1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include <sys/types.h>
  27 
  28 #include "precompiled.hpp"
  29 #include "jvm.h"
  30 #include "asm/assembler.hpp"
  31 #include "asm/assembler.inline.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/cardTable.hpp"
  34 #include "gc/shared/barrierSetAssembler.hpp"
  35 #include "gc/shared/cardTableBarrierSet.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "nativeInst_aarch64.hpp"
  40 #include "oops/accessDecorators.hpp"
  41 #include "oops/compressedOops.inline.hpp"
  42 #include "oops/klass.inline.hpp"
  43 #include "oops/oop.hpp"
  44 #include "opto/compile.hpp"
  45 #include "opto/intrinsicnode.hpp"
  46 #include "opto/node.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/icache.hpp"
  49 #include "runtime/interfaceSupport.inline.hpp"
  50 #include "runtime/jniHandles.inline.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/thread.hpp"
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 // Patch any kind of instruction; there may be several instructions.
  65 // Return the total length (in bytes) of the instructions.
  66 int MacroAssembler::pd_patch_instruction_size(address branch, address target) {
  67   int instructions = 1;
  68   assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant");
  69   long offset = (target - branch) >> 2;
  70   unsigned insn = *(unsigned*)branch;
  71   if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) {
  72     // Load register (literal)
  73     Instruction_aarch64::spatch(branch, 23, 5, offset);
  74   } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
  75     // Unconditional branch (immediate)
  76     Instruction_aarch64::spatch(branch, 25, 0, offset);
  77   } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
  78     // Conditional branch (immediate)
  79     Instruction_aarch64::spatch(branch, 23, 5, offset);
  80   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
  81     // Compare & branch (immediate)
  82     Instruction_aarch64::spatch(branch, 23, 5, offset);
  83   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
  84     // Test & branch (immediate)
  85     Instruction_aarch64::spatch(branch, 18, 5, offset);
  86   } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
  87     // PC-rel. addressing
  88     offset = target-branch;
  89     int shift = Instruction_aarch64::extract(insn, 31, 31);
  90     if (shift) {
  91       u_int64_t dest = (u_int64_t)target;
  92       uint64_t pc_page = (uint64_t)branch >> 12;
  93       uint64_t adr_page = (uint64_t)target >> 12;
  94       unsigned offset_lo = dest & 0xfff;
  95       offset = adr_page - pc_page;
  96 
  97       // We handle 4 types of PC relative addressing
  98       //   1 - adrp    Rx, target_page
  99       //       ldr/str Ry, [Rx, #offset_in_page]
 100       //   2 - adrp    Rx, target_page
 101       //       add     Ry, Rx, #offset_in_page
 102       //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 103       //       movk    Rx, #imm16<<32
 104       //   4 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 105       // In the first 3 cases we must check that Rx is the same in the adrp and the
 106       // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end
 107       // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened
 108       // to be followed by a random unrelated ldr/str, add or movk instruction.
 109       //
 110       unsigned insn2 = ((unsigned*)branch)[1];
 111       if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 112                 Instruction_aarch64::extract(insn, 4, 0) ==
 113                         Instruction_aarch64::extract(insn2, 9, 5)) {
 114         // Load/store register (unsigned immediate)
 115         unsigned size = Instruction_aarch64::extract(insn2, 31, 30);
 116         Instruction_aarch64::patch(branch + sizeof (unsigned),
 117                                     21, 10, offset_lo >> size);
 118         guarantee(((dest >> size) << size) == dest, "misaligned target");
 119         instructions = 2;
 120       } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 121                 Instruction_aarch64::extract(insn, 4, 0) ==
 122                         Instruction_aarch64::extract(insn2, 4, 0)) {
 123         // add (immediate)
 124         Instruction_aarch64::patch(branch + sizeof (unsigned),
 125                                    21, 10, offset_lo);
 126         instructions = 2;
 127       } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
 128                    Instruction_aarch64::extract(insn, 4, 0) ==
 129                      Instruction_aarch64::extract(insn2, 4, 0)) {
 130         // movk #imm16<<32
 131         Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32);
 132         long dest = ((long)target & 0xffffffffL) | ((long)branch & 0xffff00000000L);
 133         long pc_page = (long)branch >> 12;
 134         long adr_page = (long)dest >> 12;
 135         offset = adr_page - pc_page;
 136         instructions = 2;
 137       }
 138     }
 139     int offset_lo = offset & 3;
 140     offset >>= 2;
 141     Instruction_aarch64::spatch(branch, 23, 5, offset);
 142     Instruction_aarch64::patch(branch, 30, 29, offset_lo);
 143   } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) {
 144     u_int64_t dest = (u_int64_t)target;
 145     // Move wide constant
 146     assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch");
 147     assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch");
 148     Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff);
 149     Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff);
 150     Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff);
 151     assert(target_addr_for_insn(branch) == target, "should be");
 152     instructions = 3;
 153   } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
 154              Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
 155     // nothing to do
 156     assert(target == 0, "did not expect to relocate target for polling page load");
 157   } else {
 158     ShouldNotReachHere();
 159   }
 160   return instructions * NativeInstruction::instruction_size;
 161 }
 162 
 163 int MacroAssembler::patch_oop(address insn_addr, address o) {
 164   int instructions;
 165   unsigned insn = *(unsigned*)insn_addr;
 166   assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 167 
 168   // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
 169   // narrow OOPs by setting the upper 16 bits in the first
 170   // instruction.
 171   if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
 172     // Move narrow OOP
 173     narrowOop n = CompressedOops::encode((oop)o);
 174     Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 175     Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 176     instructions = 2;
 177   } else {
 178     // Move wide OOP
 179     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 180     uintptr_t dest = (uintptr_t)o;
 181     Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
 182     Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
 183     Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
 184     instructions = 3;
 185   }
 186   return instructions * NativeInstruction::instruction_size;
 187 }
 188 
 189 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) {
 190   // Metatdata pointers are either narrow (32 bits) or wide (48 bits).
 191   // We encode narrow ones by setting the upper 16 bits in the first
 192   // instruction.
 193   NativeInstruction *insn = nativeInstruction_at(insn_addr);
 194   assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 &&
 195          nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 196 
 197   Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 198   Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 199   return 2 * NativeInstruction::instruction_size;
 200 }
 201 
 202 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) {
 203   long offset = 0;
 204   if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) {
 205     // Load register (literal)
 206     offset = Instruction_aarch64::sextract(insn, 23, 5);
 207     return address(((uint64_t)insn_addr + (offset << 2)));
 208   } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
 209     // Unconditional branch (immediate)
 210     offset = Instruction_aarch64::sextract(insn, 25, 0);
 211   } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
 212     // Conditional branch (immediate)
 213     offset = Instruction_aarch64::sextract(insn, 23, 5);
 214   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
 215     // Compare & branch (immediate)
 216     offset = Instruction_aarch64::sextract(insn, 23, 5);
 217    } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
 218     // Test & branch (immediate)
 219     offset = Instruction_aarch64::sextract(insn, 18, 5);
 220   } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
 221     // PC-rel. addressing
 222     offset = Instruction_aarch64::extract(insn, 30, 29);
 223     offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2;
 224     int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0;
 225     if (shift) {
 226       offset <<= shift;
 227       uint64_t target_page = ((uint64_t)insn_addr) + offset;
 228       target_page &= ((uint64_t)-1) << shift;
 229       // Return the target address for the following sequences
 230       //   1 - adrp    Rx, target_page
 231       //       ldr/str Ry, [Rx, #offset_in_page]
 232       //   2 - adrp    Rx, target_page
 233       //       add     Ry, Rx, #offset_in_page
 234       //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 235       //       movk    Rx, #imm12<<32
 236       //   4 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 237       //
 238       // In the first two cases  we check that the register is the same and
 239       // return the target_page + the offset within the page.
 240       // Otherwise we assume it is a page aligned relocation and return
 241       // the target page only.
 242       //
 243       unsigned insn2 = ((unsigned*)insn_addr)[1];
 244       if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 245                 Instruction_aarch64::extract(insn, 4, 0) ==
 246                         Instruction_aarch64::extract(insn2, 9, 5)) {
 247         // Load/store register (unsigned immediate)
 248         unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 249         unsigned int size = Instruction_aarch64::extract(insn2, 31, 30);
 250         return address(target_page + (byte_offset << size));
 251       } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 252                 Instruction_aarch64::extract(insn, 4, 0) ==
 253                         Instruction_aarch64::extract(insn2, 4, 0)) {
 254         // add (immediate)
 255         unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 256         return address(target_page + byte_offset);
 257       } else {
 258         if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110  &&
 259                Instruction_aarch64::extract(insn, 4, 0) ==
 260                  Instruction_aarch64::extract(insn2, 4, 0)) {
 261           target_page = (target_page & 0xffffffff) |
 262                          ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
 263         }
 264         return (address)target_page;
 265       }
 266     } else {
 267       ShouldNotReachHere();
 268     }
 269   } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) {
 270     u_int32_t *insns = (u_int32_t *)insn_addr;
 271     // Move wide constant: movz, movk, movk.  See movptr().
 272     assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
 273     assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
 274     return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5))
 275                    + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
 276                    + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
 277   } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
 278              Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
 279     return 0;
 280   } else {
 281     ShouldNotReachHere();
 282   }
 283   return address(((uint64_t)insn_addr + (offset << 2)));
 284 }
 285 
 286 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
 287   dsb(Assembler::SY);
 288 }
 289 
 290 void MacroAssembler::safepoint_poll(Label& slow_path) {
 291   if (SafepointMechanism::uses_thread_local_poll()) {
 292     ldr(rscratch1, Address(rthread, Thread::polling_page_offset()));
 293     tbnz(rscratch1, exact_log2(SafepointMechanism::poll_bit()), slow_path);
 294   } else {
 295     unsigned long offset;
 296     adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset);
 297     ldrw(rscratch1, Address(rscratch1, offset));
 298     assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code");
 299     cbnz(rscratch1, slow_path);
 300   }
 301 }
 302 
 303 // Just like safepoint_poll, but use an acquiring load for thread-
 304 // local polling.
 305 //
 306 // We need an acquire here to ensure that any subsequent load of the
 307 // global SafepointSynchronize::_state flag is ordered after this load
 308 // of the local Thread::_polling page.  We don't want this poll to
 309 // return false (i.e. not safepointing) and a later poll of the global
 310 // SafepointSynchronize::_state spuriously to return true.
 311 //
 312 // This is to avoid a race when we're in a native->Java transition
 313 // racing the code which wakes up from a safepoint.
 314 //
 315 void MacroAssembler::safepoint_poll_acquire(Label& slow_path) {
 316   if (SafepointMechanism::uses_thread_local_poll()) {
 317     lea(rscratch1, Address(rthread, Thread::polling_page_offset()));
 318     ldar(rscratch1, rscratch1);
 319     tbnz(rscratch1, exact_log2(SafepointMechanism::poll_bit()), slow_path);
 320   } else {
 321     safepoint_poll(slow_path);
 322   }
 323 }
 324 
 325 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 326   // we must set sp to zero to clear frame
 327   str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
 328 
 329   // must clear fp, so that compiled frames are not confused; it is
 330   // possible that we need it only for debugging
 331   if (clear_fp) {
 332     str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
 333   }
 334 
 335   // Always clear the pc because it could have been set by make_walkable()
 336   str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
 337 }
 338 
 339 // Calls to C land
 340 //
 341 // When entering C land, the rfp, & resp of the last Java frame have to be recorded
 342 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 343 // has to be reset to 0. This is required to allow proper stack traversal.
 344 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 345                                          Register last_java_fp,
 346                                          Register last_java_pc,
 347                                          Register scratch) {
 348 
 349   if (last_java_pc->is_valid()) {
 350       str(last_java_pc, Address(rthread,
 351                                 JavaThread::frame_anchor_offset()
 352                                 + JavaFrameAnchor::last_Java_pc_offset()));
 353     }
 354 
 355   // determine last_java_sp register
 356   if (last_java_sp == sp) {
 357     mov(scratch, sp);
 358     last_java_sp = scratch;
 359   } else if (!last_java_sp->is_valid()) {
 360     last_java_sp = esp;
 361   }
 362 
 363   str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
 364 
 365   // last_java_fp is optional
 366   if (last_java_fp->is_valid()) {
 367     str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
 368   }
 369 }
 370 
 371 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 372                                          Register last_java_fp,
 373                                          address  last_java_pc,
 374                                          Register scratch) {
 375   if (last_java_pc != NULL) {
 376     adr(scratch, last_java_pc);
 377   } else {
 378     // FIXME: This is almost never correct.  We should delete all
 379     // cases of set_last_Java_frame with last_java_pc=NULL and use the
 380     // correct return address instead.
 381     adr(scratch, pc());
 382   }
 383 
 384   str(scratch, Address(rthread,
 385                        JavaThread::frame_anchor_offset()
 386                        + JavaFrameAnchor::last_Java_pc_offset()));
 387 
 388   set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
 389 }
 390 
 391 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 392                                          Register last_java_fp,
 393                                          Label &L,
 394                                          Register scratch) {
 395   if (L.is_bound()) {
 396     set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
 397   } else {
 398     InstructionMark im(this);
 399     L.add_patch_at(code(), locator());
 400     set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch);
 401   }
 402 }
 403 
 404 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) {
 405   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 406   assert(CodeCache::find_blob(entry.target()) != NULL,
 407          "destination of far call not found in code cache");
 408   if (far_branches()) {
 409     unsigned long offset;
 410     // We can use ADRP here because we know that the total size of
 411     // the code cache cannot exceed 2Gb.
 412     adrp(tmp, entry, offset);
 413     add(tmp, tmp, offset);
 414     if (cbuf) cbuf->set_insts_mark();
 415     blr(tmp);
 416   } else {
 417     if (cbuf) cbuf->set_insts_mark();
 418     bl(entry);
 419   }
 420 }
 421 
 422 void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) {
 423   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 424   assert(CodeCache::find_blob(entry.target()) != NULL,
 425          "destination of far call not found in code cache");
 426   if (far_branches()) {
 427     unsigned long offset;
 428     // We can use ADRP here because we know that the total size of
 429     // the code cache cannot exceed 2Gb.
 430     adrp(tmp, entry, offset);
 431     add(tmp, tmp, offset);
 432     if (cbuf) cbuf->set_insts_mark();
 433     br(tmp);
 434   } else {
 435     if (cbuf) cbuf->set_insts_mark();
 436     b(entry);
 437   }
 438 }
 439 
 440 void MacroAssembler::reserved_stack_check() {
 441     // testing if reserved zone needs to be enabled
 442     Label no_reserved_zone_enabling;
 443 
 444     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 445     cmp(sp, rscratch1);
 446     br(Assembler::LO, no_reserved_zone_enabling);
 447 
 448     enter();   // LR and FP are live.
 449     lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone));
 450     mov(c_rarg0, rthread);
 451     blr(rscratch1);
 452     leave();
 453 
 454     // We have already removed our own frame.
 455     // throw_delayed_StackOverflowError will think that it's been
 456     // called by our caller.
 457     lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
 458     br(rscratch1);
 459     should_not_reach_here();
 460 
 461     bind(no_reserved_zone_enabling);
 462 }
 463 
 464 int MacroAssembler::biased_locking_enter(Register lock_reg,
 465                                          Register obj_reg,
 466                                          Register swap_reg,
 467                                          Register tmp_reg,
 468                                          bool swap_reg_contains_mark,
 469                                          Label& done,
 470                                          Label* slow_case,
 471                                          BiasedLockingCounters* counters) {
 472   assert(UseBiasedLocking, "why call this otherwise?");
 473   assert_different_registers(lock_reg, obj_reg, swap_reg);
 474 
 475   if (PrintBiasedLockingStatistics && counters == NULL)
 476     counters = BiasedLocking::counters();
 477 
 478   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg);
 479   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
 480   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
 481   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
 482   Address saved_mark_addr(lock_reg, 0);
 483 
 484   // Biased locking
 485   // See whether the lock is currently biased toward our thread and
 486   // whether the epoch is still valid
 487   // Note that the runtime guarantees sufficient alignment of JavaThread
 488   // pointers to allow age to be placed into low bits
 489   // First check to see whether biasing is even enabled for this object
 490   Label cas_label;
 491   int null_check_offset = -1;
 492   if (!swap_reg_contains_mark) {
 493     null_check_offset = offset();
 494     ldr(swap_reg, mark_addr);
 495   }
 496   andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place);
 497   cmp(tmp_reg, markOopDesc::biased_lock_pattern);
 498   br(Assembler::NE, cas_label);
 499   // The bias pattern is present in the object's header. Need to check
 500   // whether the bias owner and the epoch are both still current.
 501   load_prototype_header(tmp_reg, obj_reg);
 502   orr(tmp_reg, tmp_reg, rthread);
 503   eor(tmp_reg, swap_reg, tmp_reg);
 504   andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place));
 505   if (counters != NULL) {
 506     Label around;
 507     cbnz(tmp_reg, around);
 508     atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2);
 509     b(done);
 510     bind(around);
 511   } else {
 512     cbz(tmp_reg, done);
 513   }
 514 
 515   Label try_revoke_bias;
 516   Label try_rebias;
 517 
 518   // At this point we know that the header has the bias pattern and
 519   // that we are not the bias owner in the current epoch. We need to
 520   // figure out more details about the state of the header in order to
 521   // know what operations can be legally performed on the object's
 522   // header.
 523 
 524   // If the low three bits in the xor result aren't clear, that means
 525   // the prototype header is no longer biased and we have to revoke
 526   // the bias on this object.
 527   andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place);
 528   cbnz(rscratch1, try_revoke_bias);
 529 
 530   // Biasing is still enabled for this data type. See whether the
 531   // epoch of the current bias is still valid, meaning that the epoch
 532   // bits of the mark word are equal to the epoch bits of the
 533   // prototype header. (Note that the prototype header's epoch bits
 534   // only change at a safepoint.) If not, attempt to rebias the object
 535   // toward the current thread. Note that we must be absolutely sure
 536   // that the current epoch is invalid in order to do this because
 537   // otherwise the manipulations it performs on the mark word are
 538   // illegal.
 539   andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place);
 540   cbnz(rscratch1, try_rebias);
 541 
 542   // The epoch of the current bias is still valid but we know nothing
 543   // about the owner; it might be set or it might be clear. Try to
 544   // acquire the bias of the object using an atomic operation. If this
 545   // fails we will go in to the runtime to revoke the object's bias.
 546   // Note that we first construct the presumed unbiased header so we
 547   // don't accidentally blow away another thread's valid bias.
 548   {
 549     Label here;
 550     mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
 551     andr(swap_reg, swap_reg, rscratch1);
 552     orr(tmp_reg, swap_reg, rthread);
 553     cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
 554     // If the biasing toward our thread failed, this means that
 555     // another thread succeeded in biasing it toward itself and we
 556     // need to revoke that bias. The revocation will occur in the
 557     // interpreter runtime in the slow case.
 558     bind(here);
 559     if (counters != NULL) {
 560       atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()),
 561                   tmp_reg, rscratch1, rscratch2);
 562     }
 563   }
 564   b(done);
 565 
 566   bind(try_rebias);
 567   // At this point we know the epoch has expired, meaning that the
 568   // current "bias owner", if any, is actually invalid. Under these
 569   // circumstances _only_, we are allowed to use the current header's
 570   // value as the comparison value when doing the cas to acquire the
 571   // bias in the current epoch. In other words, we allow transfer of
 572   // the bias from one thread to another directly in this situation.
 573   //
 574   // FIXME: due to a lack of registers we currently blow away the age
 575   // bits in this situation. Should attempt to preserve them.
 576   {
 577     Label here;
 578     load_prototype_header(tmp_reg, obj_reg);
 579     orr(tmp_reg, rthread, tmp_reg);
 580     cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
 581     // If the biasing toward our thread failed, then another thread
 582     // succeeded in biasing it toward itself and we need to revoke that
 583     // bias. The revocation will occur in the runtime in the slow case.
 584     bind(here);
 585     if (counters != NULL) {
 586       atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()),
 587                   tmp_reg, rscratch1, rscratch2);
 588     }
 589   }
 590   b(done);
 591 
 592   bind(try_revoke_bias);
 593   // The prototype mark in the klass doesn't have the bias bit set any
 594   // more, indicating that objects of this data type are not supposed
 595   // to be biased any more. We are going to try to reset the mark of
 596   // this object to the prototype value and fall through to the
 597   // CAS-based locking scheme. Note that if our CAS fails, it means
 598   // that another thread raced us for the privilege of revoking the
 599   // bias of this particular object, so it's okay to continue in the
 600   // normal locking code.
 601   //
 602   // FIXME: due to a lack of registers we currently blow away the age
 603   // bits in this situation. Should attempt to preserve them.
 604   {
 605     Label here, nope;
 606     load_prototype_header(tmp_reg, obj_reg);
 607     cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope);
 608     bind(here);
 609 
 610     // Fall through to the normal CAS-based lock, because no matter what
 611     // the result of the above CAS, some thread must have succeeded in
 612     // removing the bias bit from the object's header.
 613     if (counters != NULL) {
 614       atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg,
 615                   rscratch1, rscratch2);
 616     }
 617     bind(nope);
 618   }
 619 
 620   bind(cas_label);
 621 
 622   return null_check_offset;
 623 }
 624 
 625 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
 626   assert(UseBiasedLocking, "why call this otherwise?");
 627 
 628   // Check for biased locking unlock case, which is a no-op
 629   // Note: we do not have to check the thread ID for two reasons.
 630   // First, the interpreter checks for IllegalMonitorStateException at
 631   // a higher level. Second, if the bias was revoked while we held the
 632   // lock, the object could not be rebiased toward another thread, so
 633   // the bias bit would be clear.
 634   ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
 635   andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
 636   cmp(temp_reg, markOopDesc::biased_lock_pattern);
 637   br(Assembler::EQ, done);
 638 }
 639 
 640 static void pass_arg0(MacroAssembler* masm, Register arg) {
 641   if (c_rarg0 != arg ) {
 642     masm->mov(c_rarg0, arg);
 643   }
 644 }
 645 
 646 static void pass_arg1(MacroAssembler* masm, Register arg) {
 647   if (c_rarg1 != arg ) {
 648     masm->mov(c_rarg1, arg);
 649   }
 650 }
 651 
 652 static void pass_arg2(MacroAssembler* masm, Register arg) {
 653   if (c_rarg2 != arg ) {
 654     masm->mov(c_rarg2, arg);
 655   }
 656 }
 657 
 658 static void pass_arg3(MacroAssembler* masm, Register arg) {
 659   if (c_rarg3 != arg ) {
 660     masm->mov(c_rarg3, arg);
 661   }
 662 }
 663 
 664 void MacroAssembler::call_VM_base(Register oop_result,
 665                                   Register java_thread,
 666                                   Register last_java_sp,
 667                                   address  entry_point,
 668                                   int      number_of_arguments,
 669                                   bool     check_exceptions) {
 670    // determine java_thread register
 671   if (!java_thread->is_valid()) {
 672     java_thread = rthread;
 673   }
 674 
 675   // determine last_java_sp register
 676   if (!last_java_sp->is_valid()) {
 677     last_java_sp = esp;
 678   }
 679 
 680   // debugging support
 681   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 682   assert(java_thread == rthread, "unexpected register");
 683 #ifdef ASSERT
 684   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 685   // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
 686 #endif // ASSERT
 687 
 688   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 689   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 690 
 691   // push java thread (becomes first argument of C function)
 692 
 693   mov(c_rarg0, java_thread);
 694 
 695   // set last Java frame before call
 696   assert(last_java_sp != rfp, "can't use rfp");
 697 
 698   Label l;
 699   set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
 700 
 701   // do the call, remove parameters
 702   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
 703 
 704   // reset last Java frame
 705   // Only interpreter should have to clear fp
 706   reset_last_Java_frame(true);
 707 
 708    // C++ interp handles this in the interpreter
 709   check_and_handle_popframe(java_thread);
 710   check_and_handle_earlyret(java_thread);
 711 
 712   if (check_exceptions) {
 713     // check for pending exceptions (java_thread is set upon return)
 714     ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
 715     Label ok;
 716     cbz(rscratch1, ok);
 717     lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
 718     br(rscratch1);
 719     bind(ok);
 720   }
 721 
 722   // get oop result if there is one and reset the value in the thread
 723   if (oop_result->is_valid()) {
 724     get_vm_result(oop_result, java_thread);
 725   }
 726 }
 727 
 728 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 729   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
 730 }
 731 
 732 // Maybe emit a call via a trampoline.  If the code cache is small
 733 // trampolines won't be emitted.
 734 
 735 address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) {
 736   assert(JavaThread::current()->is_Compiler_thread(), "just checking");
 737   assert(entry.rspec().type() == relocInfo::runtime_call_type
 738          || entry.rspec().type() == relocInfo::opt_virtual_call_type
 739          || entry.rspec().type() == relocInfo::static_call_type
 740          || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
 741 
 742   unsigned int start_offset = offset();
 743   if (far_branches() && !Compile::current()->in_scratch_emit_size()) {
 744     address stub = emit_trampoline_stub(start_offset, entry.target());
 745     if (stub == NULL) {
 746       return NULL; // CodeCache is full
 747     }
 748   }
 749 
 750   if (cbuf) cbuf->set_insts_mark();
 751   relocate(entry.rspec());
 752   if (!far_branches()) {
 753     bl(entry.target());
 754   } else {
 755     bl(pc());
 756   }
 757   // just need to return a non-null address
 758   return pc();
 759 }
 760 
 761 
 762 // Emit a trampoline stub for a call to a target which is too far away.
 763 //
 764 // code sequences:
 765 //
 766 // call-site:
 767 //   branch-and-link to <destination> or <trampoline stub>
 768 //
 769 // Related trampoline stub for this call site in the stub section:
 770 //   load the call target from the constant pool
 771 //   branch (LR still points to the call site above)
 772 
 773 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
 774                                              address dest) {
 775   address stub = start_a_stub(Compile::MAX_stubs_size/2);
 776   if (stub == NULL) {
 777     return NULL;  // CodeBuffer::expand failed
 778   }
 779 
 780   // Create a trampoline stub relocation which relates this trampoline stub
 781   // with the call instruction at insts_call_instruction_offset in the
 782   // instructions code-section.
 783   align(wordSize);
 784   relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
 785                                             + insts_call_instruction_offset));
 786   const int stub_start_offset = offset();
 787 
 788   // Now, create the trampoline stub's code:
 789   // - load the call
 790   // - call
 791   Label target;
 792   ldr(rscratch1, target);
 793   br(rscratch1);
 794   bind(target);
 795   assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
 796          "should be");
 797   emit_int64((int64_t)dest);
 798 
 799   const address stub_start_addr = addr_at(stub_start_offset);
 800 
 801   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
 802 
 803   end_a_stub();
 804   return stub_start_addr;
 805 }
 806 
 807 address MacroAssembler::ic_call(address entry, jint method_index) {
 808   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 809   // address const_ptr = long_constant((jlong)Universe::non_oop_word());
 810   // unsigned long offset;
 811   // ldr_constant(rscratch2, const_ptr);
 812   movptr(rscratch2, (uintptr_t)Universe::non_oop_word());
 813   return trampoline_call(Address(entry, rh));
 814 }
 815 
 816 // Implementation of call_VM versions
 817 
 818 void MacroAssembler::call_VM(Register oop_result,
 819                              address entry_point,
 820                              bool check_exceptions) {
 821   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
 822 }
 823 
 824 void MacroAssembler::call_VM(Register oop_result,
 825                              address entry_point,
 826                              Register arg_1,
 827                              bool check_exceptions) {
 828   pass_arg1(this, arg_1);
 829   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
 830 }
 831 
 832 void MacroAssembler::call_VM(Register oop_result,
 833                              address entry_point,
 834                              Register arg_1,
 835                              Register arg_2,
 836                              bool check_exceptions) {
 837   assert(arg_1 != c_rarg2, "smashed arg");
 838   pass_arg2(this, arg_2);
 839   pass_arg1(this, arg_1);
 840   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
 841 }
 842 
 843 void MacroAssembler::call_VM(Register oop_result,
 844                              address entry_point,
 845                              Register arg_1,
 846                              Register arg_2,
 847                              Register arg_3,
 848                              bool check_exceptions) {
 849   assert(arg_1 != c_rarg3, "smashed arg");
 850   assert(arg_2 != c_rarg3, "smashed arg");
 851   pass_arg3(this, arg_3);
 852 
 853   assert(arg_1 != c_rarg2, "smashed arg");
 854   pass_arg2(this, arg_2);
 855 
 856   pass_arg1(this, arg_1);
 857   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
 858 }
 859 
 860 void MacroAssembler::call_VM(Register oop_result,
 861                              Register last_java_sp,
 862                              address entry_point,
 863                              int number_of_arguments,
 864                              bool check_exceptions) {
 865   call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 866 }
 867 
 868 void MacroAssembler::call_VM(Register oop_result,
 869                              Register last_java_sp,
 870                              address entry_point,
 871                              Register arg_1,
 872                              bool check_exceptions) {
 873   pass_arg1(this, arg_1);
 874   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 875 }
 876 
 877 void MacroAssembler::call_VM(Register oop_result,
 878                              Register last_java_sp,
 879                              address entry_point,
 880                              Register arg_1,
 881                              Register arg_2,
 882                              bool check_exceptions) {
 883 
 884   assert(arg_1 != c_rarg2, "smashed arg");
 885   pass_arg2(this, arg_2);
 886   pass_arg1(this, arg_1);
 887   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 888 }
 889 
 890 void MacroAssembler::call_VM(Register oop_result,
 891                              Register last_java_sp,
 892                              address entry_point,
 893                              Register arg_1,
 894                              Register arg_2,
 895                              Register arg_3,
 896                              bool check_exceptions) {
 897   assert(arg_1 != c_rarg3, "smashed arg");
 898   assert(arg_2 != c_rarg3, "smashed arg");
 899   pass_arg3(this, arg_3);
 900   assert(arg_1 != c_rarg2, "smashed arg");
 901   pass_arg2(this, arg_2);
 902   pass_arg1(this, arg_1);
 903   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 904 }
 905 
 906 
 907 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
 908   ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
 909   str(zr, Address(java_thread, JavaThread::vm_result_offset()));
 910   verify_oop(oop_result, "broken oop in call_VM_base");
 911 }
 912 
 913 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
 914   ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
 915   str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
 916 }
 917 
 918 void MacroAssembler::align(int modulus) {
 919   while (offset() % modulus != 0) nop();
 920 }
 921 
 922 // these are no-ops overridden by InterpreterMacroAssembler
 923 
 924 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
 925 
 926 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
 927 
 928 
 929 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
 930                                                       Register tmp,
 931                                                       int offset) {
 932   intptr_t value = *delayed_value_addr;
 933   if (value != 0)
 934     return RegisterOrConstant(value + offset);
 935 
 936   // load indirectly to solve generation ordering problem
 937   ldr(tmp, ExternalAddress((address) delayed_value_addr));
 938 
 939   if (offset != 0)
 940     add(tmp, tmp, offset);
 941 
 942   return RegisterOrConstant(tmp);
 943 }
 944 
 945 
 946 void MacroAssembler:: notify(int type) {
 947   if (type == bytecode_start) {
 948     // set_last_Java_frame(esp, rfp, (address)NULL);
 949     Assembler:: notify(type);
 950     // reset_last_Java_frame(true);
 951   }
 952   else
 953     Assembler:: notify(type);
 954 }
 955 
 956 // Look up the method for a megamorphic invokeinterface call.
 957 // The target method is determined by <intf_klass, itable_index>.
 958 // The receiver klass is in recv_klass.
 959 // On success, the result will be in method_result, and execution falls through.
 960 // On failure, execution transfers to the given label.
 961 void MacroAssembler::lookup_interface_method(Register recv_klass,
 962                                              Register intf_klass,
 963                                              RegisterOrConstant itable_index,
 964                                              Register method_result,
 965                                              Register scan_temp,
 966                                              Label& L_no_such_interface,
 967                          bool return_method) {
 968   assert_different_registers(recv_klass, intf_klass, scan_temp);
 969   assert_different_registers(method_result, intf_klass, scan_temp);
 970   assert(recv_klass != method_result || !return_method,
 971      "recv_klass can be destroyed when method isn't needed");
 972   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 973          "caller must use same register for non-constant itable index as for method");
 974 
 975   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
 976   int vtable_base = in_bytes(Klass::vtable_start_offset());
 977   int itentry_off = itableMethodEntry::method_offset_in_bytes();
 978   int scan_step   = itableOffsetEntry::size() * wordSize;
 979   int vte_size    = vtableEntry::size_in_bytes();
 980   assert(vte_size == wordSize, "else adjust times_vte_scale");
 981 
 982   ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 983 
 984   // %%% Could store the aligned, prescaled offset in the klassoop.
 985   // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
 986   lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
 987   add(scan_temp, scan_temp, vtable_base);
 988 
 989   if (return_method) {
 990     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
 991     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 992     // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
 993     lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
 994     if (itentry_off)
 995       add(recv_klass, recv_klass, itentry_off);
 996   }
 997 
 998   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
 999   //   if (scan->interface() == intf) {
1000   //     result = (klass + scan->offset() + itable_index);
1001   //   }
1002   // }
1003   Label search, found_method;
1004 
1005   for (int peel = 1; peel >= 0; peel--) {
1006     ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
1007     cmp(intf_klass, method_result);
1008 
1009     if (peel) {
1010       br(Assembler::EQ, found_method);
1011     } else {
1012       br(Assembler::NE, search);
1013       // (invert the test to fall through to found_method...)
1014     }
1015 
1016     if (!peel)  break;
1017 
1018     bind(search);
1019 
1020     // Check that the previous entry is non-null.  A null entry means that
1021     // the receiver class doesn't implement the interface, and wasn't the
1022     // same as when the caller was compiled.
1023     cbz(method_result, L_no_such_interface);
1024     add(scan_temp, scan_temp, scan_step);
1025   }
1026 
1027   bind(found_method);
1028 
1029   // Got a hit.
1030   if (return_method) {
1031     ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
1032     ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0)));
1033   }
1034 }
1035 
1036 // virtual method calling
1037 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1038                                            RegisterOrConstant vtable_index,
1039                                            Register method_result) {
1040   const int base = in_bytes(Klass::vtable_start_offset());
1041   assert(vtableEntry::size() * wordSize == 8,
1042          "adjust the scaling in the code below");
1043   int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes();
1044 
1045   if (vtable_index.is_register()) {
1046     lea(method_result, Address(recv_klass,
1047                                vtable_index.as_register(),
1048                                Address::lsl(LogBytesPerWord)));
1049     ldr(method_result, Address(method_result, vtable_offset_in_bytes));
1050   } else {
1051     vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
1052     ldr(method_result,
1053         form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0));
1054   }
1055 }
1056 
1057 void MacroAssembler::check_klass_subtype(Register sub_klass,
1058                            Register super_klass,
1059                            Register temp_reg,
1060                            Label& L_success) {
1061   Label L_failure;
1062   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
1063   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
1064   bind(L_failure);
1065 }
1066 
1067 
1068 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1069                                                    Register super_klass,
1070                                                    Register temp_reg,
1071                                                    Label* L_success,
1072                                                    Label* L_failure,
1073                                                    Label* L_slow_path,
1074                                         RegisterOrConstant super_check_offset) {
1075   assert_different_registers(sub_klass, super_klass, temp_reg);
1076   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1077   if (super_check_offset.is_register()) {
1078     assert_different_registers(sub_klass, super_klass,
1079                                super_check_offset.as_register());
1080   } else if (must_load_sco) {
1081     assert(temp_reg != noreg, "supply either a temp or a register offset");
1082   }
1083 
1084   Label L_fallthrough;
1085   int label_nulls = 0;
1086   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1087   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1088   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1089   assert(label_nulls <= 1, "at most one NULL in the batch");
1090 
1091   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1092   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1093   Address super_check_offset_addr(super_klass, sco_offset);
1094 
1095   // Hacked jmp, which may only be used just before L_fallthrough.
1096 #define final_jmp(label)                                                \
1097   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
1098   else                            b(label)                /*omit semi*/
1099 
1100   // If the pointers are equal, we are done (e.g., String[] elements).
1101   // This self-check enables sharing of secondary supertype arrays among
1102   // non-primary types such as array-of-interface.  Otherwise, each such
1103   // type would need its own customized SSA.
1104   // We move this check to the front of the fast path because many
1105   // type checks are in fact trivially successful in this manner,
1106   // so we get a nicely predicted branch right at the start of the check.
1107   cmp(sub_klass, super_klass);
1108   br(Assembler::EQ, *L_success);
1109 
1110   // Check the supertype display:
1111   if (must_load_sco) {
1112     ldrw(temp_reg, super_check_offset_addr);
1113     super_check_offset = RegisterOrConstant(temp_reg);
1114   }
1115   Address super_check_addr(sub_klass, super_check_offset);
1116   ldr(rscratch1, super_check_addr);
1117   cmp(super_klass, rscratch1); // load displayed supertype
1118 
1119   // This check has worked decisively for primary supers.
1120   // Secondary supers are sought in the super_cache ('super_cache_addr').
1121   // (Secondary supers are interfaces and very deeply nested subtypes.)
1122   // This works in the same check above because of a tricky aliasing
1123   // between the super_cache and the primary super display elements.
1124   // (The 'super_check_addr' can address either, as the case requires.)
1125   // Note that the cache is updated below if it does not help us find
1126   // what we need immediately.
1127   // So if it was a primary super, we can just fail immediately.
1128   // Otherwise, it's the slow path for us (no success at this point).
1129 
1130   if (super_check_offset.is_register()) {
1131     br(Assembler::EQ, *L_success);
1132     cmp(super_check_offset.as_register(), sc_offset);
1133     if (L_failure == &L_fallthrough) {
1134       br(Assembler::EQ, *L_slow_path);
1135     } else {
1136       br(Assembler::NE, *L_failure);
1137       final_jmp(*L_slow_path);
1138     }
1139   } else if (super_check_offset.as_constant() == sc_offset) {
1140     // Need a slow path; fast failure is impossible.
1141     if (L_slow_path == &L_fallthrough) {
1142       br(Assembler::EQ, *L_success);
1143     } else {
1144       br(Assembler::NE, *L_slow_path);
1145       final_jmp(*L_success);
1146     }
1147   } else {
1148     // No slow path; it's a fast decision.
1149     if (L_failure == &L_fallthrough) {
1150       br(Assembler::EQ, *L_success);
1151     } else {
1152       br(Assembler::NE, *L_failure);
1153       final_jmp(*L_success);
1154     }
1155   }
1156 
1157   bind(L_fallthrough);
1158 
1159 #undef final_jmp
1160 }
1161 
1162 // These two are taken from x86, but they look generally useful
1163 
1164 // scans count pointer sized words at [addr] for occurence of value,
1165 // generic
1166 void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1167                                 Register scratch) {
1168   Label Lloop, Lexit;
1169   cbz(count, Lexit);
1170   bind(Lloop);
1171   ldr(scratch, post(addr, wordSize));
1172   cmp(value, scratch);
1173   br(EQ, Lexit);
1174   sub(count, count, 1);
1175   cbnz(count, Lloop);
1176   bind(Lexit);
1177 }
1178 
1179 // scans count 4 byte words at [addr] for occurence of value,
1180 // generic
1181 void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1182                                 Register scratch) {
1183   Label Lloop, Lexit;
1184   cbz(count, Lexit);
1185   bind(Lloop);
1186   ldrw(scratch, post(addr, wordSize));
1187   cmpw(value, scratch);
1188   br(EQ, Lexit);
1189   sub(count, count, 1);
1190   cbnz(count, Lloop);
1191   bind(Lexit);
1192 }
1193 
1194 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1195                                                    Register super_klass,
1196                                                    Register temp_reg,
1197                                                    Register temp2_reg,
1198                                                    Label* L_success,
1199                                                    Label* L_failure,
1200                                                    bool set_cond_codes) {
1201   assert_different_registers(sub_klass, super_klass, temp_reg);
1202   if (temp2_reg != noreg)
1203     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1204 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1205 
1206   Label L_fallthrough;
1207   int label_nulls = 0;
1208   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1209   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1210   assert(label_nulls <= 1, "at most one NULL in the batch");
1211 
1212   // a couple of useful fields in sub_klass:
1213   int ss_offset = in_bytes(Klass::secondary_supers_offset());
1214   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1215   Address secondary_supers_addr(sub_klass, ss_offset);
1216   Address super_cache_addr(     sub_klass, sc_offset);
1217 
1218   BLOCK_COMMENT("check_klass_subtype_slow_path");
1219 
1220   // Do a linear scan of the secondary super-klass chain.
1221   // This code is rarely used, so simplicity is a virtue here.
1222   // The repne_scan instruction uses fixed registers, which we must spill.
1223   // Don't worry too much about pre-existing connections with the input regs.
1224 
1225   assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1226   assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1227 
1228   RegSet pushed_registers;
1229   if (!IS_A_TEMP(r2))    pushed_registers += r2;
1230   if (!IS_A_TEMP(r5))    pushed_registers += r5;
1231 
1232   if (super_klass != r0 || UseCompressedOops) {
1233     if (!IS_A_TEMP(r0))   pushed_registers += r0;
1234   }
1235 
1236   push(pushed_registers, sp);
1237 
1238   // Get super_klass value into r0 (even if it was in r5 or r2).
1239   if (super_klass != r0) {
1240     mov(r0, super_klass);
1241   }
1242 
1243 #ifndef PRODUCT
1244   mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr);
1245   Address pst_counter_addr(rscratch2);
1246   ldr(rscratch1, pst_counter_addr);
1247   add(rscratch1, rscratch1, 1);
1248   str(rscratch1, pst_counter_addr);
1249 #endif //PRODUCT
1250 
1251   // We will consult the secondary-super array.
1252   ldr(r5, secondary_supers_addr);
1253   // Load the array length.
1254   ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1255   // Skip to start of data.
1256   add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1257 
1258   cmp(sp, zr); // Clear Z flag; SP is never zero
1259   // Scan R2 words at [R5] for an occurrence of R0.
1260   // Set NZ/Z based on last compare.
1261   repne_scan(r5, r0, r2, rscratch1);
1262 
1263   // Unspill the temp. registers:
1264   pop(pushed_registers, sp);
1265 
1266   br(Assembler::NE, *L_failure);
1267 
1268   // Success.  Cache the super we found and proceed in triumph.
1269   str(super_klass, super_cache_addr);
1270 
1271   if (L_success != &L_fallthrough) {
1272     b(*L_success);
1273   }
1274 
1275 #undef IS_A_TEMP
1276 
1277   bind(L_fallthrough);
1278 }
1279 
1280 
1281 void MacroAssembler::verify_oop(Register reg, const char* s) {
1282   if (!VerifyOops) return;
1283 
1284   // Pass register number to verify_oop_subroutine
1285   const char* b = NULL;
1286   {
1287     ResourceMark rm;
1288     stringStream ss;
1289     ss.print("verify_oop: %s: %s", reg->name(), s);
1290     b = code_string(ss.as_string());
1291   }
1292   BLOCK_COMMENT("verify_oop {");
1293 
1294   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1295   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1296 
1297   mov(r0, reg);
1298   mov(rscratch1, (address)b);
1299 
1300   // call indirectly to solve generation ordering problem
1301   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1302   ldr(rscratch2, Address(rscratch2));
1303   blr(rscratch2);
1304 
1305   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1306   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1307 
1308   BLOCK_COMMENT("} verify_oop");
1309 }
1310 
1311 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
1312   if (!VerifyOops) return;
1313 
1314   const char* b = NULL;
1315   {
1316     ResourceMark rm;
1317     stringStream ss;
1318     ss.print("verify_oop_addr: %s", s);
1319     b = code_string(ss.as_string());
1320   }
1321   BLOCK_COMMENT("verify_oop_addr {");
1322 
1323   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1324   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1325 
1326   // addr may contain sp so we will have to adjust it based on the
1327   // pushes that we just did.
1328   if (addr.uses(sp)) {
1329     lea(r0, addr);
1330     ldr(r0, Address(r0, 4 * wordSize));
1331   } else {
1332     ldr(r0, addr);
1333   }
1334   mov(rscratch1, (address)b);
1335 
1336   // call indirectly to solve generation ordering problem
1337   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1338   ldr(rscratch2, Address(rscratch2));
1339   blr(rscratch2);
1340 
1341   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1342   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1343 
1344   BLOCK_COMMENT("} verify_oop_addr");
1345 }
1346 
1347 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1348                                          int extra_slot_offset) {
1349   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1350   int stackElementSize = Interpreter::stackElementSize;
1351   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1352 #ifdef ASSERT
1353   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1354   assert(offset1 - offset == stackElementSize, "correct arithmetic");
1355 #endif
1356   if (arg_slot.is_constant()) {
1357     return Address(esp, arg_slot.as_constant() * stackElementSize
1358                    + offset);
1359   } else {
1360     add(rscratch1, esp, arg_slot.as_register(),
1361         ext::uxtx, exact_log2(stackElementSize));
1362     return Address(rscratch1, offset);
1363   }
1364 }
1365 
1366 void MacroAssembler::call_VM_leaf_base(address entry_point,
1367                                        int number_of_arguments,
1368                                        Label *retaddr) {
1369   call_VM_leaf_base1(entry_point, number_of_arguments, 0, ret_type_integral, retaddr);
1370 }
1371 
1372 void MacroAssembler::call_VM_leaf_base1(address entry_point,
1373                                         int number_of_gp_arguments,
1374                                         int number_of_fp_arguments,
1375                                         ret_type type,
1376                                         Label *retaddr) {
1377   Label E, L;
1378 
1379   stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1380 
1381   // We add 1 to number_of_arguments because the thread in arg0 is
1382   // not counted
1383   mov(rscratch1, entry_point);
1384   blrt(rscratch1, number_of_gp_arguments + 1, number_of_fp_arguments, type);
1385   if (retaddr)
1386     bind(*retaddr);
1387 
1388   ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1389   maybe_isb();
1390 }
1391 
1392 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1393   call_VM_leaf_base(entry_point, number_of_arguments);
1394 }
1395 
1396 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1397   pass_arg0(this, arg_0);
1398   call_VM_leaf_base(entry_point, 1);
1399 }
1400 
1401 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1402   pass_arg0(this, arg_0);
1403   pass_arg1(this, arg_1);
1404   call_VM_leaf_base(entry_point, 2);
1405 }
1406 
1407 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1408                                   Register arg_1, Register arg_2) {
1409   pass_arg0(this, arg_0);
1410   pass_arg1(this, arg_1);
1411   pass_arg2(this, arg_2);
1412   call_VM_leaf_base(entry_point, 3);
1413 }
1414 
1415 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1416   pass_arg0(this, arg_0);
1417   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1418 }
1419 
1420 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1421 
1422   assert(arg_0 != c_rarg1, "smashed arg");
1423   pass_arg1(this, arg_1);
1424   pass_arg0(this, arg_0);
1425   MacroAssembler::call_VM_leaf_base(entry_point, 2);
1426 }
1427 
1428 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1429   assert(arg_0 != c_rarg2, "smashed arg");
1430   assert(arg_1 != c_rarg2, "smashed arg");
1431   pass_arg2(this, arg_2);
1432   assert(arg_0 != c_rarg1, "smashed arg");
1433   pass_arg1(this, arg_1);
1434   pass_arg0(this, arg_0);
1435   MacroAssembler::call_VM_leaf_base(entry_point, 3);
1436 }
1437 
1438 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1439   assert(arg_0 != c_rarg3, "smashed arg");
1440   assert(arg_1 != c_rarg3, "smashed arg");
1441   assert(arg_2 != c_rarg3, "smashed arg");
1442   pass_arg3(this, arg_3);
1443   assert(arg_0 != c_rarg2, "smashed arg");
1444   assert(arg_1 != c_rarg2, "smashed arg");
1445   pass_arg2(this, arg_2);
1446   assert(arg_0 != c_rarg1, "smashed arg");
1447   pass_arg1(this, arg_1);
1448   pass_arg0(this, arg_0);
1449   MacroAssembler::call_VM_leaf_base(entry_point, 4);
1450 }
1451 
1452 void MacroAssembler::null_check(Register reg, int offset) {
1453   if (needs_explicit_null_check(offset)) {
1454     // provoke OS NULL exception if reg = NULL by
1455     // accessing M[reg] w/o changing any registers
1456     // NOTE: this is plenty to provoke a segv
1457     ldr(zr, Address(reg));
1458   } else {
1459     // nothing to do, (later) access of M[reg + offset]
1460     // will provoke OS NULL exception if reg = NULL
1461   }
1462 }
1463 
1464 // MacroAssembler protected routines needed to implement
1465 // public methods
1466 
1467 void MacroAssembler::mov(Register r, Address dest) {
1468   code_section()->relocate(pc(), dest.rspec());
1469   u_int64_t imm64 = (u_int64_t)dest.target();
1470   movptr(r, imm64);
1471 }
1472 
1473 // Move a constant pointer into r.  In AArch64 mode the virtual
1474 // address space is 48 bits in size, so we only need three
1475 // instructions to create a patchable instruction sequence that can
1476 // reach anywhere.
1477 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1478 #ifndef PRODUCT
1479   {
1480     char buffer[64];
1481     snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1482     block_comment(buffer);
1483   }
1484 #endif
1485   assert(imm64 < (1ul << 48), "48-bit overflow in address constant");
1486   movz(r, imm64 & 0xffff);
1487   imm64 >>= 16;
1488   movk(r, imm64 & 0xffff, 16);
1489   imm64 >>= 16;
1490   movk(r, imm64 & 0xffff, 32);
1491 }
1492 
1493 // Macro to mov replicated immediate to vector register.
1494 //  Vd will get the following values for different arrangements in T
1495 //   imm32 == hex 000000gh  T8B:  Vd = ghghghghghghghgh
1496 //   imm32 == hex 000000gh  T16B: Vd = ghghghghghghghghghghghghghghghgh
1497 //   imm32 == hex 0000efgh  T4H:  Vd = efghefghefghefgh
1498 //   imm32 == hex 0000efgh  T8H:  Vd = efghefghefghefghefghefghefghefgh
1499 //   imm32 == hex abcdefgh  T2S:  Vd = abcdefghabcdefgh
1500 //   imm32 == hex abcdefgh  T4S:  Vd = abcdefghabcdefghabcdefghabcdefgh
1501 //   T1D/T2D: invalid
1502 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) {
1503   assert(T != T1D && T != T2D, "invalid arrangement");
1504   if (T == T8B || T == T16B) {
1505     assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)");
1506     movi(Vd, T, imm32 & 0xff, 0);
1507     return;
1508   }
1509   u_int32_t nimm32 = ~imm32;
1510   if (T == T4H || T == T8H) {
1511     assert((imm32  & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)");
1512     imm32 &= 0xffff;
1513     nimm32 &= 0xffff;
1514   }
1515   u_int32_t x = imm32;
1516   int movi_cnt = 0;
1517   int movn_cnt = 0;
1518   while (x) { if (x & 0xff) movi_cnt++; x >>= 8; }
1519   x = nimm32;
1520   while (x) { if (x & 0xff) movn_cnt++; x >>= 8; }
1521   if (movn_cnt < movi_cnt) imm32 = nimm32;
1522   unsigned lsl = 0;
1523   while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1524   if (movn_cnt < movi_cnt)
1525     mvni(Vd, T, imm32 & 0xff, lsl);
1526   else
1527     movi(Vd, T, imm32 & 0xff, lsl);
1528   imm32 >>= 8; lsl += 8;
1529   while (imm32) {
1530     while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1531     if (movn_cnt < movi_cnt)
1532       bici(Vd, T, imm32 & 0xff, lsl);
1533     else
1534       orri(Vd, T, imm32 & 0xff, lsl);
1535     lsl += 8; imm32 >>= 8;
1536   }
1537 }
1538 
1539 void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64)
1540 {
1541 #ifndef PRODUCT
1542   {
1543     char buffer[64];
1544     snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1545     block_comment(buffer);
1546   }
1547 #endif
1548   if (operand_valid_for_logical_immediate(false, imm64)) {
1549     orr(dst, zr, imm64);
1550   } else {
1551     // we can use a combination of MOVZ or MOVN with
1552     // MOVK to build up the constant
1553     u_int64_t imm_h[4];
1554     int zero_count = 0;
1555     int neg_count = 0;
1556     int i;
1557     for (i = 0; i < 4; i++) {
1558       imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
1559       if (imm_h[i] == 0) {
1560         zero_count++;
1561       } else if (imm_h[i] == 0xffffL) {
1562         neg_count++;
1563       }
1564     }
1565     if (zero_count == 4) {
1566       // one MOVZ will do
1567       movz(dst, 0);
1568     } else if (neg_count == 4) {
1569       // one MOVN will do
1570       movn(dst, 0);
1571     } else if (zero_count == 3) {
1572       for (i = 0; i < 4; i++) {
1573         if (imm_h[i] != 0L) {
1574           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1575           break;
1576         }
1577       }
1578     } else if (neg_count == 3) {
1579       // one MOVN will do
1580       for (int i = 0; i < 4; i++) {
1581         if (imm_h[i] != 0xffffL) {
1582           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1583           break;
1584         }
1585       }
1586     } else if (zero_count == 2) {
1587       // one MOVZ and one MOVK will do
1588       for (i = 0; i < 3; i++) {
1589         if (imm_h[i] != 0L) {
1590           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1591           i++;
1592           break;
1593         }
1594       }
1595       for (;i < 4; i++) {
1596         if (imm_h[i] != 0L) {
1597           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1598         }
1599       }
1600     } else if (neg_count == 2) {
1601       // one MOVN and one MOVK will do
1602       for (i = 0; i < 4; i++) {
1603         if (imm_h[i] != 0xffffL) {
1604           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1605           i++;
1606           break;
1607         }
1608       }
1609       for (;i < 4; i++) {
1610         if (imm_h[i] != 0xffffL) {
1611           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1612         }
1613       }
1614     } else if (zero_count == 1) {
1615       // one MOVZ and two MOVKs will do
1616       for (i = 0; i < 4; i++) {
1617         if (imm_h[i] != 0L) {
1618           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1619           i++;
1620           break;
1621         }
1622       }
1623       for (;i < 4; i++) {
1624         if (imm_h[i] != 0x0L) {
1625           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1626         }
1627       }
1628     } else if (neg_count == 1) {
1629       // one MOVN and two MOVKs will do
1630       for (i = 0; i < 4; i++) {
1631         if (imm_h[i] != 0xffffL) {
1632           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1633           i++;
1634           break;
1635         }
1636       }
1637       for (;i < 4; i++) {
1638         if (imm_h[i] != 0xffffL) {
1639           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1640         }
1641       }
1642     } else {
1643       // use a MOVZ and 3 MOVKs (makes it easier to debug)
1644       movz(dst, (u_int32_t)imm_h[0], 0);
1645       for (i = 1; i < 4; i++) {
1646         movk(dst, (u_int32_t)imm_h[i], (i << 4));
1647       }
1648     }
1649   }
1650 }
1651 
1652 void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32)
1653 {
1654 #ifndef PRODUCT
1655     {
1656       char buffer[64];
1657       snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32);
1658       block_comment(buffer);
1659     }
1660 #endif
1661   if (operand_valid_for_logical_immediate(true, imm32)) {
1662     orrw(dst, zr, imm32);
1663   } else {
1664     // we can use MOVZ, MOVN or two calls to MOVK to build up the
1665     // constant
1666     u_int32_t imm_h[2];
1667     imm_h[0] = imm32 & 0xffff;
1668     imm_h[1] = ((imm32 >> 16) & 0xffff);
1669     if (imm_h[0] == 0) {
1670       movzw(dst, imm_h[1], 16);
1671     } else if (imm_h[0] == 0xffff) {
1672       movnw(dst, imm_h[1] ^ 0xffff, 16);
1673     } else if (imm_h[1] == 0) {
1674       movzw(dst, imm_h[0], 0);
1675     } else if (imm_h[1] == 0xffff) {
1676       movnw(dst, imm_h[0] ^ 0xffff, 0);
1677     } else {
1678       // use a MOVZ and MOVK (makes it easier to debug)
1679       movzw(dst, imm_h[0], 0);
1680       movkw(dst, imm_h[1], 16);
1681     }
1682   }
1683 }
1684 
1685 // Form an address from base + offset in Rd.  Rd may or may
1686 // not actually be used: you must use the Address that is returned.
1687 // It is up to you to ensure that the shift provided matches the size
1688 // of your data.
1689 Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) {
1690   if (Address::offset_ok_for_immed(byte_offset, shift))
1691     // It fits; no need for any heroics
1692     return Address(base, byte_offset);
1693 
1694   // Don't do anything clever with negative or misaligned offsets
1695   unsigned mask = (1 << shift) - 1;
1696   if (byte_offset < 0 || byte_offset & mask) {
1697     mov(Rd, byte_offset);
1698     add(Rd, base, Rd);
1699     return Address(Rd);
1700   }
1701 
1702   // See if we can do this with two 12-bit offsets
1703   {
1704     unsigned long word_offset = byte_offset >> shift;
1705     unsigned long masked_offset = word_offset & 0xfff000;
1706     if (Address::offset_ok_for_immed(word_offset - masked_offset)
1707         && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
1708       add(Rd, base, masked_offset << shift);
1709       word_offset -= masked_offset;
1710       return Address(Rd, word_offset << shift);
1711     }
1712   }
1713 
1714   // Do it the hard way
1715   mov(Rd, byte_offset);
1716   add(Rd, base, Rd);
1717   return Address(Rd);
1718 }
1719 
1720 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) {
1721   if (UseLSE) {
1722     mov(tmp, 1);
1723     ldadd(Assembler::word, tmp, zr, counter_addr);
1724     return;
1725   }
1726   Label retry_load;
1727   if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
1728     prfm(Address(counter_addr), PSTL1STRM);
1729   bind(retry_load);
1730   // flush and load exclusive from the memory location
1731   ldxrw(tmp, counter_addr);
1732   addw(tmp, tmp, 1);
1733   // if we store+flush with no intervening write tmp wil be zero
1734   stxrw(tmp2, tmp, counter_addr);
1735   cbnzw(tmp2, retry_load);
1736 }
1737 
1738 
1739 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
1740                                     bool want_remainder, Register scratch)
1741 {
1742   // Full implementation of Java idiv and irem.  The function
1743   // returns the (pc) offset of the div instruction - may be needed
1744   // for implicit exceptions.
1745   //
1746   // constraint : ra/rb =/= scratch
1747   //         normal case
1748   //
1749   // input : ra: dividend
1750   //         rb: divisor
1751   //
1752   // result: either
1753   //         quotient  (= ra idiv rb)
1754   //         remainder (= ra irem rb)
1755 
1756   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1757 
1758   int idivl_offset = offset();
1759   if (! want_remainder) {
1760     sdivw(result, ra, rb);
1761   } else {
1762     sdivw(scratch, ra, rb);
1763     Assembler::msubw(result, scratch, rb, ra);
1764   }
1765 
1766   return idivl_offset;
1767 }
1768 
1769 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
1770                                     bool want_remainder, Register scratch)
1771 {
1772   // Full implementation of Java ldiv and lrem.  The function
1773   // returns the (pc) offset of the div instruction - may be needed
1774   // for implicit exceptions.
1775   //
1776   // constraint : ra/rb =/= scratch
1777   //         normal case
1778   //
1779   // input : ra: dividend
1780   //         rb: divisor
1781   //
1782   // result: either
1783   //         quotient  (= ra idiv rb)
1784   //         remainder (= ra irem rb)
1785 
1786   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1787 
1788   int idivq_offset = offset();
1789   if (! want_remainder) {
1790     sdiv(result, ra, rb);
1791   } else {
1792     sdiv(scratch, ra, rb);
1793     Assembler::msub(result, scratch, rb, ra);
1794   }
1795 
1796   return idivq_offset;
1797 }
1798 
1799 void MacroAssembler::membar(Membar_mask_bits order_constraint) {
1800   address prev = pc() - NativeMembar::instruction_size;
1801   address last = code()->last_insn();
1802   if (last != NULL && nativeInstruction_at(last)->is_Membar() && prev == last) {
1803     NativeMembar *bar = NativeMembar_at(prev);
1804     // We are merging two memory barrier instructions.  On AArch64 we
1805     // can do this simply by ORing them together.
1806     bar->set_kind(bar->get_kind() | order_constraint);
1807     BLOCK_COMMENT("merged membar");
1808   } else {
1809     code()->set_last_insn(pc());
1810     dmb(Assembler::barrier(order_constraint));
1811   }
1812 }
1813 
1814 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) {
1815   if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) {
1816     merge_ldst(rt, adr, size_in_bytes, is_store);
1817     code()->clear_last_insn();
1818     return true;
1819   } else {
1820     assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported.");
1821     const unsigned mask = size_in_bytes - 1;
1822     if (adr.getMode() == Address::base_plus_offset &&
1823         (adr.offset() & mask) == 0) { // only supports base_plus_offset.
1824       code()->set_last_insn(pc());
1825     }
1826     return false;
1827   }
1828 }
1829 
1830 void MacroAssembler::ldr(Register Rx, const Address &adr) {
1831   // We always try to merge two adjacent loads into one ldp.
1832   if (!try_merge_ldst(Rx, adr, 8, false)) {
1833     Assembler::ldr(Rx, adr);
1834   }
1835 }
1836 
1837 void MacroAssembler::ldrw(Register Rw, const Address &adr) {
1838   // We always try to merge two adjacent loads into one ldp.
1839   if (!try_merge_ldst(Rw, adr, 4, false)) {
1840     Assembler::ldrw(Rw, adr);
1841   }
1842 }
1843 
1844 void MacroAssembler::str(Register Rx, const Address &adr) {
1845   // We always try to merge two adjacent stores into one stp.
1846   if (!try_merge_ldst(Rx, adr, 8, true)) {
1847     Assembler::str(Rx, adr);
1848   }
1849 }
1850 
1851 void MacroAssembler::strw(Register Rw, const Address &adr) {
1852   // We always try to merge two adjacent stores into one stp.
1853   if (!try_merge_ldst(Rw, adr, 4, true)) {
1854     Assembler::strw(Rw, adr);
1855   }
1856 }
1857 
1858 // MacroAssembler routines found actually to be needed
1859 
1860 void MacroAssembler::push(Register src)
1861 {
1862   str(src, Address(pre(esp, -1 * wordSize)));
1863 }
1864 
1865 void MacroAssembler::pop(Register dst)
1866 {
1867   ldr(dst, Address(post(esp, 1 * wordSize)));
1868 }
1869 
1870 // Note: load_unsigned_short used to be called load_unsigned_word.
1871 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
1872   int off = offset();
1873   ldrh(dst, src);
1874   return off;
1875 }
1876 
1877 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
1878   int off = offset();
1879   ldrb(dst, src);
1880   return off;
1881 }
1882 
1883 int MacroAssembler::load_signed_short(Register dst, Address src) {
1884   int off = offset();
1885   ldrsh(dst, src);
1886   return off;
1887 }
1888 
1889 int MacroAssembler::load_signed_byte(Register dst, Address src) {
1890   int off = offset();
1891   ldrsb(dst, src);
1892   return off;
1893 }
1894 
1895 int MacroAssembler::load_signed_short32(Register dst, Address src) {
1896   int off = offset();
1897   ldrshw(dst, src);
1898   return off;
1899 }
1900 
1901 int MacroAssembler::load_signed_byte32(Register dst, Address src) {
1902   int off = offset();
1903   ldrsbw(dst, src);
1904   return off;
1905 }
1906 
1907 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
1908   switch (size_in_bytes) {
1909   case  8:  ldr(dst, src); break;
1910   case  4:  ldrw(dst, src); break;
1911   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
1912   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
1913   default:  ShouldNotReachHere();
1914   }
1915 }
1916 
1917 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
1918   switch (size_in_bytes) {
1919   case  8:  str(src, dst); break;
1920   case  4:  strw(src, dst); break;
1921   case  2:  strh(src, dst); break;
1922   case  1:  strb(src, dst); break;
1923   default:  ShouldNotReachHere();
1924   }
1925 }
1926 
1927 void MacroAssembler::decrementw(Register reg, int value)
1928 {
1929   if (value < 0)  { incrementw(reg, -value);      return; }
1930   if (value == 0) {                               return; }
1931   if (value < (1 << 12)) { subw(reg, reg, value); return; }
1932   /* else */ {
1933     guarantee(reg != rscratch2, "invalid dst for register decrement");
1934     movw(rscratch2, (unsigned)value);
1935     subw(reg, reg, rscratch2);
1936   }
1937 }
1938 
1939 void MacroAssembler::decrement(Register reg, int value)
1940 {
1941   if (value < 0)  { increment(reg, -value);      return; }
1942   if (value == 0) {                              return; }
1943   if (value < (1 << 12)) { sub(reg, reg, value); return; }
1944   /* else */ {
1945     assert(reg != rscratch2, "invalid dst for register decrement");
1946     mov(rscratch2, (unsigned long)value);
1947     sub(reg, reg, rscratch2);
1948   }
1949 }
1950 
1951 void MacroAssembler::decrementw(Address dst, int value)
1952 {
1953   assert(!dst.uses(rscratch1), "invalid dst for address decrement");
1954   if (dst.getMode() == Address::literal) {
1955     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
1956     lea(rscratch2, dst);
1957     dst = Address(rscratch2);
1958   }
1959   ldrw(rscratch1, dst);
1960   decrementw(rscratch1, value);
1961   strw(rscratch1, dst);
1962 }
1963 
1964 void MacroAssembler::decrement(Address dst, int value)
1965 {
1966   assert(!dst.uses(rscratch1), "invalid address for decrement");
1967   if (dst.getMode() == Address::literal) {
1968     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
1969     lea(rscratch2, dst);
1970     dst = Address(rscratch2);
1971   }
1972   ldr(rscratch1, dst);
1973   decrement(rscratch1, value);
1974   str(rscratch1, dst);
1975 }
1976 
1977 void MacroAssembler::incrementw(Register reg, int value)
1978 {
1979   if (value < 0)  { decrementw(reg, -value);      return; }
1980   if (value == 0) {                               return; }
1981   if (value < (1 << 12)) { addw(reg, reg, value); return; }
1982   /* else */ {
1983     assert(reg != rscratch2, "invalid dst for register increment");
1984     movw(rscratch2, (unsigned)value);
1985     addw(reg, reg, rscratch2);
1986   }
1987 }
1988 
1989 void MacroAssembler::increment(Register reg, int value)
1990 {
1991   if (value < 0)  { decrement(reg, -value);      return; }
1992   if (value == 0) {                              return; }
1993   if (value < (1 << 12)) { add(reg, reg, value); return; }
1994   /* else */ {
1995     assert(reg != rscratch2, "invalid dst for register increment");
1996     movw(rscratch2, (unsigned)value);
1997     add(reg, reg, rscratch2);
1998   }
1999 }
2000 
2001 void MacroAssembler::incrementw(Address dst, int value)
2002 {
2003   assert(!dst.uses(rscratch1), "invalid dst for address increment");
2004   if (dst.getMode() == Address::literal) {
2005     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2006     lea(rscratch2, dst);
2007     dst = Address(rscratch2);
2008   }
2009   ldrw(rscratch1, dst);
2010   incrementw(rscratch1, value);
2011   strw(rscratch1, dst);
2012 }
2013 
2014 void MacroAssembler::increment(Address dst, int value)
2015 {
2016   assert(!dst.uses(rscratch1), "invalid dst for address increment");
2017   if (dst.getMode() == Address::literal) {
2018     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2019     lea(rscratch2, dst);
2020     dst = Address(rscratch2);
2021   }
2022   ldr(rscratch1, dst);
2023   increment(rscratch1, value);
2024   str(rscratch1, dst);
2025 }
2026 
2027 
2028 void MacroAssembler::pusha() {
2029   push(0x7fffffff, sp);
2030 }
2031 
2032 void MacroAssembler::popa() {
2033   pop(0x7fffffff, sp);
2034 }
2035 
2036 // Push lots of registers in the bit set supplied.  Don't push sp.
2037 // Return the number of words pushed
2038 int MacroAssembler::push(unsigned int bitset, Register stack) {
2039   int words_pushed = 0;
2040 
2041   // Scan bitset to accumulate register pairs
2042   unsigned char regs[32];
2043   int count = 0;
2044   for (int reg = 0; reg <= 30; reg++) {
2045     if (1 & bitset)
2046       regs[count++] = reg;
2047     bitset >>= 1;
2048   }
2049   regs[count++] = zr->encoding_nocheck();
2050   count &= ~1;  // Only push an even nuber of regs
2051 
2052   if (count) {
2053     stp(as_Register(regs[0]), as_Register(regs[1]),
2054        Address(pre(stack, -count * wordSize)));
2055     words_pushed += 2;
2056   }
2057   for (int i = 2; i < count; i += 2) {
2058     stp(as_Register(regs[i]), as_Register(regs[i+1]),
2059        Address(stack, i * wordSize));
2060     words_pushed += 2;
2061   }
2062 
2063   assert(words_pushed == count, "oops, pushed != count");
2064 
2065   return count;
2066 }
2067 
2068 int MacroAssembler::pop(unsigned int bitset, Register stack) {
2069   int words_pushed = 0;
2070 
2071   // Scan bitset to accumulate register pairs
2072   unsigned char regs[32];
2073   int count = 0;
2074   for (int reg = 0; reg <= 30; reg++) {
2075     if (1 & bitset)
2076       regs[count++] = reg;
2077     bitset >>= 1;
2078   }
2079   regs[count++] = zr->encoding_nocheck();
2080   count &= ~1;
2081 
2082   for (int i = 2; i < count; i += 2) {
2083     ldp(as_Register(regs[i]), as_Register(regs[i+1]),
2084        Address(stack, i * wordSize));
2085     words_pushed += 2;
2086   }
2087   if (count) {
2088     ldp(as_Register(regs[0]), as_Register(regs[1]),
2089        Address(post(stack, count * wordSize)));
2090     words_pushed += 2;
2091   }
2092 
2093   assert(words_pushed == count, "oops, pushed != count");
2094 
2095   return count;
2096 }
2097 #ifdef ASSERT
2098 void MacroAssembler::verify_heapbase(const char* msg) {
2099 #if 0
2100   assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
2101   assert (Universe::heap() != NULL, "java heap should be initialized");
2102   if (CheckCompressedOops) {
2103     Label ok;
2104     push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
2105     cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
2106     br(Assembler::EQ, ok);
2107     stop(msg);
2108     bind(ok);
2109     pop(1 << rscratch1->encoding(), sp);
2110   }
2111 #endif
2112 }
2113 #endif
2114 
2115 void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) {
2116   Label done, not_weak;
2117   cbz(value, done);           // Use NULL as-is.
2118 
2119   STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u);
2120   tbz(r0, 0, not_weak);    // Test for jweak tag.
2121 
2122   // Resolve jweak.
2123   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, value,
2124                  Address(value, -JNIHandles::weak_tag_value), tmp, thread);
2125   verify_oop(value);
2126   b(done);
2127 
2128   bind(not_weak);
2129   // Resolve (untagged) jobject.
2130   access_load_at(T_OBJECT, IN_CONCURRENT_ROOT, value, Address(value, 0), tmp,
2131                  thread);
2132   verify_oop(value);
2133   bind(done);
2134 }
2135 
2136 void MacroAssembler::stop(const char* msg) {
2137   address ip = pc();
2138   pusha();
2139   mov(c_rarg0, (address)msg);
2140   mov(c_rarg1, (address)ip);
2141   mov(c_rarg2, sp);
2142   mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
2143   // call(c_rarg3);
2144   blrt(c_rarg3, 3, 0, 1);
2145   hlt(0);
2146 }
2147 
2148 void MacroAssembler::unimplemented(const char* what) {
2149   const char* buf = NULL;
2150   {
2151     ResourceMark rm;
2152     stringStream ss;
2153     ss.print("unimplemented: %s", what);
2154     buf = code_string(ss.as_string());
2155   }
2156   stop(buf);
2157 }
2158 
2159 // If a constant does not fit in an immediate field, generate some
2160 // number of MOV instructions and then perform the operation.
2161 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
2162                                            add_sub_imm_insn insn1,
2163                                            add_sub_reg_insn insn2) {
2164   assert(Rd != zr, "Rd = zr and not setting flags?");
2165   if (operand_valid_for_add_sub_immediate((int)imm)) {
2166     (this->*insn1)(Rd, Rn, imm);
2167   } else {
2168     if (uabs(imm) < (1 << 24)) {
2169        (this->*insn1)(Rd, Rn, imm & -(1 << 12));
2170        (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
2171     } else {
2172        assert_different_registers(Rd, Rn);
2173        mov(Rd, (uint64_t)imm);
2174        (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2175     }
2176   }
2177 }
2178 
2179 // Seperate vsn which sets the flags. Optimisations are more restricted
2180 // because we must set the flags correctly.
2181 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
2182                                            add_sub_imm_insn insn1,
2183                                            add_sub_reg_insn insn2) {
2184   if (operand_valid_for_add_sub_immediate((int)imm)) {
2185     (this->*insn1)(Rd, Rn, imm);
2186   } else {
2187     assert_different_registers(Rd, Rn);
2188     assert(Rd != zr, "overflow in immediate operand");
2189     mov(Rd, (uint64_t)imm);
2190     (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2191   }
2192 }
2193 
2194 
2195 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
2196   if (increment.is_register()) {
2197     add(Rd, Rn, increment.as_register());
2198   } else {
2199     add(Rd, Rn, increment.as_constant());
2200   }
2201 }
2202 
2203 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
2204   if (increment.is_register()) {
2205     addw(Rd, Rn, increment.as_register());
2206   } else {
2207     addw(Rd, Rn, increment.as_constant());
2208   }
2209 }
2210 
2211 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
2212   if (decrement.is_register()) {
2213     sub(Rd, Rn, decrement.as_register());
2214   } else {
2215     sub(Rd, Rn, decrement.as_constant());
2216   }
2217 }
2218 
2219 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
2220   if (decrement.is_register()) {
2221     subw(Rd, Rn, decrement.as_register());
2222   } else {
2223     subw(Rd, Rn, decrement.as_constant());
2224   }
2225 }
2226 
2227 void MacroAssembler::reinit_heapbase()
2228 {
2229   if (UseCompressedOops) {
2230     if (Universe::is_fully_initialized()) {
2231       mov(rheapbase, Universe::narrow_ptrs_base());
2232     } else {
2233       lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
2234       ldr(rheapbase, Address(rheapbase));
2235     }
2236   }
2237 }
2238 
2239 // this simulates the behaviour of the x86 cmpxchg instruction using a
2240 // load linked/store conditional pair. we use the acquire/release
2241 // versions of these instructions so that we flush pending writes as
2242 // per Java semantics.
2243 
2244 // n.b the x86 version assumes the old value to be compared against is
2245 // in rax and updates rax with the value located in memory if the
2246 // cmpxchg fails. we supply a register for the old value explicitly
2247 
2248 // the aarch64 load linked/store conditional instructions do not
2249 // accept an offset. so, unlike x86, we must provide a plain register
2250 // to identify the memory word to be compared/exchanged rather than a
2251 // register+offset Address.
2252 
2253 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
2254                                 Label &succeed, Label *fail) {
2255   // oldv holds comparison value
2256   // newv holds value to write in exchange
2257   // addr identifies memory word to compare against/update
2258   if (UseLSE) {
2259     mov(tmp, oldv);
2260     casal(Assembler::xword, oldv, newv, addr);
2261     cmp(tmp, oldv);
2262     br(Assembler::EQ, succeed);
2263     membar(AnyAny);
2264   } else {
2265     Label retry_load, nope;
2266     if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2267       prfm(Address(addr), PSTL1STRM);
2268     bind(retry_load);
2269     // flush and load exclusive from the memory location
2270     // and fail if it is not what we expect
2271     ldaxr(tmp, addr);
2272     cmp(tmp, oldv);
2273     br(Assembler::NE, nope);
2274     // if we store+flush with no intervening write tmp wil be zero
2275     stlxr(tmp, newv, addr);
2276     cbzw(tmp, succeed);
2277     // retry so we only ever return after a load fails to compare
2278     // ensures we don't return a stale value after a failed write.
2279     b(retry_load);
2280     // if the memory word differs we return it in oldv and signal a fail
2281     bind(nope);
2282     membar(AnyAny);
2283     mov(oldv, tmp);
2284   }
2285   if (fail)
2286     b(*fail);
2287 }
2288 
2289 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
2290                                         Label &succeed, Label *fail) {
2291   assert(oopDesc::mark_offset_in_bytes() == 0, "assumption");
2292   cmpxchgptr(oldv, newv, obj, tmp, succeed, fail);
2293 }
2294 
2295 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
2296                                 Label &succeed, Label *fail) {
2297   // oldv holds comparison value
2298   // newv holds value to write in exchange
2299   // addr identifies memory word to compare against/update
2300   // tmp returns 0/1 for success/failure
2301   if (UseLSE) {
2302     mov(tmp, oldv);
2303     casal(Assembler::word, oldv, newv, addr);
2304     cmp(tmp, oldv);
2305     br(Assembler::EQ, succeed);
2306     membar(AnyAny);
2307   } else {
2308     Label retry_load, nope;
2309     if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2310       prfm(Address(addr), PSTL1STRM);
2311     bind(retry_load);
2312     // flush and load exclusive from the memory location
2313     // and fail if it is not what we expect
2314     ldaxrw(tmp, addr);
2315     cmp(tmp, oldv);
2316     br(Assembler::NE, nope);
2317     // if we store+flush with no intervening write tmp wil be zero
2318     stlxrw(tmp, newv, addr);
2319     cbzw(tmp, succeed);
2320     // retry so we only ever return after a load fails to compare
2321     // ensures we don't return a stale value after a failed write.
2322     b(retry_load);
2323     // if the memory word differs we return it in oldv and signal a fail
2324     bind(nope);
2325     membar(AnyAny);
2326     mov(oldv, tmp);
2327   }
2328   if (fail)
2329     b(*fail);
2330 }
2331 
2332 // A generic CAS; success or failure is in the EQ flag.  A weak CAS
2333 // doesn't retry and may fail spuriously.  If the oldval is wanted,
2334 // Pass a register for the result, otherwise pass noreg.
2335 
2336 // Clobbers rscratch1
2337 void MacroAssembler::cmpxchg(Register addr, Register expected,
2338                              Register new_val,
2339                              enum operand_size size,
2340                              bool acquire, bool release,
2341                              bool weak,
2342                              Register result) {
2343   if (result == noreg)  result = rscratch1;
2344   if (UseLSE) {
2345     mov(result, expected);
2346     lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true);
2347     cmp(result, expected);
2348   } else {
2349     BLOCK_COMMENT("cmpxchg {");
2350     Label retry_load, done;
2351     if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2352       prfm(Address(addr), PSTL1STRM);
2353     bind(retry_load);
2354     load_exclusive(result, addr, size, acquire);
2355     if (size == xword)
2356       cmp(result, expected);
2357     else
2358       cmpw(result, expected);
2359     br(Assembler::NE, done);
2360     store_exclusive(rscratch1, new_val, addr, size, release);
2361     if (weak) {
2362       cmpw(rscratch1, 0u);  // If the store fails, return NE to our caller.
2363     } else {
2364       cbnzw(rscratch1, retry_load);
2365     }
2366     bind(done);
2367     BLOCK_COMMENT("} cmpxchg");
2368   }
2369 }
2370 
2371 static bool different(Register a, RegisterOrConstant b, Register c) {
2372   if (b.is_constant())
2373     return a != c;
2374   else
2375     return a != b.as_register() && a != c && b.as_register() != c;
2376 }
2377 
2378 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz)                   \
2379 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
2380   if (UseLSE) {                                                         \
2381     prev = prev->is_valid() ? prev : zr;                                \
2382     if (incr.is_register()) {                                           \
2383       AOP(sz, incr.as_register(), prev, addr);                          \
2384     } else {                                                            \
2385       mov(rscratch2, incr.as_constant());                               \
2386       AOP(sz, rscratch2, prev, addr);                                   \
2387     }                                                                   \
2388     return;                                                             \
2389   }                                                                     \
2390   Register result = rscratch2;                                          \
2391   if (prev->is_valid())                                                 \
2392     result = different(prev, incr, addr) ? prev : rscratch2;            \
2393                                                                         \
2394   Label retry_load;                                                     \
2395   if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))         \
2396     prfm(Address(addr), PSTL1STRM);                                     \
2397   bind(retry_load);                                                     \
2398   LDXR(result, addr);                                                   \
2399   OP(rscratch1, result, incr);                                          \
2400   STXR(rscratch2, rscratch1, addr);                                     \
2401   cbnzw(rscratch2, retry_load);                                         \
2402   if (prev->is_valid() && prev != result) {                             \
2403     IOP(prev, rscratch1, incr);                                         \
2404   }                                                                     \
2405 }
2406 
2407 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
2408 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
2409 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
2410 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
2411 
2412 #undef ATOMIC_OP
2413 
2414 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz)                            \
2415 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
2416   if (UseLSE) {                                                         \
2417     prev = prev->is_valid() ? prev : zr;                                \
2418     AOP(sz, newv, prev, addr);                                          \
2419     return;                                                             \
2420   }                                                                     \
2421   Register result = rscratch2;                                          \
2422   if (prev->is_valid())                                                 \
2423     result = different(prev, newv, addr) ? prev : rscratch2;            \
2424                                                                         \
2425   Label retry_load;                                                     \
2426   if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))         \
2427     prfm(Address(addr), PSTL1STRM);                                     \
2428   bind(retry_load);                                                     \
2429   LDXR(result, addr);                                                   \
2430   STXR(rscratch1, newv, addr);                                          \
2431   cbnzw(rscratch1, retry_load);                                         \
2432   if (prev->is_valid() && prev != result)                               \
2433     mov(prev, result);                                                  \
2434 }
2435 
2436 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
2437 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
2438 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
2439 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
2440 
2441 #undef ATOMIC_XCHG
2442 
2443 #ifndef PRODUCT
2444 extern "C" void findpc(intptr_t x);
2445 #endif
2446 
2447 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
2448 {
2449   // In order to get locks to work, we need to fake a in_VM state
2450   if (ShowMessageBoxOnError ) {
2451     JavaThread* thread = JavaThread::current();
2452     JavaThreadState saved_state = thread->thread_state();
2453     thread->set_thread_state(_thread_in_vm);
2454 #ifndef PRODUCT
2455     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2456       ttyLocker ttyl;
2457       BytecodeCounter::print();
2458     }
2459 #endif
2460     if (os::message_box(msg, "Execution stopped, print registers?")) {
2461       ttyLocker ttyl;
2462       tty->print_cr(" pc = 0x%016lx", pc);
2463 #ifndef PRODUCT
2464       tty->cr();
2465       findpc(pc);
2466       tty->cr();
2467 #endif
2468       tty->print_cr(" r0 = 0x%016lx", regs[0]);
2469       tty->print_cr(" r1 = 0x%016lx", regs[1]);
2470       tty->print_cr(" r2 = 0x%016lx", regs[2]);
2471       tty->print_cr(" r3 = 0x%016lx", regs[3]);
2472       tty->print_cr(" r4 = 0x%016lx", regs[4]);
2473       tty->print_cr(" r5 = 0x%016lx", regs[5]);
2474       tty->print_cr(" r6 = 0x%016lx", regs[6]);
2475       tty->print_cr(" r7 = 0x%016lx", regs[7]);
2476       tty->print_cr(" r8 = 0x%016lx", regs[8]);
2477       tty->print_cr(" r9 = 0x%016lx", regs[9]);
2478       tty->print_cr("r10 = 0x%016lx", regs[10]);
2479       tty->print_cr("r11 = 0x%016lx", regs[11]);
2480       tty->print_cr("r12 = 0x%016lx", regs[12]);
2481       tty->print_cr("r13 = 0x%016lx", regs[13]);
2482       tty->print_cr("r14 = 0x%016lx", regs[14]);
2483       tty->print_cr("r15 = 0x%016lx", regs[15]);
2484       tty->print_cr("r16 = 0x%016lx", regs[16]);
2485       tty->print_cr("r17 = 0x%016lx", regs[17]);
2486       tty->print_cr("r18 = 0x%016lx", regs[18]);
2487       tty->print_cr("r19 = 0x%016lx", regs[19]);
2488       tty->print_cr("r20 = 0x%016lx", regs[20]);
2489       tty->print_cr("r21 = 0x%016lx", regs[21]);
2490       tty->print_cr("r22 = 0x%016lx", regs[22]);
2491       tty->print_cr("r23 = 0x%016lx", regs[23]);
2492       tty->print_cr("r24 = 0x%016lx", regs[24]);
2493       tty->print_cr("r25 = 0x%016lx", regs[25]);
2494       tty->print_cr("r26 = 0x%016lx", regs[26]);
2495       tty->print_cr("r27 = 0x%016lx", regs[27]);
2496       tty->print_cr("r28 = 0x%016lx", regs[28]);
2497       tty->print_cr("r30 = 0x%016lx", regs[30]);
2498       tty->print_cr("r31 = 0x%016lx", regs[31]);
2499       BREAKPOINT;
2500     }
2501     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
2502   } else {
2503     ttyLocker ttyl;
2504     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
2505                     msg);
2506     assert(false, "DEBUG MESSAGE: %s", msg);
2507   }
2508 }
2509 
2510 #ifdef BUILTIN_SIM
2511 // routine to generate an x86 prolog for a stub function which
2512 // bootstraps into the generated ARM code which directly follows the
2513 // stub
2514 //
2515 // the argument encodes the number of general and fp registers
2516 // passed by the caller and the callng convention (currently just
2517 // the number of general registers and assumes C argument passing)
2518 
2519 extern "C" {
2520 int aarch64_stub_prolog_size();
2521 void aarch64_stub_prolog();
2522 void aarch64_prolog();
2523 }
2524 
2525 void MacroAssembler::c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type,
2526                                    address *prolog_ptr)
2527 {
2528   int calltype = (((ret_type & 0x3) << 8) |
2529                   ((fp_arg_count & 0xf) << 4) |
2530                   (gp_arg_count & 0xf));
2531 
2532   // the addresses for the x86 to ARM entry code we need to use
2533   address start = pc();
2534   // printf("start = %lx\n", start);
2535   int byteCount =  aarch64_stub_prolog_size();
2536   // printf("byteCount = %x\n", byteCount);
2537   int instructionCount = (byteCount + 3)/ 4;
2538   // printf("instructionCount = %x\n", instructionCount);
2539   for (int i = 0; i < instructionCount; i++) {
2540     nop();
2541   }
2542 
2543   memcpy(start, (void*)aarch64_stub_prolog, byteCount);
2544 
2545   // write the address of the setup routine and the call format at the
2546   // end of into the copied code
2547   u_int64_t *patch_end = (u_int64_t *)(start + byteCount);
2548   if (prolog_ptr)
2549     patch_end[-2] = (u_int64_t)prolog_ptr;
2550   patch_end[-1] = calltype;
2551 }
2552 #endif
2553 
2554 void MacroAssembler::push_call_clobbered_registers() {
2555   int step = 4 * wordSize;
2556   push(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2557   sub(sp, sp, step);
2558   mov(rscratch1, -step);
2559   // Push v0-v7, v16-v31.
2560   for (int i = 31; i>= 4; i -= 4) {
2561     if (i <= v7->encoding() || i >= v16->encoding())
2562       st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1),
2563           as_FloatRegister(i), T1D, Address(post(sp, rscratch1)));
2564   }
2565   st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2),
2566       as_FloatRegister(3), T1D, Address(sp));
2567 }
2568 
2569 void MacroAssembler::pop_call_clobbered_registers() {
2570   for (int i = 0; i < 32; i += 4) {
2571     if (i <= v7->encoding() || i >= v16->encoding())
2572       ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
2573           as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize)));
2574   }
2575 
2576   pop(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2577 }
2578 
2579 void MacroAssembler::push_CPU_state(bool save_vectors) {
2580   int step = (save_vectors ? 8 : 4) * wordSize;
2581   push(0x3fffffff, sp);         // integer registers except lr & sp
2582   mov(rscratch1, -step);
2583   sub(sp, sp, step);
2584   for (int i = 28; i >= 4; i -= 4) {
2585     st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
2586         as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1)));
2587   }
2588   st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp);
2589 }
2590 
2591 void MacroAssembler::pop_CPU_state(bool restore_vectors) {
2592   int step = (restore_vectors ? 8 : 4) * wordSize;
2593   for (int i = 0; i <= 28; i += 4)
2594     ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
2595         as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step)));
2596   pop(0x3fffffff, sp);         // integer registers except lr & sp
2597 }
2598 
2599 /**
2600  * Helpers for multiply_to_len().
2601  */
2602 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
2603                                      Register src1, Register src2) {
2604   adds(dest_lo, dest_lo, src1);
2605   adc(dest_hi, dest_hi, zr);
2606   adds(dest_lo, dest_lo, src2);
2607   adc(final_dest_hi, dest_hi, zr);
2608 }
2609 
2610 // Generate an address from (r + r1 extend offset).  "size" is the
2611 // size of the operand.  The result may be in rscratch2.
2612 Address MacroAssembler::offsetted_address(Register r, Register r1,
2613                                           Address::extend ext, int offset, int size) {
2614   if (offset || (ext.shift() % size != 0)) {
2615     lea(rscratch2, Address(r, r1, ext));
2616     return Address(rscratch2, offset);
2617   } else {
2618     return Address(r, r1, ext);
2619   }
2620 }
2621 
2622 Address MacroAssembler::spill_address(int size, int offset, Register tmp)
2623 {
2624   assert(offset >= 0, "spill to negative address?");
2625   // Offset reachable ?
2626   //   Not aligned - 9 bits signed offset
2627   //   Aligned - 12 bits unsigned offset shifted
2628   Register base = sp;
2629   if ((offset & (size-1)) && offset >= (1<<8)) {
2630     add(tmp, base, offset & ((1<<12)-1));
2631     base = tmp;
2632     offset &= -1<<12;
2633   }
2634 
2635   if (offset >= (1<<12) * size) {
2636     add(tmp, base, offset & (((1<<12)-1)<<12));
2637     base = tmp;
2638     offset &= ~(((1<<12)-1)<<12);
2639   }
2640 
2641   return Address(base, offset);
2642 }
2643 
2644 // Checks whether offset is aligned.
2645 // Returns true if it is, else false.
2646 bool MacroAssembler::merge_alignment_check(Register base,
2647                                            size_t size,
2648                                            long cur_offset,
2649                                            long prev_offset) const {
2650   if (AvoidUnalignedAccesses) {
2651     if (base == sp) {
2652       // Checks whether low offset if aligned to pair of registers.
2653       long pair_mask = size * 2 - 1;
2654       long offset = prev_offset > cur_offset ? cur_offset : prev_offset;
2655       return (offset & pair_mask) == 0;
2656     } else { // If base is not sp, we can't guarantee the access is aligned.
2657       return false;
2658     }
2659   } else {
2660     long mask = size - 1;
2661     // Load/store pair instruction only supports element size aligned offset.
2662     return (cur_offset & mask) == 0 && (prev_offset & mask) == 0;
2663   }
2664 }
2665 
2666 // Checks whether current and previous loads/stores can be merged.
2667 // Returns true if it can be merged, else false.
2668 bool MacroAssembler::ldst_can_merge(Register rt,
2669                                     const Address &adr,
2670                                     size_t cur_size_in_bytes,
2671                                     bool is_store) const {
2672   address prev = pc() - NativeInstruction::instruction_size;
2673   address last = code()->last_insn();
2674 
2675   if (last == NULL || !nativeInstruction_at(last)->is_Imm_LdSt()) {
2676     return false;
2677   }
2678 
2679   if (adr.getMode() != Address::base_plus_offset || prev != last) {
2680     return false;
2681   }
2682 
2683   NativeLdSt* prev_ldst = NativeLdSt_at(prev);
2684   size_t prev_size_in_bytes = prev_ldst->size_in_bytes();
2685 
2686   assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging.");
2687   assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging.");
2688 
2689   if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) {
2690     return false;
2691   }
2692 
2693   long max_offset = 63 * prev_size_in_bytes;
2694   long min_offset = -64 * prev_size_in_bytes;
2695 
2696   assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged.");
2697 
2698   // Only same base can be merged.
2699   if (adr.base() != prev_ldst->base()) {
2700     return false;
2701   }
2702 
2703   long cur_offset = adr.offset();
2704   long prev_offset = prev_ldst->offset();
2705   size_t diff = abs(cur_offset - prev_offset);
2706   if (diff != prev_size_in_bytes) {
2707     return false;
2708   }
2709 
2710   // Following cases can not be merged:
2711   // ldr x2, [x2, #8]
2712   // ldr x3, [x2, #16]
2713   // or:
2714   // ldr x2, [x3, #8]
2715   // ldr x2, [x3, #16]
2716   // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL.
2717   if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) {
2718     return false;
2719   }
2720 
2721   long low_offset = prev_offset > cur_offset ? cur_offset : prev_offset;
2722   // Offset range must be in ldp/stp instruction's range.
2723   if (low_offset > max_offset || low_offset < min_offset) {
2724     return false;
2725   }
2726 
2727   if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) {
2728     return true;
2729   }
2730 
2731   return false;
2732 }
2733 
2734 // Merge current load/store with previous load/store into ldp/stp.
2735 void MacroAssembler::merge_ldst(Register rt,
2736                                 const Address &adr,
2737                                 size_t cur_size_in_bytes,
2738                                 bool is_store) {
2739 
2740   assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged.");
2741 
2742   Register rt_low, rt_high;
2743   address prev = pc() - NativeInstruction::instruction_size;
2744   NativeLdSt* prev_ldst = NativeLdSt_at(prev);
2745 
2746   long offset;
2747 
2748   if (adr.offset() < prev_ldst->offset()) {
2749     offset = adr.offset();
2750     rt_low = rt;
2751     rt_high = prev_ldst->target();
2752   } else {
2753     offset = prev_ldst->offset();
2754     rt_low = prev_ldst->target();
2755     rt_high = rt;
2756   }
2757 
2758   Address adr_p = Address(prev_ldst->base(), offset);
2759   // Overwrite previous generated binary.
2760   code_section()->set_end(prev);
2761 
2762   const int sz = prev_ldst->size_in_bytes();
2763   assert(sz == 8 || sz == 4, "only supports 64/32bit merging.");
2764   if (!is_store) {
2765     BLOCK_COMMENT("merged ldr pair");
2766     if (sz == 8) {
2767       ldp(rt_low, rt_high, adr_p);
2768     } else {
2769       ldpw(rt_low, rt_high, adr_p);
2770     }
2771   } else {
2772     BLOCK_COMMENT("merged str pair");
2773     if (sz == 8) {
2774       stp(rt_low, rt_high, adr_p);
2775     } else {
2776       stpw(rt_low, rt_high, adr_p);
2777     }
2778   }
2779 }
2780 
2781 /**
2782  * Multiply 64 bit by 64 bit first loop.
2783  */
2784 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2785                                            Register y, Register y_idx, Register z,
2786                                            Register carry, Register product,
2787                                            Register idx, Register kdx) {
2788   //
2789   //  jlong carry, x[], y[], z[];
2790   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2791   //    huge_128 product = y[idx] * x[xstart] + carry;
2792   //    z[kdx] = (jlong)product;
2793   //    carry  = (jlong)(product >>> 64);
2794   //  }
2795   //  z[xstart] = carry;
2796   //
2797 
2798   Label L_first_loop, L_first_loop_exit;
2799   Label L_one_x, L_one_y, L_multiply;
2800 
2801   subsw(xstart, xstart, 1);
2802   br(Assembler::MI, L_one_x);
2803 
2804   lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
2805   ldr(x_xstart, Address(rscratch1));
2806   ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
2807 
2808   bind(L_first_loop);
2809   subsw(idx, idx, 1);
2810   br(Assembler::MI, L_first_loop_exit);
2811   subsw(idx, idx, 1);
2812   br(Assembler::MI, L_one_y);
2813   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2814   ldr(y_idx, Address(rscratch1));
2815   ror(y_idx, y_idx, 32); // convert big-endian to little-endian
2816   bind(L_multiply);
2817 
2818   // AArch64 has a multiply-accumulate instruction that we can't use
2819   // here because it has no way to process carries, so we have to use
2820   // separate add and adc instructions.  Bah.
2821   umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
2822   mul(product, x_xstart, y_idx);
2823   adds(product, product, carry);
2824   adc(carry, rscratch1, zr);   // x_xstart * y_idx + carry -> carry:product
2825 
2826   subw(kdx, kdx, 2);
2827   ror(product, product, 32); // back to big-endian
2828   str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
2829 
2830   b(L_first_loop);
2831 
2832   bind(L_one_y);
2833   ldrw(y_idx, Address(y,  0));
2834   b(L_multiply);
2835 
2836   bind(L_one_x);
2837   ldrw(x_xstart, Address(x,  0));
2838   b(L_first_loop);
2839 
2840   bind(L_first_loop_exit);
2841 }
2842 
2843 /**
2844  * Multiply 128 bit by 128. Unrolled inner loop.
2845  *
2846  */
2847 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
2848                                              Register carry, Register carry2,
2849                                              Register idx, Register jdx,
2850                                              Register yz_idx1, Register yz_idx2,
2851                                              Register tmp, Register tmp3, Register tmp4,
2852                                              Register tmp6, Register product_hi) {
2853 
2854   //   jlong carry, x[], y[], z[];
2855   //   int kdx = ystart+1;
2856   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
2857   //     huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
2858   //     jlong carry2  = (jlong)(tmp3 >>> 64);
2859   //     huge_128 tmp4 = (y[idx]   * product_hi) + z[kdx+idx] + carry2;
2860   //     carry  = (jlong)(tmp4 >>> 64);
2861   //     z[kdx+idx+1] = (jlong)tmp3;
2862   //     z[kdx+idx] = (jlong)tmp4;
2863   //   }
2864   //   idx += 2;
2865   //   if (idx > 0) {
2866   //     yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
2867   //     z[kdx+idx] = (jlong)yz_idx1;
2868   //     carry  = (jlong)(yz_idx1 >>> 64);
2869   //   }
2870   //
2871 
2872   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
2873 
2874   lsrw(jdx, idx, 2);
2875 
2876   bind(L_third_loop);
2877 
2878   subsw(jdx, jdx, 1);
2879   br(Assembler::MI, L_third_loop_exit);
2880   subw(idx, idx, 4);
2881 
2882   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2883 
2884   ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
2885 
2886   lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2887 
2888   ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
2889   ror(yz_idx2, yz_idx2, 32);
2890 
2891   ldp(rscratch2, rscratch1, Address(tmp6, 0));
2892 
2893   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2894   umulh(tmp4, product_hi, yz_idx1);
2895 
2896   ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
2897   ror(rscratch2, rscratch2, 32);
2898 
2899   mul(tmp, product_hi, yz_idx2);   //  yz_idx2 * product_hi -> carry2:tmp
2900   umulh(carry2, product_hi, yz_idx2);
2901 
2902   // propagate sum of both multiplications into carry:tmp4:tmp3
2903   adds(tmp3, tmp3, carry);
2904   adc(tmp4, tmp4, zr);
2905   adds(tmp3, tmp3, rscratch1);
2906   adcs(tmp4, tmp4, tmp);
2907   adc(carry, carry2, zr);
2908   adds(tmp4, tmp4, rscratch2);
2909   adc(carry, carry, zr);
2910 
2911   ror(tmp3, tmp3, 32); // convert little-endian to big-endian
2912   ror(tmp4, tmp4, 32);
2913   stp(tmp4, tmp3, Address(tmp6, 0));
2914 
2915   b(L_third_loop);
2916   bind (L_third_loop_exit);
2917 
2918   andw (idx, idx, 0x3);
2919   cbz(idx, L_post_third_loop_done);
2920 
2921   Label L_check_1;
2922   subsw(idx, idx, 2);
2923   br(Assembler::MI, L_check_1);
2924 
2925   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2926   ldr(yz_idx1, Address(rscratch1, 0));
2927   ror(yz_idx1, yz_idx1, 32);
2928   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2929   umulh(tmp4, product_hi, yz_idx1);
2930   lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2931   ldr(yz_idx2, Address(rscratch1, 0));
2932   ror(yz_idx2, yz_idx2, 32);
2933 
2934   add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
2935 
2936   ror(tmp3, tmp3, 32);
2937   str(tmp3, Address(rscratch1, 0));
2938 
2939   bind (L_check_1);
2940 
2941   andw (idx, idx, 0x1);
2942   subsw(idx, idx, 1);
2943   br(Assembler::MI, L_post_third_loop_done);
2944   ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2945   mul(tmp3, tmp4, product_hi);  //  tmp4 * product_hi -> carry2:tmp3
2946   umulh(carry2, tmp4, product_hi);
2947   ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2948 
2949   add2_with_carry(carry2, tmp3, tmp4, carry);
2950 
2951   strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2952   extr(carry, carry2, tmp3, 32);
2953 
2954   bind(L_post_third_loop_done);
2955 }
2956 
2957 /**
2958  * Code for BigInteger::multiplyToLen() instrinsic.
2959  *
2960  * r0: x
2961  * r1: xlen
2962  * r2: y
2963  * r3: ylen
2964  * r4:  z
2965  * r5: zlen
2966  * r10: tmp1
2967  * r11: tmp2
2968  * r12: tmp3
2969  * r13: tmp4
2970  * r14: tmp5
2971  * r15: tmp6
2972  * r16: tmp7
2973  *
2974  */
2975 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
2976                                      Register z, Register zlen,
2977                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4,
2978                                      Register tmp5, Register tmp6, Register product_hi) {
2979 
2980   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
2981 
2982   const Register idx = tmp1;
2983   const Register kdx = tmp2;
2984   const Register xstart = tmp3;
2985 
2986   const Register y_idx = tmp4;
2987   const Register carry = tmp5;
2988   const Register product  = xlen;
2989   const Register x_xstart = zlen;  // reuse register
2990 
2991   // First Loop.
2992   //
2993   //  final static long LONG_MASK = 0xffffffffL;
2994   //  int xstart = xlen - 1;
2995   //  int ystart = ylen - 1;
2996   //  long carry = 0;
2997   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2998   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
2999   //    z[kdx] = (int)product;
3000   //    carry = product >>> 32;
3001   //  }
3002   //  z[xstart] = (int)carry;
3003   //
3004 
3005   movw(idx, ylen);      // idx = ylen;
3006   movw(kdx, zlen);      // kdx = xlen+ylen;
3007   mov(carry, zr);       // carry = 0;
3008 
3009   Label L_done;
3010 
3011   movw(xstart, xlen);
3012   subsw(xstart, xstart, 1);
3013   br(Assembler::MI, L_done);
3014 
3015   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
3016 
3017   Label L_second_loop;
3018   cbzw(kdx, L_second_loop);
3019 
3020   Label L_carry;
3021   subw(kdx, kdx, 1);
3022   cbzw(kdx, L_carry);
3023 
3024   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3025   lsr(carry, carry, 32);
3026   subw(kdx, kdx, 1);
3027 
3028   bind(L_carry);
3029   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3030 
3031   // Second and third (nested) loops.
3032   //
3033   // for (int i = xstart-1; i >= 0; i--) { // Second loop
3034   //   carry = 0;
3035   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
3036   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
3037   //                    (z[k] & LONG_MASK) + carry;
3038   //     z[k] = (int)product;
3039   //     carry = product >>> 32;
3040   //   }
3041   //   z[i] = (int)carry;
3042   // }
3043   //
3044   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
3045 
3046   const Register jdx = tmp1;
3047 
3048   bind(L_second_loop);
3049   mov(carry, zr);                // carry = 0;
3050   movw(jdx, ylen);               // j = ystart+1
3051 
3052   subsw(xstart, xstart, 1);      // i = xstart-1;
3053   br(Assembler::MI, L_done);
3054 
3055   str(z, Address(pre(sp, -4 * wordSize)));
3056 
3057   Label L_last_x;
3058   lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
3059   subsw(xstart, xstart, 1);       // i = xstart-1;
3060   br(Assembler::MI, L_last_x);
3061 
3062   lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
3063   ldr(product_hi, Address(rscratch1));
3064   ror(product_hi, product_hi, 32);  // convert big-endian to little-endian
3065 
3066   Label L_third_loop_prologue;
3067   bind(L_third_loop_prologue);
3068 
3069   str(ylen, Address(sp, wordSize));
3070   stp(x, xstart, Address(sp, 2 * wordSize));
3071   multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
3072                           tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
3073   ldp(z, ylen, Address(post(sp, 2 * wordSize)));
3074   ldp(x, xlen, Address(post(sp, 2 * wordSize)));   // copy old xstart -> xlen
3075 
3076   addw(tmp3, xlen, 1);
3077   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
3078   subsw(tmp3, tmp3, 1);
3079   br(Assembler::MI, L_done);
3080 
3081   lsr(carry, carry, 32);
3082   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
3083   b(L_second_loop);
3084 
3085   // Next infrequent code is moved outside loops.
3086   bind(L_last_x);
3087   ldrw(product_hi, Address(x,  0));
3088   b(L_third_loop_prologue);
3089 
3090   bind(L_done);
3091 }
3092 
3093 // Code for BigInteger::mulAdd instrinsic
3094 // out     = r0
3095 // in      = r1
3096 // offset  = r2  (already out.length-offset)
3097 // len     = r3
3098 // k       = r4
3099 //
3100 // pseudo code from java implementation:
3101 // carry = 0;
3102 // offset = out.length-offset - 1;
3103 // for (int j=len-1; j >= 0; j--) {
3104 //     product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry;
3105 //     out[offset--] = (int)product;
3106 //     carry = product >>> 32;
3107 // }
3108 // return (int)carry;
3109 void MacroAssembler::mul_add(Register out, Register in, Register offset,
3110       Register len, Register k) {
3111     Label LOOP, END;
3112     // pre-loop
3113     cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches
3114     csel(out, zr, out, Assembler::EQ);
3115     br(Assembler::EQ, END);
3116     add(in, in, len, LSL, 2); // in[j+1] address
3117     add(offset, out, offset, LSL, 2); // out[offset + 1] address
3118     mov(out, zr); // used to keep carry now
3119     BIND(LOOP);
3120     ldrw(rscratch1, Address(pre(in, -4)));
3121     madd(rscratch1, rscratch1, k, out);
3122     ldrw(rscratch2, Address(pre(offset, -4)));
3123     add(rscratch1, rscratch1, rscratch2);
3124     strw(rscratch1, Address(offset));
3125     lsr(out, rscratch1, 32);
3126     subs(len, len, 1);
3127     br(Assembler::NE, LOOP);
3128     BIND(END);
3129 }
3130 
3131 /**
3132  * Emits code to update CRC-32 with a byte value according to constants in table
3133  *
3134  * @param [in,out]crc   Register containing the crc.
3135  * @param [in]val       Register containing the byte to fold into the CRC.
3136  * @param [in]table     Register containing the table of crc constants.
3137  *
3138  * uint32_t crc;
3139  * val = crc_table[(val ^ crc) & 0xFF];
3140  * crc = val ^ (crc >> 8);
3141  *
3142  */
3143 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
3144   eor(val, val, crc);
3145   andr(val, val, 0xff);
3146   ldrw(val, Address(table, val, Address::lsl(2)));
3147   eor(crc, val, crc, Assembler::LSR, 8);
3148 }
3149 
3150 /**
3151  * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
3152  *
3153  * @param [in,out]crc   Register containing the crc.
3154  * @param [in]v         Register containing the 32-bit to fold into the CRC.
3155  * @param [in]table0    Register containing table 0 of crc constants.
3156  * @param [in]table1    Register containing table 1 of crc constants.
3157  * @param [in]table2    Register containing table 2 of crc constants.
3158  * @param [in]table3    Register containing table 3 of crc constants.
3159  *
3160  * uint32_t crc;
3161  *   v = crc ^ v
3162  *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
3163  *
3164  */
3165 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
3166         Register table0, Register table1, Register table2, Register table3,
3167         bool upper) {
3168   eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
3169   uxtb(tmp, v);
3170   ldrw(crc, Address(table3, tmp, Address::lsl(2)));
3171   ubfx(tmp, v, 8, 8);
3172   ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
3173   eor(crc, crc, tmp);
3174   ubfx(tmp, v, 16, 8);
3175   ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
3176   eor(crc, crc, tmp);
3177   ubfx(tmp, v, 24, 8);
3178   ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
3179   eor(crc, crc, tmp);
3180 }
3181 
3182 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf,
3183         Register len, Register tmp0, Register tmp1, Register tmp2,
3184         Register tmp3) {
3185     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
3186     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
3187 
3188     mvnw(crc, crc);
3189 
3190     subs(len, len, 128);
3191     br(Assembler::GE, CRC_by64_pre);
3192   BIND(CRC_less64);
3193     adds(len, len, 128-32);
3194     br(Assembler::GE, CRC_by32_loop);
3195   BIND(CRC_less32);
3196     adds(len, len, 32-4);
3197     br(Assembler::GE, CRC_by4_loop);
3198     adds(len, len, 4);
3199     br(Assembler::GT, CRC_by1_loop);
3200     b(L_exit);
3201 
3202   BIND(CRC_by32_loop);
3203     ldp(tmp0, tmp1, Address(post(buf, 16)));
3204     subs(len, len, 32);
3205     crc32x(crc, crc, tmp0);
3206     ldr(tmp2, Address(post(buf, 8)));
3207     crc32x(crc, crc, tmp1);
3208     ldr(tmp3, Address(post(buf, 8)));
3209     crc32x(crc, crc, tmp2);
3210     crc32x(crc, crc, tmp3);
3211     br(Assembler::GE, CRC_by32_loop);
3212     cmn(len, 32);
3213     br(Assembler::NE, CRC_less32);
3214     b(L_exit);
3215 
3216   BIND(CRC_by4_loop);
3217     ldrw(tmp0, Address(post(buf, 4)));
3218     subs(len, len, 4);
3219     crc32w(crc, crc, tmp0);
3220     br(Assembler::GE, CRC_by4_loop);
3221     adds(len, len, 4);
3222     br(Assembler::LE, L_exit);
3223   BIND(CRC_by1_loop);
3224     ldrb(tmp0, Address(post(buf, 1)));
3225     subs(len, len, 1);
3226     crc32b(crc, crc, tmp0);
3227     br(Assembler::GT, CRC_by1_loop);
3228     b(L_exit);
3229 
3230   BIND(CRC_by64_pre);
3231     sub(buf, buf, 8);
3232     ldp(tmp0, tmp1, Address(buf, 8));
3233     crc32x(crc, crc, tmp0);
3234     ldr(tmp2, Address(buf, 24));
3235     crc32x(crc, crc, tmp1);
3236     ldr(tmp3, Address(buf, 32));
3237     crc32x(crc, crc, tmp2);
3238     ldr(tmp0, Address(buf, 40));
3239     crc32x(crc, crc, tmp3);
3240     ldr(tmp1, Address(buf, 48));
3241     crc32x(crc, crc, tmp0);
3242     ldr(tmp2, Address(buf, 56));
3243     crc32x(crc, crc, tmp1);
3244     ldr(tmp3, Address(pre(buf, 64)));
3245 
3246     b(CRC_by64_loop);
3247 
3248     align(CodeEntryAlignment);
3249   BIND(CRC_by64_loop);
3250     subs(len, len, 64);
3251     crc32x(crc, crc, tmp2);
3252     ldr(tmp0, Address(buf, 8));
3253     crc32x(crc, crc, tmp3);
3254     ldr(tmp1, Address(buf, 16));
3255     crc32x(crc, crc, tmp0);
3256     ldr(tmp2, Address(buf, 24));
3257     crc32x(crc, crc, tmp1);
3258     ldr(tmp3, Address(buf, 32));
3259     crc32x(crc, crc, tmp2);
3260     ldr(tmp0, Address(buf, 40));
3261     crc32x(crc, crc, tmp3);
3262     ldr(tmp1, Address(buf, 48));
3263     crc32x(crc, crc, tmp0);
3264     ldr(tmp2, Address(buf, 56));
3265     crc32x(crc, crc, tmp1);
3266     ldr(tmp3, Address(pre(buf, 64)));
3267     br(Assembler::GE, CRC_by64_loop);
3268 
3269     // post-loop
3270     crc32x(crc, crc, tmp2);
3271     crc32x(crc, crc, tmp3);
3272 
3273     sub(len, len, 64);
3274     add(buf, buf, 8);
3275     cmn(len, 128);
3276     br(Assembler::NE, CRC_less64);
3277   BIND(L_exit);
3278     mvnw(crc, crc);
3279 }
3280 
3281 /**
3282  * @param crc   register containing existing CRC (32-bit)
3283  * @param buf   register pointing to input byte buffer (byte*)
3284  * @param len   register containing number of bytes
3285  * @param table register that will contain address of CRC table
3286  * @param tmp   scratch register
3287  */
3288 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
3289         Register table0, Register table1, Register table2, Register table3,
3290         Register tmp, Register tmp2, Register tmp3) {
3291   Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
3292   unsigned long offset;
3293 
3294   if (UseCRC32) {
3295       kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3);
3296       return;
3297   }
3298 
3299     mvnw(crc, crc);
3300 
3301     adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
3302     if (offset) add(table0, table0, offset);
3303     add(table1, table0, 1*256*sizeof(juint));
3304     add(table2, table0, 2*256*sizeof(juint));
3305     add(table3, table0, 3*256*sizeof(juint));
3306 
3307   if (UseNeon) {
3308       cmp(len, 64);
3309       br(Assembler::LT, L_by16);
3310       eor(v16, T16B, v16, v16);
3311 
3312     Label L_fold;
3313 
3314       add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
3315 
3316       ld1(v0, v1, T2D, post(buf, 32));
3317       ld1r(v4, T2D, post(tmp, 8));
3318       ld1r(v5, T2D, post(tmp, 8));
3319       ld1r(v6, T2D, post(tmp, 8));
3320       ld1r(v7, T2D, post(tmp, 8));
3321       mov(v16, T4S, 0, crc);
3322 
3323       eor(v0, T16B, v0, v16);
3324       sub(len, len, 64);
3325 
3326     BIND(L_fold);
3327       pmull(v22, T8H, v0, v5, T8B);
3328       pmull(v20, T8H, v0, v7, T8B);
3329       pmull(v23, T8H, v0, v4, T8B);
3330       pmull(v21, T8H, v0, v6, T8B);
3331 
3332       pmull2(v18, T8H, v0, v5, T16B);
3333       pmull2(v16, T8H, v0, v7, T16B);
3334       pmull2(v19, T8H, v0, v4, T16B);
3335       pmull2(v17, T8H, v0, v6, T16B);
3336 
3337       uzp1(v24, T8H, v20, v22);
3338       uzp2(v25, T8H, v20, v22);
3339       eor(v20, T16B, v24, v25);
3340 
3341       uzp1(v26, T8H, v16, v18);
3342       uzp2(v27, T8H, v16, v18);
3343       eor(v16, T16B, v26, v27);
3344 
3345       ushll2(v22, T4S, v20, T8H, 8);
3346       ushll(v20, T4S, v20, T4H, 8);
3347 
3348       ushll2(v18, T4S, v16, T8H, 8);
3349       ushll(v16, T4S, v16, T4H, 8);
3350 
3351       eor(v22, T16B, v23, v22);
3352       eor(v18, T16B, v19, v18);
3353       eor(v20, T16B, v21, v20);
3354       eor(v16, T16B, v17, v16);
3355 
3356       uzp1(v17, T2D, v16, v20);
3357       uzp2(v21, T2D, v16, v20);
3358       eor(v17, T16B, v17, v21);
3359 
3360       ushll2(v20, T2D, v17, T4S, 16);
3361       ushll(v16, T2D, v17, T2S, 16);
3362 
3363       eor(v20, T16B, v20, v22);
3364       eor(v16, T16B, v16, v18);
3365 
3366       uzp1(v17, T2D, v20, v16);
3367       uzp2(v21, T2D, v20, v16);
3368       eor(v28, T16B, v17, v21);
3369 
3370       pmull(v22, T8H, v1, v5, T8B);
3371       pmull(v20, T8H, v1, v7, T8B);
3372       pmull(v23, T8H, v1, v4, T8B);
3373       pmull(v21, T8H, v1, v6, T8B);
3374 
3375       pmull2(v18, T8H, v1, v5, T16B);
3376       pmull2(v16, T8H, v1, v7, T16B);
3377       pmull2(v19, T8H, v1, v4, T16B);
3378       pmull2(v17, T8H, v1, v6, T16B);
3379 
3380       ld1(v0, v1, T2D, post(buf, 32));
3381 
3382       uzp1(v24, T8H, v20, v22);
3383       uzp2(v25, T8H, v20, v22);
3384       eor(v20, T16B, v24, v25);
3385 
3386       uzp1(v26, T8H, v16, v18);
3387       uzp2(v27, T8H, v16, v18);
3388       eor(v16, T16B, v26, v27);
3389 
3390       ushll2(v22, T4S, v20, T8H, 8);
3391       ushll(v20, T4S, v20, T4H, 8);
3392 
3393       ushll2(v18, T4S, v16, T8H, 8);
3394       ushll(v16, T4S, v16, T4H, 8);
3395 
3396       eor(v22, T16B, v23, v22);
3397       eor(v18, T16B, v19, v18);
3398       eor(v20, T16B, v21, v20);
3399       eor(v16, T16B, v17, v16);
3400 
3401       uzp1(v17, T2D, v16, v20);
3402       uzp2(v21, T2D, v16, v20);
3403       eor(v16, T16B, v17, v21);
3404 
3405       ushll2(v20, T2D, v16, T4S, 16);
3406       ushll(v16, T2D, v16, T2S, 16);
3407 
3408       eor(v20, T16B, v22, v20);
3409       eor(v16, T16B, v16, v18);
3410 
3411       uzp1(v17, T2D, v20, v16);
3412       uzp2(v21, T2D, v20, v16);
3413       eor(v20, T16B, v17, v21);
3414 
3415       shl(v16, T2D, v28, 1);
3416       shl(v17, T2D, v20, 1);
3417 
3418       eor(v0, T16B, v0, v16);
3419       eor(v1, T16B, v1, v17);
3420 
3421       subs(len, len, 32);
3422       br(Assembler::GE, L_fold);
3423 
3424       mov(crc, 0);
3425       mov(tmp, v0, T1D, 0);
3426       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3427       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3428       mov(tmp, v0, T1D, 1);
3429       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3430       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3431       mov(tmp, v1, T1D, 0);
3432       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3433       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3434       mov(tmp, v1, T1D, 1);
3435       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3436       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3437 
3438       add(len, len, 32);
3439   }
3440 
3441   BIND(L_by16);
3442     subs(len, len, 16);
3443     br(Assembler::GE, L_by16_loop);
3444     adds(len, len, 16-4);
3445     br(Assembler::GE, L_by4_loop);
3446     adds(len, len, 4);
3447     br(Assembler::GT, L_by1_loop);
3448     b(L_exit);
3449 
3450   BIND(L_by4_loop);
3451     ldrw(tmp, Address(post(buf, 4)));
3452     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
3453     subs(len, len, 4);
3454     br(Assembler::GE, L_by4_loop);
3455     adds(len, len, 4);
3456     br(Assembler::LE, L_exit);
3457   BIND(L_by1_loop);
3458     subs(len, len, 1);
3459     ldrb(tmp, Address(post(buf, 1)));
3460     update_byte_crc32(crc, tmp, table0);
3461     br(Assembler::GT, L_by1_loop);
3462     b(L_exit);
3463 
3464     align(CodeEntryAlignment);
3465   BIND(L_by16_loop);
3466     subs(len, len, 16);
3467     ldp(tmp, tmp3, Address(post(buf, 16)));
3468     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3469     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3470     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
3471     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
3472     br(Assembler::GE, L_by16_loop);
3473     adds(len, len, 16-4);
3474     br(Assembler::GE, L_by4_loop);
3475     adds(len, len, 4);
3476     br(Assembler::GT, L_by1_loop);
3477   BIND(L_exit);
3478     mvnw(crc, crc);
3479 }
3480 
3481 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf,
3482         Register len, Register tmp0, Register tmp1, Register tmp2,
3483         Register tmp3) {
3484     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
3485     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
3486 
3487     subs(len, len, 128);
3488     br(Assembler::GE, CRC_by64_pre);
3489   BIND(CRC_less64);
3490     adds(len, len, 128-32);
3491     br(Assembler::GE, CRC_by32_loop);
3492   BIND(CRC_less32);
3493     adds(len, len, 32-4);
3494     br(Assembler::GE, CRC_by4_loop);
3495     adds(len, len, 4);
3496     br(Assembler::GT, CRC_by1_loop);
3497     b(L_exit);
3498 
3499   BIND(CRC_by32_loop);
3500     ldp(tmp0, tmp1, Address(post(buf, 16)));
3501     subs(len, len, 32);
3502     crc32cx(crc, crc, tmp0);
3503     ldr(tmp2, Address(post(buf, 8)));
3504     crc32cx(crc, crc, tmp1);
3505     ldr(tmp3, Address(post(buf, 8)));
3506     crc32cx(crc, crc, tmp2);
3507     crc32cx(crc, crc, tmp3);
3508     br(Assembler::GE, CRC_by32_loop);
3509     cmn(len, 32);
3510     br(Assembler::NE, CRC_less32);
3511     b(L_exit);
3512 
3513   BIND(CRC_by4_loop);
3514     ldrw(tmp0, Address(post(buf, 4)));
3515     subs(len, len, 4);
3516     crc32cw(crc, crc, tmp0);
3517     br(Assembler::GE, CRC_by4_loop);
3518     adds(len, len, 4);
3519     br(Assembler::LE, L_exit);
3520   BIND(CRC_by1_loop);
3521     ldrb(tmp0, Address(post(buf, 1)));
3522     subs(len, len, 1);
3523     crc32cb(crc, crc, tmp0);
3524     br(Assembler::GT, CRC_by1_loop);
3525     b(L_exit);
3526 
3527   BIND(CRC_by64_pre);
3528     sub(buf, buf, 8);
3529     ldp(tmp0, tmp1, Address(buf, 8));
3530     crc32cx(crc, crc, tmp0);
3531     ldr(tmp2, Address(buf, 24));
3532     crc32cx(crc, crc, tmp1);
3533     ldr(tmp3, Address(buf, 32));
3534     crc32cx(crc, crc, tmp2);
3535     ldr(tmp0, Address(buf, 40));
3536     crc32cx(crc, crc, tmp3);
3537     ldr(tmp1, Address(buf, 48));
3538     crc32cx(crc, crc, tmp0);
3539     ldr(tmp2, Address(buf, 56));
3540     crc32cx(crc, crc, tmp1);
3541     ldr(tmp3, Address(pre(buf, 64)));
3542 
3543     b(CRC_by64_loop);
3544 
3545     align(CodeEntryAlignment);
3546   BIND(CRC_by64_loop);
3547     subs(len, len, 64);
3548     crc32cx(crc, crc, tmp2);
3549     ldr(tmp0, Address(buf, 8));
3550     crc32cx(crc, crc, tmp3);
3551     ldr(tmp1, Address(buf, 16));
3552     crc32cx(crc, crc, tmp0);
3553     ldr(tmp2, Address(buf, 24));
3554     crc32cx(crc, crc, tmp1);
3555     ldr(tmp3, Address(buf, 32));
3556     crc32cx(crc, crc, tmp2);
3557     ldr(tmp0, Address(buf, 40));
3558     crc32cx(crc, crc, tmp3);
3559     ldr(tmp1, Address(buf, 48));
3560     crc32cx(crc, crc, tmp0);
3561     ldr(tmp2, Address(buf, 56));
3562     crc32cx(crc, crc, tmp1);
3563     ldr(tmp3, Address(pre(buf, 64)));
3564     br(Assembler::GE, CRC_by64_loop);
3565 
3566     // post-loop
3567     crc32cx(crc, crc, tmp2);
3568     crc32cx(crc, crc, tmp3);
3569 
3570     sub(len, len, 64);
3571     add(buf, buf, 8);
3572     cmn(len, 128);
3573     br(Assembler::NE, CRC_less64);
3574   BIND(L_exit);
3575 }
3576 
3577 /**
3578  * @param crc   register containing existing CRC (32-bit)
3579  * @param buf   register pointing to input byte buffer (byte*)
3580  * @param len   register containing number of bytes
3581  * @param table register that will contain address of CRC table
3582  * @param tmp   scratch register
3583  */
3584 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
3585         Register table0, Register table1, Register table2, Register table3,
3586         Register tmp, Register tmp2, Register tmp3) {
3587   kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3);
3588 }
3589 
3590 
3591 SkipIfEqual::SkipIfEqual(
3592     MacroAssembler* masm, const bool* flag_addr, bool value) {
3593   _masm = masm;
3594   unsigned long offset;
3595   _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
3596   _masm->ldrb(rscratch1, Address(rscratch1, offset));
3597   _masm->cbzw(rscratch1, _label);
3598 }
3599 
3600 SkipIfEqual::~SkipIfEqual() {
3601   _masm->bind(_label);
3602 }
3603 
3604 void MacroAssembler::addptr(const Address &dst, int32_t src) {
3605   Address adr;
3606   switch(dst.getMode()) {
3607   case Address::base_plus_offset:
3608     // This is the expected mode, although we allow all the other
3609     // forms below.
3610     adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
3611     break;
3612   default:
3613     lea(rscratch2, dst);
3614     adr = Address(rscratch2);
3615     break;
3616   }
3617   ldr(rscratch1, adr);
3618   add(rscratch1, rscratch1, src);
3619   str(rscratch1, adr);
3620 }
3621 
3622 void MacroAssembler::cmpptr(Register src1, Address src2) {
3623   unsigned long offset;
3624   adrp(rscratch1, src2, offset);
3625   ldr(rscratch1, Address(rscratch1, offset));
3626   cmp(src1, rscratch1);
3627 }
3628 
3629 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
3630   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3631   bs->obj_equals(this, obj1, obj2);
3632 }
3633 
3634 void MacroAssembler::load_klass(Register dst, Register src) {
3635   if (UseCompressedClassPointers) {
3636     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3637     decode_klass_not_null(dst);
3638   } else {
3639     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3640   }
3641 }
3642 
3643 // ((OopHandle)result).resolve();
3644 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
3645   // OopHandle::resolve is an indirection.
3646   access_load_at(T_OBJECT, IN_CONCURRENT_ROOT,
3647                  result, Address(result, 0), tmp, noreg);
3648 }
3649 
3650 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp) {
3651   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
3652   ldr(dst, Address(rmethod, Method::const_offset()));
3653   ldr(dst, Address(dst, ConstMethod::constants_offset()));
3654   ldr(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes()));
3655   ldr(dst, Address(dst, mirror_offset));
3656   resolve_oop_handle(dst, tmp);
3657 }
3658 
3659 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
3660   if (UseCompressedClassPointers) {
3661     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3662     if (Universe::narrow_klass_base() == NULL) {
3663       cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift());
3664       return;
3665     } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3666                && Universe::narrow_klass_shift() == 0) {
3667       // Only the bottom 32 bits matter
3668       cmpw(trial_klass, tmp);
3669       return;
3670     }
3671     decode_klass_not_null(tmp);
3672   } else {
3673     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3674   }
3675   cmp(trial_klass, tmp);
3676 }
3677 
3678 void MacroAssembler::load_prototype_header(Register dst, Register src) {
3679   load_klass(dst, src);
3680   ldr(dst, Address(dst, Klass::prototype_header_offset()));
3681 }
3682 
3683 void MacroAssembler::store_klass(Register dst, Register src) {
3684   // FIXME: Should this be a store release?  concurrent gcs assumes
3685   // klass length is valid if klass field is not null.
3686   if (UseCompressedClassPointers) {
3687     encode_klass_not_null(src);
3688     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3689   } else {
3690     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3691   }
3692 }
3693 
3694 void MacroAssembler::store_klass_gap(Register dst, Register src) {
3695   if (UseCompressedClassPointers) {
3696     // Store to klass gap in destination
3697     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
3698   }
3699 }
3700 
3701 // Algorithm must match CompressedOops::encode.
3702 void MacroAssembler::encode_heap_oop(Register d, Register s) {
3703 #ifdef ASSERT
3704   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
3705 #endif
3706   verify_oop(s, "broken oop in encode_heap_oop");
3707   if (Universe::narrow_oop_base() == NULL) {
3708     if (Universe::narrow_oop_shift() != 0) {
3709       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3710       lsr(d, s, LogMinObjAlignmentInBytes);
3711     } else {
3712       mov(d, s);
3713     }
3714   } else {
3715     subs(d, s, rheapbase);
3716     csel(d, d, zr, Assembler::HS);
3717     lsr(d, d, LogMinObjAlignmentInBytes);
3718 
3719     /*  Old algorithm: is this any worse?
3720     Label nonnull;
3721     cbnz(r, nonnull);
3722     sub(r, r, rheapbase);
3723     bind(nonnull);
3724     lsr(r, r, LogMinObjAlignmentInBytes);
3725     */
3726   }
3727 }
3728 
3729 void MacroAssembler::encode_heap_oop_not_null(Register r) {
3730 #ifdef ASSERT
3731   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
3732   if (CheckCompressedOops) {
3733     Label ok;
3734     cbnz(r, ok);
3735     stop("null oop passed to encode_heap_oop_not_null");
3736     bind(ok);
3737   }
3738 #endif
3739   verify_oop(r, "broken oop in encode_heap_oop_not_null");
3740   if (Universe::narrow_oop_base() != NULL) {
3741     sub(r, r, rheapbase);
3742   }
3743   if (Universe::narrow_oop_shift() != 0) {
3744     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3745     lsr(r, r, LogMinObjAlignmentInBytes);
3746   }
3747 }
3748 
3749 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
3750 #ifdef ASSERT
3751   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
3752   if (CheckCompressedOops) {
3753     Label ok;
3754     cbnz(src, ok);
3755     stop("null oop passed to encode_heap_oop_not_null2");
3756     bind(ok);
3757   }
3758 #endif
3759   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
3760 
3761   Register data = src;
3762   if (Universe::narrow_oop_base() != NULL) {
3763     sub(dst, src, rheapbase);
3764     data = dst;
3765   }
3766   if (Universe::narrow_oop_shift() != 0) {
3767     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3768     lsr(dst, data, LogMinObjAlignmentInBytes);
3769     data = dst;
3770   }
3771   if (data == src)
3772     mov(dst, src);
3773 }
3774 
3775 void  MacroAssembler::decode_heap_oop(Register d, Register s) {
3776 #ifdef ASSERT
3777   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
3778 #endif
3779   if (Universe::narrow_oop_base() == NULL) {
3780     if (Universe::narrow_oop_shift() != 0 || d != s) {
3781       lsl(d, s, Universe::narrow_oop_shift());
3782     }
3783   } else {
3784     Label done;
3785     if (d != s)
3786       mov(d, s);
3787     cbz(s, done);
3788     add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
3789     bind(done);
3790   }
3791   verify_oop(d, "broken oop in decode_heap_oop");
3792 }
3793 
3794 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
3795   assert (UseCompressedOops, "should only be used for compressed headers");
3796   assert (Universe::heap() != NULL, "java heap should be initialized");
3797   // Cannot assert, unverified entry point counts instructions (see .ad file)
3798   // vtableStubs also counts instructions in pd_code_size_limit.
3799   // Also do not verify_oop as this is called by verify_oop.
3800   if (Universe::narrow_oop_shift() != 0) {
3801     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3802     if (Universe::narrow_oop_base() != NULL) {
3803       add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3804     } else {
3805       add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3806     }
3807   } else {
3808     assert (Universe::narrow_oop_base() == NULL, "sanity");
3809   }
3810 }
3811 
3812 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
3813   assert (UseCompressedOops, "should only be used for compressed headers");
3814   assert (Universe::heap() != NULL, "java heap should be initialized");
3815   // Cannot assert, unverified entry point counts instructions (see .ad file)
3816   // vtableStubs also counts instructions in pd_code_size_limit.
3817   // Also do not verify_oop as this is called by verify_oop.
3818   if (Universe::narrow_oop_shift() != 0) {
3819     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3820     if (Universe::narrow_oop_base() != NULL) {
3821       add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3822     } else {
3823       add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3824     }
3825   } else {
3826     assert (Universe::narrow_oop_base() == NULL, "sanity");
3827     if (dst != src) {
3828       mov(dst, src);
3829     }
3830   }
3831 }
3832 
3833 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3834   if (Universe::narrow_klass_base() == NULL) {
3835     if (Universe::narrow_klass_shift() != 0) {
3836       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3837       lsr(dst, src, LogKlassAlignmentInBytes);
3838     } else {
3839       if (dst != src) mov(dst, src);
3840     }
3841     return;
3842   }
3843 
3844   if (use_XOR_for_compressed_class_base) {
3845     if (Universe::narrow_klass_shift() != 0) {
3846       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3847       lsr(dst, dst, LogKlassAlignmentInBytes);
3848     } else {
3849       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3850     }
3851     return;
3852   }
3853 
3854   if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3855       && Universe::narrow_klass_shift() == 0) {
3856     movw(dst, src);
3857     return;
3858   }
3859 
3860 #ifdef ASSERT
3861   verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
3862 #endif
3863 
3864   Register rbase = dst;
3865   if (dst == src) rbase = rheapbase;
3866   mov(rbase, (uint64_t)Universe::narrow_klass_base());
3867   sub(dst, src, rbase);
3868   if (Universe::narrow_klass_shift() != 0) {
3869     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3870     lsr(dst, dst, LogKlassAlignmentInBytes);
3871   }
3872   if (dst == src) reinit_heapbase();
3873 }
3874 
3875 void MacroAssembler::encode_klass_not_null(Register r) {
3876   encode_klass_not_null(r, r);
3877 }
3878 
3879 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3880   Register rbase = dst;
3881   assert (UseCompressedClassPointers, "should only be used for compressed headers");
3882 
3883   if (Universe::narrow_klass_base() == NULL) {
3884     if (Universe::narrow_klass_shift() != 0) {
3885       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3886       lsl(dst, src, LogKlassAlignmentInBytes);
3887     } else {
3888       if (dst != src) mov(dst, src);
3889     }
3890     return;
3891   }
3892 
3893   if (use_XOR_for_compressed_class_base) {
3894     if (Universe::narrow_klass_shift() != 0) {
3895       lsl(dst, src, LogKlassAlignmentInBytes);
3896       eor(dst, dst, (uint64_t)Universe::narrow_klass_base());
3897     } else {
3898       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3899     }
3900     return;
3901   }
3902 
3903   if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3904       && Universe::narrow_klass_shift() == 0) {
3905     if (dst != src)
3906       movw(dst, src);
3907     movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32);
3908     return;
3909   }
3910 
3911   // Cannot assert, unverified entry point counts instructions (see .ad file)
3912   // vtableStubs also counts instructions in pd_code_size_limit.
3913   // Also do not verify_oop as this is called by verify_oop.
3914   if (dst == src) rbase = rheapbase;
3915   mov(rbase, (uint64_t)Universe::narrow_klass_base());
3916   if (Universe::narrow_klass_shift() != 0) {
3917     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3918     add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes);
3919   } else {
3920     add(dst, rbase, src);
3921   }
3922   if (dst == src) reinit_heapbase();
3923 }
3924 
3925 void  MacroAssembler::decode_klass_not_null(Register r) {
3926   decode_klass_not_null(r, r);
3927 }
3928 
3929 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
3930 #ifdef ASSERT
3931   {
3932     ThreadInVMfromUnknown tiv;
3933     assert (UseCompressedOops, "should only be used for compressed oops");
3934     assert (Universe::heap() != NULL, "java heap should be initialized");
3935     assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3936     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3937   }
3938 #endif
3939   int oop_index = oop_recorder()->find_index(obj);
3940   InstructionMark im(this);
3941   RelocationHolder rspec = oop_Relocation::spec(oop_index);
3942   code_section()->relocate(inst_mark(), rspec);
3943   movz(dst, 0xDEAD, 16);
3944   movk(dst, 0xBEEF);
3945 }
3946 
3947 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
3948   assert (UseCompressedClassPointers, "should only be used for compressed headers");
3949   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3950   int index = oop_recorder()->find_index(k);
3951   assert(! Universe::heap()->is_in_reserved(k), "should not be an oop");
3952 
3953   InstructionMark im(this);
3954   RelocationHolder rspec = metadata_Relocation::spec(index);
3955   code_section()->relocate(inst_mark(), rspec);
3956   narrowKlass nk = Klass::encode_klass(k);
3957   movz(dst, (nk >> 16), 16);
3958   movk(dst, nk & 0xffff);
3959 }
3960 
3961 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
3962                                     Register dst, Address src,
3963                                     Register tmp1, Register thread_tmp) {
3964   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
3965   decorators = AccessInternal::decorator_fixup(decorators);
3966   bool as_raw = (decorators & AS_RAW) != 0;
3967   if (as_raw) {
3968     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
3969   } else {
3970     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
3971   }
3972 }
3973 
3974 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
3975                                      Address dst, Register src,
3976                                      Register tmp1, Register thread_tmp) {
3977   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
3978   decorators = AccessInternal::decorator_fixup(decorators);
3979   bool as_raw = (decorators & AS_RAW) != 0;
3980   if (as_raw) {
3981     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, thread_tmp);
3982   } else {
3983     bs->store_at(this, decorators, type, dst, src, tmp1, thread_tmp);
3984   }
3985 }
3986 
3987 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
3988                                    Register thread_tmp, DecoratorSet decorators) {
3989   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
3990 }
3991 
3992 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
3993                                             Register thread_tmp, DecoratorSet decorators) {
3994   access_load_at(T_OBJECT, IN_HEAP | OOP_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
3995 }
3996 
3997 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
3998                                     Register thread_tmp, DecoratorSet decorators) {
3999   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
4000 }
4001 
4002 // Used for storing NULLs.
4003 void MacroAssembler::store_heap_oop_null(Address dst) {
4004   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
4005 }
4006 
4007 Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
4008   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
4009   int index = oop_recorder()->allocate_metadata_index(obj);
4010   RelocationHolder rspec = metadata_Relocation::spec(index);
4011   return Address((address)obj, rspec);
4012 }
4013 
4014 // Move an oop into a register.  immediate is true if we want
4015 // immediate instrcutions, i.e. we are not going to patch this
4016 // instruction while the code is being executed by another thread.  In
4017 // that case we can use move immediates rather than the constant pool.
4018 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) {
4019   int oop_index;
4020   if (obj == NULL) {
4021     oop_index = oop_recorder()->allocate_oop_index(obj);
4022   } else {
4023 #ifdef ASSERT
4024     {
4025       ThreadInVMfromUnknown tiv;
4026       assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
4027     }
4028 #endif
4029     oop_index = oop_recorder()->find_index(obj);
4030   }
4031   RelocationHolder rspec = oop_Relocation::spec(oop_index);
4032   if (! immediate) {
4033     address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
4034     ldr_constant(dst, Address(dummy, rspec));
4035   } else
4036     mov(dst, Address((address)obj, rspec));
4037 }
4038 
4039 // Move a metadata address into a register.
4040 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
4041   int oop_index;
4042   if (obj == NULL) {
4043     oop_index = oop_recorder()->allocate_metadata_index(obj);
4044   } else {
4045     oop_index = oop_recorder()->find_index(obj);
4046   }
4047   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
4048   mov(dst, Address((address)obj, rspec));
4049 }
4050 
4051 Address MacroAssembler::constant_oop_address(jobject obj) {
4052 #ifdef ASSERT
4053   {
4054     ThreadInVMfromUnknown tiv;
4055     assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
4056     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
4057   }
4058 #endif
4059   int oop_index = oop_recorder()->find_index(obj);
4060   return Address((address)obj, oop_Relocation::spec(oop_index));
4061 }
4062 
4063 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4064 void MacroAssembler::tlab_allocate(Register obj,
4065                                    Register var_size_in_bytes,
4066                                    int con_size_in_bytes,
4067                                    Register t1,
4068                                    Register t2,
4069                                    Label& slow_case) {
4070   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4071   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4072 }
4073 
4074 // Defines obj, preserves var_size_in_bytes
4075 void MacroAssembler::eden_allocate(Register obj,
4076                                    Register var_size_in_bytes,
4077                                    int con_size_in_bytes,
4078                                    Register t1,
4079                                    Label& slow_case) {
4080   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4081   bs->eden_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
4082 }
4083 
4084 // Zero words; len is in bytes
4085 // Destroys all registers except addr
4086 // len must be a nonzero multiple of wordSize
4087 void MacroAssembler::zero_memory(Register addr, Register len, Register t1) {
4088   assert_different_registers(addr, len, t1, rscratch1, rscratch2);
4089 
4090 #ifdef ASSERT
4091   { Label L;
4092     tst(len, BytesPerWord - 1);
4093     br(Assembler::EQ, L);
4094     stop("len is not a multiple of BytesPerWord");
4095     bind(L);
4096   }
4097 #endif
4098 
4099 #ifndef PRODUCT
4100   block_comment("zero memory");
4101 #endif
4102 
4103   Label loop;
4104   Label entry;
4105 
4106 //  Algorithm:
4107 //
4108 //    scratch1 = cnt & 7;
4109 //    cnt -= scratch1;
4110 //    p += scratch1;
4111 //    switch (scratch1) {
4112 //      do {
4113 //        cnt -= 8;
4114 //          p[-8] = 0;
4115 //        case 7:
4116 //          p[-7] = 0;
4117 //        case 6:
4118 //          p[-6] = 0;
4119 //          // ...
4120 //        case 1:
4121 //          p[-1] = 0;
4122 //        case 0:
4123 //          p += 8;
4124 //      } while (cnt);
4125 //    }
4126 
4127   const int unroll = 8; // Number of str(zr) instructions we'll unroll
4128 
4129   lsr(len, len, LogBytesPerWord);
4130   andr(rscratch1, len, unroll - 1);  // tmp1 = cnt % unroll
4131   sub(len, len, rscratch1);      // cnt -= unroll
4132   // t1 always points to the end of the region we're about to zero
4133   add(t1, addr, rscratch1, Assembler::LSL, LogBytesPerWord);
4134   adr(rscratch2, entry);
4135   sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 2);
4136   br(rscratch2);
4137   bind(loop);
4138   sub(len, len, unroll);
4139   for (int i = -unroll; i < 0; i++)
4140     Assembler::str(zr, Address(t1, i * wordSize));
4141   bind(entry);
4142   add(t1, t1, unroll * wordSize);
4143   cbnz(len, loop);
4144 }
4145 
4146 void MacroAssembler::verify_tlab() {
4147 #ifdef ASSERT
4148   if (UseTLAB && VerifyOops) {
4149     Label next, ok;
4150 
4151     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
4152 
4153     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4154     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
4155     cmp(rscratch2, rscratch1);
4156     br(Assembler::HS, next);
4157     STOP("assert(top >= start)");
4158     should_not_reach_here();
4159 
4160     bind(next);
4161     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
4162     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4163     cmp(rscratch2, rscratch1);
4164     br(Assembler::HS, ok);
4165     STOP("assert(top <= end)");
4166     should_not_reach_here();
4167 
4168     bind(ok);
4169     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
4170   }
4171 #endif
4172 }
4173 
4174 // Writes to stack successive pages until offset reached to check for
4175 // stack overflow + shadow pages.  This clobbers tmp.
4176 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
4177   assert_different_registers(tmp, size, rscratch1);
4178   mov(tmp, sp);
4179   // Bang stack for total size given plus shadow page size.
4180   // Bang one page at a time because large size can bang beyond yellow and
4181   // red zones.
4182   Label loop;
4183   mov(rscratch1, os::vm_page_size());
4184   bind(loop);
4185   lea(tmp, Address(tmp, -os::vm_page_size()));
4186   subsw(size, size, rscratch1);
4187   str(size, Address(tmp));
4188   br(Assembler::GT, loop);
4189 
4190   // Bang down shadow pages too.
4191   // At this point, (tmp-0) is the last address touched, so don't
4192   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
4193   // was post-decremented.)  Skip this address by starting at i=1, and
4194   // touch a few more pages below.  N.B.  It is important to touch all
4195   // the way down to and including i=StackShadowPages.
4196   for (int i = 0; i < (int)(JavaThread::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) {
4197     // this could be any sized move but this is can be a debugging crumb
4198     // so the bigger the better.
4199     lea(tmp, Address(tmp, -os::vm_page_size()));
4200     str(size, Address(tmp));
4201   }
4202 }
4203 
4204 
4205 // Move the address of the polling page into dest.
4206 void MacroAssembler::get_polling_page(Register dest, address page, relocInfo::relocType rtype) {
4207   if (SafepointMechanism::uses_thread_local_poll()) {
4208     ldr(dest, Address(rthread, Thread::polling_page_offset()));
4209   } else {
4210     unsigned long off;
4211     adrp(dest, Address(page, rtype), off);
4212     assert(off == 0, "polling page must be page aligned");
4213   }
4214 }
4215 
4216 // Move the address of the polling page into r, then read the polling
4217 // page.
4218 address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) {
4219   get_polling_page(r, page, rtype);
4220   return read_polling_page(r, rtype);
4221 }
4222 
4223 // Read the polling page.  The address of the polling page must
4224 // already be in r.
4225 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
4226   InstructionMark im(this);
4227   code_section()->relocate(inst_mark(), rtype);
4228   ldrw(zr, Address(r, 0));
4229   return inst_mark();
4230 }
4231 
4232 void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) {
4233   relocInfo::relocType rtype = dest.rspec().reloc()->type();
4234   unsigned long low_page = (unsigned long)CodeCache::low_bound() >> 12;
4235   unsigned long high_page = (unsigned long)(CodeCache::high_bound()-1) >> 12;
4236   unsigned long dest_page = (unsigned long)dest.target() >> 12;
4237   long offset_low = dest_page - low_page;
4238   long offset_high = dest_page - high_page;
4239 
4240   assert(is_valid_AArch64_address(dest.target()), "bad address");
4241   assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
4242 
4243   InstructionMark im(this);
4244   code_section()->relocate(inst_mark(), dest.rspec());
4245   // 8143067: Ensure that the adrp can reach the dest from anywhere within
4246   // the code cache so that if it is relocated we know it will still reach
4247   if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
4248     _adrp(reg1, dest.target());
4249   } else {
4250     unsigned long target = (unsigned long)dest.target();
4251     unsigned long adrp_target
4252       = (target & 0xffffffffUL) | ((unsigned long)pc() & 0xffff00000000UL);
4253 
4254     _adrp(reg1, (address)adrp_target);
4255     movk(reg1, target >> 32, 32);
4256   }
4257   byte_offset = (unsigned long)dest.target() & 0xfff;
4258 }
4259 
4260 void MacroAssembler::load_byte_map_base(Register reg) {
4261   jbyte *byte_map_base =
4262     ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base();
4263 
4264   if (is_valid_AArch64_address((address)byte_map_base)) {
4265     // Strictly speaking the byte_map_base isn't an address at all,
4266     // and it might even be negative.
4267     unsigned long offset;
4268     adrp(reg, ExternalAddress((address)byte_map_base), offset);
4269     // We expect offset to be zero with most collectors.
4270     if (offset != 0) {
4271       add(reg, reg, offset);
4272     }
4273   } else {
4274     mov(reg, (uint64_t)byte_map_base);
4275   }
4276 }
4277 
4278 void MacroAssembler::build_frame(int framesize) {
4279   assert(framesize > 0, "framesize must be > 0");
4280   if (framesize < ((1 << 9) + 2 * wordSize)) {
4281     sub(sp, sp, framesize);
4282     stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4283     if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
4284   } else {
4285     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
4286     if (PreserveFramePointer) mov(rfp, sp);
4287     if (framesize < ((1 << 12) + 2 * wordSize))
4288       sub(sp, sp, framesize - 2 * wordSize);
4289     else {
4290       mov(rscratch1, framesize - 2 * wordSize);
4291       sub(sp, sp, rscratch1);
4292     }
4293   }
4294 }
4295 
4296 void MacroAssembler::remove_frame(int framesize) {
4297   assert(framesize > 0, "framesize must be > 0");
4298   if (framesize < ((1 << 9) + 2 * wordSize)) {
4299     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4300     add(sp, sp, framesize);
4301   } else {
4302     if (framesize < ((1 << 12) + 2 * wordSize))
4303       add(sp, sp, framesize - 2 * wordSize);
4304     else {
4305       mov(rscratch1, framesize - 2 * wordSize);
4306       add(sp, sp, rscratch1);
4307     }
4308     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
4309   }
4310 }
4311 
4312 typedef void (MacroAssembler::* chr_insn)(Register Rt, const Address &adr);
4313 
4314 // Search for str1 in str2 and return index or -1
4315 void MacroAssembler::string_indexof(Register str2, Register str1,
4316                                     Register cnt2, Register cnt1,
4317                                     Register tmp1, Register tmp2,
4318                                     Register tmp3, Register tmp4,
4319                                     int icnt1, Register result, int ae) {
4320   Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH;
4321 
4322   Register ch1 = rscratch1;
4323   Register ch2 = rscratch2;
4324   Register cnt1tmp = tmp1;
4325   Register cnt2tmp = tmp2;
4326   Register cnt1_neg = cnt1;
4327   Register cnt2_neg = cnt2;
4328   Register result_tmp = tmp4;
4329 
4330   bool isL = ae == StrIntrinsicNode::LL;
4331 
4332   bool str1_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL;
4333   bool str2_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::LU;
4334   int str1_chr_shift = str1_isL ? 0:1;
4335   int str2_chr_shift = str2_isL ? 0:1;
4336   int str1_chr_size = str1_isL ? 1:2;
4337   int str2_chr_size = str2_isL ? 1:2;
4338   chr_insn str1_load_1chr = str1_isL ? (chr_insn)&MacroAssembler::ldrb :
4339                                       (chr_insn)&MacroAssembler::ldrh;
4340   chr_insn str2_load_1chr = str2_isL ? (chr_insn)&MacroAssembler::ldrb :
4341                                       (chr_insn)&MacroAssembler::ldrh;
4342   chr_insn load_2chr = isL ? (chr_insn)&MacroAssembler::ldrh : (chr_insn)&MacroAssembler::ldrw;
4343   chr_insn load_4chr = isL ? (chr_insn)&MacroAssembler::ldrw : (chr_insn)&MacroAssembler::ldr;
4344 
4345   // Note, inline_string_indexOf() generates checks:
4346   // if (substr.count > string.count) return -1;
4347   // if (substr.count == 0) return 0;
4348 
4349 // We have two strings, a source string in str2, cnt2 and a pattern string
4350 // in str1, cnt1. Find the 1st occurence of pattern in source or return -1.
4351 
4352 // For larger pattern and source we use a simplified Boyer Moore algorithm.
4353 // With a small pattern and source we use linear scan.
4354 
4355   if (icnt1 == -1) {
4356     cmp(cnt1, 256);             // Use Linear Scan if cnt1 < 8 || cnt1 >= 256
4357     ccmp(cnt1, 8, 0b0000, LO);  // Can't handle skip >= 256 because we use
4358     br(LO, LINEARSEARCH);       // a byte array.
4359     cmp(cnt1, cnt2, LSR, 2);    // Source must be 4 * pattern for BM
4360     br(HS, LINEARSEARCH);
4361   }
4362 
4363 // The Boyer Moore alogorithm is based on the description here:-
4364 //
4365 // http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
4366 //
4367 // This describes and algorithm with 2 shift rules. The 'Bad Character' rule
4368 // and the 'Good Suffix' rule.
4369 //
4370 // These rules are essentially heuristics for how far we can shift the
4371 // pattern along the search string.
4372 //
4373 // The implementation here uses the 'Bad Character' rule only because of the
4374 // complexity of initialisation for the 'Good Suffix' rule.
4375 //
4376 // This is also known as the Boyer-Moore-Horspool algorithm:-
4377 //
4378 // http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm
4379 //
4380 // #define ASIZE 128
4381 //
4382 //    int bm(unsigned char *x, int m, unsigned char *y, int n) {
4383 //       int i, j;
4384 //       unsigned c;
4385 //       unsigned char bc[ASIZE];
4386 //
4387 //       /* Preprocessing */
4388 //       for (i = 0; i < ASIZE; ++i)
4389 //          bc[i] = 0;
4390 //       for (i = 0; i < m - 1; ) {
4391 //          c = x[i];
4392 //          ++i;
4393 //          if (c < ASIZE) bc[c] = i;
4394 //       }
4395 //
4396 //       /* Searching */
4397 //       j = 0;
4398 //       while (j <= n - m) {
4399 //          c = y[i+j];
4400 //          if (x[m-1] == c)
4401 //            for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i);
4402 //          if (i < 0) return j;
4403 //          if (c < ASIZE)
4404 //            j = j - bc[y[j+m-1]] + m;
4405 //          else
4406 //            j += 1; // Advance by 1 only if char >= ASIZE
4407 //       }
4408 //    }
4409 
4410   if (icnt1 == -1) {
4411     BIND(BM);
4412 
4413     Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP;
4414     Label BMADV, BMMATCH, BMCHECKEND;
4415 
4416     Register cnt1end = tmp2;
4417     Register str2end = cnt2;
4418     Register skipch = tmp2;
4419 
4420     // Restrict ASIZE to 128 to reduce stack space/initialisation.
4421     // The presence of chars >= ASIZE in the target string does not affect
4422     // performance, but we must be careful not to initialise them in the stack
4423     // array.
4424     // The presence of chars >= ASIZE in the source string may adversely affect
4425     // performance since we can only advance by one when we encounter one.
4426 
4427       stp(zr, zr, pre(sp, -128));
4428       for (int i = 1; i < 8; i++)
4429           stp(zr, zr, Address(sp, i*16));
4430 
4431       mov(cnt1tmp, 0);
4432       sub(cnt1end, cnt1, 1);
4433     BIND(BCLOOP);
4434       (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4435       cmp(ch1, 128);
4436       add(cnt1tmp, cnt1tmp, 1);
4437       br(HS, BCSKIP);
4438       strb(cnt1tmp, Address(sp, ch1));
4439     BIND(BCSKIP);
4440       cmp(cnt1tmp, cnt1end);
4441       br(LT, BCLOOP);
4442 
4443       mov(result_tmp, str2);
4444 
4445       sub(cnt2, cnt2, cnt1);
4446       add(str2end, str2, cnt2, LSL, str2_chr_shift);
4447     BIND(BMLOOPSTR2);
4448       sub(cnt1tmp, cnt1, 1);
4449       (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4450       (this->*str2_load_1chr)(skipch, Address(str2, cnt1tmp, Address::lsl(str2_chr_shift)));
4451       cmp(ch1, skipch);
4452       br(NE, BMSKIP);
4453       subs(cnt1tmp, cnt1tmp, 1);
4454       br(LT, BMMATCH);
4455     BIND(BMLOOPSTR1);
4456       (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4457       (this->*str2_load_1chr)(ch2, Address(str2, cnt1tmp, Address::lsl(str2_chr_shift)));
4458       cmp(ch1, ch2);
4459       br(NE, BMSKIP);
4460       subs(cnt1tmp, cnt1tmp, 1);
4461       br(GE, BMLOOPSTR1);
4462     BIND(BMMATCH);
4463       sub(result, str2, result_tmp);
4464       if (!str2_isL) lsr(result, result, 1);
4465       add(sp, sp, 128);
4466       b(DONE);
4467     BIND(BMADV);
4468       add(str2, str2, str2_chr_size);
4469       b(BMCHECKEND);
4470     BIND(BMSKIP);
4471       cmp(skipch, 128);
4472       br(HS, BMADV);
4473       ldrb(ch2, Address(sp, skipch));
4474       add(str2, str2, cnt1, LSL, str2_chr_shift);
4475       sub(str2, str2, ch2, LSL, str2_chr_shift);
4476     BIND(BMCHECKEND);
4477       cmp(str2, str2end);
4478       br(LE, BMLOOPSTR2);
4479       add(sp, sp, 128);
4480       b(NOMATCH);
4481   }
4482 
4483   BIND(LINEARSEARCH);
4484   {
4485     Label DO1, DO2, DO3;
4486 
4487     Register str2tmp = tmp2;
4488     Register first = tmp3;
4489 
4490     if (icnt1 == -1)
4491     {
4492         Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT;
4493 
4494         cmp(cnt1, str1_isL == str2_isL ? 4 : 2);
4495         br(LT, DOSHORT);
4496 
4497         sub(cnt2, cnt2, cnt1);
4498         mov(result_tmp, cnt2);
4499 
4500         lea(str1, Address(str1, cnt1, Address::lsl(str1_chr_shift)));
4501         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4502         sub(cnt1_neg, zr, cnt1, LSL, str1_chr_shift);
4503         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4504         (this->*str1_load_1chr)(first, Address(str1, cnt1_neg));
4505 
4506       BIND(FIRST_LOOP);
4507         (this->*str2_load_1chr)(ch2, Address(str2, cnt2_neg));
4508         cmp(first, ch2);
4509         br(EQ, STR1_LOOP);
4510       BIND(STR2_NEXT);
4511         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4512         br(LE, FIRST_LOOP);
4513         b(NOMATCH);
4514 
4515       BIND(STR1_LOOP);
4516         adds(cnt1tmp, cnt1_neg, str1_chr_size);
4517         add(cnt2tmp, cnt2_neg, str2_chr_size);
4518         br(GE, MATCH);
4519 
4520       BIND(STR1_NEXT);
4521         (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp));
4522         (this->*str2_load_1chr)(ch2, Address(str2, cnt2tmp));
4523         cmp(ch1, ch2);
4524         br(NE, STR2_NEXT);
4525         adds(cnt1tmp, cnt1tmp, str1_chr_size);
4526         add(cnt2tmp, cnt2tmp, str2_chr_size);
4527         br(LT, STR1_NEXT);
4528         b(MATCH);
4529 
4530       BIND(DOSHORT);
4531       if (str1_isL == str2_isL) {
4532         cmp(cnt1, 2);
4533         br(LT, DO1);
4534         br(GT, DO3);
4535       }
4536     }
4537 
4538     if (icnt1 == 4) {
4539       Label CH1_LOOP;
4540 
4541         (this->*load_4chr)(ch1, str1);
4542         sub(cnt2, cnt2, 4);
4543         mov(result_tmp, cnt2);
4544         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4545         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4546 
4547       BIND(CH1_LOOP);
4548         (this->*load_4chr)(ch2, Address(str2, cnt2_neg));
4549         cmp(ch1, ch2);
4550         br(EQ, MATCH);
4551         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4552         br(LE, CH1_LOOP);
4553         b(NOMATCH);
4554     }
4555 
4556     if ((icnt1 == -1 && str1_isL == str2_isL) || icnt1 == 2) {
4557       Label CH1_LOOP;
4558 
4559       BIND(DO2);
4560         (this->*load_2chr)(ch1, str1);
4561         sub(cnt2, cnt2, 2);
4562         mov(result_tmp, cnt2);
4563         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4564         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4565 
4566       BIND(CH1_LOOP);
4567         (this->*load_2chr)(ch2, Address(str2, cnt2_neg));
4568         cmp(ch1, ch2);
4569         br(EQ, MATCH);
4570         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4571         br(LE, CH1_LOOP);
4572         b(NOMATCH);
4573     }
4574 
4575     if ((icnt1 == -1 && str1_isL == str2_isL) || icnt1 == 3) {
4576       Label FIRST_LOOP, STR2_NEXT, STR1_LOOP;
4577 
4578       BIND(DO3);
4579         (this->*load_2chr)(first, str1);
4580         (this->*str1_load_1chr)(ch1, Address(str1, 2*str1_chr_size));
4581 
4582         sub(cnt2, cnt2, 3);
4583         mov(result_tmp, cnt2);
4584         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4585         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4586 
4587       BIND(FIRST_LOOP);
4588         (this->*load_2chr)(ch2, Address(str2, cnt2_neg));
4589         cmpw(first, ch2);
4590         br(EQ, STR1_LOOP);
4591       BIND(STR2_NEXT);
4592         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4593         br(LE, FIRST_LOOP);
4594         b(NOMATCH);
4595 
4596       BIND(STR1_LOOP);
4597         add(cnt2tmp, cnt2_neg, 2*str2_chr_size);
4598         (this->*str2_load_1chr)(ch2, Address(str2, cnt2tmp));
4599         cmp(ch1, ch2);
4600         br(NE, STR2_NEXT);
4601         b(MATCH);
4602     }
4603 
4604     if (icnt1 == -1 || icnt1 == 1) {
4605       Label CH1_LOOP, HAS_ZERO;
4606       Label DO1_SHORT, DO1_LOOP;
4607 
4608       BIND(DO1);
4609         (this->*str1_load_1chr)(ch1, str1);
4610         cmp(cnt2, 8);
4611         br(LT, DO1_SHORT);
4612 
4613         if (str2_isL) {
4614           if (!str1_isL) {
4615             tst(ch1, 0xff00);
4616             br(NE, NOMATCH);
4617           }
4618           orr(ch1, ch1, ch1, LSL, 8);
4619         }
4620         orr(ch1, ch1, ch1, LSL, 16);
4621         orr(ch1, ch1, ch1, LSL, 32);
4622 
4623         sub(cnt2, cnt2, 8/str2_chr_size);
4624         mov(result_tmp, cnt2);
4625         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4626         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4627 
4628         mov(tmp3, str2_isL ? 0x0101010101010101 : 0x0001000100010001);
4629       BIND(CH1_LOOP);
4630         ldr(ch2, Address(str2, cnt2_neg));
4631         eor(ch2, ch1, ch2);
4632         sub(tmp1, ch2, tmp3);
4633         orr(tmp2, ch2, str2_isL ? 0x7f7f7f7f7f7f7f7f : 0x7fff7fff7fff7fff);
4634         bics(tmp1, tmp1, tmp2);
4635         br(NE, HAS_ZERO);
4636         adds(cnt2_neg, cnt2_neg, 8);
4637         br(LT, CH1_LOOP);
4638 
4639         cmp(cnt2_neg, 8);
4640         mov(cnt2_neg, 0);
4641         br(LT, CH1_LOOP);
4642         b(NOMATCH);
4643 
4644       BIND(HAS_ZERO);
4645         rev(tmp1, tmp1);
4646         clz(tmp1, tmp1);
4647         add(cnt2_neg, cnt2_neg, tmp1, LSR, 3);
4648         b(MATCH);
4649 
4650       BIND(DO1_SHORT);
4651         mov(result_tmp, cnt2);
4652         lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4653         sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4654       BIND(DO1_LOOP);
4655         (this->*str2_load_1chr)(ch2, Address(str2, cnt2_neg));
4656         cmpw(ch1, ch2);
4657         br(EQ, MATCH);
4658         adds(cnt2_neg, cnt2_neg, str2_chr_size);
4659         br(LT, DO1_LOOP);
4660     }
4661   }
4662   BIND(NOMATCH);
4663     mov(result, -1);
4664     b(DONE);
4665   BIND(MATCH);
4666     add(result, result_tmp, cnt2_neg, ASR, str2_chr_shift);
4667   BIND(DONE);
4668 }
4669 
4670 typedef void (MacroAssembler::* chr_insn)(Register Rt, const Address &adr);
4671 typedef void (MacroAssembler::* uxt_insn)(Register Rd, Register Rn);
4672 
4673 void MacroAssembler::string_indexof_char(Register str1, Register cnt1,
4674                                          Register ch, Register result,
4675                                          Register tmp1, Register tmp2, Register tmp3)
4676 {
4677   Label CH1_LOOP, HAS_ZERO, DO1_SHORT, DO1_LOOP, MATCH, NOMATCH, DONE;
4678   Register cnt1_neg = cnt1;
4679   Register ch1 = rscratch1;
4680   Register result_tmp = rscratch2;
4681 
4682   cmp(cnt1, 4);
4683   br(LT, DO1_SHORT);
4684 
4685   orr(ch, ch, ch, LSL, 16);
4686   orr(ch, ch, ch, LSL, 32);
4687 
4688   sub(cnt1, cnt1, 4);
4689   mov(result_tmp, cnt1);
4690   lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4691   sub(cnt1_neg, zr, cnt1, LSL, 1);
4692 
4693   mov(tmp3, 0x0001000100010001);
4694 
4695   BIND(CH1_LOOP);
4696     ldr(ch1, Address(str1, cnt1_neg));
4697     eor(ch1, ch, ch1);
4698     sub(tmp1, ch1, tmp3);
4699     orr(tmp2, ch1, 0x7fff7fff7fff7fff);
4700     bics(tmp1, tmp1, tmp2);
4701     br(NE, HAS_ZERO);
4702     adds(cnt1_neg, cnt1_neg, 8);
4703     br(LT, CH1_LOOP);
4704 
4705     cmp(cnt1_neg, 8);
4706     mov(cnt1_neg, 0);
4707     br(LT, CH1_LOOP);
4708     b(NOMATCH);
4709 
4710   BIND(HAS_ZERO);
4711     rev(tmp1, tmp1);
4712     clz(tmp1, tmp1);
4713     add(cnt1_neg, cnt1_neg, tmp1, LSR, 3);
4714     b(MATCH);
4715 
4716   BIND(DO1_SHORT);
4717     mov(result_tmp, cnt1);
4718     lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4719     sub(cnt1_neg, zr, cnt1, LSL, 1);
4720   BIND(DO1_LOOP);
4721     ldrh(ch1, Address(str1, cnt1_neg));
4722     cmpw(ch, ch1);
4723     br(EQ, MATCH);
4724     adds(cnt1_neg, cnt1_neg, 2);
4725     br(LT, DO1_LOOP);
4726   BIND(NOMATCH);
4727     mov(result, -1);
4728     b(DONE);
4729   BIND(MATCH);
4730     add(result, result_tmp, cnt1_neg, ASR, 1);
4731   BIND(DONE);
4732 }
4733 
4734 // Compare strings.
4735 void MacroAssembler::string_compare(Register str1, Register str2,
4736                                     Register cnt1, Register cnt2, Register result,
4737                                     Register tmp1,
4738                                     FloatRegister vtmp, FloatRegister vtmpZ, int ae) {
4739   Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING,
4740     NEXT_WORD, DIFFERENCE;
4741 
4742   bool isLL = ae == StrIntrinsicNode::LL;
4743   bool isLU = ae == StrIntrinsicNode::LU;
4744   bool isUL = ae == StrIntrinsicNode::UL;
4745 
4746   bool str1_isL = isLL || isLU;
4747   bool str2_isL = isLL || isUL;
4748 
4749   int str1_chr_shift = str1_isL ? 0 : 1;
4750   int str2_chr_shift = str2_isL ? 0 : 1;
4751   int str1_chr_size = str1_isL ? 1 : 2;
4752   int str2_chr_size = str2_isL ? 1 : 2;
4753 
4754   chr_insn str1_load_chr = str1_isL ? (chr_insn)&MacroAssembler::ldrb :
4755                                       (chr_insn)&MacroAssembler::ldrh;
4756   chr_insn str2_load_chr = str2_isL ? (chr_insn)&MacroAssembler::ldrb :
4757                                       (chr_insn)&MacroAssembler::ldrh;
4758   uxt_insn ext_chr = isLL ? (uxt_insn)&MacroAssembler::uxtbw :
4759                             (uxt_insn)&MacroAssembler::uxthw;
4760 
4761   BLOCK_COMMENT("string_compare {");
4762 
4763   // Bizzarely, the counts are passed in bytes, regardless of whether they
4764   // are L or U strings, however the result is always in characters.
4765   if (!str1_isL) asrw(cnt1, cnt1, 1);
4766   if (!str2_isL) asrw(cnt2, cnt2, 1);
4767 
4768   // Compute the minimum of the string lengths and save the difference.
4769   subsw(tmp1, cnt1, cnt2);
4770   cselw(cnt2, cnt1, cnt2, Assembler::LE); // min
4771 
4772   // A very short string
4773   cmpw(cnt2, isLL ? 8:4);
4774   br(Assembler::LT, SHORT_STRING);
4775 
4776   // Check if the strings start at the same location.
4777   cmp(str1, str2);
4778   br(Assembler::EQ, LENGTH_DIFF);
4779 
4780   // Compare longwords
4781   {
4782     subw(cnt2, cnt2, isLL ? 8:4); // The last longword is a special case
4783 
4784     // Move both string pointers to the last longword of their
4785     // strings, negate the remaining count, and convert it to bytes.
4786     lea(str1, Address(str1, cnt2, Address::uxtw(str1_chr_shift)));
4787     lea(str2, Address(str2, cnt2, Address::uxtw(str2_chr_shift)));
4788     if (isLU || isUL) {
4789       sub(cnt1, zr, cnt2, LSL, str1_chr_shift);
4790       eor(vtmpZ, T16B, vtmpZ, vtmpZ);
4791     }
4792     sub(cnt2, zr, cnt2, LSL, str2_chr_shift);
4793 
4794     // Loop, loading longwords and comparing them into rscratch2.
4795     bind(NEXT_WORD);
4796     if (isLU) {
4797       ldrs(vtmp, Address(str1, cnt1));
4798       zip1(vtmp, T8B, vtmp, vtmpZ);
4799       umov(result, vtmp, D, 0);
4800     } else {
4801       ldr(result, Address(str1, isUL ? cnt1:cnt2));
4802     }
4803     if (isUL) {
4804       ldrs(vtmp, Address(str2, cnt2));
4805       zip1(vtmp, T8B, vtmp, vtmpZ);
4806       umov(rscratch1, vtmp, D, 0);
4807     } else {
4808       ldr(rscratch1, Address(str2, cnt2));
4809     }
4810     adds(cnt2, cnt2, isUL ? 4:8);
4811     if (isLU || isUL) add(cnt1, cnt1, isLU ? 4:8);
4812     eor(rscratch2, result, rscratch1);
4813     cbnz(rscratch2, DIFFERENCE);
4814     br(Assembler::LT, NEXT_WORD);
4815 
4816     // Last longword.  In the case where length == 4 we compare the
4817     // same longword twice, but that's still faster than another
4818     // conditional branch.
4819 
4820     if (isLU) {
4821       ldrs(vtmp, Address(str1));
4822       zip1(vtmp, T8B, vtmp, vtmpZ);
4823       umov(result, vtmp, D, 0);
4824     } else {
4825       ldr(result, Address(str1));
4826     }
4827     if (isUL) {
4828       ldrs(vtmp, Address(str2));
4829       zip1(vtmp, T8B, vtmp, vtmpZ);
4830       umov(rscratch1, vtmp, D, 0);
4831     } else {
4832       ldr(rscratch1, Address(str2));
4833     }
4834     eor(rscratch2, result, rscratch1);
4835     cbz(rscratch2, LENGTH_DIFF);
4836 
4837     // Find the first different characters in the longwords and
4838     // compute their difference.
4839     bind(DIFFERENCE);
4840     rev(rscratch2, rscratch2);
4841     clz(rscratch2, rscratch2);
4842     andr(rscratch2, rscratch2, isLL ? -8 : -16);
4843     lsrv(result, result, rscratch2);
4844     (this->*ext_chr)(result, result);
4845     lsrv(rscratch1, rscratch1, rscratch2);
4846     (this->*ext_chr)(rscratch1, rscratch1);
4847     subw(result, result, rscratch1);
4848     b(DONE);
4849   }
4850 
4851   bind(SHORT_STRING);
4852   // Is the minimum length zero?
4853   cbz(cnt2, LENGTH_DIFF);
4854 
4855   bind(SHORT_LOOP);
4856   (this->*str1_load_chr)(result, Address(post(str1, str1_chr_size)));
4857   (this->*str2_load_chr)(cnt1, Address(post(str2, str2_chr_size)));
4858   subw(result, result, cnt1);
4859   cbnz(result, DONE);
4860   sub(cnt2, cnt2, 1);
4861   cbnz(cnt2, SHORT_LOOP);
4862 
4863   // Strings are equal up to min length.  Return the length difference.
4864   bind(LENGTH_DIFF);
4865   mov(result, tmp1);
4866 
4867   // That's it
4868   bind(DONE);
4869 
4870   BLOCK_COMMENT("} string_compare");
4871 }
4872 
4873 // This method checks if provided byte array contains byte with highest bit set.
4874 void MacroAssembler::has_negatives(Register ary1, Register len, Register result) {
4875     // Simple and most common case of aligned small array which is not at the
4876     // end of memory page is placed here. All other cases are in stub.
4877     Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
4878     const uint64_t UPPER_BIT_MASK=0x8080808080808080;
4879     assert_different_registers(ary1, len, result);
4880 
4881     cmpw(len, 0);
4882     br(LE, SET_RESULT);
4883     cmpw(len, 4 * wordSize);
4884     br(GE, STUB_LONG); // size > 32 then go to stub
4885 
4886     int shift = 64 - exact_log2(os::vm_page_size());
4887     lsl(rscratch1, ary1, shift);
4888     mov(rscratch2, (size_t)(4 * wordSize) << shift);
4889     adds(rscratch2, rscratch1, rscratch2);  // At end of page?
4890     br(CS, STUB); // at the end of page then go to stub
4891     subs(len, len, wordSize);
4892     br(LT, END);
4893 
4894   BIND(LOOP);
4895     ldr(rscratch1, Address(post(ary1, wordSize)));
4896     tst(rscratch1, UPPER_BIT_MASK);
4897     br(NE, SET_RESULT);
4898     subs(len, len, wordSize);
4899     br(GE, LOOP);
4900     cmpw(len, -wordSize);
4901     br(EQ, SET_RESULT);
4902 
4903   BIND(END);
4904     ldr(result, Address(ary1));
4905     sub(len, zr, len, LSL, 3); // LSL 3 is to get bits from bytes
4906     lslv(result, result, len);
4907     tst(result, UPPER_BIT_MASK);
4908     b(SET_RESULT);
4909 
4910   BIND(STUB);
4911     RuntimeAddress has_neg =  RuntimeAddress(StubRoutines::aarch64::has_negatives());
4912     assert(has_neg.target() != NULL, "has_negatives stub has not been generated");
4913     trampoline_call(has_neg);
4914     b(DONE);
4915 
4916   BIND(STUB_LONG);
4917     RuntimeAddress has_neg_long =  RuntimeAddress(
4918             StubRoutines::aarch64::has_negatives_long());
4919     assert(has_neg_long.target() != NULL, "has_negatives stub has not been generated");
4920     trampoline_call(has_neg_long);
4921     b(DONE);
4922 
4923   BIND(SET_RESULT);
4924     cset(result, NE); // set true or false
4925 
4926   BIND(DONE);
4927 }
4928 
4929 void MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
4930                                    Register tmp4, Register tmp5, Register result,
4931                                    Register cnt1, int elem_size)
4932 {
4933   Label DONE;
4934   Register tmp1 = rscratch1;
4935   Register tmp2 = rscratch2;
4936   Register cnt2 = tmp2;  // cnt2 only used in array length compare
4937   int elem_per_word = wordSize/elem_size;
4938   int log_elem_size = exact_log2(elem_size);
4939   int length_offset = arrayOopDesc::length_offset_in_bytes();
4940   int base_offset
4941     = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
4942   int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16);
4943 
4944   assert(elem_size == 1 || elem_size == 2, "must be char or byte");
4945   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
4946 
4947 #ifndef PRODUCT
4948   {
4949     const char kind = (elem_size == 2) ? 'U' : 'L';
4950     char comment[64];
4951     snprintf(comment, sizeof comment, "array_equals%c{", kind);
4952     BLOCK_COMMENT(comment);
4953   }
4954 #endif
4955   if (UseSimpleArrayEquals) {
4956     Label NEXT_WORD, SHORT, SAME, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL;
4957     // if (a1==a2)
4958     //     return true;
4959     // if (a==null || a2==null)
4960     //     return false;
4961     // a1 & a2 == 0 means (some-pointer is null) or
4962     // (very-rare-or-even-probably-impossible-pointer-values)
4963     // so, we can save one branch in most cases
4964     cmpoop(a1, a2);
4965     br(EQ, SAME);
4966     eor(rscratch1, a1, a2);
4967     tst(a1, a2);
4968     mov(result, false);
4969     cbz(rscratch1, SAME);
4970     br(EQ, A_MIGHT_BE_NULL);
4971     // if (a1.length != a2.length)
4972     //      return false;
4973     bind(A_IS_NOT_NULL);
4974     ldrw(cnt1, Address(a1, length_offset));
4975     ldrw(cnt2, Address(a2, length_offset));
4976     eorw(tmp5, cnt1, cnt2);
4977     cbnzw(tmp5, DONE);
4978     lea(a1, Address(a1, base_offset));
4979     lea(a2, Address(a2, base_offset));
4980     // Check for short strings, i.e. smaller than wordSize.
4981     subs(cnt1, cnt1, elem_per_word);
4982     br(Assembler::LT, SHORT);
4983     // Main 8 byte comparison loop.
4984     bind(NEXT_WORD); {
4985       ldr(tmp1, Address(post(a1, wordSize)));
4986       ldr(tmp2, Address(post(a2, wordSize)));
4987       subs(cnt1, cnt1, elem_per_word);
4988       eor(tmp5, tmp1, tmp2);
4989       cbnz(tmp5, DONE);
4990     } br(GT, NEXT_WORD);
4991     // Last longword.  In the case where length == 4 we compare the
4992     // same longword twice, but that's still faster than another
4993     // conditional branch.
4994     // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
4995     // length == 4.
4996     if (log_elem_size > 0)
4997       lsl(cnt1, cnt1, log_elem_size);
4998     ldr(tmp3, Address(a1, cnt1));
4999     ldr(tmp4, Address(a2, cnt1));
5000     eor(tmp5, tmp3, tmp4);
5001     cbnz(tmp5, DONE);
5002     b(SAME);
5003     bind(A_MIGHT_BE_NULL);
5004     // in case both a1 and a2 are not-null, proceed with loads
5005     cbz(a1, DONE);
5006     cbz(a2, DONE);
5007     b(A_IS_NOT_NULL);
5008     bind(SHORT);
5009 
5010     tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
5011     {
5012       ldrw(tmp1, Address(post(a1, 4)));
5013       ldrw(tmp2, Address(post(a2, 4)));
5014       eorw(tmp5, tmp1, tmp2);
5015       cbnzw(tmp5, DONE);
5016     }
5017     bind(TAIL03);
5018     tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
5019     {
5020       ldrh(tmp3, Address(post(a1, 2)));
5021       ldrh(tmp4, Address(post(a2, 2)));
5022       eorw(tmp5, tmp3, tmp4);
5023       cbnzw(tmp5, DONE);
5024     }
5025     bind(TAIL01);
5026     if (elem_size == 1) { // Only needed when comparing byte arrays.
5027       tbz(cnt1, 0, SAME); // 0-1 bytes left.
5028       {
5029         ldrb(tmp1, a1);
5030         ldrb(tmp2, a2);
5031         eorw(tmp5, tmp1, tmp2);
5032         cbnzw(tmp5, DONE);
5033       }
5034     }
5035     bind(SAME);
5036     mov(result, true);
5037   } else {
5038     Label NEXT_DWORD, A_IS_NULL, SHORT, TAIL, TAIL2, STUB, EARLY_OUT,
5039         CSET_EQ, LAST_CHECK, LEN_IS_ZERO, SAME;
5040     cbz(a1, A_IS_NULL);
5041     ldrw(cnt1, Address(a1, length_offset));
5042     cbz(a2, A_IS_NULL);
5043     ldrw(cnt2, Address(a2, length_offset));
5044     mov(result, false);
5045     // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's
5046     // faster to perform another branch before comparing a1 and a2
5047     cmp(cnt1, elem_per_word);
5048     br(LE, SHORT); // short or same
5049     cmpoop(a1, a2);
5050     br(EQ, SAME);
5051     ldr(tmp3, Address(pre(a1, base_offset)));
5052     cmp(cnt1, stubBytesThreshold);
5053     br(GE, STUB);
5054     ldr(tmp4, Address(pre(a2, base_offset)));
5055     sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5056     cmp(cnt2, cnt1);
5057     br(NE, DONE);
5058 
5059     // Main 16 byte comparison loop with 2 exits
5060     bind(NEXT_DWORD); {
5061       ldr(tmp1, Address(pre(a1, wordSize)));
5062       ldr(tmp2, Address(pre(a2, wordSize)));
5063       subs(cnt1, cnt1, 2 * elem_per_word);
5064       br(LE, TAIL);
5065       eor(tmp4, tmp3, tmp4);
5066       cbnz(tmp4, DONE);
5067       ldr(tmp3, Address(pre(a1, wordSize)));
5068       ldr(tmp4, Address(pre(a2, wordSize)));
5069       cmp(cnt1, elem_per_word);
5070       br(LE, TAIL2);
5071       cmp(tmp1, tmp2);
5072     } br(EQ, NEXT_DWORD);
5073     b(DONE);
5074 
5075     bind(TAIL);
5076     eor(tmp4, tmp3, tmp4);
5077     eor(tmp2, tmp1, tmp2);
5078     lslv(tmp2, tmp2, tmp5);
5079     orr(tmp5, tmp4, tmp2);
5080     cmp(tmp5, zr);
5081     b(CSET_EQ);
5082 
5083     bind(TAIL2);
5084     eor(tmp2, tmp1, tmp2);
5085     cbnz(tmp2, DONE);
5086     b(LAST_CHECK);
5087 
5088     bind(STUB);
5089     ldr(tmp4, Address(pre(a2, base_offset)));
5090     cmp(cnt2, cnt1);
5091     br(NE, DONE);
5092     if (elem_size == 2) { // convert to byte counter
5093       lsl(cnt1, cnt1, 1);
5094     }
5095     eor(tmp5, tmp3, tmp4);
5096     cbnz(tmp5, DONE);
5097     RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals());
5098     assert(stub.target() != NULL, "array_equals_long stub has not been generated");
5099     trampoline_call(stub);
5100     b(DONE);
5101 
5102     bind(SAME);
5103     mov(result, true);
5104     b(DONE);
5105     bind(A_IS_NULL);
5106     // a1 or a2 is null. if a2 == a2 then return true. else return false
5107     cmp(a1, a2);
5108     b(CSET_EQ);
5109     bind(EARLY_OUT);
5110     // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2)
5111     // so, if a2 == null => return false(0), else return true, so we can return a2
5112     mov(result, a2);
5113     b(DONE);
5114     bind(LEN_IS_ZERO);
5115     cmp(cnt2, zr);
5116     b(CSET_EQ);
5117     bind(SHORT);
5118     cbz(cnt1, LEN_IS_ZERO);
5119     sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5120     ldr(tmp3, Address(a1, base_offset));
5121     ldr(tmp4, Address(a2, base_offset));
5122     bind(LAST_CHECK);
5123     eor(tmp4, tmp3, tmp4);
5124     lslv(tmp5, tmp4, tmp5);
5125     cmp(tmp5, zr);
5126     bind(CSET_EQ);
5127     cset(result, EQ);
5128   }
5129 
5130   // That's it.
5131   bind(DONE);
5132 
5133   BLOCK_COMMENT("} array_equals");
5134 }
5135 
5136 // Compare Strings
5137 
5138 // For Strings we're passed the address of the first characters in a1
5139 // and a2 and the length in cnt1.
5140 // elem_size is the element size in bytes: either 1 or 2.
5141 // There are two implementations.  For arrays >= 8 bytes, all
5142 // comparisons (including the final one, which may overlap) are
5143 // performed 8 bytes at a time.  For strings < 8 bytes, we compare a
5144 // halfword, then a short, and then a byte.
5145 
5146 void MacroAssembler::string_equals(Register a1, Register a2,
5147                                    Register result, Register cnt1, int elem_size)
5148 {
5149   Label SAME, DONE, SHORT, NEXT_WORD;
5150   Register tmp1 = rscratch1;
5151   Register tmp2 = rscratch2;
5152   Register cnt2 = tmp2;  // cnt2 only used in array length compare
5153 
5154   assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte");
5155   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
5156 
5157 #ifndef PRODUCT
5158   {
5159     const char kind = (elem_size == 2) ? 'U' : 'L';
5160     char comment[64];
5161     snprintf(comment, sizeof comment, "{string_equals%c", kind);
5162     BLOCK_COMMENT(comment);
5163   }
5164 #endif
5165 
5166   mov(result, false);
5167 
5168   // Check for short strings, i.e. smaller than wordSize.
5169   subs(cnt1, cnt1, wordSize);
5170   br(Assembler::LT, SHORT);
5171   // Main 8 byte comparison loop.
5172   bind(NEXT_WORD); {
5173     ldr(tmp1, Address(post(a1, wordSize)));
5174     ldr(tmp2, Address(post(a2, wordSize)));
5175     subs(cnt1, cnt1, wordSize);
5176     eor(tmp1, tmp1, tmp2);
5177     cbnz(tmp1, DONE);
5178   } br(GT, NEXT_WORD);
5179   // Last longword.  In the case where length == 4 we compare the
5180   // same longword twice, but that's still faster than another
5181   // conditional branch.
5182   // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5183   // length == 4.
5184   ldr(tmp1, Address(a1, cnt1));
5185   ldr(tmp2, Address(a2, cnt1));
5186   eor(tmp2, tmp1, tmp2);
5187   cbnz(tmp2, DONE);
5188   b(SAME);
5189 
5190   bind(SHORT);
5191   Label TAIL03, TAIL01;
5192 
5193   tbz(cnt1, 2, TAIL03); // 0-7 bytes left.
5194   {
5195     ldrw(tmp1, Address(post(a1, 4)));
5196     ldrw(tmp2, Address(post(a2, 4)));
5197     eorw(tmp1, tmp1, tmp2);
5198     cbnzw(tmp1, DONE);
5199   }
5200   bind(TAIL03);
5201   tbz(cnt1, 1, TAIL01); // 0-3 bytes left.
5202   {
5203     ldrh(tmp1, Address(post(a1, 2)));
5204     ldrh(tmp2, Address(post(a2, 2)));
5205     eorw(tmp1, tmp1, tmp2);
5206     cbnzw(tmp1, DONE);
5207   }
5208   bind(TAIL01);
5209   if (elem_size == 1) { // Only needed when comparing 1-byte elements
5210     tbz(cnt1, 0, SAME); // 0-1 bytes left.
5211     {
5212       ldrb(tmp1, a1);
5213       ldrb(tmp2, a2);
5214       eorw(tmp1, tmp1, tmp2);
5215       cbnzw(tmp1, DONE);
5216     }
5217   }
5218   // Arrays are equal.
5219   bind(SAME);
5220   mov(result, true);
5221 
5222   // That's it.
5223   bind(DONE);
5224   BLOCK_COMMENT("} string_equals");
5225 }
5226 
5227 
5228 // The size of the blocks erased by the zero_blocks stub.  We must
5229 // handle anything smaller than this ourselves in zero_words().
5230 const int MacroAssembler::zero_words_block_size = 8;
5231 
5232 // zero_words() is used by C2 ClearArray patterns.  It is as small as
5233 // possible, handling small word counts locally and delegating
5234 // anything larger to the zero_blocks stub.  It is expanded many times
5235 // in compiled code, so it is important to keep it short.
5236 
5237 // ptr:   Address of a buffer to be zeroed.
5238 // cnt:   Count in HeapWords.
5239 //
5240 // ptr, cnt, rscratch1, and rscratch2 are clobbered.
5241 void MacroAssembler::zero_words(Register ptr, Register cnt)
5242 {
5243   assert(is_power_of_2(zero_words_block_size), "adjust this");
5244   assert(ptr == r10 && cnt == r11, "mismatch in register usage");
5245 
5246   BLOCK_COMMENT("zero_words {");
5247   cmp(cnt, zero_words_block_size);
5248   Label around, done, done16;
5249   br(LO, around);
5250   {
5251     RuntimeAddress zero_blocks =  RuntimeAddress(StubRoutines::aarch64::zero_blocks());
5252     assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated");
5253     if (StubRoutines::aarch64::complete()) {
5254       trampoline_call(zero_blocks);
5255     } else {
5256       bl(zero_blocks);
5257     }
5258   }
5259   bind(around);
5260   for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) {
5261     Label l;
5262     tbz(cnt, exact_log2(i), l);
5263     for (int j = 0; j < i; j += 2) {
5264       stp(zr, zr, post(ptr, 16));
5265     }
5266     bind(l);
5267   }
5268   {
5269     Label l;
5270     tbz(cnt, 0, l);
5271     str(zr, Address(ptr));
5272     bind(l);
5273   }
5274   BLOCK_COMMENT("} zero_words");
5275 }
5276 
5277 // base:         Address of a buffer to be zeroed, 8 bytes aligned.
5278 // cnt:          Immediate count in HeapWords.
5279 #define SmallArraySize (18 * BytesPerLong)
5280 void MacroAssembler::zero_words(Register base, u_int64_t cnt)
5281 {
5282   BLOCK_COMMENT("zero_words {");
5283   int i = cnt & 1;  // store any odd word to start
5284   if (i) str(zr, Address(base));
5285 
5286   if (cnt <= SmallArraySize / BytesPerLong) {
5287     for (; i < (int)cnt; i += 2)
5288       stp(zr, zr, Address(base, i * wordSize));
5289   } else {
5290     const int unroll = 4; // Number of stp(zr, zr) instructions we'll unroll
5291     int remainder = cnt % (2 * unroll);
5292     for (; i < remainder; i += 2)
5293       stp(zr, zr, Address(base, i * wordSize));
5294 
5295     Label loop;
5296     Register cnt_reg = rscratch1;
5297     Register loop_base = rscratch2;
5298     cnt = cnt - remainder;
5299     mov(cnt_reg, cnt);
5300     // adjust base and prebias by -2 * wordSize so we can pre-increment
5301     add(loop_base, base, (remainder - 2) * wordSize);
5302     bind(loop);
5303     sub(cnt_reg, cnt_reg, 2 * unroll);
5304     for (i = 1; i < unroll; i++)
5305       stp(zr, zr, Address(loop_base, 2 * i * wordSize));
5306     stp(zr, zr, Address(pre(loop_base, 2 * unroll * wordSize)));
5307     cbnz(cnt_reg, loop);
5308   }
5309   BLOCK_COMMENT("} zero_words");
5310 }
5311 
5312 // Zero blocks of memory by using DC ZVA.
5313 //
5314 // Aligns the base address first sufficently for DC ZVA, then uses
5315 // DC ZVA repeatedly for every full block.  cnt is the size to be
5316 // zeroed in HeapWords.  Returns the count of words left to be zeroed
5317 // in cnt.
5318 //
5319 // NOTE: This is intended to be used in the zero_blocks() stub.  If
5320 // you want to use it elsewhere, note that cnt must be >= 2*zva_length.
5321 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) {
5322   Register tmp = rscratch1;
5323   Register tmp2 = rscratch2;
5324   int zva_length = VM_Version::zva_length();
5325   Label initial_table_end, loop_zva;
5326   Label fini;
5327 
5328   // Base must be 16 byte aligned. If not just return and let caller handle it
5329   tst(base, 0x0f);
5330   br(Assembler::NE, fini);
5331   // Align base with ZVA length.
5332   neg(tmp, base);
5333   andr(tmp, tmp, zva_length - 1);
5334 
5335   // tmp: the number of bytes to be filled to align the base with ZVA length.
5336   add(base, base, tmp);
5337   sub(cnt, cnt, tmp, Assembler::ASR, 3);
5338   adr(tmp2, initial_table_end);
5339   sub(tmp2, tmp2, tmp, Assembler::LSR, 2);
5340   br(tmp2);
5341 
5342   for (int i = -zva_length + 16; i < 0; i += 16)
5343     stp(zr, zr, Address(base, i));
5344   bind(initial_table_end);
5345 
5346   sub(cnt, cnt, zva_length >> 3);
5347   bind(loop_zva);
5348   dc(Assembler::ZVA, base);
5349   subs(cnt, cnt, zva_length >> 3);
5350   add(base, base, zva_length);
5351   br(Assembler::GE, loop_zva);
5352   add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA
5353   bind(fini);
5354 }
5355 
5356 // base:   Address of a buffer to be filled, 8 bytes aligned.
5357 // cnt:    Count in 8-byte unit.
5358 // value:  Value to be filled with.
5359 // base will point to the end of the buffer after filling.
5360 void MacroAssembler::fill_words(Register base, Register cnt, Register value)
5361 {
5362 //  Algorithm:
5363 //
5364 //    scratch1 = cnt & 7;
5365 //    cnt -= scratch1;
5366 //    p += scratch1;
5367 //    switch (scratch1) {
5368 //      do {
5369 //        cnt -= 8;
5370 //          p[-8] = v;
5371 //        case 7:
5372 //          p[-7] = v;
5373 //        case 6:
5374 //          p[-6] = v;
5375 //          // ...
5376 //        case 1:
5377 //          p[-1] = v;
5378 //        case 0:
5379 //          p += 8;
5380 //      } while (cnt);
5381 //    }
5382 
5383   assert_different_registers(base, cnt, value, rscratch1, rscratch2);
5384 
5385   Label fini, skip, entry, loop;
5386   const int unroll = 8; // Number of stp instructions we'll unroll
5387 
5388   cbz(cnt, fini);
5389   tbz(base, 3, skip);
5390   str(value, Address(post(base, 8)));
5391   sub(cnt, cnt, 1);
5392   bind(skip);
5393 
5394   andr(rscratch1, cnt, (unroll-1) * 2);
5395   sub(cnt, cnt, rscratch1);
5396   add(base, base, rscratch1, Assembler::LSL, 3);
5397   adr(rscratch2, entry);
5398   sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1);
5399   br(rscratch2);
5400 
5401   bind(loop);
5402   add(base, base, unroll * 16);
5403   for (int i = -unroll; i < 0; i++)
5404     stp(value, value, Address(base, i * 16));
5405   bind(entry);
5406   subs(cnt, cnt, unroll * 2);
5407   br(Assembler::GE, loop);
5408 
5409   tbz(cnt, 0, fini);
5410   str(value, Address(post(base, 8)));
5411   bind(fini);
5412 }
5413 
5414 // Intrinsic for sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray and
5415 // java/lang/StringUTF16.compress.
5416 void MacroAssembler::encode_iso_array(Register src, Register dst,
5417                       Register len, Register result,
5418                       FloatRegister Vtmp1, FloatRegister Vtmp2,
5419                       FloatRegister Vtmp3, FloatRegister Vtmp4)
5420 {
5421     Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1;
5422     Register tmp1 = rscratch1;
5423 
5424       mov(result, len); // Save initial len
5425 
5426 #ifndef BUILTIN_SIM
5427       subs(len, len, 32);
5428       br(LT, LOOP_8);
5429 
5430 // The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions
5431 // to convert chars to bytes. These set the 'QC' bit in the FPSR if
5432 // any char could not fit in a byte, so clear the FPSR so we can test it.
5433       clear_fpsr();
5434 
5435     BIND(NEXT_32);
5436       ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src);
5437       uqxtn(Vtmp1, T8B, Vtmp1, T8H);  // uqxtn  - write bottom half
5438       uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half
5439       uqxtn(Vtmp2, T8B, Vtmp3, T8H);
5440       uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2
5441       get_fpsr(tmp1);
5442       cbnzw(tmp1, LOOP_8);
5443       st1(Vtmp1, Vtmp2, T16B, post(dst, 32));
5444       subs(len, len, 32);
5445       add(src, src, 64);
5446       br(GE, NEXT_32);
5447 
5448     BIND(LOOP_8);
5449       adds(len, len, 32-8);
5450       br(LT, LOOP_1);
5451       clear_fpsr(); // QC may be set from loop above, clear again
5452     BIND(NEXT_8);
5453       ld1(Vtmp1, T8H, src);
5454       uqxtn(Vtmp1, T8B, Vtmp1, T8H);
5455       get_fpsr(tmp1);
5456       cbnzw(tmp1, LOOP_1);
5457       st1(Vtmp1, T8B, post(dst, 8));
5458       subs(len, len, 8);
5459       add(src, src, 16);
5460       br(GE, NEXT_8);
5461 
5462     BIND(LOOP_1);
5463       adds(len, len, 8);
5464       br(LE, DONE);
5465 #else
5466       cbz(len, DONE);
5467 #endif
5468     BIND(NEXT_1);
5469       ldrh(tmp1, Address(post(src, 2)));
5470       tst(tmp1, 0xff00);
5471       br(NE, DONE);
5472       strb(tmp1, Address(post(dst, 1)));
5473       subs(len, len, 1);
5474       br(GT, NEXT_1);
5475 
5476     BIND(DONE);
5477       sub(result, result, len); // Return index where we stopped
5478                                 // Return len == 0 if we processed all
5479                                 // characters
5480 }
5481 
5482 
5483 // Inflate byte[] array to char[].
5484 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
5485                                         FloatRegister vtmp1, FloatRegister vtmp2, FloatRegister vtmp3,
5486                                         Register tmp4) {
5487   Label big, done;
5488 
5489   assert_different_registers(src, dst, len, tmp4, rscratch1);
5490 
5491   fmovd(vtmp1 , zr);
5492   lsrw(rscratch1, len, 3);
5493 
5494   cbnzw(rscratch1, big);
5495 
5496   // Short string: less than 8 bytes.
5497   {
5498     Label loop, around, tiny;
5499 
5500     subsw(len, len, 4);
5501     andw(len, len, 3);
5502     br(LO, tiny);
5503 
5504     // Use SIMD to do 4 bytes.
5505     ldrs(vtmp2, post(src, 4));
5506     zip1(vtmp3, T8B, vtmp2, vtmp1);
5507     strd(vtmp3, post(dst, 8));
5508 
5509     cbzw(len, done);
5510 
5511     // Do the remaining bytes by steam.
5512     bind(loop);
5513     ldrb(tmp4, post(src, 1));
5514     strh(tmp4, post(dst, 2));
5515     subw(len, len, 1);
5516 
5517     bind(tiny);
5518     cbnz(len, loop);
5519 
5520     bind(around);
5521     b(done);
5522   }
5523 
5524   // Unpack the bytes 8 at a time.
5525   bind(big);
5526   andw(len, len, 7);
5527 
5528   {
5529     Label loop, around;
5530 
5531     bind(loop);
5532     ldrd(vtmp2, post(src, 8));
5533     sub(rscratch1, rscratch1, 1);
5534     zip1(vtmp3, T16B, vtmp2, vtmp1);
5535     st1(vtmp3, T8H, post(dst, 16));
5536     cbnz(rscratch1, loop);
5537 
5538     bind(around);
5539   }
5540 
5541   // Do the tail of up to 8 bytes.
5542   sub(src, src, 8);
5543   add(src, src, len, ext::uxtw, 0);
5544   ldrd(vtmp2, Address(src));
5545   sub(dst, dst, 16);
5546   add(dst, dst, len, ext::uxtw, 1);
5547   zip1(vtmp3, T16B, vtmp2, vtmp1);
5548   st1(vtmp3, T8H, Address(dst));
5549 
5550   bind(done);
5551 }
5552 
5553 // Compress char[] array to byte[].
5554 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
5555                                          FloatRegister tmp1Reg, FloatRegister tmp2Reg,
5556                                          FloatRegister tmp3Reg, FloatRegister tmp4Reg,
5557                                          Register result) {
5558   encode_iso_array(src, dst, len, result,
5559                    tmp1Reg, tmp2Reg, tmp3Reg, tmp4Reg);
5560   cmp(len, zr);
5561   csel(result, result, zr, EQ);
5562 }
5563 
5564 // get_thread() can be called anywhere inside generated code so we
5565 // need to save whatever non-callee save context might get clobbered
5566 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed,
5567 // the call setup code.
5568 //
5569 // aarch64_get_thread_helper() clobbers only r0, r1, and flags.
5570 //
5571 void MacroAssembler::get_thread(Register dst) {
5572   RegSet saved_regs = RegSet::range(r0, r1) + lr - dst;
5573   push(saved_regs, sp);
5574 
5575   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
5576   blrt(lr, 1, 0, 1);
5577   if (dst != c_rarg0) {
5578     mov(dst, c_rarg0);
5579   }
5580 
5581   pop(saved_regs, sp);
5582 }