + min) / 2);
 433       E value = at(mid);
 434       int diff = compare(key, value);
 435       if (diff > 0) {
 436         min = mid + 1;
 437       } else if (diff < 0) {
 438         max = mid - 1;
 439       } else {
 440         found = true;
 441         return mid;
 442       }
 443     }
 444     return min;
 445   }
 446 };
 447 
 448 // Global GrowableArray methods (one instance in the library per each 'E' type).
 449 
 450 template<class E> void GrowableArray<E>::grow(int j) {
 451     // grow the array by doubling its size (amortized growth)
 452     int old_max = _max;
 453     if (_max == 0) _max = 1; // prevent endless loop
 454     while (j >= _max) _max = _max*2;
 455     // j < _max
 456     E* newData = (E*)raw_allocate(sizeof(E));
 457     int i = 0;
 458     for (     ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
 459 // Needed for Visual Studio 2012 and older
 460 #ifdef _MSC_VER
 461 #pragma warning(suppress: 4345)
 462 #endif
 463     for (     ; i < _max; i++) ::new ((void*)&newData[i]) E();
 464     for (i = 0; i < old_max; i++) _data[i].~E();
 465     if (on_C_heap() && _data != NULL) {
 466       free_C_heap(_data);
 467     }
 468     _data = newData;
 469 }
 470 
 471 template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
 472     if (i >= _len) {
 473       if (i >= _max) grow(i);
 474       for (int j = _len; j < i; j++)
 475         _data[j] = fill;
 476       _len = i+1;
 477     }
 478     _data[i] = p;
 479 }
 480 
 481 // This function clears and deallocate the data in the growable array that
 482 // has been allocated on the C heap.  It's not public - called by the
 483 // destructor.
 484 template<class E> void GrowableArray<E>::clear_and_deallocate() {
 485     assert(on_C_heap(),
 486            "clear_and_deallocate should only be called when on C heap");
 487     clear();
 488     if (_data != NULL) {
 489       for (int i = 0; i < _max; i++) _data[i].~E();
 490       free_C_heap(_data);
 491       _data = NULL;
 492     }
 493 }
 494 
 495 template<class E> void GrowableArray<E>::print() {
 496     tty->print("Growable Array " INTPTR_FORMAT, this);
 497     tty->print(": length %ld (_max %ld) { ", _len, _max);
 498     for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
 499     tty->print("}\n");
 500 }
 501 
 502 // Custom STL-style iterator to iterate over GrowableArrays
 503 // It is constructed by invoking GrowableArray::begin() and GrowableArray::end()
 504 template<class E> class GrowableArrayIterator : public StackObj {
 505   friend class GrowableArray<E>;
 506   template<class F, class UnaryPredicate> friend class GrowableArrayFilterIterator;
 507 
 508  private:
 509   const GrowableArray<E>* _array; // GrowableArray we iterate over
 510   int _position;                  // The current position in the GrowableArray
 511 
 512   // Private constructor used in GrowableArray::begin() and GrowableArray::end()
 513   GrowableArrayIterator(const GrowableArray<E>* array, int position) : _array(array), _position(position) {
 514     assert(0 <= position && position <= _array->length(), "illegal position");
 515   }
 516 
 517  public:
 518   GrowableArrayIterator() : _array(NULL), _position(0) { }
 519   GrowableArrayIterator<E>& operator++()  { ++_position; return *this; }
 520   E operator*()                           { return _array->at(_position); }
 521 
 522   bool operator==(const GrowableArrayIterator<E>& rhs)  {
 523     assert(_array == rhs._array, "iterator belongs to different array");
 524     return _position == rhs._position;
 525   }
 526 
 527   bool operator!=(const GrowableArrayIterator<E>& rhs)  {
 528     assert(_array == rhs._array, "iterator belongs to different array");
 529     return _position != rhs._position;
 530   }
 531 };
 532 
 533 // Custom STL-style iterator to iterate over elements of a GrowableArray that satisfy a given predicate
 534 template<class E, class UnaryPredicate> class GrowableArrayFilterIterator : public StackObj {
 535   friend class GrowableArray<E>;
 536 
 537  private:
 538   const GrowableArray<E>* _array;   // GrowableArray we iterate over
 539   int _position;                    // Current position in the GrowableArray
 540   UnaryPredicate _predicate;        // Unary predicate the elements of the GrowableArray should satisfy
 541 
 542  public:
 543   GrowableArrayFilterIterator(const GrowableArrayIterator<E>& begin, UnaryPredicate filter_predicate)
 544    : _array(begin._array), _position(begin._position), _predicate(filter_predicate) {
 545     // Advance to first element satisfying the predicate
 546     while(_position != _array->length() && !_predicate(_array->at(_position))) {
 547       ++_position;
 548     }
 549   }
 550 
 551   GrowableArrayFilterIterator<E, UnaryPredicate>& operator++() {
 552     do {
 553       // Advance to next element satisfying the predicate
 554       ++_position;
 555     } while(_position != _array->length() && !_predicate(_array->at(_position)));
 556     return *this;
 557   }
 558 
 559   E operator*()   { return _array->at(_position); }
 560 
 561   bool operator==(const GrowableArrayIterator<E>& rhs)  {
 562     assert(_array == rhs._array, "iterator belongs to different array");
 563     return _position == rhs._position;
 564   }
 565 
 566   bool operator!=(const GrowableArrayIterator<E>& rhs)  {
 567     assert(_array == rhs._array, "iterator belongs to different array");
 568     return _position != rhs._position;
 569   }
 570 
 571   bool operator==(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs)  {
 572     assert(_array == rhs._array, "iterator belongs to different array");
 573     return _position == rhs._position;
 574   }
 575 
 576   bool operator!=(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs)  {
 577     assert(_array == rhs._array, "iterator belongs to different array");
 578     return _position != rhs._position;
 579   }
 580 };
 581 
 582 // Arrays for basic types
 583 typedef GrowableArray<int> intArray;
 584 typedef GrowableArray<int> intStack;
 585 typedef GrowableArray<bool> boolArray;
 586 
 587 #endif // SHARE_VM_UTILITIES_GROWABLEARRAY_HPP