/* * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2014, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "gc/shared/barrierSetAssembler.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/interp_masm.hpp" #include "interpreter/templateTable.hpp" #include "memory/universe.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "oops/objArrayKlass.hpp" #include "oops/oop.inline.hpp" #include "prims/methodHandles.hpp" #include "runtime/frame.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #define __ _masm-> // Platform-dependent initialization void TemplateTable::pd_initialize() { // No aarch64 specific initialization } // Address computation: local variables static inline Address iaddress(int n) { return Address(rlocals, Interpreter::local_offset_in_bytes(n)); } static inline Address laddress(int n) { return iaddress(n + 1); } static inline Address faddress(int n) { return iaddress(n); } static inline Address daddress(int n) { return laddress(n); } static inline Address aaddress(int n) { return iaddress(n); } static inline Address iaddress(Register r) { return Address(rlocals, r, Address::lsl(3)); } static inline Address laddress(Register r, Register scratch, InterpreterMacroAssembler* _masm) { __ lea(scratch, Address(rlocals, r, Address::lsl(3))); return Address(scratch, Interpreter::local_offset_in_bytes(1)); } static inline Address faddress(Register r) { return iaddress(r); } static inline Address daddress(Register r, Register scratch, InterpreterMacroAssembler* _masm) { return laddress(r, scratch, _masm); } static inline Address aaddress(Register r) { return iaddress(r); } static inline Address at_rsp() { return Address(esp, 0); } // At top of Java expression stack which may be different than esp(). It // isn't for category 1 objects. static inline Address at_tos () { return Address(esp, Interpreter::expr_offset_in_bytes(0)); } static inline Address at_tos_p1() { return Address(esp, Interpreter::expr_offset_in_bytes(1)); } static inline Address at_tos_p2() { return Address(esp, Interpreter::expr_offset_in_bytes(2)); } static inline Address at_tos_p3() { return Address(esp, Interpreter::expr_offset_in_bytes(3)); } static inline Address at_tos_p4() { return Address(esp, Interpreter::expr_offset_in_bytes(4)); } static inline Address at_tos_p5() { return Address(esp, Interpreter::expr_offset_in_bytes(5)); } // Condition conversion static Assembler::Condition j_not(TemplateTable::Condition cc) { switch (cc) { case TemplateTable::equal : return Assembler::NE; case TemplateTable::not_equal : return Assembler::EQ; case TemplateTable::less : return Assembler::GE; case TemplateTable::less_equal : return Assembler::GT; case TemplateTable::greater : return Assembler::LE; case TemplateTable::greater_equal: return Assembler::LT; } ShouldNotReachHere(); return Assembler::EQ; } // Miscelaneous helper routines // Store an oop (or NULL) at the Address described by obj. // If val == noreg this means store a NULL static void do_oop_store(InterpreterMacroAssembler* _masm, Address dst, Register val, DecoratorSet decorators) { assert(val == noreg || val == r0, "parameter is just for looks"); BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->store_at(_masm, decorators, T_OBJECT, dst, val, /*tmp1*/ r10, /*tmp2*/ r1); } static void do_oop_load(InterpreterMacroAssembler* _masm, Address src, Register dst, DecoratorSet decorators) { BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->load_at(_masm, decorators, T_OBJECT, dst, src, /*tmp1*/ r10, /*tmp_thread*/ r1); } Address TemplateTable::at_bcp(int offset) { assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); return Address(rbcp, offset); } void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, Register temp_reg, bool load_bc_into_bc_reg/*=true*/, int byte_no) { if (!RewriteBytecodes) return; Label L_patch_done; switch (bc) { case Bytecodes::_fast_aputfield: case Bytecodes::_fast_bputfield: case Bytecodes::_fast_zputfield: case Bytecodes::_fast_cputfield: case Bytecodes::_fast_dputfield: case Bytecodes::_fast_fputfield: case Bytecodes::_fast_iputfield: case Bytecodes::_fast_lputfield: case Bytecodes::_fast_sputfield: { // We skip bytecode quickening for putfield instructions when // the put_code written to the constant pool cache is zero. // This is required so that every execution of this instruction // calls out to InterpreterRuntime::resolve_get_put to do // additional, required work. assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); assert(load_bc_into_bc_reg, "we use bc_reg as temp"); __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); __ movw(bc_reg, bc); __ cbzw(temp_reg, L_patch_done); // don't patch } break; default: assert(byte_no == -1, "sanity"); // the pair bytecodes have already done the load. if (load_bc_into_bc_reg) { __ movw(bc_reg, bc); } } if (JvmtiExport::can_post_breakpoint()) { Label L_fast_patch; // if a breakpoint is present we can't rewrite the stream directly __ load_unsigned_byte(temp_reg, at_bcp(0)); __ cmpw(temp_reg, Bytecodes::_breakpoint); __ br(Assembler::NE, L_fast_patch); // Let breakpoint table handling rewrite to quicker bytecode __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg); __ b(L_patch_done); __ bind(L_fast_patch); } #ifdef ASSERT Label L_okay; __ load_unsigned_byte(temp_reg, at_bcp(0)); __ cmpw(temp_reg, (int) Bytecodes::java_code(bc)); __ br(Assembler::EQ, L_okay); __ cmpw(temp_reg, bc_reg); __ br(Assembler::EQ, L_okay); __ stop("patching the wrong bytecode"); __ bind(L_okay); #endif // patch bytecode __ strb(bc_reg, at_bcp(0)); __ bind(L_patch_done); } // Individual instructions void TemplateTable::nop() { transition(vtos, vtos); // nothing to do } void TemplateTable::shouldnotreachhere() { transition(vtos, vtos); __ stop("shouldnotreachhere bytecode"); } void TemplateTable::aconst_null() { transition(vtos, atos); __ mov(r0, 0); } void TemplateTable::iconst(int value) { transition(vtos, itos); __ mov(r0, value); } void TemplateTable::lconst(int value) { __ mov(r0, value); } void TemplateTable::fconst(int value) { transition(vtos, ftos); switch (value) { case 0: __ fmovs(v0, zr); break; case 1: __ fmovs(v0, 1.0); break; case 2: __ fmovs(v0, 2.0); break; default: ShouldNotReachHere(); break; } } void TemplateTable::dconst(int value) { transition(vtos, dtos); switch (value) { case 0: __ fmovd(v0, zr); break; case 1: __ fmovd(v0, 1.0); break; case 2: __ fmovd(v0, 2.0); break; default: ShouldNotReachHere(); break; } } void TemplateTable::bipush() { transition(vtos, itos); __ load_signed_byte32(r0, at_bcp(1)); } void TemplateTable::sipush() { transition(vtos, itos); __ load_unsigned_short(r0, at_bcp(1)); __ revw(r0, r0); __ asrw(r0, r0, 16); } void TemplateTable::ldc(bool wide) { transition(vtos, vtos); Label call_ldc, notFloat, notClass, notInt, Done; if (wide) { __ get_unsigned_2_byte_index_at_bcp(r1, 1); } else { __ load_unsigned_byte(r1, at_bcp(1)); } __ get_cpool_and_tags(r2, r0); const int base_offset = ConstantPool::header_size() * wordSize; const int tags_offset = Array::base_offset_in_bytes(); // get type __ add(r3, r1, tags_offset); __ lea(r3, Address(r0, r3)); __ ldarb(r3, r3); // unresolved class - get the resolved class __ cmp(r3, JVM_CONSTANT_UnresolvedClass); __ br(Assembler::EQ, call_ldc); // unresolved class in error state - call into runtime to throw the error // from the first resolution attempt __ cmp(r3, JVM_CONSTANT_UnresolvedClassInError); __ br(Assembler::EQ, call_ldc); // resolved class - need to call vm to get java mirror of the class __ cmp(r3, JVM_CONSTANT_Class); __ br(Assembler::NE, notClass); __ bind(call_ldc); __ mov(c_rarg1, wide); call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); __ push_ptr(r0); __ verify_oop(r0); __ b(Done); __ bind(notClass); __ cmp(r3, JVM_CONSTANT_Float); __ br(Assembler::NE, notFloat); // ftos __ adds(r1, r2, r1, Assembler::LSL, 3); __ ldrs(v0, Address(r1, base_offset)); __ push_f(); __ b(Done); __ bind(notFloat); __ cmp(r3, JVM_CONSTANT_Integer); __ br(Assembler::NE, notInt); // itos __ adds(r1, r2, r1, Assembler::LSL, 3); __ ldrw(r0, Address(r1, base_offset)); __ push_i(r0); __ b(Done); __ bind(notInt); condy_helper(Done); __ bind(Done); } // Fast path for caching oop constants. void TemplateTable::fast_aldc(bool wide) { transition(vtos, atos); Register result = r0; Register tmp = r1; Register rarg = r2; int index_size = wide ? sizeof(u2) : sizeof(u1); Label resolved; // We are resolved if the resolved reference cache entry contains a // non-null object (String, MethodType, etc.) assert_different_registers(result, tmp); __ get_cache_index_at_bcp(tmp, 1, index_size); __ load_resolved_reference_at_index(result, tmp); __ cbnz(result, resolved); address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); // first time invocation - must resolve first __ mov(rarg, (int)bytecode()); __ call_VM(result, entry, rarg); __ bind(resolved); { // Check for the null sentinel. // If we just called the VM, it already did the mapping for us, // but it's harmless to retry. Label notNull; // Stash null_sentinel address to get its value later __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr()); __ ldr(tmp, Address(rarg)); __ cmp(result, tmp); __ br(Assembler::NE, notNull); __ mov(result, 0); // NULL object reference __ bind(notNull); } if (VerifyOops) { // Safe to call with 0 result __ verify_oop(result); } } void TemplateTable::ldc2_w() { transition(vtos, vtos); Label notDouble, notLong, Done; __ get_unsigned_2_byte_index_at_bcp(r0, 1); __ get_cpool_and_tags(r1, r2); const int base_offset = ConstantPool::header_size() * wordSize; const int tags_offset = Array::base_offset_in_bytes(); // get type __ lea(r2, Address(r2, r0, Address::lsl(0))); __ load_unsigned_byte(r2, Address(r2, tags_offset)); __ cmpw(r2, (int)JVM_CONSTANT_Double); __ br(Assembler::NE, notDouble); // dtos __ lea (r2, Address(r1, r0, Address::lsl(3))); __ ldrd(v0, Address(r2, base_offset)); __ push_d(); __ b(Done); __ bind(notDouble); __ cmpw(r2, (int)JVM_CONSTANT_Long); __ br(Assembler::NE, notLong); // ltos __ lea(r0, Address(r1, r0, Address::lsl(3))); __ ldr(r0, Address(r0, base_offset)); __ push_l(); __ b(Done); __ bind(notLong); condy_helper(Done); __ bind(Done); } void TemplateTable::condy_helper(Label& Done) { Register obj = r0; Register rarg = r1; Register flags = r2; Register off = r3; address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); __ mov(rarg, (int) bytecode()); __ call_VM(obj, entry, rarg); __ get_vm_result_2(flags, rthread); // VMr = obj = base address to find primitive value to push // VMr2 = flags = (tos, off) using format of CPCE::_flags __ mov(off, flags); __ andw(off, off, ConstantPoolCacheEntry::field_index_mask); const Address field(obj, off); // What sort of thing are we loading? // x86 uses a shift and mask or wings it with a shift plus assert // the mask is not needed. aarch64 just uses bitfield extract __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); switch (bytecode()) { case Bytecodes::_ldc: case Bytecodes::_ldc_w: { // tos in (itos, ftos, stos, btos, ctos, ztos) Label notInt, notFloat, notShort, notByte, notChar, notBool; __ cmpw(flags, itos); __ br(Assembler::NE, notInt); // itos __ ldrw(r0, field); __ push(itos); __ b(Done); __ bind(notInt); __ cmpw(flags, ftos); __ br(Assembler::NE, notFloat); // ftos __ load_float(field); __ push(ftos); __ b(Done); __ bind(notFloat); __ cmpw(flags, stos); __ br(Assembler::NE, notShort); // stos __ load_signed_short(r0, field); __ push(stos); __ b(Done); __ bind(notShort); __ cmpw(flags, btos); __ br(Assembler::NE, notByte); // btos __ load_signed_byte(r0, field); __ push(btos); __ b(Done); __ bind(notByte); __ cmpw(flags, ctos); __ br(Assembler::NE, notChar); // ctos __ load_unsigned_short(r0, field); __ push(ctos); __ b(Done); __ bind(notChar); __ cmpw(flags, ztos); __ br(Assembler::NE, notBool); // ztos __ load_signed_byte(r0, field); __ push(ztos); __ b(Done); __ bind(notBool); break; } case Bytecodes::_ldc2_w: { Label notLong, notDouble; __ cmpw(flags, ltos); __ br(Assembler::NE, notLong); // ltos __ ldr(r0, field); __ push(ltos); __ b(Done); __ bind(notLong); __ cmpw(flags, dtos); __ br(Assembler::NE, notDouble); // dtos __ load_double(field); __ push(dtos); __ b(Done); __ bind(notDouble); break; } default: ShouldNotReachHere(); } __ stop("bad ldc/condy"); } void TemplateTable::locals_index(Register reg, int offset) { __ ldrb(reg, at_bcp(offset)); __ neg(reg, reg); } void TemplateTable::iload() { iload_internal(); } void TemplateTable::nofast_iload() { iload_internal(may_not_rewrite); } void TemplateTable::iload_internal(RewriteControl rc) { transition(vtos, itos); if (RewriteFrequentPairs && rc == may_rewrite) { Label rewrite, done; Register bc = r4; // get next bytecode __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); // if _iload, wait to rewrite to iload2. We only want to rewrite the // last two iloads in a pair. Comparing against fast_iload means that // the next bytecode is neither an iload or a caload, and therefore // an iload pair. __ cmpw(r1, Bytecodes::_iload); __ br(Assembler::EQ, done); // if _fast_iload rewrite to _fast_iload2 __ cmpw(r1, Bytecodes::_fast_iload); __ movw(bc, Bytecodes::_fast_iload2); __ br(Assembler::EQ, rewrite); // if _caload rewrite to _fast_icaload __ cmpw(r1, Bytecodes::_caload); __ movw(bc, Bytecodes::_fast_icaload); __ br(Assembler::EQ, rewrite); // else rewrite to _fast_iload __ movw(bc, Bytecodes::_fast_iload); // rewrite // bc: new bytecode __ bind(rewrite); patch_bytecode(Bytecodes::_iload, bc, r1, false); __ bind(done); } // do iload, get the local value into tos locals_index(r1); __ ldr(r0, iaddress(r1)); } void TemplateTable::fast_iload2() { transition(vtos, itos); locals_index(r1); __ ldr(r0, iaddress(r1)); __ push(itos); locals_index(r1, 3); __ ldr(r0, iaddress(r1)); } void TemplateTable::fast_iload() { transition(vtos, itos); locals_index(r1); __ ldr(r0, iaddress(r1)); } void TemplateTable::lload() { transition(vtos, ltos); __ ldrb(r1, at_bcp(1)); __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); } void TemplateTable::fload() { transition(vtos, ftos); locals_index(r1); // n.b. we use ldrd here because this is a 64 bit slot // this is comparable to the iload case __ ldrd(v0, faddress(r1)); } void TemplateTable::dload() { transition(vtos, dtos); __ ldrb(r1, at_bcp(1)); __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); } void TemplateTable::aload() { transition(vtos, atos); locals_index(r1); __ ldr(r0, iaddress(r1)); } void TemplateTable::locals_index_wide(Register reg) { __ ldrh(reg, at_bcp(2)); __ rev16w(reg, reg); __ neg(reg, reg); } void TemplateTable::wide_iload() { transition(vtos, itos); locals_index_wide(r1); __ ldr(r0, iaddress(r1)); } void TemplateTable::wide_lload() { transition(vtos, ltos); __ ldrh(r1, at_bcp(2)); __ rev16w(r1, r1); __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); } void TemplateTable::wide_fload() { transition(vtos, ftos); locals_index_wide(r1); // n.b. we use ldrd here because this is a 64 bit slot // this is comparable to the iload case __ ldrd(v0, faddress(r1)); } void TemplateTable::wide_dload() { transition(vtos, dtos); __ ldrh(r1, at_bcp(2)); __ rev16w(r1, r1); __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); } void TemplateTable::wide_aload() { transition(vtos, atos); locals_index_wide(r1); __ ldr(r0, aaddress(r1)); } void TemplateTable::index_check(Register array, Register index) { // destroys r1, rscratch1 // check array __ null_check(array, arrayOopDesc::length_offset_in_bytes()); // sign extend index for use by indexed load // __ movl2ptr(index, index); // check index Register length = rscratch1; __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes())); __ cmpw(index, length); if (index != r1) { // ??? convention: move aberrant index into r1 for exception message assert(r1 != array, "different registers"); __ mov(r1, index); } Label ok; __ br(Assembler::LO, ok); // ??? convention: move array into r3 for exception message __ mov(r3, array); __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); __ br(rscratch1); __ bind(ok); } void TemplateTable::iaload() { transition(itos, itos); __ mov(r1, r0); __ pop_ptr(r0); // r0: array // r1: index index_check(r0, r1); // leaves index in r1, kills rscratch1 __ lea(r1, Address(r0, r1, Address::uxtw(2))); __ ldrw(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_INT))); } void TemplateTable::laload() { transition(itos, ltos); __ mov(r1, r0); __ pop_ptr(r0); // r0: array // r1: index index_check(r0, r1); // leaves index in r1, kills rscratch1 __ lea(r1, Address(r0, r1, Address::uxtw(3))); __ ldr(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_LONG))); } void TemplateTable::faload() { transition(itos, ftos); __ mov(r1, r0); __ pop_ptr(r0); // r0: array // r1: index index_check(r0, r1); // leaves index in r1, kills rscratch1 __ lea(r1, Address(r0, r1, Address::uxtw(2))); __ ldrs(v0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); } void TemplateTable::daload() { transition(itos, dtos); __ mov(r1, r0); __ pop_ptr(r0); // r0: array // r1: index index_check(r0, r1); // leaves index in r1, kills rscratch1 __ lea(r1, Address(r0, r1, Address::uxtw(3))); __ ldrd(v0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); } void TemplateTable::aaload() { transition(itos, atos); __ mov(r1, r0); __ pop_ptr(r0); // r0: array // r1: index index_check(r0, r1); // leaves index in r1, kills rscratch1 int s = (UseCompressedOops ? 2 : 3); __ lea(r1, Address(r0, r1, Address::uxtw(s))); do_oop_load(_masm, Address(r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), r0, IN_HEAP | IN_HEAP_ARRAY); } void TemplateTable::baload() { transition(itos, itos); __ mov(r1, r0); __ pop_ptr(r0); // r0: array // r1: index index_check(r0, r1); // leaves index in r1, kills rscratch1 __ lea(r1, Address(r0, r1, Address::uxtw(0))); __ load_signed_byte(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_BYTE))); } void TemplateTable::caload() { transition(itos, itos); __ mov(r1, r0); __ pop_ptr(r0); // r0: array // r1: index index_check(r0, r1); // leaves index in r1, kills rscratch1 __ lea(r1, Address(r0, r1, Address::uxtw(1))); __ load_unsigned_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_CHAR))); } // iload followed by caload frequent pair void TemplateTable::fast_icaload() { transition(vtos, itos); // load index out of locals locals_index(r2); __ ldr(r1, iaddress(r2)); __ pop_ptr(r0); // r0: array // r1: index index_check(r0, r1); // leaves index in r1, kills rscratch1 __ lea(r1, Address(r0, r1, Address::uxtw(1))); __ load_unsigned_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_CHAR))); } void TemplateTable::saload() { transition(itos, itos); __ mov(r1, r0); __ pop_ptr(r0); // r0: array // r1: index index_check(r0, r1); // leaves index in r1, kills rscratch1 __ lea(r1, Address(r0, r1, Address::uxtw(1))); __ load_signed_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_SHORT))); } void TemplateTable::iload(int n) { transition(vtos, itos); __ ldr(r0, iaddress(n)); } void TemplateTable::lload(int n) { transition(vtos, ltos); __ ldr(r0, laddress(n)); } void TemplateTable::fload(int n) { transition(vtos, ftos); __ ldrs(v0, faddress(n)); } void TemplateTable::dload(int n) { transition(vtos, dtos); __ ldrd(v0, daddress(n)); } void TemplateTable::aload(int n) { transition(vtos, atos); __ ldr(r0, iaddress(n)); } void TemplateTable::aload_0() { aload_0_internal(); } void TemplateTable::nofast_aload_0() { aload_0_internal(may_not_rewrite); } void TemplateTable::aload_0_internal(RewriteControl rc) { // According to bytecode histograms, the pairs: // // _aload_0, _fast_igetfield // _aload_0, _fast_agetfield // _aload_0, _fast_fgetfield // // occur frequently. If RewriteFrequentPairs is set, the (slow) // _aload_0 bytecode checks if the next bytecode is either // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then // rewrites the current bytecode into a pair bytecode; otherwise it // rewrites the current bytecode into _fast_aload_0 that doesn't do // the pair check anymore. // // Note: If the next bytecode is _getfield, the rewrite must be // delayed, otherwise we may miss an opportunity for a pair. // // Also rewrite frequent pairs // aload_0, aload_1 // aload_0, iload_1 // These bytecodes with a small amount of code are most profitable // to rewrite if (RewriteFrequentPairs && rc == may_rewrite) { Label rewrite, done; const Register bc = r4; // get next bytecode __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); // if _getfield then wait with rewrite __ cmpw(r1, Bytecodes::Bytecodes::_getfield); __ br(Assembler::EQ, done); // if _igetfield then rewrite to _fast_iaccess_0 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); __ cmpw(r1, Bytecodes::_fast_igetfield); __ movw(bc, Bytecodes::_fast_iaccess_0); __ br(Assembler::EQ, rewrite); // if _agetfield then rewrite to _fast_aaccess_0 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); __ cmpw(r1, Bytecodes::_fast_agetfield); __ movw(bc, Bytecodes::_fast_aaccess_0); __ br(Assembler::EQ, rewrite); // if _fgetfield then rewrite to _fast_faccess_0 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); __ cmpw(r1, Bytecodes::_fast_fgetfield); __ movw(bc, Bytecodes::_fast_faccess_0); __ br(Assembler::EQ, rewrite); // else rewrite to _fast_aload0 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0); // rewrite // bc: new bytecode __ bind(rewrite); patch_bytecode(Bytecodes::_aload_0, bc, r1, false); __ bind(done); } // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). aload(0); } void TemplateTable::istore() { transition(itos, vtos); locals_index(r1); // FIXME: We're being very pernickerty here storing a jint in a // local with strw, which costs an extra instruction over what we'd // be able to do with a simple str. We should just store the whole // word. __ lea(rscratch1, iaddress(r1)); __ strw(r0, Address(rscratch1)); } void TemplateTable::lstore() { transition(ltos, vtos); locals_index(r1); __ str(r0, laddress(r1, rscratch1, _masm)); } void TemplateTable::fstore() { transition(ftos, vtos); locals_index(r1); __ lea(rscratch1, iaddress(r1)); __ strs(v0, Address(rscratch1)); } void TemplateTable::dstore() { transition(dtos, vtos); locals_index(r1); __ strd(v0, daddress(r1, rscratch1, _masm)); } void TemplateTable::astore() { transition(vtos, vtos); __ pop_ptr(r0); locals_index(r1); __ str(r0, aaddress(r1)); } void TemplateTable::wide_istore() { transition(vtos, vtos); __ pop_i(); locals_index_wide(r1); __ lea(rscratch1, iaddress(r1)); __ strw(r0, Address(rscratch1)); } void TemplateTable::wide_lstore() { transition(vtos, vtos); __ pop_l(); locals_index_wide(r1); __ str(r0, laddress(r1, rscratch1, _masm)); } void TemplateTable::wide_fstore() { transition(vtos, vtos); __ pop_f(); locals_index_wide(r1); __ lea(rscratch1, faddress(r1)); __ strs(v0, rscratch1); } void TemplateTable::wide_dstore() { transition(vtos, vtos); __ pop_d(); locals_index_wide(r1); __ strd(v0, daddress(r1, rscratch1, _masm)); } void TemplateTable::wide_astore() { transition(vtos, vtos); __ pop_ptr(r0); locals_index_wide(r1); __ str(r0, aaddress(r1)); } void TemplateTable::iastore() { transition(itos, vtos); __ pop_i(r1); __ pop_ptr(r3); // r0: value // r1: index // r3: array index_check(r3, r1); // prefer index in r1 __ lea(rscratch1, Address(r3, r1, Address::uxtw(2))); __ strw(r0, Address(rscratch1, arrayOopDesc::base_offset_in_bytes(T_INT))); } void TemplateTable::lastore() { transition(ltos, vtos); __ pop_i(r1); __ pop_ptr(r3); // r0: value // r1: index // r3: array index_check(r3, r1); // prefer index in r1 __ lea(rscratch1, Address(r3, r1, Address::uxtw(3))); __ str(r0, Address(rscratch1, arrayOopDesc::base_offset_in_bytes(T_LONG))); } void TemplateTable::fastore() { transition(ftos, vtos); __ pop_i(r1); __ pop_ptr(r3); // v0: value // r1: index // r3: array index_check(r3, r1); // prefer index in r1 __ lea(rscratch1, Address(r3, r1, Address::uxtw(2))); __ strs(v0, Address(rscratch1, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); } void TemplateTable::dastore() { transition(dtos, vtos); __ pop_i(r1); __ pop_ptr(r3); // v0: value // r1: index // r3: array index_check(r3, r1); // prefer index in r1 __ lea(rscratch1, Address(r3, r1, Address::uxtw(3))); __ strd(v0, Address(rscratch1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); } void TemplateTable::aastore() { Label is_null, ok_is_subtype, done; transition(vtos, vtos); // stack: ..., array, index, value __ ldr(r0, at_tos()); // value __ ldr(r2, at_tos_p1()); // index __ ldr(r3, at_tos_p2()); // array Address element_address(r4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); index_check(r3, r2); // kills r1 __ lea(r4, Address(r3, r2, Address::uxtw(UseCompressedOops? 2 : 3))); // do array store check - check for NULL value first __ cbz(r0, is_null); // Move subklass into r1 __ load_klass(r1, r0); // Move superklass into r0 __ load_klass(r0, r3); __ ldr(r0, Address(r0, ObjArrayKlass::element_klass_offset())); // Compress array + index*oopSize + 12 into a single register. Frees r2. // Generate subtype check. Blows r2, r5 // Superklass in r0. Subklass in r1. __ gen_subtype_check(r1, ok_is_subtype); // Come here on failure // object is at TOS __ b(Interpreter::_throw_ArrayStoreException_entry); // Come here on success __ bind(ok_is_subtype); // Get the value we will store __ ldr(r0, at_tos()); // Now store using the appropriate barrier do_oop_store(_masm, element_address, r0, IN_HEAP | IN_HEAP_ARRAY); __ b(done); // Have a NULL in r0, r3=array, r2=index. Store NULL at ary[idx] __ bind(is_null); __ profile_null_seen(r2); // Store a NULL do_oop_store(_masm, element_address, noreg, IN_HEAP | IN_HEAP_ARRAY); // Pop stack arguments __ bind(done); __ add(esp, esp, 3 * Interpreter::stackElementSize); } void TemplateTable::bastore() { transition(itos, vtos); __ pop_i(r1); __ pop_ptr(r3); // r0: value // r1: index // r3: array index_check(r3, r1); // prefer index in r1 // Need to check whether array is boolean or byte // since both types share the bastore bytecode. __ load_klass(r2, r3); __ ldrw(r2, Address(r2, Klass::layout_helper_offset())); int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit()); Label L_skip; __ tbz(r2, diffbit_index, L_skip); __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 __ bind(L_skip); __ lea(rscratch1, Address(r3, r1, Address::uxtw(0))); __ strb(r0, Address(rscratch1, arrayOopDesc::base_offset_in_bytes(T_BYTE))); } void TemplateTable::castore() { transition(itos, vtos); __ pop_i(r1); __ pop_ptr(r3); // r0: value // r1: index // r3: array index_check(r3, r1); // prefer index in r1 __ lea(rscratch1, Address(r3, r1, Address::uxtw(1))); __ strh(r0, Address(rscratch1, arrayOopDesc::base_offset_in_bytes(T_CHAR))); } void TemplateTable::sastore() { castore(); } void TemplateTable::istore(int n) { transition(itos, vtos); __ str(r0, iaddress(n)); } void TemplateTable::lstore(int n) { transition(ltos, vtos); __ str(r0, laddress(n)); } void TemplateTable::fstore(int n) { transition(ftos, vtos); __ strs(v0, faddress(n)); } void TemplateTable::dstore(int n) { transition(dtos, vtos); __ strd(v0, daddress(n)); } void TemplateTable::astore(int n) { transition(vtos, vtos); __ pop_ptr(r0); __ str(r0, iaddress(n)); } void TemplateTable::pop() { transition(vtos, vtos); __ add(esp, esp, Interpreter::stackElementSize); } void TemplateTable::pop2() { transition(vtos, vtos); __ add(esp, esp, 2 * Interpreter::stackElementSize); } void TemplateTable::dup() { transition(vtos, vtos); __ ldr(r0, Address(esp, 0)); __ push(r0); // stack: ..., a, a } void TemplateTable::dup_x1() { transition(vtos, vtos); // stack: ..., a, b __ ldr(r0, at_tos()); // load b __ ldr(r2, at_tos_p1()); // load a __ str(r0, at_tos_p1()); // store b __ str(r2, at_tos()); // store a __ push(r0); // push b // stack: ..., b, a, b } void TemplateTable::dup_x2() { transition(vtos, vtos); // stack: ..., a, b, c __ ldr(r0, at_tos()); // load c __ ldr(r2, at_tos_p2()); // load a __ str(r0, at_tos_p2()); // store c in a __ push(r0); // push c // stack: ..., c, b, c, c __ ldr(r0, at_tos_p2()); // load b __ str(r2, at_tos_p2()); // store a in b // stack: ..., c, a, c, c __ str(r0, at_tos_p1()); // store b in c // stack: ..., c, a, b, c } void TemplateTable::dup2() { transition(vtos, vtos); // stack: ..., a, b __ ldr(r0, at_tos_p1()); // load a __ push(r0); // push a __ ldr(r0, at_tos_p1()); // load b __ push(r0); // push b // stack: ..., a, b, a, b } void TemplateTable::dup2_x1() { transition(vtos, vtos); // stack: ..., a, b, c __ ldr(r2, at_tos()); // load c __ ldr(r0, at_tos_p1()); // load b __ push(r0); // push b __ push(r2); // push c // stack: ..., a, b, c, b, c __ str(r2, at_tos_p3()); // store c in b // stack: ..., a, c, c, b, c __ ldr(r2, at_tos_p4()); // load a __ str(r2, at_tos_p2()); // store a in 2nd c // stack: ..., a, c, a, b, c __ str(r0, at_tos_p4()); // store b in a // stack: ..., b, c, a, b, c } void TemplateTable::dup2_x2() { transition(vtos, vtos); // stack: ..., a, b, c, d __ ldr(r2, at_tos()); // load d __ ldr(r0, at_tos_p1()); // load c __ push(r0) ; // push c __ push(r2); // push d // stack: ..., a, b, c, d, c, d __ ldr(r0, at_tos_p4()); // load b __ str(r0, at_tos_p2()); // store b in d __ str(r2, at_tos_p4()); // store d in b // stack: ..., a, d, c, b, c, d __ ldr(r2, at_tos_p5()); // load a __ ldr(r0, at_tos_p3()); // load c __ str(r2, at_tos_p3()); // store a in c __ str(r0, at_tos_p5()); // store c in a // stack: ..., c, d, a, b, c, d } void TemplateTable::swap() { transition(vtos, vtos); // stack: ..., a, b __ ldr(r2, at_tos_p1()); // load a __ ldr(r0, at_tos()); // load b __ str(r2, at_tos()); // store a in b __ str(r0, at_tos_p1()); // store b in a // stack: ..., b, a } void TemplateTable::iop2(Operation op) { transition(itos, itos); // r0 <== r1 op r0 __ pop_i(r1); switch (op) { case add : __ addw(r0, r1, r0); break; case sub : __ subw(r0, r1, r0); break; case mul : __ mulw(r0, r1, r0); break; case _and : __ andw(r0, r1, r0); break; case _or : __ orrw(r0, r1, r0); break; case _xor : __ eorw(r0, r1, r0); break; case shl : __ lslvw(r0, r1, r0); break; case shr : __ asrvw(r0, r1, r0); break; case ushr : __ lsrvw(r0, r1, r0);break; default : ShouldNotReachHere(); } } void TemplateTable::lop2(Operation op) { transition(ltos, ltos); // r0 <== r1 op r0 __ pop_l(r1); switch (op) { case add : __ add(r0, r1, r0); break; case sub : __ sub(r0, r1, r0); break; case mul : __ mul(r0, r1, r0); break; case _and : __ andr(r0, r1, r0); break; case _or : __ orr(r0, r1, r0); break; case _xor : __ eor(r0, r1, r0); break; default : ShouldNotReachHere(); } } void TemplateTable::idiv() { transition(itos, itos); // explicitly check for div0 Label no_div0; __ cbnzw(r0, no_div0); __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); __ br(rscratch1); __ bind(no_div0); __ pop_i(r1); // r0 <== r1 idiv r0 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false); } void TemplateTable::irem() { transition(itos, itos); // explicitly check for div0 Label no_div0; __ cbnzw(r0, no_div0); __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); __ br(rscratch1); __ bind(no_div0); __ pop_i(r1); // r0 <== r1 irem r0 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true); } void TemplateTable::lmul() { transition(ltos, ltos); __ pop_l(r1); __ mul(r0, r0, r1); } void TemplateTable::ldiv() { transition(ltos, ltos); // explicitly check for div0 Label no_div0; __ cbnz(r0, no_div0); __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); __ br(rscratch1); __ bind(no_div0); __ pop_l(r1); // r0 <== r1 ldiv r0 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false); } void TemplateTable::lrem() { transition(ltos, ltos); // explicitly check for div0 Label no_div0; __ cbnz(r0, no_div0); __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); __ br(rscratch1); __ bind(no_div0); __ pop_l(r1); // r0 <== r1 lrem r0 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true); } void TemplateTable::lshl() { transition(itos, ltos); // shift count is in r0 __ pop_l(r1); __ lslv(r0, r1, r0); } void TemplateTable::lshr() { transition(itos, ltos); // shift count is in r0 __ pop_l(r1); __ asrv(r0, r1, r0); } void TemplateTable::lushr() { transition(itos, ltos); // shift count is in r0 __ pop_l(r1); __ lsrv(r0, r1, r0); } void TemplateTable::fop2(Operation op) { transition(ftos, ftos); switch (op) { case add: // n.b. use ldrd because this is a 64 bit slot __ pop_f(v1); __ fadds(v0, v1, v0); break; case sub: __ pop_f(v1); __ fsubs(v0, v1, v0); break; case mul: __ pop_f(v1); __ fmuls(v0, v1, v0); break; case div: __ pop_f(v1); __ fdivs(v0, v1, v0); break; case rem: __ fmovs(v1, v0); __ pop_f(v0); __ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 0, 2, MacroAssembler::ret_type_float); break; default: ShouldNotReachHere(); break; } } void TemplateTable::dop2(Operation op) { transition(dtos, dtos); switch (op) { case add: // n.b. use ldrd because this is a 64 bit slot __ pop_d(v1); __ faddd(v0, v1, v0); break; case sub: __ pop_d(v1); __ fsubd(v0, v1, v0); break; case mul: __ pop_d(v1); __ fmuld(v0, v1, v0); break; case div: __ pop_d(v1); __ fdivd(v0, v1, v0); break; case rem: __ fmovd(v1, v0); __ pop_d(v0); __ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 0, 2, MacroAssembler::ret_type_double); break; default: ShouldNotReachHere(); break; } } void TemplateTable::ineg() { transition(itos, itos); __ negw(r0, r0); } void TemplateTable::lneg() { transition(ltos, ltos); __ neg(r0, r0); } void TemplateTable::fneg() { transition(ftos, ftos); __ fnegs(v0, v0); } void TemplateTable::dneg() { transition(dtos, dtos); __ fnegd(v0, v0); } void TemplateTable::iinc() { transition(vtos, vtos); __ load_signed_byte(r1, at_bcp(2)); // get constant locals_index(r2); __ ldr(r0, iaddress(r2)); __ addw(r0, r0, r1); __ str(r0, iaddress(r2)); } void TemplateTable::wide_iinc() { transition(vtos, vtos); // __ mov(r1, zr); __ ldrw(r1, at_bcp(2)); // get constant and index __ rev16(r1, r1); __ ubfx(r2, r1, 0, 16); __ neg(r2, r2); __ sbfx(r1, r1, 16, 16); __ ldr(r0, iaddress(r2)); __ addw(r0, r0, r1); __ str(r0, iaddress(r2)); } void TemplateTable::convert() { // Checking #ifdef ASSERT { TosState tos_in = ilgl; TosState tos_out = ilgl; switch (bytecode()) { case Bytecodes::_i2l: // fall through case Bytecodes::_i2f: // fall through case Bytecodes::_i2d: // fall through case Bytecodes::_i2b: // fall through case Bytecodes::_i2c: // fall through case Bytecodes::_i2s: tos_in = itos; break; case Bytecodes::_l2i: // fall through case Bytecodes::_l2f: // fall through case Bytecodes::_l2d: tos_in = ltos; break; case Bytecodes::_f2i: // fall through case Bytecodes::_f2l: // fall through case Bytecodes::_f2d: tos_in = ftos; break; case Bytecodes::_d2i: // fall through case Bytecodes::_d2l: // fall through case Bytecodes::_d2f: tos_in = dtos; break; default : ShouldNotReachHere(); } switch (bytecode()) { case Bytecodes::_l2i: // fall through case Bytecodes::_f2i: // fall through case Bytecodes::_d2i: // fall through case Bytecodes::_i2b: // fall through case Bytecodes::_i2c: // fall through case Bytecodes::_i2s: tos_out = itos; break; case Bytecodes::_i2l: // fall through case Bytecodes::_f2l: // fall through case Bytecodes::_d2l: tos_out = ltos; break; case Bytecodes::_i2f: // fall through case Bytecodes::_l2f: // fall through case Bytecodes::_d2f: tos_out = ftos; break; case Bytecodes::_i2d: // fall through case Bytecodes::_l2d: // fall through case Bytecodes::_f2d: tos_out = dtos; break; default : ShouldNotReachHere(); } transition(tos_in, tos_out); } #endif // ASSERT // static const int64_t is_nan = 0x8000000000000000L; // Conversion switch (bytecode()) { case Bytecodes::_i2l: __ sxtw(r0, r0); break; case Bytecodes::_i2f: __ scvtfws(v0, r0); break; case Bytecodes::_i2d: __ scvtfwd(v0, r0); break; case Bytecodes::_i2b: __ sxtbw(r0, r0); break; case Bytecodes::_i2c: __ uxthw(r0, r0); break; case Bytecodes::_i2s: __ sxthw(r0, r0); break; case Bytecodes::_l2i: __ uxtw(r0, r0); break; case Bytecodes::_l2f: __ scvtfs(v0, r0); break; case Bytecodes::_l2d: __ scvtfd(v0, r0); break; case Bytecodes::_f2i: { Label L_Okay; __ clear_fpsr(); __ fcvtzsw(r0, v0); __ get_fpsr(r1); __ cbzw(r1, L_Okay); __ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 0, 1, MacroAssembler::ret_type_integral); __ bind(L_Okay); } break; case Bytecodes::_f2l: { Label L_Okay; __ clear_fpsr(); __ fcvtzs(r0, v0); __ get_fpsr(r1); __ cbzw(r1, L_Okay); __ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 0, 1, MacroAssembler::ret_type_integral); __ bind(L_Okay); } break; case Bytecodes::_f2d: __ fcvts(v0, v0); break; case Bytecodes::_d2i: { Label L_Okay; __ clear_fpsr(); __ fcvtzdw(r0, v0); __ get_fpsr(r1); __ cbzw(r1, L_Okay); __ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 0, 1, MacroAssembler::ret_type_integral); __ bind(L_Okay); } break; case Bytecodes::_d2l: { Label L_Okay; __ clear_fpsr(); __ fcvtzd(r0, v0); __ get_fpsr(r1); __ cbzw(r1, L_Okay); __ call_VM_leaf_base1(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 0, 1, MacroAssembler::ret_type_integral); __ bind(L_Okay); } break; case Bytecodes::_d2f: __ fcvtd(v0, v0); break; default: ShouldNotReachHere(); } } void TemplateTable::lcmp() { transition(ltos, itos); Label done; __ pop_l(r1); __ cmp(r1, r0); __ mov(r0, (u_int64_t)-1L); __ br(Assembler::LT, done); // __ mov(r0, 1UL); // __ csel(r0, r0, zr, Assembler::NE); // and here is a faster way __ csinc(r0, zr, zr, Assembler::EQ); __ bind(done); } void TemplateTable::float_cmp(bool is_float, int unordered_result) { Label done; if (is_float) { // XXX get rid of pop here, use ... reg, mem32 __ pop_f(v1); __ fcmps(v1, v0); } else { // XXX get rid of pop here, use ... reg, mem64 __ pop_d(v1); __ fcmpd(v1, v0); } if (unordered_result < 0) { // we want -1 for unordered or less than, 0 for equal and 1 for // greater than. __ mov(r0, (u_int64_t)-1L); // for FP LT tests less than or unordered __ br(Assembler::LT, done); // install 0 for EQ otherwise 1 __ csinc(r0, zr, zr, Assembler::EQ); } else { // we want -1 for less than, 0 for equal and 1 for unordered or // greater than. __ mov(r0, 1L); // for FP HI tests greater than or unordered __ br(Assembler::HI, done); // install 0 for EQ otherwise ~0 __ csinv(r0, zr, zr, Assembler::EQ); } __ bind(done); } void TemplateTable::branch(bool is_jsr, bool is_wide) { // We might be moving to a safepoint. The thread which calls // Interpreter::notice_safepoints() will effectively flush its cache // when it makes a system call, but we need to do something to // ensure that we see the changed dispatch table. __ membar(MacroAssembler::LoadLoad); __ profile_taken_branch(r0, r1); const ByteSize be_offset = MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset(); const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset(); // load branch displacement if (!is_wide) { __ ldrh(r2, at_bcp(1)); __ rev16(r2, r2); // sign extend the 16 bit value in r2 __ sbfm(r2, r2, 0, 15); } else { __ ldrw(r2, at_bcp(1)); __ revw(r2, r2); // sign extend the 32 bit value in r2 __ sbfm(r2, r2, 0, 31); } // Handle all the JSR stuff here, then exit. // It's much shorter and cleaner than intermingling with the non-JSR // normal-branch stuff occurring below. if (is_jsr) { // Pre-load the next target bytecode into rscratch1 __ load_unsigned_byte(rscratch1, Address(rbcp, r2)); // compute return address as bci __ ldr(rscratch2, Address(rmethod, Method::const_offset())); __ add(rscratch2, rscratch2, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); __ sub(r1, rbcp, rscratch2); __ push_i(r1); // Adjust the bcp by the 16-bit displacement in r2 __ add(rbcp, rbcp, r2); __ dispatch_only(vtos, /*generate_poll*/true); return; } // Normal (non-jsr) branch handling // Adjust the bcp by the displacement in r2 __ add(rbcp, rbcp, r2); assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters"); Label backedge_counter_overflow; Label profile_method; Label dispatch; if (UseLoopCounter) { // increment backedge counter for backward branches // r0: MDO // w1: MDO bumped taken-count // r2: target offset __ cmp(r2, zr); __ br(Assembler::GT, dispatch); // count only if backward branch // ECN: FIXME: This code smells // check if MethodCounters exists Label has_counters; __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); __ cbnz(rscratch1, has_counters); __ push(r0); __ push(r1); __ push(r2); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), rmethod); __ pop(r2); __ pop(r1); __ pop(r0); __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory __ bind(has_counters); if (TieredCompilation) { Label no_mdo; int increment = InvocationCounter::count_increment; if (ProfileInterpreter) { // Are we profiling? __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); __ cbz(r1, no_mdo); // Increment the MDO backedge counter const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset())); const Address mask(r1, in_bytes(MethodData::backedge_mask_offset())); __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, r0, rscratch1, false, Assembler::EQ, UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); __ b(dispatch); } __ bind(no_mdo); // Increment backedge counter in MethodCounters* __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset())); __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask, r0, rscratch2, false, Assembler::EQ, UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); } else { // not TieredCompilation // increment counter __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset())); __ ldrw(r0, Address(rscratch2, be_offset)); // load backedge counter __ addw(rscratch1, r0, InvocationCounter::count_increment); // increment counter __ strw(rscratch1, Address(rscratch2, be_offset)); // store counter __ ldrw(r0, Address(rscratch2, inv_offset)); // load invocation counter __ andw(r0, r0, (unsigned)InvocationCounter::count_mask_value); // and the status bits __ addw(r0, r0, rscratch1); // add both counters if (ProfileInterpreter) { // Test to see if we should create a method data oop __ ldrw(rscratch1, Address(rscratch2, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); __ cmpw(r0, rscratch1); __ br(Assembler::LT, dispatch); // if no method data exists, go to profile method __ test_method_data_pointer(r0, profile_method); if (UseOnStackReplacement) { // check for overflow against w1 which is the MDO taken count __ ldrw(rscratch1, Address(rscratch2, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); __ cmpw(r1, rscratch1); __ br(Assembler::LO, dispatch); // Intel == Assembler::below // When ProfileInterpreter is on, the backedge_count comes // from the MethodData*, which value does not get reset on // the call to frequency_counter_overflow(). To avoid // excessive calls to the overflow routine while the method is // being compiled, add a second test to make sure the overflow // function is called only once every overflow_frequency. const int overflow_frequency = 1024; __ andsw(r1, r1, overflow_frequency - 1); __ br(Assembler::EQ, backedge_counter_overflow); } } else { if (UseOnStackReplacement) { // check for overflow against w0, which is the sum of the // counters __ ldrw(rscratch1, Address(rscratch2, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); __ cmpw(r0, rscratch1); __ br(Assembler::HS, backedge_counter_overflow); // Intel == Assembler::aboveEqual } } } __ bind(dispatch); } // Pre-load the next target bytecode into rscratch1 __ load_unsigned_byte(rscratch1, Address(rbcp, 0)); // continue with the bytecode @ target // rscratch1: target bytecode // rbcp: target bcp __ dispatch_only(vtos, /*generate_poll*/true); if (UseLoopCounter) { if (ProfileInterpreter) { // Out-of-line code to allocate method data oop. __ bind(profile_method); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode __ set_method_data_pointer_for_bcp(); __ b(dispatch); } if (UseOnStackReplacement) { // invocation counter overflow __ bind(backedge_counter_overflow); __ neg(r2, r2); __ add(r2, r2, rbcp); // branch bcp // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), r2); __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode // r0: osr nmethod (osr ok) or NULL (osr not possible) // w1: target bytecode // r2: scratch __ cbz(r0, dispatch); // test result -- no osr if null // nmethod may have been invalidated (VM may block upon call_VM return) __ ldrb(r2, Address(r0, nmethod::state_offset())); if (nmethod::in_use != 0) __ sub(r2, r2, nmethod::in_use); __ cbnz(r2, dispatch); // We have the address of an on stack replacement routine in r0 // We need to prepare to execute the OSR method. First we must // migrate the locals and monitors off of the stack. __ mov(r19, r0); // save the nmethod call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); // r0 is OSR buffer, move it to expected parameter location __ mov(j_rarg0, r0); // remove activation // get sender esp __ ldr(esp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // remove frame anchor __ leave(); // Ensure compiled code always sees stack at proper alignment __ andr(sp, esp, -16); // and begin the OSR nmethod __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset())); __ br(rscratch1); } } } void TemplateTable::if_0cmp(Condition cc) { transition(itos, vtos); // assume branch is more often taken than not (loops use backward branches) Label not_taken; if (cc == equal) __ cbnzw(r0, not_taken); else if (cc == not_equal) __ cbzw(r0, not_taken); else { __ andsw(zr, r0, r0); __ br(j_not(cc), not_taken); } branch(false, false); __ bind(not_taken); __ profile_not_taken_branch(r0); } void TemplateTable::if_icmp(Condition cc) { transition(itos, vtos); // assume branch is more often taken than not (loops use backward branches) Label not_taken; __ pop_i(r1); __ cmpw(r1, r0, Assembler::LSL); __ br(j_not(cc), not_taken); branch(false, false); __ bind(not_taken); __ profile_not_taken_branch(r0); } void TemplateTable::if_nullcmp(Condition cc) { transition(atos, vtos); // assume branch is more often taken than not (loops use backward branches) Label not_taken; if (cc == equal) __ cbnz(r0, not_taken); else __ cbz(r0, not_taken); branch(false, false); __ bind(not_taken); __ profile_not_taken_branch(r0); } void TemplateTable::if_acmp(Condition cc) { transition(atos, vtos); // assume branch is more often taken than not (loops use backward branches) Label not_taken; __ pop_ptr(r1); __ cmpoop(r1, r0); __ br(j_not(cc), not_taken); branch(false, false); __ bind(not_taken); __ profile_not_taken_branch(r0); } void TemplateTable::ret() { transition(vtos, vtos); // We might be moving to a safepoint. The thread which calls // Interpreter::notice_safepoints() will effectively flush its cache // when it makes a system call, but we need to do something to // ensure that we see the changed dispatch table. __ membar(MacroAssembler::LoadLoad); locals_index(r1); __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp __ profile_ret(r1, r2); __ ldr(rbcp, Address(rmethod, Method::const_offset())); __ lea(rbcp, Address(rbcp, r1)); __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); __ dispatch_next(vtos, 0, /*generate_poll*/true); } void TemplateTable::wide_ret() { transition(vtos, vtos); locals_index_wide(r1); __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp __ profile_ret(r1, r2); __ ldr(rbcp, Address(rmethod, Method::const_offset())); __ lea(rbcp, Address(rbcp, r1)); __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); __ dispatch_next(vtos, 0, /*generate_poll*/true); } void TemplateTable::tableswitch() { Label default_case, continue_execution; transition(itos, vtos); // align rbcp __ lea(r1, at_bcp(BytesPerInt)); __ andr(r1, r1, -BytesPerInt); // load lo & hi __ ldrw(r2, Address(r1, BytesPerInt)); __ ldrw(r3, Address(r1, 2 * BytesPerInt)); __ rev32(r2, r2); __ rev32(r3, r3); // check against lo & hi __ cmpw(r0, r2); __ br(Assembler::LT, default_case); __ cmpw(r0, r3); __ br(Assembler::GT, default_case); // lookup dispatch offset __ subw(r0, r0, r2); __ lea(r3, Address(r1, r0, Address::uxtw(2))); __ ldrw(r3, Address(r3, 3 * BytesPerInt)); __ profile_switch_case(r0, r1, r2); // continue execution __ bind(continue_execution); __ rev32(r3, r3); __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0))); __ add(rbcp, rbcp, r3, ext::sxtw); __ dispatch_only(vtos, /*generate_poll*/true); // handle default __ bind(default_case); __ profile_switch_default(r0); __ ldrw(r3, Address(r1, 0)); __ b(continue_execution); } void TemplateTable::lookupswitch() { transition(itos, itos); __ stop("lookupswitch bytecode should have been rewritten"); } void TemplateTable::fast_linearswitch() { transition(itos, vtos); Label loop_entry, loop, found, continue_execution; // bswap r0 so we can avoid bswapping the table entries __ rev32(r0, r0); // align rbcp __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of // this instruction (change offsets // below) __ andr(r19, r19, -BytesPerInt); // set counter __ ldrw(r1, Address(r19, BytesPerInt)); __ rev32(r1, r1); __ b(loop_entry); // table search __ bind(loop); __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt)); __ cmpw(r0, rscratch1); __ br(Assembler::EQ, found); __ bind(loop_entry); __ subs(r1, r1, 1); __ br(Assembler::PL, loop); // default case __ profile_switch_default(r0); __ ldrw(r3, Address(r19, 0)); __ b(continue_execution); // entry found -> get offset __ bind(found); __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt)); __ profile_switch_case(r1, r0, r19); // continue execution __ bind(continue_execution); __ rev32(r3, r3); __ add(rbcp, rbcp, r3, ext::sxtw); __ ldrb(rscratch1, Address(rbcp, 0)); __ dispatch_only(vtos, /*generate_poll*/true); } void TemplateTable::fast_binaryswitch() { transition(itos, vtos); // Implementation using the following core algorithm: // // int binary_search(int key, LookupswitchPair* array, int n) { // // Binary search according to "Methodik des Programmierens" by // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. // int i = 0; // int j = n; // while (i+1 < j) { // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) // // with Q: for all i: 0 <= i < n: key < a[i] // // where a stands for the array and assuming that the (inexisting) // // element a[n] is infinitely big. // int h = (i + j) >> 1; // // i < h < j // if (key < array[h].fast_match()) { // j = h; // } else { // i = h; // } // } // // R: a[i] <= key < a[i+1] or Q // // (i.e., if key is within array, i is the correct index) // return i; // } // Register allocation const Register key = r0; // already set (tosca) const Register array = r1; const Register i = r2; const Register j = r3; const Register h = rscratch1; const Register temp = rscratch2; // Find array start __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to // get rid of this // instruction (change // offsets below) __ andr(array, array, -BytesPerInt); // Initialize i & j __ mov(i, 0); // i = 0; __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array); // Convert j into native byteordering __ rev32(j, j); // And start Label entry; __ b(entry); // binary search loop { Label loop; __ bind(loop); // int h = (i + j) >> 1; __ addw(h, i, j); // h = i + j; __ lsrw(h, h, 1); // h = (i + j) >> 1; // if (key < array[h].fast_match()) { // j = h; // } else { // i = h; // } // Convert array[h].match to native byte-ordering before compare __ ldr(temp, Address(array, h, Address::lsl(3))); __ rev32(temp, temp); __ cmpw(key, temp); // j = h if (key < array[h].fast_match()) __ csel(j, h, j, Assembler::LT); // i = h if (key >= array[h].fast_match()) __ csel(i, h, i, Assembler::GE); // while (i+1 < j) __ bind(entry); __ addw(h, i, 1); // i+1 __ cmpw(h, j); // i+1 < j __ br(Assembler::LT, loop); } // end of binary search, result index is i (must check again!) Label default_case; // Convert array[i].match to native byte-ordering before compare __ ldr(temp, Address(array, i, Address::lsl(3))); __ rev32(temp, temp); __ cmpw(key, temp); __ br(Assembler::NE, default_case); // entry found -> j = offset __ add(j, array, i, ext::uxtx, 3); __ ldrw(j, Address(j, BytesPerInt)); __ profile_switch_case(i, key, array); __ rev32(j, j); __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); __ dispatch_only(vtos, /*generate_poll*/true); // default case -> j = default offset __ bind(default_case); __ profile_switch_default(i); __ ldrw(j, Address(array, -2 * BytesPerInt)); __ rev32(j, j); __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); __ dispatch_only(vtos, /*generate_poll*/true); } void TemplateTable::_return(TosState state) { transition(state, state); assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { assert(state == vtos, "only valid state"); __ ldr(c_rarg1, aaddress(0)); __ load_klass(r3, c_rarg1); __ ldrw(r3, Address(r3, Klass::access_flags_offset())); Label skip_register_finalizer; __ tbz(r3, exact_log2(JVM_ACC_HAS_FINALIZER), skip_register_finalizer); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); __ bind(skip_register_finalizer); } // Issue a StoreStore barrier after all stores but before return // from any constructor for any class with a final field. We don't // know if this is a finalizer, so we always do so. if (_desc->bytecode() == Bytecodes::_return) __ membar(MacroAssembler::StoreStore); // Narrow result if state is itos but result type is smaller. // Need to narrow in the return bytecode rather than in generate_return_entry // since compiled code callers expect the result to already be narrowed. if (state == itos) { __ narrow(r0); } __ remove_activation(state); __ ret(lr); } // ---------------------------------------------------------------------------- // Volatile variables demand their effects be made known to all CPU's // in order. Store buffers on most chips allow reads & writes to // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode // without some kind of memory barrier (i.e., it's not sufficient that // the interpreter does not reorder volatile references, the hardware // also must not reorder them). // // According to the new Java Memory Model (JMM): // (1) All volatiles are serialized wrt to each other. ALSO reads & // writes act as aquire & release, so: // (2) A read cannot let unrelated NON-volatile memory refs that // happen after the read float up to before the read. It's OK for // non-volatile memory refs that happen before the volatile read to // float down below it. // (3) Similar a volatile write cannot let unrelated NON-volatile // memory refs that happen BEFORE the write float down to after the // write. It's OK for non-volatile memory refs that happen after the // volatile write to float up before it. // // We only put in barriers around volatile refs (they are expensive), // not _between_ memory refs (that would require us to track the // flavor of the previous memory refs). Requirements (2) and (3) // require some barriers before volatile stores and after volatile // loads. These nearly cover requirement (1) but miss the // volatile-store-volatile-load case. This final case is placed after // volatile-stores although it could just as well go before // volatile-loads. void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index, size_t index_size) { const Register temp = r19; assert_different_registers(Rcache, index, temp); Label resolved; Bytecodes::Code code = bytecode(); switch (code) { case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; } assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); __ cmp(temp, (int) code); // have we resolved this bytecode? __ br(Assembler::EQ, resolved); // resolve first time through address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); __ mov(temp, (int) code); __ call_VM(noreg, entry, temp); // Update registers with resolved info __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); // n.b. unlike x86 Rcache is now rcpool plus the indexed offset // so all clients ofthis method must be modified accordingly __ bind(resolved); } // The Rcache and index registers must be set before call // n.b unlike x86 cache already includes the index offset void TemplateTable::load_field_cp_cache_entry(Register obj, Register cache, Register index, Register off, Register flags, bool is_static = false) { assert_different_registers(cache, index, flags, off); ByteSize cp_base_offset = ConstantPoolCache::base_offset(); // Field offset __ ldr(off, Address(cache, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()))); // Flags __ ldrw(flags, Address(cache, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()))); // klass overwrite register if (is_static) { __ ldr(obj, Address(cache, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset()))); const int mirror_offset = in_bytes(Klass::java_mirror_offset()); __ ldr(obj, Address(obj, mirror_offset)); __ resolve_oop_handle(obj); } } void TemplateTable::load_invoke_cp_cache_entry(int byte_no, Register method, Register itable_index, Register flags, bool is_invokevirtual, bool is_invokevfinal, /*unused*/ bool is_invokedynamic) { // setup registers const Register cache = rscratch2; const Register index = r4; assert_different_registers(method, flags); assert_different_registers(method, cache, index); assert_different_registers(itable_index, flags); assert_different_registers(itable_index, cache, index); // determine constant pool cache field offsets assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); const int method_offset = in_bytes( ConstantPoolCache::base_offset() + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset())); const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()); // access constant pool cache fields const int index_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()); size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); resolve_cache_and_index(byte_no, cache, index, index_size); __ ldr(method, Address(cache, method_offset)); if (itable_index != noreg) { __ ldr(itable_index, Address(cache, index_offset)); } __ ldrw(flags, Address(cache, flags_offset)); } // The registers cache and index expected to be set before call. // Correct values of the cache and index registers are preserved. void TemplateTable::jvmti_post_field_access(Register cache, Register index, bool is_static, bool has_tos) { // do the JVMTI work here to avoid disturbing the register state below // We use c_rarg registers here because we want to use the register used in // the call to the VM if (JvmtiExport::can_post_field_access()) { // Check to see if a field access watch has been set before we // take the time to call into the VM. Label L1; assert_different_registers(cache, index, r0); __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); __ ldrw(r0, Address(rscratch1)); __ cbzw(r0, L1); __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1); __ lea(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset()))); if (is_static) { __ mov(c_rarg1, zr); // NULL object reference } else { __ ldr(c_rarg1, at_tos()); // get object pointer without popping it __ verify_oop(c_rarg1); } // c_rarg1: object pointer or NULL // c_rarg2: cache entry pointer // c_rarg3: jvalue object on the stack __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2, c_rarg3); __ get_cache_and_index_at_bcp(cache, index, 1); __ bind(L1); } } void TemplateTable::pop_and_check_object(Register r) { __ pop_ptr(r); __ null_check(r); // for field access must check obj. __ verify_oop(r); } void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { const Register cache = r2; const Register index = r3; const Register obj = r4; const Register off = r19; const Register flags = r0; const Register raw_flags = r6; const Register bc = r4; // uses same reg as obj, so don't mix them resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); jvmti_post_field_access(cache, index, is_static, false); load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static); if (!is_static) { // obj is on the stack pop_and_check_object(obj); } // 8179954: We need to make sure that the code generated for // volatile accesses forms a sequentially-consistent set of // operations when combined with STLR and LDAR. Without a leading // membar it's possible for a simple Dekker test to fail if loads // use LDR;DMB but stores use STLR. This can happen if C2 compiles // the stores in one method and we interpret the loads in another. if (! UseBarriersForVolatile) { Label notVolatile; __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); __ membar(MacroAssembler::AnyAny); __ bind(notVolatile); } const Address field(obj, off); Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; // x86 uses a shift and mask or wings it with a shift plus assert // the mask is not needed. aarch64 just uses bitfield extract __ ubfxw(flags, raw_flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); assert(btos == 0, "change code, btos != 0"); __ cbnz(flags, notByte); // Don't rewrite getstatic, only getfield if (is_static) rc = may_not_rewrite; // btos __ load_signed_byte(r0, field); __ push(btos); // Rewrite bytecode to be faster if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); } __ b(Done); __ bind(notByte); __ cmp(flags, ztos); __ br(Assembler::NE, notBool); // ztos (same code as btos) __ ldrsb(r0, field); __ push(ztos); // Rewrite bytecode to be faster if (rc == may_rewrite) { // use btos rewriting, no truncating to t/f bit is needed for getfield. patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); } __ b(Done); __ bind(notBool); __ cmp(flags, atos); __ br(Assembler::NE, notObj); // atos do_oop_load(_masm, field, r0, IN_HEAP); __ push(atos); if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); } __ b(Done); __ bind(notObj); __ cmp(flags, itos); __ br(Assembler::NE, notInt); // itos __ ldrw(r0, field); __ push(itos); // Rewrite bytecode to be faster if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_igetfield, bc, r1); } __ b(Done); __ bind(notInt); __ cmp(flags, ctos); __ br(Assembler::NE, notChar); // ctos __ load_unsigned_short(r0, field); __ push(ctos); // Rewrite bytecode to be faster if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1); } __ b(Done); __ bind(notChar); __ cmp(flags, stos); __ br(Assembler::NE, notShort); // stos __ load_signed_short(r0, field); __ push(stos); // Rewrite bytecode to be faster if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1); } __ b(Done); __ bind(notShort); __ cmp(flags, ltos); __ br(Assembler::NE, notLong); // ltos __ ldr(r0, field); __ push(ltos); // Rewrite bytecode to be faster if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1); } __ b(Done); __ bind(notLong); __ cmp(flags, ftos); __ br(Assembler::NE, notFloat); // ftos __ ldrs(v0, field); __ push(ftos); // Rewrite bytecode to be faster if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1); } __ b(Done); __ bind(notFloat); #ifdef ASSERT __ cmp(flags, dtos); __ br(Assembler::NE, notDouble); #endif // dtos __ ldrd(v0, field); __ push(dtos); // Rewrite bytecode to be faster if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1); } #ifdef ASSERT __ b(Done); __ bind(notDouble); __ stop("Bad state"); #endif __ bind(Done); Label notVolatile; __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); __ bind(notVolatile); } void TemplateTable::getfield(int byte_no) { getfield_or_static(byte_no, false); } void TemplateTable::nofast_getfield(int byte_no) { getfield_or_static(byte_no, false, may_not_rewrite); } void TemplateTable::getstatic(int byte_no) { getfield_or_static(byte_no, true); } // The registers cache and index expected to be set before call. // The function may destroy various registers, just not the cache and index registers. void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { transition(vtos, vtos); ByteSize cp_base_offset = ConstantPoolCache::base_offset(); if (JvmtiExport::can_post_field_modification()) { // Check to see if a field modification watch has been set before // we take the time to call into the VM. Label L1; assert_different_registers(cache, index, r0); __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); __ ldrw(r0, Address(rscratch1)); __ cbz(r0, L1); __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1); if (is_static) { // Life is simple. Null out the object pointer. __ mov(c_rarg1, zr); } else { // Life is harder. The stack holds the value on top, followed by // the object. We don't know the size of the value, though; it // could be one or two words depending on its type. As a result, // we must find the type to determine where the object is. __ ldrw(c_rarg3, Address(c_rarg2, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()))); __ lsr(c_rarg3, c_rarg3, ConstantPoolCacheEntry::tos_state_shift); ConstantPoolCacheEntry::verify_tos_state_shift(); Label nope2, done, ok; __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue __ cmpw(c_rarg3, ltos); __ br(Assembler::EQ, ok); __ cmpw(c_rarg3, dtos); __ br(Assembler::NE, nope2); __ bind(ok); __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue) __ bind(nope2); } // cache entry pointer __ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset)); // object (tos) __ mov(c_rarg3, esp); // c_rarg1: object pointer set up above (NULL if static) // c_rarg2: cache entry pointer // c_rarg3: jvalue object on the stack __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), c_rarg1, c_rarg2, c_rarg3); __ get_cache_and_index_at_bcp(cache, index, 1); __ bind(L1); } } void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { transition(vtos, vtos); const Register cache = r2; const Register index = r3; const Register obj = r2; const Register off = r19; const Register flags = r0; const Register bc = r4; resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); jvmti_post_field_mod(cache, index, is_static); load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); Label Done; __ mov(r5, flags); { Label notVolatile; __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); __ membar(MacroAssembler::StoreStore); __ bind(notVolatile); } // field address const Address field(obj, off); Label notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; // x86 uses a shift and mask or wings it with a shift plus assert // the mask is not needed. aarch64 just uses bitfield extract __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); assert(btos == 0, "change code, btos != 0"); __ cbnz(flags, notByte); // Don't rewrite putstatic, only putfield if (is_static) rc = may_not_rewrite; // btos { __ pop(btos); if (!is_static) pop_and_check_object(obj); __ strb(r0, field); if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no); } __ b(Done); } __ bind(notByte); __ cmp(flags, ztos); __ br(Assembler::NE, notBool); // ztos { __ pop(ztos); if (!is_static) pop_and_check_object(obj); __ andw(r0, r0, 0x1); __ strb(r0, field); if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no); } __ b(Done); } __ bind(notBool); __ cmp(flags, atos); __ br(Assembler::NE, notObj); // atos { __ pop(atos); if (!is_static) pop_and_check_object(obj); // Store into the field do_oop_store(_masm, field, r0, IN_HEAP); if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no); } __ b(Done); } __ bind(notObj); __ cmp(flags, itos); __ br(Assembler::NE, notInt); // itos { __ pop(itos); if (!is_static) pop_and_check_object(obj); __ strw(r0, field); if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no); } __ b(Done); } __ bind(notInt); __ cmp(flags, ctos); __ br(Assembler::NE, notChar); // ctos { __ pop(ctos); if (!is_static) pop_and_check_object(obj); __ strh(r0, field); if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no); } __ b(Done); } __ bind(notChar); __ cmp(flags, stos); __ br(Assembler::NE, notShort); // stos { __ pop(stos); if (!is_static) pop_and_check_object(obj); __ strh(r0, field); if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no); } __ b(Done); } __ bind(notShort); __ cmp(flags, ltos); __ br(Assembler::NE, notLong); // ltos { __ pop(ltos); if (!is_static) pop_and_check_object(obj); __ str(r0, field); if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no); } __ b(Done); } __ bind(notLong); __ cmp(flags, ftos); __ br(Assembler::NE, notFloat); // ftos { __ pop(ftos); if (!is_static) pop_and_check_object(obj); __ strs(v0, field); if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no); } __ b(Done); } __ bind(notFloat); #ifdef ASSERT __ cmp(flags, dtos); __ br(Assembler::NE, notDouble); #endif // dtos { __ pop(dtos); if (!is_static) pop_and_check_object(obj); __ strd(v0, field); if (rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no); } } #ifdef ASSERT __ b(Done); __ bind(notDouble); __ stop("Bad state"); #endif __ bind(Done); { Label notVolatile; __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); __ membar(MacroAssembler::StoreLoad); __ bind(notVolatile); } } void TemplateTable::putfield(int byte_no) { putfield_or_static(byte_no, false); } void TemplateTable::nofast_putfield(int byte_no) { putfield_or_static(byte_no, false, may_not_rewrite); } void TemplateTable::putstatic(int byte_no) { putfield_or_static(byte_no, true); } void TemplateTable::jvmti_post_fast_field_mod() { if (JvmtiExport::can_post_field_modification()) { // Check to see if a field modification watch has been set before // we take the time to call into the VM. Label L2; __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); __ ldrw(c_rarg3, Address(rscratch1)); __ cbzw(c_rarg3, L2); __ pop_ptr(r19); // copy the object pointer from tos __ verify_oop(r19); __ push_ptr(r19); // put the object pointer back on tos // Save tos values before call_VM() clobbers them. Since we have // to do it for every data type, we use the saved values as the // jvalue object. switch (bytecode()) { // load values into the jvalue object case Bytecodes::_fast_aputfield: __ push_ptr(r0); break; case Bytecodes::_fast_bputfield: // fall through case Bytecodes::_fast_zputfield: // fall through case Bytecodes::_fast_sputfield: // fall through case Bytecodes::_fast_cputfield: // fall through case Bytecodes::_fast_iputfield: __ push_i(r0); break; case Bytecodes::_fast_dputfield: __ push_d(); break; case Bytecodes::_fast_fputfield: __ push_f(); break; case Bytecodes::_fast_lputfield: __ push_l(r0); break; default: ShouldNotReachHere(); } __ mov(c_rarg3, esp); // points to jvalue on the stack // access constant pool cache entry __ get_cache_entry_pointer_at_bcp(c_rarg2, r0, 1); __ verify_oop(r19); // r19: object pointer copied above // c_rarg2: cache entry pointer // c_rarg3: jvalue object on the stack __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), r19, c_rarg2, c_rarg3); switch (bytecode()) { // restore tos values case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break; case Bytecodes::_fast_bputfield: // fall through case Bytecodes::_fast_zputfield: // fall through case Bytecodes::_fast_sputfield: // fall through case Bytecodes::_fast_cputfield: // fall through case Bytecodes::_fast_iputfield: __ pop_i(r0); break; case Bytecodes::_fast_dputfield: __ pop_d(); break; case Bytecodes::_fast_fputfield: __ pop_f(); break; case Bytecodes::_fast_lputfield: __ pop_l(r0); break; } __ bind(L2); } } void TemplateTable::fast_storefield(TosState state) { transition(state, vtos); ByteSize base = ConstantPoolCache::base_offset(); jvmti_post_fast_field_mod(); // access constant pool cache __ get_cache_and_index_at_bcp(r2, r1, 1); // test for volatile with r3 __ ldrw(r3, Address(r2, in_bytes(base + ConstantPoolCacheEntry::flags_offset()))); // replace index with field offset from cache entry __ ldr(r1, Address(r2, in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); { Label notVolatile; __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); __ membar(MacroAssembler::StoreStore); __ bind(notVolatile); } Label notVolatile; // Get object from stack pop_and_check_object(r2); // field address const Address field(r2, r1); // access field switch (bytecode()) { case Bytecodes::_fast_aputfield: do_oop_store(_masm, field, r0, IN_HEAP); break; case Bytecodes::_fast_lputfield: __ str(r0, field); break; case Bytecodes::_fast_iputfield: __ strw(r0, field); break; case Bytecodes::_fast_zputfield: __ andw(r0, r0, 0x1); // boolean is true if LSB is 1 // fall through to bputfield case Bytecodes::_fast_bputfield: __ strb(r0, field); break; case Bytecodes::_fast_sputfield: // fall through case Bytecodes::_fast_cputfield: __ strh(r0, field); break; case Bytecodes::_fast_fputfield: __ strs(v0, field); break; case Bytecodes::_fast_dputfield: __ strd(v0, field); break; default: ShouldNotReachHere(); } { Label notVolatile; __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); __ membar(MacroAssembler::StoreLoad); __ bind(notVolatile); } } void TemplateTable::fast_accessfield(TosState state) { transition(atos, state); // Do the JVMTI work here to avoid disturbing the register state below if (JvmtiExport::can_post_field_access()) { // Check to see if a field access watch has been set before we // take the time to call into the VM. Label L1; __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); __ ldrw(r2, Address(rscratch1)); __ cbzw(r2, L1); // access constant pool cache entry __ get_cache_entry_pointer_at_bcp(c_rarg2, rscratch2, 1); __ verify_oop(r0); __ push_ptr(r0); // save object pointer before call_VM() clobbers it __ mov(c_rarg1, r0); // c_rarg1: object pointer copied above // c_rarg2: cache entry pointer __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2); __ pop_ptr(r0); // restore object pointer __ bind(L1); } // access constant pool cache __ get_cache_and_index_at_bcp(r2, r1, 1); __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()))); __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()))); // r0: object __ verify_oop(r0); __ null_check(r0); const Address field(r0, r1); // 8179954: We need to make sure that the code generated for // volatile accesses forms a sequentially-consistent set of // operations when combined with STLR and LDAR. Without a leading // membar it's possible for a simple Dekker test to fail if loads // use LDR;DMB but stores use STLR. This can happen if C2 compiles // the stores in one method and we interpret the loads in another. if (! UseBarriersForVolatile) { Label notVolatile; __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); __ membar(MacroAssembler::AnyAny); __ bind(notVolatile); } // access field switch (bytecode()) { case Bytecodes::_fast_agetfield: do_oop_load(_masm, field, r0, IN_HEAP); __ verify_oop(r0); break; case Bytecodes::_fast_lgetfield: __ ldr(r0, field); break; case Bytecodes::_fast_igetfield: __ ldrw(r0, field); break; case Bytecodes::_fast_bgetfield: __ load_signed_byte(r0, field); break; case Bytecodes::_fast_sgetfield: __ load_signed_short(r0, field); break; case Bytecodes::_fast_cgetfield: __ load_unsigned_short(r0, field); break; case Bytecodes::_fast_fgetfield: __ ldrs(v0, field); break; case Bytecodes::_fast_dgetfield: __ ldrd(v0, field); break; default: ShouldNotReachHere(); } { Label notVolatile; __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); __ bind(notVolatile); } } void TemplateTable::fast_xaccess(TosState state) { transition(vtos, state); // get receiver __ ldr(r0, aaddress(0)); // access constant pool cache __ get_cache_and_index_at_bcp(r2, r3, 2); __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()))); // 8179954: We need to make sure that the code generated for // volatile accesses forms a sequentially-consistent set of // operations when combined with STLR and LDAR. Without a leading // membar it's possible for a simple Dekker test to fail if loads // use LDR;DMB but stores use STLR. This can happen if C2 compiles // the stores in one method and we interpret the loads in another. if (! UseBarriersForVolatile) { Label notVolatile; __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()))); __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); __ membar(MacroAssembler::AnyAny); __ bind(notVolatile); } // make sure exception is reported in correct bcp range (getfield is // next instruction) __ increment(rbcp); __ null_check(r0); switch (state) { case itos: __ ldrw(r0, Address(r0, r1, Address::lsl(0))); break; case atos: do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP); __ verify_oop(r0); break; case ftos: __ ldrs(v0, Address(r0, r1, Address::lsl(0))); break; default: ShouldNotReachHere(); } { Label notVolatile; __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()))); __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); __ bind(notVolatile); } __ decrement(rbcp); } //----------------------------------------------------------------------------- // Calls void TemplateTable::count_calls(Register method, Register temp) { __ call_Unimplemented(); } void TemplateTable::prepare_invoke(int byte_no, Register method, // linked method (or i-klass) Register index, // itable index, MethodType, etc. Register recv, // if caller wants to see it Register flags // if caller wants to test it ) { // determine flags Bytecodes::Code code = bytecode(); const bool is_invokeinterface = code == Bytecodes::_invokeinterface; const bool is_invokedynamic = code == Bytecodes::_invokedynamic; const bool is_invokehandle = code == Bytecodes::_invokehandle; const bool is_invokevirtual = code == Bytecodes::_invokevirtual; const bool is_invokespecial = code == Bytecodes::_invokespecial; const bool load_receiver = (recv != noreg); const bool save_flags = (flags != noreg); assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); assert(flags == noreg || flags == r3, ""); assert(recv == noreg || recv == r2, ""); // setup registers & access constant pool cache if (recv == noreg) recv = r2; if (flags == noreg) flags = r3; assert_different_registers(method, index, recv, flags); // save 'interpreter return address' __ save_bcp(); load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); // maybe push appendix to arguments (just before return address) if (is_invokedynamic || is_invokehandle) { Label L_no_push; __ tbz(flags, ConstantPoolCacheEntry::has_appendix_shift, L_no_push); // Push the appendix as a trailing parameter. // This must be done before we get the receiver, // since the parameter_size includes it. __ push(r19); __ mov(r19, index); assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); __ load_resolved_reference_at_index(index, r19); __ pop(r19); __ push(index); // push appendix (MethodType, CallSite, etc.) __ bind(L_no_push); } // load receiver if needed (note: no return address pushed yet) if (load_receiver) { __ andw(recv, flags, ConstantPoolCacheEntry::parameter_size_mask); // FIXME -- is this actually correct? looks like it should be 2 // const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address // const int receiver_is_at_end = -1; // back off one slot to get receiver // Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); // __ movptr(recv, recv_addr); __ add(rscratch1, esp, recv, ext::uxtx, 3); // FIXME: uxtb here? __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1))); __ verify_oop(recv); } // compute return type // x86 uses a shift and mask or wings it with a shift plus assert // the mask is not needed. aarch64 just uses bitfield extract __ ubfxw(rscratch2, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); // load return address { const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); __ mov(rscratch1, table_addr); __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3))); } } void TemplateTable::invokevirtual_helper(Register index, Register recv, Register flags) { // Uses temporary registers r0, r3 assert_different_registers(index, recv, r0, r3); // Test for an invoke of a final method Label notFinal; __ tbz(flags, ConstantPoolCacheEntry::is_vfinal_shift, notFinal); const Register method = index; // method must be rmethod assert(method == rmethod, "methodOop must be rmethod for interpreter calling convention"); // do the call - the index is actually the method to call // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* // It's final, need a null check here! __ null_check(recv); // profile this call __ profile_final_call(r0); __ profile_arguments_type(r0, method, r4, true); __ jump_from_interpreted(method, r0); __ bind(notFinal); // get receiver klass __ null_check(recv, oopDesc::klass_offset_in_bytes()); __ load_klass(r0, recv); // profile this call __ profile_virtual_call(r0, rlocals, r3); // get target methodOop & entry point __ lookup_virtual_method(r0, index, method); __ profile_arguments_type(r3, method, r4, true); // FIXME -- this looks completely redundant. is it? // __ ldr(r3, Address(method, Method::interpreter_entry_offset())); __ jump_from_interpreted(method, r3); } void TemplateTable::invokevirtual(int byte_no) { transition(vtos, vtos); assert(byte_no == f2_byte, "use this argument"); prepare_invoke(byte_no, rmethod, noreg, r2, r3); // rmethod: index (actually a Method*) // r2: receiver // r3: flags invokevirtual_helper(rmethod, r2, r3); } void TemplateTable::invokespecial(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); prepare_invoke(byte_no, rmethod, noreg, // get f1 Method* r2); // get receiver also for null check __ verify_oop(r2); __ null_check(r2); // do the call __ profile_call(r0); __ profile_arguments_type(r0, rmethod, rbcp, false); __ jump_from_interpreted(rmethod, r0); } void TemplateTable::invokestatic(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); prepare_invoke(byte_no, rmethod); // get f1 Method* // do the call __ profile_call(r0); __ profile_arguments_type(r0, rmethod, r4, false); __ jump_from_interpreted(rmethod, r0); } void TemplateTable::fast_invokevfinal(int byte_no) { __ call_Unimplemented(); } void TemplateTable::invokeinterface(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); prepare_invoke(byte_no, r0, rmethod, // get f1 Klass*, f2 Method* r2, r3); // recv, flags // r0: interface klass (from f1) // rmethod: method (from f2) // r2: receiver // r3: flags // Special case of invokeinterface called for virtual method of // java.lang.Object. See cpCacheOop.cpp for details. // This code isn't produced by javac, but could be produced by // another compliant java compiler. Label notMethod; __ tbz(r3, ConstantPoolCacheEntry::is_forced_virtual_shift, notMethod); invokevirtual_helper(rmethod, r2, r3); __ bind(notMethod); // Get receiver klass into r3 - also a null check __ restore_locals(); __ null_check(r2, oopDesc::klass_offset_in_bytes()); __ load_klass(r3, r2); Label no_such_interface, no_such_method; // Preserve method for throw_AbstractMethodErrorVerbose. __ mov(r16, rmethod); // Receiver subtype check against REFC. // Superklass in r0. Subklass in r3. Blows rscratch2, r13 __ lookup_interface_method(// inputs: rec. class, interface, itable index r3, r0, noreg, // outputs: scan temp. reg, scan temp. reg rscratch2, r13, no_such_interface, /*return_method=*/false); // profile this call __ profile_virtual_call(r3, r13, r19); // Get declaring interface class from method, and itable index __ ldr(r0, Address(rmethod, Method::const_offset())); __ ldr(r0, Address(r0, ConstMethod::constants_offset())); __ ldr(r0, Address(r0, ConstantPool::pool_holder_offset_in_bytes())); __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset())); __ subw(rmethod, rmethod, Method::itable_index_max); __ negw(rmethod, rmethod); // Preserve recvKlass for throw_AbstractMethodErrorVerbose. __ mov(rlocals, r3); __ lookup_interface_method(// inputs: rec. class, interface, itable index rlocals, r0, rmethod, // outputs: method, scan temp. reg rmethod, r13, no_such_interface); // rmethod,: methodOop to call // r2: receiver // Check for abstract method error // Note: This should be done more efficiently via a throw_abstract_method_error // interpreter entry point and a conditional jump to it in case of a null // method. __ cbz(rmethod, no_such_method); __ profile_arguments_type(r3, rmethod, r13, true); // do the call // r2: receiver // rmethod,: methodOop __ jump_from_interpreted(rmethod, r3); __ should_not_reach_here(); // exception handling code follows... // note: must restore interpreter registers to canonical // state for exception handling to work correctly! __ bind(no_such_method); // throw exception __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) // Pass arguments for generating a verbose error message. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16); // the call_VM checks for exception, so we should never return here. __ should_not_reach_here(); __ bind(no_such_interface); // throw exception __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) // Pass arguments for generating a verbose error message. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0); // the call_VM checks for exception, so we should never return here. __ should_not_reach_here(); return; } void TemplateTable::invokehandle(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); prepare_invoke(byte_no, rmethod, r0, r2); __ verify_method_ptr(r2); __ verify_oop(r2); __ null_check(r2); // FIXME: profile the LambdaForm also // r13 is safe to use here as a scratch reg because it is about to // be clobbered by jump_from_interpreted(). __ profile_final_call(r13); __ profile_arguments_type(r13, rmethod, r4, true); __ jump_from_interpreted(rmethod, r0); } void TemplateTable::invokedynamic(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); prepare_invoke(byte_no, rmethod, r0); // r0: CallSite object (from cpool->resolved_references[]) // rmethod: MH.linkToCallSite method (from f2) // Note: r0_callsite is already pushed by prepare_invoke // %%% should make a type profile for any invokedynamic that takes a ref argument // profile this call __ profile_call(rbcp); __ profile_arguments_type(r3, rmethod, r13, false); __ verify_oop(r0); __ jump_from_interpreted(rmethod, r0); } //----------------------------------------------------------------------------- // Allocation void TemplateTable::_new() { transition(vtos, atos); __ get_unsigned_2_byte_index_at_bcp(r3, 1); Label slow_case; Label done; Label initialize_header; Label initialize_object; // including clearing the fields __ get_cpool_and_tags(r4, r0); // Make sure the class we're about to instantiate has been resolved. // This is done before loading InstanceKlass to be consistent with the order // how Constant Pool is updated (see ConstantPool::klass_at_put) const int tags_offset = Array::base_offset_in_bytes(); __ lea(rscratch1, Address(r0, r3, Address::lsl(0))); __ lea(rscratch1, Address(rscratch1, tags_offset)); __ ldarb(rscratch1, rscratch1); __ cmp(rscratch1, JVM_CONSTANT_Class); __ br(Assembler::NE, slow_case); // get InstanceKlass __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1); // make sure klass is initialized & doesn't have finalizer // make sure klass is fully initialized __ ldrb(rscratch1, Address(r4, InstanceKlass::init_state_offset())); __ cmp(rscratch1, InstanceKlass::fully_initialized); __ br(Assembler::NE, slow_case); // get instance_size in InstanceKlass (scaled to a count of bytes) __ ldrw(r3, Address(r4, Klass::layout_helper_offset())); // test to see if it has a finalizer or is malformed in some way __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case); // Allocate the instance: // If TLAB is enabled: // Try to allocate in the TLAB. // If fails, go to the slow path. // Else If inline contiguous allocations are enabled: // Try to allocate in eden. // If fails due to heap end, go to slow path. // // If TLAB is enabled OR inline contiguous is enabled: // Initialize the allocation. // Exit. // // Go to slow path. const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc(); if (UseTLAB) { __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case); if (ZeroTLAB) { // the fields have been already cleared __ b(initialize_header); } else { // initialize both the header and fields __ b(initialize_object); } } else { // Allocation in the shared Eden, if allowed. // // r3: instance size in bytes if (allow_shared_alloc) { __ eden_allocate(r0, r3, 0, r10, slow_case); __ incr_allocated_bytes(rthread, r3, 0, rscratch1); } } // If UseTLAB or allow_shared_alloc are true, the object is created above and // there is an initialize need. Otherwise, skip and go to the slow path. if (UseTLAB || allow_shared_alloc) { // The object is initialized before the header. If the object size is // zero, go directly to the header initialization. __ bind(initialize_object); __ sub(r3, r3, sizeof(oopDesc)); __ cbz(r3, initialize_header); // Initialize object fields { __ add(r2, r0, sizeof(oopDesc)); Label loop; __ bind(loop); __ str(zr, Address(__ post(r2, BytesPerLong))); __ sub(r3, r3, BytesPerLong); __ cbnz(r3, loop); } // initialize object header only. __ bind(initialize_header); if (UseBiasedLocking) { __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset())); } else { __ mov(rscratch1, (intptr_t)markOopDesc::prototype()); } __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); __ store_klass_gap(r0, zr); // zero klass gap for compressed oops __ store_klass(r0, r4); // store klass last { SkipIfEqual skip(_masm, &DTraceAllocProbes, false); // Trigger dtrace event for fastpath __ push(atos); // save the return value __ call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), r0); __ pop(atos); // restore the return value } __ b(done); } // slow case __ bind(slow_case); __ get_constant_pool(c_rarg1); __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); __ verify_oop(r0); // continue __ bind(done); // Must prevent reordering of stores for object initialization with stores that publish the new object. __ membar(Assembler::StoreStore); } void TemplateTable::newarray() { transition(itos, atos); __ load_unsigned_byte(c_rarg1, at_bcp(1)); __ mov(c_rarg2, r0); call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), c_rarg1, c_rarg2); // Must prevent reordering of stores for object initialization with stores that publish the new object. __ membar(Assembler::StoreStore); } void TemplateTable::anewarray() { transition(itos, atos); __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); __ get_constant_pool(c_rarg1); __ mov(c_rarg3, r0); call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), c_rarg1, c_rarg2, c_rarg3); // Must prevent reordering of stores for object initialization with stores that publish the new object. __ membar(Assembler::StoreStore); } void TemplateTable::arraylength() { transition(atos, itos); __ null_check(r0, arrayOopDesc::length_offset_in_bytes()); __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes())); } void TemplateTable::checkcast() { transition(atos, atos); Label done, is_null, ok_is_subtype, quicked, resolved; __ cbz(r0, is_null); // Get cpool & tags index __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index // See if bytecode has already been quicked __ add(rscratch1, r3, Array::base_offset_in_bytes()); __ lea(r1, Address(rscratch1, r19)); __ ldarb(r1, r1); __ cmp(r1, JVM_CONSTANT_Class); __ br(Assembler::EQ, quicked); __ push(atos); // save receiver for result, and for GC call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); // vm_result_2 has metadata result __ get_vm_result_2(r0, rthread); __ pop(r3); // restore receiver __ b(resolved); // Get superklass in r0 and subklass in r3 __ bind(quicked); __ mov(r3, r0); // Save object in r3; r0 needed for subtype check __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass __ bind(resolved); __ load_klass(r19, r3); // Generate subtype check. Blows r2, r5. Object in r3. // Superklass in r0. Subklass in r19. __ gen_subtype_check(r19, ok_is_subtype); // Come here on failure __ push(r3); // object is at TOS __ b(Interpreter::_throw_ClassCastException_entry); // Come here on success __ bind(ok_is_subtype); __ mov(r0, r3); // Restore object in r3 // Collect counts on whether this test sees NULLs a lot or not. if (ProfileInterpreter) { __ b(done); __ bind(is_null); __ profile_null_seen(r2); } else { __ bind(is_null); // same as 'done' } __ bind(done); } void TemplateTable::instanceof() { transition(atos, itos); Label done, is_null, ok_is_subtype, quicked, resolved; __ cbz(r0, is_null); // Get cpool & tags index __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index // See if bytecode has already been quicked __ add(rscratch1, r3, Array::base_offset_in_bytes()); __ lea(r1, Address(rscratch1, r19)); __ ldarb(r1, r1); __ cmp(r1, JVM_CONSTANT_Class); __ br(Assembler::EQ, quicked); __ push(atos); // save receiver for result, and for GC call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); // vm_result_2 has metadata result __ get_vm_result_2(r0, rthread); __ pop(r3); // restore receiver __ verify_oop(r3); __ load_klass(r3, r3); __ b(resolved); // Get superklass in r0 and subklass in r3 __ bind(quicked); __ load_klass(r3, r0); __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); __ bind(resolved); // Generate subtype check. Blows r2, r5 // Superklass in r0. Subklass in r3. __ gen_subtype_check(r3, ok_is_subtype); // Come here on failure __ mov(r0, 0); __ b(done); // Come here on success __ bind(ok_is_subtype); __ mov(r0, 1); // Collect counts on whether this test sees NULLs a lot or not. if (ProfileInterpreter) { __ b(done); __ bind(is_null); __ profile_null_seen(r2); } else { __ bind(is_null); // same as 'done' } __ bind(done); // r0 = 0: obj == NULL or obj is not an instanceof the specified klass // r0 = 1: obj != NULL and obj is an instanceof the specified klass } //----------------------------------------------------------------------------- // Breakpoints void TemplateTable::_breakpoint() { // Note: We get here even if we are single stepping.. // jbug inists on setting breakpoints at every bytecode // even if we are in single step mode. transition(vtos, vtos); // get the unpatched byte code __ get_method(c_rarg1); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), c_rarg1, rbcp); __ mov(r19, r0); // post the breakpoint event __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rmethod, rbcp); // complete the execution of original bytecode __ mov(rscratch1, r19); __ dispatch_only_normal(vtos); } //----------------------------------------------------------------------------- // Exceptions void TemplateTable::athrow() { transition(atos, vtos); __ null_check(r0); __ b(Interpreter::throw_exception_entry()); } //----------------------------------------------------------------------------- // Synchronization // // Note: monitorenter & exit are symmetric routines; which is reflected // in the assembly code structure as well // // Stack layout: // // [expressions ] <--- esp = expression stack top // .. // [expressions ] // [monitor entry] <--- monitor block top = expression stack bot // .. // [monitor entry] // [frame data ] <--- monitor block bot // ... // [saved rbp ] <--- rbp void TemplateTable::monitorenter() { transition(atos, vtos); // check for NULL object __ null_check(r0); const Address monitor_block_top( rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); const Address monitor_block_bot( rfp, frame::interpreter_frame_initial_sp_offset * wordSize); const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; Label allocated; // initialize entry pointer __ mov(c_rarg1, zr); // points to free slot or NULL // find a free slot in the monitor block (result in c_rarg1) { Label entry, loop, exit; __ ldr(c_rarg3, monitor_block_top); // points to current entry, // starting with top-most entry __ lea(c_rarg2, monitor_block_bot); // points to word before bottom __ b(entry); __ bind(loop); // check if current entry is used // if not used then remember entry in c_rarg1 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes())); __ cmp(zr, rscratch1); __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ); // check if current entry is for same object __ cmp(r0, rscratch1); // if same object then stop searching __ br(Assembler::EQ, exit); // otherwise advance to next entry __ add(c_rarg3, c_rarg3, entry_size); __ bind(entry); // check if bottom reached __ cmp(c_rarg3, c_rarg2); // if not at bottom then check this entry __ br(Assembler::NE, loop); __ bind(exit); } __ cbnz(c_rarg1, allocated); // check if a slot has been found and // if found, continue with that on // allocate one if there's no free slot { Label entry, loop; // 1. compute new pointers // rsp: old expression stack top __ ldr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom __ sub(esp, esp, entry_size); // move expression stack top __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom __ mov(c_rarg3, esp); // set start value for copy loop __ str(c_rarg1, monitor_block_bot); // set new monitor block bottom __ sub(sp, sp, entry_size); // make room for the monitor __ b(entry); // 2. move expression stack contents __ bind(loop); __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack // word from old location __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location __ add(c_rarg3, c_rarg3, wordSize); // advance to next word __ bind(entry); __ cmp(c_rarg3, c_rarg1); // check if bottom reached __ br(Assembler::NE, loop); // if not at bottom then // copy next word } // call run-time routine // c_rarg1: points to monitor entry __ bind(allocated); // Increment bcp to point to the next bytecode, so exception // handling for async. exceptions work correctly. // The object has already been poped from the stack, so the // expression stack looks correct. __ increment(rbcp); // store object __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); __ lock_object(c_rarg1); // check to make sure this monitor doesn't cause stack overflow after locking __ save_bcp(); // in case of exception __ generate_stack_overflow_check(0); // The bcp has already been incremented. Just need to dispatch to // next instruction. __ dispatch_next(vtos); } void TemplateTable::monitorexit() { transition(atos, vtos); // check for NULL object __ null_check(r0); const Address monitor_block_top( rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); const Address monitor_block_bot( rfp, frame::interpreter_frame_initial_sp_offset * wordSize); const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; Label found; // find matching slot { Label entry, loop; __ ldr(c_rarg1, monitor_block_top); // points to current entry, // starting with top-most entry __ lea(c_rarg2, monitor_block_bot); // points to word before bottom // of monitor block __ b(entry); __ bind(loop); // check if current entry is for same object __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); __ cmp(r0, rscratch1); // if same object then stop searching __ br(Assembler::EQ, found); // otherwise advance to next entry __ add(c_rarg1, c_rarg1, entry_size); __ bind(entry); // check if bottom reached __ cmp(c_rarg1, c_rarg2); // if not at bottom then check this entry __ br(Assembler::NE, loop); } // error handling. Unlocking was not block-structured __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); __ should_not_reach_here(); // call run-time routine __ bind(found); __ push_ptr(r0); // make sure object is on stack (contract with oopMaps) __ unlock_object(c_rarg1); __ pop_ptr(r0); // discard object } // Wide instructions void TemplateTable::wide() { __ load_unsigned_byte(r19, at_bcp(1)); __ mov(rscratch1, (address)Interpreter::_wentry_point); __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3))); __ br(rscratch1); } // Multi arrays void TemplateTable::multianewarray() { transition(vtos, atos); __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions // last dim is on top of stack; we want address of first one: // first_addr = last_addr + (ndims - 1) * wordSize __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3))); __ sub(c_rarg1, c_rarg1, wordSize); call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), c_rarg1); __ load_unsigned_byte(r1, at_bcp(3)); __ lea(esp, Address(esp, r1, Address::uxtw(3))); }