1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include <sys/types.h>
  27 
  28 #include "precompiled.hpp"
  29 #include "jvm.h"
  30 #include "asm/assembler.hpp"
  31 #include "asm/assembler.inline.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/cardTable.hpp"
  34 #include "gc/shared/barrierSetAssembler.hpp"
  35 #include "gc/shared/cardTableBarrierSet.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "nativeInst_aarch64.hpp"
  40 #include "oops/accessDecorators.hpp"
  41 #include "oops/compressedOops.inline.hpp"
  42 #include "oops/klass.inline.hpp"
  43 #include "oops/oop.hpp"
  44 #include "opto/compile.hpp"
  45 #include "opto/intrinsicnode.hpp"
  46 #include "opto/node.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/icache.hpp"
  49 #include "runtime/interfaceSupport.inline.hpp"
  50 #include "runtime/jniHandles.inline.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/thread.hpp"
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 // Patch any kind of instruction; there may be several instructions.
  65 // Return the total length (in bytes) of the instructions.
  66 int MacroAssembler::pd_patch_instruction_size(address branch, address target) {
  67   int instructions = 1;
  68   assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant");
  69   long offset = (target - branch) >> 2;
  70   unsigned insn = *(unsigned*)branch;
  71   if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) {
  72     // Load register (literal)
  73     Instruction_aarch64::spatch(branch, 23, 5, offset);
  74   } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
  75     // Unconditional branch (immediate)
  76     Instruction_aarch64::spatch(branch, 25, 0, offset);
  77   } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
  78     // Conditional branch (immediate)
  79     Instruction_aarch64::spatch(branch, 23, 5, offset);
  80   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
  81     // Compare & branch (immediate)
  82     Instruction_aarch64::spatch(branch, 23, 5, offset);
  83   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
  84     // Test & branch (immediate)
  85     Instruction_aarch64::spatch(branch, 18, 5, offset);
  86   } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
  87     // PC-rel. addressing
  88     offset = target-branch;
  89     int shift = Instruction_aarch64::extract(insn, 31, 31);
  90     if (shift) {
  91       u_int64_t dest = (u_int64_t)target;
  92       uint64_t pc_page = (uint64_t)branch >> 12;
  93       uint64_t adr_page = (uint64_t)target >> 12;
  94       unsigned offset_lo = dest & 0xfff;
  95       offset = adr_page - pc_page;
  96 
  97       // We handle 4 types of PC relative addressing
  98       //   1 - adrp    Rx, target_page
  99       //       ldr/str Ry, [Rx, #offset_in_page]
 100       //   2 - adrp    Rx, target_page
 101       //       add     Ry, Rx, #offset_in_page
 102       //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 103       //       movk    Rx, #imm16<<32
 104       //   4 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 105       // In the first 3 cases we must check that Rx is the same in the adrp and the
 106       // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end
 107       // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened
 108       // to be followed by a random unrelated ldr/str, add or movk instruction.
 109       //
 110       unsigned insn2 = ((unsigned*)branch)[1];
 111       if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 112                 Instruction_aarch64::extract(insn, 4, 0) ==
 113                         Instruction_aarch64::extract(insn2, 9, 5)) {
 114         // Load/store register (unsigned immediate)
 115         unsigned size = Instruction_aarch64::extract(insn2, 31, 30);
 116         Instruction_aarch64::patch(branch + sizeof (unsigned),
 117                                     21, 10, offset_lo >> size);
 118         guarantee(((dest >> size) << size) == dest, "misaligned target");
 119         instructions = 2;
 120       } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 121                 Instruction_aarch64::extract(insn, 4, 0) ==
 122                         Instruction_aarch64::extract(insn2, 4, 0)) {
 123         // add (immediate)
 124         Instruction_aarch64::patch(branch + sizeof (unsigned),
 125                                    21, 10, offset_lo);
 126         instructions = 2;
 127       } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
 128                    Instruction_aarch64::extract(insn, 4, 0) ==
 129                      Instruction_aarch64::extract(insn2, 4, 0)) {
 130         // movk #imm16<<32
 131         Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32);
 132         long dest = ((long)target & 0xffffffffL) | ((long)branch & 0xffff00000000L);
 133         long pc_page = (long)branch >> 12;
 134         long adr_page = (long)dest >> 12;
 135         offset = adr_page - pc_page;
 136         instructions = 2;
 137       }
 138     }
 139     int offset_lo = offset & 3;
 140     offset >>= 2;
 141     Instruction_aarch64::spatch(branch, 23, 5, offset);
 142     Instruction_aarch64::patch(branch, 30, 29, offset_lo);
 143   } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) {
 144     u_int64_t dest = (u_int64_t)target;
 145     // Move wide constant
 146     assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch");
 147     assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch");
 148     Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff);
 149     Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff);
 150     Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff);
 151     assert(target_addr_for_insn(branch) == target, "should be");
 152     instructions = 3;
 153   } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
 154              Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
 155     // nothing to do
 156     assert(target == 0, "did not expect to relocate target for polling page load");
 157   } else {
 158     ShouldNotReachHere();
 159   }
 160   return instructions * NativeInstruction::instruction_size;
 161 }
 162 
 163 int MacroAssembler::patch_oop(address insn_addr, address o) {
 164   int instructions;
 165   unsigned insn = *(unsigned*)insn_addr;
 166   assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 167 
 168   // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
 169   // narrow OOPs by setting the upper 16 bits in the first
 170   // instruction.
 171   if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
 172     // Move narrow OOP
 173     narrowOop n = CompressedOops::encode((oop)o);
 174     Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 175     Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 176     instructions = 2;
 177   } else {
 178     // Move wide OOP
 179     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 180     uintptr_t dest = (uintptr_t)o;
 181     Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
 182     Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
 183     Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
 184     instructions = 3;
 185   }
 186   return instructions * NativeInstruction::instruction_size;
 187 }
 188 
 189 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) {
 190   // Metatdata pointers are either narrow (32 bits) or wide (48 bits).
 191   // We encode narrow ones by setting the upper 16 bits in the first
 192   // instruction.
 193   NativeInstruction *insn = nativeInstruction_at(insn_addr);
 194   assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 &&
 195          nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 196 
 197   Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 198   Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 199   return 2 * NativeInstruction::instruction_size;
 200 }
 201 
 202 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) {
 203   long offset = 0;
 204   if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) {
 205     // Load register (literal)
 206     offset = Instruction_aarch64::sextract(insn, 23, 5);
 207     return address(((uint64_t)insn_addr + (offset << 2)));
 208   } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
 209     // Unconditional branch (immediate)
 210     offset = Instruction_aarch64::sextract(insn, 25, 0);
 211   } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
 212     // Conditional branch (immediate)
 213     offset = Instruction_aarch64::sextract(insn, 23, 5);
 214   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
 215     // Compare & branch (immediate)
 216     offset = Instruction_aarch64::sextract(insn, 23, 5);
 217    } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
 218     // Test & branch (immediate)
 219     offset = Instruction_aarch64::sextract(insn, 18, 5);
 220   } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
 221     // PC-rel. addressing
 222     offset = Instruction_aarch64::extract(insn, 30, 29);
 223     offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2;
 224     int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0;
 225     if (shift) {
 226       offset <<= shift;
 227       uint64_t target_page = ((uint64_t)insn_addr) + offset;
 228       target_page &= ((uint64_t)-1) << shift;
 229       // Return the target address for the following sequences
 230       //   1 - adrp    Rx, target_page
 231       //       ldr/str Ry, [Rx, #offset_in_page]
 232       //   2 - adrp    Rx, target_page
 233       //       add     Ry, Rx, #offset_in_page
 234       //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 235       //       movk    Rx, #imm12<<32
 236       //   4 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 237       //
 238       // In the first two cases  we check that the register is the same and
 239       // return the target_page + the offset within the page.
 240       // Otherwise we assume it is a page aligned relocation and return
 241       // the target page only.
 242       //
 243       unsigned insn2 = ((unsigned*)insn_addr)[1];
 244       if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 245                 Instruction_aarch64::extract(insn, 4, 0) ==
 246                         Instruction_aarch64::extract(insn2, 9, 5)) {
 247         // Load/store register (unsigned immediate)
 248         unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 249         unsigned int size = Instruction_aarch64::extract(insn2, 31, 30);
 250         return address(target_page + (byte_offset << size));
 251       } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 252                 Instruction_aarch64::extract(insn, 4, 0) ==
 253                         Instruction_aarch64::extract(insn2, 4, 0)) {
 254         // add (immediate)
 255         unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 256         return address(target_page + byte_offset);
 257       } else {
 258         if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110  &&
 259                Instruction_aarch64::extract(insn, 4, 0) ==
 260                  Instruction_aarch64::extract(insn2, 4, 0)) {
 261           target_page = (target_page & 0xffffffff) |
 262                          ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
 263         }
 264         return (address)target_page;
 265       }
 266     } else {
 267       ShouldNotReachHere();
 268     }
 269   } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) {
 270     u_int32_t *insns = (u_int32_t *)insn_addr;
 271     // Move wide constant: movz, movk, movk.  See movptr().
 272     assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
 273     assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
 274     return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5))
 275                    + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
 276                    + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
 277   } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
 278              Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
 279     return 0;
 280   } else {
 281     ShouldNotReachHere();
 282   }
 283   return address(((uint64_t)insn_addr + (offset << 2)));
 284 }
 285 
 286 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
 287   dsb(Assembler::SY);
 288 }
 289 
 290 void MacroAssembler::safepoint_poll(Label& slow_path) {
 291   if (SafepointMechanism::uses_thread_local_poll()) {
 292     ldr(rscratch1, Address(rthread, Thread::polling_page_offset()));
 293     tbnz(rscratch1, exact_log2(SafepointMechanism::poll_bit()), slow_path);
 294   } else {
 295     unsigned long offset;
 296     adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset);
 297     ldrw(rscratch1, Address(rscratch1, offset));
 298     assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code");
 299     cbnz(rscratch1, slow_path);
 300   }
 301 }
 302 
 303 // Just like safepoint_poll, but use an acquiring load for thread-
 304 // local polling.
 305 //
 306 // We need an acquire here to ensure that any subsequent load of the
 307 // global SafepointSynchronize::_state flag is ordered after this load
 308 // of the local Thread::_polling page.  We don't want this poll to
 309 // return false (i.e. not safepointing) and a later poll of the global
 310 // SafepointSynchronize::_state spuriously to return true.
 311 //
 312 // This is to avoid a race when we're in a native->Java transition
 313 // racing the code which wakes up from a safepoint.
 314 //
 315 void MacroAssembler::safepoint_poll_acquire(Label& slow_path) {
 316   if (SafepointMechanism::uses_thread_local_poll()) {
 317     lea(rscratch1, Address(rthread, Thread::polling_page_offset()));
 318     ldar(rscratch1, rscratch1);
 319     tbnz(rscratch1, exact_log2(SafepointMechanism::poll_bit()), slow_path);
 320   } else {
 321     safepoint_poll(slow_path);
 322   }
 323 }
 324 
 325 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 326   // we must set sp to zero to clear frame
 327   str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
 328 
 329   // must clear fp, so that compiled frames are not confused; it is
 330   // possible that we need it only for debugging
 331   if (clear_fp) {
 332     str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
 333   }
 334 
 335   // Always clear the pc because it could have been set by make_walkable()
 336   str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
 337 }
 338 
 339 // Calls to C land
 340 //
 341 // When entering C land, the rfp, & resp of the last Java frame have to be recorded
 342 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 343 // has to be reset to 0. This is required to allow proper stack traversal.
 344 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 345                                          Register last_java_fp,
 346                                          Register last_java_pc,
 347                                          Register scratch) {
 348 
 349   if (last_java_pc->is_valid()) {
 350       str(last_java_pc, Address(rthread,
 351                                 JavaThread::frame_anchor_offset()
 352                                 + JavaFrameAnchor::last_Java_pc_offset()));
 353     }
 354 
 355   // determine last_java_sp register
 356   if (last_java_sp == sp) {
 357     mov(scratch, sp);
 358     last_java_sp = scratch;
 359   } else if (!last_java_sp->is_valid()) {
 360     last_java_sp = esp;
 361   }
 362 
 363   str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
 364 
 365   // last_java_fp is optional
 366   if (last_java_fp->is_valid()) {
 367     str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
 368   }
 369 }
 370 
 371 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 372                                          Register last_java_fp,
 373                                          address  last_java_pc,
 374                                          Register scratch) {
 375   if (last_java_pc != NULL) {
 376     adr(scratch, last_java_pc);
 377   } else {
 378     // FIXME: This is almost never correct.  We should delete all
 379     // cases of set_last_Java_frame with last_java_pc=NULL and use the
 380     // correct return address instead.
 381     adr(scratch, pc());
 382   }
 383 
 384   str(scratch, Address(rthread,
 385                        JavaThread::frame_anchor_offset()
 386                        + JavaFrameAnchor::last_Java_pc_offset()));
 387 
 388   set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
 389 }
 390 
 391 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 392                                          Register last_java_fp,
 393                                          Label &L,
 394                                          Register scratch) {
 395   if (L.is_bound()) {
 396     set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
 397   } else {
 398     InstructionMark im(this);
 399     L.add_patch_at(code(), locator());
 400     set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch);
 401   }
 402 }
 403 
 404 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) {
 405   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 406   assert(CodeCache::find_blob(entry.target()) != NULL,
 407          "destination of far call not found in code cache");
 408   if (far_branches()) {
 409     unsigned long offset;
 410     // We can use ADRP here because we know that the total size of
 411     // the code cache cannot exceed 2Gb.
 412     adrp(tmp, entry, offset);
 413     add(tmp, tmp, offset);
 414     if (cbuf) cbuf->set_insts_mark();
 415     blr(tmp);
 416   } else {
 417     if (cbuf) cbuf->set_insts_mark();
 418     bl(entry);
 419   }
 420 }
 421 
 422 void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) {
 423   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 424   assert(CodeCache::find_blob(entry.target()) != NULL,
 425          "destination of far call not found in code cache");
 426   if (far_branches()) {
 427     unsigned long offset;
 428     // We can use ADRP here because we know that the total size of
 429     // the code cache cannot exceed 2Gb.
 430     adrp(tmp, entry, offset);
 431     add(tmp, tmp, offset);
 432     if (cbuf) cbuf->set_insts_mark();
 433     br(tmp);
 434   } else {
 435     if (cbuf) cbuf->set_insts_mark();
 436     b(entry);
 437   }
 438 }
 439 
 440 void MacroAssembler::reserved_stack_check() {
 441     // testing if reserved zone needs to be enabled
 442     Label no_reserved_zone_enabling;
 443 
 444     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 445     cmp(sp, rscratch1);
 446     br(Assembler::LO, no_reserved_zone_enabling);
 447 
 448     enter();   // LR and FP are live.
 449     lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone));
 450     mov(c_rarg0, rthread);
 451     blr(rscratch1);
 452     leave();
 453 
 454     // We have already removed our own frame.
 455     // throw_delayed_StackOverflowError will think that it's been
 456     // called by our caller.
 457     lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
 458     br(rscratch1);
 459     should_not_reach_here();
 460 
 461     bind(no_reserved_zone_enabling);
 462 }
 463 
 464 int MacroAssembler::biased_locking_enter(Register lock_reg,
 465                                          Register obj_reg,
 466                                          Register swap_reg,
 467                                          Register tmp_reg,
 468                                          bool swap_reg_contains_mark,
 469                                          Label& done,
 470                                          Label* slow_case,
 471                                          BiasedLockingCounters* counters) {
 472   assert(UseBiasedLocking, "why call this otherwise?");
 473   assert_different_registers(lock_reg, obj_reg, swap_reg);
 474 
 475   if (PrintBiasedLockingStatistics && counters == NULL)
 476     counters = BiasedLocking::counters();
 477 
 478   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg);
 479   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
 480   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
 481   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
 482   Address saved_mark_addr(lock_reg, 0);
 483 
 484   // Biased locking
 485   // See whether the lock is currently biased toward our thread and
 486   // whether the epoch is still valid
 487   // Note that the runtime guarantees sufficient alignment of JavaThread
 488   // pointers to allow age to be placed into low bits
 489   // First check to see whether biasing is even enabled for this object
 490   Label cas_label;
 491   int null_check_offset = -1;
 492   if (!swap_reg_contains_mark) {
 493     null_check_offset = offset();
 494     ldr(swap_reg, mark_addr);
 495   }
 496   andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place);
 497   cmp(tmp_reg, markOopDesc::biased_lock_pattern);
 498   br(Assembler::NE, cas_label);
 499   // The bias pattern is present in the object's header. Need to check
 500   // whether the bias owner and the epoch are both still current.
 501   load_prototype_header(tmp_reg, obj_reg);
 502   orr(tmp_reg, tmp_reg, rthread);
 503   eor(tmp_reg, swap_reg, tmp_reg);
 504   andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place));
 505   if (counters != NULL) {
 506     Label around;
 507     cbnz(tmp_reg, around);
 508     atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2);
 509     b(done);
 510     bind(around);
 511   } else {
 512     cbz(tmp_reg, done);
 513   }
 514 
 515   Label try_revoke_bias;
 516   Label try_rebias;
 517 
 518   // At this point we know that the header has the bias pattern and
 519   // that we are not the bias owner in the current epoch. We need to
 520   // figure out more details about the state of the header in order to
 521   // know what operations can be legally performed on the object's
 522   // header.
 523 
 524   // If the low three bits in the xor result aren't clear, that means
 525   // the prototype header is no longer biased and we have to revoke
 526   // the bias on this object.
 527   andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place);
 528   cbnz(rscratch1, try_revoke_bias);
 529 
 530   // Biasing is still enabled for this data type. See whether the
 531   // epoch of the current bias is still valid, meaning that the epoch
 532   // bits of the mark word are equal to the epoch bits of the
 533   // prototype header. (Note that the prototype header's epoch bits
 534   // only change at a safepoint.) If not, attempt to rebias the object
 535   // toward the current thread. Note that we must be absolutely sure
 536   // that the current epoch is invalid in order to do this because
 537   // otherwise the manipulations it performs on the mark word are
 538   // illegal.
 539   andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place);
 540   cbnz(rscratch1, try_rebias);
 541 
 542   // The epoch of the current bias is still valid but we know nothing
 543   // about the owner; it might be set or it might be clear. Try to
 544   // acquire the bias of the object using an atomic operation. If this
 545   // fails we will go in to the runtime to revoke the object's bias.
 546   // Note that we first construct the presumed unbiased header so we
 547   // don't accidentally blow away another thread's valid bias.
 548   {
 549     Label here;
 550     mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
 551     andr(swap_reg, swap_reg, rscratch1);
 552     orr(tmp_reg, swap_reg, rthread);
 553     cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
 554     // If the biasing toward our thread failed, this means that
 555     // another thread succeeded in biasing it toward itself and we
 556     // need to revoke that bias. The revocation will occur in the
 557     // interpreter runtime in the slow case.
 558     bind(here);
 559     if (counters != NULL) {
 560       atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()),
 561                   tmp_reg, rscratch1, rscratch2);
 562     }
 563   }
 564   b(done);
 565 
 566   bind(try_rebias);
 567   // At this point we know the epoch has expired, meaning that the
 568   // current "bias owner", if any, is actually invalid. Under these
 569   // circumstances _only_, we are allowed to use the current header's
 570   // value as the comparison value when doing the cas to acquire the
 571   // bias in the current epoch. In other words, we allow transfer of
 572   // the bias from one thread to another directly in this situation.
 573   //
 574   // FIXME: due to a lack of registers we currently blow away the age
 575   // bits in this situation. Should attempt to preserve them.
 576   {
 577     Label here;
 578     load_prototype_header(tmp_reg, obj_reg);
 579     orr(tmp_reg, rthread, tmp_reg);
 580     cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
 581     // If the biasing toward our thread failed, then another thread
 582     // succeeded in biasing it toward itself and we need to revoke that
 583     // bias. The revocation will occur in the runtime in the slow case.
 584     bind(here);
 585     if (counters != NULL) {
 586       atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()),
 587                   tmp_reg, rscratch1, rscratch2);
 588     }
 589   }
 590   b(done);
 591 
 592   bind(try_revoke_bias);
 593   // The prototype mark in the klass doesn't have the bias bit set any
 594   // more, indicating that objects of this data type are not supposed
 595   // to be biased any more. We are going to try to reset the mark of
 596   // this object to the prototype value and fall through to the
 597   // CAS-based locking scheme. Note that if our CAS fails, it means
 598   // that another thread raced us for the privilege of revoking the
 599   // bias of this particular object, so it's okay to continue in the
 600   // normal locking code.
 601   //
 602   // FIXME: due to a lack of registers we currently blow away the age
 603   // bits in this situation. Should attempt to preserve them.
 604   {
 605     Label here, nope;
 606     load_prototype_header(tmp_reg, obj_reg);
 607     cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope);
 608     bind(here);
 609 
 610     // Fall through to the normal CAS-based lock, because no matter what
 611     // the result of the above CAS, some thread must have succeeded in
 612     // removing the bias bit from the object's header.
 613     if (counters != NULL) {
 614       atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg,
 615                   rscratch1, rscratch2);
 616     }
 617     bind(nope);
 618   }
 619 
 620   bind(cas_label);
 621 
 622   return null_check_offset;
 623 }
 624 
 625 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
 626   assert(UseBiasedLocking, "why call this otherwise?");
 627 
 628   // Check for biased locking unlock case, which is a no-op
 629   // Note: we do not have to check the thread ID for two reasons.
 630   // First, the interpreter checks for IllegalMonitorStateException at
 631   // a higher level. Second, if the bias was revoked while we held the
 632   // lock, the object could not be rebiased toward another thread, so
 633   // the bias bit would be clear.
 634   ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
 635   andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
 636   cmp(temp_reg, markOopDesc::biased_lock_pattern);
 637   br(Assembler::EQ, done);
 638 }
 639 
 640 static void pass_arg0(MacroAssembler* masm, Register arg) {
 641   if (c_rarg0 != arg ) {
 642     masm->mov(c_rarg0, arg);
 643   }
 644 }
 645 
 646 static void pass_arg1(MacroAssembler* masm, Register arg) {
 647   if (c_rarg1 != arg ) {
 648     masm->mov(c_rarg1, arg);
 649   }
 650 }
 651 
 652 static void pass_arg2(MacroAssembler* masm, Register arg) {
 653   if (c_rarg2 != arg ) {
 654     masm->mov(c_rarg2, arg);
 655   }
 656 }
 657 
 658 static void pass_arg3(MacroAssembler* masm, Register arg) {
 659   if (c_rarg3 != arg ) {
 660     masm->mov(c_rarg3, arg);
 661   }
 662 }
 663 
 664 void MacroAssembler::call_VM_base(Register oop_result,
 665                                   Register java_thread,
 666                                   Register last_java_sp,
 667                                   address  entry_point,
 668                                   int      number_of_arguments,
 669                                   bool     check_exceptions) {
 670    // determine java_thread register
 671   if (!java_thread->is_valid()) {
 672     java_thread = rthread;
 673   }
 674 
 675   // determine last_java_sp register
 676   if (!last_java_sp->is_valid()) {
 677     last_java_sp = esp;
 678   }
 679 
 680   // debugging support
 681   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 682   assert(java_thread == rthread, "unexpected register");
 683 #ifdef ASSERT
 684   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 685   // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
 686 #endif // ASSERT
 687 
 688   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 689   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 690 
 691   // push java thread (becomes first argument of C function)
 692 
 693   mov(c_rarg0, java_thread);
 694 
 695   // set last Java frame before call
 696   assert(last_java_sp != rfp, "can't use rfp");
 697 
 698   Label l;
 699   set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
 700 
 701   // do the call, remove parameters
 702   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
 703 
 704   // reset last Java frame
 705   // Only interpreter should have to clear fp
 706   reset_last_Java_frame(true);
 707 
 708    // C++ interp handles this in the interpreter
 709   check_and_handle_popframe(java_thread);
 710   check_and_handle_earlyret(java_thread);
 711 
 712   if (check_exceptions) {
 713     // check for pending exceptions (java_thread is set upon return)
 714     ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
 715     Label ok;
 716     cbz(rscratch1, ok);
 717     lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
 718     br(rscratch1);
 719     bind(ok);
 720   }
 721 
 722   // get oop result if there is one and reset the value in the thread
 723   if (oop_result->is_valid()) {
 724     get_vm_result(oop_result, java_thread);
 725   }
 726 }
 727 
 728 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 729   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
 730 }
 731 
 732 // Maybe emit a call via a trampoline.  If the code cache is small
 733 // trampolines won't be emitted.
 734 
 735 address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) {
 736   assert(JavaThread::current()->is_Compiler_thread(), "just checking");
 737   assert(entry.rspec().type() == relocInfo::runtime_call_type
 738          || entry.rspec().type() == relocInfo::opt_virtual_call_type
 739          || entry.rspec().type() == relocInfo::static_call_type
 740          || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
 741 
 742   unsigned int start_offset = offset();
 743   if (far_branches() && !Compile::current()->in_scratch_emit_size()) {
 744     address stub = emit_trampoline_stub(start_offset, entry.target());
 745     if (stub == NULL) {
 746       return NULL; // CodeCache is full
 747     }
 748   }
 749 
 750   if (cbuf) cbuf->set_insts_mark();
 751   relocate(entry.rspec());
 752   if (!far_branches()) {
 753     bl(entry.target());
 754   } else {
 755     bl(pc());
 756   }
 757   // just need to return a non-null address
 758   return pc();
 759 }
 760 
 761 
 762 // Emit a trampoline stub for a call to a target which is too far away.
 763 //
 764 // code sequences:
 765 //
 766 // call-site:
 767 //   branch-and-link to <destination> or <trampoline stub>
 768 //
 769 // Related trampoline stub for this call site in the stub section:
 770 //   load the call target from the constant pool
 771 //   branch (LR still points to the call site above)
 772 
 773 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
 774                                              address dest) {
 775   address stub = start_a_stub(Compile::MAX_stubs_size/2);
 776   if (stub == NULL) {
 777     return NULL;  // CodeBuffer::expand failed
 778   }
 779 
 780   // Create a trampoline stub relocation which relates this trampoline stub
 781   // with the call instruction at insts_call_instruction_offset in the
 782   // instructions code-section.
 783   align(wordSize);
 784   relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
 785                                             + insts_call_instruction_offset));
 786   const int stub_start_offset = offset();
 787 
 788   // Now, create the trampoline stub's code:
 789   // - load the call
 790   // - call
 791   Label target;
 792   ldr(rscratch1, target);
 793   br(rscratch1);
 794   bind(target);
 795   assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
 796          "should be");
 797   emit_int64((int64_t)dest);
 798 
 799   const address stub_start_addr = addr_at(stub_start_offset);
 800 
 801   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
 802 
 803   end_a_stub();
 804   return stub_start_addr;
 805 }
 806 
 807 address MacroAssembler::ic_call(address entry, jint method_index) {
 808   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 809   // address const_ptr = long_constant((jlong)Universe::non_oop_word());
 810   // unsigned long offset;
 811   // ldr_constant(rscratch2, const_ptr);
 812   movptr(rscratch2, (uintptr_t)Universe::non_oop_word());
 813   return trampoline_call(Address(entry, rh));
 814 }
 815 
 816 // Implementation of call_VM versions
 817 
 818 void MacroAssembler::call_VM(Register oop_result,
 819                              address entry_point,
 820                              bool check_exceptions) {
 821   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
 822 }
 823 
 824 void MacroAssembler::call_VM(Register oop_result,
 825                              address entry_point,
 826                              Register arg_1,
 827                              bool check_exceptions) {
 828   pass_arg1(this, arg_1);
 829   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
 830 }
 831 
 832 void MacroAssembler::call_VM(Register oop_result,
 833                              address entry_point,
 834                              Register arg_1,
 835                              Register arg_2,
 836                              bool check_exceptions) {
 837   assert(arg_1 != c_rarg2, "smashed arg");
 838   pass_arg2(this, arg_2);
 839   pass_arg1(this, arg_1);
 840   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
 841 }
 842 
 843 void MacroAssembler::call_VM(Register oop_result,
 844                              address entry_point,
 845                              Register arg_1,
 846                              Register arg_2,
 847                              Register arg_3,
 848                              bool check_exceptions) {
 849   assert(arg_1 != c_rarg3, "smashed arg");
 850   assert(arg_2 != c_rarg3, "smashed arg");
 851   pass_arg3(this, arg_3);
 852 
 853   assert(arg_1 != c_rarg2, "smashed arg");
 854   pass_arg2(this, arg_2);
 855 
 856   pass_arg1(this, arg_1);
 857   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
 858 }
 859 
 860 void MacroAssembler::call_VM(Register oop_result,
 861                              Register last_java_sp,
 862                              address entry_point,
 863                              int number_of_arguments,
 864                              bool check_exceptions) {
 865   call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 866 }
 867 
 868 void MacroAssembler::call_VM(Register oop_result,
 869                              Register last_java_sp,
 870                              address entry_point,
 871                              Register arg_1,
 872                              bool check_exceptions) {
 873   pass_arg1(this, arg_1);
 874   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 875 }
 876 
 877 void MacroAssembler::call_VM(Register oop_result,
 878                              Register last_java_sp,
 879                              address entry_point,
 880                              Register arg_1,
 881                              Register arg_2,
 882                              bool check_exceptions) {
 883 
 884   assert(arg_1 != c_rarg2, "smashed arg");
 885   pass_arg2(this, arg_2);
 886   pass_arg1(this, arg_1);
 887   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 888 }
 889 
 890 void MacroAssembler::call_VM(Register oop_result,
 891                              Register last_java_sp,
 892                              address entry_point,
 893                              Register arg_1,
 894                              Register arg_2,
 895                              Register arg_3,
 896                              bool check_exceptions) {
 897   assert(arg_1 != c_rarg3, "smashed arg");
 898   assert(arg_2 != c_rarg3, "smashed arg");
 899   pass_arg3(this, arg_3);
 900   assert(arg_1 != c_rarg2, "smashed arg");
 901   pass_arg2(this, arg_2);
 902   pass_arg1(this, arg_1);
 903   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 904 }
 905 
 906 
 907 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
 908   ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
 909   str(zr, Address(java_thread, JavaThread::vm_result_offset()));
 910   verify_oop(oop_result, "broken oop in call_VM_base");
 911 }
 912 
 913 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
 914   ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
 915   str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
 916 }
 917 
 918 void MacroAssembler::align(int modulus) {
 919   while (offset() % modulus != 0) nop();
 920 }
 921 
 922 // these are no-ops overridden by InterpreterMacroAssembler
 923 
 924 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
 925 
 926 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
 927 
 928 
 929 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
 930                                                       Register tmp,
 931                                                       int offset) {
 932   intptr_t value = *delayed_value_addr;
 933   if (value != 0)
 934     return RegisterOrConstant(value + offset);
 935 
 936   // load indirectly to solve generation ordering problem
 937   ldr(tmp, ExternalAddress((address) delayed_value_addr));
 938 
 939   if (offset != 0)
 940     add(tmp, tmp, offset);
 941 
 942   return RegisterOrConstant(tmp);
 943 }
 944 
 945 
 946 void MacroAssembler:: notify(int type) {
 947   if (type == bytecode_start) {
 948     // set_last_Java_frame(esp, rfp, (address)NULL);
 949     Assembler:: notify(type);
 950     // reset_last_Java_frame(true);
 951   }
 952   else
 953     Assembler:: notify(type);
 954 }
 955 
 956 // Look up the method for a megamorphic invokeinterface call.
 957 // The target method is determined by <intf_klass, itable_index>.
 958 // The receiver klass is in recv_klass.
 959 // On success, the result will be in method_result, and execution falls through.
 960 // On failure, execution transfers to the given label.
 961 void MacroAssembler::lookup_interface_method(Register recv_klass,
 962                                              Register intf_klass,
 963                                              RegisterOrConstant itable_index,
 964                                              Register method_result,
 965                                              Register scan_temp,
 966                                              Label& L_no_such_interface,
 967                          bool return_method) {
 968   assert_different_registers(recv_klass, intf_klass, scan_temp);
 969   assert_different_registers(method_result, intf_klass, scan_temp);
 970   assert(recv_klass != method_result || !return_method,
 971      "recv_klass can be destroyed when method isn't needed");
 972   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 973          "caller must use same register for non-constant itable index as for method");
 974 
 975   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
 976   int vtable_base = in_bytes(Klass::vtable_start_offset());
 977   int itentry_off = itableMethodEntry::method_offset_in_bytes();
 978   int scan_step   = itableOffsetEntry::size() * wordSize;
 979   int vte_size    = vtableEntry::size_in_bytes();
 980   assert(vte_size == wordSize, "else adjust times_vte_scale");
 981 
 982   ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 983 
 984   // %%% Could store the aligned, prescaled offset in the klassoop.
 985   // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
 986   lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
 987   add(scan_temp, scan_temp, vtable_base);
 988 
 989   if (return_method) {
 990     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
 991     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 992     // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
 993     lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
 994     if (itentry_off)
 995       add(recv_klass, recv_klass, itentry_off);
 996   }
 997 
 998   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
 999   //   if (scan->interface() == intf) {
1000   //     result = (klass + scan->offset() + itable_index);
1001   //   }
1002   // }
1003   Label search, found_method;
1004 
1005   for (int peel = 1; peel >= 0; peel--) {
1006     ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
1007     cmp(intf_klass, method_result);
1008 
1009     if (peel) {
1010       br(Assembler::EQ, found_method);
1011     } else {
1012       br(Assembler::NE, search);
1013       // (invert the test to fall through to found_method...)
1014     }
1015 
1016     if (!peel)  break;
1017 
1018     bind(search);
1019 
1020     // Check that the previous entry is non-null.  A null entry means that
1021     // the receiver class doesn't implement the interface, and wasn't the
1022     // same as when the caller was compiled.
1023     cbz(method_result, L_no_such_interface);
1024     add(scan_temp, scan_temp, scan_step);
1025   }
1026 
1027   bind(found_method);
1028 
1029   // Got a hit.
1030   if (return_method) {
1031     ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
1032     ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0)));
1033   }
1034 }
1035 
1036 // virtual method calling
1037 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1038                                            RegisterOrConstant vtable_index,
1039                                            Register method_result) {
1040   const int base = in_bytes(Klass::vtable_start_offset());
1041   assert(vtableEntry::size() * wordSize == 8,
1042          "adjust the scaling in the code below");
1043   int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes();
1044 
1045   if (vtable_index.is_register()) {
1046     lea(method_result, Address(recv_klass,
1047                                vtable_index.as_register(),
1048                                Address::lsl(LogBytesPerWord)));
1049     ldr(method_result, Address(method_result, vtable_offset_in_bytes));
1050   } else {
1051     vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
1052     ldr(method_result,
1053         form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0));
1054   }
1055 }
1056 
1057 void MacroAssembler::check_klass_subtype(Register sub_klass,
1058                            Register super_klass,
1059                            Register temp_reg,
1060                            Label& L_success) {
1061   Label L_failure;
1062   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
1063   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
1064   bind(L_failure);
1065 }
1066 
1067 
1068 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1069                                                    Register super_klass,
1070                                                    Register temp_reg,
1071                                                    Label* L_success,
1072                                                    Label* L_failure,
1073                                                    Label* L_slow_path,
1074                                         RegisterOrConstant super_check_offset) {
1075   assert_different_registers(sub_klass, super_klass, temp_reg);
1076   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1077   if (super_check_offset.is_register()) {
1078     assert_different_registers(sub_klass, super_klass,
1079                                super_check_offset.as_register());
1080   } else if (must_load_sco) {
1081     assert(temp_reg != noreg, "supply either a temp or a register offset");
1082   }
1083 
1084   Label L_fallthrough;
1085   int label_nulls = 0;
1086   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1087   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1088   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1089   assert(label_nulls <= 1, "at most one NULL in the batch");
1090 
1091   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1092   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1093   Address super_check_offset_addr(super_klass, sco_offset);
1094 
1095   // Hacked jmp, which may only be used just before L_fallthrough.
1096 #define final_jmp(label)                                                \
1097   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
1098   else                            b(label)                /*omit semi*/
1099 
1100   // If the pointers are equal, we are done (e.g., String[] elements).
1101   // This self-check enables sharing of secondary supertype arrays among
1102   // non-primary types such as array-of-interface.  Otherwise, each such
1103   // type would need its own customized SSA.
1104   // We move this check to the front of the fast path because many
1105   // type checks are in fact trivially successful in this manner,
1106   // so we get a nicely predicted branch right at the start of the check.
1107   cmp(sub_klass, super_klass);
1108   br(Assembler::EQ, *L_success);
1109 
1110   // Check the supertype display:
1111   if (must_load_sco) {
1112     ldrw(temp_reg, super_check_offset_addr);
1113     super_check_offset = RegisterOrConstant(temp_reg);
1114   }
1115   Address super_check_addr(sub_klass, super_check_offset);
1116   ldr(rscratch1, super_check_addr);
1117   cmp(super_klass, rscratch1); // load displayed supertype
1118 
1119   // This check has worked decisively for primary supers.
1120   // Secondary supers are sought in the super_cache ('super_cache_addr').
1121   // (Secondary supers are interfaces and very deeply nested subtypes.)
1122   // This works in the same check above because of a tricky aliasing
1123   // between the super_cache and the primary super display elements.
1124   // (The 'super_check_addr' can address either, as the case requires.)
1125   // Note that the cache is updated below if it does not help us find
1126   // what we need immediately.
1127   // So if it was a primary super, we can just fail immediately.
1128   // Otherwise, it's the slow path for us (no success at this point).
1129 
1130   if (super_check_offset.is_register()) {
1131     br(Assembler::EQ, *L_success);
1132     cmp(super_check_offset.as_register(), sc_offset);
1133     if (L_failure == &L_fallthrough) {
1134       br(Assembler::EQ, *L_slow_path);
1135     } else {
1136       br(Assembler::NE, *L_failure);
1137       final_jmp(*L_slow_path);
1138     }
1139   } else if (super_check_offset.as_constant() == sc_offset) {
1140     // Need a slow path; fast failure is impossible.
1141     if (L_slow_path == &L_fallthrough) {
1142       br(Assembler::EQ, *L_success);
1143     } else {
1144       br(Assembler::NE, *L_slow_path);
1145       final_jmp(*L_success);
1146     }
1147   } else {
1148     // No slow path; it's a fast decision.
1149     if (L_failure == &L_fallthrough) {
1150       br(Assembler::EQ, *L_success);
1151     } else {
1152       br(Assembler::NE, *L_failure);
1153       final_jmp(*L_success);
1154     }
1155   }
1156 
1157   bind(L_fallthrough);
1158 
1159 #undef final_jmp
1160 }
1161 
1162 // These two are taken from x86, but they look generally useful
1163 
1164 // scans count pointer sized words at [addr] for occurence of value,
1165 // generic
1166 void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1167                                 Register scratch) {
1168   Label Lloop, Lexit;
1169   cbz(count, Lexit);
1170   bind(Lloop);
1171   ldr(scratch, post(addr, wordSize));
1172   cmp(value, scratch);
1173   br(EQ, Lexit);
1174   sub(count, count, 1);
1175   cbnz(count, Lloop);
1176   bind(Lexit);
1177 }
1178 
1179 // scans count 4 byte words at [addr] for occurence of value,
1180 // generic
1181 void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1182                                 Register scratch) {
1183   Label Lloop, Lexit;
1184   cbz(count, Lexit);
1185   bind(Lloop);
1186   ldrw(scratch, post(addr, wordSize));
1187   cmpw(value, scratch);
1188   br(EQ, Lexit);
1189   sub(count, count, 1);
1190   cbnz(count, Lloop);
1191   bind(Lexit);
1192 }
1193 
1194 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1195                                                    Register super_klass,
1196                                                    Register temp_reg,
1197                                                    Register temp2_reg,
1198                                                    Label* L_success,
1199                                                    Label* L_failure,
1200                                                    bool set_cond_codes) {
1201   assert_different_registers(sub_klass, super_klass, temp_reg);
1202   if (temp2_reg != noreg)
1203     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1204 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1205 
1206   Label L_fallthrough;
1207   int label_nulls = 0;
1208   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1209   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1210   assert(label_nulls <= 1, "at most one NULL in the batch");
1211 
1212   // a couple of useful fields in sub_klass:
1213   int ss_offset = in_bytes(Klass::secondary_supers_offset());
1214   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1215   Address secondary_supers_addr(sub_klass, ss_offset);
1216   Address super_cache_addr(     sub_klass, sc_offset);
1217 
1218   BLOCK_COMMENT("check_klass_subtype_slow_path");
1219 
1220   // Do a linear scan of the secondary super-klass chain.
1221   // This code is rarely used, so simplicity is a virtue here.
1222   // The repne_scan instruction uses fixed registers, which we must spill.
1223   // Don't worry too much about pre-existing connections with the input regs.
1224 
1225   assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1226   assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1227 
1228   RegSet pushed_registers;
1229   if (!IS_A_TEMP(r2))    pushed_registers += r2;
1230   if (!IS_A_TEMP(r5))    pushed_registers += r5;
1231 
1232   if (super_klass != r0 || UseCompressedOops) {
1233     if (!IS_A_TEMP(r0))   pushed_registers += r0;
1234   }
1235 
1236   push(pushed_registers, sp);
1237 
1238   // Get super_klass value into r0 (even if it was in r5 or r2).
1239   if (super_klass != r0) {
1240     mov(r0, super_klass);
1241   }
1242 
1243 #ifndef PRODUCT
1244   mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr);
1245   Address pst_counter_addr(rscratch2);
1246   ldr(rscratch1, pst_counter_addr);
1247   add(rscratch1, rscratch1, 1);
1248   str(rscratch1, pst_counter_addr);
1249 #endif //PRODUCT
1250 
1251   // We will consult the secondary-super array.
1252   ldr(r5, secondary_supers_addr);
1253   // Load the array length.
1254   ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1255   // Skip to start of data.
1256   add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1257 
1258   cmp(sp, zr); // Clear Z flag; SP is never zero
1259   // Scan R2 words at [R5] for an occurrence of R0.
1260   // Set NZ/Z based on last compare.
1261   repne_scan(r5, r0, r2, rscratch1);
1262 
1263   // Unspill the temp. registers:
1264   pop(pushed_registers, sp);
1265 
1266   br(Assembler::NE, *L_failure);
1267 
1268   // Success.  Cache the super we found and proceed in triumph.
1269   str(super_klass, super_cache_addr);
1270 
1271   if (L_success != &L_fallthrough) {
1272     b(*L_success);
1273   }
1274 
1275 #undef IS_A_TEMP
1276 
1277   bind(L_fallthrough);
1278 }
1279 
1280 
1281 void MacroAssembler::verify_oop(Register reg, const char* s) {
1282   if (!VerifyOops) return;
1283 
1284   // Pass register number to verify_oop_subroutine
1285   const char* b = NULL;
1286   {
1287     ResourceMark rm;
1288     stringStream ss;
1289     ss.print("verify_oop: %s: %s", reg->name(), s);
1290     b = code_string(ss.as_string());
1291   }
1292   BLOCK_COMMENT("verify_oop {");
1293 
1294   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1295   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1296 
1297   mov(r0, reg);
1298   mov(rscratch1, (address)b);
1299 
1300   // call indirectly to solve generation ordering problem
1301   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1302   ldr(rscratch2, Address(rscratch2));
1303   blr(rscratch2);
1304 
1305   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1306   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1307 
1308   BLOCK_COMMENT("} verify_oop");
1309 }
1310 
1311 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
1312   if (!VerifyOops) return;
1313 
1314   const char* b = NULL;
1315   {
1316     ResourceMark rm;
1317     stringStream ss;
1318     ss.print("verify_oop_addr: %s", s);
1319     b = code_string(ss.as_string());
1320   }
1321   BLOCK_COMMENT("verify_oop_addr {");
1322 
1323   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1324   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1325 
1326   // addr may contain sp so we will have to adjust it based on the
1327   // pushes that we just did.
1328   if (addr.uses(sp)) {
1329     lea(r0, addr);
1330     ldr(r0, Address(r0, 4 * wordSize));
1331   } else {
1332     ldr(r0, addr);
1333   }
1334   mov(rscratch1, (address)b);
1335 
1336   // call indirectly to solve generation ordering problem
1337   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1338   ldr(rscratch2, Address(rscratch2));
1339   blr(rscratch2);
1340 
1341   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1342   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1343 
1344   BLOCK_COMMENT("} verify_oop_addr");
1345 }
1346 
1347 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1348                                          int extra_slot_offset) {
1349   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1350   int stackElementSize = Interpreter::stackElementSize;
1351   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1352 #ifdef ASSERT
1353   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1354   assert(offset1 - offset == stackElementSize, "correct arithmetic");
1355 #endif
1356   if (arg_slot.is_constant()) {
1357     return Address(esp, arg_slot.as_constant() * stackElementSize
1358                    + offset);
1359   } else {
1360     add(rscratch1, esp, arg_slot.as_register(),
1361         ext::uxtx, exact_log2(stackElementSize));
1362     return Address(rscratch1, offset);
1363   }
1364 }
1365 
1366 void MacroAssembler::call_VM_leaf_base(address entry_point,
1367                                        int number_of_arguments,
1368                                        Label *retaddr) {
1369   call_VM_leaf_base1(entry_point, number_of_arguments, 0, ret_type_integral, retaddr);
1370 }
1371 
1372 void MacroAssembler::call_VM_leaf_base1(address entry_point,
1373                                         int number_of_gp_arguments,
1374                                         int number_of_fp_arguments,
1375                                         ret_type type,
1376                                         Label *retaddr) {
1377   Label E, L;
1378 
1379   stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1380 
1381   // We add 1 to number_of_arguments because the thread in arg0 is
1382   // not counted
1383   mov(rscratch1, entry_point);
1384   blrt(rscratch1, number_of_gp_arguments + 1, number_of_fp_arguments, type);
1385   if (retaddr)
1386     bind(*retaddr);
1387 
1388   ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1389   maybe_isb();
1390 }
1391 
1392 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1393   call_VM_leaf_base(entry_point, number_of_arguments);
1394 }
1395 
1396 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1397   pass_arg0(this, arg_0);
1398   call_VM_leaf_base(entry_point, 1);
1399 }
1400 
1401 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1402   pass_arg0(this, arg_0);
1403   pass_arg1(this, arg_1);
1404   call_VM_leaf_base(entry_point, 2);
1405 }
1406 
1407 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1408                                   Register arg_1, Register arg_2) {
1409   pass_arg0(this, arg_0);
1410   pass_arg1(this, arg_1);
1411   pass_arg2(this, arg_2);
1412   call_VM_leaf_base(entry_point, 3);
1413 }
1414 
1415 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1416   pass_arg0(this, arg_0);
1417   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1418 }
1419 
1420 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1421 
1422   assert(arg_0 != c_rarg1, "smashed arg");
1423   pass_arg1(this, arg_1);
1424   pass_arg0(this, arg_0);
1425   MacroAssembler::call_VM_leaf_base(entry_point, 2);
1426 }
1427 
1428 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1429   assert(arg_0 != c_rarg2, "smashed arg");
1430   assert(arg_1 != c_rarg2, "smashed arg");
1431   pass_arg2(this, arg_2);
1432   assert(arg_0 != c_rarg1, "smashed arg");
1433   pass_arg1(this, arg_1);
1434   pass_arg0(this, arg_0);
1435   MacroAssembler::call_VM_leaf_base(entry_point, 3);
1436 }
1437 
1438 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1439   assert(arg_0 != c_rarg3, "smashed arg");
1440   assert(arg_1 != c_rarg3, "smashed arg");
1441   assert(arg_2 != c_rarg3, "smashed arg");
1442   pass_arg3(this, arg_3);
1443   assert(arg_0 != c_rarg2, "smashed arg");
1444   assert(arg_1 != c_rarg2, "smashed arg");
1445   pass_arg2(this, arg_2);
1446   assert(arg_0 != c_rarg1, "smashed arg");
1447   pass_arg1(this, arg_1);
1448   pass_arg0(this, arg_0);
1449   MacroAssembler::call_VM_leaf_base(entry_point, 4);
1450 }
1451 
1452 void MacroAssembler::null_check(Register reg, int offset) {
1453   if (needs_explicit_null_check(offset)) {
1454     // provoke OS NULL exception if reg = NULL by
1455     // accessing M[reg] w/o changing any registers
1456     // NOTE: this is plenty to provoke a segv
1457     ldr(zr, Address(reg));
1458   } else {
1459     // nothing to do, (later) access of M[reg + offset]
1460     // will provoke OS NULL exception if reg = NULL
1461   }
1462 }
1463 
1464 // MacroAssembler protected routines needed to implement
1465 // public methods
1466 
1467 void MacroAssembler::mov(Register r, Address dest) {
1468   code_section()->relocate(pc(), dest.rspec());
1469   u_int64_t imm64 = (u_int64_t)dest.target();
1470   movptr(r, imm64);
1471 }
1472 
1473 // Move a constant pointer into r.  In AArch64 mode the virtual
1474 // address space is 48 bits in size, so we only need three
1475 // instructions to create a patchable instruction sequence that can
1476 // reach anywhere.
1477 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1478 #ifndef PRODUCT
1479   {
1480     char buffer[64];
1481     snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1482     block_comment(buffer);
1483   }
1484 #endif
1485   assert(imm64 < (1ul << 48), "48-bit overflow in address constant");
1486   movz(r, imm64 & 0xffff);
1487   imm64 >>= 16;
1488   movk(r, imm64 & 0xffff, 16);
1489   imm64 >>= 16;
1490   movk(r, imm64 & 0xffff, 32);
1491 }
1492 
1493 // Macro to mov replicated immediate to vector register.
1494 //  Vd will get the following values for different arrangements in T
1495 //   imm32 == hex 000000gh  T8B:  Vd = ghghghghghghghgh
1496 //   imm32 == hex 000000gh  T16B: Vd = ghghghghghghghghghghghghghghghgh
1497 //   imm32 == hex 0000efgh  T4H:  Vd = efghefghefghefgh
1498 //   imm32 == hex 0000efgh  T8H:  Vd = efghefghefghefghefghefghefghefgh
1499 //   imm32 == hex abcdefgh  T2S:  Vd = abcdefghabcdefgh
1500 //   imm32 == hex abcdefgh  T4S:  Vd = abcdefghabcdefghabcdefghabcdefgh
1501 //   T1D/T2D: invalid
1502 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) {
1503   assert(T != T1D && T != T2D, "invalid arrangement");
1504   if (T == T8B || T == T16B) {
1505     assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)");
1506     movi(Vd, T, imm32 & 0xff, 0);
1507     return;
1508   }
1509   u_int32_t nimm32 = ~imm32;
1510   if (T == T4H || T == T8H) {
1511     assert((imm32  & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)");
1512     imm32 &= 0xffff;
1513     nimm32 &= 0xffff;
1514   }
1515   u_int32_t x = imm32;
1516   int movi_cnt = 0;
1517   int movn_cnt = 0;
1518   while (x) { if (x & 0xff) movi_cnt++; x >>= 8; }
1519   x = nimm32;
1520   while (x) { if (x & 0xff) movn_cnt++; x >>= 8; }
1521   if (movn_cnt < movi_cnt) imm32 = nimm32;
1522   unsigned lsl = 0;
1523   while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1524   if (movn_cnt < movi_cnt)
1525     mvni(Vd, T, imm32 & 0xff, lsl);
1526   else
1527     movi(Vd, T, imm32 & 0xff, lsl);
1528   imm32 >>= 8; lsl += 8;
1529   while (imm32) {
1530     while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1531     if (movn_cnt < movi_cnt)
1532       bici(Vd, T, imm32 & 0xff, lsl);
1533     else
1534       orri(Vd, T, imm32 & 0xff, lsl);
1535     lsl += 8; imm32 >>= 8;
1536   }
1537 }
1538 
1539 void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64)
1540 {
1541 #ifndef PRODUCT
1542   {
1543     char buffer[64];
1544     snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1545     block_comment(buffer);
1546   }
1547 #endif
1548   if (operand_valid_for_logical_immediate(false, imm64)) {
1549     orr(dst, zr, imm64);
1550   } else {
1551     // we can use a combination of MOVZ or MOVN with
1552     // MOVK to build up the constant
1553     u_int64_t imm_h[4];
1554     int zero_count = 0;
1555     int neg_count = 0;
1556     int i;
1557     for (i = 0; i < 4; i++) {
1558       imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
1559       if (imm_h[i] == 0) {
1560         zero_count++;
1561       } else if (imm_h[i] == 0xffffL) {
1562         neg_count++;
1563       }
1564     }
1565     if (zero_count == 4) {
1566       // one MOVZ will do
1567       movz(dst, 0);
1568     } else if (neg_count == 4) {
1569       // one MOVN will do
1570       movn(dst, 0);
1571     } else if (zero_count == 3) {
1572       for (i = 0; i < 4; i++) {
1573         if (imm_h[i] != 0L) {
1574           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1575           break;
1576         }
1577       }
1578     } else if (neg_count == 3) {
1579       // one MOVN will do
1580       for (int i = 0; i < 4; i++) {
1581         if (imm_h[i] != 0xffffL) {
1582           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1583           break;
1584         }
1585       }
1586     } else if (zero_count == 2) {
1587       // one MOVZ and one MOVK will do
1588       for (i = 0; i < 3; i++) {
1589         if (imm_h[i] != 0L) {
1590           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1591           i++;
1592           break;
1593         }
1594       }
1595       for (;i < 4; i++) {
1596         if (imm_h[i] != 0L) {
1597           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1598         }
1599       }
1600     } else if (neg_count == 2) {
1601       // one MOVN and one MOVK will do
1602       for (i = 0; i < 4; i++) {
1603         if (imm_h[i] != 0xffffL) {
1604           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1605           i++;
1606           break;
1607         }
1608       }
1609       for (;i < 4; i++) {
1610         if (imm_h[i] != 0xffffL) {
1611           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1612         }
1613       }
1614     } else if (zero_count == 1) {
1615       // one MOVZ and two MOVKs will do
1616       for (i = 0; i < 4; i++) {
1617         if (imm_h[i] != 0L) {
1618           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1619           i++;
1620           break;
1621         }
1622       }
1623       for (;i < 4; i++) {
1624         if (imm_h[i] != 0x0L) {
1625           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1626         }
1627       }
1628     } else if (neg_count == 1) {
1629       // one MOVN and two MOVKs will do
1630       for (i = 0; i < 4; i++) {
1631         if (imm_h[i] != 0xffffL) {
1632           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1633           i++;
1634           break;
1635         }
1636       }
1637       for (;i < 4; i++) {
1638         if (imm_h[i] != 0xffffL) {
1639           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1640         }
1641       }
1642     } else {
1643       // use a MOVZ and 3 MOVKs (makes it easier to debug)
1644       movz(dst, (u_int32_t)imm_h[0], 0);
1645       for (i = 1; i < 4; i++) {
1646         movk(dst, (u_int32_t)imm_h[i], (i << 4));
1647       }
1648     }
1649   }
1650 }
1651 
1652 void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32)
1653 {
1654 #ifndef PRODUCT
1655     {
1656       char buffer[64];
1657       snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32);
1658       block_comment(buffer);
1659     }
1660 #endif
1661   if (operand_valid_for_logical_immediate(true, imm32)) {
1662     orrw(dst, zr, imm32);
1663   } else {
1664     // we can use MOVZ, MOVN or two calls to MOVK to build up the
1665     // constant
1666     u_int32_t imm_h[2];
1667     imm_h[0] = imm32 & 0xffff;
1668     imm_h[1] = ((imm32 >> 16) & 0xffff);
1669     if (imm_h[0] == 0) {
1670       movzw(dst, imm_h[1], 16);
1671     } else if (imm_h[0] == 0xffff) {
1672       movnw(dst, imm_h[1] ^ 0xffff, 16);
1673     } else if (imm_h[1] == 0) {
1674       movzw(dst, imm_h[0], 0);
1675     } else if (imm_h[1] == 0xffff) {
1676       movnw(dst, imm_h[0] ^ 0xffff, 0);
1677     } else {
1678       // use a MOVZ and MOVK (makes it easier to debug)
1679       movzw(dst, imm_h[0], 0);
1680       movkw(dst, imm_h[1], 16);
1681     }
1682   }
1683 }
1684 
1685 // Form an address from base + offset in Rd.  Rd may or may
1686 // not actually be used: you must use the Address that is returned.
1687 // It is up to you to ensure that the shift provided matches the size
1688 // of your data.
1689 Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) {
1690   if (Address::offset_ok_for_immed(byte_offset, shift))
1691     // It fits; no need for any heroics
1692     return Address(base, byte_offset);
1693 
1694   // Don't do anything clever with negative or misaligned offsets
1695   unsigned mask = (1 << shift) - 1;
1696   if (byte_offset < 0 || byte_offset & mask) {
1697     mov(Rd, byte_offset);
1698     add(Rd, base, Rd);
1699     return Address(Rd);
1700   }
1701 
1702   // See if we can do this with two 12-bit offsets
1703   {
1704     unsigned long word_offset = byte_offset >> shift;
1705     unsigned long masked_offset = word_offset & 0xfff000;
1706     if (Address::offset_ok_for_immed(word_offset - masked_offset)
1707         && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
1708       add(Rd, base, masked_offset << shift);
1709       word_offset -= masked_offset;
1710       return Address(Rd, word_offset << shift);
1711     }
1712   }
1713 
1714   // Do it the hard way
1715   mov(Rd, byte_offset);
1716   add(Rd, base, Rd);
1717   return Address(Rd);
1718 }
1719 
1720 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) {
1721   if (UseLSE) {
1722     mov(tmp, 1);
1723     ldadd(Assembler::word, tmp, zr, counter_addr);
1724     return;
1725   }
1726   Label retry_load;
1727   if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
1728     prfm(Address(counter_addr), PSTL1STRM);
1729   bind(retry_load);
1730   // flush and load exclusive from the memory location
1731   ldxrw(tmp, counter_addr);
1732   addw(tmp, tmp, 1);
1733   // if we store+flush with no intervening write tmp wil be zero
1734   stxrw(tmp2, tmp, counter_addr);
1735   cbnzw(tmp2, retry_load);
1736 }
1737 
1738 
1739 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
1740                                     bool want_remainder, Register scratch)
1741 {
1742   // Full implementation of Java idiv and irem.  The function
1743   // returns the (pc) offset of the div instruction - may be needed
1744   // for implicit exceptions.
1745   //
1746   // constraint : ra/rb =/= scratch
1747   //         normal case
1748   //
1749   // input : ra: dividend
1750   //         rb: divisor
1751   //
1752   // result: either
1753   //         quotient  (= ra idiv rb)
1754   //         remainder (= ra irem rb)
1755 
1756   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1757 
1758   int idivl_offset = offset();
1759   if (! want_remainder) {
1760     sdivw(result, ra, rb);
1761   } else {
1762     sdivw(scratch, ra, rb);
1763     Assembler::msubw(result, scratch, rb, ra);
1764   }
1765 
1766   return idivl_offset;
1767 }
1768 
1769 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
1770                                     bool want_remainder, Register scratch)
1771 {
1772   // Full implementation of Java ldiv and lrem.  The function
1773   // returns the (pc) offset of the div instruction - may be needed
1774   // for implicit exceptions.
1775   //
1776   // constraint : ra/rb =/= scratch
1777   //         normal case
1778   //
1779   // input : ra: dividend
1780   //         rb: divisor
1781   //
1782   // result: either
1783   //         quotient  (= ra idiv rb)
1784   //         remainder (= ra irem rb)
1785 
1786   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1787 
1788   int idivq_offset = offset();
1789   if (! want_remainder) {
1790     sdiv(result, ra, rb);
1791   } else {
1792     sdiv(scratch, ra, rb);
1793     Assembler::msub(result, scratch, rb, ra);
1794   }
1795 
1796   return idivq_offset;
1797 }
1798 
1799 void MacroAssembler::membar(Membar_mask_bits order_constraint) {
1800   address prev = pc() - NativeMembar::instruction_size;
1801   address last = code()->last_insn();
1802   if (last != NULL && nativeInstruction_at(last)->is_Membar() && prev == last) {
1803     NativeMembar *bar = NativeMembar_at(prev);
1804     // We are merging two memory barrier instructions.  On AArch64 we
1805     // can do this simply by ORing them together.
1806     bar->set_kind(bar->get_kind() | order_constraint);
1807     BLOCK_COMMENT("merged membar");
1808   } else {
1809     code()->set_last_insn(pc());
1810     dmb(Assembler::barrier(order_constraint));
1811   }
1812 }
1813 
1814 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) {
1815   if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) {
1816     merge_ldst(rt, adr, size_in_bytes, is_store);
1817     code()->clear_last_insn();
1818     return true;
1819   } else {
1820     assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported.");
1821     const unsigned mask = size_in_bytes - 1;
1822     if (adr.getMode() == Address::base_plus_offset &&
1823         (adr.offset() & mask) == 0) { // only supports base_plus_offset.
1824       code()->set_last_insn(pc());
1825     }
1826     return false;
1827   }
1828 }
1829 
1830 void MacroAssembler::ldr(Register Rx, const Address &adr) {
1831   // We always try to merge two adjacent loads into one ldp.
1832   if (!try_merge_ldst(Rx, adr, 8, false)) {
1833     Assembler::ldr(Rx, adr);
1834   }
1835 }
1836 
1837 void MacroAssembler::ldrw(Register Rw, const Address &adr) {
1838   // We always try to merge two adjacent loads into one ldp.
1839   if (!try_merge_ldst(Rw, adr, 4, false)) {
1840     Assembler::ldrw(Rw, adr);
1841   }
1842 }
1843 
1844 void MacroAssembler::str(Register Rx, const Address &adr) {
1845   // We always try to merge two adjacent stores into one stp.
1846   if (!try_merge_ldst(Rx, adr, 8, true)) {
1847     Assembler::str(Rx, adr);
1848   }
1849 }
1850 
1851 void MacroAssembler::strw(Register Rw, const Address &adr) {
1852   // We always try to merge two adjacent stores into one stp.
1853   if (!try_merge_ldst(Rw, adr, 4, true)) {
1854     Assembler::strw(Rw, adr);
1855   }
1856 }
1857 
1858 // MacroAssembler routines found actually to be needed
1859 
1860 void MacroAssembler::push(Register src)
1861 {
1862   str(src, Address(pre(esp, -1 * wordSize)));
1863 }
1864 
1865 void MacroAssembler::pop(Register dst)
1866 {
1867   ldr(dst, Address(post(esp, 1 * wordSize)));
1868 }
1869 
1870 // Note: load_unsigned_short used to be called load_unsigned_word.
1871 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
1872   int off = offset();
1873   ldrh(dst, src);
1874   return off;
1875 }
1876 
1877 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
1878   int off = offset();
1879   ldrb(dst, src);
1880   return off;
1881 }
1882 
1883 int MacroAssembler::load_signed_short(Register dst, Address src) {
1884   int off = offset();
1885   ldrsh(dst, src);
1886   return off;
1887 }
1888 
1889 int MacroAssembler::load_signed_byte(Register dst, Address src) {
1890   int off = offset();
1891   ldrsb(dst, src);
1892   return off;
1893 }
1894 
1895 int MacroAssembler::load_signed_short32(Register dst, Address src) {
1896   int off = offset();
1897   ldrshw(dst, src);
1898   return off;
1899 }
1900 
1901 int MacroAssembler::load_signed_byte32(Register dst, Address src) {
1902   int off = offset();
1903   ldrsbw(dst, src);
1904   return off;
1905 }
1906 
1907 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
1908   switch (size_in_bytes) {
1909   case  8:  ldr(dst, src); break;
1910   case  4:  ldrw(dst, src); break;
1911   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
1912   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
1913   default:  ShouldNotReachHere();
1914   }
1915 }
1916 
1917 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
1918   switch (size_in_bytes) {
1919   case  8:  str(src, dst); break;
1920   case  4:  strw(src, dst); break;
1921   case  2:  strh(src, dst); break;
1922   case  1:  strb(src, dst); break;
1923   default:  ShouldNotReachHere();
1924   }
1925 }
1926 
1927 void MacroAssembler::decrementw(Register reg, int value)
1928 {
1929   if (value < 0)  { incrementw(reg, -value);      return; }
1930   if (value == 0) {                               return; }
1931   if (value < (1 << 12)) { subw(reg, reg, value); return; }
1932   /* else */ {
1933     guarantee(reg != rscratch2, "invalid dst for register decrement");
1934     movw(rscratch2, (unsigned)value);
1935     subw(reg, reg, rscratch2);
1936   }
1937 }
1938 
1939 void MacroAssembler::decrement(Register reg, int value)
1940 {
1941   if (value < 0)  { increment(reg, -value);      return; }
1942   if (value == 0) {                              return; }
1943   if (value < (1 << 12)) { sub(reg, reg, value); return; }
1944   /* else */ {
1945     assert(reg != rscratch2, "invalid dst for register decrement");
1946     mov(rscratch2, (unsigned long)value);
1947     sub(reg, reg, rscratch2);
1948   }
1949 }
1950 
1951 void MacroAssembler::decrementw(Address dst, int value)
1952 {
1953   assert(!dst.uses(rscratch1), "invalid dst for address decrement");
1954   if (dst.getMode() == Address::literal) {
1955     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
1956     lea(rscratch2, dst);
1957     dst = Address(rscratch2);
1958   }
1959   ldrw(rscratch1, dst);
1960   decrementw(rscratch1, value);
1961   strw(rscratch1, dst);
1962 }
1963 
1964 void MacroAssembler::decrement(Address dst, int value)
1965 {
1966   assert(!dst.uses(rscratch1), "invalid address for decrement");
1967   if (dst.getMode() == Address::literal) {
1968     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
1969     lea(rscratch2, dst);
1970     dst = Address(rscratch2);
1971   }
1972   ldr(rscratch1, dst);
1973   decrement(rscratch1, value);
1974   str(rscratch1, dst);
1975 }
1976 
1977 void MacroAssembler::incrementw(Register reg, int value)
1978 {
1979   if (value < 0)  { decrementw(reg, -value);      return; }
1980   if (value == 0) {                               return; }
1981   if (value < (1 << 12)) { addw(reg, reg, value); return; }
1982   /* else */ {
1983     assert(reg != rscratch2, "invalid dst for register increment");
1984     movw(rscratch2, (unsigned)value);
1985     addw(reg, reg, rscratch2);
1986   }
1987 }
1988 
1989 void MacroAssembler::increment(Register reg, int value)
1990 {
1991   if (value < 0)  { decrement(reg, -value);      return; }
1992   if (value == 0) {                              return; }
1993   if (value < (1 << 12)) { add(reg, reg, value); return; }
1994   /* else */ {
1995     assert(reg != rscratch2, "invalid dst for register increment");
1996     movw(rscratch2, (unsigned)value);
1997     add(reg, reg, rscratch2);
1998   }
1999 }
2000 
2001 void MacroAssembler::incrementw(Address dst, int value)
2002 {
2003   assert(!dst.uses(rscratch1), "invalid dst for address increment");
2004   if (dst.getMode() == Address::literal) {
2005     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2006     lea(rscratch2, dst);
2007     dst = Address(rscratch2);
2008   }
2009   ldrw(rscratch1, dst);
2010   incrementw(rscratch1, value);
2011   strw(rscratch1, dst);
2012 }
2013 
2014 void MacroAssembler::increment(Address dst, int value)
2015 {
2016   assert(!dst.uses(rscratch1), "invalid dst for address increment");
2017   if (dst.getMode() == Address::literal) {
2018     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2019     lea(rscratch2, dst);
2020     dst = Address(rscratch2);
2021   }
2022   ldr(rscratch1, dst);
2023   increment(rscratch1, value);
2024   str(rscratch1, dst);
2025 }
2026 
2027 
2028 void MacroAssembler::pusha() {
2029   push(0x7fffffff, sp);
2030 }
2031 
2032 void MacroAssembler::popa() {
2033   pop(0x7fffffff, sp);
2034 }
2035 
2036 // Push lots of registers in the bit set supplied.  Don't push sp.
2037 // Return the number of words pushed
2038 int MacroAssembler::push(unsigned int bitset, Register stack) {
2039   int words_pushed = 0;
2040 
2041   // Scan bitset to accumulate register pairs
2042   unsigned char regs[32];
2043   int count = 0;
2044   for (int reg = 0; reg <= 30; reg++) {
2045     if (1 & bitset)
2046       regs[count++] = reg;
2047     bitset >>= 1;
2048   }
2049   regs[count++] = zr->encoding_nocheck();
2050   count &= ~1;  // Only push an even nuber of regs
2051 
2052   if (count) {
2053     stp(as_Register(regs[0]), as_Register(regs[1]),
2054        Address(pre(stack, -count * wordSize)));
2055     words_pushed += 2;
2056   }
2057   for (int i = 2; i < count; i += 2) {
2058     stp(as_Register(regs[i]), as_Register(regs[i+1]),
2059        Address(stack, i * wordSize));
2060     words_pushed += 2;
2061   }
2062 
2063   assert(words_pushed == count, "oops, pushed != count");
2064 
2065   return count;
2066 }
2067 
2068 int MacroAssembler::pop(unsigned int bitset, Register stack) {
2069   int words_pushed = 0;
2070 
2071   // Scan bitset to accumulate register pairs
2072   unsigned char regs[32];
2073   int count = 0;
2074   for (int reg = 0; reg <= 30; reg++) {
2075     if (1 & bitset)
2076       regs[count++] = reg;
2077     bitset >>= 1;
2078   }
2079   regs[count++] = zr->encoding_nocheck();
2080   count &= ~1;
2081 
2082   for (int i = 2; i < count; i += 2) {
2083     ldp(as_Register(regs[i]), as_Register(regs[i+1]),
2084        Address(stack, i * wordSize));
2085     words_pushed += 2;
2086   }
2087   if (count) {
2088     ldp(as_Register(regs[0]), as_Register(regs[1]),
2089        Address(post(stack, count * wordSize)));
2090     words_pushed += 2;
2091   }
2092 
2093   assert(words_pushed == count, "oops, pushed != count");
2094 
2095   return count;
2096 }
2097 #ifdef ASSERT
2098 void MacroAssembler::verify_heapbase(const char* msg) {
2099 #if 0
2100   assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
2101   assert (Universe::heap() != NULL, "java heap should be initialized");
2102   if (CheckCompressedOops) {
2103     Label ok;
2104     push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
2105     cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
2106     br(Assembler::EQ, ok);
2107     stop(msg);
2108     bind(ok);
2109     pop(1 << rscratch1->encoding(), sp);
2110   }
2111 #endif
2112 }
2113 #endif
2114 
2115 void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) {
2116   Label done, not_weak;
2117   cbz(value, done);           // Use NULL as-is.
2118 
2119   STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u);
2120   tbz(r0, 0, not_weak);    // Test for jweak tag.
2121 
2122   // Resolve jweak.
2123   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, value,
2124                  Address(value, -JNIHandles::weak_tag_value), tmp, thread);
2125   verify_oop(value);
2126   b(done);
2127 
2128   bind(not_weak);
2129   // Resolve (untagged) jobject.
2130   access_load_at(T_OBJECT, IN_CONCURRENT_ROOT, value, Address(value, 0), tmp,
2131                  thread);
2132   verify_oop(value);
2133   bind(done);
2134 }
2135 
2136 void MacroAssembler::stop(const char* msg) {
2137   address ip = pc();
2138   pusha();
2139   mov(c_rarg0, (address)msg);
2140   mov(c_rarg1, (address)ip);
2141   mov(c_rarg2, sp);
2142   mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
2143   // call(c_rarg3);
2144   blrt(c_rarg3, 3, 0, 1);
2145   hlt(0);
2146 }
2147 
2148 void MacroAssembler::unimplemented(const char* what) {
2149   const char* buf = NULL;
2150   {
2151     ResourceMark rm;
2152     stringStream ss;
2153     ss.print("unimplemented: %s", what);
2154     buf = code_string(ss.as_string());
2155   }
2156   stop(buf);
2157 }
2158 
2159 // If a constant does not fit in an immediate field, generate some
2160 // number of MOV instructions and then perform the operation.
2161 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
2162                                            add_sub_imm_insn insn1,
2163                                            add_sub_reg_insn insn2) {
2164   assert(Rd != zr, "Rd = zr and not setting flags?");
2165   if (operand_valid_for_add_sub_immediate((int)imm)) {
2166     (this->*insn1)(Rd, Rn, imm);
2167   } else {
2168     if (uabs(imm) < (1 << 24)) {
2169        (this->*insn1)(Rd, Rn, imm & -(1 << 12));
2170        (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
2171     } else {
2172        assert_different_registers(Rd, Rn);
2173        mov(Rd, (uint64_t)imm);
2174        (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2175     }
2176   }
2177 }
2178 
2179 // Seperate vsn which sets the flags. Optimisations are more restricted
2180 // because we must set the flags correctly.
2181 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
2182                                            add_sub_imm_insn insn1,
2183                                            add_sub_reg_insn insn2) {
2184   if (operand_valid_for_add_sub_immediate((int)imm)) {
2185     (this->*insn1)(Rd, Rn, imm);
2186   } else {
2187     assert_different_registers(Rd, Rn);
2188     assert(Rd != zr, "overflow in immediate operand");
2189     mov(Rd, (uint64_t)imm);
2190     (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2191   }
2192 }
2193 
2194 
2195 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
2196   if (increment.is_register()) {
2197     add(Rd, Rn, increment.as_register());
2198   } else {
2199     add(Rd, Rn, increment.as_constant());
2200   }
2201 }
2202 
2203 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
2204   if (increment.is_register()) {
2205     addw(Rd, Rn, increment.as_register());
2206   } else {
2207     addw(Rd, Rn, increment.as_constant());
2208   }
2209 }
2210 
2211 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
2212   if (decrement.is_register()) {
2213     sub(Rd, Rn, decrement.as_register());
2214   } else {
2215     sub(Rd, Rn, decrement.as_constant());
2216   }
2217 }
2218 
2219 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
2220   if (decrement.is_register()) {
2221     subw(Rd, Rn, decrement.as_register());
2222   } else {
2223     subw(Rd, Rn, decrement.as_constant());
2224   }
2225 }
2226 
2227 void MacroAssembler::reinit_heapbase()
2228 {
2229   if (UseCompressedOops) {
2230     if (Universe::is_fully_initialized()) {
2231       mov(rheapbase, Universe::narrow_ptrs_base());
2232     } else {
2233       lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
2234       ldr(rheapbase, Address(rheapbase));
2235     }
2236   }
2237 }
2238 
2239 // this simulates the behaviour of the x86 cmpxchg instruction using a
2240 // load linked/store conditional pair. we use the acquire/release
2241 // versions of these instructions so that we flush pending writes as
2242 // per Java semantics.
2243 
2244 // n.b the x86 version assumes the old value to be compared against is
2245 // in rax and updates rax with the value located in memory if the
2246 // cmpxchg fails. we supply a register for the old value explicitly
2247 
2248 // the aarch64 load linked/store conditional instructions do not
2249 // accept an offset. so, unlike x86, we must provide a plain register
2250 // to identify the memory word to be compared/exchanged rather than a
2251 // register+offset Address.
2252 
2253 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
2254                                 Label &succeed, Label *fail) {
2255   // oldv holds comparison value
2256   // newv holds value to write in exchange
2257   // addr identifies memory word to compare against/update
2258   if (UseLSE) {
2259     mov(tmp, oldv);
2260     casal(Assembler::xword, oldv, newv, addr);
2261     cmp(tmp, oldv);
2262     br(Assembler::EQ, succeed);
2263     membar(AnyAny);
2264   } else {
2265     Label retry_load, nope;
2266     if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2267       prfm(Address(addr), PSTL1STRM);
2268     bind(retry_load);
2269     // flush and load exclusive from the memory location
2270     // and fail if it is not what we expect
2271     ldaxr(tmp, addr);
2272     cmp(tmp, oldv);
2273     br(Assembler::NE, nope);
2274     // if we store+flush with no intervening write tmp wil be zero
2275     stlxr(tmp, newv, addr);
2276     cbzw(tmp, succeed);
2277     // retry so we only ever return after a load fails to compare
2278     // ensures we don't return a stale value after a failed write.
2279     b(retry_load);
2280     // if the memory word differs we return it in oldv and signal a fail
2281     bind(nope);
2282     membar(AnyAny);
2283     mov(oldv, tmp);
2284   }
2285   if (fail)
2286     b(*fail);
2287 }
2288 
2289 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
2290                                         Label &succeed, Label *fail) {
2291   assert(oopDesc::mark_offset_in_bytes() == 0, "assumption");
2292   cmpxchgptr(oldv, newv, obj, tmp, succeed, fail);
2293 }
2294 
2295 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
2296                                 Label &succeed, Label *fail) {
2297   // oldv holds comparison value
2298   // newv holds value to write in exchange
2299   // addr identifies memory word to compare against/update
2300   // tmp returns 0/1 for success/failure
2301   if (UseLSE) {
2302     mov(tmp, oldv);
2303     casal(Assembler::word, oldv, newv, addr);
2304     cmp(tmp, oldv);
2305     br(Assembler::EQ, succeed);
2306     membar(AnyAny);
2307   } else {
2308     Label retry_load, nope;
2309     if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2310       prfm(Address(addr), PSTL1STRM);
2311     bind(retry_load);
2312     // flush and load exclusive from the memory location
2313     // and fail if it is not what we expect
2314     ldaxrw(tmp, addr);
2315     cmp(tmp, oldv);
2316     br(Assembler::NE, nope);
2317     // if we store+flush with no intervening write tmp wil be zero
2318     stlxrw(tmp, newv, addr);
2319     cbzw(tmp, succeed);
2320     // retry so we only ever return after a load fails to compare
2321     // ensures we don't return a stale value after a failed write.
2322     b(retry_load);
2323     // if the memory word differs we return it in oldv and signal a fail
2324     bind(nope);
2325     membar(AnyAny);
2326     mov(oldv, tmp);
2327   }
2328   if (fail)
2329     b(*fail);
2330 }
2331 
2332 // A generic CAS; success or failure is in the EQ flag.  A weak CAS
2333 // doesn't retry and may fail spuriously.  If the oldval is wanted,
2334 // Pass a register for the result, otherwise pass noreg.
2335 
2336 // Clobbers rscratch1
2337 void MacroAssembler::cmpxchg(Register addr, Register expected,
2338                              Register new_val,
2339                              enum operand_size size,
2340                              bool acquire, bool release,
2341                              bool weak,
2342                              Register result) {
2343   if (result == noreg)  result = rscratch1;
2344   if (UseLSE) {
2345     mov(result, expected);
2346     lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true);
2347     cmp(result, expected);
2348   } else {
2349     BLOCK_COMMENT("cmpxchg {");
2350     Label retry_load, done;
2351     if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2352       prfm(Address(addr), PSTL1STRM);
2353     bind(retry_load);
2354     load_exclusive(result, addr, size, acquire);
2355     if (size == xword)
2356       cmp(result, expected);
2357     else
2358       cmpw(result, expected);
2359     br(Assembler::NE, done);
2360     store_exclusive(rscratch1, new_val, addr, size, release);
2361     if (weak) {
2362       cmpw(rscratch1, 0u);  // If the store fails, return NE to our caller.
2363     } else {
2364       cbnzw(rscratch1, retry_load);
2365     }
2366     bind(done);
2367     BLOCK_COMMENT("} cmpxchg");
2368   }
2369 }
2370 
2371 static bool different(Register a, RegisterOrConstant b, Register c) {
2372   if (b.is_constant())
2373     return a != c;
2374   else
2375     return a != b.as_register() && a != c && b.as_register() != c;
2376 }
2377 
2378 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz)                   \
2379 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
2380   if (UseLSE) {                                                         \
2381     prev = prev->is_valid() ? prev : zr;                                \
2382     if (incr.is_register()) {                                           \
2383       AOP(sz, incr.as_register(), prev, addr);                          \
2384     } else {                                                            \
2385       mov(rscratch2, incr.as_constant());                               \
2386       AOP(sz, rscratch2, prev, addr);                                   \
2387     }                                                                   \
2388     return;                                                             \
2389   }                                                                     \
2390   Register result = rscratch2;                                          \
2391   if (prev->is_valid())                                                 \
2392     result = different(prev, incr, addr) ? prev : rscratch2;            \
2393                                                                         \
2394   Label retry_load;                                                     \
2395   if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))         \
2396     prfm(Address(addr), PSTL1STRM);                                     \
2397   bind(retry_load);                                                     \
2398   LDXR(result, addr);                                                   \
2399   OP(rscratch1, result, incr);                                          \
2400   STXR(rscratch2, rscratch1, addr);                                     \
2401   cbnzw(rscratch2, retry_load);                                         \
2402   if (prev->is_valid() && prev != result) {                             \
2403     IOP(prev, rscratch1, incr);                                         \
2404   }                                                                     \
2405 }
2406 
2407 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
2408 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
2409 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
2410 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
2411 
2412 #undef ATOMIC_OP
2413 
2414 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz)                            \
2415 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
2416   if (UseLSE) {                                                         \
2417     prev = prev->is_valid() ? prev : zr;                                \
2418     AOP(sz, newv, prev, addr);                                          \
2419     return;                                                             \
2420   }                                                                     \
2421   Register result = rscratch2;                                          \
2422   if (prev->is_valid())                                                 \
2423     result = different(prev, newv, addr) ? prev : rscratch2;            \
2424                                                                         \
2425   Label retry_load;                                                     \
2426   if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))         \
2427     prfm(Address(addr), PSTL1STRM);                                     \
2428   bind(retry_load);                                                     \
2429   LDXR(result, addr);                                                   \
2430   STXR(rscratch1, newv, addr);                                          \
2431   cbnzw(rscratch1, retry_load);                                         \
2432   if (prev->is_valid() && prev != result)                               \
2433     mov(prev, result);                                                  \
2434 }
2435 
2436 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
2437 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
2438 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
2439 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
2440 
2441 #undef ATOMIC_XCHG
2442 
2443 #ifndef PRODUCT
2444 extern "C" void findpc(intptr_t x);
2445 #endif
2446 
2447 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
2448 {
2449   // In order to get locks to work, we need to fake a in_VM state
2450   if (ShowMessageBoxOnError ) {
2451     JavaThread* thread = JavaThread::current();
2452     JavaThreadState saved_state = thread->thread_state();
2453     thread->set_thread_state(_thread_in_vm);
2454 #ifndef PRODUCT
2455     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2456       ttyLocker ttyl;
2457       BytecodeCounter::print();
2458     }
2459 #endif
2460     if (os::message_box(msg, "Execution stopped, print registers?")) {
2461       ttyLocker ttyl;
2462       tty->print_cr(" pc = 0x%016lx", pc);
2463 #ifndef PRODUCT
2464       tty->cr();
2465       findpc(pc);
2466       tty->cr();
2467 #endif
2468       tty->print_cr(" r0 = 0x%016lx", regs[0]);
2469       tty->print_cr(" r1 = 0x%016lx", regs[1]);
2470       tty->print_cr(" r2 = 0x%016lx", regs[2]);
2471       tty->print_cr(" r3 = 0x%016lx", regs[3]);
2472       tty->print_cr(" r4 = 0x%016lx", regs[4]);
2473       tty->print_cr(" r5 = 0x%016lx", regs[5]);
2474       tty->print_cr(" r6 = 0x%016lx", regs[6]);
2475       tty->print_cr(" r7 = 0x%016lx", regs[7]);
2476       tty->print_cr(" r8 = 0x%016lx", regs[8]);
2477       tty->print_cr(" r9 = 0x%016lx", regs[9]);
2478       tty->print_cr("r10 = 0x%016lx", regs[10]);
2479       tty->print_cr("r11 = 0x%016lx", regs[11]);
2480       tty->print_cr("r12 = 0x%016lx", regs[12]);
2481       tty->print_cr("r13 = 0x%016lx", regs[13]);
2482       tty->print_cr("r14 = 0x%016lx", regs[14]);
2483       tty->print_cr("r15 = 0x%016lx", regs[15]);
2484       tty->print_cr("r16 = 0x%016lx", regs[16]);
2485       tty->print_cr("r17 = 0x%016lx", regs[17]);
2486       tty->print_cr("r18 = 0x%016lx", regs[18]);
2487       tty->print_cr("r19 = 0x%016lx", regs[19]);
2488       tty->print_cr("r20 = 0x%016lx", regs[20]);
2489       tty->print_cr("r21 = 0x%016lx", regs[21]);
2490       tty->print_cr("r22 = 0x%016lx", regs[22]);
2491       tty->print_cr("r23 = 0x%016lx", regs[23]);
2492       tty->print_cr("r24 = 0x%016lx", regs[24]);
2493       tty->print_cr("r25 = 0x%016lx", regs[25]);
2494       tty->print_cr("r26 = 0x%016lx", regs[26]);
2495       tty->print_cr("r27 = 0x%016lx", regs[27]);
2496       tty->print_cr("r28 = 0x%016lx", regs[28]);
2497       tty->print_cr("r30 = 0x%016lx", regs[30]);
2498       tty->print_cr("r31 = 0x%016lx", regs[31]);
2499       BREAKPOINT;
2500     }
2501     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
2502   } else {
2503     ttyLocker ttyl;
2504     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
2505                     msg);
2506     assert(false, "DEBUG MESSAGE: %s", msg);
2507   }
2508 }
2509 
2510 #ifdef BUILTIN_SIM
2511 // routine to generate an x86 prolog for a stub function which
2512 // bootstraps into the generated ARM code which directly follows the
2513 // stub
2514 //
2515 // the argument encodes the number of general and fp registers
2516 // passed by the caller and the callng convention (currently just
2517 // the number of general registers and assumes C argument passing)
2518 
2519 extern "C" {
2520 int aarch64_stub_prolog_size();
2521 void aarch64_stub_prolog();
2522 void aarch64_prolog();
2523 }
2524 
2525 void MacroAssembler::c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type,
2526                                    address *prolog_ptr)
2527 {
2528   int calltype = (((ret_type & 0x3) << 8) |
2529                   ((fp_arg_count & 0xf) << 4) |
2530                   (gp_arg_count & 0xf));
2531 
2532   // the addresses for the x86 to ARM entry code we need to use
2533   address start = pc();
2534   // printf("start = %lx\n", start);
2535   int byteCount =  aarch64_stub_prolog_size();
2536   // printf("byteCount = %x\n", byteCount);
2537   int instructionCount = (byteCount + 3)/ 4;
2538   // printf("instructionCount = %x\n", instructionCount);
2539   for (int i = 0; i < instructionCount; i++) {
2540     nop();
2541   }
2542 
2543   memcpy(start, (void*)aarch64_stub_prolog, byteCount);
2544 
2545   // write the address of the setup routine and the call format at the
2546   // end of into the copied code
2547   u_int64_t *patch_end = (u_int64_t *)(start + byteCount);
2548   if (prolog_ptr)
2549     patch_end[-2] = (u_int64_t)prolog_ptr;
2550   patch_end[-1] = calltype;
2551 }
2552 #endif
2553 
2554 void MacroAssembler::push_call_clobbered_registers() {
2555   push(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2556 
2557   // Push v0-v7, v16-v31.
2558   for (int i = 30; i >= 0; i -= 2) {
2559     if (i <= v7->encoding() || i >= v16->encoding()) {
2560         stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2561              Address(pre(sp, -2 * wordSize)));
2562     }
2563   }
2564 }
2565 
2566 void MacroAssembler::pop_call_clobbered_registers() {
2567 
2568   for (int i = 0; i < 32; i += 2) {
2569     if (i <= v7->encoding() || i >= v16->encoding()) {
2570       ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2571            Address(post(sp, 2 * wordSize)));
2572     }
2573   }
2574 
2575   pop(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2576 }
2577 
2578 void MacroAssembler::push_CPU_state(bool save_vectors) {
2579   push(0x3fffffff, sp);         // integer registers except lr & sp
2580 
2581   if (!save_vectors) {
2582     for (int i = 30; i >= 0; i -= 2)
2583       stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2584            Address(pre(sp, -2 * wordSize)));
2585   } else {
2586     for (int i = 30; i >= 0; i -= 2)
2587       stpq(as_FloatRegister(i), as_FloatRegister(i+1),
2588            Address(pre(sp, -4 * wordSize)));
2589   }
2590 }
2591 
2592 void MacroAssembler::pop_CPU_state(bool restore_vectors) {
2593   if (!restore_vectors) {
2594     for (int i = 0; i < 32; i += 2)
2595       ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2596            Address(post(sp, 2 * wordSize)));
2597   } else {
2598     for (int i = 0; i < 32; i += 2)
2599       ldpq(as_FloatRegister(i), as_FloatRegister(i+1),
2600            Address(post(sp, 4 * wordSize)));
2601   }
2602 
2603   pop(0x3fffffff, sp);         // integer registers except lr & sp
2604 }
2605 
2606 /**
2607  * Helpers for multiply_to_len().
2608  */
2609 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
2610                                      Register src1, Register src2) {
2611   adds(dest_lo, dest_lo, src1);
2612   adc(dest_hi, dest_hi, zr);
2613   adds(dest_lo, dest_lo, src2);
2614   adc(final_dest_hi, dest_hi, zr);
2615 }
2616 
2617 // Generate an address from (r + r1 extend offset).  "size" is the
2618 // size of the operand.  The result may be in rscratch2.
2619 Address MacroAssembler::offsetted_address(Register r, Register r1,
2620                                           Address::extend ext, int offset, int size) {
2621   if (offset || (ext.shift() % size != 0)) {
2622     lea(rscratch2, Address(r, r1, ext));
2623     return Address(rscratch2, offset);
2624   } else {
2625     return Address(r, r1, ext);
2626   }
2627 }
2628 
2629 Address MacroAssembler::spill_address(int size, int offset, Register tmp)
2630 {
2631   assert(offset >= 0, "spill to negative address?");
2632   // Offset reachable ?
2633   //   Not aligned - 9 bits signed offset
2634   //   Aligned - 12 bits unsigned offset shifted
2635   Register base = sp;
2636   if ((offset & (size-1)) && offset >= (1<<8)) {
2637     add(tmp, base, offset & ((1<<12)-1));
2638     base = tmp;
2639     offset &= -1<<12;
2640   }
2641 
2642   if (offset >= (1<<12) * size) {
2643     add(tmp, base, offset & (((1<<12)-1)<<12));
2644     base = tmp;
2645     offset &= ~(((1<<12)-1)<<12);
2646   }
2647 
2648   return Address(base, offset);
2649 }
2650 
2651 // Checks whether offset is aligned.
2652 // Returns true if it is, else false.
2653 bool MacroAssembler::merge_alignment_check(Register base,
2654                                            size_t size,
2655                                            long cur_offset,
2656                                            long prev_offset) const {
2657   if (AvoidUnalignedAccesses) {
2658     if (base == sp) {
2659       // Checks whether low offset if aligned to pair of registers.
2660       long pair_mask = size * 2 - 1;
2661       long offset = prev_offset > cur_offset ? cur_offset : prev_offset;
2662       return (offset & pair_mask) == 0;
2663     } else { // If base is not sp, we can't guarantee the access is aligned.
2664       return false;
2665     }
2666   } else {
2667     long mask = size - 1;
2668     // Load/store pair instruction only supports element size aligned offset.
2669     return (cur_offset & mask) == 0 && (prev_offset & mask) == 0;
2670   }
2671 }
2672 
2673 // Checks whether current and previous loads/stores can be merged.
2674 // Returns true if it can be merged, else false.
2675 bool MacroAssembler::ldst_can_merge(Register rt,
2676                                     const Address &adr,
2677                                     size_t cur_size_in_bytes,
2678                                     bool is_store) const {
2679   address prev = pc() - NativeInstruction::instruction_size;
2680   address last = code()->last_insn();
2681 
2682   if (last == NULL || !nativeInstruction_at(last)->is_Imm_LdSt()) {
2683     return false;
2684   }
2685 
2686   if (adr.getMode() != Address::base_plus_offset || prev != last) {
2687     return false;
2688   }
2689 
2690   NativeLdSt* prev_ldst = NativeLdSt_at(prev);
2691   size_t prev_size_in_bytes = prev_ldst->size_in_bytes();
2692 
2693   assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging.");
2694   assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging.");
2695 
2696   if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) {
2697     return false;
2698   }
2699 
2700   long max_offset = 63 * prev_size_in_bytes;
2701   long min_offset = -64 * prev_size_in_bytes;
2702 
2703   assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged.");
2704 
2705   // Only same base can be merged.
2706   if (adr.base() != prev_ldst->base()) {
2707     return false;
2708   }
2709 
2710   long cur_offset = adr.offset();
2711   long prev_offset = prev_ldst->offset();
2712   size_t diff = abs(cur_offset - prev_offset);
2713   if (diff != prev_size_in_bytes) {
2714     return false;
2715   }
2716 
2717   // Following cases can not be merged:
2718   // ldr x2, [x2, #8]
2719   // ldr x3, [x2, #16]
2720   // or:
2721   // ldr x2, [x3, #8]
2722   // ldr x2, [x3, #16]
2723   // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL.
2724   if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) {
2725     return false;
2726   }
2727 
2728   long low_offset = prev_offset > cur_offset ? cur_offset : prev_offset;
2729   // Offset range must be in ldp/stp instruction's range.
2730   if (low_offset > max_offset || low_offset < min_offset) {
2731     return false;
2732   }
2733 
2734   if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) {
2735     return true;
2736   }
2737 
2738   return false;
2739 }
2740 
2741 // Merge current load/store with previous load/store into ldp/stp.
2742 void MacroAssembler::merge_ldst(Register rt,
2743                                 const Address &adr,
2744                                 size_t cur_size_in_bytes,
2745                                 bool is_store) {
2746 
2747   assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged.");
2748 
2749   Register rt_low, rt_high;
2750   address prev = pc() - NativeInstruction::instruction_size;
2751   NativeLdSt* prev_ldst = NativeLdSt_at(prev);
2752 
2753   long offset;
2754 
2755   if (adr.offset() < prev_ldst->offset()) {
2756     offset = adr.offset();
2757     rt_low = rt;
2758     rt_high = prev_ldst->target();
2759   } else {
2760     offset = prev_ldst->offset();
2761     rt_low = prev_ldst->target();
2762     rt_high = rt;
2763   }
2764 
2765   Address adr_p = Address(prev_ldst->base(), offset);
2766   // Overwrite previous generated binary.
2767   code_section()->set_end(prev);
2768 
2769   const int sz = prev_ldst->size_in_bytes();
2770   assert(sz == 8 || sz == 4, "only supports 64/32bit merging.");
2771   if (!is_store) {
2772     BLOCK_COMMENT("merged ldr pair");
2773     if (sz == 8) {
2774       ldp(rt_low, rt_high, adr_p);
2775     } else {
2776       ldpw(rt_low, rt_high, adr_p);
2777     }
2778   } else {
2779     BLOCK_COMMENT("merged str pair");
2780     if (sz == 8) {
2781       stp(rt_low, rt_high, adr_p);
2782     } else {
2783       stpw(rt_low, rt_high, adr_p);
2784     }
2785   }
2786 }
2787 
2788 /**
2789  * Multiply 64 bit by 64 bit first loop.
2790  */
2791 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2792                                            Register y, Register y_idx, Register z,
2793                                            Register carry, Register product,
2794                                            Register idx, Register kdx) {
2795   //
2796   //  jlong carry, x[], y[], z[];
2797   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2798   //    huge_128 product = y[idx] * x[xstart] + carry;
2799   //    z[kdx] = (jlong)product;
2800   //    carry  = (jlong)(product >>> 64);
2801   //  }
2802   //  z[xstart] = carry;
2803   //
2804 
2805   Label L_first_loop, L_first_loop_exit;
2806   Label L_one_x, L_one_y, L_multiply;
2807 
2808   subsw(xstart, xstart, 1);
2809   br(Assembler::MI, L_one_x);
2810 
2811   lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
2812   ldr(x_xstart, Address(rscratch1));
2813   ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
2814 
2815   bind(L_first_loop);
2816   subsw(idx, idx, 1);
2817   br(Assembler::MI, L_first_loop_exit);
2818   subsw(idx, idx, 1);
2819   br(Assembler::MI, L_one_y);
2820   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2821   ldr(y_idx, Address(rscratch1));
2822   ror(y_idx, y_idx, 32); // convert big-endian to little-endian
2823   bind(L_multiply);
2824 
2825   // AArch64 has a multiply-accumulate instruction that we can't use
2826   // here because it has no way to process carries, so we have to use
2827   // separate add and adc instructions.  Bah.
2828   umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
2829   mul(product, x_xstart, y_idx);
2830   adds(product, product, carry);
2831   adc(carry, rscratch1, zr);   // x_xstart * y_idx + carry -> carry:product
2832 
2833   subw(kdx, kdx, 2);
2834   ror(product, product, 32); // back to big-endian
2835   str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
2836 
2837   b(L_first_loop);
2838 
2839   bind(L_one_y);
2840   ldrw(y_idx, Address(y,  0));
2841   b(L_multiply);
2842 
2843   bind(L_one_x);
2844   ldrw(x_xstart, Address(x,  0));
2845   b(L_first_loop);
2846 
2847   bind(L_first_loop_exit);
2848 }
2849 
2850 /**
2851  * Multiply 128 bit by 128. Unrolled inner loop.
2852  *
2853  */
2854 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
2855                                              Register carry, Register carry2,
2856                                              Register idx, Register jdx,
2857                                              Register yz_idx1, Register yz_idx2,
2858                                              Register tmp, Register tmp3, Register tmp4,
2859                                              Register tmp6, Register product_hi) {
2860 
2861   //   jlong carry, x[], y[], z[];
2862   //   int kdx = ystart+1;
2863   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
2864   //     huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
2865   //     jlong carry2  = (jlong)(tmp3 >>> 64);
2866   //     huge_128 tmp4 = (y[idx]   * product_hi) + z[kdx+idx] + carry2;
2867   //     carry  = (jlong)(tmp4 >>> 64);
2868   //     z[kdx+idx+1] = (jlong)tmp3;
2869   //     z[kdx+idx] = (jlong)tmp4;
2870   //   }
2871   //   idx += 2;
2872   //   if (idx > 0) {
2873   //     yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
2874   //     z[kdx+idx] = (jlong)yz_idx1;
2875   //     carry  = (jlong)(yz_idx1 >>> 64);
2876   //   }
2877   //
2878 
2879   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
2880 
2881   lsrw(jdx, idx, 2);
2882 
2883   bind(L_third_loop);
2884 
2885   subsw(jdx, jdx, 1);
2886   br(Assembler::MI, L_third_loop_exit);
2887   subw(idx, idx, 4);
2888 
2889   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2890 
2891   ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
2892 
2893   lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2894 
2895   ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
2896   ror(yz_idx2, yz_idx2, 32);
2897 
2898   ldp(rscratch2, rscratch1, Address(tmp6, 0));
2899 
2900   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2901   umulh(tmp4, product_hi, yz_idx1);
2902 
2903   ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
2904   ror(rscratch2, rscratch2, 32);
2905 
2906   mul(tmp, product_hi, yz_idx2);   //  yz_idx2 * product_hi -> carry2:tmp
2907   umulh(carry2, product_hi, yz_idx2);
2908 
2909   // propagate sum of both multiplications into carry:tmp4:tmp3
2910   adds(tmp3, tmp3, carry);
2911   adc(tmp4, tmp4, zr);
2912   adds(tmp3, tmp3, rscratch1);
2913   adcs(tmp4, tmp4, tmp);
2914   adc(carry, carry2, zr);
2915   adds(tmp4, tmp4, rscratch2);
2916   adc(carry, carry, zr);
2917 
2918   ror(tmp3, tmp3, 32); // convert little-endian to big-endian
2919   ror(tmp4, tmp4, 32);
2920   stp(tmp4, tmp3, Address(tmp6, 0));
2921 
2922   b(L_third_loop);
2923   bind (L_third_loop_exit);
2924 
2925   andw (idx, idx, 0x3);
2926   cbz(idx, L_post_third_loop_done);
2927 
2928   Label L_check_1;
2929   subsw(idx, idx, 2);
2930   br(Assembler::MI, L_check_1);
2931 
2932   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2933   ldr(yz_idx1, Address(rscratch1, 0));
2934   ror(yz_idx1, yz_idx1, 32);
2935   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2936   umulh(tmp4, product_hi, yz_idx1);
2937   lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2938   ldr(yz_idx2, Address(rscratch1, 0));
2939   ror(yz_idx2, yz_idx2, 32);
2940 
2941   add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
2942 
2943   ror(tmp3, tmp3, 32);
2944   str(tmp3, Address(rscratch1, 0));
2945 
2946   bind (L_check_1);
2947 
2948   andw (idx, idx, 0x1);
2949   subsw(idx, idx, 1);
2950   br(Assembler::MI, L_post_third_loop_done);
2951   ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2952   mul(tmp3, tmp4, product_hi);  //  tmp4 * product_hi -> carry2:tmp3
2953   umulh(carry2, tmp4, product_hi);
2954   ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2955 
2956   add2_with_carry(carry2, tmp3, tmp4, carry);
2957 
2958   strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2959   extr(carry, carry2, tmp3, 32);
2960 
2961   bind(L_post_third_loop_done);
2962 }
2963 
2964 /**
2965  * Code for BigInteger::multiplyToLen() instrinsic.
2966  *
2967  * r0: x
2968  * r1: xlen
2969  * r2: y
2970  * r3: ylen
2971  * r4:  z
2972  * r5: zlen
2973  * r10: tmp1
2974  * r11: tmp2
2975  * r12: tmp3
2976  * r13: tmp4
2977  * r14: tmp5
2978  * r15: tmp6
2979  * r16: tmp7
2980  *
2981  */
2982 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
2983                                      Register z, Register zlen,
2984                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4,
2985                                      Register tmp5, Register tmp6, Register product_hi) {
2986 
2987   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
2988 
2989   const Register idx = tmp1;
2990   const Register kdx = tmp2;
2991   const Register xstart = tmp3;
2992 
2993   const Register y_idx = tmp4;
2994   const Register carry = tmp5;
2995   const Register product  = xlen;
2996   const Register x_xstart = zlen;  // reuse register
2997 
2998   // First Loop.
2999   //
3000   //  final static long LONG_MASK = 0xffffffffL;
3001   //  int xstart = xlen - 1;
3002   //  int ystart = ylen - 1;
3003   //  long carry = 0;
3004   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
3005   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
3006   //    z[kdx] = (int)product;
3007   //    carry = product >>> 32;
3008   //  }
3009   //  z[xstart] = (int)carry;
3010   //
3011 
3012   movw(idx, ylen);      // idx = ylen;
3013   movw(kdx, zlen);      // kdx = xlen+ylen;
3014   mov(carry, zr);       // carry = 0;
3015 
3016   Label L_done;
3017 
3018   movw(xstart, xlen);
3019   subsw(xstart, xstart, 1);
3020   br(Assembler::MI, L_done);
3021 
3022   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
3023 
3024   Label L_second_loop;
3025   cbzw(kdx, L_second_loop);
3026 
3027   Label L_carry;
3028   subw(kdx, kdx, 1);
3029   cbzw(kdx, L_carry);
3030 
3031   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3032   lsr(carry, carry, 32);
3033   subw(kdx, kdx, 1);
3034 
3035   bind(L_carry);
3036   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3037 
3038   // Second and third (nested) loops.
3039   //
3040   // for (int i = xstart-1; i >= 0; i--) { // Second loop
3041   //   carry = 0;
3042   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
3043   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
3044   //                    (z[k] & LONG_MASK) + carry;
3045   //     z[k] = (int)product;
3046   //     carry = product >>> 32;
3047   //   }
3048   //   z[i] = (int)carry;
3049   // }
3050   //
3051   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
3052 
3053   const Register jdx = tmp1;
3054 
3055   bind(L_second_loop);
3056   mov(carry, zr);                // carry = 0;
3057   movw(jdx, ylen);               // j = ystart+1
3058 
3059   subsw(xstart, xstart, 1);      // i = xstart-1;
3060   br(Assembler::MI, L_done);
3061 
3062   str(z, Address(pre(sp, -4 * wordSize)));
3063 
3064   Label L_last_x;
3065   lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
3066   subsw(xstart, xstart, 1);       // i = xstart-1;
3067   br(Assembler::MI, L_last_x);
3068 
3069   lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
3070   ldr(product_hi, Address(rscratch1));
3071   ror(product_hi, product_hi, 32);  // convert big-endian to little-endian
3072 
3073   Label L_third_loop_prologue;
3074   bind(L_third_loop_prologue);
3075 
3076   str(ylen, Address(sp, wordSize));
3077   stp(x, xstart, Address(sp, 2 * wordSize));
3078   multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
3079                           tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
3080   ldp(z, ylen, Address(post(sp, 2 * wordSize)));
3081   ldp(x, xlen, Address(post(sp, 2 * wordSize)));   // copy old xstart -> xlen
3082 
3083   addw(tmp3, xlen, 1);
3084   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
3085   subsw(tmp3, tmp3, 1);
3086   br(Assembler::MI, L_done);
3087 
3088   lsr(carry, carry, 32);
3089   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
3090   b(L_second_loop);
3091 
3092   // Next infrequent code is moved outside loops.
3093   bind(L_last_x);
3094   ldrw(product_hi, Address(x,  0));
3095   b(L_third_loop_prologue);
3096 
3097   bind(L_done);
3098 }
3099 
3100 // Code for BigInteger::mulAdd instrinsic
3101 // out     = r0
3102 // in      = r1
3103 // offset  = r2  (already out.length-offset)
3104 // len     = r3
3105 // k       = r4
3106 //
3107 // pseudo code from java implementation:
3108 // carry = 0;
3109 // offset = out.length-offset - 1;
3110 // for (int j=len-1; j >= 0; j--) {
3111 //     product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry;
3112 //     out[offset--] = (int)product;
3113 //     carry = product >>> 32;
3114 // }
3115 // return (int)carry;
3116 void MacroAssembler::mul_add(Register out, Register in, Register offset,
3117       Register len, Register k) {
3118     Label LOOP, END;
3119     // pre-loop
3120     cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches
3121     csel(out, zr, out, Assembler::EQ);
3122     br(Assembler::EQ, END);
3123     add(in, in, len, LSL, 2); // in[j+1] address
3124     add(offset, out, offset, LSL, 2); // out[offset + 1] address
3125     mov(out, zr); // used to keep carry now
3126     BIND(LOOP);
3127     ldrw(rscratch1, Address(pre(in, -4)));
3128     madd(rscratch1, rscratch1, k, out);
3129     ldrw(rscratch2, Address(pre(offset, -4)));
3130     add(rscratch1, rscratch1, rscratch2);
3131     strw(rscratch1, Address(offset));
3132     lsr(out, rscratch1, 32);
3133     subs(len, len, 1);
3134     br(Assembler::NE, LOOP);
3135     BIND(END);
3136 }
3137 
3138 /**
3139  * Emits code to update CRC-32 with a byte value according to constants in table
3140  *
3141  * @param [in,out]crc   Register containing the crc.
3142  * @param [in]val       Register containing the byte to fold into the CRC.
3143  * @param [in]table     Register containing the table of crc constants.
3144  *
3145  * uint32_t crc;
3146  * val = crc_table[(val ^ crc) & 0xFF];
3147  * crc = val ^ (crc >> 8);
3148  *
3149  */
3150 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
3151   eor(val, val, crc);
3152   andr(val, val, 0xff);
3153   ldrw(val, Address(table, val, Address::lsl(2)));
3154   eor(crc, val, crc, Assembler::LSR, 8);
3155 }
3156 
3157 /**
3158  * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
3159  *
3160  * @param [in,out]crc   Register containing the crc.
3161  * @param [in]v         Register containing the 32-bit to fold into the CRC.
3162  * @param [in]table0    Register containing table 0 of crc constants.
3163  * @param [in]table1    Register containing table 1 of crc constants.
3164  * @param [in]table2    Register containing table 2 of crc constants.
3165  * @param [in]table3    Register containing table 3 of crc constants.
3166  *
3167  * uint32_t crc;
3168  *   v = crc ^ v
3169  *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
3170  *
3171  */
3172 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
3173         Register table0, Register table1, Register table2, Register table3,
3174         bool upper) {
3175   eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
3176   uxtb(tmp, v);
3177   ldrw(crc, Address(table3, tmp, Address::lsl(2)));
3178   ubfx(tmp, v, 8, 8);
3179   ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
3180   eor(crc, crc, tmp);
3181   ubfx(tmp, v, 16, 8);
3182   ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
3183   eor(crc, crc, tmp);
3184   ubfx(tmp, v, 24, 8);
3185   ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
3186   eor(crc, crc, tmp);
3187 }
3188 
3189 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf,
3190         Register len, Register tmp0, Register tmp1, Register tmp2,
3191         Register tmp3) {
3192     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
3193     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
3194 
3195     mvnw(crc, crc);
3196 
3197     subs(len, len, 128);
3198     br(Assembler::GE, CRC_by64_pre);
3199   BIND(CRC_less64);
3200     adds(len, len, 128-32);
3201     br(Assembler::GE, CRC_by32_loop);
3202   BIND(CRC_less32);
3203     adds(len, len, 32-4);
3204     br(Assembler::GE, CRC_by4_loop);
3205     adds(len, len, 4);
3206     br(Assembler::GT, CRC_by1_loop);
3207     b(L_exit);
3208 
3209   BIND(CRC_by32_loop);
3210     ldp(tmp0, tmp1, Address(post(buf, 16)));
3211     subs(len, len, 32);
3212     crc32x(crc, crc, tmp0);
3213     ldr(tmp2, Address(post(buf, 8)));
3214     crc32x(crc, crc, tmp1);
3215     ldr(tmp3, Address(post(buf, 8)));
3216     crc32x(crc, crc, tmp2);
3217     crc32x(crc, crc, tmp3);
3218     br(Assembler::GE, CRC_by32_loop);
3219     cmn(len, 32);
3220     br(Assembler::NE, CRC_less32);
3221     b(L_exit);
3222 
3223   BIND(CRC_by4_loop);
3224     ldrw(tmp0, Address(post(buf, 4)));
3225     subs(len, len, 4);
3226     crc32w(crc, crc, tmp0);
3227     br(Assembler::GE, CRC_by4_loop);
3228     adds(len, len, 4);
3229     br(Assembler::LE, L_exit);
3230   BIND(CRC_by1_loop);
3231     ldrb(tmp0, Address(post(buf, 1)));
3232     subs(len, len, 1);
3233     crc32b(crc, crc, tmp0);
3234     br(Assembler::GT, CRC_by1_loop);
3235     b(L_exit);
3236 
3237   BIND(CRC_by64_pre);
3238     sub(buf, buf, 8);
3239     ldp(tmp0, tmp1, Address(buf, 8));
3240     crc32x(crc, crc, tmp0);
3241     ldr(tmp2, Address(buf, 24));
3242     crc32x(crc, crc, tmp1);
3243     ldr(tmp3, Address(buf, 32));
3244     crc32x(crc, crc, tmp2);
3245     ldr(tmp0, Address(buf, 40));
3246     crc32x(crc, crc, tmp3);
3247     ldr(tmp1, Address(buf, 48));
3248     crc32x(crc, crc, tmp0);
3249     ldr(tmp2, Address(buf, 56));
3250     crc32x(crc, crc, tmp1);
3251     ldr(tmp3, Address(pre(buf, 64)));
3252 
3253     b(CRC_by64_loop);
3254 
3255     align(CodeEntryAlignment);
3256   BIND(CRC_by64_loop);
3257     subs(len, len, 64);
3258     crc32x(crc, crc, tmp2);
3259     ldr(tmp0, Address(buf, 8));
3260     crc32x(crc, crc, tmp3);
3261     ldr(tmp1, Address(buf, 16));
3262     crc32x(crc, crc, tmp0);
3263     ldr(tmp2, Address(buf, 24));
3264     crc32x(crc, crc, tmp1);
3265     ldr(tmp3, Address(buf, 32));
3266     crc32x(crc, crc, tmp2);
3267     ldr(tmp0, Address(buf, 40));
3268     crc32x(crc, crc, tmp3);
3269     ldr(tmp1, Address(buf, 48));
3270     crc32x(crc, crc, tmp0);
3271     ldr(tmp2, Address(buf, 56));
3272     crc32x(crc, crc, tmp1);
3273     ldr(tmp3, Address(pre(buf, 64)));
3274     br(Assembler::GE, CRC_by64_loop);
3275 
3276     // post-loop
3277     crc32x(crc, crc, tmp2);
3278     crc32x(crc, crc, tmp3);
3279 
3280     sub(len, len, 64);
3281     add(buf, buf, 8);
3282     cmn(len, 128);
3283     br(Assembler::NE, CRC_less64);
3284   BIND(L_exit);
3285     mvnw(crc, crc);
3286 }
3287 
3288 /**
3289  * @param crc   register containing existing CRC (32-bit)
3290  * @param buf   register pointing to input byte buffer (byte*)
3291  * @param len   register containing number of bytes
3292  * @param table register that will contain address of CRC table
3293  * @param tmp   scratch register
3294  */
3295 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
3296         Register table0, Register table1, Register table2, Register table3,
3297         Register tmp, Register tmp2, Register tmp3) {
3298   Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
3299   unsigned long offset;
3300 
3301   if (UseCRC32) {
3302       kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3);
3303       return;
3304   }
3305 
3306     mvnw(crc, crc);
3307 
3308     adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
3309     if (offset) add(table0, table0, offset);
3310     add(table1, table0, 1*256*sizeof(juint));
3311     add(table2, table0, 2*256*sizeof(juint));
3312     add(table3, table0, 3*256*sizeof(juint));
3313 
3314   if (UseNeon) {
3315       cmp(len, 64);
3316       br(Assembler::LT, L_by16);
3317       eor(v16, T16B, v16, v16);
3318 
3319     Label L_fold;
3320 
3321       add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
3322 
3323       ld1(v0, v1, T2D, post(buf, 32));
3324       ld1r(v4, T2D, post(tmp, 8));
3325       ld1r(v5, T2D, post(tmp, 8));
3326       ld1r(v6, T2D, post(tmp, 8));
3327       ld1r(v7, T2D, post(tmp, 8));
3328       mov(v16, T4S, 0, crc);
3329 
3330       eor(v0, T16B, v0, v16);
3331       sub(len, len, 64);
3332 
3333     BIND(L_fold);
3334       pmull(v22, T8H, v0, v5, T8B);
3335       pmull(v20, T8H, v0, v7, T8B);
3336       pmull(v23, T8H, v0, v4, T8B);
3337       pmull(v21, T8H, v0, v6, T8B);
3338 
3339       pmull2(v18, T8H, v0, v5, T16B);
3340       pmull2(v16, T8H, v0, v7, T16B);
3341       pmull2(v19, T8H, v0, v4, T16B);
3342       pmull2(v17, T8H, v0, v6, T16B);
3343 
3344       uzp1(v24, v20, v22, T8H);
3345       uzp2(v25, v20, v22, T8H);
3346       eor(v20, T16B, v24, v25);
3347 
3348       uzp1(v26, v16, v18, T8H);
3349       uzp2(v27, v16, v18, T8H);
3350       eor(v16, T16B, v26, v27);
3351 
3352       ushll2(v22, T4S, v20, T8H, 8);
3353       ushll(v20, T4S, v20, T4H, 8);
3354 
3355       ushll2(v18, T4S, v16, T8H, 8);
3356       ushll(v16, T4S, v16, T4H, 8);
3357 
3358       eor(v22, T16B, v23, v22);
3359       eor(v18, T16B, v19, v18);
3360       eor(v20, T16B, v21, v20);
3361       eor(v16, T16B, v17, v16);
3362 
3363       uzp1(v17, v16, v20, T2D);
3364       uzp2(v21, v16, v20, T2D);
3365       eor(v17, T16B, v17, v21);
3366 
3367       ushll2(v20, T2D, v17, T4S, 16);
3368       ushll(v16, T2D, v17, T2S, 16);
3369 
3370       eor(v20, T16B, v20, v22);
3371       eor(v16, T16B, v16, v18);
3372 
3373       uzp1(v17, v20, v16, T2D);
3374       uzp2(v21, v20, v16, T2D);
3375       eor(v28, T16B, v17, v21);
3376 
3377       pmull(v22, T8H, v1, v5, T8B);
3378       pmull(v20, T8H, v1, v7, T8B);
3379       pmull(v23, T8H, v1, v4, T8B);
3380       pmull(v21, T8H, v1, v6, T8B);
3381 
3382       pmull2(v18, T8H, v1, v5, T16B);
3383       pmull2(v16, T8H, v1, v7, T16B);
3384       pmull2(v19, T8H, v1, v4, T16B);
3385       pmull2(v17, T8H, v1, v6, T16B);
3386 
3387       ld1(v0, v1, T2D, post(buf, 32));
3388 
3389       uzp1(v24, v20, v22, T8H);
3390       uzp2(v25, v20, v22, T8H);
3391       eor(v20, T16B, v24, v25);
3392 
3393       uzp1(v26, v16, v18, T8H);
3394       uzp2(v27, v16, v18, T8H);
3395       eor(v16, T16B, v26, v27);
3396 
3397       ushll2(v22, T4S, v20, T8H, 8);
3398       ushll(v20, T4S, v20, T4H, 8);
3399 
3400       ushll2(v18, T4S, v16, T8H, 8);
3401       ushll(v16, T4S, v16, T4H, 8);
3402 
3403       eor(v22, T16B, v23, v22);
3404       eor(v18, T16B, v19, v18);
3405       eor(v20, T16B, v21, v20);
3406       eor(v16, T16B, v17, v16);
3407 
3408       uzp1(v17, v16, v20, T2D);
3409       uzp2(v21, v16, v20, T2D);
3410       eor(v16, T16B, v17, v21);
3411 
3412       ushll2(v20, T2D, v16, T4S, 16);
3413       ushll(v16, T2D, v16, T2S, 16);
3414 
3415       eor(v20, T16B, v22, v20);
3416       eor(v16, T16B, v16, v18);
3417 
3418       uzp1(v17, v20, v16, T2D);
3419       uzp2(v21, v20, v16, T2D);
3420       eor(v20, T16B, v17, v21);
3421 
3422       shl(v16, T2D, v28, 1);
3423       shl(v17, T2D, v20, 1);
3424 
3425       eor(v0, T16B, v0, v16);
3426       eor(v1, T16B, v1, v17);
3427 
3428       subs(len, len, 32);
3429       br(Assembler::GE, L_fold);
3430 
3431       mov(crc, 0);
3432       mov(tmp, v0, T1D, 0);
3433       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3434       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3435       mov(tmp, v0, T1D, 1);
3436       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3437       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3438       mov(tmp, v1, T1D, 0);
3439       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3440       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3441       mov(tmp, v1, T1D, 1);
3442       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3443       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3444 
3445       add(len, len, 32);
3446   }
3447 
3448   BIND(L_by16);
3449     subs(len, len, 16);
3450     br(Assembler::GE, L_by16_loop);
3451     adds(len, len, 16-4);
3452     br(Assembler::GE, L_by4_loop);
3453     adds(len, len, 4);
3454     br(Assembler::GT, L_by1_loop);
3455     b(L_exit);
3456 
3457   BIND(L_by4_loop);
3458     ldrw(tmp, Address(post(buf, 4)));
3459     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
3460     subs(len, len, 4);
3461     br(Assembler::GE, L_by4_loop);
3462     adds(len, len, 4);
3463     br(Assembler::LE, L_exit);
3464   BIND(L_by1_loop);
3465     subs(len, len, 1);
3466     ldrb(tmp, Address(post(buf, 1)));
3467     update_byte_crc32(crc, tmp, table0);
3468     br(Assembler::GT, L_by1_loop);
3469     b(L_exit);
3470 
3471     align(CodeEntryAlignment);
3472   BIND(L_by16_loop);
3473     subs(len, len, 16);
3474     ldp(tmp, tmp3, Address(post(buf, 16)));
3475     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3476     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3477     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
3478     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
3479     br(Assembler::GE, L_by16_loop);
3480     adds(len, len, 16-4);
3481     br(Assembler::GE, L_by4_loop);
3482     adds(len, len, 4);
3483     br(Assembler::GT, L_by1_loop);
3484   BIND(L_exit);
3485     mvnw(crc, crc);
3486 }
3487 
3488 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf,
3489         Register len, Register tmp0, Register tmp1, Register tmp2,
3490         Register tmp3) {
3491     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
3492     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
3493 
3494     subs(len, len, 128);
3495     br(Assembler::GE, CRC_by64_pre);
3496   BIND(CRC_less64);
3497     adds(len, len, 128-32);
3498     br(Assembler::GE, CRC_by32_loop);
3499   BIND(CRC_less32);
3500     adds(len, len, 32-4);
3501     br(Assembler::GE, CRC_by4_loop);
3502     adds(len, len, 4);
3503     br(Assembler::GT, CRC_by1_loop);
3504     b(L_exit);
3505 
3506   BIND(CRC_by32_loop);
3507     ldp(tmp0, tmp1, Address(post(buf, 16)));
3508     subs(len, len, 32);
3509     crc32cx(crc, crc, tmp0);
3510     ldr(tmp2, Address(post(buf, 8)));
3511     crc32cx(crc, crc, tmp1);
3512     ldr(tmp3, Address(post(buf, 8)));
3513     crc32cx(crc, crc, tmp2);
3514     crc32cx(crc, crc, tmp3);
3515     br(Assembler::GE, CRC_by32_loop);
3516     cmn(len, 32);
3517     br(Assembler::NE, CRC_less32);
3518     b(L_exit);
3519 
3520   BIND(CRC_by4_loop);
3521     ldrw(tmp0, Address(post(buf, 4)));
3522     subs(len, len, 4);
3523     crc32cw(crc, crc, tmp0);
3524     br(Assembler::GE, CRC_by4_loop);
3525     adds(len, len, 4);
3526     br(Assembler::LE, L_exit);
3527   BIND(CRC_by1_loop);
3528     ldrb(tmp0, Address(post(buf, 1)));
3529     subs(len, len, 1);
3530     crc32cb(crc, crc, tmp0);
3531     br(Assembler::GT, CRC_by1_loop);
3532     b(L_exit);
3533 
3534   BIND(CRC_by64_pre);
3535     sub(buf, buf, 8);
3536     ldp(tmp0, tmp1, Address(buf, 8));
3537     crc32cx(crc, crc, tmp0);
3538     ldr(tmp2, Address(buf, 24));
3539     crc32cx(crc, crc, tmp1);
3540     ldr(tmp3, Address(buf, 32));
3541     crc32cx(crc, crc, tmp2);
3542     ldr(tmp0, Address(buf, 40));
3543     crc32cx(crc, crc, tmp3);
3544     ldr(tmp1, Address(buf, 48));
3545     crc32cx(crc, crc, tmp0);
3546     ldr(tmp2, Address(buf, 56));
3547     crc32cx(crc, crc, tmp1);
3548     ldr(tmp3, Address(pre(buf, 64)));
3549 
3550     b(CRC_by64_loop);
3551 
3552     align(CodeEntryAlignment);
3553   BIND(CRC_by64_loop);
3554     subs(len, len, 64);
3555     crc32cx(crc, crc, tmp2);
3556     ldr(tmp0, Address(buf, 8));
3557     crc32cx(crc, crc, tmp3);
3558     ldr(tmp1, Address(buf, 16));
3559     crc32cx(crc, crc, tmp0);
3560     ldr(tmp2, Address(buf, 24));
3561     crc32cx(crc, crc, tmp1);
3562     ldr(tmp3, Address(buf, 32));
3563     crc32cx(crc, crc, tmp2);
3564     ldr(tmp0, Address(buf, 40));
3565     crc32cx(crc, crc, tmp3);
3566     ldr(tmp1, Address(buf, 48));
3567     crc32cx(crc, crc, tmp0);
3568     ldr(tmp2, Address(buf, 56));
3569     crc32cx(crc, crc, tmp1);
3570     ldr(tmp3, Address(pre(buf, 64)));
3571     br(Assembler::GE, CRC_by64_loop);
3572 
3573     // post-loop
3574     crc32cx(crc, crc, tmp2);
3575     crc32cx(crc, crc, tmp3);
3576 
3577     sub(len, len, 64);
3578     add(buf, buf, 8);
3579     cmn(len, 128);
3580     br(Assembler::NE, CRC_less64);
3581   BIND(L_exit);
3582 }
3583 
3584 /**
3585  * @param crc   register containing existing CRC (32-bit)
3586  * @param buf   register pointing to input byte buffer (byte*)
3587  * @param len   register containing number of bytes
3588  * @param table register that will contain address of CRC table
3589  * @param tmp   scratch register
3590  */
3591 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
3592         Register table0, Register table1, Register table2, Register table3,
3593         Register tmp, Register tmp2, Register tmp3) {
3594   kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3);
3595 }
3596 
3597 
3598 SkipIfEqual::SkipIfEqual(
3599     MacroAssembler* masm, const bool* flag_addr, bool value) {
3600   _masm = masm;
3601   unsigned long offset;
3602   _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
3603   _masm->ldrb(rscratch1, Address(rscratch1, offset));
3604   _masm->cbzw(rscratch1, _label);
3605 }
3606 
3607 SkipIfEqual::~SkipIfEqual() {
3608   _masm->bind(_label);
3609 }
3610 
3611 void MacroAssembler::addptr(const Address &dst, int32_t src) {
3612   Address adr;
3613   switch(dst.getMode()) {
3614   case Address::base_plus_offset:
3615     // This is the expected mode, although we allow all the other
3616     // forms below.
3617     adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
3618     break;
3619   default:
3620     lea(rscratch2, dst);
3621     adr = Address(rscratch2);
3622     break;
3623   }
3624   ldr(rscratch1, adr);
3625   add(rscratch1, rscratch1, src);
3626   str(rscratch1, adr);
3627 }
3628 
3629 void MacroAssembler::cmpptr(Register src1, Address src2) {
3630   unsigned long offset;
3631   adrp(rscratch1, src2, offset);
3632   ldr(rscratch1, Address(rscratch1, offset));
3633   cmp(src1, rscratch1);
3634 }
3635 
3636 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
3637   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3638   bs->obj_equals(this, obj1, obj2);
3639 }
3640 
3641 void MacroAssembler::load_klass(Register dst, Register src) {
3642   if (UseCompressedClassPointers) {
3643     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3644     decode_klass_not_null(dst);
3645   } else {
3646     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3647   }
3648 }
3649 
3650 // ((OopHandle)result).resolve();
3651 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
3652   // OopHandle::resolve is an indirection.
3653   access_load_at(T_OBJECT, IN_CONCURRENT_ROOT,
3654                  result, Address(result, 0), tmp, noreg);
3655 }
3656 
3657 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp) {
3658   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
3659   ldr(dst, Address(rmethod, Method::const_offset()));
3660   ldr(dst, Address(dst, ConstMethod::constants_offset()));
3661   ldr(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes()));
3662   ldr(dst, Address(dst, mirror_offset));
3663   resolve_oop_handle(dst, tmp);
3664 }
3665 
3666 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
3667   if (UseCompressedClassPointers) {
3668     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3669     if (Universe::narrow_klass_base() == NULL) {
3670       cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift());
3671       return;
3672     } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3673                && Universe::narrow_klass_shift() == 0) {
3674       // Only the bottom 32 bits matter
3675       cmpw(trial_klass, tmp);
3676       return;
3677     }
3678     decode_klass_not_null(tmp);
3679   } else {
3680     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3681   }
3682   cmp(trial_klass, tmp);
3683 }
3684 
3685 void MacroAssembler::load_prototype_header(Register dst, Register src) {
3686   load_klass(dst, src);
3687   ldr(dst, Address(dst, Klass::prototype_header_offset()));
3688 }
3689 
3690 void MacroAssembler::store_klass(Register dst, Register src) {
3691   // FIXME: Should this be a store release?  concurrent gcs assumes
3692   // klass length is valid if klass field is not null.
3693   if (UseCompressedClassPointers) {
3694     encode_klass_not_null(src);
3695     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3696   } else {
3697     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3698   }
3699 }
3700 
3701 void MacroAssembler::store_klass_gap(Register dst, Register src) {
3702   if (UseCompressedClassPointers) {
3703     // Store to klass gap in destination
3704     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
3705   }
3706 }
3707 
3708 // Algorithm must match CompressedOops::encode.
3709 void MacroAssembler::encode_heap_oop(Register d, Register s) {
3710 #ifdef ASSERT
3711   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
3712 #endif
3713   verify_oop(s, "broken oop in encode_heap_oop");
3714   if (Universe::narrow_oop_base() == NULL) {
3715     if (Universe::narrow_oop_shift() != 0) {
3716       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3717       lsr(d, s, LogMinObjAlignmentInBytes);
3718     } else {
3719       mov(d, s);
3720     }
3721   } else {
3722     subs(d, s, rheapbase);
3723     csel(d, d, zr, Assembler::HS);
3724     lsr(d, d, LogMinObjAlignmentInBytes);
3725 
3726     /*  Old algorithm: is this any worse?
3727     Label nonnull;
3728     cbnz(r, nonnull);
3729     sub(r, r, rheapbase);
3730     bind(nonnull);
3731     lsr(r, r, LogMinObjAlignmentInBytes);
3732     */
3733   }
3734 }
3735 
3736 void MacroAssembler::encode_heap_oop_not_null(Register r) {
3737 #ifdef ASSERT
3738   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
3739   if (CheckCompressedOops) {
3740     Label ok;
3741     cbnz(r, ok);
3742     stop("null oop passed to encode_heap_oop_not_null");
3743     bind(ok);
3744   }
3745 #endif
3746   verify_oop(r, "broken oop in encode_heap_oop_not_null");
3747   if (Universe::narrow_oop_base() != NULL) {
3748     sub(r, r, rheapbase);
3749   }
3750   if (Universe::narrow_oop_shift() != 0) {
3751     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3752     lsr(r, r, LogMinObjAlignmentInBytes);
3753   }
3754 }
3755 
3756 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
3757 #ifdef ASSERT
3758   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
3759   if (CheckCompressedOops) {
3760     Label ok;
3761     cbnz(src, ok);
3762     stop("null oop passed to encode_heap_oop_not_null2");
3763     bind(ok);
3764   }
3765 #endif
3766   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
3767 
3768   Register data = src;
3769   if (Universe::narrow_oop_base() != NULL) {
3770     sub(dst, src, rheapbase);
3771     data = dst;
3772   }
3773   if (Universe::narrow_oop_shift() != 0) {
3774     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3775     lsr(dst, data, LogMinObjAlignmentInBytes);
3776     data = dst;
3777   }
3778   if (data == src)
3779     mov(dst, src);
3780 }
3781 
3782 void  MacroAssembler::decode_heap_oop(Register d, Register s) {
3783 #ifdef ASSERT
3784   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
3785 #endif
3786   if (Universe::narrow_oop_base() == NULL) {
3787     if (Universe::narrow_oop_shift() != 0 || d != s) {
3788       lsl(d, s, Universe::narrow_oop_shift());
3789     }
3790   } else {
3791     Label done;
3792     if (d != s)
3793       mov(d, s);
3794     cbz(s, done);
3795     add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
3796     bind(done);
3797   }
3798   verify_oop(d, "broken oop in decode_heap_oop");
3799 }
3800 
3801 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
3802   assert (UseCompressedOops, "should only be used for compressed headers");
3803   assert (Universe::heap() != NULL, "java heap should be initialized");
3804   // Cannot assert, unverified entry point counts instructions (see .ad file)
3805   // vtableStubs also counts instructions in pd_code_size_limit.
3806   // Also do not verify_oop as this is called by verify_oop.
3807   if (Universe::narrow_oop_shift() != 0) {
3808     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3809     if (Universe::narrow_oop_base() != NULL) {
3810       add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3811     } else {
3812       add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3813     }
3814   } else {
3815     assert (Universe::narrow_oop_base() == NULL, "sanity");
3816   }
3817 }
3818 
3819 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
3820   assert (UseCompressedOops, "should only be used for compressed headers");
3821   assert (Universe::heap() != NULL, "java heap should be initialized");
3822   // Cannot assert, unverified entry point counts instructions (see .ad file)
3823   // vtableStubs also counts instructions in pd_code_size_limit.
3824   // Also do not verify_oop as this is called by verify_oop.
3825   if (Universe::narrow_oop_shift() != 0) {
3826     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3827     if (Universe::narrow_oop_base() != NULL) {
3828       add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3829     } else {
3830       add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3831     }
3832   } else {
3833     assert (Universe::narrow_oop_base() == NULL, "sanity");
3834     if (dst != src) {
3835       mov(dst, src);
3836     }
3837   }
3838 }
3839 
3840 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3841   if (Universe::narrow_klass_base() == NULL) {
3842     if (Universe::narrow_klass_shift() != 0) {
3843       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3844       lsr(dst, src, LogKlassAlignmentInBytes);
3845     } else {
3846       if (dst != src) mov(dst, src);
3847     }
3848     return;
3849   }
3850 
3851   if (use_XOR_for_compressed_class_base) {
3852     if (Universe::narrow_klass_shift() != 0) {
3853       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3854       lsr(dst, dst, LogKlassAlignmentInBytes);
3855     } else {
3856       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3857     }
3858     return;
3859   }
3860 
3861   if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3862       && Universe::narrow_klass_shift() == 0) {
3863     movw(dst, src);
3864     return;
3865   }
3866 
3867 #ifdef ASSERT
3868   verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
3869 #endif
3870 
3871   Register rbase = dst;
3872   if (dst == src) rbase = rheapbase;
3873   mov(rbase, (uint64_t)Universe::narrow_klass_base());
3874   sub(dst, src, rbase);
3875   if (Universe::narrow_klass_shift() != 0) {
3876     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3877     lsr(dst, dst, LogKlassAlignmentInBytes);
3878   }
3879   if (dst == src) reinit_heapbase();
3880 }
3881 
3882 void MacroAssembler::encode_klass_not_null(Register r) {
3883   encode_klass_not_null(r, r);
3884 }
3885 
3886 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3887   Register rbase = dst;
3888   assert (UseCompressedClassPointers, "should only be used for compressed headers");
3889 
3890   if (Universe::narrow_klass_base() == NULL) {
3891     if (Universe::narrow_klass_shift() != 0) {
3892       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3893       lsl(dst, src, LogKlassAlignmentInBytes);
3894     } else {
3895       if (dst != src) mov(dst, src);
3896     }
3897     return;
3898   }
3899 
3900   if (use_XOR_for_compressed_class_base) {
3901     if (Universe::narrow_klass_shift() != 0) {
3902       lsl(dst, src, LogKlassAlignmentInBytes);
3903       eor(dst, dst, (uint64_t)Universe::narrow_klass_base());
3904     } else {
3905       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3906     }
3907     return;
3908   }
3909 
3910   if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3911       && Universe::narrow_klass_shift() == 0) {
3912     if (dst != src)
3913       movw(dst, src);
3914     movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32);
3915     return;
3916   }
3917 
3918   // Cannot assert, unverified entry point counts instructions (see .ad file)
3919   // vtableStubs also counts instructions in pd_code_size_limit.
3920   // Also do not verify_oop as this is called by verify_oop.
3921   if (dst == src) rbase = rheapbase;
3922   mov(rbase, (uint64_t)Universe::narrow_klass_base());
3923   if (Universe::narrow_klass_shift() != 0) {
3924     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3925     add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes);
3926   } else {
3927     add(dst, rbase, src);
3928   }
3929   if (dst == src) reinit_heapbase();
3930 }
3931 
3932 void  MacroAssembler::decode_klass_not_null(Register r) {
3933   decode_klass_not_null(r, r);
3934 }
3935 
3936 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
3937 #ifdef ASSERT
3938   {
3939     ThreadInVMfromUnknown tiv;
3940     assert (UseCompressedOops, "should only be used for compressed oops");
3941     assert (Universe::heap() != NULL, "java heap should be initialized");
3942     assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3943     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3944   }
3945 #endif
3946   int oop_index = oop_recorder()->find_index(obj);
3947   InstructionMark im(this);
3948   RelocationHolder rspec = oop_Relocation::spec(oop_index);
3949   code_section()->relocate(inst_mark(), rspec);
3950   movz(dst, 0xDEAD, 16);
3951   movk(dst, 0xBEEF);
3952 }
3953 
3954 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
3955   assert (UseCompressedClassPointers, "should only be used for compressed headers");
3956   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3957   int index = oop_recorder()->find_index(k);
3958   assert(! Universe::heap()->is_in_reserved(k), "should not be an oop");
3959 
3960   InstructionMark im(this);
3961   RelocationHolder rspec = metadata_Relocation::spec(index);
3962   code_section()->relocate(inst_mark(), rspec);
3963   narrowKlass nk = Klass::encode_klass(k);
3964   movz(dst, (nk >> 16), 16);
3965   movk(dst, nk & 0xffff);
3966 }
3967 
3968 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
3969                                     Register dst, Address src,
3970                                     Register tmp1, Register thread_tmp) {
3971   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
3972   decorators = AccessInternal::decorator_fixup(decorators);
3973   bool as_raw = (decorators & AS_RAW) != 0;
3974   if (as_raw) {
3975     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
3976   } else {
3977     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
3978   }
3979 }
3980 
3981 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
3982                                      Address dst, Register src,
3983                                      Register tmp1, Register thread_tmp) {
3984   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
3985   decorators = AccessInternal::decorator_fixup(decorators);
3986   bool as_raw = (decorators & AS_RAW) != 0;
3987   if (as_raw) {
3988     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, thread_tmp);
3989   } else {
3990     bs->store_at(this, decorators, type, dst, src, tmp1, thread_tmp);
3991   }
3992 }
3993 
3994 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
3995                                    Register thread_tmp, DecoratorSet decorators) {
3996   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
3997 }
3998 
3999 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
4000                                             Register thread_tmp, DecoratorSet decorators) {
4001   access_load_at(T_OBJECT, IN_HEAP | OOP_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
4002 }
4003 
4004 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
4005                                     Register thread_tmp, DecoratorSet decorators) {
4006   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
4007 }
4008 
4009 // Used for storing NULLs.
4010 void MacroAssembler::store_heap_oop_null(Address dst) {
4011   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
4012 }
4013 
4014 Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
4015   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
4016   int index = oop_recorder()->allocate_metadata_index(obj);
4017   RelocationHolder rspec = metadata_Relocation::spec(index);
4018   return Address((address)obj, rspec);
4019 }
4020 
4021 // Move an oop into a register.  immediate is true if we want
4022 // immediate instrcutions, i.e. we are not going to patch this
4023 // instruction while the code is being executed by another thread.  In
4024 // that case we can use move immediates rather than the constant pool.
4025 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) {
4026   int oop_index;
4027   if (obj == NULL) {
4028     oop_index = oop_recorder()->allocate_oop_index(obj);
4029   } else {
4030 #ifdef ASSERT
4031     {
4032       ThreadInVMfromUnknown tiv;
4033       assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
4034     }
4035 #endif
4036     oop_index = oop_recorder()->find_index(obj);
4037   }
4038   RelocationHolder rspec = oop_Relocation::spec(oop_index);
4039   if (! immediate) {
4040     address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
4041     ldr_constant(dst, Address(dummy, rspec));
4042   } else
4043     mov(dst, Address((address)obj, rspec));
4044 }
4045 
4046 // Move a metadata address into a register.
4047 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
4048   int oop_index;
4049   if (obj == NULL) {
4050     oop_index = oop_recorder()->allocate_metadata_index(obj);
4051   } else {
4052     oop_index = oop_recorder()->find_index(obj);
4053   }
4054   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
4055   mov(dst, Address((address)obj, rspec));
4056 }
4057 
4058 Address MacroAssembler::constant_oop_address(jobject obj) {
4059 #ifdef ASSERT
4060   {
4061     ThreadInVMfromUnknown tiv;
4062     assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
4063     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
4064   }
4065 #endif
4066   int oop_index = oop_recorder()->find_index(obj);
4067   return Address((address)obj, oop_Relocation::spec(oop_index));
4068 }
4069 
4070 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4071 void MacroAssembler::tlab_allocate(Register obj,
4072                                    Register var_size_in_bytes,
4073                                    int con_size_in_bytes,
4074                                    Register t1,
4075                                    Register t2,
4076                                    Label& slow_case) {
4077   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4078   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4079 }
4080 
4081 // Defines obj, preserves var_size_in_bytes
4082 void MacroAssembler::eden_allocate(Register thread, Register obj,
4083                                    Register var_size_in_bytes,
4084                                    int con_size_in_bytes,
4085                                    Register t1,
4086                                    Label& slow_case) {
4087   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4088   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
4089 }
4090 
4091 // Zero words; len is in bytes
4092 // Destroys all registers except addr
4093 // len must be a nonzero multiple of wordSize
4094 void MacroAssembler::zero_memory(Register addr, Register len, Register t1) {
4095   assert_different_registers(addr, len, t1, rscratch1, rscratch2);
4096 
4097 #ifdef ASSERT
4098   { Label L;
4099     tst(len, BytesPerWord - 1);
4100     br(Assembler::EQ, L);
4101     stop("len is not a multiple of BytesPerWord");
4102     bind(L);
4103   }
4104 #endif
4105 
4106 #ifndef PRODUCT
4107   block_comment("zero memory");
4108 #endif
4109 
4110   Label loop;
4111   Label entry;
4112 
4113 //  Algorithm:
4114 //
4115 //    scratch1 = cnt & 7;
4116 //    cnt -= scratch1;
4117 //    p += scratch1;
4118 //    switch (scratch1) {
4119 //      do {
4120 //        cnt -= 8;
4121 //          p[-8] = 0;
4122 //        case 7:
4123 //          p[-7] = 0;
4124 //        case 6:
4125 //          p[-6] = 0;
4126 //          // ...
4127 //        case 1:
4128 //          p[-1] = 0;
4129 //        case 0:
4130 //          p += 8;
4131 //      } while (cnt);
4132 //    }
4133 
4134   const int unroll = 8; // Number of str(zr) instructions we'll unroll
4135 
4136   lsr(len, len, LogBytesPerWord);
4137   andr(rscratch1, len, unroll - 1);  // tmp1 = cnt % unroll
4138   sub(len, len, rscratch1);      // cnt -= unroll
4139   // t1 always points to the end of the region we're about to zero
4140   add(t1, addr, rscratch1, Assembler::LSL, LogBytesPerWord);
4141   adr(rscratch2, entry);
4142   sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 2);
4143   br(rscratch2);
4144   bind(loop);
4145   sub(len, len, unroll);
4146   for (int i = -unroll; i < 0; i++)
4147     Assembler::str(zr, Address(t1, i * wordSize));
4148   bind(entry);
4149   add(t1, t1, unroll * wordSize);
4150   cbnz(len, loop);
4151 }
4152 
4153 void MacroAssembler::verify_tlab() {
4154 #ifdef ASSERT
4155   if (UseTLAB && VerifyOops) {
4156     Label next, ok;
4157 
4158     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
4159 
4160     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4161     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
4162     cmp(rscratch2, rscratch1);
4163     br(Assembler::HS, next);
4164     STOP("assert(top >= start)");
4165     should_not_reach_here();
4166 
4167     bind(next);
4168     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
4169     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4170     cmp(rscratch2, rscratch1);
4171     br(Assembler::HS, ok);
4172     STOP("assert(top <= end)");
4173     should_not_reach_here();
4174 
4175     bind(ok);
4176     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
4177   }
4178 #endif
4179 }
4180 
4181 // Writes to stack successive pages until offset reached to check for
4182 // stack overflow + shadow pages.  This clobbers tmp.
4183 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
4184   assert_different_registers(tmp, size, rscratch1);
4185   mov(tmp, sp);
4186   // Bang stack for total size given plus shadow page size.
4187   // Bang one page at a time because large size can bang beyond yellow and
4188   // red zones.
4189   Label loop;
4190   mov(rscratch1, os::vm_page_size());
4191   bind(loop);
4192   lea(tmp, Address(tmp, -os::vm_page_size()));
4193   subsw(size, size, rscratch1);
4194   str(size, Address(tmp));
4195   br(Assembler::GT, loop);
4196 
4197   // Bang down shadow pages too.
4198   // At this point, (tmp-0) is the last address touched, so don't
4199   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
4200   // was post-decremented.)  Skip this address by starting at i=1, and
4201   // touch a few more pages below.  N.B.  It is important to touch all
4202   // the way down to and including i=StackShadowPages.
4203   for (int i = 0; i < (int)(JavaThread::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) {
4204     // this could be any sized move but this is can be a debugging crumb
4205     // so the bigger the better.
4206     lea(tmp, Address(tmp, -os::vm_page_size()));
4207     str(size, Address(tmp));
4208   }
4209 }
4210 
4211 
4212 // Move the address of the polling page into dest.
4213 void MacroAssembler::get_polling_page(Register dest, address page, relocInfo::relocType rtype) {
4214   if (SafepointMechanism::uses_thread_local_poll()) {
4215     ldr(dest, Address(rthread, Thread::polling_page_offset()));
4216   } else {
4217     unsigned long off;
4218     adrp(dest, Address(page, rtype), off);
4219     assert(off == 0, "polling page must be page aligned");
4220   }
4221 }
4222 
4223 // Move the address of the polling page into r, then read the polling
4224 // page.
4225 address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) {
4226   get_polling_page(r, page, rtype);
4227   return read_polling_page(r, rtype);
4228 }
4229 
4230 // Read the polling page.  The address of the polling page must
4231 // already be in r.
4232 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
4233   InstructionMark im(this);
4234   code_section()->relocate(inst_mark(), rtype);
4235   ldrw(zr, Address(r, 0));
4236   return inst_mark();
4237 }
4238 
4239 void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) {
4240   relocInfo::relocType rtype = dest.rspec().reloc()->type();
4241   unsigned long low_page = (unsigned long)CodeCache::low_bound() >> 12;
4242   unsigned long high_page = (unsigned long)(CodeCache::high_bound()-1) >> 12;
4243   unsigned long dest_page = (unsigned long)dest.target() >> 12;
4244   long offset_low = dest_page - low_page;
4245   long offset_high = dest_page - high_page;
4246 
4247   assert(is_valid_AArch64_address(dest.target()), "bad address");
4248   assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
4249 
4250   InstructionMark im(this);
4251   code_section()->relocate(inst_mark(), dest.rspec());
4252   // 8143067: Ensure that the adrp can reach the dest from anywhere within
4253   // the code cache so that if it is relocated we know it will still reach
4254   if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
4255     _adrp(reg1, dest.target());
4256   } else {
4257     unsigned long target = (unsigned long)dest.target();
4258     unsigned long adrp_target
4259       = (target & 0xffffffffUL) | ((unsigned long)pc() & 0xffff00000000UL);
4260 
4261     _adrp(reg1, (address)adrp_target);
4262     movk(reg1, target >> 32, 32);
4263   }
4264   byte_offset = (unsigned long)dest.target() & 0xfff;
4265 }
4266 
4267 void MacroAssembler::load_byte_map_base(Register reg) {
4268   jbyte *byte_map_base =
4269     ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base();
4270 
4271   if (is_valid_AArch64_address((address)byte_map_base)) {
4272     // Strictly speaking the byte_map_base isn't an address at all,
4273     // and it might even be negative.
4274     unsigned long offset;
4275     adrp(reg, ExternalAddress((address)byte_map_base), offset);
4276     // We expect offset to be zero with most collectors.
4277     if (offset != 0) {
4278       add(reg, reg, offset);
4279     }
4280   } else {
4281     mov(reg, (uint64_t)byte_map_base);
4282   }
4283 }
4284 
4285 void MacroAssembler::build_frame(int framesize) {
4286   assert(framesize > 0, "framesize must be > 0");
4287   if (framesize < ((1 << 9) + 2 * wordSize)) {
4288     sub(sp, sp, framesize);
4289     stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4290     if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
4291   } else {
4292     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
4293     if (PreserveFramePointer) mov(rfp, sp);
4294     if (framesize < ((1 << 12) + 2 * wordSize))
4295       sub(sp, sp, framesize - 2 * wordSize);
4296     else {
4297       mov(rscratch1, framesize - 2 * wordSize);
4298       sub(sp, sp, rscratch1);
4299     }
4300   }
4301 }
4302 
4303 void MacroAssembler::remove_frame(int framesize) {
4304   assert(framesize > 0, "framesize must be > 0");
4305   if (framesize < ((1 << 9) + 2 * wordSize)) {
4306     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4307     add(sp, sp, framesize);
4308   } else {
4309     if (framesize < ((1 << 12) + 2 * wordSize))
4310       add(sp, sp, framesize - 2 * wordSize);
4311     else {
4312       mov(rscratch1, framesize - 2 * wordSize);
4313       add(sp, sp, rscratch1);
4314     }
4315     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
4316   }
4317 }
4318 
4319 typedef void (MacroAssembler::* chr_insn)(Register Rt, const Address &adr);
4320 
4321 // Search for str1 in str2 and return index or -1
4322 void MacroAssembler::string_indexof(Register str2, Register str1,
4323                                     Register cnt2, Register cnt1,
4324                                     Register tmp1, Register tmp2,
4325                                     Register tmp3, Register tmp4,
4326                                     int icnt1, Register result, int ae) {
4327   Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH;
4328 
4329   Register ch1 = rscratch1;
4330   Register ch2 = rscratch2;
4331   Register cnt1tmp = tmp1;
4332   Register cnt2tmp = tmp2;
4333   Register cnt1_neg = cnt1;
4334   Register cnt2_neg = cnt2;
4335   Register result_tmp = tmp4;
4336 
4337   bool isL = ae == StrIntrinsicNode::LL;
4338 
4339   bool str1_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL;
4340   bool str2_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::LU;
4341   int str1_chr_shift = str1_isL ? 0:1;
4342   int str2_chr_shift = str2_isL ? 0:1;
4343   int str1_chr_size = str1_isL ? 1:2;
4344   int str2_chr_size = str2_isL ? 1:2;
4345   chr_insn str1_load_1chr = str1_isL ? (chr_insn)&MacroAssembler::ldrb :
4346                                       (chr_insn)&MacroAssembler::ldrh;
4347   chr_insn str2_load_1chr = str2_isL ? (chr_insn)&MacroAssembler::ldrb :
4348                                       (chr_insn)&MacroAssembler::ldrh;
4349   chr_insn load_2chr = isL ? (chr_insn)&MacroAssembler::ldrh : (chr_insn)&MacroAssembler::ldrw;
4350   chr_insn load_4chr = isL ? (chr_insn)&MacroAssembler::ldrw : (chr_insn)&MacroAssembler::ldr;
4351 
4352   // Note, inline_string_indexOf() generates checks:
4353   // if (substr.count > string.count) return -1;
4354   // if (substr.count == 0) return 0;
4355 
4356 // We have two strings, a source string in str2, cnt2 and a pattern string
4357 // in str1, cnt1. Find the 1st occurence of pattern in source or return -1.
4358 
4359 // For larger pattern and source we use a simplified Boyer Moore algorithm.
4360 // With a small pattern and source we use linear scan.
4361 
4362   if (icnt1 == -1) {
4363     cmp(cnt1, 256);             // Use Linear Scan if cnt1 < 8 || cnt1 >= 256
4364     ccmp(cnt1, 8, 0b0000, LO);  // Can't handle skip >= 256 because we use
4365     br(LO, LINEARSEARCH);       // a byte array.
4366     cmp(cnt1, cnt2, LSR, 2);    // Source must be 4 * pattern for BM
4367     br(HS, LINEARSEARCH);
4368   }
4369 
4370 // The Boyer Moore alogorithm is based on the description here:-
4371 //
4372 // http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
4373 //
4374 // This describes and algorithm with 2 shift rules. The 'Bad Character' rule
4375 // and the 'Good Suffix' rule.
4376 //
4377 // These rules are essentially heuristics for how far we can shift the
4378 // pattern along the search string.
4379 //
4380 // The implementation here uses the 'Bad Character' rule only because of the
4381 // complexity of initialisation for the 'Good Suffix' rule.
4382 //
4383 // This is also known as the Boyer-Moore-Horspool algorithm:-
4384 //
4385 // http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm
4386 //
4387 // #define ASIZE 128
4388 //
4389 //    int bm(unsigned char *x, int m, unsigned char *y, int n) {
4390 //       int i, j;
4391 //       unsigned c;
4392 //       unsigned char bc[ASIZE];
4393 //
4394 //       /* Preprocessing */
4395 //       for (i = 0; i < ASIZE; ++i)
4396 //          bc[i] = 0;
4397 //       for (i = 0; i < m - 1; ) {
4398 //          c = x[i];
4399 //          ++i;
4400 //          if (c < ASIZE) bc[c] = i;
4401 //       }
4402 //
4403 //       /* Searching */
4404 //       j = 0;
4405 //       while (j <= n - m) {
4406 //          c = y[i+j];
4407 //          if (x[m-1] == c)
4408 //            for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i);
4409 //          if (i < 0) return j;
4410 //          if (c < ASIZE)
4411 //            j = j - bc[y[j+m-1]] + m;
4412 //          else
4413 //            j += 1; // Advance by 1 only if char >= ASIZE
4414 //       }
4415 //    }
4416 
4417   if (icnt1 == -1) {
4418     BIND(BM);
4419 
4420     Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP;
4421     Label BMADV, BMMATCH, BMCHECKEND;
4422 
4423     Register cnt1end = tmp2;
4424     Register str2end = cnt2;
4425     Register skipch = tmp2;
4426 
4427     // Restrict ASIZE to 128 to reduce stack space/initialisation.
4428     // The presence of chars >= ASIZE in the target string does not affect
4429     // performance, but we must be careful not to initialise them in the stack
4430     // array.
4431     // The presence of chars >= ASIZE in the source string may adversely affect
4432     // performance since we can only advance by one when we encounter one.
4433 
4434       stp(zr, zr, pre(sp, -128));
4435       for (int i = 1; i < 8; i++)
4436           stp(zr, zr, Address(sp, i*16));
4437 
4438       mov(cnt1tmp, 0);
4439       sub(cnt1end, cnt1, 1);
4440     BIND(BCLOOP);
4441       (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4442       cmp(ch1, 128);
4443       add(cnt1tmp, cnt1tmp, 1);
4444       br(HS, BCSKIP);
4445       strb(cnt1tmp, Address(sp, ch1));
4446     BIND(BCSKIP);
4447       cmp(cnt1tmp, cnt1end);
4448       br(LT, BCLOOP);
4449 
4450       mov(result_tmp, str2);
4451 
4452       sub(cnt2, cnt2, cnt1);
4453       add(str2end, str2, cnt2, LSL, str2_chr_shift);
4454     BIND(BMLOOPSTR2);
4455       sub(cnt1tmp, cnt1, 1);
4456       (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4457       (this->*str2_load_1chr)(skipch, Address(str2, cnt1tmp, Address::lsl(str2_chr_shift)));
4458       cmp(ch1, skipch);
4459       br(NE, BMSKIP);
4460       subs(cnt1tmp, cnt1tmp, 1);
4461       br(LT, BMMATCH);
4462     BIND(BMLOOPSTR1);
4463       (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4464       (this->*str2_load_1chr)(ch2, Address(str2, cnt1tmp, Address::lsl(str2_chr_shift)));
4465       cmp(ch1, ch2);
4466       br(NE, BMSKIP);
4467       subs(cnt1tmp, cnt1tmp, 1);
4468       br(GE, BMLOOPSTR1);
4469     BIND(BMMATCH);
4470       sub(result, str2, result_tmp);
4471       if (!str2_isL) lsr(result, result, 1);
4472       add(sp, sp, 128);
4473       b(DONE);
4474     BIND(BMADV);
4475       add(str2, str2, str2_chr_size);
4476       b(BMCHECKEND);
4477     BIND(BMSKIP);
4478       cmp(skipch, 128);
4479       br(HS, BMADV);
4480       ldrb(ch2, Address(sp, skipch));
4481       add(str2, str2, cnt1, LSL, str2_chr_shift);
4482       sub(str2, str2, ch2, LSL, str2_chr_shift);
4483     BIND(BMCHECKEND);
4484       cmp(str2, str2end);
4485       br(LE, BMLOOPSTR2);
4486       add(sp, sp, 128);
4487       b(NOMATCH);
4488   }
4489 
4490   BIND(LINEARSEARCH);
4491   {
4492     Label DO1, DO2, DO3;
4493 
4494     Register str2tmp = tmp2;
4495     Register first = tmp3;
4496 
4497     if (icnt1 == -1)
4498     {
4499         Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT;
4500 
4501         cmp(cnt1, str1_isL == str2_isL ? 4 : 2);
4502         br(LT, DOSHORT);
4503 
4504         sub(cnt2, cnt2, cnt1);
4505         mov(result_tmp, cnt2);
4506 
4507         lea(str1, Address(str1, cnt1, Address::lsl(str1_chr_shift)));
4508         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4509         sub(cnt1_neg, zr, cnt1, LSL, str1_chr_shift);
4510         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4511         (this->*str1_load_1chr)(first, Address(str1, cnt1_neg));
4512 
4513       BIND(FIRST_LOOP);
4514         (this->*str2_load_1chr)(ch2, Address(str2, cnt2_neg));
4515         cmp(first, ch2);
4516         br(EQ, STR1_LOOP);
4517       BIND(STR2_NEXT);
4518         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4519         br(LE, FIRST_LOOP);
4520         b(NOMATCH);
4521 
4522       BIND(STR1_LOOP);
4523         adds(cnt1tmp, cnt1_neg, str1_chr_size);
4524         add(cnt2tmp, cnt2_neg, str2_chr_size);
4525         br(GE, MATCH);
4526 
4527       BIND(STR1_NEXT);
4528         (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp));
4529         (this->*str2_load_1chr)(ch2, Address(str2, cnt2tmp));
4530         cmp(ch1, ch2);
4531         br(NE, STR2_NEXT);
4532         adds(cnt1tmp, cnt1tmp, str1_chr_size);
4533         add(cnt2tmp, cnt2tmp, str2_chr_size);
4534         br(LT, STR1_NEXT);
4535         b(MATCH);
4536 
4537       BIND(DOSHORT);
4538       if (str1_isL == str2_isL) {
4539         cmp(cnt1, 2);
4540         br(LT, DO1);
4541         br(GT, DO3);
4542       }
4543     }
4544 
4545     if (icnt1 == 4) {
4546       Label CH1_LOOP;
4547 
4548         (this->*load_4chr)(ch1, str1);
4549         sub(cnt2, cnt2, 4);
4550         mov(result_tmp, cnt2);
4551         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4552         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4553 
4554       BIND(CH1_LOOP);
4555         (this->*load_4chr)(ch2, Address(str2, cnt2_neg));
4556         cmp(ch1, ch2);
4557         br(EQ, MATCH);
4558         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4559         br(LE, CH1_LOOP);
4560         b(NOMATCH);
4561     }
4562 
4563     if ((icnt1 == -1 && str1_isL == str2_isL) || icnt1 == 2) {
4564       Label CH1_LOOP;
4565 
4566       BIND(DO2);
4567         (this->*load_2chr)(ch1, str1);
4568         sub(cnt2, cnt2, 2);
4569         mov(result_tmp, cnt2);
4570         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4571         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4572 
4573       BIND(CH1_LOOP);
4574         (this->*load_2chr)(ch2, Address(str2, cnt2_neg));
4575         cmp(ch1, ch2);
4576         br(EQ, MATCH);
4577         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4578         br(LE, CH1_LOOP);
4579         b(NOMATCH);
4580     }
4581 
4582     if ((icnt1 == -1 && str1_isL == str2_isL) || icnt1 == 3) {
4583       Label FIRST_LOOP, STR2_NEXT, STR1_LOOP;
4584 
4585       BIND(DO3);
4586         (this->*load_2chr)(first, str1);
4587         (this->*str1_load_1chr)(ch1, Address(str1, 2*str1_chr_size));
4588 
4589         sub(cnt2, cnt2, 3);
4590         mov(result_tmp, cnt2);
4591         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4592         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4593 
4594       BIND(FIRST_LOOP);
4595         (this->*load_2chr)(ch2, Address(str2, cnt2_neg));
4596         cmpw(first, ch2);
4597         br(EQ, STR1_LOOP);
4598       BIND(STR2_NEXT);
4599         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4600         br(LE, FIRST_LOOP);
4601         b(NOMATCH);
4602 
4603       BIND(STR1_LOOP);
4604         add(cnt2tmp, cnt2_neg, 2*str2_chr_size);
4605         (this->*str2_load_1chr)(ch2, Address(str2, cnt2tmp));
4606         cmp(ch1, ch2);
4607         br(NE, STR2_NEXT);
4608         b(MATCH);
4609     }
4610 
4611     if (icnt1 == -1 || icnt1 == 1) {
4612       Label CH1_LOOP, HAS_ZERO;
4613       Label DO1_SHORT, DO1_LOOP;
4614 
4615       BIND(DO1);
4616         (this->*str1_load_1chr)(ch1, str1);
4617         cmp(cnt2, 8);
4618         br(LT, DO1_SHORT);
4619 
4620         if (str2_isL) {
4621           if (!str1_isL) {
4622             tst(ch1, 0xff00);
4623             br(NE, NOMATCH);
4624           }
4625           orr(ch1, ch1, ch1, LSL, 8);
4626         }
4627         orr(ch1, ch1, ch1, LSL, 16);
4628         orr(ch1, ch1, ch1, LSL, 32);
4629 
4630         sub(cnt2, cnt2, 8/str2_chr_size);
4631         mov(result_tmp, cnt2);
4632         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4633         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4634 
4635         mov(tmp3, str2_isL ? 0x0101010101010101 : 0x0001000100010001);
4636       BIND(CH1_LOOP);
4637         ldr(ch2, Address(str2, cnt2_neg));
4638         eor(ch2, ch1, ch2);
4639         sub(tmp1, ch2, tmp3);
4640         orr(tmp2, ch2, str2_isL ? 0x7f7f7f7f7f7f7f7f : 0x7fff7fff7fff7fff);
4641         bics(tmp1, tmp1, tmp2);
4642         br(NE, HAS_ZERO);
4643         adds(cnt2_neg, cnt2_neg, 8);
4644         br(LT, CH1_LOOP);
4645 
4646         cmp(cnt2_neg, 8);
4647         mov(cnt2_neg, 0);
4648         br(LT, CH1_LOOP);
4649         b(NOMATCH);
4650 
4651       BIND(HAS_ZERO);
4652         rev(tmp1, tmp1);
4653         clz(tmp1, tmp1);
4654         add(cnt2_neg, cnt2_neg, tmp1, LSR, 3);
4655         b(MATCH);
4656 
4657       BIND(DO1_SHORT);
4658         mov(result_tmp, cnt2);
4659         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4660         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4661       BIND(DO1_LOOP);
4662         (this->*str2_load_1chr)(ch2, Address(str2, cnt2_neg));
4663         cmpw(ch1, ch2);
4664         br(EQ, MATCH);
4665         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4666         br(LT, DO1_LOOP);
4667     }
4668   }
4669   BIND(NOMATCH);
4670     mov(result, -1);
4671     b(DONE);
4672   BIND(MATCH);
4673     add(result, result_tmp, cnt2_neg, ASR, str2_chr_shift);
4674   BIND(DONE);
4675 }
4676 
4677 typedef void (MacroAssembler::* chr_insn)(Register Rt, const Address &adr);
4678 typedef void (MacroAssembler::* uxt_insn)(Register Rd, Register Rn);
4679 
4680 void MacroAssembler::string_indexof_char(Register str1, Register cnt1,
4681                                          Register ch, Register result,
4682                                          Register tmp1, Register tmp2, Register tmp3)
4683 {
4684   Label CH1_LOOP, HAS_ZERO, DO1_SHORT, DO1_LOOP, MATCH, NOMATCH, DONE;
4685   Register cnt1_neg = cnt1;
4686   Register ch1 = rscratch1;
4687   Register result_tmp = rscratch2;
4688 
4689   cmp(cnt1, 4);
4690   br(LT, DO1_SHORT);
4691 
4692   orr(ch, ch, ch, LSL, 16);
4693   orr(ch, ch, ch, LSL, 32);
4694 
4695   sub(cnt1, cnt1, 4);
4696   mov(result_tmp, cnt1);
4697   lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4698   sub(cnt1_neg, zr, cnt1, LSL, 1);
4699 
4700   mov(tmp3, 0x0001000100010001);
4701 
4702   BIND(CH1_LOOP);
4703     ldr(ch1, Address(str1, cnt1_neg));
4704     eor(ch1, ch, ch1);
4705     sub(tmp1, ch1, tmp3);
4706     orr(tmp2, ch1, 0x7fff7fff7fff7fff);
4707     bics(tmp1, tmp1, tmp2);
4708     br(NE, HAS_ZERO);
4709     adds(cnt1_neg, cnt1_neg, 8);
4710     br(LT, CH1_LOOP);
4711 
4712     cmp(cnt1_neg, 8);
4713     mov(cnt1_neg, 0);
4714     br(LT, CH1_LOOP);
4715     b(NOMATCH);
4716 
4717   BIND(HAS_ZERO);
4718     rev(tmp1, tmp1);
4719     clz(tmp1, tmp1);
4720     add(cnt1_neg, cnt1_neg, tmp1, LSR, 3);
4721     b(MATCH);
4722 
4723   BIND(DO1_SHORT);
4724     mov(result_tmp, cnt1);
4725     lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4726     sub(cnt1_neg, zr, cnt1, LSL, 1);
4727   BIND(DO1_LOOP);
4728     ldrh(ch1, Address(str1, cnt1_neg));
4729     cmpw(ch, ch1);
4730     br(EQ, MATCH);
4731     adds(cnt1_neg, cnt1_neg, 2);
4732     br(LT, DO1_LOOP);
4733   BIND(NOMATCH);
4734     mov(result, -1);
4735     b(DONE);
4736   BIND(MATCH);
4737     add(result, result_tmp, cnt1_neg, ASR, 1);
4738   BIND(DONE);
4739 }
4740 
4741 // Compare strings.
4742 void MacroAssembler::string_compare(Register str1, Register str2,
4743                                     Register cnt1, Register cnt2, Register result,
4744                                     Register tmp1,
4745                                     FloatRegister vtmp, FloatRegister vtmpZ, int ae) {
4746   Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING,
4747     NEXT_WORD, DIFFERENCE;
4748 
4749   bool isLL = ae == StrIntrinsicNode::LL;
4750   bool isLU = ae == StrIntrinsicNode::LU;
4751   bool isUL = ae == StrIntrinsicNode::UL;
4752 
4753   bool str1_isL = isLL || isLU;
4754   bool str2_isL = isLL || isUL;
4755 
4756   int str1_chr_shift = str1_isL ? 0 : 1;
4757   int str2_chr_shift = str2_isL ? 0 : 1;
4758   int str1_chr_size = str1_isL ? 1 : 2;
4759   int str2_chr_size = str2_isL ? 1 : 2;
4760 
4761   chr_insn str1_load_chr = str1_isL ? (chr_insn)&MacroAssembler::ldrb :
4762                                       (chr_insn)&MacroAssembler::ldrh;
4763   chr_insn str2_load_chr = str2_isL ? (chr_insn)&MacroAssembler::ldrb :
4764                                       (chr_insn)&MacroAssembler::ldrh;
4765   uxt_insn ext_chr = isLL ? (uxt_insn)&MacroAssembler::uxtbw :
4766                             (uxt_insn)&MacroAssembler::uxthw;
4767 
4768   BLOCK_COMMENT("string_compare {");
4769 
4770   // Bizzarely, the counts are passed in bytes, regardless of whether they
4771   // are L or U strings, however the result is always in characters.
4772   if (!str1_isL) asrw(cnt1, cnt1, 1);
4773   if (!str2_isL) asrw(cnt2, cnt2, 1);
4774 
4775   // Compute the minimum of the string lengths and save the difference.
4776   subsw(tmp1, cnt1, cnt2);
4777   cselw(cnt2, cnt1, cnt2, Assembler::LE); // min
4778 
4779   // A very short string
4780   cmpw(cnt2, isLL ? 8:4);
4781   br(Assembler::LT, SHORT_STRING);
4782 
4783   // Check if the strings start at the same location.
4784   cmp(str1, str2);
4785   br(Assembler::EQ, LENGTH_DIFF);
4786 
4787   // Compare longwords
4788   {
4789     subw(cnt2, cnt2, isLL ? 8:4); // The last longword is a special case
4790 
4791     // Move both string pointers to the last longword of their
4792     // strings, negate the remaining count, and convert it to bytes.
4793     lea(str1, Address(str1, cnt2, Address::uxtw(str1_chr_shift)));
4794     lea(str2, Address(str2, cnt2, Address::uxtw(str2_chr_shift)));
4795     if (isLU || isUL) {
4796       sub(cnt1, zr, cnt2, LSL, str1_chr_shift);
4797       eor(vtmpZ, T16B, vtmpZ, vtmpZ);
4798     }
4799     sub(cnt2, zr, cnt2, LSL, str2_chr_shift);
4800 
4801     // Loop, loading longwords and comparing them into rscratch2.
4802     bind(NEXT_WORD);
4803     if (isLU) {
4804       ldrs(vtmp, Address(str1, cnt1));
4805       zip1(vtmp, T8B, vtmp, vtmpZ);
4806       umov(result, vtmp, D, 0);
4807     } else {
4808       ldr(result, Address(str1, isUL ? cnt1:cnt2));
4809     }
4810     if (isUL) {
4811       ldrs(vtmp, Address(str2, cnt2));
4812       zip1(vtmp, T8B, vtmp, vtmpZ);
4813       umov(rscratch1, vtmp, D, 0);
4814     } else {
4815       ldr(rscratch1, Address(str2, cnt2));
4816     }
4817     adds(cnt2, cnt2, isUL ? 4:8);
4818     if (isLU || isUL) add(cnt1, cnt1, isLU ? 4:8);
4819     eor(rscratch2, result, rscratch1);
4820     cbnz(rscratch2, DIFFERENCE);
4821     br(Assembler::LT, NEXT_WORD);
4822 
4823     // Last longword.  In the case where length == 4 we compare the
4824     // same longword twice, but that's still faster than another
4825     // conditional branch.
4826 
4827     if (isLU) {
4828       ldrs(vtmp, Address(str1));
4829       zip1(vtmp, T8B, vtmp, vtmpZ);
4830       umov(result, vtmp, D, 0);
4831     } else {
4832       ldr(result, Address(str1));
4833     }
4834     if (isUL) {
4835       ldrs(vtmp, Address(str2));
4836       zip1(vtmp, T8B, vtmp, vtmpZ);
4837       umov(rscratch1, vtmp, D, 0);
4838     } else {
4839       ldr(rscratch1, Address(str2));
4840     }
4841     eor(rscratch2, result, rscratch1);
4842     cbz(rscratch2, LENGTH_DIFF);
4843 
4844     // Find the first different characters in the longwords and
4845     // compute their difference.
4846     bind(DIFFERENCE);
4847     rev(rscratch2, rscratch2);
4848     clz(rscratch2, rscratch2);
4849     andr(rscratch2, rscratch2, isLL ? -8 : -16);
4850     lsrv(result, result, rscratch2);
4851     (this->*ext_chr)(result, result);
4852     lsrv(rscratch1, rscratch1, rscratch2);
4853     (this->*ext_chr)(rscratch1, rscratch1);
4854     subw(result, result, rscratch1);
4855     b(DONE);
4856   }
4857 
4858   bind(SHORT_STRING);
4859   // Is the minimum length zero?
4860   cbz(cnt2, LENGTH_DIFF);
4861 
4862   bind(SHORT_LOOP);
4863   (this->*str1_load_chr)(result, Address(post(str1, str1_chr_size)));
4864   (this->*str2_load_chr)(cnt1, Address(post(str2, str2_chr_size)));
4865   subw(result, result, cnt1);
4866   cbnz(result, DONE);
4867   sub(cnt2, cnt2, 1);
4868   cbnz(cnt2, SHORT_LOOP);
4869 
4870   // Strings are equal up to min length.  Return the length difference.
4871   bind(LENGTH_DIFF);
4872   mov(result, tmp1);
4873 
4874   // That's it
4875   bind(DONE);
4876 
4877   BLOCK_COMMENT("} string_compare");
4878 }
4879 
4880 // This method checks if provided byte array contains byte with highest bit set.
4881 void MacroAssembler::has_negatives(Register ary1, Register len, Register result) {
4882     // Simple and most common case of aligned small array which is not at the
4883     // end of memory page is placed here. All other cases are in stub.
4884     Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
4885     const uint64_t UPPER_BIT_MASK=0x8080808080808080;
4886     assert_different_registers(ary1, len, result);
4887 
4888     cmpw(len, 0);
4889     br(LE, SET_RESULT);
4890     cmpw(len, 4 * wordSize);
4891     br(GE, STUB_LONG); // size > 32 then go to stub
4892 
4893     int shift = 64 - exact_log2(os::vm_page_size());
4894     lsl(rscratch1, ary1, shift);
4895     mov(rscratch2, (size_t)(4 * wordSize) << shift);
4896     adds(rscratch2, rscratch1, rscratch2);  // At end of page?
4897     br(CS, STUB); // at the end of page then go to stub
4898     subs(len, len, wordSize);
4899     br(LT, END);
4900 
4901   BIND(LOOP);
4902     ldr(rscratch1, Address(post(ary1, wordSize)));
4903     tst(rscratch1, UPPER_BIT_MASK);
4904     br(NE, SET_RESULT);
4905     subs(len, len, wordSize);
4906     br(GE, LOOP);
4907     cmpw(len, -wordSize);
4908     br(EQ, SET_RESULT);
4909 
4910   BIND(END);
4911     ldr(result, Address(ary1));
4912     sub(len, zr, len, LSL, 3); // LSL 3 is to get bits from bytes
4913     lslv(result, result, len);
4914     tst(result, UPPER_BIT_MASK);
4915     b(SET_RESULT);
4916 
4917   BIND(STUB);
4918     RuntimeAddress has_neg =  RuntimeAddress(StubRoutines::aarch64::has_negatives());
4919     assert(has_neg.target() != NULL, "has_negatives stub has not been generated");
4920     trampoline_call(has_neg);
4921     b(DONE);
4922 
4923   BIND(STUB_LONG);
4924     RuntimeAddress has_neg_long =  RuntimeAddress(
4925             StubRoutines::aarch64::has_negatives_long());
4926     assert(has_neg_long.target() != NULL, "has_negatives stub has not been generated");
4927     trampoline_call(has_neg_long);
4928     b(DONE);
4929 
4930   BIND(SET_RESULT);
4931     cset(result, NE); // set true or false
4932 
4933   BIND(DONE);
4934 }
4935 
4936 void MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
4937                                    Register tmp4, Register tmp5, Register result,
4938                                    Register cnt1, int elem_size)
4939 {
4940   Label DONE;
4941   Register tmp1 = rscratch1;
4942   Register tmp2 = rscratch2;
4943   Register cnt2 = tmp2;  // cnt2 only used in array length compare
4944   int elem_per_word = wordSize/elem_size;
4945   int log_elem_size = exact_log2(elem_size);
4946   int length_offset = arrayOopDesc::length_offset_in_bytes();
4947   int base_offset
4948     = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
4949   int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16);
4950 
4951   assert(elem_size == 1 || elem_size == 2, "must be char or byte");
4952   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
4953 
4954 #ifndef PRODUCT
4955   {
4956     const char kind = (elem_size == 2) ? 'U' : 'L';
4957     char comment[64];
4958     snprintf(comment, sizeof comment, "array_equals%c{", kind);
4959     BLOCK_COMMENT(comment);
4960   }
4961 #endif
4962   if (UseSimpleArrayEquals) {
4963     Label NEXT_WORD, SHORT, SAME, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL;
4964     // if (a1==a2)
4965     //     return true;
4966     // if (a==null || a2==null)
4967     //     return false;
4968     // a1 & a2 == 0 means (some-pointer is null) or
4969     // (very-rare-or-even-probably-impossible-pointer-values)
4970     // so, we can save one branch in most cases
4971     cmpoop(a1, a2);
4972     br(EQ, SAME);
4973     eor(rscratch1, a1, a2);
4974     tst(a1, a2);
4975     mov(result, false);
4976     cbz(rscratch1, SAME);
4977     br(EQ, A_MIGHT_BE_NULL);
4978     // if (a1.length != a2.length)
4979     //      return false;
4980     bind(A_IS_NOT_NULL);
4981     ldrw(cnt1, Address(a1, length_offset));
4982     ldrw(cnt2, Address(a2, length_offset));
4983     eorw(tmp5, cnt1, cnt2);
4984     cbnzw(tmp5, DONE);
4985     lea(a1, Address(a1, base_offset));
4986     lea(a2, Address(a2, base_offset));
4987     // Check for short strings, i.e. smaller than wordSize.
4988     subs(cnt1, cnt1, elem_per_word);
4989     br(Assembler::LT, SHORT);
4990     // Main 8 byte comparison loop.
4991     bind(NEXT_WORD); {
4992       ldr(tmp1, Address(post(a1, wordSize)));
4993       ldr(tmp2, Address(post(a2, wordSize)));
4994       subs(cnt1, cnt1, elem_per_word);
4995       eor(tmp5, tmp1, tmp2);
4996       cbnz(tmp5, DONE);
4997     } br(GT, NEXT_WORD);
4998     // Last longword.  In the case where length == 4 we compare the
4999     // same longword twice, but that's still faster than another
5000     // conditional branch.
5001     // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5002     // length == 4.
5003     if (log_elem_size > 0)
5004       lsl(cnt1, cnt1, log_elem_size);
5005     ldr(tmp3, Address(a1, cnt1));
5006     ldr(tmp4, Address(a2, cnt1));
5007     eor(tmp5, tmp3, tmp4);
5008     cbnz(tmp5, DONE);
5009     b(SAME);
5010     bind(A_MIGHT_BE_NULL);
5011     // in case both a1 and a2 are not-null, proceed with loads
5012     cbz(a1, DONE);
5013     cbz(a2, DONE);
5014     b(A_IS_NOT_NULL);
5015     bind(SHORT);
5016 
5017     tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
5018     {
5019       ldrw(tmp1, Address(post(a1, 4)));
5020       ldrw(tmp2, Address(post(a2, 4)));
5021       eorw(tmp5, tmp1, tmp2);
5022       cbnzw(tmp5, DONE);
5023     }
5024     bind(TAIL03);
5025     tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
5026     {
5027       ldrh(tmp3, Address(post(a1, 2)));
5028       ldrh(tmp4, Address(post(a2, 2)));
5029       eorw(tmp5, tmp3, tmp4);
5030       cbnzw(tmp5, DONE);
5031     }
5032     bind(TAIL01);
5033     if (elem_size == 1) { // Only needed when comparing byte arrays.
5034       tbz(cnt1, 0, SAME); // 0-1 bytes left.
5035       {
5036         ldrb(tmp1, a1);
5037         ldrb(tmp2, a2);
5038         eorw(tmp5, tmp1, tmp2);
5039         cbnzw(tmp5, DONE);
5040       }
5041     }
5042     bind(SAME);
5043     mov(result, true);
5044   } else {
5045     Label NEXT_DWORD, A_IS_NULL, SHORT, TAIL, TAIL2, STUB, EARLY_OUT,
5046         CSET_EQ, LAST_CHECK, LEN_IS_ZERO, SAME;
5047     cbz(a1, A_IS_NULL);
5048     ldrw(cnt1, Address(a1, length_offset));
5049     cbz(a2, A_IS_NULL);
5050     ldrw(cnt2, Address(a2, length_offset));
5051     mov(result, false);
5052     // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's
5053     // faster to perform another branch before comparing a1 and a2
5054     cmp(cnt1, elem_per_word);
5055     br(LE, SHORT); // short or same
5056     cmpoop(a1, a2);
5057     br(EQ, SAME);
5058     ldr(tmp3, Address(pre(a1, base_offset)));
5059     cmp(cnt1, stubBytesThreshold);
5060     br(GE, STUB);
5061     ldr(tmp4, Address(pre(a2, base_offset)));
5062     sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5063     cmp(cnt2, cnt1);
5064     br(NE, DONE);
5065 
5066     // Main 16 byte comparison loop with 2 exits
5067     bind(NEXT_DWORD); {
5068       ldr(tmp1, Address(pre(a1, wordSize)));
5069       ldr(tmp2, Address(pre(a2, wordSize)));
5070       subs(cnt1, cnt1, 2 * elem_per_word);
5071       br(LE, TAIL);
5072       eor(tmp4, tmp3, tmp4);
5073       cbnz(tmp4, DONE);
5074       ldr(tmp3, Address(pre(a1, wordSize)));
5075       ldr(tmp4, Address(pre(a2, wordSize)));
5076       cmp(cnt1, elem_per_word);
5077       br(LE, TAIL2);
5078       cmp(tmp1, tmp2);
5079     } br(EQ, NEXT_DWORD);
5080     b(DONE);
5081 
5082     bind(TAIL);
5083     eor(tmp4, tmp3, tmp4);
5084     eor(tmp2, tmp1, tmp2);
5085     lslv(tmp2, tmp2, tmp5);
5086     orr(tmp5, tmp4, tmp2);
5087     cmp(tmp5, zr);
5088     b(CSET_EQ);
5089 
5090     bind(TAIL2);
5091     eor(tmp2, tmp1, tmp2);
5092     cbnz(tmp2, DONE);
5093     b(LAST_CHECK);
5094 
5095     bind(STUB);
5096     ldr(tmp4, Address(pre(a2, base_offset)));
5097     cmp(cnt2, cnt1);
5098     br(NE, DONE);
5099     if (elem_size == 2) { // convert to byte counter
5100       lsl(cnt1, cnt1, 1);
5101     }
5102     eor(tmp5, tmp3, tmp4);
5103     cbnz(tmp5, DONE);
5104     RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals());
5105     assert(stub.target() != NULL, "array_equals_long stub has not been generated");
5106     trampoline_call(stub);
5107     b(DONE);
5108 
5109     bind(SAME);
5110     mov(result, true);
5111     b(DONE);
5112     bind(A_IS_NULL);
5113     // a1 or a2 is null. if a2 == a2 then return true. else return false
5114     cmp(a1, a2);
5115     b(CSET_EQ);
5116     bind(EARLY_OUT);
5117     // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2)
5118     // so, if a2 == null => return false(0), else return true, so we can return a2
5119     mov(result, a2);
5120     b(DONE);
5121     bind(LEN_IS_ZERO);
5122     cmp(cnt2, zr);
5123     b(CSET_EQ);
5124     bind(SHORT);
5125     cbz(cnt1, LEN_IS_ZERO);
5126     sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5127     ldr(tmp3, Address(a1, base_offset));
5128     ldr(tmp4, Address(a2, base_offset));
5129     bind(LAST_CHECK);
5130     eor(tmp4, tmp3, tmp4);
5131     lslv(tmp5, tmp4, tmp5);
5132     cmp(tmp5, zr);
5133     bind(CSET_EQ);
5134     cset(result, EQ);
5135   }
5136 
5137   // That's it.
5138   bind(DONE);
5139 
5140   BLOCK_COMMENT("} array_equals");
5141 }
5142 
5143 // Compare Strings
5144 
5145 // For Strings we're passed the address of the first characters in a1
5146 // and a2 and the length in cnt1.
5147 // elem_size is the element size in bytes: either 1 or 2.
5148 // There are two implementations.  For arrays >= 8 bytes, all
5149 // comparisons (including the final one, which may overlap) are
5150 // performed 8 bytes at a time.  For strings < 8 bytes, we compare a
5151 // halfword, then a short, and then a byte.
5152 
5153 void MacroAssembler::string_equals(Register a1, Register a2,
5154                                    Register result, Register cnt1, int elem_size)
5155 {
5156   Label SAME, DONE, SHORT, NEXT_WORD;
5157   Register tmp1 = rscratch1;
5158   Register tmp2 = rscratch2;
5159   Register cnt2 = tmp2;  // cnt2 only used in array length compare
5160 
5161   assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte");
5162   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
5163 
5164 #ifndef PRODUCT
5165   {
5166     const char kind = (elem_size == 2) ? 'U' : 'L';
5167     char comment[64];
5168     snprintf(comment, sizeof comment, "{string_equals%c", kind);
5169     BLOCK_COMMENT(comment);
5170   }
5171 #endif
5172 
5173   mov(result, false);
5174 
5175   // Check for short strings, i.e. smaller than wordSize.
5176   subs(cnt1, cnt1, wordSize);
5177   br(Assembler::LT, SHORT);
5178   // Main 8 byte comparison loop.
5179   bind(NEXT_WORD); {
5180     ldr(tmp1, Address(post(a1, wordSize)));
5181     ldr(tmp2, Address(post(a2, wordSize)));
5182     subs(cnt1, cnt1, wordSize);
5183     eor(tmp1, tmp1, tmp2);
5184     cbnz(tmp1, DONE);
5185   } br(GT, NEXT_WORD);
5186   // Last longword.  In the case where length == 4 we compare the
5187   // same longword twice, but that's still faster than another
5188   // conditional branch.
5189   // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5190   // length == 4.
5191   ldr(tmp1, Address(a1, cnt1));
5192   ldr(tmp2, Address(a2, cnt1));
5193   eor(tmp2, tmp1, tmp2);
5194   cbnz(tmp2, DONE);
5195   b(SAME);
5196 
5197   bind(SHORT);
5198   Label TAIL03, TAIL01;
5199 
5200   tbz(cnt1, 2, TAIL03); // 0-7 bytes left.
5201   {
5202     ldrw(tmp1, Address(post(a1, 4)));
5203     ldrw(tmp2, Address(post(a2, 4)));
5204     eorw(tmp1, tmp1, tmp2);
5205     cbnzw(tmp1, DONE);
5206   }
5207   bind(TAIL03);
5208   tbz(cnt1, 1, TAIL01); // 0-3 bytes left.
5209   {
5210     ldrh(tmp1, Address(post(a1, 2)));
5211     ldrh(tmp2, Address(post(a2, 2)));
5212     eorw(tmp1, tmp1, tmp2);
5213     cbnzw(tmp1, DONE);
5214   }
5215   bind(TAIL01);
5216   if (elem_size == 1) { // Only needed when comparing 1-byte elements
5217     tbz(cnt1, 0, SAME); // 0-1 bytes left.
5218     {
5219       ldrb(tmp1, a1);
5220       ldrb(tmp2, a2);
5221       eorw(tmp1, tmp1, tmp2);
5222       cbnzw(tmp1, DONE);
5223     }
5224   }
5225   // Arrays are equal.
5226   bind(SAME);
5227   mov(result, true);
5228 
5229   // That's it.
5230   bind(DONE);
5231   BLOCK_COMMENT("} string_equals");
5232 }
5233 
5234 
5235 // The size of the blocks erased by the zero_blocks stub.  We must
5236 // handle anything smaller than this ourselves in zero_words().
5237 const int MacroAssembler::zero_words_block_size = 8;
5238 
5239 // zero_words() is used by C2 ClearArray patterns.  It is as small as
5240 // possible, handling small word counts locally and delegating
5241 // anything larger to the zero_blocks stub.  It is expanded many times
5242 // in compiled code, so it is important to keep it short.
5243 
5244 // ptr:   Address of a buffer to be zeroed.
5245 // cnt:   Count in HeapWords.
5246 //
5247 // ptr, cnt, rscratch1, and rscratch2 are clobbered.
5248 void MacroAssembler::zero_words(Register ptr, Register cnt)
5249 {
5250   assert(is_power_of_2(zero_words_block_size), "adjust this");
5251   assert(ptr == r10 && cnt == r11, "mismatch in register usage");
5252 
5253   BLOCK_COMMENT("zero_words {");
5254   cmp(cnt, zero_words_block_size);
5255   Label around, done, done16;
5256   br(LO, around);
5257   {
5258     RuntimeAddress zero_blocks =  RuntimeAddress(StubRoutines::aarch64::zero_blocks());
5259     assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated");
5260     if (StubRoutines::aarch64::complete()) {
5261       trampoline_call(zero_blocks);
5262     } else {
5263       bl(zero_blocks);
5264     }
5265   }
5266   bind(around);
5267   for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) {
5268     Label l;
5269     tbz(cnt, exact_log2(i), l);
5270     for (int j = 0; j < i; j += 2) {
5271       stp(zr, zr, post(ptr, 16));
5272     }
5273     bind(l);
5274   }
5275   {
5276     Label l;
5277     tbz(cnt, 0, l);
5278     str(zr, Address(ptr));
5279     bind(l);
5280   }
5281   BLOCK_COMMENT("} zero_words");
5282 }
5283 
5284 // base:         Address of a buffer to be zeroed, 8 bytes aligned.
5285 // cnt:          Immediate count in HeapWords.
5286 #define SmallArraySize (18 * BytesPerLong)
5287 void MacroAssembler::zero_words(Register base, u_int64_t cnt)
5288 {
5289   BLOCK_COMMENT("zero_words {");
5290   int i = cnt & 1;  // store any odd word to start
5291   if (i) str(zr, Address(base));
5292 
5293   if (cnt <= SmallArraySize / BytesPerLong) {
5294     for (; i < (int)cnt; i += 2)
5295       stp(zr, zr, Address(base, i * wordSize));
5296   } else {
5297     const int unroll = 4; // Number of stp(zr, zr) instructions we'll unroll
5298     int remainder = cnt % (2 * unroll);
5299     for (; i < remainder; i += 2)
5300       stp(zr, zr, Address(base, i * wordSize));
5301 
5302     Label loop;
5303     Register cnt_reg = rscratch1;
5304     Register loop_base = rscratch2;
5305     cnt = cnt - remainder;
5306     mov(cnt_reg, cnt);
5307     // adjust base and prebias by -2 * wordSize so we can pre-increment
5308     add(loop_base, base, (remainder - 2) * wordSize);
5309     bind(loop);
5310     sub(cnt_reg, cnt_reg, 2 * unroll);
5311     for (i = 1; i < unroll; i++)
5312       stp(zr, zr, Address(loop_base, 2 * i * wordSize));
5313     stp(zr, zr, Address(pre(loop_base, 2 * unroll * wordSize)));
5314     cbnz(cnt_reg, loop);
5315   }
5316   BLOCK_COMMENT("} zero_words");
5317 }
5318 
5319 // Zero blocks of memory by using DC ZVA.
5320 //
5321 // Aligns the base address first sufficently for DC ZVA, then uses
5322 // DC ZVA repeatedly for every full block.  cnt is the size to be
5323 // zeroed in HeapWords.  Returns the count of words left to be zeroed
5324 // in cnt.
5325 //
5326 // NOTE: This is intended to be used in the zero_blocks() stub.  If
5327 // you want to use it elsewhere, note that cnt must be >= 2*zva_length.
5328 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) {
5329   Register tmp = rscratch1;
5330   Register tmp2 = rscratch2;
5331   int zva_length = VM_Version::zva_length();
5332   Label initial_table_end, loop_zva;
5333   Label fini;
5334 
5335   // Base must be 16 byte aligned. If not just return and let caller handle it
5336   tst(base, 0x0f);
5337   br(Assembler::NE, fini);
5338   // Align base with ZVA length.
5339   neg(tmp, base);
5340   andr(tmp, tmp, zva_length - 1);
5341 
5342   // tmp: the number of bytes to be filled to align the base with ZVA length.
5343   add(base, base, tmp);
5344   sub(cnt, cnt, tmp, Assembler::ASR, 3);
5345   adr(tmp2, initial_table_end);
5346   sub(tmp2, tmp2, tmp, Assembler::LSR, 2);
5347   br(tmp2);
5348 
5349   for (int i = -zva_length + 16; i < 0; i += 16)
5350     stp(zr, zr, Address(base, i));
5351   bind(initial_table_end);
5352 
5353   sub(cnt, cnt, zva_length >> 3);
5354   bind(loop_zva);
5355   dc(Assembler::ZVA, base);
5356   subs(cnt, cnt, zva_length >> 3);
5357   add(base, base, zva_length);
5358   br(Assembler::GE, loop_zva);
5359   add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA
5360   bind(fini);
5361 }
5362 
5363 // base:   Address of a buffer to be filled, 8 bytes aligned.
5364 // cnt:    Count in 8-byte unit.
5365 // value:  Value to be filled with.
5366 // base will point to the end of the buffer after filling.
5367 void MacroAssembler::fill_words(Register base, Register cnt, Register value)
5368 {
5369 //  Algorithm:
5370 //
5371 //    scratch1 = cnt & 7;
5372 //    cnt -= scratch1;
5373 //    p += scratch1;
5374 //    switch (scratch1) {
5375 //      do {
5376 //        cnt -= 8;
5377 //          p[-8] = v;
5378 //        case 7:
5379 //          p[-7] = v;
5380 //        case 6:
5381 //          p[-6] = v;
5382 //          // ...
5383 //        case 1:
5384 //          p[-1] = v;
5385 //        case 0:
5386 //          p += 8;
5387 //      } while (cnt);
5388 //    }
5389 
5390   assert_different_registers(base, cnt, value, rscratch1, rscratch2);
5391 
5392   Label fini, skip, entry, loop;
5393   const int unroll = 8; // Number of stp instructions we'll unroll
5394 
5395   cbz(cnt, fini);
5396   tbz(base, 3, skip);
5397   str(value, Address(post(base, 8)));
5398   sub(cnt, cnt, 1);
5399   bind(skip);
5400 
5401   andr(rscratch1, cnt, (unroll-1) * 2);
5402   sub(cnt, cnt, rscratch1);
5403   add(base, base, rscratch1, Assembler::LSL, 3);
5404   adr(rscratch2, entry);
5405   sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1);
5406   br(rscratch2);
5407 
5408   bind(loop);
5409   add(base, base, unroll * 16);
5410   for (int i = -unroll; i < 0; i++)
5411     stp(value, value, Address(base, i * 16));
5412   bind(entry);
5413   subs(cnt, cnt, unroll * 2);
5414   br(Assembler::GE, loop);
5415 
5416   tbz(cnt, 0, fini);
5417   str(value, Address(post(base, 8)));
5418   bind(fini);
5419 }
5420 
5421 // Intrinsic for sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray and
5422 // java/lang/StringUTF16.compress.
5423 void MacroAssembler::encode_iso_array(Register src, Register dst,
5424                       Register len, Register result,
5425                       FloatRegister Vtmp1, FloatRegister Vtmp2,
5426                       FloatRegister Vtmp3, FloatRegister Vtmp4)
5427 {
5428     Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1;
5429     Register tmp1 = rscratch1;
5430 
5431       mov(result, len); // Save initial len
5432 
5433 #ifndef BUILTIN_SIM
5434       subs(len, len, 32);
5435       br(LT, LOOP_8);
5436 
5437 // The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions
5438 // to convert chars to bytes. These set the 'QC' bit in the FPSR if
5439 // any char could not fit in a byte, so clear the FPSR so we can test it.
5440       clear_fpsr();
5441 
5442     BIND(NEXT_32);
5443       ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src);
5444       uqxtn(Vtmp1, T8B, Vtmp1, T8H);  // uqxtn  - write bottom half
5445       uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half
5446       uqxtn(Vtmp2, T8B, Vtmp3, T8H);
5447       uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2
5448       get_fpsr(tmp1);
5449       cbnzw(tmp1, LOOP_8);
5450       st1(Vtmp1, Vtmp2, T16B, post(dst, 32));
5451       subs(len, len, 32);
5452       add(src, src, 64);
5453       br(GE, NEXT_32);
5454 
5455     BIND(LOOP_8);
5456       adds(len, len, 32-8);
5457       br(LT, LOOP_1);
5458       clear_fpsr(); // QC may be set from loop above, clear again
5459     BIND(NEXT_8);
5460       ld1(Vtmp1, T8H, src);
5461       uqxtn(Vtmp1, T8B, Vtmp1, T8H);
5462       get_fpsr(tmp1);
5463       cbnzw(tmp1, LOOP_1);
5464       st1(Vtmp1, T8B, post(dst, 8));
5465       subs(len, len, 8);
5466       add(src, src, 16);
5467       br(GE, NEXT_8);
5468 
5469     BIND(LOOP_1);
5470       adds(len, len, 8);
5471       br(LE, DONE);
5472 #else
5473       cbz(len, DONE);
5474 #endif
5475     BIND(NEXT_1);
5476       ldrh(tmp1, Address(post(src, 2)));
5477       tst(tmp1, 0xff00);
5478       br(NE, DONE);
5479       strb(tmp1, Address(post(dst, 1)));
5480       subs(len, len, 1);
5481       br(GT, NEXT_1);
5482 
5483     BIND(DONE);
5484       sub(result, result, len); // Return index where we stopped
5485                                 // Return len == 0 if we processed all
5486                                 // characters
5487 }
5488 
5489 
5490 // Inflate byte[] array to char[].
5491 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
5492                                         FloatRegister vtmp1, FloatRegister vtmp2, FloatRegister vtmp3,
5493                                         Register tmp4) {
5494   Label big, done;
5495 
5496   assert_different_registers(src, dst, len, tmp4, rscratch1);
5497 
5498   fmovd(vtmp1 , zr);
5499   lsrw(rscratch1, len, 3);
5500 
5501   cbnzw(rscratch1, big);
5502 
5503   // Short string: less than 8 bytes.
5504   {
5505     Label loop, around, tiny;
5506 
5507     subsw(len, len, 4);
5508     andw(len, len, 3);
5509     br(LO, tiny);
5510 
5511     // Use SIMD to do 4 bytes.
5512     ldrs(vtmp2, post(src, 4));
5513     zip1(vtmp3, T8B, vtmp2, vtmp1);
5514     strd(vtmp3, post(dst, 8));
5515 
5516     cbzw(len, done);
5517 
5518     // Do the remaining bytes by steam.
5519     bind(loop);
5520     ldrb(tmp4, post(src, 1));
5521     strh(tmp4, post(dst, 2));
5522     subw(len, len, 1);
5523 
5524     bind(tiny);
5525     cbnz(len, loop);
5526 
5527     bind(around);
5528     b(done);
5529   }
5530 
5531   // Unpack the bytes 8 at a time.
5532   bind(big);
5533   andw(len, len, 7);
5534 
5535   {
5536     Label loop, around;
5537 
5538     bind(loop);
5539     ldrd(vtmp2, post(src, 8));
5540     sub(rscratch1, rscratch1, 1);
5541     zip1(vtmp3, T16B, vtmp2, vtmp1);
5542     st1(vtmp3, T8H, post(dst, 16));
5543     cbnz(rscratch1, loop);
5544 
5545     bind(around);
5546   }
5547 
5548   // Do the tail of up to 8 bytes.
5549   sub(src, src, 8);
5550   add(src, src, len, ext::uxtw, 0);
5551   ldrd(vtmp2, Address(src));
5552   sub(dst, dst, 16);
5553   add(dst, dst, len, ext::uxtw, 1);
5554   zip1(vtmp3, T16B, vtmp2, vtmp1);
5555   st1(vtmp3, T8H, Address(dst));
5556 
5557   bind(done);
5558 }
5559 
5560 // Compress char[] array to byte[].
5561 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
5562                                          FloatRegister tmp1Reg, FloatRegister tmp2Reg,
5563                                          FloatRegister tmp3Reg, FloatRegister tmp4Reg,
5564                                          Register result) {
5565   encode_iso_array(src, dst, len, result,
5566                    tmp1Reg, tmp2Reg, tmp3Reg, tmp4Reg);
5567   cmp(len, zr);
5568   csel(result, result, zr, EQ);
5569 }
5570 
5571 // get_thread() can be called anywhere inside generated code so we
5572 // need to save whatever non-callee save context might get clobbered
5573 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed,
5574 // the call setup code.
5575 //
5576 // aarch64_get_thread_helper() clobbers only r0, r1, and flags.
5577 //
5578 void MacroAssembler::get_thread(Register dst) {
5579   RegSet saved_regs = RegSet::range(r0, r1) + lr - dst;
5580   push(saved_regs, sp);
5581 
5582   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
5583   blrt(lr, 1, 0, 1);
5584   if (dst != c_rarg0) {
5585     mov(dst, c_rarg0);
5586   }
5587 
5588   pop(saved_regs, sp);
5589 }