1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "prims/methodHandles.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/flags/flagSetting.hpp"
  41 #include "runtime/interfaceSupport.inline.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/os.hpp"
  44 #include "runtime/safepoint.hpp"
  45 #include "runtime/safepointMechanism.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/thread.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "crc32c.h"
  51 #ifdef COMPILER2
  52 #include "opto/intrinsicnode.hpp"
  53 #endif
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) /* nothing */
  57 #define STOP(error) stop(error)
  58 #else
  59 #define BLOCK_COMMENT(str) block_comment(str)
  60 #define STOP(error) block_comment(error); stop(error)
  61 #endif
  62 
  63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  64 
  65 #ifdef ASSERT
  66 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  67 #endif
  68 
  69 static Assembler::Condition reverse[] = {
  70     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  71     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  72     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  73     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  74     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  75     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  76     Assembler::above          /* belowEqual    = 0x6 */ ,
  77     Assembler::belowEqual     /* above         = 0x7 */ ,
  78     Assembler::positive       /* negative      = 0x8 */ ,
  79     Assembler::negative       /* positive      = 0x9 */ ,
  80     Assembler::noParity       /* parity        = 0xa */ ,
  81     Assembler::parity         /* noParity      = 0xb */ ,
  82     Assembler::greaterEqual   /* less          = 0xc */ ,
  83     Assembler::less           /* greaterEqual  = 0xd */ ,
  84     Assembler::greater        /* lessEqual     = 0xe */ ,
  85     Assembler::lessEqual      /* greater       = 0xf, */
  86 
  87 };
  88 
  89 
  90 // Implementation of MacroAssembler
  91 
  92 // First all the versions that have distinct versions depending on 32/64 bit
  93 // Unless the difference is trivial (1 line or so).
  94 
  95 #ifndef _LP64
  96 
  97 // 32bit versions
  98 
  99 Address MacroAssembler::as_Address(AddressLiteral adr) {
 100   return Address(adr.target(), adr.rspec());
 101 }
 102 
 103 Address MacroAssembler::as_Address(ArrayAddress adr) {
 104   return Address::make_array(adr);
 105 }
 106 
 107 void MacroAssembler::call_VM_leaf_base(address entry_point,
 108                                        int number_of_arguments) {
 109   call(RuntimeAddress(entry_point));
 110   increment(rsp, number_of_arguments * wordSize);
 111 }
 112 
 113 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 114   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 115 }
 116 
 117 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 118   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 119 }
 120 
 121 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 122   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 123 }
 124 
 125 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 126   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 127 }
 128 
 129 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 130   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 131   bs->obj_equals(this, src1, obj);
 132 }
 133 
 134 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 135   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 136   bs->obj_equals(this, src1, obj);
 137 }
 138 
 139 void MacroAssembler::extend_sign(Register hi, Register lo) {
 140   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 141   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 142     cdql();
 143   } else {
 144     movl(hi, lo);
 145     sarl(hi, 31);
 146   }
 147 }
 148 
 149 void MacroAssembler::jC2(Register tmp, Label& L) {
 150   // set parity bit if FPU flag C2 is set (via rax)
 151   save_rax(tmp);
 152   fwait(); fnstsw_ax();
 153   sahf();
 154   restore_rax(tmp);
 155   // branch
 156   jcc(Assembler::parity, L);
 157 }
 158 
 159 void MacroAssembler::jnC2(Register tmp, Label& L) {
 160   // set parity bit if FPU flag C2 is set (via rax)
 161   save_rax(tmp);
 162   fwait(); fnstsw_ax();
 163   sahf();
 164   restore_rax(tmp);
 165   // branch
 166   jcc(Assembler::noParity, L);
 167 }
 168 
 169 // 32bit can do a case table jump in one instruction but we no longer allow the base
 170 // to be installed in the Address class
 171 void MacroAssembler::jump(ArrayAddress entry) {
 172   jmp(as_Address(entry));
 173 }
 174 
 175 // Note: y_lo will be destroyed
 176 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 177   // Long compare for Java (semantics as described in JVM spec.)
 178   Label high, low, done;
 179 
 180   cmpl(x_hi, y_hi);
 181   jcc(Assembler::less, low);
 182   jcc(Assembler::greater, high);
 183   // x_hi is the return register
 184   xorl(x_hi, x_hi);
 185   cmpl(x_lo, y_lo);
 186   jcc(Assembler::below, low);
 187   jcc(Assembler::equal, done);
 188 
 189   bind(high);
 190   xorl(x_hi, x_hi);
 191   increment(x_hi);
 192   jmp(done);
 193 
 194   bind(low);
 195   xorl(x_hi, x_hi);
 196   decrementl(x_hi);
 197 
 198   bind(done);
 199 }
 200 
 201 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 202     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 203 }
 204 
 205 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 206   // leal(dst, as_Address(adr));
 207   // see note in movl as to why we must use a move
 208   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 209 }
 210 
 211 void MacroAssembler::leave() {
 212   mov(rsp, rbp);
 213   pop(rbp);
 214 }
 215 
 216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 217   // Multiplication of two Java long values stored on the stack
 218   // as illustrated below. Result is in rdx:rax.
 219   //
 220   // rsp ---> [  ??  ] \               \
 221   //            ....    | y_rsp_offset  |
 222   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 223   //          [ y_hi ]                  | (in bytes)
 224   //            ....                    |
 225   //          [ x_lo ]                 /
 226   //          [ x_hi ]
 227   //            ....
 228   //
 229   // Basic idea: lo(result) = lo(x_lo * y_lo)
 230   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 231   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 232   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 233   Label quick;
 234   // load x_hi, y_hi and check if quick
 235   // multiplication is possible
 236   movl(rbx, x_hi);
 237   movl(rcx, y_hi);
 238   movl(rax, rbx);
 239   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 240   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 241   // do full multiplication
 242   // 1st step
 243   mull(y_lo);                                    // x_hi * y_lo
 244   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 245   // 2nd step
 246   movl(rax, x_lo);
 247   mull(rcx);                                     // x_lo * y_hi
 248   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 249   // 3rd step
 250   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 251   movl(rax, x_lo);
 252   mull(y_lo);                                    // x_lo * y_lo
 253   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 254 }
 255 
 256 void MacroAssembler::lneg(Register hi, Register lo) {
 257   negl(lo);
 258   adcl(hi, 0);
 259   negl(hi);
 260 }
 261 
 262 void MacroAssembler::lshl(Register hi, Register lo) {
 263   // Java shift left long support (semantics as described in JVM spec., p.305)
 264   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 265   // shift value is in rcx !
 266   assert(hi != rcx, "must not use rcx");
 267   assert(lo != rcx, "must not use rcx");
 268   const Register s = rcx;                        // shift count
 269   const int      n = BitsPerWord;
 270   Label L;
 271   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 272   cmpl(s, n);                                    // if (s < n)
 273   jcc(Assembler::less, L);                       // else (s >= n)
 274   movl(hi, lo);                                  // x := x << n
 275   xorl(lo, lo);
 276   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 277   bind(L);                                       // s (mod n) < n
 278   shldl(hi, lo);                                 // x := x << s
 279   shll(lo);
 280 }
 281 
 282 
 283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 284   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 285   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 286   assert(hi != rcx, "must not use rcx");
 287   assert(lo != rcx, "must not use rcx");
 288   const Register s = rcx;                        // shift count
 289   const int      n = BitsPerWord;
 290   Label L;
 291   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 292   cmpl(s, n);                                    // if (s < n)
 293   jcc(Assembler::less, L);                       // else (s >= n)
 294   movl(lo, hi);                                  // x := x >> n
 295   if (sign_extension) sarl(hi, 31);
 296   else                xorl(hi, hi);
 297   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 298   bind(L);                                       // s (mod n) < n
 299   shrdl(lo, hi);                                 // x := x >> s
 300   if (sign_extension) sarl(hi);
 301   else                shrl(hi);
 302 }
 303 
 304 void MacroAssembler::movoop(Register dst, jobject obj) {
 305   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 306 }
 307 
 308 void MacroAssembler::movoop(Address dst, jobject obj) {
 309   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 310 }
 311 
 312 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 313   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 314 }
 315 
 316 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 317   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 318 }
 319 
 320 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 321   // scratch register is not used,
 322   // it is defined to match parameters of 64-bit version of this method.
 323   if (src.is_lval()) {
 324     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 325   } else {
 326     movl(dst, as_Address(src));
 327   }
 328 }
 329 
 330 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 331   movl(as_Address(dst), src);
 332 }
 333 
 334 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 335   movl(dst, as_Address(src));
 336 }
 337 
 338 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 339 void MacroAssembler::movptr(Address dst, intptr_t src) {
 340   movl(dst, src);
 341 }
 342 
 343 
 344 void MacroAssembler::pop_callee_saved_registers() {
 345   pop(rcx);
 346   pop(rdx);
 347   pop(rdi);
 348   pop(rsi);
 349 }
 350 
 351 void MacroAssembler::pop_fTOS() {
 352   fld_d(Address(rsp, 0));
 353   addl(rsp, 2 * wordSize);
 354 }
 355 
 356 void MacroAssembler::push_callee_saved_registers() {
 357   push(rsi);
 358   push(rdi);
 359   push(rdx);
 360   push(rcx);
 361 }
 362 
 363 void MacroAssembler::push_fTOS() {
 364   subl(rsp, 2 * wordSize);
 365   fstp_d(Address(rsp, 0));
 366 }
 367 
 368 
 369 void MacroAssembler::pushoop(jobject obj) {
 370   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 371 }
 372 
 373 void MacroAssembler::pushklass(Metadata* obj) {
 374   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 375 }
 376 
 377 void MacroAssembler::pushptr(AddressLiteral src) {
 378   if (src.is_lval()) {
 379     push_literal32((int32_t)src.target(), src.rspec());
 380   } else {
 381     pushl(as_Address(src));
 382   }
 383 }
 384 
 385 void MacroAssembler::set_word_if_not_zero(Register dst) {
 386   xorl(dst, dst);
 387   set_byte_if_not_zero(dst);
 388 }
 389 
 390 static void pass_arg0(MacroAssembler* masm, Register arg) {
 391   masm->push(arg);
 392 }
 393 
 394 static void pass_arg1(MacroAssembler* masm, Register arg) {
 395   masm->push(arg);
 396 }
 397 
 398 static void pass_arg2(MacroAssembler* masm, Register arg) {
 399   masm->push(arg);
 400 }
 401 
 402 static void pass_arg3(MacroAssembler* masm, Register arg) {
 403   masm->push(arg);
 404 }
 405 
 406 #ifndef PRODUCT
 407 extern "C" void findpc(intptr_t x);
 408 #endif
 409 
 410 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 411   // In order to get locks to work, we need to fake a in_VM state
 412   JavaThread* thread = JavaThread::current();
 413   JavaThreadState saved_state = thread->thread_state();
 414   thread->set_thread_state(_thread_in_vm);
 415   if (ShowMessageBoxOnError) {
 416     JavaThread* thread = JavaThread::current();
 417     JavaThreadState saved_state = thread->thread_state();
 418     thread->set_thread_state(_thread_in_vm);
 419     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 420       ttyLocker ttyl;
 421       BytecodeCounter::print();
 422     }
 423     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 424     // This is the value of eip which points to where verify_oop will return.
 425     if (os::message_box(msg, "Execution stopped, print registers?")) {
 426       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 427       BREAKPOINT;
 428     }
 429   } else {
 430     ttyLocker ttyl;
 431     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 432   }
 433   // Don't assert holding the ttyLock
 434     assert(false, "DEBUG MESSAGE: %s", msg);
 435   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 436 }
 437 
 438 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 439   ttyLocker ttyl;
 440   FlagSetting fs(Debugging, true);
 441   tty->print_cr("eip = 0x%08x", eip);
 442 #ifndef PRODUCT
 443   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 444     tty->cr();
 445     findpc(eip);
 446     tty->cr();
 447   }
 448 #endif
 449 #define PRINT_REG(rax) \
 450   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 451   PRINT_REG(rax);
 452   PRINT_REG(rbx);
 453   PRINT_REG(rcx);
 454   PRINT_REG(rdx);
 455   PRINT_REG(rdi);
 456   PRINT_REG(rsi);
 457   PRINT_REG(rbp);
 458   PRINT_REG(rsp);
 459 #undef PRINT_REG
 460   // Print some words near top of staack.
 461   int* dump_sp = (int*) rsp;
 462   for (int col1 = 0; col1 < 8; col1++) {
 463     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 464     os::print_location(tty, *dump_sp++);
 465   }
 466   for (int row = 0; row < 16; row++) {
 467     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 468     for (int col = 0; col < 8; col++) {
 469       tty->print(" 0x%08x", *dump_sp++);
 470     }
 471     tty->cr();
 472   }
 473   // Print some instructions around pc:
 474   Disassembler::decode((address)eip-64, (address)eip);
 475   tty->print_cr("--------");
 476   Disassembler::decode((address)eip, (address)eip+32);
 477 }
 478 
 479 void MacroAssembler::stop(const char* msg) {
 480   ExternalAddress message((address)msg);
 481   // push address of message
 482   pushptr(message.addr());
 483   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 484   pusha();                                            // push registers
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 486   hlt();
 487 }
 488 
 489 void MacroAssembler::warn(const char* msg) {
 490   push_CPU_state();
 491 
 492   ExternalAddress message((address) msg);
 493   // push address of message
 494   pushptr(message.addr());
 495 
 496   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 497   addl(rsp, wordSize);       // discard argument
 498   pop_CPU_state();
 499 }
 500 
 501 void MacroAssembler::print_state() {
 502   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 503   pusha();                                            // push registers
 504 
 505   push_CPU_state();
 506   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 507   pop_CPU_state();
 508 
 509   popa();
 510   addl(rsp, wordSize);
 511 }
 512 
 513 #else // _LP64
 514 
 515 // 64 bit versions
 516 
 517 Address MacroAssembler::as_Address(AddressLiteral adr) {
 518   // amd64 always does this as a pc-rel
 519   // we can be absolute or disp based on the instruction type
 520   // jmp/call are displacements others are absolute
 521   assert(!adr.is_lval(), "must be rval");
 522   assert(reachable(adr), "must be");
 523   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 524 
 525 }
 526 
 527 Address MacroAssembler::as_Address(ArrayAddress adr) {
 528   AddressLiteral base = adr.base();
 529   lea(rscratch1, base);
 530   Address index = adr.index();
 531   assert(index._disp == 0, "must not have disp"); // maybe it can?
 532   Address array(rscratch1, index._index, index._scale, index._disp);
 533   return array;
 534 }
 535 
 536 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 537   Label L, E;
 538 
 539 #ifdef _WIN64
 540   // Windows always allocates space for it's register args
 541   assert(num_args <= 4, "only register arguments supported");
 542   subq(rsp,  frame::arg_reg_save_area_bytes);
 543 #endif
 544 
 545   // Align stack if necessary
 546   testl(rsp, 15);
 547   jcc(Assembler::zero, L);
 548 
 549   subq(rsp, 8);
 550   {
 551     call(RuntimeAddress(entry_point));
 552   }
 553   addq(rsp, 8);
 554   jmp(E);
 555 
 556   bind(L);
 557   {
 558     call(RuntimeAddress(entry_point));
 559   }
 560 
 561   bind(E);
 562 
 563 #ifdef _WIN64
 564   // restore stack pointer
 565   addq(rsp, frame::arg_reg_save_area_bytes);
 566 #endif
 567 
 568 }
 569 
 570 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 571   assert(!src2.is_lval(), "should use cmpptr");
 572 
 573   if (reachable(src2)) {
 574     cmpq(src1, as_Address(src2));
 575   } else {
 576     lea(rscratch1, src2);
 577     Assembler::cmpq(src1, Address(rscratch1, 0));
 578   }
 579 }
 580 
 581 int MacroAssembler::corrected_idivq(Register reg) {
 582   // Full implementation of Java ldiv and lrem; checks for special
 583   // case as described in JVM spec., p.243 & p.271.  The function
 584   // returns the (pc) offset of the idivl instruction - may be needed
 585   // for implicit exceptions.
 586   //
 587   //         normal case                           special case
 588   //
 589   // input : rax: dividend                         min_long
 590   //         reg: divisor   (may not be eax/edx)   -1
 591   //
 592   // output: rax: quotient  (= rax idiv reg)       min_long
 593   //         rdx: remainder (= rax irem reg)       0
 594   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 595   static const int64_t min_long = 0x8000000000000000;
 596   Label normal_case, special_case;
 597 
 598   // check for special case
 599   cmp64(rax, ExternalAddress((address) &min_long));
 600   jcc(Assembler::notEqual, normal_case);
 601   xorl(rdx, rdx); // prepare rdx for possible special case (where
 602                   // remainder = 0)
 603   cmpq(reg, -1);
 604   jcc(Assembler::equal, special_case);
 605 
 606   // handle normal case
 607   bind(normal_case);
 608   cdqq();
 609   int idivq_offset = offset();
 610   idivq(reg);
 611 
 612   // normal and special case exit
 613   bind(special_case);
 614 
 615   return idivq_offset;
 616 }
 617 
 618 void MacroAssembler::decrementq(Register reg, int value) {
 619   if (value == min_jint) { subq(reg, value); return; }
 620   if (value <  0) { incrementq(reg, -value); return; }
 621   if (value == 0) {                        ; return; }
 622   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 623   /* else */      { subq(reg, value)       ; return; }
 624 }
 625 
 626 void MacroAssembler::decrementq(Address dst, int value) {
 627   if (value == min_jint) { subq(dst, value); return; }
 628   if (value <  0) { incrementq(dst, -value); return; }
 629   if (value == 0) {                        ; return; }
 630   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 631   /* else */      { subq(dst, value)       ; return; }
 632 }
 633 
 634 void MacroAssembler::incrementq(AddressLiteral dst) {
 635   if (reachable(dst)) {
 636     incrementq(as_Address(dst));
 637   } else {
 638     lea(rscratch1, dst);
 639     incrementq(Address(rscratch1, 0));
 640   }
 641 }
 642 
 643 void MacroAssembler::incrementq(Register reg, int value) {
 644   if (value == min_jint) { addq(reg, value); return; }
 645   if (value <  0) { decrementq(reg, -value); return; }
 646   if (value == 0) {                        ; return; }
 647   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 648   /* else */      { addq(reg, value)       ; return; }
 649 }
 650 
 651 void MacroAssembler::incrementq(Address dst, int value) {
 652   if (value == min_jint) { addq(dst, value); return; }
 653   if (value <  0) { decrementq(dst, -value); return; }
 654   if (value == 0) {                        ; return; }
 655   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 656   /* else */      { addq(dst, value)       ; return; }
 657 }
 658 
 659 // 32bit can do a case table jump in one instruction but we no longer allow the base
 660 // to be installed in the Address class
 661 void MacroAssembler::jump(ArrayAddress entry) {
 662   lea(rscratch1, entry.base());
 663   Address dispatch = entry.index();
 664   assert(dispatch._base == noreg, "must be");
 665   dispatch._base = rscratch1;
 666   jmp(dispatch);
 667 }
 668 
 669 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 670   ShouldNotReachHere(); // 64bit doesn't use two regs
 671   cmpq(x_lo, y_lo);
 672 }
 673 
 674 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 675     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 676 }
 677 
 678 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 679   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 680   movptr(dst, rscratch1);
 681 }
 682 
 683 void MacroAssembler::leave() {
 684   // %%% is this really better? Why not on 32bit too?
 685   emit_int8((unsigned char)0xC9); // LEAVE
 686 }
 687 
 688 void MacroAssembler::lneg(Register hi, Register lo) {
 689   ShouldNotReachHere(); // 64bit doesn't use two regs
 690   negq(lo);
 691 }
 692 
 693 void MacroAssembler::movoop(Register dst, jobject obj) {
 694   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 695 }
 696 
 697 void MacroAssembler::movoop(Address dst, jobject obj) {
 698   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 699   movq(dst, rscratch1);
 700 }
 701 
 702 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 703   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 704 }
 705 
 706 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 707   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 708   movq(dst, rscratch1);
 709 }
 710 
 711 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 712   if (src.is_lval()) {
 713     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 714   } else {
 715     if (reachable(src)) {
 716       movq(dst, as_Address(src));
 717     } else {
 718       lea(scratch, src);
 719       movq(dst, Address(scratch, 0));
 720     }
 721   }
 722 }
 723 
 724 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 725   movq(as_Address(dst), src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 729   movq(dst, as_Address(src));
 730 }
 731 
 732 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 733 void MacroAssembler::movptr(Address dst, intptr_t src) {
 734   mov64(rscratch1, src);
 735   movq(dst, rscratch1);
 736 }
 737 
 738 // These are mostly for initializing NULL
 739 void MacroAssembler::movptr(Address dst, int32_t src) {
 740   movslq(dst, src);
 741 }
 742 
 743 void MacroAssembler::movptr(Register dst, int32_t src) {
 744   mov64(dst, (intptr_t)src);
 745 }
 746 
 747 void MacroAssembler::pushoop(jobject obj) {
 748   movoop(rscratch1, obj);
 749   push(rscratch1);
 750 }
 751 
 752 void MacroAssembler::pushklass(Metadata* obj) {
 753   mov_metadata(rscratch1, obj);
 754   push(rscratch1);
 755 }
 756 
 757 void MacroAssembler::pushptr(AddressLiteral src) {
 758   lea(rscratch1, src);
 759   if (src.is_lval()) {
 760     push(rscratch1);
 761   } else {
 762     pushq(Address(rscratch1, 0));
 763   }
 764 }
 765 
 766 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 767   // we must set sp to zero to clear frame
 768   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 769   // must clear fp, so that compiled frames are not confused; it is
 770   // possible that we need it only for debugging
 771   if (clear_fp) {
 772     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 773   }
 774 
 775   // Always clear the pc because it could have been set by make_walkable()
 776   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 777   vzeroupper();
 778 }
 779 
 780 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 781                                          Register last_java_fp,
 782                                          address  last_java_pc) {
 783   vzeroupper();
 784   // determine last_java_sp register
 785   if (!last_java_sp->is_valid()) {
 786     last_java_sp = rsp;
 787   }
 788 
 789   // last_java_fp is optional
 790   if (last_java_fp->is_valid()) {
 791     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 792            last_java_fp);
 793   }
 794 
 795   // last_java_pc is optional
 796   if (last_java_pc != NULL) {
 797     Address java_pc(r15_thread,
 798                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 799     lea(rscratch1, InternalAddress(last_java_pc));
 800     movptr(java_pc, rscratch1);
 801   }
 802 
 803   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 804 }
 805 
 806 static void pass_arg0(MacroAssembler* masm, Register arg) {
 807   if (c_rarg0 != arg ) {
 808     masm->mov(c_rarg0, arg);
 809   }
 810 }
 811 
 812 static void pass_arg1(MacroAssembler* masm, Register arg) {
 813   if (c_rarg1 != arg ) {
 814     masm->mov(c_rarg1, arg);
 815   }
 816 }
 817 
 818 static void pass_arg2(MacroAssembler* masm, Register arg) {
 819   if (c_rarg2 != arg ) {
 820     masm->mov(c_rarg2, arg);
 821   }
 822 }
 823 
 824 static void pass_arg3(MacroAssembler* masm, Register arg) {
 825   if (c_rarg3 != arg ) {
 826     masm->mov(c_rarg3, arg);
 827   }
 828 }
 829 
 830 void MacroAssembler::stop(const char* msg) {
 831   address rip = pc();
 832   pusha(); // get regs on stack
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   lea(c_rarg1, InternalAddress(rip));
 835   movq(c_rarg2, rsp); // pass pointer to regs array
 836   andq(rsp, -16); // align stack as required by ABI
 837   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 838   hlt();
 839 }
 840 
 841 void MacroAssembler::warn(const char* msg) {
 842   push(rbp);
 843   movq(rbp, rsp);
 844   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 845   push_CPU_state();   // keeps alignment at 16 bytes
 846   lea(c_rarg0, ExternalAddress((address) msg));
 847   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 848   call(rax);
 849   pop_CPU_state();
 850   mov(rsp, rbp);
 851   pop(rbp);
 852 }
 853 
 854 void MacroAssembler::print_state() {
 855   address rip = pc();
 856   pusha();            // get regs on stack
 857   push(rbp);
 858   movq(rbp, rsp);
 859   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 860   push_CPU_state();   // keeps alignment at 16 bytes
 861 
 862   lea(c_rarg0, InternalAddress(rip));
 863   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 864   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 865 
 866   pop_CPU_state();
 867   mov(rsp, rbp);
 868   pop(rbp);
 869   popa();
 870 }
 871 
 872 #ifndef PRODUCT
 873 extern "C" void findpc(intptr_t x);
 874 #endif
 875 
 876 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 877   // In order to get locks to work, we need to fake a in_VM state
 878   if (ShowMessageBoxOnError) {
 879     JavaThread* thread = JavaThread::current();
 880     JavaThreadState saved_state = thread->thread_state();
 881     thread->set_thread_state(_thread_in_vm);
 882 #ifndef PRODUCT
 883     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 884       ttyLocker ttyl;
 885       BytecodeCounter::print();
 886     }
 887 #endif
 888     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 889     // XXX correct this offset for amd64
 890     // This is the value of eip which points to where verify_oop will return.
 891     if (os::message_box(msg, "Execution stopped, print registers?")) {
 892       print_state64(pc, regs);
 893       BREAKPOINT;
 894       assert(false, "start up GDB");
 895     }
 896     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 897   } else {
 898     ttyLocker ttyl;
 899     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 900                     msg);
 901     assert(false, "DEBUG MESSAGE: %s", msg);
 902   }
 903 }
 904 
 905 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 906   ttyLocker ttyl;
 907   FlagSetting fs(Debugging, true);
 908   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 909 #ifndef PRODUCT
 910   tty->cr();
 911   findpc(pc);
 912   tty->cr();
 913 #endif
 914 #define PRINT_REG(rax, value) \
 915   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 916   PRINT_REG(rax, regs[15]);
 917   PRINT_REG(rbx, regs[12]);
 918   PRINT_REG(rcx, regs[14]);
 919   PRINT_REG(rdx, regs[13]);
 920   PRINT_REG(rdi, regs[8]);
 921   PRINT_REG(rsi, regs[9]);
 922   PRINT_REG(rbp, regs[10]);
 923   PRINT_REG(rsp, regs[11]);
 924   PRINT_REG(r8 , regs[7]);
 925   PRINT_REG(r9 , regs[6]);
 926   PRINT_REG(r10, regs[5]);
 927   PRINT_REG(r11, regs[4]);
 928   PRINT_REG(r12, regs[3]);
 929   PRINT_REG(r13, regs[2]);
 930   PRINT_REG(r14, regs[1]);
 931   PRINT_REG(r15, regs[0]);
 932 #undef PRINT_REG
 933   // Print some words near top of staack.
 934   int64_t* rsp = (int64_t*) regs[11];
 935   int64_t* dump_sp = rsp;
 936   for (int col1 = 0; col1 < 8; col1++) {
 937     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 938     os::print_location(tty, *dump_sp++);
 939   }
 940   for (int row = 0; row < 25; row++) {
 941     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 942     for (int col = 0; col < 4; col++) {
 943       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 944     }
 945     tty->cr();
 946   }
 947   // Print some instructions around pc:
 948   Disassembler::decode((address)pc-64, (address)pc);
 949   tty->print_cr("--------");
 950   Disassembler::decode((address)pc, (address)pc+32);
 951 }
 952 
 953 #endif // _LP64
 954 
 955 // Now versions that are common to 32/64 bit
 956 
 957 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 958   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 959 }
 960 
 961 void MacroAssembler::addptr(Register dst, Register src) {
 962   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 963 }
 964 
 965 void MacroAssembler::addptr(Address dst, Register src) {
 966   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 967 }
 968 
 969 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 970   if (reachable(src)) {
 971     Assembler::addsd(dst, as_Address(src));
 972   } else {
 973     lea(rscratch1, src);
 974     Assembler::addsd(dst, Address(rscratch1, 0));
 975   }
 976 }
 977 
 978 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 979   if (reachable(src)) {
 980     addss(dst, as_Address(src));
 981   } else {
 982     lea(rscratch1, src);
 983     addss(dst, Address(rscratch1, 0));
 984   }
 985 }
 986 
 987 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 988   if (reachable(src)) {
 989     Assembler::addpd(dst, as_Address(src));
 990   } else {
 991     lea(rscratch1, src);
 992     Assembler::addpd(dst, Address(rscratch1, 0));
 993   }
 994 }
 995 
 996 void MacroAssembler::align(int modulus) {
 997   align(modulus, offset());
 998 }
 999 
1000 void MacroAssembler::align(int modulus, int target) {
1001   if (target % modulus != 0) {
1002     nop(modulus - (target % modulus));
1003   }
1004 }
1005 
1006 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
1007   // Used in sign-masking with aligned address.
1008   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1009   if (reachable(src)) {
1010     Assembler::andpd(dst, as_Address(src));
1011   } else {
1012     lea(rscratch1, src);
1013     Assembler::andpd(dst, Address(rscratch1, 0));
1014   }
1015 }
1016 
1017 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1018   // Used in sign-masking with aligned address.
1019   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1020   if (reachable(src)) {
1021     Assembler::andps(dst, as_Address(src));
1022   } else {
1023     lea(rscratch1, src);
1024     Assembler::andps(dst, Address(rscratch1, 0));
1025   }
1026 }
1027 
1028 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1029   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1030 }
1031 
1032 void MacroAssembler::atomic_incl(Address counter_addr) {
1033   if (os::is_MP())
1034     lock();
1035   incrementl(counter_addr);
1036 }
1037 
1038 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1039   if (reachable(counter_addr)) {
1040     atomic_incl(as_Address(counter_addr));
1041   } else {
1042     lea(scr, counter_addr);
1043     atomic_incl(Address(scr, 0));
1044   }
1045 }
1046 
1047 #ifdef _LP64
1048 void MacroAssembler::atomic_incq(Address counter_addr) {
1049   if (os::is_MP())
1050     lock();
1051   incrementq(counter_addr);
1052 }
1053 
1054 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1055   if (reachable(counter_addr)) {
1056     atomic_incq(as_Address(counter_addr));
1057   } else {
1058     lea(scr, counter_addr);
1059     atomic_incq(Address(scr, 0));
1060   }
1061 }
1062 #endif
1063 
1064 // Writes to stack successive pages until offset reached to check for
1065 // stack overflow + shadow pages.  This clobbers tmp.
1066 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1067   movptr(tmp, rsp);
1068   // Bang stack for total size given plus shadow page size.
1069   // Bang one page at a time because large size can bang beyond yellow and
1070   // red zones.
1071   Label loop;
1072   bind(loop);
1073   movl(Address(tmp, (-os::vm_page_size())), size );
1074   subptr(tmp, os::vm_page_size());
1075   subl(size, os::vm_page_size());
1076   jcc(Assembler::greater, loop);
1077 
1078   // Bang down shadow pages too.
1079   // At this point, (tmp-0) is the last address touched, so don't
1080   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1081   // was post-decremented.)  Skip this address by starting at i=1, and
1082   // touch a few more pages below.  N.B.  It is important to touch all
1083   // the way down including all pages in the shadow zone.
1084   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1085     // this could be any sized move but this is can be a debugging crumb
1086     // so the bigger the better.
1087     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1088   }
1089 }
1090 
1091 void MacroAssembler::reserved_stack_check() {
1092     // testing if reserved zone needs to be enabled
1093     Label no_reserved_zone_enabling;
1094     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1095     NOT_LP64(get_thread(rsi);)
1096 
1097     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1098     jcc(Assembler::below, no_reserved_zone_enabling);
1099 
1100     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1101     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1102     should_not_reach_here();
1103 
1104     bind(no_reserved_zone_enabling);
1105 }
1106 
1107 int MacroAssembler::biased_locking_enter(Register lock_reg,
1108                                          Register obj_reg,
1109                                          Register swap_reg,
1110                                          Register tmp_reg,
1111                                          bool swap_reg_contains_mark,
1112                                          Label& done,
1113                                          Label* slow_case,
1114                                          BiasedLockingCounters* counters) {
1115   assert(UseBiasedLocking, "why call this otherwise?");
1116   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1117   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1118   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1119   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1120   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1121   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1122 
1123   if (PrintBiasedLockingStatistics && counters == NULL) {
1124     counters = BiasedLocking::counters();
1125   }
1126   // Biased locking
1127   // See whether the lock is currently biased toward our thread and
1128   // whether the epoch is still valid
1129   // Note that the runtime guarantees sufficient alignment of JavaThread
1130   // pointers to allow age to be placed into low bits
1131   // First check to see whether biasing is even enabled for this object
1132   Label cas_label;
1133   int null_check_offset = -1;
1134   if (!swap_reg_contains_mark) {
1135     null_check_offset = offset();
1136     movptr(swap_reg, mark_addr);
1137   }
1138   movptr(tmp_reg, swap_reg);
1139   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1140   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1141   jcc(Assembler::notEqual, cas_label);
1142   // The bias pattern is present in the object's header. Need to check
1143   // whether the bias owner and the epoch are both still current.
1144 #ifndef _LP64
1145   // Note that because there is no current thread register on x86_32 we
1146   // need to store off the mark word we read out of the object to
1147   // avoid reloading it and needing to recheck invariants below. This
1148   // store is unfortunate but it makes the overall code shorter and
1149   // simpler.
1150   movptr(saved_mark_addr, swap_reg);
1151 #endif
1152   if (swap_reg_contains_mark) {
1153     null_check_offset = offset();
1154   }
1155   load_prototype_header(tmp_reg, obj_reg);
1156 #ifdef _LP64
1157   orptr(tmp_reg, r15_thread);
1158   xorptr(tmp_reg, swap_reg);
1159   Register header_reg = tmp_reg;
1160 #else
1161   xorptr(tmp_reg, swap_reg);
1162   get_thread(swap_reg);
1163   xorptr(swap_reg, tmp_reg);
1164   Register header_reg = swap_reg;
1165 #endif
1166   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1167   if (counters != NULL) {
1168     cond_inc32(Assembler::zero,
1169                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1170   }
1171   jcc(Assembler::equal, done);
1172 
1173   Label try_revoke_bias;
1174   Label try_rebias;
1175 
1176   // At this point we know that the header has the bias pattern and
1177   // that we are not the bias owner in the current epoch. We need to
1178   // figure out more details about the state of the header in order to
1179   // know what operations can be legally performed on the object's
1180   // header.
1181 
1182   // If the low three bits in the xor result aren't clear, that means
1183   // the prototype header is no longer biased and we have to revoke
1184   // the bias on this object.
1185   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1186   jccb(Assembler::notZero, try_revoke_bias);
1187 
1188   // Biasing is still enabled for this data type. See whether the
1189   // epoch of the current bias is still valid, meaning that the epoch
1190   // bits of the mark word are equal to the epoch bits of the
1191   // prototype header. (Note that the prototype header's epoch bits
1192   // only change at a safepoint.) If not, attempt to rebias the object
1193   // toward the current thread. Note that we must be absolutely sure
1194   // that the current epoch is invalid in order to do this because
1195   // otherwise the manipulations it performs on the mark word are
1196   // illegal.
1197   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1198   jccb(Assembler::notZero, try_rebias);
1199 
1200   // The epoch of the current bias is still valid but we know nothing
1201   // about the owner; it might be set or it might be clear. Try to
1202   // acquire the bias of the object using an atomic operation. If this
1203   // fails we will go in to the runtime to revoke the object's bias.
1204   // Note that we first construct the presumed unbiased header so we
1205   // don't accidentally blow away another thread's valid bias.
1206   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1207   andptr(swap_reg,
1208          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1209 #ifdef _LP64
1210   movptr(tmp_reg, swap_reg);
1211   orptr(tmp_reg, r15_thread);
1212 #else
1213   get_thread(tmp_reg);
1214   orptr(tmp_reg, swap_reg);
1215 #endif
1216   if (os::is_MP()) {
1217     lock();
1218   }
1219   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1220   // If the biasing toward our thread failed, this means that
1221   // another thread succeeded in biasing it toward itself and we
1222   // need to revoke that bias. The revocation will occur in the
1223   // interpreter runtime in the slow case.
1224   if (counters != NULL) {
1225     cond_inc32(Assembler::zero,
1226                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1227   }
1228   if (slow_case != NULL) {
1229     jcc(Assembler::notZero, *slow_case);
1230   }
1231   jmp(done);
1232 
1233   bind(try_rebias);
1234   // At this point we know the epoch has expired, meaning that the
1235   // current "bias owner", if any, is actually invalid. Under these
1236   // circumstances _only_, we are allowed to use the current header's
1237   // value as the comparison value when doing the cas to acquire the
1238   // bias in the current epoch. In other words, we allow transfer of
1239   // the bias from one thread to another directly in this situation.
1240   //
1241   // FIXME: due to a lack of registers we currently blow away the age
1242   // bits in this situation. Should attempt to preserve them.
1243   load_prototype_header(tmp_reg, obj_reg);
1244 #ifdef _LP64
1245   orptr(tmp_reg, r15_thread);
1246 #else
1247   get_thread(swap_reg);
1248   orptr(tmp_reg, swap_reg);
1249   movptr(swap_reg, saved_mark_addr);
1250 #endif
1251   if (os::is_MP()) {
1252     lock();
1253   }
1254   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1255   // If the biasing toward our thread failed, then another thread
1256   // succeeded in biasing it toward itself and we need to revoke that
1257   // bias. The revocation will occur in the runtime in the slow case.
1258   if (counters != NULL) {
1259     cond_inc32(Assembler::zero,
1260                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1261   }
1262   if (slow_case != NULL) {
1263     jcc(Assembler::notZero, *slow_case);
1264   }
1265   jmp(done);
1266 
1267   bind(try_revoke_bias);
1268   // The prototype mark in the klass doesn't have the bias bit set any
1269   // more, indicating that objects of this data type are not supposed
1270   // to be biased any more. We are going to try to reset the mark of
1271   // this object to the prototype value and fall through to the
1272   // CAS-based locking scheme. Note that if our CAS fails, it means
1273   // that another thread raced us for the privilege of revoking the
1274   // bias of this particular object, so it's okay to continue in the
1275   // normal locking code.
1276   //
1277   // FIXME: due to a lack of registers we currently blow away the age
1278   // bits in this situation. Should attempt to preserve them.
1279   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1280   load_prototype_header(tmp_reg, obj_reg);
1281   if (os::is_MP()) {
1282     lock();
1283   }
1284   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1285   // Fall through to the normal CAS-based lock, because no matter what
1286   // the result of the above CAS, some thread must have succeeded in
1287   // removing the bias bit from the object's header.
1288   if (counters != NULL) {
1289     cond_inc32(Assembler::zero,
1290                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1291   }
1292 
1293   bind(cas_label);
1294 
1295   return null_check_offset;
1296 }
1297 
1298 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1299   assert(UseBiasedLocking, "why call this otherwise?");
1300 
1301   // Check for biased locking unlock case, which is a no-op
1302   // Note: we do not have to check the thread ID for two reasons.
1303   // First, the interpreter checks for IllegalMonitorStateException at
1304   // a higher level. Second, if the bias was revoked while we held the
1305   // lock, the object could not be rebiased toward another thread, so
1306   // the bias bit would be clear.
1307   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1308   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1309   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1310   jcc(Assembler::equal, done);
1311 }
1312 
1313 #ifdef COMPILER2
1314 
1315 #if INCLUDE_RTM_OPT
1316 
1317 // Update rtm_counters based on abort status
1318 // input: abort_status
1319 //        rtm_counters (RTMLockingCounters*)
1320 // flags are killed
1321 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1322 
1323   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1324   if (PrintPreciseRTMLockingStatistics) {
1325     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1326       Label check_abort;
1327       testl(abort_status, (1<<i));
1328       jccb(Assembler::equal, check_abort);
1329       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1330       bind(check_abort);
1331     }
1332   }
1333 }
1334 
1335 // Branch if (random & (count-1) != 0), count is 2^n
1336 // tmp, scr and flags are killed
1337 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1338   assert(tmp == rax, "");
1339   assert(scr == rdx, "");
1340   rdtsc(); // modifies EDX:EAX
1341   andptr(tmp, count-1);
1342   jccb(Assembler::notZero, brLabel);
1343 }
1344 
1345 // Perform abort ratio calculation, set no_rtm bit if high ratio
1346 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1347 // tmpReg, rtm_counters_Reg and flags are killed
1348 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1349                                                  Register rtm_counters_Reg,
1350                                                  RTMLockingCounters* rtm_counters,
1351                                                  Metadata* method_data) {
1352   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1353 
1354   if (RTMLockingCalculationDelay > 0) {
1355     // Delay calculation
1356     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1357     testptr(tmpReg, tmpReg);
1358     jccb(Assembler::equal, L_done);
1359   }
1360   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1361   //   Aborted transactions = abort_count * 100
1362   //   All transactions = total_count *  RTMTotalCountIncrRate
1363   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1364 
1365   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1366   cmpptr(tmpReg, RTMAbortThreshold);
1367   jccb(Assembler::below, L_check_always_rtm2);
1368   imulptr(tmpReg, tmpReg, 100);
1369 
1370   Register scrReg = rtm_counters_Reg;
1371   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1372   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1373   imulptr(scrReg, scrReg, RTMAbortRatio);
1374   cmpptr(tmpReg, scrReg);
1375   jccb(Assembler::below, L_check_always_rtm1);
1376   if (method_data != NULL) {
1377     // set rtm_state to "no rtm" in MDO
1378     mov_metadata(tmpReg, method_data);
1379     if (os::is_MP()) {
1380       lock();
1381     }
1382     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1383   }
1384   jmpb(L_done);
1385   bind(L_check_always_rtm1);
1386   // Reload RTMLockingCounters* address
1387   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1388   bind(L_check_always_rtm2);
1389   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1390   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1391   jccb(Assembler::below, L_done);
1392   if (method_data != NULL) {
1393     // set rtm_state to "always rtm" in MDO
1394     mov_metadata(tmpReg, method_data);
1395     if (os::is_MP()) {
1396       lock();
1397     }
1398     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1399   }
1400   bind(L_done);
1401 }
1402 
1403 // Update counters and perform abort ratio calculation
1404 // input:  abort_status_Reg
1405 // rtm_counters_Reg, flags are killed
1406 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1407                                    Register rtm_counters_Reg,
1408                                    RTMLockingCounters* rtm_counters,
1409                                    Metadata* method_data,
1410                                    bool profile_rtm) {
1411 
1412   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1413   // update rtm counters based on rax value at abort
1414   // reads abort_status_Reg, updates flags
1415   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1416   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1417   if (profile_rtm) {
1418     // Save abort status because abort_status_Reg is used by following code.
1419     if (RTMRetryCount > 0) {
1420       push(abort_status_Reg);
1421     }
1422     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1423     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1424     // restore abort status
1425     if (RTMRetryCount > 0) {
1426       pop(abort_status_Reg);
1427     }
1428   }
1429 }
1430 
1431 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1432 // inputs: retry_count_Reg
1433 //       : abort_status_Reg
1434 // output: retry_count_Reg decremented by 1
1435 // flags are killed
1436 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1437   Label doneRetry;
1438   assert(abort_status_Reg == rax, "");
1439   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1440   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1441   // if reason is in 0x6 and retry count != 0 then retry
1442   andptr(abort_status_Reg, 0x6);
1443   jccb(Assembler::zero, doneRetry);
1444   testl(retry_count_Reg, retry_count_Reg);
1445   jccb(Assembler::zero, doneRetry);
1446   pause();
1447   decrementl(retry_count_Reg);
1448   jmp(retryLabel);
1449   bind(doneRetry);
1450 }
1451 
1452 // Spin and retry if lock is busy,
1453 // inputs: box_Reg (monitor address)
1454 //       : retry_count_Reg
1455 // output: retry_count_Reg decremented by 1
1456 //       : clear z flag if retry count exceeded
1457 // tmp_Reg, scr_Reg, flags are killed
1458 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1459                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1460   Label SpinLoop, SpinExit, doneRetry;
1461   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1462 
1463   testl(retry_count_Reg, retry_count_Reg);
1464   jccb(Assembler::zero, doneRetry);
1465   decrementl(retry_count_Reg);
1466   movptr(scr_Reg, RTMSpinLoopCount);
1467 
1468   bind(SpinLoop);
1469   pause();
1470   decrementl(scr_Reg);
1471   jccb(Assembler::lessEqual, SpinExit);
1472   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1473   testptr(tmp_Reg, tmp_Reg);
1474   jccb(Assembler::notZero, SpinLoop);
1475 
1476   bind(SpinExit);
1477   jmp(retryLabel);
1478   bind(doneRetry);
1479   incrementl(retry_count_Reg); // clear z flag
1480 }
1481 
1482 // Use RTM for normal stack locks
1483 // Input: objReg (object to lock)
1484 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1485                                        Register retry_on_abort_count_Reg,
1486                                        RTMLockingCounters* stack_rtm_counters,
1487                                        Metadata* method_data, bool profile_rtm,
1488                                        Label& DONE_LABEL, Label& IsInflated) {
1489   assert(UseRTMForStackLocks, "why call this otherwise?");
1490   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1491   assert(tmpReg == rax, "");
1492   assert(scrReg == rdx, "");
1493   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1494 
1495   if (RTMRetryCount > 0) {
1496     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1497     bind(L_rtm_retry);
1498   }
1499   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1500   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1501   jcc(Assembler::notZero, IsInflated);
1502 
1503   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1504     Label L_noincrement;
1505     if (RTMTotalCountIncrRate > 1) {
1506       // tmpReg, scrReg and flags are killed
1507       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1508     }
1509     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1510     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1511     bind(L_noincrement);
1512   }
1513   xbegin(L_on_abort);
1514   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1515   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1516   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1517   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1518 
1519   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1520   if (UseRTMXendForLockBusy) {
1521     xend();
1522     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1523     jmp(L_decrement_retry);
1524   }
1525   else {
1526     xabort(0);
1527   }
1528   bind(L_on_abort);
1529   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1530     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1531   }
1532   bind(L_decrement_retry);
1533   if (RTMRetryCount > 0) {
1534     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1535     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1536   }
1537 }
1538 
1539 // Use RTM for inflating locks
1540 // inputs: objReg (object to lock)
1541 //         boxReg (on-stack box address (displaced header location) - KILLED)
1542 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1543 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1544                                           Register scrReg, Register retry_on_busy_count_Reg,
1545                                           Register retry_on_abort_count_Reg,
1546                                           RTMLockingCounters* rtm_counters,
1547                                           Metadata* method_data, bool profile_rtm,
1548                                           Label& DONE_LABEL) {
1549   assert(UseRTMLocking, "why call this otherwise?");
1550   assert(tmpReg == rax, "");
1551   assert(scrReg == rdx, "");
1552   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1553   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1554 
1555   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1556   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1557   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1558 
1559   if (RTMRetryCount > 0) {
1560     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1561     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1562     bind(L_rtm_retry);
1563   }
1564   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1565     Label L_noincrement;
1566     if (RTMTotalCountIncrRate > 1) {
1567       // tmpReg, scrReg and flags are killed
1568       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1569     }
1570     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1571     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1572     bind(L_noincrement);
1573   }
1574   xbegin(L_on_abort);
1575   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1576   movptr(tmpReg, Address(tmpReg, owner_offset));
1577   testptr(tmpReg, tmpReg);
1578   jcc(Assembler::zero, DONE_LABEL);
1579   if (UseRTMXendForLockBusy) {
1580     xend();
1581     jmp(L_decrement_retry);
1582   }
1583   else {
1584     xabort(0);
1585   }
1586   bind(L_on_abort);
1587   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1588   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1589     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1590   }
1591   if (RTMRetryCount > 0) {
1592     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1593     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1594   }
1595 
1596   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1597   testptr(tmpReg, tmpReg) ;
1598   jccb(Assembler::notZero, L_decrement_retry) ;
1599 
1600   // Appears unlocked - try to swing _owner from null to non-null.
1601   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1602 #ifdef _LP64
1603   Register threadReg = r15_thread;
1604 #else
1605   get_thread(scrReg);
1606   Register threadReg = scrReg;
1607 #endif
1608   if (os::is_MP()) {
1609     lock();
1610   }
1611   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1612 
1613   if (RTMRetryCount > 0) {
1614     // success done else retry
1615     jccb(Assembler::equal, DONE_LABEL) ;
1616     bind(L_decrement_retry);
1617     // Spin and retry if lock is busy.
1618     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1619   }
1620   else {
1621     bind(L_decrement_retry);
1622   }
1623 }
1624 
1625 #endif //  INCLUDE_RTM_OPT
1626 
1627 // Fast_Lock and Fast_Unlock used by C2
1628 
1629 // Because the transitions from emitted code to the runtime
1630 // monitorenter/exit helper stubs are so slow it's critical that
1631 // we inline both the stack-locking fast-path and the inflated fast path.
1632 //
1633 // See also: cmpFastLock and cmpFastUnlock.
1634 //
1635 // What follows is a specialized inline transliteration of the code
1636 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1637 // another option would be to emit TrySlowEnter and TrySlowExit methods
1638 // at startup-time.  These methods would accept arguments as
1639 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1640 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1641 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1642 // In practice, however, the # of lock sites is bounded and is usually small.
1643 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1644 // if the processor uses simple bimodal branch predictors keyed by EIP
1645 // Since the helper routines would be called from multiple synchronization
1646 // sites.
1647 //
1648 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1649 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1650 // to those specialized methods.  That'd give us a mostly platform-independent
1651 // implementation that the JITs could optimize and inline at their pleasure.
1652 // Done correctly, the only time we'd need to cross to native could would be
1653 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1654 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1655 // (b) explicit barriers or fence operations.
1656 //
1657 // TODO:
1658 //
1659 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1660 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1661 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1662 //    the lock operators would typically be faster than reifying Self.
1663 //
1664 // *  Ideally I'd define the primitives as:
1665 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1666 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1667 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1668 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1669 //    Furthermore the register assignments are overconstrained, possibly resulting in
1670 //    sub-optimal code near the synchronization site.
1671 //
1672 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1673 //    Alternately, use a better sp-proximity test.
1674 //
1675 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1676 //    Either one is sufficient to uniquely identify a thread.
1677 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1678 //
1679 // *  Intrinsify notify() and notifyAll() for the common cases where the
1680 //    object is locked by the calling thread but the waitlist is empty.
1681 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1682 //
1683 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1684 //    But beware of excessive branch density on AMD Opterons.
1685 //
1686 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1687 //    or failure of the fast-path.  If the fast-path fails then we pass
1688 //    control to the slow-path, typically in C.  In Fast_Lock and
1689 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1690 //    will emit a conditional branch immediately after the node.
1691 //    So we have branches to branches and lots of ICC.ZF games.
1692 //    Instead, it might be better to have C2 pass a "FailureLabel"
1693 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1694 //    will drop through the node.  ICC.ZF is undefined at exit.
1695 //    In the case of failure, the node will branch directly to the
1696 //    FailureLabel
1697 
1698 
1699 // obj: object to lock
1700 // box: on-stack box address (displaced header location) - KILLED
1701 // rax,: tmp -- KILLED
1702 // scr: tmp -- KILLED
1703 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1704                                Register scrReg, Register cx1Reg, Register cx2Reg,
1705                                BiasedLockingCounters* counters,
1706                                RTMLockingCounters* rtm_counters,
1707                                RTMLockingCounters* stack_rtm_counters,
1708                                Metadata* method_data,
1709                                bool use_rtm, bool profile_rtm) {
1710   // Ensure the register assignments are disjoint
1711   assert(tmpReg == rax, "");
1712 
1713   if (use_rtm) {
1714     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1715   } else {
1716     assert(cx1Reg == noreg, "");
1717     assert(cx2Reg == noreg, "");
1718     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1719   }
1720 
1721   if (counters != NULL) {
1722     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1723   }
1724   if (EmitSync & 1) {
1725       // set box->dhw = markOopDesc::unused_mark()
1726       // Force all sync thru slow-path: slow_enter() and slow_exit()
1727       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1728       cmpptr (rsp, (int32_t)NULL_WORD);
1729   } else {
1730     // Possible cases that we'll encounter in fast_lock
1731     // ------------------------------------------------
1732     // * Inflated
1733     //    -- unlocked
1734     //    -- Locked
1735     //       = by self
1736     //       = by other
1737     // * biased
1738     //    -- by Self
1739     //    -- by other
1740     // * neutral
1741     // * stack-locked
1742     //    -- by self
1743     //       = sp-proximity test hits
1744     //       = sp-proximity test generates false-negative
1745     //    -- by other
1746     //
1747 
1748     Label IsInflated, DONE_LABEL;
1749 
1750     // it's stack-locked, biased or neutral
1751     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1752     // order to reduce the number of conditional branches in the most common cases.
1753     // Beware -- there's a subtle invariant that fetch of the markword
1754     // at [FETCH], below, will never observe a biased encoding (*101b).
1755     // If this invariant is not held we risk exclusion (safety) failure.
1756     if (UseBiasedLocking && !UseOptoBiasInlining) {
1757       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1758     }
1759 
1760 #if INCLUDE_RTM_OPT
1761     if (UseRTMForStackLocks && use_rtm) {
1762       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1763                         stack_rtm_counters, method_data, profile_rtm,
1764                         DONE_LABEL, IsInflated);
1765     }
1766 #endif // INCLUDE_RTM_OPT
1767 
1768     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1769     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1770     jccb(Assembler::notZero, IsInflated);
1771 
1772     // Attempt stack-locking ...
1773     orptr (tmpReg, markOopDesc::unlocked_value);
1774     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1775     if (os::is_MP()) {
1776       lock();
1777     }
1778     cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1779     if (counters != NULL) {
1780       cond_inc32(Assembler::equal,
1781                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1782     }
1783     jcc(Assembler::equal, DONE_LABEL);           // Success
1784 
1785     // Recursive locking.
1786     // The object is stack-locked: markword contains stack pointer to BasicLock.
1787     // Locked by current thread if difference with current SP is less than one page.
1788     subptr(tmpReg, rsp);
1789     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1790     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1791     movptr(Address(boxReg, 0), tmpReg);
1792     if (counters != NULL) {
1793       cond_inc32(Assembler::equal,
1794                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1795     }
1796     jmp(DONE_LABEL);
1797 
1798     bind(IsInflated);
1799     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1800 
1801 #if INCLUDE_RTM_OPT
1802     // Use the same RTM locking code in 32- and 64-bit VM.
1803     if (use_rtm) {
1804       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1805                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1806     } else {
1807 #endif // INCLUDE_RTM_OPT
1808 
1809 #ifndef _LP64
1810     // The object is inflated.
1811 
1812     // boxReg refers to the on-stack BasicLock in the current frame.
1813     // We'd like to write:
1814     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1815     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1816     // additional latency as we have another ST in the store buffer that must drain.
1817 
1818     if (EmitSync & 8192) {
1819        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1820        get_thread (scrReg);
1821        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1822        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1823        if (os::is_MP()) {
1824          lock();
1825        }
1826        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1827     } else
1828     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1829        // register juggle because we need tmpReg for cmpxchgptr below
1830        movptr(scrReg, boxReg);
1831        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1832 
1833        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1834        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1835           // prefetchw [eax + Offset(_owner)-2]
1836           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1837        }
1838 
1839        if ((EmitSync & 64) == 0) {
1840          // Optimistic form: consider XORL tmpReg,tmpReg
1841          movptr(tmpReg, NULL_WORD);
1842        } else {
1843          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1844          // Test-And-CAS instead of CAS
1845          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1846          testptr(tmpReg, tmpReg);                   // Locked ?
1847          jccb  (Assembler::notZero, DONE_LABEL);
1848        }
1849 
1850        // Appears unlocked - try to swing _owner from null to non-null.
1851        // Ideally, I'd manifest "Self" with get_thread and then attempt
1852        // to CAS the register containing Self into m->Owner.
1853        // But we don't have enough registers, so instead we can either try to CAS
1854        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1855        // we later store "Self" into m->Owner.  Transiently storing a stack address
1856        // (rsp or the address of the box) into  m->owner is harmless.
1857        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1858        if (os::is_MP()) {
1859          lock();
1860        }
1861        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1862        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1863        // If we weren't able to swing _owner from NULL to the BasicLock
1864        // then take the slow path.
1865        jccb  (Assembler::notZero, DONE_LABEL);
1866        // update _owner from BasicLock to thread
1867        get_thread (scrReg);                    // beware: clobbers ICCs
1868        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1869        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1870 
1871        // If the CAS fails we can either retry or pass control to the slow-path.
1872        // We use the latter tactic.
1873        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1874        // If the CAS was successful ...
1875        //   Self has acquired the lock
1876        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1877        // Intentional fall-through into DONE_LABEL ...
1878     } else {
1879        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1880        movptr(boxReg, tmpReg);
1881 
1882        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1883        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1884           // prefetchw [eax + Offset(_owner)-2]
1885           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1886        }
1887 
1888        if ((EmitSync & 64) == 0) {
1889          // Optimistic form
1890          xorptr  (tmpReg, tmpReg);
1891        } else {
1892          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1893          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1894          testptr(tmpReg, tmpReg);                   // Locked ?
1895          jccb  (Assembler::notZero, DONE_LABEL);
1896        }
1897 
1898        // Appears unlocked - try to swing _owner from null to non-null.
1899        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1900        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1901        get_thread (scrReg);
1902        if (os::is_MP()) {
1903          lock();
1904        }
1905        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1906 
1907        // If the CAS fails we can either retry or pass control to the slow-path.
1908        // We use the latter tactic.
1909        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1910        // If the CAS was successful ...
1911        //   Self has acquired the lock
1912        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1913        // Intentional fall-through into DONE_LABEL ...
1914     }
1915 #else // _LP64
1916     // It's inflated
1917     movq(scrReg, tmpReg);
1918     xorq(tmpReg, tmpReg);
1919 
1920     if (os::is_MP()) {
1921       lock();
1922     }
1923     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1924     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1925     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1926     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1927     // Intentional fall-through into DONE_LABEL ...
1928     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1929 #endif // _LP64
1930 #if INCLUDE_RTM_OPT
1931     } // use_rtm()
1932 #endif
1933     // DONE_LABEL is a hot target - we'd really like to place it at the
1934     // start of cache line by padding with NOPs.
1935     // See the AMD and Intel software optimization manuals for the
1936     // most efficient "long" NOP encodings.
1937     // Unfortunately none of our alignment mechanisms suffice.
1938     bind(DONE_LABEL);
1939 
1940     // At DONE_LABEL the icc ZFlag is set as follows ...
1941     // Fast_Unlock uses the same protocol.
1942     // ZFlag == 1 -> Success
1943     // ZFlag == 0 -> Failure - force control through the slow-path
1944   }
1945 }
1946 
1947 // obj: object to unlock
1948 // box: box address (displaced header location), killed.  Must be EAX.
1949 // tmp: killed, cannot be obj nor box.
1950 //
1951 // Some commentary on balanced locking:
1952 //
1953 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1954 // Methods that don't have provably balanced locking are forced to run in the
1955 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1956 // The interpreter provides two properties:
1957 // I1:  At return-time the interpreter automatically and quietly unlocks any
1958 //      objects acquired the current activation (frame).  Recall that the
1959 //      interpreter maintains an on-stack list of locks currently held by
1960 //      a frame.
1961 // I2:  If a method attempts to unlock an object that is not held by the
1962 //      the frame the interpreter throws IMSX.
1963 //
1964 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1965 // B() doesn't have provably balanced locking so it runs in the interpreter.
1966 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1967 // is still locked by A().
1968 //
1969 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1970 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1971 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1972 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1973 // Arguably given that the spec legislates the JNI case as undefined our implementation
1974 // could reasonably *avoid* checking owner in Fast_Unlock().
1975 // In the interest of performance we elide m->Owner==Self check in unlock.
1976 // A perfectly viable alternative is to elide the owner check except when
1977 // Xcheck:jni is enabled.
1978 
1979 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1980   assert(boxReg == rax, "");
1981   assert_different_registers(objReg, boxReg, tmpReg);
1982 
1983   if (EmitSync & 4) {
1984     // Disable - inhibit all inlining.  Force control through the slow-path
1985     cmpptr (rsp, 0);
1986   } else {
1987     Label DONE_LABEL, Stacked, CheckSucc;
1988 
1989     // Critically, the biased locking test must have precedence over
1990     // and appear before the (box->dhw == 0) recursive stack-lock test.
1991     if (UseBiasedLocking && !UseOptoBiasInlining) {
1992        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1993     }
1994 
1995 #if INCLUDE_RTM_OPT
1996     if (UseRTMForStackLocks && use_rtm) {
1997       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1998       Label L_regular_unlock;
1999       movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
2000       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2001       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
2002       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
2003       xend();                                       // otherwise end...
2004       jmp(DONE_LABEL);                              // ... and we're done
2005       bind(L_regular_unlock);
2006     }
2007 #endif
2008 
2009     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2010     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2011     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
2012     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2013     jccb  (Assembler::zero, Stacked);
2014 
2015     // It's inflated.
2016 #if INCLUDE_RTM_OPT
2017     if (use_rtm) {
2018       Label L_regular_inflated_unlock;
2019       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2020       movptr(boxReg, Address(tmpReg, owner_offset));
2021       testptr(boxReg, boxReg);
2022       jccb(Assembler::notZero, L_regular_inflated_unlock);
2023       xend();
2024       jmpb(DONE_LABEL);
2025       bind(L_regular_inflated_unlock);
2026     }
2027 #endif
2028 
2029     // Despite our balanced locking property we still check that m->_owner == Self
2030     // as java routines or native JNI code called by this thread might
2031     // have released the lock.
2032     // Refer to the comments in synchronizer.cpp for how we might encode extra
2033     // state in _succ so we can avoid fetching EntryList|cxq.
2034     //
2035     // I'd like to add more cases in fast_lock() and fast_unlock() --
2036     // such as recursive enter and exit -- but we have to be wary of
2037     // I$ bloat, T$ effects and BP$ effects.
2038     //
2039     // If there's no contention try a 1-0 exit.  That is, exit without
2040     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2041     // we detect and recover from the race that the 1-0 exit admits.
2042     //
2043     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2044     // before it STs null into _owner, releasing the lock.  Updates
2045     // to data protected by the critical section must be visible before
2046     // we drop the lock (and thus before any other thread could acquire
2047     // the lock and observe the fields protected by the lock).
2048     // IA32's memory-model is SPO, so STs are ordered with respect to
2049     // each other and there's no need for an explicit barrier (fence).
2050     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2051 #ifndef _LP64
2052     get_thread (boxReg);
2053     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2054       // prefetchw [ebx + Offset(_owner)-2]
2055       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2056     }
2057 
2058     // Note that we could employ various encoding schemes to reduce
2059     // the number of loads below (currently 4) to just 2 or 3.
2060     // Refer to the comments in synchronizer.cpp.
2061     // In practice the chain of fetches doesn't seem to impact performance, however.
2062     xorptr(boxReg, boxReg);
2063     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2064        // Attempt to reduce branch density - AMD's branch predictor.
2065        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2066        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2067        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2068        jccb  (Assembler::notZero, DONE_LABEL);
2069        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2070        jmpb  (DONE_LABEL);
2071     } else {
2072        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2073        jccb  (Assembler::notZero, DONE_LABEL);
2074        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2075        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2076        jccb  (Assembler::notZero, CheckSucc);
2077        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2078        jmpb  (DONE_LABEL);
2079     }
2080 
2081     // The Following code fragment (EmitSync & 65536) improves the performance of
2082     // contended applications and contended synchronization microbenchmarks.
2083     // Unfortunately the emission of the code - even though not executed - causes regressions
2084     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2085     // with an equal number of never-executed NOPs results in the same regression.
2086     // We leave it off by default.
2087 
2088     if ((EmitSync & 65536) != 0) {
2089        Label LSuccess, LGoSlowPath ;
2090 
2091        bind  (CheckSucc);
2092 
2093        // Optional pre-test ... it's safe to elide this
2094        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2095        jccb(Assembler::zero, LGoSlowPath);
2096 
2097        // We have a classic Dekker-style idiom:
2098        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2099        // There are a number of ways to implement the barrier:
2100        // (1) lock:andl &m->_owner, 0
2101        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2102        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2103        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2104        // (2) If supported, an explicit MFENCE is appealing.
2105        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2106        //     particularly if the write-buffer is full as might be the case if
2107        //     if stores closely precede the fence or fence-equivalent instruction.
2108        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2109        //     as the situation has changed with Nehalem and Shanghai.
2110        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2111        //     The $lines underlying the top-of-stack should be in M-state.
2112        //     The locked add instruction is serializing, of course.
2113        // (4) Use xchg, which is serializing
2114        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2115        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2116        //     The integer condition codes will tell us if succ was 0.
2117        //     Since _succ and _owner should reside in the same $line and
2118        //     we just stored into _owner, it's likely that the $line
2119        //     remains in M-state for the lock:orl.
2120        //
2121        // We currently use (3), although it's likely that switching to (2)
2122        // is correct for the future.
2123 
2124        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2125        if (os::is_MP()) {
2126          lock(); addptr(Address(rsp, 0), 0);
2127        }
2128        // Ratify _succ remains non-null
2129        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2130        jccb  (Assembler::notZero, LSuccess);
2131 
2132        xorptr(boxReg, boxReg);                  // box is really EAX
2133        if (os::is_MP()) { lock(); }
2134        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2135        // There's no successor so we tried to regrab the lock with the
2136        // placeholder value. If that didn't work, then another thread
2137        // grabbed the lock so we're done (and exit was a success).
2138        jccb  (Assembler::notEqual, LSuccess);
2139        // Since we're low on registers we installed rsp as a placeholding in _owner.
2140        // Now install Self over rsp.  This is safe as we're transitioning from
2141        // non-null to non=null
2142        get_thread (boxReg);
2143        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2144        // Intentional fall-through into LGoSlowPath ...
2145 
2146        bind  (LGoSlowPath);
2147        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2148        jmpb  (DONE_LABEL);
2149 
2150        bind  (LSuccess);
2151        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2152        jmpb  (DONE_LABEL);
2153     }
2154 
2155     bind (Stacked);
2156     // It's not inflated and it's not recursively stack-locked and it's not biased.
2157     // It must be stack-locked.
2158     // Try to reset the header to displaced header.
2159     // The "box" value on the stack is stable, so we can reload
2160     // and be assured we observe the same value as above.
2161     movptr(tmpReg, Address(boxReg, 0));
2162     if (os::is_MP()) {
2163       lock();
2164     }
2165     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2166     // Intention fall-thru into DONE_LABEL
2167 
2168     // DONE_LABEL is a hot target - we'd really like to place it at the
2169     // start of cache line by padding with NOPs.
2170     // See the AMD and Intel software optimization manuals for the
2171     // most efficient "long" NOP encodings.
2172     // Unfortunately none of our alignment mechanisms suffice.
2173     if ((EmitSync & 65536) == 0) {
2174        bind (CheckSucc);
2175     }
2176 #else // _LP64
2177     // It's inflated
2178     if (EmitSync & 1024) {
2179       // Emit code to check that _owner == Self
2180       // We could fold the _owner test into subsequent code more efficiently
2181       // than using a stand-alone check, but since _owner checking is off by
2182       // default we don't bother. We also might consider predicating the
2183       // _owner==Self check on Xcheck:jni or running on a debug build.
2184       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2185       xorptr(boxReg, r15_thread);
2186     } else {
2187       xorptr(boxReg, boxReg);
2188     }
2189     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2190     jccb  (Assembler::notZero, DONE_LABEL);
2191     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2192     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2193     jccb  (Assembler::notZero, CheckSucc);
2194     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2195     jmpb  (DONE_LABEL);
2196 
2197     if ((EmitSync & 65536) == 0) {
2198       // Try to avoid passing control into the slow_path ...
2199       Label LSuccess, LGoSlowPath ;
2200       bind  (CheckSucc);
2201 
2202       // The following optional optimization can be elided if necessary
2203       // Effectively: if (succ == null) goto SlowPath
2204       // The code reduces the window for a race, however,
2205       // and thus benefits performance.
2206       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2207       jccb  (Assembler::zero, LGoSlowPath);
2208 
2209       xorptr(boxReg, boxReg);
2210       if ((EmitSync & 16) && os::is_MP()) {
2211         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2212       } else {
2213         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2214         if (os::is_MP()) {
2215           // Memory barrier/fence
2216           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2217           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2218           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2219           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2220           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2221           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2222           lock(); addl(Address(rsp, 0), 0);
2223         }
2224       }
2225       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2226       jccb  (Assembler::notZero, LSuccess);
2227 
2228       // Rare inopportune interleaving - race.
2229       // The successor vanished in the small window above.
2230       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2231       // We need to ensure progress and succession.
2232       // Try to reacquire the lock.
2233       // If that fails then the new owner is responsible for succession and this
2234       // thread needs to take no further action and can exit via the fast path (success).
2235       // If the re-acquire succeeds then pass control into the slow path.
2236       // As implemented, this latter mode is horrible because we generated more
2237       // coherence traffic on the lock *and* artifically extended the critical section
2238       // length while by virtue of passing control into the slow path.
2239 
2240       // box is really RAX -- the following CMPXCHG depends on that binding
2241       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2242       if (os::is_MP()) { lock(); }
2243       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2244       // There's no successor so we tried to regrab the lock.
2245       // If that didn't work, then another thread grabbed the
2246       // lock so we're done (and exit was a success).
2247       jccb  (Assembler::notEqual, LSuccess);
2248       // Intentional fall-through into slow-path
2249 
2250       bind  (LGoSlowPath);
2251       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2252       jmpb  (DONE_LABEL);
2253 
2254       bind  (LSuccess);
2255       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2256       jmpb  (DONE_LABEL);
2257     }
2258 
2259     bind  (Stacked);
2260     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2261     if (os::is_MP()) { lock(); }
2262     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2263 
2264     if (EmitSync & 65536) {
2265        bind (CheckSucc);
2266     }
2267 #endif
2268     bind(DONE_LABEL);
2269   }
2270 }
2271 #endif // COMPILER2
2272 
2273 void MacroAssembler::c2bool(Register x) {
2274   // implements x == 0 ? 0 : 1
2275   // note: must only look at least-significant byte of x
2276   //       since C-style booleans are stored in one byte
2277   //       only! (was bug)
2278   andl(x, 0xFF);
2279   setb(Assembler::notZero, x);
2280 }
2281 
2282 // Wouldn't need if AddressLiteral version had new name
2283 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2284   Assembler::call(L, rtype);
2285 }
2286 
2287 void MacroAssembler::call(Register entry) {
2288   Assembler::call(entry);
2289 }
2290 
2291 void MacroAssembler::call(AddressLiteral entry) {
2292   if (reachable(entry)) {
2293     Assembler::call_literal(entry.target(), entry.rspec());
2294   } else {
2295     lea(rscratch1, entry);
2296     Assembler::call(rscratch1);
2297   }
2298 }
2299 
2300 void MacroAssembler::ic_call(address entry, jint method_index) {
2301   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2302   movptr(rax, (intptr_t)Universe::non_oop_word());
2303   call(AddressLiteral(entry, rh));
2304 }
2305 
2306 // Implementation of call_VM versions
2307 
2308 void MacroAssembler::call_VM(Register oop_result,
2309                              address entry_point,
2310                              bool check_exceptions) {
2311   Label C, E;
2312   call(C, relocInfo::none);
2313   jmp(E);
2314 
2315   bind(C);
2316   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2317   ret(0);
2318 
2319   bind(E);
2320 }
2321 
2322 void MacroAssembler::call_VM(Register oop_result,
2323                              address entry_point,
2324                              Register arg_1,
2325                              bool check_exceptions) {
2326   Label C, E;
2327   call(C, relocInfo::none);
2328   jmp(E);
2329 
2330   bind(C);
2331   pass_arg1(this, arg_1);
2332   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2333   ret(0);
2334 
2335   bind(E);
2336 }
2337 
2338 void MacroAssembler::call_VM(Register oop_result,
2339                              address entry_point,
2340                              Register arg_1,
2341                              Register arg_2,
2342                              bool check_exceptions) {
2343   Label C, E;
2344   call(C, relocInfo::none);
2345   jmp(E);
2346 
2347   bind(C);
2348 
2349   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2350 
2351   pass_arg2(this, arg_2);
2352   pass_arg1(this, arg_1);
2353   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2354   ret(0);
2355 
2356   bind(E);
2357 }
2358 
2359 void MacroAssembler::call_VM(Register oop_result,
2360                              address entry_point,
2361                              Register arg_1,
2362                              Register arg_2,
2363                              Register arg_3,
2364                              bool check_exceptions) {
2365   Label C, E;
2366   call(C, relocInfo::none);
2367   jmp(E);
2368 
2369   bind(C);
2370 
2371   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2372   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2373   pass_arg3(this, arg_3);
2374 
2375   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2376   pass_arg2(this, arg_2);
2377 
2378   pass_arg1(this, arg_1);
2379   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2380   ret(0);
2381 
2382   bind(E);
2383 }
2384 
2385 void MacroAssembler::call_VM(Register oop_result,
2386                              Register last_java_sp,
2387                              address entry_point,
2388                              int number_of_arguments,
2389                              bool check_exceptions) {
2390   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2391   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2392 }
2393 
2394 void MacroAssembler::call_VM(Register oop_result,
2395                              Register last_java_sp,
2396                              address entry_point,
2397                              Register arg_1,
2398                              bool check_exceptions) {
2399   pass_arg1(this, arg_1);
2400   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2401 }
2402 
2403 void MacroAssembler::call_VM(Register oop_result,
2404                              Register last_java_sp,
2405                              address entry_point,
2406                              Register arg_1,
2407                              Register arg_2,
2408                              bool check_exceptions) {
2409 
2410   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2411   pass_arg2(this, arg_2);
2412   pass_arg1(this, arg_1);
2413   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2414 }
2415 
2416 void MacroAssembler::call_VM(Register oop_result,
2417                              Register last_java_sp,
2418                              address entry_point,
2419                              Register arg_1,
2420                              Register arg_2,
2421                              Register arg_3,
2422                              bool check_exceptions) {
2423   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2424   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2425   pass_arg3(this, arg_3);
2426   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2427   pass_arg2(this, arg_2);
2428   pass_arg1(this, arg_1);
2429   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2430 }
2431 
2432 void MacroAssembler::super_call_VM(Register oop_result,
2433                                    Register last_java_sp,
2434                                    address entry_point,
2435                                    int number_of_arguments,
2436                                    bool check_exceptions) {
2437   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2438   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2439 }
2440 
2441 void MacroAssembler::super_call_VM(Register oop_result,
2442                                    Register last_java_sp,
2443                                    address entry_point,
2444                                    Register arg_1,
2445                                    bool check_exceptions) {
2446   pass_arg1(this, arg_1);
2447   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2448 }
2449 
2450 void MacroAssembler::super_call_VM(Register oop_result,
2451                                    Register last_java_sp,
2452                                    address entry_point,
2453                                    Register arg_1,
2454                                    Register arg_2,
2455                                    bool check_exceptions) {
2456 
2457   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2458   pass_arg2(this, arg_2);
2459   pass_arg1(this, arg_1);
2460   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2461 }
2462 
2463 void MacroAssembler::super_call_VM(Register oop_result,
2464                                    Register last_java_sp,
2465                                    address entry_point,
2466                                    Register arg_1,
2467                                    Register arg_2,
2468                                    Register arg_3,
2469                                    bool check_exceptions) {
2470   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2471   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2472   pass_arg3(this, arg_3);
2473   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2474   pass_arg2(this, arg_2);
2475   pass_arg1(this, arg_1);
2476   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2477 }
2478 
2479 void MacroAssembler::call_VM_base(Register oop_result,
2480                                   Register java_thread,
2481                                   Register last_java_sp,
2482                                   address  entry_point,
2483                                   int      number_of_arguments,
2484                                   bool     check_exceptions) {
2485   // determine java_thread register
2486   if (!java_thread->is_valid()) {
2487 #ifdef _LP64
2488     java_thread = r15_thread;
2489 #else
2490     java_thread = rdi;
2491     get_thread(java_thread);
2492 #endif // LP64
2493   }
2494   // determine last_java_sp register
2495   if (!last_java_sp->is_valid()) {
2496     last_java_sp = rsp;
2497   }
2498   // debugging support
2499   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2500   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2501 #ifdef ASSERT
2502   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2503   // r12 is the heapbase.
2504   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2505 #endif // ASSERT
2506 
2507   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2508   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2509 
2510   // push java thread (becomes first argument of C function)
2511 
2512   NOT_LP64(push(java_thread); number_of_arguments++);
2513   LP64_ONLY(mov(c_rarg0, r15_thread));
2514 
2515   // set last Java frame before call
2516   assert(last_java_sp != rbp, "can't use ebp/rbp");
2517 
2518   // Only interpreter should have to set fp
2519   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2520 
2521   // do the call, remove parameters
2522   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2523 
2524   // restore the thread (cannot use the pushed argument since arguments
2525   // may be overwritten by C code generated by an optimizing compiler);
2526   // however can use the register value directly if it is callee saved.
2527   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2528     // rdi & rsi (also r15) are callee saved -> nothing to do
2529 #ifdef ASSERT
2530     guarantee(java_thread != rax, "change this code");
2531     push(rax);
2532     { Label L;
2533       get_thread(rax);
2534       cmpptr(java_thread, rax);
2535       jcc(Assembler::equal, L);
2536       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2537       bind(L);
2538     }
2539     pop(rax);
2540 #endif
2541   } else {
2542     get_thread(java_thread);
2543   }
2544   // reset last Java frame
2545   // Only interpreter should have to clear fp
2546   reset_last_Java_frame(java_thread, true);
2547 
2548    // C++ interp handles this in the interpreter
2549   check_and_handle_popframe(java_thread);
2550   check_and_handle_earlyret(java_thread);
2551 
2552   if (check_exceptions) {
2553     // check for pending exceptions (java_thread is set upon return)
2554     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2555 #ifndef _LP64
2556     jump_cc(Assembler::notEqual,
2557             RuntimeAddress(StubRoutines::forward_exception_entry()));
2558 #else
2559     // This used to conditionally jump to forward_exception however it is
2560     // possible if we relocate that the branch will not reach. So we must jump
2561     // around so we can always reach
2562 
2563     Label ok;
2564     jcc(Assembler::equal, ok);
2565     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2566     bind(ok);
2567 #endif // LP64
2568   }
2569 
2570   // get oop result if there is one and reset the value in the thread
2571   if (oop_result->is_valid()) {
2572     get_vm_result(oop_result, java_thread);
2573   }
2574 }
2575 
2576 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2577 
2578   // Calculate the value for last_Java_sp
2579   // somewhat subtle. call_VM does an intermediate call
2580   // which places a return address on the stack just under the
2581   // stack pointer as the user finsihed with it. This allows
2582   // use to retrieve last_Java_pc from last_Java_sp[-1].
2583   // On 32bit we then have to push additional args on the stack to accomplish
2584   // the actual requested call. On 64bit call_VM only can use register args
2585   // so the only extra space is the return address that call_VM created.
2586   // This hopefully explains the calculations here.
2587 
2588 #ifdef _LP64
2589   // We've pushed one address, correct last_Java_sp
2590   lea(rax, Address(rsp, wordSize));
2591 #else
2592   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2593 #endif // LP64
2594 
2595   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2596 
2597 }
2598 
2599 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2600 void MacroAssembler::call_VM_leaf0(address entry_point) {
2601   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2602 }
2603 
2604 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2605   call_VM_leaf_base(entry_point, number_of_arguments);
2606 }
2607 
2608 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2609   pass_arg0(this, arg_0);
2610   call_VM_leaf(entry_point, 1);
2611 }
2612 
2613 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2614 
2615   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2616   pass_arg1(this, arg_1);
2617   pass_arg0(this, arg_0);
2618   call_VM_leaf(entry_point, 2);
2619 }
2620 
2621 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2622   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2623   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2624   pass_arg2(this, arg_2);
2625   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2626   pass_arg1(this, arg_1);
2627   pass_arg0(this, arg_0);
2628   call_VM_leaf(entry_point, 3);
2629 }
2630 
2631 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2632   pass_arg0(this, arg_0);
2633   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2634 }
2635 
2636 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2637 
2638   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2639   pass_arg1(this, arg_1);
2640   pass_arg0(this, arg_0);
2641   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2642 }
2643 
2644 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2645   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2646   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2647   pass_arg2(this, arg_2);
2648   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2649   pass_arg1(this, arg_1);
2650   pass_arg0(this, arg_0);
2651   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2652 }
2653 
2654 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2655   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2656   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2657   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2658   pass_arg3(this, arg_3);
2659   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2660   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2661   pass_arg2(this, arg_2);
2662   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2663   pass_arg1(this, arg_1);
2664   pass_arg0(this, arg_0);
2665   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2666 }
2667 
2668 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2669   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2670   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2671   verify_oop(oop_result, "broken oop in call_VM_base");
2672 }
2673 
2674 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2675   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2676   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2677 }
2678 
2679 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2680 }
2681 
2682 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2683 }
2684 
2685 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2686   if (reachable(src1)) {
2687     cmpl(as_Address(src1), imm);
2688   } else {
2689     lea(rscratch1, src1);
2690     cmpl(Address(rscratch1, 0), imm);
2691   }
2692 }
2693 
2694 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2695   assert(!src2.is_lval(), "use cmpptr");
2696   if (reachable(src2)) {
2697     cmpl(src1, as_Address(src2));
2698   } else {
2699     lea(rscratch1, src2);
2700     cmpl(src1, Address(rscratch1, 0));
2701   }
2702 }
2703 
2704 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2705   Assembler::cmpl(src1, imm);
2706 }
2707 
2708 void MacroAssembler::cmp32(Register src1, Address src2) {
2709   Assembler::cmpl(src1, src2);
2710 }
2711 
2712 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2713   ucomisd(opr1, opr2);
2714 
2715   Label L;
2716   if (unordered_is_less) {
2717     movl(dst, -1);
2718     jcc(Assembler::parity, L);
2719     jcc(Assembler::below , L);
2720     movl(dst, 0);
2721     jcc(Assembler::equal , L);
2722     increment(dst);
2723   } else { // unordered is greater
2724     movl(dst, 1);
2725     jcc(Assembler::parity, L);
2726     jcc(Assembler::above , L);
2727     movl(dst, 0);
2728     jcc(Assembler::equal , L);
2729     decrementl(dst);
2730   }
2731   bind(L);
2732 }
2733 
2734 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2735   ucomiss(opr1, opr2);
2736 
2737   Label L;
2738   if (unordered_is_less) {
2739     movl(dst, -1);
2740     jcc(Assembler::parity, L);
2741     jcc(Assembler::below , L);
2742     movl(dst, 0);
2743     jcc(Assembler::equal , L);
2744     increment(dst);
2745   } else { // unordered is greater
2746     movl(dst, 1);
2747     jcc(Assembler::parity, L);
2748     jcc(Assembler::above , L);
2749     movl(dst, 0);
2750     jcc(Assembler::equal , L);
2751     decrementl(dst);
2752   }
2753   bind(L);
2754 }
2755 
2756 
2757 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2758   if (reachable(src1)) {
2759     cmpb(as_Address(src1), imm);
2760   } else {
2761     lea(rscratch1, src1);
2762     cmpb(Address(rscratch1, 0), imm);
2763   }
2764 }
2765 
2766 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2767 #ifdef _LP64
2768   if (src2.is_lval()) {
2769     movptr(rscratch1, src2);
2770     Assembler::cmpq(src1, rscratch1);
2771   } else if (reachable(src2)) {
2772     cmpq(src1, as_Address(src2));
2773   } else {
2774     lea(rscratch1, src2);
2775     Assembler::cmpq(src1, Address(rscratch1, 0));
2776   }
2777 #else
2778   if (src2.is_lval()) {
2779     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2780   } else {
2781     cmpl(src1, as_Address(src2));
2782   }
2783 #endif // _LP64
2784 }
2785 
2786 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2787   assert(src2.is_lval(), "not a mem-mem compare");
2788 #ifdef _LP64
2789   // moves src2's literal address
2790   movptr(rscratch1, src2);
2791   Assembler::cmpq(src1, rscratch1);
2792 #else
2793   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2794 #endif // _LP64
2795 }
2796 
2797 void MacroAssembler::cmpoop(Register src1, Register src2) {
2798   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2799   bs->obj_equals(this, src1, src2);
2800 }
2801 
2802 void MacroAssembler::cmpoop(Register src1, Address src2) {
2803   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2804   bs->obj_equals(this, src1, src2);
2805 }
2806 
2807 #ifdef _LP64
2808 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2809   movoop(rscratch1, src2);
2810   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2811   bs->obj_equals(this, src1, rscratch1);
2812 }
2813 #endif
2814 
2815 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2816   if (reachable(adr)) {
2817     if (os::is_MP())
2818       lock();
2819     cmpxchgptr(reg, as_Address(adr));
2820   } else {
2821     lea(rscratch1, adr);
2822     if (os::is_MP())
2823       lock();
2824     cmpxchgptr(reg, Address(rscratch1, 0));
2825   }
2826 }
2827 
2828 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2829   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2830 }
2831 
2832 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2833   if (reachable(src)) {
2834     Assembler::comisd(dst, as_Address(src));
2835   } else {
2836     lea(rscratch1, src);
2837     Assembler::comisd(dst, Address(rscratch1, 0));
2838   }
2839 }
2840 
2841 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2842   if (reachable(src)) {
2843     Assembler::comiss(dst, as_Address(src));
2844   } else {
2845     lea(rscratch1, src);
2846     Assembler::comiss(dst, Address(rscratch1, 0));
2847   }
2848 }
2849 
2850 
2851 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2852   Condition negated_cond = negate_condition(cond);
2853   Label L;
2854   jcc(negated_cond, L);
2855   pushf(); // Preserve flags
2856   atomic_incl(counter_addr);
2857   popf();
2858   bind(L);
2859 }
2860 
2861 int MacroAssembler::corrected_idivl(Register reg) {
2862   // Full implementation of Java idiv and irem; checks for
2863   // special case as described in JVM spec., p.243 & p.271.
2864   // The function returns the (pc) offset of the idivl
2865   // instruction - may be needed for implicit exceptions.
2866   //
2867   //         normal case                           special case
2868   //
2869   // input : rax,: dividend                         min_int
2870   //         reg: divisor   (may not be rax,/rdx)   -1
2871   //
2872   // output: rax,: quotient  (= rax, idiv reg)       min_int
2873   //         rdx: remainder (= rax, irem reg)       0
2874   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2875   const int min_int = 0x80000000;
2876   Label normal_case, special_case;
2877 
2878   // check for special case
2879   cmpl(rax, min_int);
2880   jcc(Assembler::notEqual, normal_case);
2881   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2882   cmpl(reg, -1);
2883   jcc(Assembler::equal, special_case);
2884 
2885   // handle normal case
2886   bind(normal_case);
2887   cdql();
2888   int idivl_offset = offset();
2889   idivl(reg);
2890 
2891   // normal and special case exit
2892   bind(special_case);
2893 
2894   return idivl_offset;
2895 }
2896 
2897 
2898 
2899 void MacroAssembler::decrementl(Register reg, int value) {
2900   if (value == min_jint) {subl(reg, value) ; return; }
2901   if (value <  0) { incrementl(reg, -value); return; }
2902   if (value == 0) {                        ; return; }
2903   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2904   /* else */      { subl(reg, value)       ; return; }
2905 }
2906 
2907 void MacroAssembler::decrementl(Address dst, int value) {
2908   if (value == min_jint) {subl(dst, value) ; return; }
2909   if (value <  0) { incrementl(dst, -value); return; }
2910   if (value == 0) {                        ; return; }
2911   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2912   /* else */      { subl(dst, value)       ; return; }
2913 }
2914 
2915 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2916   assert (shift_value > 0, "illegal shift value");
2917   Label _is_positive;
2918   testl (reg, reg);
2919   jcc (Assembler::positive, _is_positive);
2920   int offset = (1 << shift_value) - 1 ;
2921 
2922   if (offset == 1) {
2923     incrementl(reg);
2924   } else {
2925     addl(reg, offset);
2926   }
2927 
2928   bind (_is_positive);
2929   sarl(reg, shift_value);
2930 }
2931 
2932 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2933   if (reachable(src)) {
2934     Assembler::divsd(dst, as_Address(src));
2935   } else {
2936     lea(rscratch1, src);
2937     Assembler::divsd(dst, Address(rscratch1, 0));
2938   }
2939 }
2940 
2941 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2942   if (reachable(src)) {
2943     Assembler::divss(dst, as_Address(src));
2944   } else {
2945     lea(rscratch1, src);
2946     Assembler::divss(dst, Address(rscratch1, 0));
2947   }
2948 }
2949 
2950 // !defined(COMPILER2) is because of stupid core builds
2951 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2952 void MacroAssembler::empty_FPU_stack() {
2953   if (VM_Version::supports_mmx()) {
2954     emms();
2955   } else {
2956     for (int i = 8; i-- > 0; ) ffree(i);
2957   }
2958 }
2959 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2960 
2961 
2962 void MacroAssembler::enter() {
2963   push(rbp);
2964   mov(rbp, rsp);
2965 }
2966 
2967 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2968 void MacroAssembler::fat_nop() {
2969   if (UseAddressNop) {
2970     addr_nop_5();
2971   } else {
2972     emit_int8(0x26); // es:
2973     emit_int8(0x2e); // cs:
2974     emit_int8(0x64); // fs:
2975     emit_int8(0x65); // gs:
2976     emit_int8((unsigned char)0x90);
2977   }
2978 }
2979 
2980 void MacroAssembler::fcmp(Register tmp) {
2981   fcmp(tmp, 1, true, true);
2982 }
2983 
2984 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2985   assert(!pop_right || pop_left, "usage error");
2986   if (VM_Version::supports_cmov()) {
2987     assert(tmp == noreg, "unneeded temp");
2988     if (pop_left) {
2989       fucomip(index);
2990     } else {
2991       fucomi(index);
2992     }
2993     if (pop_right) {
2994       fpop();
2995     }
2996   } else {
2997     assert(tmp != noreg, "need temp");
2998     if (pop_left) {
2999       if (pop_right) {
3000         fcompp();
3001       } else {
3002         fcomp(index);
3003       }
3004     } else {
3005       fcom(index);
3006     }
3007     // convert FPU condition into eflags condition via rax,
3008     save_rax(tmp);
3009     fwait(); fnstsw_ax();
3010     sahf();
3011     restore_rax(tmp);
3012   }
3013   // condition codes set as follows:
3014   //
3015   // CF (corresponds to C0) if x < y
3016   // PF (corresponds to C2) if unordered
3017   // ZF (corresponds to C3) if x = y
3018 }
3019 
3020 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3021   fcmp2int(dst, unordered_is_less, 1, true, true);
3022 }
3023 
3024 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3025   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3026   Label L;
3027   if (unordered_is_less) {
3028     movl(dst, -1);
3029     jcc(Assembler::parity, L);
3030     jcc(Assembler::below , L);
3031     movl(dst, 0);
3032     jcc(Assembler::equal , L);
3033     increment(dst);
3034   } else { // unordered is greater
3035     movl(dst, 1);
3036     jcc(Assembler::parity, L);
3037     jcc(Assembler::above , L);
3038     movl(dst, 0);
3039     jcc(Assembler::equal , L);
3040     decrementl(dst);
3041   }
3042   bind(L);
3043 }
3044 
3045 void MacroAssembler::fld_d(AddressLiteral src) {
3046   fld_d(as_Address(src));
3047 }
3048 
3049 void MacroAssembler::fld_s(AddressLiteral src) {
3050   fld_s(as_Address(src));
3051 }
3052 
3053 void MacroAssembler::fld_x(AddressLiteral src) {
3054   Assembler::fld_x(as_Address(src));
3055 }
3056 
3057 void MacroAssembler::fldcw(AddressLiteral src) {
3058   Assembler::fldcw(as_Address(src));
3059 }
3060 
3061 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3062   if (reachable(src)) {
3063     Assembler::mulpd(dst, as_Address(src));
3064   } else {
3065     lea(rscratch1, src);
3066     Assembler::mulpd(dst, Address(rscratch1, 0));
3067   }
3068 }
3069 
3070 void MacroAssembler::increase_precision() {
3071   subptr(rsp, BytesPerWord);
3072   fnstcw(Address(rsp, 0));
3073   movl(rax, Address(rsp, 0));
3074   orl(rax, 0x300);
3075   push(rax);
3076   fldcw(Address(rsp, 0));
3077   pop(rax);
3078 }
3079 
3080 void MacroAssembler::restore_precision() {
3081   fldcw(Address(rsp, 0));
3082   addptr(rsp, BytesPerWord);
3083 }
3084 
3085 void MacroAssembler::fpop() {
3086   ffree();
3087   fincstp();
3088 }
3089 
3090 void MacroAssembler::load_float(Address src) {
3091   if (UseSSE >= 1) {
3092     movflt(xmm0, src);
3093   } else {
3094     LP64_ONLY(ShouldNotReachHere());
3095     NOT_LP64(fld_s(src));
3096   }
3097 }
3098 
3099 void MacroAssembler::store_float(Address dst) {
3100   if (UseSSE >= 1) {
3101     movflt(dst, xmm0);
3102   } else {
3103     LP64_ONLY(ShouldNotReachHere());
3104     NOT_LP64(fstp_s(dst));
3105   }
3106 }
3107 
3108 void MacroAssembler::load_double(Address src) {
3109   if (UseSSE >= 2) {
3110     movdbl(xmm0, src);
3111   } else {
3112     LP64_ONLY(ShouldNotReachHere());
3113     NOT_LP64(fld_d(src));
3114   }
3115 }
3116 
3117 void MacroAssembler::store_double(Address dst) {
3118   if (UseSSE >= 2) {
3119     movdbl(dst, xmm0);
3120   } else {
3121     LP64_ONLY(ShouldNotReachHere());
3122     NOT_LP64(fstp_d(dst));
3123   }
3124 }
3125 
3126 void MacroAssembler::fremr(Register tmp) {
3127   save_rax(tmp);
3128   { Label L;
3129     bind(L);
3130     fprem();
3131     fwait(); fnstsw_ax();
3132 #ifdef _LP64
3133     testl(rax, 0x400);
3134     jcc(Assembler::notEqual, L);
3135 #else
3136     sahf();
3137     jcc(Assembler::parity, L);
3138 #endif // _LP64
3139   }
3140   restore_rax(tmp);
3141   // Result is in ST0.
3142   // Note: fxch & fpop to get rid of ST1
3143   // (otherwise FPU stack could overflow eventually)
3144   fxch(1);
3145   fpop();
3146 }
3147 
3148 // dst = c = a * b + c
3149 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3150   Assembler::vfmadd231sd(c, a, b);
3151   if (dst != c) {
3152     movdbl(dst, c);
3153   }
3154 }
3155 
3156 // dst = c = a * b + c
3157 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3158   Assembler::vfmadd231ss(c, a, b);
3159   if (dst != c) {
3160     movflt(dst, c);
3161   }
3162 }
3163 
3164 // dst = c = a * b + c
3165 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3166   Assembler::vfmadd231pd(c, a, b, vector_len);
3167   if (dst != c) {
3168     vmovdqu(dst, c);
3169   }
3170 }
3171 
3172 // dst = c = a * b + c
3173 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3174   Assembler::vfmadd231ps(c, a, b, vector_len);
3175   if (dst != c) {
3176     vmovdqu(dst, c);
3177   }
3178 }
3179 
3180 // dst = c = a * b + c
3181 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3182   Assembler::vfmadd231pd(c, a, b, vector_len);
3183   if (dst != c) {
3184     vmovdqu(dst, c);
3185   }
3186 }
3187 
3188 // dst = c = a * b + c
3189 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3190   Assembler::vfmadd231ps(c, a, b, vector_len);
3191   if (dst != c) {
3192     vmovdqu(dst, c);
3193   }
3194 }
3195 
3196 void MacroAssembler::incrementl(AddressLiteral dst) {
3197   if (reachable(dst)) {
3198     incrementl(as_Address(dst));
3199   } else {
3200     lea(rscratch1, dst);
3201     incrementl(Address(rscratch1, 0));
3202   }
3203 }
3204 
3205 void MacroAssembler::incrementl(ArrayAddress dst) {
3206   incrementl(as_Address(dst));
3207 }
3208 
3209 void MacroAssembler::incrementl(Register reg, int value) {
3210   if (value == min_jint) {addl(reg, value) ; return; }
3211   if (value <  0) { decrementl(reg, -value); return; }
3212   if (value == 0) {                        ; return; }
3213   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3214   /* else */      { addl(reg, value)       ; return; }
3215 }
3216 
3217 void MacroAssembler::incrementl(Address dst, int value) {
3218   if (value == min_jint) {addl(dst, value) ; return; }
3219   if (value <  0) { decrementl(dst, -value); return; }
3220   if (value == 0) {                        ; return; }
3221   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3222   /* else */      { addl(dst, value)       ; return; }
3223 }
3224 
3225 void MacroAssembler::jump(AddressLiteral dst) {
3226   if (reachable(dst)) {
3227     jmp_literal(dst.target(), dst.rspec());
3228   } else {
3229     lea(rscratch1, dst);
3230     jmp(rscratch1);
3231   }
3232 }
3233 
3234 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3235   if (reachable(dst)) {
3236     InstructionMark im(this);
3237     relocate(dst.reloc());
3238     const int short_size = 2;
3239     const int long_size = 6;
3240     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3241     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3242       // 0111 tttn #8-bit disp
3243       emit_int8(0x70 | cc);
3244       emit_int8((offs - short_size) & 0xFF);
3245     } else {
3246       // 0000 1111 1000 tttn #32-bit disp
3247       emit_int8(0x0F);
3248       emit_int8((unsigned char)(0x80 | cc));
3249       emit_int32(offs - long_size);
3250     }
3251   } else {
3252 #ifdef ASSERT
3253     warning("reversing conditional branch");
3254 #endif /* ASSERT */
3255     Label skip;
3256     jccb(reverse[cc], skip);
3257     lea(rscratch1, dst);
3258     Assembler::jmp(rscratch1);
3259     bind(skip);
3260   }
3261 }
3262 
3263 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3264   if (reachable(src)) {
3265     Assembler::ldmxcsr(as_Address(src));
3266   } else {
3267     lea(rscratch1, src);
3268     Assembler::ldmxcsr(Address(rscratch1, 0));
3269   }
3270 }
3271 
3272 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3273   int off;
3274   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3275     off = offset();
3276     movsbl(dst, src); // movsxb
3277   } else {
3278     off = load_unsigned_byte(dst, src);
3279     shll(dst, 24);
3280     sarl(dst, 24);
3281   }
3282   return off;
3283 }
3284 
3285 // Note: load_signed_short used to be called load_signed_word.
3286 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3287 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3288 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3289 int MacroAssembler::load_signed_short(Register dst, Address src) {
3290   int off;
3291   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3292     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3293     // version but this is what 64bit has always done. This seems to imply
3294     // that users are only using 32bits worth.
3295     off = offset();
3296     movswl(dst, src); // movsxw
3297   } else {
3298     off = load_unsigned_short(dst, src);
3299     shll(dst, 16);
3300     sarl(dst, 16);
3301   }
3302   return off;
3303 }
3304 
3305 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3306   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3307   // and "3.9 Partial Register Penalties", p. 22).
3308   int off;
3309   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3310     off = offset();
3311     movzbl(dst, src); // movzxb
3312   } else {
3313     xorl(dst, dst);
3314     off = offset();
3315     movb(dst, src);
3316   }
3317   return off;
3318 }
3319 
3320 // Note: load_unsigned_short used to be called load_unsigned_word.
3321 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3322   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3323   // and "3.9 Partial Register Penalties", p. 22).
3324   int off;
3325   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3326     off = offset();
3327     movzwl(dst, src); // movzxw
3328   } else {
3329     xorl(dst, dst);
3330     off = offset();
3331     movw(dst, src);
3332   }
3333   return off;
3334 }
3335 
3336 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3337   switch (size_in_bytes) {
3338 #ifndef _LP64
3339   case  8:
3340     assert(dst2 != noreg, "second dest register required");
3341     movl(dst,  src);
3342     movl(dst2, src.plus_disp(BytesPerInt));
3343     break;
3344 #else
3345   case  8:  movq(dst, src); break;
3346 #endif
3347   case  4:  movl(dst, src); break;
3348   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3349   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3350   default:  ShouldNotReachHere();
3351   }
3352 }
3353 
3354 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3355   switch (size_in_bytes) {
3356 #ifndef _LP64
3357   case  8:
3358     assert(src2 != noreg, "second source register required");
3359     movl(dst,                        src);
3360     movl(dst.plus_disp(BytesPerInt), src2);
3361     break;
3362 #else
3363   case  8:  movq(dst, src); break;
3364 #endif
3365   case  4:  movl(dst, src); break;
3366   case  2:  movw(dst, src); break;
3367   case  1:  movb(dst, src); break;
3368   default:  ShouldNotReachHere();
3369   }
3370 }
3371 
3372 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3373   if (reachable(dst)) {
3374     movl(as_Address(dst), src);
3375   } else {
3376     lea(rscratch1, dst);
3377     movl(Address(rscratch1, 0), src);
3378   }
3379 }
3380 
3381 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3382   if (reachable(src)) {
3383     movl(dst, as_Address(src));
3384   } else {
3385     lea(rscratch1, src);
3386     movl(dst, Address(rscratch1, 0));
3387   }
3388 }
3389 
3390 // C++ bool manipulation
3391 
3392 void MacroAssembler::movbool(Register dst, Address src) {
3393   if(sizeof(bool) == 1)
3394     movb(dst, src);
3395   else if(sizeof(bool) == 2)
3396     movw(dst, src);
3397   else if(sizeof(bool) == 4)
3398     movl(dst, src);
3399   else
3400     // unsupported
3401     ShouldNotReachHere();
3402 }
3403 
3404 void MacroAssembler::movbool(Address dst, bool boolconst) {
3405   if(sizeof(bool) == 1)
3406     movb(dst, (int) boolconst);
3407   else if(sizeof(bool) == 2)
3408     movw(dst, (int) boolconst);
3409   else if(sizeof(bool) == 4)
3410     movl(dst, (int) boolconst);
3411   else
3412     // unsupported
3413     ShouldNotReachHere();
3414 }
3415 
3416 void MacroAssembler::movbool(Address dst, Register src) {
3417   if(sizeof(bool) == 1)
3418     movb(dst, src);
3419   else if(sizeof(bool) == 2)
3420     movw(dst, src);
3421   else if(sizeof(bool) == 4)
3422     movl(dst, src);
3423   else
3424     // unsupported
3425     ShouldNotReachHere();
3426 }
3427 
3428 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3429   movb(as_Address(dst), src);
3430 }
3431 
3432 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3433   if (reachable(src)) {
3434     movdl(dst, as_Address(src));
3435   } else {
3436     lea(rscratch1, src);
3437     movdl(dst, Address(rscratch1, 0));
3438   }
3439 }
3440 
3441 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3442   if (reachable(src)) {
3443     movq(dst, as_Address(src));
3444   } else {
3445     lea(rscratch1, src);
3446     movq(dst, Address(rscratch1, 0));
3447   }
3448 }
3449 
3450 void MacroAssembler::setvectmask(Register dst, Register src) {
3451   Assembler::movl(dst, 1);
3452   Assembler::shlxl(dst, dst, src);
3453   Assembler::decl(dst);
3454   Assembler::kmovdl(k1, dst);
3455   Assembler::movl(dst, src);
3456 }
3457 
3458 void MacroAssembler::restorevectmask() {
3459   Assembler::knotwl(k1, k0);
3460 }
3461 
3462 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3463   if (reachable(src)) {
3464     if (UseXmmLoadAndClearUpper) {
3465       movsd (dst, as_Address(src));
3466     } else {
3467       movlpd(dst, as_Address(src));
3468     }
3469   } else {
3470     lea(rscratch1, src);
3471     if (UseXmmLoadAndClearUpper) {
3472       movsd (dst, Address(rscratch1, 0));
3473     } else {
3474       movlpd(dst, Address(rscratch1, 0));
3475     }
3476   }
3477 }
3478 
3479 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3480   if (reachable(src)) {
3481     movss(dst, as_Address(src));
3482   } else {
3483     lea(rscratch1, src);
3484     movss(dst, Address(rscratch1, 0));
3485   }
3486 }
3487 
3488 void MacroAssembler::movptr(Register dst, Register src) {
3489   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3490 }
3491 
3492 void MacroAssembler::movptr(Register dst, Address src) {
3493   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3494 }
3495 
3496 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3497 void MacroAssembler::movptr(Register dst, intptr_t src) {
3498   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3499 }
3500 
3501 void MacroAssembler::movptr(Address dst, Register src) {
3502   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3503 }
3504 
3505 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3506   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3507     Assembler::vextractf32x4(dst, src, 0);
3508   } else {
3509     Assembler::movdqu(dst, src);
3510   }
3511 }
3512 
3513 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3514   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3515     Assembler::vinsertf32x4(dst, dst, src, 0);
3516   } else {
3517     Assembler::movdqu(dst, src);
3518   }
3519 }
3520 
3521 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3522   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3523     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3524   } else {
3525     Assembler::movdqu(dst, src);
3526   }
3527 }
3528 
3529 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3530   if (reachable(src)) {
3531     movdqu(dst, as_Address(src));
3532   } else {
3533     lea(scratchReg, src);
3534     movdqu(dst, Address(scratchReg, 0));
3535   }
3536 }
3537 
3538 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3539   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3540     vextractf64x4_low(dst, src);
3541   } else {
3542     Assembler::vmovdqu(dst, src);
3543   }
3544 }
3545 
3546 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3547   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3548     vinsertf64x4_low(dst, src);
3549   } else {
3550     Assembler::vmovdqu(dst, src);
3551   }
3552 }
3553 
3554 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3555   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3556     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3557   }
3558   else {
3559     Assembler::vmovdqu(dst, src);
3560   }
3561 }
3562 
3563 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3564   if (reachable(src)) {
3565     vmovdqu(dst, as_Address(src));
3566   }
3567   else {
3568     lea(rscratch1, src);
3569     vmovdqu(dst, Address(rscratch1, 0));
3570   }
3571 }
3572 
3573 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3574   if (reachable(src)) {
3575     Assembler::movdqa(dst, as_Address(src));
3576   } else {
3577     lea(rscratch1, src);
3578     Assembler::movdqa(dst, Address(rscratch1, 0));
3579   }
3580 }
3581 
3582 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3583   if (reachable(src)) {
3584     Assembler::movsd(dst, as_Address(src));
3585   } else {
3586     lea(rscratch1, src);
3587     Assembler::movsd(dst, Address(rscratch1, 0));
3588   }
3589 }
3590 
3591 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3592   if (reachable(src)) {
3593     Assembler::movss(dst, as_Address(src));
3594   } else {
3595     lea(rscratch1, src);
3596     Assembler::movss(dst, Address(rscratch1, 0));
3597   }
3598 }
3599 
3600 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3601   if (reachable(src)) {
3602     Assembler::mulsd(dst, as_Address(src));
3603   } else {
3604     lea(rscratch1, src);
3605     Assembler::mulsd(dst, Address(rscratch1, 0));
3606   }
3607 }
3608 
3609 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3610   if (reachable(src)) {
3611     Assembler::mulss(dst, as_Address(src));
3612   } else {
3613     lea(rscratch1, src);
3614     Assembler::mulss(dst, Address(rscratch1, 0));
3615   }
3616 }
3617 
3618 void MacroAssembler::null_check(Register reg, int offset) {
3619   if (needs_explicit_null_check(offset)) {
3620     // provoke OS NULL exception if reg = NULL by
3621     // accessing M[reg] w/o changing any (non-CC) registers
3622     // NOTE: cmpl is plenty here to provoke a segv
3623     cmpptr(rax, Address(reg, 0));
3624     // Note: should probably use testl(rax, Address(reg, 0));
3625     //       may be shorter code (however, this version of
3626     //       testl needs to be implemented first)
3627   } else {
3628     // nothing to do, (later) access of M[reg + offset]
3629     // will provoke OS NULL exception if reg = NULL
3630   }
3631 }
3632 
3633 void MacroAssembler::os_breakpoint() {
3634   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3635   // (e.g., MSVC can't call ps() otherwise)
3636   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3637 }
3638 
3639 void MacroAssembler::unimplemented(const char* what) {
3640   const char* buf = NULL;
3641   {
3642     ResourceMark rm;
3643     stringStream ss;
3644     ss.print("unimplemented: %s", what);
3645     buf = code_string(ss.as_string());
3646   }
3647   stop(buf);
3648 }
3649 
3650 #ifdef _LP64
3651 #define XSTATE_BV 0x200
3652 #endif
3653 
3654 void MacroAssembler::pop_CPU_state() {
3655   pop_FPU_state();
3656   pop_IU_state();
3657 }
3658 
3659 void MacroAssembler::pop_FPU_state() {
3660 #ifndef _LP64
3661   frstor(Address(rsp, 0));
3662 #else
3663   fxrstor(Address(rsp, 0));
3664 #endif
3665   addptr(rsp, FPUStateSizeInWords * wordSize);
3666 }
3667 
3668 void MacroAssembler::pop_IU_state() {
3669   popa();
3670   LP64_ONLY(addq(rsp, 8));
3671   popf();
3672 }
3673 
3674 // Save Integer and Float state
3675 // Warning: Stack must be 16 byte aligned (64bit)
3676 void MacroAssembler::push_CPU_state() {
3677   push_IU_state();
3678   push_FPU_state();
3679 }
3680 
3681 void MacroAssembler::push_FPU_state() {
3682   subptr(rsp, FPUStateSizeInWords * wordSize);
3683 #ifndef _LP64
3684   fnsave(Address(rsp, 0));
3685   fwait();
3686 #else
3687   fxsave(Address(rsp, 0));
3688 #endif // LP64
3689 }
3690 
3691 void MacroAssembler::push_IU_state() {
3692   // Push flags first because pusha kills them
3693   pushf();
3694   // Make sure rsp stays 16-byte aligned
3695   LP64_ONLY(subq(rsp, 8));
3696   pusha();
3697 }
3698 
3699 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3700   if (!java_thread->is_valid()) {
3701     java_thread = rdi;
3702     get_thread(java_thread);
3703   }
3704   // we must set sp to zero to clear frame
3705   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3706   if (clear_fp) {
3707     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3708   }
3709 
3710   // Always clear the pc because it could have been set by make_walkable()
3711   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3712 
3713   vzeroupper();
3714 }
3715 
3716 void MacroAssembler::restore_rax(Register tmp) {
3717   if (tmp == noreg) pop(rax);
3718   else if (tmp != rax) mov(rax, tmp);
3719 }
3720 
3721 void MacroAssembler::round_to(Register reg, int modulus) {
3722   addptr(reg, modulus - 1);
3723   andptr(reg, -modulus);
3724 }
3725 
3726 void MacroAssembler::save_rax(Register tmp) {
3727   if (tmp == noreg) push(rax);
3728   else if (tmp != rax) mov(tmp, rax);
3729 }
3730 
3731 // Write serialization page so VM thread can do a pseudo remote membar.
3732 // We use the current thread pointer to calculate a thread specific
3733 // offset to write to within the page. This minimizes bus traffic
3734 // due to cache line collision.
3735 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3736   movl(tmp, thread);
3737   shrl(tmp, os::get_serialize_page_shift_count());
3738   andl(tmp, (os::vm_page_size() - sizeof(int)));
3739 
3740   Address index(noreg, tmp, Address::times_1);
3741   ExternalAddress page(os::get_memory_serialize_page());
3742 
3743   // Size of store must match masking code above
3744   movl(as_Address(ArrayAddress(page, index)), tmp);
3745 }
3746 
3747 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3748   if (SafepointMechanism::uses_thread_local_poll()) {
3749 #ifdef _LP64
3750     assert(thread_reg == r15_thread, "should be");
3751 #else
3752     if (thread_reg == noreg) {
3753       thread_reg = temp_reg;
3754       get_thread(thread_reg);
3755     }
3756 #endif
3757     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3758     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3759   } else {
3760     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3761         SafepointSynchronize::_not_synchronized);
3762     jcc(Assembler::notEqual, slow_path);
3763   }
3764 }
3765 
3766 // Calls to C land
3767 //
3768 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3769 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3770 // has to be reset to 0. This is required to allow proper stack traversal.
3771 void MacroAssembler::set_last_Java_frame(Register java_thread,
3772                                          Register last_java_sp,
3773                                          Register last_java_fp,
3774                                          address  last_java_pc) {
3775   vzeroupper();
3776   // determine java_thread register
3777   if (!java_thread->is_valid()) {
3778     java_thread = rdi;
3779     get_thread(java_thread);
3780   }
3781   // determine last_java_sp register
3782   if (!last_java_sp->is_valid()) {
3783     last_java_sp = rsp;
3784   }
3785 
3786   // last_java_fp is optional
3787 
3788   if (last_java_fp->is_valid()) {
3789     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3790   }
3791 
3792   // last_java_pc is optional
3793 
3794   if (last_java_pc != NULL) {
3795     lea(Address(java_thread,
3796                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3797         InternalAddress(last_java_pc));
3798 
3799   }
3800   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3801 }
3802 
3803 void MacroAssembler::shlptr(Register dst, int imm8) {
3804   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3805 }
3806 
3807 void MacroAssembler::shrptr(Register dst, int imm8) {
3808   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3809 }
3810 
3811 void MacroAssembler::sign_extend_byte(Register reg) {
3812   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3813     movsbl(reg, reg); // movsxb
3814   } else {
3815     shll(reg, 24);
3816     sarl(reg, 24);
3817   }
3818 }
3819 
3820 void MacroAssembler::sign_extend_short(Register reg) {
3821   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3822     movswl(reg, reg); // movsxw
3823   } else {
3824     shll(reg, 16);
3825     sarl(reg, 16);
3826   }
3827 }
3828 
3829 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3830   assert(reachable(src), "Address should be reachable");
3831   testl(dst, as_Address(src));
3832 }
3833 
3834 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3835   int dst_enc = dst->encoding();
3836   int src_enc = src->encoding();
3837   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3838     Assembler::pcmpeqb(dst, src);
3839   } else if ((dst_enc < 16) && (src_enc < 16)) {
3840     Assembler::pcmpeqb(dst, src);
3841   } else if (src_enc < 16) {
3842     subptr(rsp, 64);
3843     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3844     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3845     Assembler::pcmpeqb(xmm0, src);
3846     movdqu(dst, xmm0);
3847     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3848     addptr(rsp, 64);
3849   } else if (dst_enc < 16) {
3850     subptr(rsp, 64);
3851     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3852     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3853     Assembler::pcmpeqb(dst, xmm0);
3854     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3855     addptr(rsp, 64);
3856   } else {
3857     subptr(rsp, 64);
3858     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3859     subptr(rsp, 64);
3860     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3861     movdqu(xmm0, src);
3862     movdqu(xmm1, dst);
3863     Assembler::pcmpeqb(xmm1, xmm0);
3864     movdqu(dst, xmm1);
3865     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3866     addptr(rsp, 64);
3867     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3868     addptr(rsp, 64);
3869   }
3870 }
3871 
3872 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3873   int dst_enc = dst->encoding();
3874   int src_enc = src->encoding();
3875   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3876     Assembler::pcmpeqw(dst, src);
3877   } else if ((dst_enc < 16) && (src_enc < 16)) {
3878     Assembler::pcmpeqw(dst, src);
3879   } else if (src_enc < 16) {
3880     subptr(rsp, 64);
3881     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3882     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3883     Assembler::pcmpeqw(xmm0, src);
3884     movdqu(dst, xmm0);
3885     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3886     addptr(rsp, 64);
3887   } else if (dst_enc < 16) {
3888     subptr(rsp, 64);
3889     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3890     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3891     Assembler::pcmpeqw(dst, xmm0);
3892     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3893     addptr(rsp, 64);
3894   } else {
3895     subptr(rsp, 64);
3896     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3897     subptr(rsp, 64);
3898     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3899     movdqu(xmm0, src);
3900     movdqu(xmm1, dst);
3901     Assembler::pcmpeqw(xmm1, xmm0);
3902     movdqu(dst, xmm1);
3903     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3904     addptr(rsp, 64);
3905     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3906     addptr(rsp, 64);
3907   }
3908 }
3909 
3910 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3911   int dst_enc = dst->encoding();
3912   if (dst_enc < 16) {
3913     Assembler::pcmpestri(dst, src, imm8);
3914   } else {
3915     subptr(rsp, 64);
3916     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3917     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3918     Assembler::pcmpestri(xmm0, src, imm8);
3919     movdqu(dst, xmm0);
3920     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3921     addptr(rsp, 64);
3922   }
3923 }
3924 
3925 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3926   int dst_enc = dst->encoding();
3927   int src_enc = src->encoding();
3928   if ((dst_enc < 16) && (src_enc < 16)) {
3929     Assembler::pcmpestri(dst, src, imm8);
3930   } else if (src_enc < 16) {
3931     subptr(rsp, 64);
3932     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3933     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3934     Assembler::pcmpestri(xmm0, src, imm8);
3935     movdqu(dst, xmm0);
3936     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3937     addptr(rsp, 64);
3938   } else if (dst_enc < 16) {
3939     subptr(rsp, 64);
3940     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3941     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3942     Assembler::pcmpestri(dst, xmm0, imm8);
3943     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3944     addptr(rsp, 64);
3945   } else {
3946     subptr(rsp, 64);
3947     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3948     subptr(rsp, 64);
3949     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3950     movdqu(xmm0, src);
3951     movdqu(xmm1, dst);
3952     Assembler::pcmpestri(xmm1, xmm0, imm8);
3953     movdqu(dst, xmm1);
3954     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3955     addptr(rsp, 64);
3956     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3957     addptr(rsp, 64);
3958   }
3959 }
3960 
3961 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3962   int dst_enc = dst->encoding();
3963   int src_enc = src->encoding();
3964   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3965     Assembler::pmovzxbw(dst, src);
3966   } else if ((dst_enc < 16) && (src_enc < 16)) {
3967     Assembler::pmovzxbw(dst, src);
3968   } else if (src_enc < 16) {
3969     subptr(rsp, 64);
3970     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3971     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3972     Assembler::pmovzxbw(xmm0, src);
3973     movdqu(dst, xmm0);
3974     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3975     addptr(rsp, 64);
3976   } else if (dst_enc < 16) {
3977     subptr(rsp, 64);
3978     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3979     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3980     Assembler::pmovzxbw(dst, xmm0);
3981     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3982     addptr(rsp, 64);
3983   } else {
3984     subptr(rsp, 64);
3985     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3986     subptr(rsp, 64);
3987     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3988     movdqu(xmm0, src);
3989     movdqu(xmm1, dst);
3990     Assembler::pmovzxbw(xmm1, xmm0);
3991     movdqu(dst, xmm1);
3992     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3993     addptr(rsp, 64);
3994     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3995     addptr(rsp, 64);
3996   }
3997 }
3998 
3999 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
4000   int dst_enc = dst->encoding();
4001   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4002     Assembler::pmovzxbw(dst, src);
4003   } else if (dst_enc < 16) {
4004     Assembler::pmovzxbw(dst, src);
4005   } else {
4006     subptr(rsp, 64);
4007     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4008     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4009     Assembler::pmovzxbw(xmm0, src);
4010     movdqu(dst, xmm0);
4011     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4012     addptr(rsp, 64);
4013   }
4014 }
4015 
4016 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
4017   int src_enc = src->encoding();
4018   if (src_enc < 16) {
4019     Assembler::pmovmskb(dst, src);
4020   } else {
4021     subptr(rsp, 64);
4022     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4023     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4024     Assembler::pmovmskb(dst, xmm0);
4025     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4026     addptr(rsp, 64);
4027   }
4028 }
4029 
4030 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
4031   int dst_enc = dst->encoding();
4032   int src_enc = src->encoding();
4033   if ((dst_enc < 16) && (src_enc < 16)) {
4034     Assembler::ptest(dst, src);
4035   } else if (src_enc < 16) {
4036     subptr(rsp, 64);
4037     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4038     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4039     Assembler::ptest(xmm0, src);
4040     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4041     addptr(rsp, 64);
4042   } else if (dst_enc < 16) {
4043     subptr(rsp, 64);
4044     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4045     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4046     Assembler::ptest(dst, xmm0);
4047     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4048     addptr(rsp, 64);
4049   } else {
4050     subptr(rsp, 64);
4051     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4052     subptr(rsp, 64);
4053     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4054     movdqu(xmm0, src);
4055     movdqu(xmm1, dst);
4056     Assembler::ptest(xmm1, xmm0);
4057     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4058     addptr(rsp, 64);
4059     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4060     addptr(rsp, 64);
4061   }
4062 }
4063 
4064 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4065   if (reachable(src)) {
4066     Assembler::sqrtsd(dst, as_Address(src));
4067   } else {
4068     lea(rscratch1, src);
4069     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4070   }
4071 }
4072 
4073 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4074   if (reachable(src)) {
4075     Assembler::sqrtss(dst, as_Address(src));
4076   } else {
4077     lea(rscratch1, src);
4078     Assembler::sqrtss(dst, Address(rscratch1, 0));
4079   }
4080 }
4081 
4082 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4083   if (reachable(src)) {
4084     Assembler::subsd(dst, as_Address(src));
4085   } else {
4086     lea(rscratch1, src);
4087     Assembler::subsd(dst, Address(rscratch1, 0));
4088   }
4089 }
4090 
4091 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4092   if (reachable(src)) {
4093     Assembler::subss(dst, as_Address(src));
4094   } else {
4095     lea(rscratch1, src);
4096     Assembler::subss(dst, Address(rscratch1, 0));
4097   }
4098 }
4099 
4100 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4101   if (reachable(src)) {
4102     Assembler::ucomisd(dst, as_Address(src));
4103   } else {
4104     lea(rscratch1, src);
4105     Assembler::ucomisd(dst, Address(rscratch1, 0));
4106   }
4107 }
4108 
4109 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4110   if (reachable(src)) {
4111     Assembler::ucomiss(dst, as_Address(src));
4112   } else {
4113     lea(rscratch1, src);
4114     Assembler::ucomiss(dst, Address(rscratch1, 0));
4115   }
4116 }
4117 
4118 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4119   // Used in sign-bit flipping with aligned address.
4120   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4121   if (reachable(src)) {
4122     Assembler::xorpd(dst, as_Address(src));
4123   } else {
4124     lea(rscratch1, src);
4125     Assembler::xorpd(dst, Address(rscratch1, 0));
4126   }
4127 }
4128 
4129 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4130   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4131     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4132   }
4133   else {
4134     Assembler::xorpd(dst, src);
4135   }
4136 }
4137 
4138 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4139   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4140     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4141   } else {
4142     Assembler::xorps(dst, src);
4143   }
4144 }
4145 
4146 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4147   // Used in sign-bit flipping with aligned address.
4148   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4149   if (reachable(src)) {
4150     Assembler::xorps(dst, as_Address(src));
4151   } else {
4152     lea(rscratch1, src);
4153     Assembler::xorps(dst, Address(rscratch1, 0));
4154   }
4155 }
4156 
4157 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4158   // Used in sign-bit flipping with aligned address.
4159   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4160   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4161   if (reachable(src)) {
4162     Assembler::pshufb(dst, as_Address(src));
4163   } else {
4164     lea(rscratch1, src);
4165     Assembler::pshufb(dst, Address(rscratch1, 0));
4166   }
4167 }
4168 
4169 // AVX 3-operands instructions
4170 
4171 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4172   if (reachable(src)) {
4173     vaddsd(dst, nds, as_Address(src));
4174   } else {
4175     lea(rscratch1, src);
4176     vaddsd(dst, nds, Address(rscratch1, 0));
4177   }
4178 }
4179 
4180 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4181   if (reachable(src)) {
4182     vaddss(dst, nds, as_Address(src));
4183   } else {
4184     lea(rscratch1, src);
4185     vaddss(dst, nds, Address(rscratch1, 0));
4186   }
4187 }
4188 
4189 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4190   int dst_enc = dst->encoding();
4191   int nds_enc = nds->encoding();
4192   int src_enc = src->encoding();
4193   if ((dst_enc < 16) && (nds_enc < 16)) {
4194     vandps(dst, nds, negate_field, vector_len);
4195   } else if ((src_enc < 16) && (dst_enc < 16)) {
4196     evmovdqul(src, nds, Assembler::AVX_512bit);
4197     vandps(dst, src, negate_field, vector_len);
4198   } else if (src_enc < 16) {
4199     evmovdqul(src, nds, Assembler::AVX_512bit);
4200     vandps(src, src, negate_field, vector_len);
4201     evmovdqul(dst, src, Assembler::AVX_512bit);
4202   } else if (dst_enc < 16) {
4203     evmovdqul(src, xmm0, Assembler::AVX_512bit);
4204     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4205     vandps(dst, xmm0, negate_field, vector_len);
4206     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4207   } else {
4208     if (src_enc != dst_enc) {
4209       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4210       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4211       vandps(xmm0, xmm0, negate_field, vector_len);
4212       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4213       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4214     } else {
4215       subptr(rsp, 64);
4216       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4217       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4218       vandps(xmm0, xmm0, negate_field, vector_len);
4219       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4220       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4221       addptr(rsp, 64);
4222     }
4223   }
4224 }
4225 
4226 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4227   int dst_enc = dst->encoding();
4228   int nds_enc = nds->encoding();
4229   int src_enc = src->encoding();
4230   if ((dst_enc < 16) && (nds_enc < 16)) {
4231     vandpd(dst, nds, negate_field, vector_len);
4232   } else if ((src_enc < 16) && (dst_enc < 16)) {
4233     evmovdqul(src, nds, Assembler::AVX_512bit);
4234     vandpd(dst, src, negate_field, vector_len);
4235   } else if (src_enc < 16) {
4236     evmovdqul(src, nds, Assembler::AVX_512bit);
4237     vandpd(src, src, negate_field, vector_len);
4238     evmovdqul(dst, src, Assembler::AVX_512bit);
4239   } else if (dst_enc < 16) {
4240     evmovdqul(src, xmm0, Assembler::AVX_512bit);
4241     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4242     vandpd(dst, xmm0, negate_field, vector_len);
4243     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4244   } else {
4245     if (src_enc != dst_enc) {
4246       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4247       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4248       vandpd(xmm0, xmm0, negate_field, vector_len);
4249       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4250       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4251     } else {
4252       subptr(rsp, 64);
4253       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4254       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4255       vandpd(xmm0, xmm0, negate_field, vector_len);
4256       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4257       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4258       addptr(rsp, 64);
4259     }
4260   }
4261 }
4262 
4263 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4264   int dst_enc = dst->encoding();
4265   int nds_enc = nds->encoding();
4266   int src_enc = src->encoding();
4267   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4268     Assembler::vpaddb(dst, nds, src, vector_len);
4269   } else if ((dst_enc < 16) && (src_enc < 16)) {
4270     Assembler::vpaddb(dst, dst, src, vector_len);
4271   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4272     // use nds as scratch for src
4273     evmovdqul(nds, src, Assembler::AVX_512bit);
4274     Assembler::vpaddb(dst, dst, nds, vector_len);
4275   } else if ((src_enc < 16) && (nds_enc < 16)) {
4276     // use nds as scratch for dst
4277     evmovdqul(nds, dst, Assembler::AVX_512bit);
4278     Assembler::vpaddb(nds, nds, src, vector_len);
4279     evmovdqul(dst, nds, Assembler::AVX_512bit);
4280   } else if (dst_enc < 16) {
4281     // use nds as scatch for xmm0 to hold src
4282     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4283     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4284     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4285     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4286   } else {
4287     // worse case scenario, all regs are in the upper bank
4288     subptr(rsp, 64);
4289     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4290     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4291     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4292     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4293     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4294     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4295     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4296     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4297     addptr(rsp, 64);
4298   }
4299 }
4300 
4301 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4302   int dst_enc = dst->encoding();
4303   int nds_enc = nds->encoding();
4304   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4305     Assembler::vpaddb(dst, nds, src, vector_len);
4306   } else if (dst_enc < 16) {
4307     Assembler::vpaddb(dst, dst, src, vector_len);
4308   } else if (nds_enc < 16) {
4309     // implies dst_enc in upper bank with src as scratch
4310     evmovdqul(nds, dst, Assembler::AVX_512bit);
4311     Assembler::vpaddb(nds, nds, src, vector_len);
4312     evmovdqul(dst, nds, Assembler::AVX_512bit);
4313   } else {
4314     // worse case scenario, all regs in upper bank
4315     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4316     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4317     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4318     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4319   }
4320 }
4321 
4322 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4323   int dst_enc = dst->encoding();
4324   int nds_enc = nds->encoding();
4325   int src_enc = src->encoding();
4326   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4327     Assembler::vpaddw(dst, nds, src, vector_len);
4328   } else if ((dst_enc < 16) && (src_enc < 16)) {
4329     Assembler::vpaddw(dst, dst, src, vector_len);
4330   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4331     // use nds as scratch for src
4332     evmovdqul(nds, src, Assembler::AVX_512bit);
4333     Assembler::vpaddw(dst, dst, nds, vector_len);
4334   } else if ((src_enc < 16) && (nds_enc < 16)) {
4335     // use nds as scratch for dst
4336     evmovdqul(nds, dst, Assembler::AVX_512bit);
4337     Assembler::vpaddw(nds, nds, src, vector_len);
4338     evmovdqul(dst, nds, Assembler::AVX_512bit);
4339   } else if (dst_enc < 16) {
4340     // use nds as scatch for xmm0 to hold src
4341     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4342     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4343     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4344     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4345   } else {
4346     // worse case scenario, all regs are in the upper bank
4347     subptr(rsp, 64);
4348     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4349     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4350     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4351     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4352     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4353     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4354     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4355     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4356     addptr(rsp, 64);
4357   }
4358 }
4359 
4360 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4361   int dst_enc = dst->encoding();
4362   int nds_enc = nds->encoding();
4363   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4364     Assembler::vpaddw(dst, nds, src, vector_len);
4365   } else if (dst_enc < 16) {
4366     Assembler::vpaddw(dst, dst, src, vector_len);
4367   } else if (nds_enc < 16) {
4368     // implies dst_enc in upper bank with src as scratch
4369     evmovdqul(nds, dst, Assembler::AVX_512bit);
4370     Assembler::vpaddw(nds, nds, src, vector_len);
4371     evmovdqul(dst, nds, Assembler::AVX_512bit);
4372   } else {
4373     // worse case scenario, all regs in upper bank
4374     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4375     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4376     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4377     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4378   }
4379 }
4380 
4381 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4382   if (reachable(src)) {
4383     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4384   } else {
4385     lea(rscratch1, src);
4386     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4387   }
4388 }
4389 
4390 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4391   int dst_enc = dst->encoding();
4392   int src_enc = src->encoding();
4393   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4394     Assembler::vpbroadcastw(dst, src);
4395   } else if ((dst_enc < 16) && (src_enc < 16)) {
4396     Assembler::vpbroadcastw(dst, src);
4397   } else if (src_enc < 16) {
4398     subptr(rsp, 64);
4399     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4400     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4401     Assembler::vpbroadcastw(xmm0, src);
4402     movdqu(dst, xmm0);
4403     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4404     addptr(rsp, 64);
4405   } else if (dst_enc < 16) {
4406     subptr(rsp, 64);
4407     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4408     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4409     Assembler::vpbroadcastw(dst, xmm0);
4410     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4411     addptr(rsp, 64);
4412   } else {
4413     subptr(rsp, 64);
4414     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4415     subptr(rsp, 64);
4416     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4417     movdqu(xmm0, src);
4418     movdqu(xmm1, dst);
4419     Assembler::vpbroadcastw(xmm1, xmm0);
4420     movdqu(dst, xmm1);
4421     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4422     addptr(rsp, 64);
4423     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4424     addptr(rsp, 64);
4425   }
4426 }
4427 
4428 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4429   int dst_enc = dst->encoding();
4430   int nds_enc = nds->encoding();
4431   int src_enc = src->encoding();
4432   assert(dst_enc == nds_enc, "");
4433   if ((dst_enc < 16) && (src_enc < 16)) {
4434     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4435   } else if (src_enc < 16) {
4436     subptr(rsp, 64);
4437     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4438     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4439     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4440     movdqu(dst, xmm0);
4441     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4442     addptr(rsp, 64);
4443   } else if (dst_enc < 16) {
4444     subptr(rsp, 64);
4445     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4446     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4447     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4448     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4449     addptr(rsp, 64);
4450   } else {
4451     subptr(rsp, 64);
4452     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4453     subptr(rsp, 64);
4454     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4455     movdqu(xmm0, src);
4456     movdqu(xmm1, dst);
4457     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4458     movdqu(dst, xmm1);
4459     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4460     addptr(rsp, 64);
4461     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4462     addptr(rsp, 64);
4463   }
4464 }
4465 
4466 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4467   int dst_enc = dst->encoding();
4468   int nds_enc = nds->encoding();
4469   int src_enc = src->encoding();
4470   assert(dst_enc == nds_enc, "");
4471   if ((dst_enc < 16) && (src_enc < 16)) {
4472     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4473   } else if (src_enc < 16) {
4474     subptr(rsp, 64);
4475     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4476     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4477     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4478     movdqu(dst, xmm0);
4479     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4480     addptr(rsp, 64);
4481   } else if (dst_enc < 16) {
4482     subptr(rsp, 64);
4483     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4484     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4485     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4486     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4487     addptr(rsp, 64);
4488   } else {
4489     subptr(rsp, 64);
4490     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4491     subptr(rsp, 64);
4492     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4493     movdqu(xmm0, src);
4494     movdqu(xmm1, dst);
4495     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4496     movdqu(dst, xmm1);
4497     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4498     addptr(rsp, 64);
4499     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4500     addptr(rsp, 64);
4501   }
4502 }
4503 
4504 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4505   int dst_enc = dst->encoding();
4506   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4507     Assembler::vpmovzxbw(dst, src, vector_len);
4508   } else if (dst_enc < 16) {
4509     Assembler::vpmovzxbw(dst, src, vector_len);
4510   } else {
4511     subptr(rsp, 64);
4512     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4513     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4514     Assembler::vpmovzxbw(xmm0, src, vector_len);
4515     movdqu(dst, xmm0);
4516     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4517     addptr(rsp, 64);
4518   }
4519 }
4520 
4521 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4522   int src_enc = src->encoding();
4523   if (src_enc < 16) {
4524     Assembler::vpmovmskb(dst, src);
4525   } else {
4526     subptr(rsp, 64);
4527     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4528     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4529     Assembler::vpmovmskb(dst, xmm0);
4530     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4531     addptr(rsp, 64);
4532   }
4533 }
4534 
4535 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4536   int dst_enc = dst->encoding();
4537   int nds_enc = nds->encoding();
4538   int src_enc = src->encoding();
4539   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4540     Assembler::vpmullw(dst, nds, src, vector_len);
4541   } else if ((dst_enc < 16) && (src_enc < 16)) {
4542     Assembler::vpmullw(dst, dst, src, vector_len);
4543   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4544     // use nds as scratch for src
4545     evmovdqul(nds, src, Assembler::AVX_512bit);
4546     Assembler::vpmullw(dst, dst, nds, vector_len);
4547   } else if ((src_enc < 16) && (nds_enc < 16)) {
4548     // use nds as scratch for dst
4549     evmovdqul(nds, dst, Assembler::AVX_512bit);
4550     Assembler::vpmullw(nds, nds, src, vector_len);
4551     evmovdqul(dst, nds, Assembler::AVX_512bit);
4552   } else if (dst_enc < 16) {
4553     // use nds as scatch for xmm0 to hold src
4554     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4555     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4556     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4557     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4558   } else {
4559     // worse case scenario, all regs are in the upper bank
4560     subptr(rsp, 64);
4561     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4562     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4563     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4564     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4565     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4566     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4567     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4568     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4569     addptr(rsp, 64);
4570   }
4571 }
4572 
4573 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4574   int dst_enc = dst->encoding();
4575   int nds_enc = nds->encoding();
4576   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4577     Assembler::vpmullw(dst, nds, src, vector_len);
4578   } else if (dst_enc < 16) {
4579     Assembler::vpmullw(dst, dst, src, vector_len);
4580   } else if (nds_enc < 16) {
4581     // implies dst_enc in upper bank with src as scratch
4582     evmovdqul(nds, dst, Assembler::AVX_512bit);
4583     Assembler::vpmullw(nds, nds, src, vector_len);
4584     evmovdqul(dst, nds, Assembler::AVX_512bit);
4585   } else {
4586     // worse case scenario, all regs in upper bank
4587     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4588     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4589     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4590     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4591   }
4592 }
4593 
4594 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4595   int dst_enc = dst->encoding();
4596   int nds_enc = nds->encoding();
4597   int src_enc = src->encoding();
4598   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4599     Assembler::vpsubb(dst, nds, src, vector_len);
4600   } else if ((dst_enc < 16) && (src_enc < 16)) {
4601     Assembler::vpsubb(dst, dst, src, vector_len);
4602   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4603     // use nds as scratch for src
4604     evmovdqul(nds, src, Assembler::AVX_512bit);
4605     Assembler::vpsubb(dst, dst, nds, vector_len);
4606   } else if ((src_enc < 16) && (nds_enc < 16)) {
4607     // use nds as scratch for dst
4608     evmovdqul(nds, dst, Assembler::AVX_512bit);
4609     Assembler::vpsubb(nds, nds, src, vector_len);
4610     evmovdqul(dst, nds, Assembler::AVX_512bit);
4611   } else if (dst_enc < 16) {
4612     // use nds as scatch for xmm0 to hold src
4613     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4614     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4615     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4616     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4617   } else {
4618     // worse case scenario, all regs are in the upper bank
4619     subptr(rsp, 64);
4620     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4621     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4622     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4623     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4624     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4625     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4626     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4627     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4628     addptr(rsp, 64);
4629   }
4630 }
4631 
4632 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4633   int dst_enc = dst->encoding();
4634   int nds_enc = nds->encoding();
4635   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4636     Assembler::vpsubb(dst, nds, src, vector_len);
4637   } else if (dst_enc < 16) {
4638     Assembler::vpsubb(dst, dst, src, vector_len);
4639   } else if (nds_enc < 16) {
4640     // implies dst_enc in upper bank with src as scratch
4641     evmovdqul(nds, dst, Assembler::AVX_512bit);
4642     Assembler::vpsubb(nds, nds, src, vector_len);
4643     evmovdqul(dst, nds, Assembler::AVX_512bit);
4644   } else {
4645     // worse case scenario, all regs in upper bank
4646     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4647     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4648     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4649     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4650   }
4651 }
4652 
4653 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4654   int dst_enc = dst->encoding();
4655   int nds_enc = nds->encoding();
4656   int src_enc = src->encoding();
4657   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4658     Assembler::vpsubw(dst, nds, src, vector_len);
4659   } else if ((dst_enc < 16) && (src_enc < 16)) {
4660     Assembler::vpsubw(dst, dst, src, vector_len);
4661   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4662     // use nds as scratch for src
4663     evmovdqul(nds, src, Assembler::AVX_512bit);
4664     Assembler::vpsubw(dst, dst, nds, vector_len);
4665   } else if ((src_enc < 16) && (nds_enc < 16)) {
4666     // use nds as scratch for dst
4667     evmovdqul(nds, dst, Assembler::AVX_512bit);
4668     Assembler::vpsubw(nds, nds, src, vector_len);
4669     evmovdqul(dst, nds, Assembler::AVX_512bit);
4670   } else if (dst_enc < 16) {
4671     // use nds as scatch for xmm0 to hold src
4672     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4673     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4674     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4675     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4676   } else {
4677     // worse case scenario, all regs are in the upper bank
4678     subptr(rsp, 64);
4679     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4680     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4681     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4682     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4683     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4684     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4685     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4686     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4687     addptr(rsp, 64);
4688   }
4689 }
4690 
4691 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4692   int dst_enc = dst->encoding();
4693   int nds_enc = nds->encoding();
4694   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4695     Assembler::vpsubw(dst, nds, src, vector_len);
4696   } else if (dst_enc < 16) {
4697     Assembler::vpsubw(dst, dst, src, vector_len);
4698   } else if (nds_enc < 16) {
4699     // implies dst_enc in upper bank with src as scratch
4700     evmovdqul(nds, dst, Assembler::AVX_512bit);
4701     Assembler::vpsubw(nds, nds, src, vector_len);
4702     evmovdqul(dst, nds, Assembler::AVX_512bit);
4703   } else {
4704     // worse case scenario, all regs in upper bank
4705     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4706     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4707     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4708     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4709   }
4710 }
4711 
4712 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4713   int dst_enc = dst->encoding();
4714   int nds_enc = nds->encoding();
4715   int shift_enc = shift->encoding();
4716   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4717     Assembler::vpsraw(dst, nds, shift, vector_len);
4718   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4719     Assembler::vpsraw(dst, dst, shift, vector_len);
4720   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4721     // use nds_enc as scratch with shift
4722     evmovdqul(nds, shift, Assembler::AVX_512bit);
4723     Assembler::vpsraw(dst, dst, nds, vector_len);
4724   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4725     // use nds as scratch with dst
4726     evmovdqul(nds, dst, Assembler::AVX_512bit);
4727     Assembler::vpsraw(nds, nds, shift, vector_len);
4728     evmovdqul(dst, nds, Assembler::AVX_512bit);
4729   } else if (dst_enc < 16) {
4730     // use nds to save a copy of xmm0 and hold shift
4731     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4732     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4733     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4734     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4735   } else if (nds_enc < 16) {
4736     // use nds as dest as temps
4737     evmovdqul(nds, dst, Assembler::AVX_512bit);
4738     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4739     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4740     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4741     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4742     evmovdqul(dst, nds, Assembler::AVX_512bit);
4743   } else {
4744     // worse case scenario, all regs are in the upper bank
4745     subptr(rsp, 64);
4746     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4747     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4748     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4749     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4750     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4751     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4752     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4753     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4754     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4755     addptr(rsp, 64);
4756   }
4757 }
4758 
4759 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4760   int dst_enc = dst->encoding();
4761   int nds_enc = nds->encoding();
4762   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4763     Assembler::vpsraw(dst, nds, shift, vector_len);
4764   } else if (dst_enc < 16) {
4765     Assembler::vpsraw(dst, dst, shift, vector_len);
4766   } else if (nds_enc < 16) {
4767     // use nds as scratch
4768     evmovdqul(nds, dst, Assembler::AVX_512bit);
4769     Assembler::vpsraw(nds, nds, shift, vector_len);
4770     evmovdqul(dst, nds, Assembler::AVX_512bit);
4771   } else {
4772     // use nds as scratch for xmm0
4773     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4774     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4775     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4776     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4777   }
4778 }
4779 
4780 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4781   int dst_enc = dst->encoding();
4782   int nds_enc = nds->encoding();
4783   int shift_enc = shift->encoding();
4784   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4785     Assembler::vpsrlw(dst, nds, shift, vector_len);
4786   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4787     Assembler::vpsrlw(dst, dst, shift, vector_len);
4788   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4789     // use nds_enc as scratch with shift
4790     evmovdqul(nds, shift, Assembler::AVX_512bit);
4791     Assembler::vpsrlw(dst, dst, nds, vector_len);
4792   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4793     // use nds as scratch with dst
4794     evmovdqul(nds, dst, Assembler::AVX_512bit);
4795     Assembler::vpsrlw(nds, nds, shift, vector_len);
4796     evmovdqul(dst, nds, Assembler::AVX_512bit);
4797   } else if (dst_enc < 16) {
4798     // use nds to save a copy of xmm0 and hold shift
4799     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4800     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4801     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4802     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4803   } else if (nds_enc < 16) {
4804     // use nds as dest as temps
4805     evmovdqul(nds, dst, Assembler::AVX_512bit);
4806     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4807     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4808     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4809     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4810     evmovdqul(dst, nds, Assembler::AVX_512bit);
4811   } else {
4812     // worse case scenario, all regs are in the upper bank
4813     subptr(rsp, 64);
4814     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4815     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4816     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4817     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4818     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4819     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4820     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4821     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4822     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4823     addptr(rsp, 64);
4824   }
4825 }
4826 
4827 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4828   int dst_enc = dst->encoding();
4829   int nds_enc = nds->encoding();
4830   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4831     Assembler::vpsrlw(dst, nds, shift, vector_len);
4832   } else if (dst_enc < 16) {
4833     Assembler::vpsrlw(dst, dst, shift, vector_len);
4834   } else if (nds_enc < 16) {
4835     // use nds as scratch
4836     evmovdqul(nds, dst, Assembler::AVX_512bit);
4837     Assembler::vpsrlw(nds, nds, shift, vector_len);
4838     evmovdqul(dst, nds, Assembler::AVX_512bit);
4839   } else {
4840     // use nds as scratch for xmm0
4841     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4842     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4843     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4844     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4845   }
4846 }
4847 
4848 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4849   int dst_enc = dst->encoding();
4850   int nds_enc = nds->encoding();
4851   int shift_enc = shift->encoding();
4852   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4853     Assembler::vpsllw(dst, nds, shift, vector_len);
4854   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4855     Assembler::vpsllw(dst, dst, shift, vector_len);
4856   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4857     // use nds_enc as scratch with shift
4858     evmovdqul(nds, shift, Assembler::AVX_512bit);
4859     Assembler::vpsllw(dst, dst, nds, vector_len);
4860   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4861     // use nds as scratch with dst
4862     evmovdqul(nds, dst, Assembler::AVX_512bit);
4863     Assembler::vpsllw(nds, nds, shift, vector_len);
4864     evmovdqul(dst, nds, Assembler::AVX_512bit);
4865   } else if (dst_enc < 16) {
4866     // use nds to save a copy of xmm0 and hold shift
4867     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4868     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4869     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4870     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4871   } else if (nds_enc < 16) {
4872     // use nds as dest as temps
4873     evmovdqul(nds, dst, Assembler::AVX_512bit);
4874     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4875     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4876     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4877     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4878     evmovdqul(dst, nds, Assembler::AVX_512bit);
4879   } else {
4880     // worse case scenario, all regs are in the upper bank
4881     subptr(rsp, 64);
4882     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4883     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4884     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4885     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4886     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4887     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4888     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4889     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4890     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4891     addptr(rsp, 64);
4892   }
4893 }
4894 
4895 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4896   int dst_enc = dst->encoding();
4897   int nds_enc = nds->encoding();
4898   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4899     Assembler::vpsllw(dst, nds, shift, vector_len);
4900   } else if (dst_enc < 16) {
4901     Assembler::vpsllw(dst, dst, shift, vector_len);
4902   } else if (nds_enc < 16) {
4903     // use nds as scratch
4904     evmovdqul(nds, dst, Assembler::AVX_512bit);
4905     Assembler::vpsllw(nds, nds, shift, vector_len);
4906     evmovdqul(dst, nds, Assembler::AVX_512bit);
4907   } else {
4908     // use nds as scratch for xmm0
4909     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4910     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4911     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4912     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4913   }
4914 }
4915 
4916 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4917   int dst_enc = dst->encoding();
4918   int src_enc = src->encoding();
4919   if ((dst_enc < 16) && (src_enc < 16)) {
4920     Assembler::vptest(dst, src);
4921   } else if (src_enc < 16) {
4922     subptr(rsp, 64);
4923     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4924     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4925     Assembler::vptest(xmm0, src);
4926     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4927     addptr(rsp, 64);
4928   } else if (dst_enc < 16) {
4929     subptr(rsp, 64);
4930     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4931     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4932     Assembler::vptest(dst, xmm0);
4933     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4934     addptr(rsp, 64);
4935   } else {
4936     subptr(rsp, 64);
4937     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4938     subptr(rsp, 64);
4939     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4940     movdqu(xmm0, src);
4941     movdqu(xmm1, dst);
4942     Assembler::vptest(xmm1, xmm0);
4943     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4944     addptr(rsp, 64);
4945     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4946     addptr(rsp, 64);
4947   }
4948 }
4949 
4950 // This instruction exists within macros, ergo we cannot control its input
4951 // when emitted through those patterns.
4952 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4953   if (VM_Version::supports_avx512nobw()) {
4954     int dst_enc = dst->encoding();
4955     int src_enc = src->encoding();
4956     if (dst_enc == src_enc) {
4957       if (dst_enc < 16) {
4958         Assembler::punpcklbw(dst, src);
4959       } else {
4960         subptr(rsp, 64);
4961         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4962         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4963         Assembler::punpcklbw(xmm0, xmm0);
4964         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4965         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4966         addptr(rsp, 64);
4967       }
4968     } else {
4969       if ((src_enc < 16) && (dst_enc < 16)) {
4970         Assembler::punpcklbw(dst, src);
4971       } else if (src_enc < 16) {
4972         subptr(rsp, 64);
4973         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4974         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4975         Assembler::punpcklbw(xmm0, src);
4976         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4977         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4978         addptr(rsp, 64);
4979       } else if (dst_enc < 16) {
4980         subptr(rsp, 64);
4981         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4982         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4983         Assembler::punpcklbw(dst, xmm0);
4984         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4985         addptr(rsp, 64);
4986       } else {
4987         subptr(rsp, 64);
4988         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4989         subptr(rsp, 64);
4990         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4991         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4992         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4993         Assembler::punpcklbw(xmm0, xmm1);
4994         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4995         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4996         addptr(rsp, 64);
4997         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4998         addptr(rsp, 64);
4999       }
5000     }
5001   } else {
5002     Assembler::punpcklbw(dst, src);
5003   }
5004 }
5005 
5006 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
5007   if (VM_Version::supports_avx512vl()) {
5008     Assembler::pshufd(dst, src, mode);
5009   } else {
5010     int dst_enc = dst->encoding();
5011     if (dst_enc < 16) {
5012       Assembler::pshufd(dst, src, mode);
5013     } else {
5014       subptr(rsp, 64);
5015       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5016       Assembler::pshufd(xmm0, src, mode);
5017       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5018       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5019       addptr(rsp, 64);
5020     }
5021   }
5022 }
5023 
5024 // This instruction exists within macros, ergo we cannot control its input
5025 // when emitted through those patterns.
5026 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
5027   if (VM_Version::supports_avx512nobw()) {
5028     int dst_enc = dst->encoding();
5029     int src_enc = src->encoding();
5030     if (dst_enc == src_enc) {
5031       if (dst_enc < 16) {
5032         Assembler::pshuflw(dst, src, mode);
5033       } else {
5034         subptr(rsp, 64);
5035         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5036         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5037         Assembler::pshuflw(xmm0, xmm0, mode);
5038         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5039         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5040         addptr(rsp, 64);
5041       }
5042     } else {
5043       if ((src_enc < 16) && (dst_enc < 16)) {
5044         Assembler::pshuflw(dst, src, mode);
5045       } else if (src_enc < 16) {
5046         subptr(rsp, 64);
5047         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5048         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5049         Assembler::pshuflw(xmm0, src, mode);
5050         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5051         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5052         addptr(rsp, 64);
5053       } else if (dst_enc < 16) {
5054         subptr(rsp, 64);
5055         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5056         evmovdqul(xmm0, src, Assembler::AVX_512bit);
5057         Assembler::pshuflw(dst, xmm0, mode);
5058         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5059         addptr(rsp, 64);
5060       } else {
5061         subptr(rsp, 64);
5062         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5063         subptr(rsp, 64);
5064         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
5065         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5066         evmovdqul(xmm1, src, Assembler::AVX_512bit);
5067         Assembler::pshuflw(xmm0, xmm1, mode);
5068         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5069         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
5070         addptr(rsp, 64);
5071         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5072         addptr(rsp, 64);
5073       }
5074     }
5075   } else {
5076     Assembler::pshuflw(dst, src, mode);
5077   }
5078 }
5079 
5080 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5081   if (reachable(src)) {
5082     vandpd(dst, nds, as_Address(src), vector_len);
5083   } else {
5084     lea(rscratch1, src);
5085     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
5086   }
5087 }
5088 
5089 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5090   if (reachable(src)) {
5091     vandps(dst, nds, as_Address(src), vector_len);
5092   } else {
5093     lea(rscratch1, src);
5094     vandps(dst, nds, Address(rscratch1, 0), vector_len);
5095   }
5096 }
5097 
5098 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5099   if (reachable(src)) {
5100     vdivsd(dst, nds, as_Address(src));
5101   } else {
5102     lea(rscratch1, src);
5103     vdivsd(dst, nds, Address(rscratch1, 0));
5104   }
5105 }
5106 
5107 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5108   if (reachable(src)) {
5109     vdivss(dst, nds, as_Address(src));
5110   } else {
5111     lea(rscratch1, src);
5112     vdivss(dst, nds, Address(rscratch1, 0));
5113   }
5114 }
5115 
5116 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5117   if (reachable(src)) {
5118     vmulsd(dst, nds, as_Address(src));
5119   } else {
5120     lea(rscratch1, src);
5121     vmulsd(dst, nds, Address(rscratch1, 0));
5122   }
5123 }
5124 
5125 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5126   if (reachable(src)) {
5127     vmulss(dst, nds, as_Address(src));
5128   } else {
5129     lea(rscratch1, src);
5130     vmulss(dst, nds, Address(rscratch1, 0));
5131   }
5132 }
5133 
5134 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5135   if (reachable(src)) {
5136     vsubsd(dst, nds, as_Address(src));
5137   } else {
5138     lea(rscratch1, src);
5139     vsubsd(dst, nds, Address(rscratch1, 0));
5140   }
5141 }
5142 
5143 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5144   if (reachable(src)) {
5145     vsubss(dst, nds, as_Address(src));
5146   } else {
5147     lea(rscratch1, src);
5148     vsubss(dst, nds, Address(rscratch1, 0));
5149   }
5150 }
5151 
5152 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5153   int nds_enc = nds->encoding();
5154   int dst_enc = dst->encoding();
5155   bool dst_upper_bank = (dst_enc > 15);
5156   bool nds_upper_bank = (nds_enc > 15);
5157   if (VM_Version::supports_avx512novl() &&
5158       (nds_upper_bank || dst_upper_bank)) {
5159     if (dst_upper_bank) {
5160       subptr(rsp, 64);
5161       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5162       movflt(xmm0, nds);
5163       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5164       movflt(dst, xmm0);
5165       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5166       addptr(rsp, 64);
5167     } else {
5168       movflt(dst, nds);
5169       vxorps(dst, dst, src, Assembler::AVX_128bit);
5170     }
5171   } else {
5172     vxorps(dst, nds, src, Assembler::AVX_128bit);
5173   }
5174 }
5175 
5176 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5177   int nds_enc = nds->encoding();
5178   int dst_enc = dst->encoding();
5179   bool dst_upper_bank = (dst_enc > 15);
5180   bool nds_upper_bank = (nds_enc > 15);
5181   if (VM_Version::supports_avx512novl() &&
5182       (nds_upper_bank || dst_upper_bank)) {
5183     if (dst_upper_bank) {
5184       subptr(rsp, 64);
5185       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5186       movdbl(xmm0, nds);
5187       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5188       movdbl(dst, xmm0);
5189       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5190       addptr(rsp, 64);
5191     } else {
5192       movdbl(dst, nds);
5193       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5194     }
5195   } else {
5196     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5197   }
5198 }
5199 
5200 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5201   if (reachable(src)) {
5202     vxorpd(dst, nds, as_Address(src), vector_len);
5203   } else {
5204     lea(rscratch1, src);
5205     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5206   }
5207 }
5208 
5209 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5210   if (reachable(src)) {
5211     vxorps(dst, nds, as_Address(src), vector_len);
5212   } else {
5213     lea(rscratch1, src);
5214     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5215   }
5216 }
5217 
5218 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
5219   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
5220   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
5221   // The inverted mask is sign-extended
5222   andptr(possibly_jweak, inverted_jweak_mask);
5223 }
5224 
5225 void MacroAssembler::resolve_jobject(Register value,
5226                                      Register thread,
5227                                      Register tmp) {
5228   assert_different_registers(value, thread, tmp);
5229   Label done, not_weak;
5230   testptr(value, value);
5231   jcc(Assembler::zero, done);                // Use NULL as-is.
5232   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
5233   jcc(Assembler::zero, not_weak);
5234   // Resolve jweak.
5235   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5236                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
5237   verify_oop(value);
5238   jmp(done);
5239   bind(not_weak);
5240   // Resolve (untagged) jobject.
5241   access_load_at(T_OBJECT, IN_CONCURRENT_ROOT,
5242                  value, Address(value, 0), tmp, thread);
5243   verify_oop(value);
5244   bind(done);
5245 }
5246 
5247 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5248   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5249 }
5250 
5251 // Force generation of a 4 byte immediate value even if it fits into 8bit
5252 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5253   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5254 }
5255 
5256 void MacroAssembler::subptr(Register dst, Register src) {
5257   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5258 }
5259 
5260 // C++ bool manipulation
5261 void MacroAssembler::testbool(Register dst) {
5262   if(sizeof(bool) == 1)
5263     testb(dst, 0xff);
5264   else if(sizeof(bool) == 2) {
5265     // testw implementation needed for two byte bools
5266     ShouldNotReachHere();
5267   } else if(sizeof(bool) == 4)
5268     testl(dst, dst);
5269   else
5270     // unsupported
5271     ShouldNotReachHere();
5272 }
5273 
5274 void MacroAssembler::testptr(Register dst, Register src) {
5275   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5276 }
5277 
5278 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5279 void MacroAssembler::tlab_allocate(Register thread, Register obj,
5280                                    Register var_size_in_bytes,
5281                                    int con_size_in_bytes,
5282                                    Register t1,
5283                                    Register t2,
5284                                    Label& slow_case) {
5285   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5286   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5287 }
5288 
5289 // Defines obj, preserves var_size_in_bytes
5290 void MacroAssembler::eden_allocate(Register thread, Register obj,
5291                                    Register var_size_in_bytes,
5292                                    int con_size_in_bytes,
5293                                    Register t1,
5294                                    Label& slow_case) {
5295   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5296   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
5297 }
5298 
5299 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5300 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5301   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5302   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5303   Label done;
5304 
5305   testptr(length_in_bytes, length_in_bytes);
5306   jcc(Assembler::zero, done);
5307 
5308   // initialize topmost word, divide index by 2, check if odd and test if zero
5309   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5310 #ifdef ASSERT
5311   {
5312     Label L;
5313     testptr(length_in_bytes, BytesPerWord - 1);
5314     jcc(Assembler::zero, L);
5315     stop("length must be a multiple of BytesPerWord");
5316     bind(L);
5317   }
5318 #endif
5319   Register index = length_in_bytes;
5320   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5321   if (UseIncDec) {
5322     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5323   } else {
5324     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5325     shrptr(index, 1);
5326   }
5327 #ifndef _LP64
5328   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5329   {
5330     Label even;
5331     // note: if index was a multiple of 8, then it cannot
5332     //       be 0 now otherwise it must have been 0 before
5333     //       => if it is even, we don't need to check for 0 again
5334     jcc(Assembler::carryClear, even);
5335     // clear topmost word (no jump would be needed if conditional assignment worked here)
5336     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5337     // index could be 0 now, must check again
5338     jcc(Assembler::zero, done);
5339     bind(even);
5340   }
5341 #endif // !_LP64
5342   // initialize remaining object fields: index is a multiple of 2 now
5343   {
5344     Label loop;
5345     bind(loop);
5346     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5347     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5348     decrement(index);
5349     jcc(Assembler::notZero, loop);
5350   }
5351 
5352   bind(done);
5353 }
5354 
5355 // Look up the method for a megamorphic invokeinterface call.
5356 // The target method is determined by <intf_klass, itable_index>.
5357 // The receiver klass is in recv_klass.
5358 // On success, the result will be in method_result, and execution falls through.
5359 // On failure, execution transfers to the given label.
5360 void MacroAssembler::lookup_interface_method(Register recv_klass,
5361                                              Register intf_klass,
5362                                              RegisterOrConstant itable_index,
5363                                              Register method_result,
5364                                              Register scan_temp,
5365                                              Label& L_no_such_interface,
5366                                              bool return_method) {
5367   assert_different_registers(recv_klass, intf_klass, scan_temp);
5368   assert_different_registers(method_result, intf_klass, scan_temp);
5369   assert(recv_klass != method_result || !return_method,
5370          "recv_klass can be destroyed when method isn't needed");
5371 
5372   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5373          "caller must use same register for non-constant itable index as for method");
5374 
5375   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5376   int vtable_base = in_bytes(Klass::vtable_start_offset());
5377   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5378   int scan_step   = itableOffsetEntry::size() * wordSize;
5379   int vte_size    = vtableEntry::size_in_bytes();
5380   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5381   assert(vte_size == wordSize, "else adjust times_vte_scale");
5382 
5383   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5384 
5385   // %%% Could store the aligned, prescaled offset in the klassoop.
5386   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5387 
5388   if (return_method) {
5389     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5390     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5391     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5392   }
5393 
5394   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5395   //   if (scan->interface() == intf) {
5396   //     result = (klass + scan->offset() + itable_index);
5397   //   }
5398   // }
5399   Label search, found_method;
5400 
5401   for (int peel = 1; peel >= 0; peel--) {
5402     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5403     cmpptr(intf_klass, method_result);
5404 
5405     if (peel) {
5406       jccb(Assembler::equal, found_method);
5407     } else {
5408       jccb(Assembler::notEqual, search);
5409       // (invert the test to fall through to found_method...)
5410     }
5411 
5412     if (!peel)  break;
5413 
5414     bind(search);
5415 
5416     // Check that the previous entry is non-null.  A null entry means that
5417     // the receiver class doesn't implement the interface, and wasn't the
5418     // same as when the caller was compiled.
5419     testptr(method_result, method_result);
5420     jcc(Assembler::zero, L_no_such_interface);
5421     addptr(scan_temp, scan_step);
5422   }
5423 
5424   bind(found_method);
5425 
5426   if (return_method) {
5427     // Got a hit.
5428     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5429     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5430   }
5431 }
5432 
5433 
5434 // virtual method calling
5435 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5436                                            RegisterOrConstant vtable_index,
5437                                            Register method_result) {
5438   const int base = in_bytes(Klass::vtable_start_offset());
5439   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5440   Address vtable_entry_addr(recv_klass,
5441                             vtable_index, Address::times_ptr,
5442                             base + vtableEntry::method_offset_in_bytes());
5443   movptr(method_result, vtable_entry_addr);
5444 }
5445 
5446 
5447 void MacroAssembler::check_klass_subtype(Register sub_klass,
5448                            Register super_klass,
5449                            Register temp_reg,
5450                            Label& L_success) {
5451   Label L_failure;
5452   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5453   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5454   bind(L_failure);
5455 }
5456 
5457 
5458 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5459                                                    Register super_klass,
5460                                                    Register temp_reg,
5461                                                    Label* L_success,
5462                                                    Label* L_failure,
5463                                                    Label* L_slow_path,
5464                                         RegisterOrConstant super_check_offset) {
5465   assert_different_registers(sub_klass, super_klass, temp_reg);
5466   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5467   if (super_check_offset.is_register()) {
5468     assert_different_registers(sub_klass, super_klass,
5469                                super_check_offset.as_register());
5470   } else if (must_load_sco) {
5471     assert(temp_reg != noreg, "supply either a temp or a register offset");
5472   }
5473 
5474   Label L_fallthrough;
5475   int label_nulls = 0;
5476   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5477   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5478   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5479   assert(label_nulls <= 1, "at most one NULL in the batch");
5480 
5481   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5482   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5483   Address super_check_offset_addr(super_klass, sco_offset);
5484 
5485   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5486   // range of a jccb.  If this routine grows larger, reconsider at
5487   // least some of these.
5488 #define local_jcc(assembler_cond, label)                                \
5489   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5490   else                             jcc( assembler_cond, label) /*omit semi*/
5491 
5492   // Hacked jmp, which may only be used just before L_fallthrough.
5493 #define final_jmp(label)                                                \
5494   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5495   else                            jmp(label)                /*omit semi*/
5496 
5497   // If the pointers are equal, we are done (e.g., String[] elements).
5498   // This self-check enables sharing of secondary supertype arrays among
5499   // non-primary types such as array-of-interface.  Otherwise, each such
5500   // type would need its own customized SSA.
5501   // We move this check to the front of the fast path because many
5502   // type checks are in fact trivially successful in this manner,
5503   // so we get a nicely predicted branch right at the start of the check.
5504   cmpptr(sub_klass, super_klass);
5505   local_jcc(Assembler::equal, *L_success);
5506 
5507   // Check the supertype display:
5508   if (must_load_sco) {
5509     // Positive movl does right thing on LP64.
5510     movl(temp_reg, super_check_offset_addr);
5511     super_check_offset = RegisterOrConstant(temp_reg);
5512   }
5513   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5514   cmpptr(super_klass, super_check_addr); // load displayed supertype
5515 
5516   // This check has worked decisively for primary supers.
5517   // Secondary supers are sought in the super_cache ('super_cache_addr').
5518   // (Secondary supers are interfaces and very deeply nested subtypes.)
5519   // This works in the same check above because of a tricky aliasing
5520   // between the super_cache and the primary super display elements.
5521   // (The 'super_check_addr' can address either, as the case requires.)
5522   // Note that the cache is updated below if it does not help us find
5523   // what we need immediately.
5524   // So if it was a primary super, we can just fail immediately.
5525   // Otherwise, it's the slow path for us (no success at this point).
5526 
5527   if (super_check_offset.is_register()) {
5528     local_jcc(Assembler::equal, *L_success);
5529     cmpl(super_check_offset.as_register(), sc_offset);
5530     if (L_failure == &L_fallthrough) {
5531       local_jcc(Assembler::equal, *L_slow_path);
5532     } else {
5533       local_jcc(Assembler::notEqual, *L_failure);
5534       final_jmp(*L_slow_path);
5535     }
5536   } else if (super_check_offset.as_constant() == sc_offset) {
5537     // Need a slow path; fast failure is impossible.
5538     if (L_slow_path == &L_fallthrough) {
5539       local_jcc(Assembler::equal, *L_success);
5540     } else {
5541       local_jcc(Assembler::notEqual, *L_slow_path);
5542       final_jmp(*L_success);
5543     }
5544   } else {
5545     // No slow path; it's a fast decision.
5546     if (L_failure == &L_fallthrough) {
5547       local_jcc(Assembler::equal, *L_success);
5548     } else {
5549       local_jcc(Assembler::notEqual, *L_failure);
5550       final_jmp(*L_success);
5551     }
5552   }
5553 
5554   bind(L_fallthrough);
5555 
5556 #undef local_jcc
5557 #undef final_jmp
5558 }
5559 
5560 
5561 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5562                                                    Register super_klass,
5563                                                    Register temp_reg,
5564                                                    Register temp2_reg,
5565                                                    Label* L_success,
5566                                                    Label* L_failure,
5567                                                    bool set_cond_codes) {
5568   assert_different_registers(sub_klass, super_klass, temp_reg);
5569   if (temp2_reg != noreg)
5570     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5571 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5572 
5573   Label L_fallthrough;
5574   int label_nulls = 0;
5575   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5576   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5577   assert(label_nulls <= 1, "at most one NULL in the batch");
5578 
5579   // a couple of useful fields in sub_klass:
5580   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5581   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5582   Address secondary_supers_addr(sub_klass, ss_offset);
5583   Address super_cache_addr(     sub_klass, sc_offset);
5584 
5585   // Do a linear scan of the secondary super-klass chain.
5586   // This code is rarely used, so simplicity is a virtue here.
5587   // The repne_scan instruction uses fixed registers, which we must spill.
5588   // Don't worry too much about pre-existing connections with the input regs.
5589 
5590   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5591   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5592 
5593   // Get super_klass value into rax (even if it was in rdi or rcx).
5594   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5595   if (super_klass != rax || UseCompressedOops) {
5596     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5597     mov(rax, super_klass);
5598   }
5599   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5600   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5601 
5602 #ifndef PRODUCT
5603   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5604   ExternalAddress pst_counter_addr((address) pst_counter);
5605   NOT_LP64(  incrementl(pst_counter_addr) );
5606   LP64_ONLY( lea(rcx, pst_counter_addr) );
5607   LP64_ONLY( incrementl(Address(rcx, 0)) );
5608 #endif //PRODUCT
5609 
5610   // We will consult the secondary-super array.
5611   movptr(rdi, secondary_supers_addr);
5612   // Load the array length.  (Positive movl does right thing on LP64.)
5613   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5614   // Skip to start of data.
5615   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5616 
5617   // Scan RCX words at [RDI] for an occurrence of RAX.
5618   // Set NZ/Z based on last compare.
5619   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5620   // not change flags (only scas instruction which is repeated sets flags).
5621   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5622 
5623     testptr(rax,rax); // Set Z = 0
5624     repne_scan();
5625 
5626   // Unspill the temp. registers:
5627   if (pushed_rdi)  pop(rdi);
5628   if (pushed_rcx)  pop(rcx);
5629   if (pushed_rax)  pop(rax);
5630 
5631   if (set_cond_codes) {
5632     // Special hack for the AD files:  rdi is guaranteed non-zero.
5633     assert(!pushed_rdi, "rdi must be left non-NULL");
5634     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5635   }
5636 
5637   if (L_failure == &L_fallthrough)
5638         jccb(Assembler::notEqual, *L_failure);
5639   else  jcc(Assembler::notEqual, *L_failure);
5640 
5641   // Success.  Cache the super we found and proceed in triumph.
5642   movptr(super_cache_addr, super_klass);
5643 
5644   if (L_success != &L_fallthrough) {
5645     jmp(*L_success);
5646   }
5647 
5648 #undef IS_A_TEMP
5649 
5650   bind(L_fallthrough);
5651 }
5652 
5653 
5654 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5655   if (VM_Version::supports_cmov()) {
5656     cmovl(cc, dst, src);
5657   } else {
5658     Label L;
5659     jccb(negate_condition(cc), L);
5660     movl(dst, src);
5661     bind(L);
5662   }
5663 }
5664 
5665 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5666   if (VM_Version::supports_cmov()) {
5667     cmovl(cc, dst, src);
5668   } else {
5669     Label L;
5670     jccb(negate_condition(cc), L);
5671     movl(dst, src);
5672     bind(L);
5673   }
5674 }
5675 
5676 void MacroAssembler::verify_oop(Register reg, const char* s) {
5677   if (!VerifyOops) return;
5678 
5679   // Pass register number to verify_oop_subroutine
5680   const char* b = NULL;
5681   {
5682     ResourceMark rm;
5683     stringStream ss;
5684     ss.print("verify_oop: %s: %s", reg->name(), s);
5685     b = code_string(ss.as_string());
5686   }
5687   BLOCK_COMMENT("verify_oop {");
5688 #ifdef _LP64
5689   push(rscratch1);                    // save r10, trashed by movptr()
5690 #endif
5691   push(rax);                          // save rax,
5692   push(reg);                          // pass register argument
5693   ExternalAddress buffer((address) b);
5694   // avoid using pushptr, as it modifies scratch registers
5695   // and our contract is not to modify anything
5696   movptr(rax, buffer.addr());
5697   push(rax);
5698   // call indirectly to solve generation ordering problem
5699   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5700   call(rax);
5701   // Caller pops the arguments (oop, message) and restores rax, r10
5702   BLOCK_COMMENT("} verify_oop");
5703 }
5704 
5705 
5706 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5707                                                       Register tmp,
5708                                                       int offset) {
5709   intptr_t value = *delayed_value_addr;
5710   if (value != 0)
5711     return RegisterOrConstant(value + offset);
5712 
5713   // load indirectly to solve generation ordering problem
5714   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5715 
5716 #ifdef ASSERT
5717   { Label L;
5718     testptr(tmp, tmp);
5719     if (WizardMode) {
5720       const char* buf = NULL;
5721       {
5722         ResourceMark rm;
5723         stringStream ss;
5724         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5725         buf = code_string(ss.as_string());
5726       }
5727       jcc(Assembler::notZero, L);
5728       STOP(buf);
5729     } else {
5730       jccb(Assembler::notZero, L);
5731       hlt();
5732     }
5733     bind(L);
5734   }
5735 #endif
5736 
5737   if (offset != 0)
5738     addptr(tmp, offset);
5739 
5740   return RegisterOrConstant(tmp);
5741 }
5742 
5743 
5744 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5745                                          int extra_slot_offset) {
5746   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5747   int stackElementSize = Interpreter::stackElementSize;
5748   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5749 #ifdef ASSERT
5750   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5751   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5752 #endif
5753   Register             scale_reg    = noreg;
5754   Address::ScaleFactor scale_factor = Address::no_scale;
5755   if (arg_slot.is_constant()) {
5756     offset += arg_slot.as_constant() * stackElementSize;
5757   } else {
5758     scale_reg    = arg_slot.as_register();
5759     scale_factor = Address::times(stackElementSize);
5760   }
5761   offset += wordSize;           // return PC is on stack
5762   return Address(rsp, scale_reg, scale_factor, offset);
5763 }
5764 
5765 
5766 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5767   if (!VerifyOops) return;
5768 
5769   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5770   // Pass register number to verify_oop_subroutine
5771   const char* b = NULL;
5772   {
5773     ResourceMark rm;
5774     stringStream ss;
5775     ss.print("verify_oop_addr: %s", s);
5776     b = code_string(ss.as_string());
5777   }
5778 #ifdef _LP64
5779   push(rscratch1);                    // save r10, trashed by movptr()
5780 #endif
5781   push(rax);                          // save rax,
5782   // addr may contain rsp so we will have to adjust it based on the push
5783   // we just did (and on 64 bit we do two pushes)
5784   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5785   // stores rax into addr which is backwards of what was intended.
5786   if (addr.uses(rsp)) {
5787     lea(rax, addr);
5788     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5789   } else {
5790     pushptr(addr);
5791   }
5792 
5793   ExternalAddress buffer((address) b);
5794   // pass msg argument
5795   // avoid using pushptr, as it modifies scratch registers
5796   // and our contract is not to modify anything
5797   movptr(rax, buffer.addr());
5798   push(rax);
5799 
5800   // call indirectly to solve generation ordering problem
5801   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5802   call(rax);
5803   // Caller pops the arguments (addr, message) and restores rax, r10.
5804 }
5805 
5806 void MacroAssembler::verify_tlab() {
5807 #ifdef ASSERT
5808   if (UseTLAB && VerifyOops) {
5809     Label next, ok;
5810     Register t1 = rsi;
5811     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5812 
5813     push(t1);
5814     NOT_LP64(push(thread_reg));
5815     NOT_LP64(get_thread(thread_reg));
5816 
5817     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5818     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5819     jcc(Assembler::aboveEqual, next);
5820     STOP("assert(top >= start)");
5821     should_not_reach_here();
5822 
5823     bind(next);
5824     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5825     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5826     jcc(Assembler::aboveEqual, ok);
5827     STOP("assert(top <= end)");
5828     should_not_reach_here();
5829 
5830     bind(ok);
5831     NOT_LP64(pop(thread_reg));
5832     pop(t1);
5833   }
5834 #endif
5835 }
5836 
5837 class ControlWord {
5838  public:
5839   int32_t _value;
5840 
5841   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5842   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5843   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5844   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5845   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5846   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5847   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5848   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5849 
5850   void print() const {
5851     // rounding control
5852     const char* rc;
5853     switch (rounding_control()) {
5854       case 0: rc = "round near"; break;
5855       case 1: rc = "round down"; break;
5856       case 2: rc = "round up  "; break;
5857       case 3: rc = "chop      "; break;
5858     };
5859     // precision control
5860     const char* pc;
5861     switch (precision_control()) {
5862       case 0: pc = "24 bits "; break;
5863       case 1: pc = "reserved"; break;
5864       case 2: pc = "53 bits "; break;
5865       case 3: pc = "64 bits "; break;
5866     };
5867     // flags
5868     char f[9];
5869     f[0] = ' ';
5870     f[1] = ' ';
5871     f[2] = (precision   ()) ? 'P' : 'p';
5872     f[3] = (underflow   ()) ? 'U' : 'u';
5873     f[4] = (overflow    ()) ? 'O' : 'o';
5874     f[5] = (zero_divide ()) ? 'Z' : 'z';
5875     f[6] = (denormalized()) ? 'D' : 'd';
5876     f[7] = (invalid     ()) ? 'I' : 'i';
5877     f[8] = '\x0';
5878     // output
5879     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5880   }
5881 
5882 };
5883 
5884 class StatusWord {
5885  public:
5886   int32_t _value;
5887 
5888   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5889   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5890   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5891   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5892   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5893   int  top() const                     { return  (_value >> 11) & 7      ; }
5894   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5895   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5896   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5897   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5898   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5899   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5900   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5901   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5902 
5903   void print() const {
5904     // condition codes
5905     char c[5];
5906     c[0] = (C3()) ? '3' : '-';
5907     c[1] = (C2()) ? '2' : '-';
5908     c[2] = (C1()) ? '1' : '-';
5909     c[3] = (C0()) ? '0' : '-';
5910     c[4] = '\x0';
5911     // flags
5912     char f[9];
5913     f[0] = (error_status()) ? 'E' : '-';
5914     f[1] = (stack_fault ()) ? 'S' : '-';
5915     f[2] = (precision   ()) ? 'P' : '-';
5916     f[3] = (underflow   ()) ? 'U' : '-';
5917     f[4] = (overflow    ()) ? 'O' : '-';
5918     f[5] = (zero_divide ()) ? 'Z' : '-';
5919     f[6] = (denormalized()) ? 'D' : '-';
5920     f[7] = (invalid     ()) ? 'I' : '-';
5921     f[8] = '\x0';
5922     // output
5923     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5924   }
5925 
5926 };
5927 
5928 class TagWord {
5929  public:
5930   int32_t _value;
5931 
5932   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5933 
5934   void print() const {
5935     printf("%04x", _value & 0xFFFF);
5936   }
5937 
5938 };
5939 
5940 class FPU_Register {
5941  public:
5942   int32_t _m0;
5943   int32_t _m1;
5944   int16_t _ex;
5945 
5946   bool is_indefinite() const           {
5947     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5948   }
5949 
5950   void print() const {
5951     char  sign = (_ex < 0) ? '-' : '+';
5952     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5953     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5954   };
5955 
5956 };
5957 
5958 class FPU_State {
5959  public:
5960   enum {
5961     register_size       = 10,
5962     number_of_registers =  8,
5963     register_mask       =  7
5964   };
5965 
5966   ControlWord  _control_word;
5967   StatusWord   _status_word;
5968   TagWord      _tag_word;
5969   int32_t      _error_offset;
5970   int32_t      _error_selector;
5971   int32_t      _data_offset;
5972   int32_t      _data_selector;
5973   int8_t       _register[register_size * number_of_registers];
5974 
5975   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5976   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5977 
5978   const char* tag_as_string(int tag) const {
5979     switch (tag) {
5980       case 0: return "valid";
5981       case 1: return "zero";
5982       case 2: return "special";
5983       case 3: return "empty";
5984     }
5985     ShouldNotReachHere();
5986     return NULL;
5987   }
5988 
5989   void print() const {
5990     // print computation registers
5991     { int t = _status_word.top();
5992       for (int i = 0; i < number_of_registers; i++) {
5993         int j = (i - t) & register_mask;
5994         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5995         st(j)->print();
5996         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5997       }
5998     }
5999     printf("\n");
6000     // print control registers
6001     printf("ctrl = "); _control_word.print(); printf("\n");
6002     printf("stat = "); _status_word .print(); printf("\n");
6003     printf("tags = "); _tag_word    .print(); printf("\n");
6004   }
6005 
6006 };
6007 
6008 class Flag_Register {
6009  public:
6010   int32_t _value;
6011 
6012   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6013   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6014   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6015   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6016   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6017   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6018   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6019 
6020   void print() const {
6021     // flags
6022     char f[8];
6023     f[0] = (overflow       ()) ? 'O' : '-';
6024     f[1] = (direction      ()) ? 'D' : '-';
6025     f[2] = (sign           ()) ? 'S' : '-';
6026     f[3] = (zero           ()) ? 'Z' : '-';
6027     f[4] = (auxiliary_carry()) ? 'A' : '-';
6028     f[5] = (parity         ()) ? 'P' : '-';
6029     f[6] = (carry          ()) ? 'C' : '-';
6030     f[7] = '\x0';
6031     // output
6032     printf("%08x  flags = %s", _value, f);
6033   }
6034 
6035 };
6036 
6037 class IU_Register {
6038  public:
6039   int32_t _value;
6040 
6041   void print() const {
6042     printf("%08x  %11d", _value, _value);
6043   }
6044 
6045 };
6046 
6047 class IU_State {
6048  public:
6049   Flag_Register _eflags;
6050   IU_Register   _rdi;
6051   IU_Register   _rsi;
6052   IU_Register   _rbp;
6053   IU_Register   _rsp;
6054   IU_Register   _rbx;
6055   IU_Register   _rdx;
6056   IU_Register   _rcx;
6057   IU_Register   _rax;
6058 
6059   void print() const {
6060     // computation registers
6061     printf("rax,  = "); _rax.print(); printf("\n");
6062     printf("rbx,  = "); _rbx.print(); printf("\n");
6063     printf("rcx  = "); _rcx.print(); printf("\n");
6064     printf("rdx  = "); _rdx.print(); printf("\n");
6065     printf("rdi  = "); _rdi.print(); printf("\n");
6066     printf("rsi  = "); _rsi.print(); printf("\n");
6067     printf("rbp,  = "); _rbp.print(); printf("\n");
6068     printf("rsp  = "); _rsp.print(); printf("\n");
6069     printf("\n");
6070     // control registers
6071     printf("flgs = "); _eflags.print(); printf("\n");
6072   }
6073 };
6074 
6075 
6076 class CPU_State {
6077  public:
6078   FPU_State _fpu_state;
6079   IU_State  _iu_state;
6080 
6081   void print() const {
6082     printf("--------------------------------------------------\n");
6083     _iu_state .print();
6084     printf("\n");
6085     _fpu_state.print();
6086     printf("--------------------------------------------------\n");
6087   }
6088 
6089 };
6090 
6091 
6092 static void _print_CPU_state(CPU_State* state) {
6093   state->print();
6094 };
6095 
6096 
6097 void MacroAssembler::print_CPU_state() {
6098   push_CPU_state();
6099   push(rsp);                // pass CPU state
6100   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6101   addptr(rsp, wordSize);       // discard argument
6102   pop_CPU_state();
6103 }
6104 
6105 
6106 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6107   static int counter = 0;
6108   FPU_State* fs = &state->_fpu_state;
6109   counter++;
6110   // For leaf calls, only verify that the top few elements remain empty.
6111   // We only need 1 empty at the top for C2 code.
6112   if( stack_depth < 0 ) {
6113     if( fs->tag_for_st(7) != 3 ) {
6114       printf("FPR7 not empty\n");
6115       state->print();
6116       assert(false, "error");
6117       return false;
6118     }
6119     return true;                // All other stack states do not matter
6120   }
6121 
6122   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6123          "bad FPU control word");
6124 
6125   // compute stack depth
6126   int i = 0;
6127   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6128   int d = i;
6129   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6130   // verify findings
6131   if (i != FPU_State::number_of_registers) {
6132     // stack not contiguous
6133     printf("%s: stack not contiguous at ST%d\n", s, i);
6134     state->print();
6135     assert(false, "error");
6136     return false;
6137   }
6138   // check if computed stack depth corresponds to expected stack depth
6139   if (stack_depth < 0) {
6140     // expected stack depth is -stack_depth or less
6141     if (d > -stack_depth) {
6142       // too many elements on the stack
6143       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6144       state->print();
6145       assert(false, "error");
6146       return false;
6147     }
6148   } else {
6149     // expected stack depth is stack_depth
6150     if (d != stack_depth) {
6151       // wrong stack depth
6152       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6153       state->print();
6154       assert(false, "error");
6155       return false;
6156     }
6157   }
6158   // everything is cool
6159   return true;
6160 }
6161 
6162 
6163 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6164   if (!VerifyFPU) return;
6165   push_CPU_state();
6166   push(rsp);                // pass CPU state
6167   ExternalAddress msg((address) s);
6168   // pass message string s
6169   pushptr(msg.addr());
6170   push(stack_depth);        // pass stack depth
6171   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6172   addptr(rsp, 3 * wordSize);   // discard arguments
6173   // check for error
6174   { Label L;
6175     testl(rax, rax);
6176     jcc(Assembler::notZero, L);
6177     int3();                  // break if error condition
6178     bind(L);
6179   }
6180   pop_CPU_state();
6181 }
6182 
6183 void MacroAssembler::restore_cpu_control_state_after_jni() {
6184   // Either restore the MXCSR register after returning from the JNI Call
6185   // or verify that it wasn't changed (with -Xcheck:jni flag).
6186   if (VM_Version::supports_sse()) {
6187     if (RestoreMXCSROnJNICalls) {
6188       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6189     } else if (CheckJNICalls) {
6190       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6191     }
6192   }
6193   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6194   vzeroupper();
6195   // Reset k1 to 0xffff.
6196   if (VM_Version::supports_evex()) {
6197     push(rcx);
6198     movl(rcx, 0xffff);
6199     kmovwl(k1, rcx);
6200     pop(rcx);
6201   }
6202 
6203 #ifndef _LP64
6204   // Either restore the x87 floating pointer control word after returning
6205   // from the JNI call or verify that it wasn't changed.
6206   if (CheckJNICalls) {
6207     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6208   }
6209 #endif // _LP64
6210 }
6211 
6212 // ((OopHandle)result).resolve();
6213 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
6214   assert_different_registers(result, tmp);
6215 
6216   // Only 64 bit platforms support GCs that require a tmp register
6217   // Only IN_HEAP loads require a thread_tmp register
6218   // OopHandle::resolve is an indirection like jobject.
6219   access_load_at(T_OBJECT, IN_CONCURRENT_ROOT,
6220                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
6221 }
6222 
6223 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
6224   // get mirror
6225   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6226   movptr(mirror, Address(method, Method::const_offset()));
6227   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6228   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6229   movptr(mirror, Address(mirror, mirror_offset));
6230   resolve_oop_handle(mirror, tmp);
6231 }
6232 
6233 void MacroAssembler::load_klass(Register dst, Register src) {
6234 #ifdef _LP64
6235   if (UseCompressedClassPointers) {
6236     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6237     decode_klass_not_null(dst);
6238   } else
6239 #endif
6240     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6241 }
6242 
6243 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6244   load_klass(dst, src);
6245   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6246 }
6247 
6248 void MacroAssembler::store_klass(Register dst, Register src) {
6249 #ifdef _LP64
6250   if (UseCompressedClassPointers) {
6251     encode_klass_not_null(src);
6252     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6253   } else
6254 #endif
6255     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6256 }
6257 
6258 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
6259                                     Register tmp1, Register thread_tmp) {
6260   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6261   decorators = AccessInternal::decorator_fixup(decorators);
6262   bool as_raw = (decorators & AS_RAW) != 0;
6263   if (as_raw) {
6264     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
6265   } else {
6266     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
6267   }
6268 }
6269 
6270 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
6271                                      Register tmp1, Register tmp2) {
6272   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6273   decorators = AccessInternal::decorator_fixup(decorators);
6274   bool as_raw = (decorators & AS_RAW) != 0;
6275   if (as_raw) {
6276     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
6277   } else {
6278     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
6279   }
6280 }
6281 
6282 void MacroAssembler::resolve_for_read(DecoratorSet decorators, Register obj) {
6283   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6284   return bs->resolve_for_read(this, decorators, obj);
6285 }
6286 
6287 void MacroAssembler::resolve_for_write(DecoratorSet decorators, Register obj) {
6288   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6289   return bs->resolve_for_write(this, decorators, obj);
6290 }
6291 
6292 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
6293                                    Register thread_tmp, DecoratorSet decorators) {
6294   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
6295 }
6296 
6297 // Doesn't do verfication, generates fixed size code
6298 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
6299                                             Register thread_tmp, DecoratorSet decorators) {
6300   access_load_at(T_OBJECT, IN_HEAP | OOP_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
6301 }
6302 
6303 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
6304                                     Register tmp2, DecoratorSet decorators) {
6305   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
6306 }
6307 
6308 // Used for storing NULLs.
6309 void MacroAssembler::store_heap_oop_null(Address dst) {
6310   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
6311 }
6312 
6313 #ifdef _LP64
6314 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6315   if (UseCompressedClassPointers) {
6316     // Store to klass gap in destination
6317     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6318   }
6319 }
6320 
6321 #ifdef ASSERT
6322 void MacroAssembler::verify_heapbase(const char* msg) {
6323   assert (UseCompressedOops, "should be compressed");
6324   assert (Universe::heap() != NULL, "java heap should be initialized");
6325   if (CheckCompressedOops) {
6326     Label ok;
6327     push(rscratch1); // cmpptr trashes rscratch1
6328     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6329     jcc(Assembler::equal, ok);
6330     STOP(msg);
6331     bind(ok);
6332     pop(rscratch1);
6333   }
6334 }
6335 #endif
6336 
6337 // Algorithm must match oop.inline.hpp encode_heap_oop.
6338 void MacroAssembler::encode_heap_oop(Register r) {
6339 #ifdef ASSERT
6340   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6341 #endif
6342   verify_oop(r, "broken oop in encode_heap_oop");
6343   if (Universe::narrow_oop_base() == NULL) {
6344     if (Universe::narrow_oop_shift() != 0) {
6345       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6346       shrq(r, LogMinObjAlignmentInBytes);
6347     }
6348     return;
6349   }
6350   testq(r, r);
6351   cmovq(Assembler::equal, r, r12_heapbase);
6352   subq(r, r12_heapbase);
6353   shrq(r, LogMinObjAlignmentInBytes);
6354 }
6355 
6356 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6357 #ifdef ASSERT
6358   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6359   if (CheckCompressedOops) {
6360     Label ok;
6361     testq(r, r);
6362     jcc(Assembler::notEqual, ok);
6363     STOP("null oop passed to encode_heap_oop_not_null");
6364     bind(ok);
6365   }
6366 #endif
6367   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6368   if (Universe::narrow_oop_base() != NULL) {
6369     subq(r, r12_heapbase);
6370   }
6371   if (Universe::narrow_oop_shift() != 0) {
6372     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6373     shrq(r, LogMinObjAlignmentInBytes);
6374   }
6375 }
6376 
6377 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6378 #ifdef ASSERT
6379   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6380   if (CheckCompressedOops) {
6381     Label ok;
6382     testq(src, src);
6383     jcc(Assembler::notEqual, ok);
6384     STOP("null oop passed to encode_heap_oop_not_null2");
6385     bind(ok);
6386   }
6387 #endif
6388   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6389   if (dst != src) {
6390     movq(dst, src);
6391   }
6392   if (Universe::narrow_oop_base() != NULL) {
6393     subq(dst, r12_heapbase);
6394   }
6395   if (Universe::narrow_oop_shift() != 0) {
6396     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6397     shrq(dst, LogMinObjAlignmentInBytes);
6398   }
6399 }
6400 
6401 void  MacroAssembler::decode_heap_oop(Register r) {
6402 #ifdef ASSERT
6403   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6404 #endif
6405   if (Universe::narrow_oop_base() == NULL) {
6406     if (Universe::narrow_oop_shift() != 0) {
6407       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6408       shlq(r, LogMinObjAlignmentInBytes);
6409     }
6410   } else {
6411     Label done;
6412     shlq(r, LogMinObjAlignmentInBytes);
6413     jccb(Assembler::equal, done);
6414     addq(r, r12_heapbase);
6415     bind(done);
6416   }
6417   verify_oop(r, "broken oop in decode_heap_oop");
6418 }
6419 
6420 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6421   // Note: it will change flags
6422   assert (UseCompressedOops, "should only be used for compressed headers");
6423   assert (Universe::heap() != NULL, "java heap should be initialized");
6424   // Cannot assert, unverified entry point counts instructions (see .ad file)
6425   // vtableStubs also counts instructions in pd_code_size_limit.
6426   // Also do not verify_oop as this is called by verify_oop.
6427   if (Universe::narrow_oop_shift() != 0) {
6428     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6429     shlq(r, LogMinObjAlignmentInBytes);
6430     if (Universe::narrow_oop_base() != NULL) {
6431       addq(r, r12_heapbase);
6432     }
6433   } else {
6434     assert (Universe::narrow_oop_base() == NULL, "sanity");
6435   }
6436 }
6437 
6438 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6439   // Note: it will change flags
6440   assert (UseCompressedOops, "should only be used for compressed headers");
6441   assert (Universe::heap() != NULL, "java heap should be initialized");
6442   // Cannot assert, unverified entry point counts instructions (see .ad file)
6443   // vtableStubs also counts instructions in pd_code_size_limit.
6444   // Also do not verify_oop as this is called by verify_oop.
6445   if (Universe::narrow_oop_shift() != 0) {
6446     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6447     if (LogMinObjAlignmentInBytes == Address::times_8) {
6448       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6449     } else {
6450       if (dst != src) {
6451         movq(dst, src);
6452       }
6453       shlq(dst, LogMinObjAlignmentInBytes);
6454       if (Universe::narrow_oop_base() != NULL) {
6455         addq(dst, r12_heapbase);
6456       }
6457     }
6458   } else {
6459     assert (Universe::narrow_oop_base() == NULL, "sanity");
6460     if (dst != src) {
6461       movq(dst, src);
6462     }
6463   }
6464 }
6465 
6466 void MacroAssembler::encode_klass_not_null(Register r) {
6467   if (Universe::narrow_klass_base() != NULL) {
6468     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6469     assert(r != r12_heapbase, "Encoding a klass in r12");
6470     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6471     subq(r, r12_heapbase);
6472   }
6473   if (Universe::narrow_klass_shift() != 0) {
6474     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6475     shrq(r, LogKlassAlignmentInBytes);
6476   }
6477   if (Universe::narrow_klass_base() != NULL) {
6478     reinit_heapbase();
6479   }
6480 }
6481 
6482 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6483   if (dst == src) {
6484     encode_klass_not_null(src);
6485   } else {
6486     if (Universe::narrow_klass_base() != NULL) {
6487       mov64(dst, (int64_t)Universe::narrow_klass_base());
6488       negq(dst);
6489       addq(dst, src);
6490     } else {
6491       movptr(dst, src);
6492     }
6493     if (Universe::narrow_klass_shift() != 0) {
6494       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6495       shrq(dst, LogKlassAlignmentInBytes);
6496     }
6497   }
6498 }
6499 
6500 // Function instr_size_for_decode_klass_not_null() counts the instructions
6501 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6502 // when (Universe::heap() != NULL).  Hence, if the instructions they
6503 // generate change, then this method needs to be updated.
6504 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6505   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6506   if (Universe::narrow_klass_base() != NULL) {
6507     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6508     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6509   } else {
6510     // longest load decode klass function, mov64, leaq
6511     return 16;
6512   }
6513 }
6514 
6515 // !!! If the instructions that get generated here change then function
6516 // instr_size_for_decode_klass_not_null() needs to get updated.
6517 void  MacroAssembler::decode_klass_not_null(Register r) {
6518   // Note: it will change flags
6519   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6520   assert(r != r12_heapbase, "Decoding a klass in r12");
6521   // Cannot assert, unverified entry point counts instructions (see .ad file)
6522   // vtableStubs also counts instructions in pd_code_size_limit.
6523   // Also do not verify_oop as this is called by verify_oop.
6524   if (Universe::narrow_klass_shift() != 0) {
6525     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6526     shlq(r, LogKlassAlignmentInBytes);
6527   }
6528   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6529   if (Universe::narrow_klass_base() != NULL) {
6530     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6531     addq(r, r12_heapbase);
6532     reinit_heapbase();
6533   }
6534 }
6535 
6536 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6537   // Note: it will change flags
6538   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6539   if (dst == src) {
6540     decode_klass_not_null(dst);
6541   } else {
6542     // Cannot assert, unverified entry point counts instructions (see .ad file)
6543     // vtableStubs also counts instructions in pd_code_size_limit.
6544     // Also do not verify_oop as this is called by verify_oop.
6545     mov64(dst, (int64_t)Universe::narrow_klass_base());
6546     if (Universe::narrow_klass_shift() != 0) {
6547       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6548       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6549       leaq(dst, Address(dst, src, Address::times_8, 0));
6550     } else {
6551       addq(dst, src);
6552     }
6553   }
6554 }
6555 
6556 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6557   assert (UseCompressedOops, "should only be used for compressed headers");
6558   assert (Universe::heap() != NULL, "java heap should be initialized");
6559   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6560   int oop_index = oop_recorder()->find_index(obj);
6561   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6562   mov_narrow_oop(dst, oop_index, rspec);
6563 }
6564 
6565 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6566   assert (UseCompressedOops, "should only be used for compressed headers");
6567   assert (Universe::heap() != NULL, "java heap should be initialized");
6568   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6569   int oop_index = oop_recorder()->find_index(obj);
6570   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6571   mov_narrow_oop(dst, oop_index, rspec);
6572 }
6573 
6574 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6575   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6576   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6577   int klass_index = oop_recorder()->find_index(k);
6578   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6579   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6580 }
6581 
6582 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6583   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6584   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6585   int klass_index = oop_recorder()->find_index(k);
6586   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6587   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6588 }
6589 
6590 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6591   assert (UseCompressedOops, "should only be used for compressed headers");
6592   assert (Universe::heap() != NULL, "java heap should be initialized");
6593   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6594   int oop_index = oop_recorder()->find_index(obj);
6595   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6596   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6597 }
6598 
6599 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6600   assert (UseCompressedOops, "should only be used for compressed headers");
6601   assert (Universe::heap() != NULL, "java heap should be initialized");
6602   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6603   int oop_index = oop_recorder()->find_index(obj);
6604   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6605   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6606 }
6607 
6608 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6609   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6610   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6611   int klass_index = oop_recorder()->find_index(k);
6612   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6613   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6614 }
6615 
6616 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6617   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6618   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6619   int klass_index = oop_recorder()->find_index(k);
6620   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6621   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6622 }
6623 
6624 void MacroAssembler::reinit_heapbase() {
6625   if (UseCompressedOops || UseCompressedClassPointers) {
6626     if (Universe::heap() != NULL) {
6627       if (Universe::narrow_oop_base() == NULL) {
6628         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6629       } else {
6630         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6631       }
6632     } else {
6633       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6634     }
6635   }
6636 }
6637 
6638 #endif // _LP64
6639 
6640 // C2 compiled method's prolog code.
6641 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6642 
6643   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6644   // NativeJump::patch_verified_entry will be able to patch out the entry
6645   // code safely. The push to verify stack depth is ok at 5 bytes,
6646   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6647   // stack bang then we must use the 6 byte frame allocation even if
6648   // we have no frame. :-(
6649   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6650 
6651   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6652   // Remove word for return addr
6653   framesize -= wordSize;
6654   stack_bang_size -= wordSize;
6655 
6656   // Calls to C2R adapters often do not accept exceptional returns.
6657   // We require that their callers must bang for them.  But be careful, because
6658   // some VM calls (such as call site linkage) can use several kilobytes of
6659   // stack.  But the stack safety zone should account for that.
6660   // See bugs 4446381, 4468289, 4497237.
6661   if (stack_bang_size > 0) {
6662     generate_stack_overflow_check(stack_bang_size);
6663 
6664     // We always push rbp, so that on return to interpreter rbp, will be
6665     // restored correctly and we can correct the stack.
6666     push(rbp);
6667     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6668     if (PreserveFramePointer) {
6669       mov(rbp, rsp);
6670     }
6671     // Remove word for ebp
6672     framesize -= wordSize;
6673 
6674     // Create frame
6675     if (framesize) {
6676       subptr(rsp, framesize);
6677     }
6678   } else {
6679     // Create frame (force generation of a 4 byte immediate value)
6680     subptr_imm32(rsp, framesize);
6681 
6682     // Save RBP register now.
6683     framesize -= wordSize;
6684     movptr(Address(rsp, framesize), rbp);
6685     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6686     if (PreserveFramePointer) {
6687       movptr(rbp, rsp);
6688       if (framesize > 0) {
6689         addptr(rbp, framesize);
6690       }
6691     }
6692   }
6693 
6694   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6695     framesize -= wordSize;
6696     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6697   }
6698 
6699 #ifndef _LP64
6700   // If method sets FPU control word do it now
6701   if (fp_mode_24b) {
6702     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6703   }
6704   if (UseSSE >= 2 && VerifyFPU) {
6705     verify_FPU(0, "FPU stack must be clean on entry");
6706   }
6707 #endif
6708 
6709 #ifdef ASSERT
6710   if (VerifyStackAtCalls) {
6711     Label L;
6712     push(rax);
6713     mov(rax, rsp);
6714     andptr(rax, StackAlignmentInBytes-1);
6715     cmpptr(rax, StackAlignmentInBytes-wordSize);
6716     pop(rax);
6717     jcc(Assembler::equal, L);
6718     STOP("Stack is not properly aligned!");
6719     bind(L);
6720   }
6721 #endif
6722 
6723 }
6724 
6725 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
6726 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
6727   // cnt - number of qwords (8-byte words).
6728   // base - start address, qword aligned.
6729   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
6730   if (UseAVX >= 2) {
6731     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
6732   } else {
6733     pxor(xtmp, xtmp);
6734   }
6735   jmp(L_zero_64_bytes);
6736 
6737   BIND(L_loop);
6738   if (UseAVX >= 2) {
6739     vmovdqu(Address(base,  0), xtmp);
6740     vmovdqu(Address(base, 32), xtmp);
6741   } else {
6742     movdqu(Address(base,  0), xtmp);
6743     movdqu(Address(base, 16), xtmp);
6744     movdqu(Address(base, 32), xtmp);
6745     movdqu(Address(base, 48), xtmp);
6746   }
6747   addptr(base, 64);
6748 
6749   BIND(L_zero_64_bytes);
6750   subptr(cnt, 8);
6751   jccb(Assembler::greaterEqual, L_loop);
6752   addptr(cnt, 4);
6753   jccb(Assembler::less, L_tail);
6754   // Copy trailing 32 bytes
6755   if (UseAVX >= 2) {
6756     vmovdqu(Address(base, 0), xtmp);
6757   } else {
6758     movdqu(Address(base,  0), xtmp);
6759     movdqu(Address(base, 16), xtmp);
6760   }
6761   addptr(base, 32);
6762   subptr(cnt, 4);
6763 
6764   BIND(L_tail);
6765   addptr(cnt, 4);
6766   jccb(Assembler::lessEqual, L_end);
6767   decrement(cnt);
6768 
6769   BIND(L_sloop);
6770   movq(Address(base, 0), xtmp);
6771   addptr(base, 8);
6772   decrement(cnt);
6773   jccb(Assembler::greaterEqual, L_sloop);
6774   BIND(L_end);
6775 }
6776 
6777 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
6778   // cnt - number of qwords (8-byte words).
6779   // base - start address, qword aligned.
6780   // is_large - if optimizers know cnt is larger than InitArrayShortSize
6781   assert(base==rdi, "base register must be edi for rep stos");
6782   assert(tmp==rax,   "tmp register must be eax for rep stos");
6783   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6784   assert(InitArrayShortSize % BytesPerLong == 0,
6785     "InitArrayShortSize should be the multiple of BytesPerLong");
6786 
6787   Label DONE;
6788 
6789   if (!is_large || !UseXMMForObjInit) {
6790     xorptr(tmp, tmp);
6791   }
6792 
6793   if (!is_large) {
6794     Label LOOP, LONG;
6795     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
6796     jccb(Assembler::greater, LONG);
6797 
6798     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
6799 
6800     decrement(cnt);
6801     jccb(Assembler::negative, DONE); // Zero length
6802 
6803     // Use individual pointer-sized stores for small counts:
6804     BIND(LOOP);
6805     movptr(Address(base, cnt, Address::times_ptr), tmp);
6806     decrement(cnt);
6807     jccb(Assembler::greaterEqual, LOOP);
6808     jmpb(DONE);
6809 
6810     BIND(LONG);
6811   }
6812 
6813   // Use longer rep-prefixed ops for non-small counts:
6814   if (UseFastStosb) {
6815     shlptr(cnt, 3); // convert to number of bytes
6816     rep_stosb();
6817   } else if (UseXMMForObjInit) {
6818     movptr(tmp, base);
6819     xmm_clear_mem(tmp, cnt, xtmp);
6820   } else {
6821     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
6822     rep_stos();
6823   }
6824 
6825   BIND(DONE);
6826 }
6827 
6828 #ifdef COMPILER2
6829 
6830 // IndexOf for constant substrings with size >= 8 chars
6831 // which don't need to be loaded through stack.
6832 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6833                                       Register cnt1, Register cnt2,
6834                                       int int_cnt2,  Register result,
6835                                       XMMRegister vec, Register tmp,
6836                                       int ae) {
6837   ShortBranchVerifier sbv(this);
6838   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6839   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6840 
6841   // This method uses the pcmpestri instruction with bound registers
6842   //   inputs:
6843   //     xmm - substring
6844   //     rax - substring length (elements count)
6845   //     mem - scanned string
6846   //     rdx - string length (elements count)
6847   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6848   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6849   //   outputs:
6850   //     rcx - matched index in string
6851   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6852   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6853   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6854   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6855   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6856 
6857   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6858         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6859         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6860 
6861   // Note, inline_string_indexOf() generates checks:
6862   // if (substr.count > string.count) return -1;
6863   // if (substr.count == 0) return 0;
6864   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
6865 
6866   // Load substring.
6867   if (ae == StrIntrinsicNode::UL) {
6868     pmovzxbw(vec, Address(str2, 0));
6869   } else {
6870     movdqu(vec, Address(str2, 0));
6871   }
6872   movl(cnt2, int_cnt2);
6873   movptr(result, str1); // string addr
6874 
6875   if (int_cnt2 > stride) {
6876     jmpb(SCAN_TO_SUBSTR);
6877 
6878     // Reload substr for rescan, this code
6879     // is executed only for large substrings (> 8 chars)
6880     bind(RELOAD_SUBSTR);
6881     if (ae == StrIntrinsicNode::UL) {
6882       pmovzxbw(vec, Address(str2, 0));
6883     } else {
6884       movdqu(vec, Address(str2, 0));
6885     }
6886     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6887 
6888     bind(RELOAD_STR);
6889     // We came here after the beginning of the substring was
6890     // matched but the rest of it was not so we need to search
6891     // again. Start from the next element after the previous match.
6892 
6893     // cnt2 is number of substring reminding elements and
6894     // cnt1 is number of string reminding elements when cmp failed.
6895     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6896     subl(cnt1, cnt2);
6897     addl(cnt1, int_cnt2);
6898     movl(cnt2, int_cnt2); // Now restore cnt2
6899 
6900     decrementl(cnt1);     // Shift to next element
6901     cmpl(cnt1, cnt2);
6902     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6903 
6904     addptr(result, (1<<scale1));
6905 
6906   } // (int_cnt2 > 8)
6907 
6908   // Scan string for start of substr in 16-byte vectors
6909   bind(SCAN_TO_SUBSTR);
6910   pcmpestri(vec, Address(result, 0), mode);
6911   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6912   subl(cnt1, stride);
6913   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6914   cmpl(cnt1, cnt2);
6915   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6916   addptr(result, 16);
6917   jmpb(SCAN_TO_SUBSTR);
6918 
6919   // Found a potential substr
6920   bind(FOUND_CANDIDATE);
6921   // Matched whole vector if first element matched (tmp(rcx) == 0).
6922   if (int_cnt2 == stride) {
6923     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6924   } else { // int_cnt2 > 8
6925     jccb(Assembler::overflow, FOUND_SUBSTR);
6926   }
6927   // After pcmpestri tmp(rcx) contains matched element index
6928   // Compute start addr of substr
6929   lea(result, Address(result, tmp, scale1));
6930 
6931   // Make sure string is still long enough
6932   subl(cnt1, tmp);
6933   cmpl(cnt1, cnt2);
6934   if (int_cnt2 == stride) {
6935     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6936   } else { // int_cnt2 > 8
6937     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6938   }
6939   // Left less then substring.
6940 
6941   bind(RET_NOT_FOUND);
6942   movl(result, -1);
6943   jmp(EXIT);
6944 
6945   if (int_cnt2 > stride) {
6946     // This code is optimized for the case when whole substring
6947     // is matched if its head is matched.
6948     bind(MATCH_SUBSTR_HEAD);
6949     pcmpestri(vec, Address(result, 0), mode);
6950     // Reload only string if does not match
6951     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
6952 
6953     Label CONT_SCAN_SUBSTR;
6954     // Compare the rest of substring (> 8 chars).
6955     bind(FOUND_SUBSTR);
6956     // First 8 chars are already matched.
6957     negptr(cnt2);
6958     addptr(cnt2, stride);
6959 
6960     bind(SCAN_SUBSTR);
6961     subl(cnt1, stride);
6962     cmpl(cnt2, -stride); // Do not read beyond substring
6963     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6964     // Back-up strings to avoid reading beyond substring:
6965     // cnt1 = cnt1 - cnt2 + 8
6966     addl(cnt1, cnt2); // cnt2 is negative
6967     addl(cnt1, stride);
6968     movl(cnt2, stride); negptr(cnt2);
6969     bind(CONT_SCAN_SUBSTR);
6970     if (int_cnt2 < (int)G) {
6971       int tail_off1 = int_cnt2<<scale1;
6972       int tail_off2 = int_cnt2<<scale2;
6973       if (ae == StrIntrinsicNode::UL) {
6974         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
6975       } else {
6976         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
6977       }
6978       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
6979     } else {
6980       // calculate index in register to avoid integer overflow (int_cnt2*2)
6981       movl(tmp, int_cnt2);
6982       addptr(tmp, cnt2);
6983       if (ae == StrIntrinsicNode::UL) {
6984         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
6985       } else {
6986         movdqu(vec, Address(str2, tmp, scale2, 0));
6987       }
6988       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
6989     }
6990     // Need to reload strings pointers if not matched whole vector
6991     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6992     addptr(cnt2, stride);
6993     jcc(Assembler::negative, SCAN_SUBSTR);
6994     // Fall through if found full substring
6995 
6996   } // (int_cnt2 > 8)
6997 
6998   bind(RET_FOUND);
6999   // Found result if we matched full small substring.
7000   // Compute substr offset
7001   subptr(result, str1);
7002   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7003     shrl(result, 1); // index
7004   }
7005   bind(EXIT);
7006 
7007 } // string_indexofC8
7008 
7009 // Small strings are loaded through stack if they cross page boundary.
7010 void MacroAssembler::string_indexof(Register str1, Register str2,
7011                                     Register cnt1, Register cnt2,
7012                                     int int_cnt2,  Register result,
7013                                     XMMRegister vec, Register tmp,
7014                                     int ae) {
7015   ShortBranchVerifier sbv(this);
7016   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7017   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7018 
7019   //
7020   // int_cnt2 is length of small (< 8 chars) constant substring
7021   // or (-1) for non constant substring in which case its length
7022   // is in cnt2 register.
7023   //
7024   // Note, inline_string_indexOf() generates checks:
7025   // if (substr.count > string.count) return -1;
7026   // if (substr.count == 0) return 0;
7027   //
7028   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7029   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7030   // This method uses the pcmpestri instruction with bound registers
7031   //   inputs:
7032   //     xmm - substring
7033   //     rax - substring length (elements count)
7034   //     mem - scanned string
7035   //     rdx - string length (elements count)
7036   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7037   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7038   //   outputs:
7039   //     rcx - matched index in string
7040   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7041   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7042   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7043   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7044 
7045   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7046         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7047         FOUND_CANDIDATE;
7048 
7049   { //========================================================
7050     // We don't know where these strings are located
7051     // and we can't read beyond them. Load them through stack.
7052     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7053 
7054     movptr(tmp, rsp); // save old SP
7055 
7056     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7057       if (int_cnt2 == (1>>scale2)) { // One byte
7058         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7059         load_unsigned_byte(result, Address(str2, 0));
7060         movdl(vec, result); // move 32 bits
7061       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7062         // Not enough header space in 32-bit VM: 12+3 = 15.
7063         movl(result, Address(str2, -1));
7064         shrl(result, 8);
7065         movdl(vec, result); // move 32 bits
7066       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7067         load_unsigned_short(result, Address(str2, 0));
7068         movdl(vec, result); // move 32 bits
7069       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7070         movdl(vec, Address(str2, 0)); // move 32 bits
7071       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7072         movq(vec, Address(str2, 0));  // move 64 bits
7073       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7074         // Array header size is 12 bytes in 32-bit VM
7075         // + 6 bytes for 3 chars == 18 bytes,
7076         // enough space to load vec and shift.
7077         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7078         if (ae == StrIntrinsicNode::UL) {
7079           int tail_off = int_cnt2-8;
7080           pmovzxbw(vec, Address(str2, tail_off));
7081           psrldq(vec, -2*tail_off);
7082         }
7083         else {
7084           int tail_off = int_cnt2*(1<<scale2);
7085           movdqu(vec, Address(str2, tail_off-16));
7086           psrldq(vec, 16-tail_off);
7087         }
7088       }
7089     } else { // not constant substring
7090       cmpl(cnt2, stride);
7091       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7092 
7093       // We can read beyond string if srt+16 does not cross page boundary
7094       // since heaps are aligned and mapped by pages.
7095       assert(os::vm_page_size() < (int)G, "default page should be small");
7096       movl(result, str2); // We need only low 32 bits
7097       andl(result, (os::vm_page_size()-1));
7098       cmpl(result, (os::vm_page_size()-16));
7099       jccb(Assembler::belowEqual, CHECK_STR);
7100 
7101       // Move small strings to stack to allow load 16 bytes into vec.
7102       subptr(rsp, 16);
7103       int stk_offset = wordSize-(1<<scale2);
7104       push(cnt2);
7105 
7106       bind(COPY_SUBSTR);
7107       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7108         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7109         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7110       } else if (ae == StrIntrinsicNode::UU) {
7111         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7112         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7113       }
7114       decrement(cnt2);
7115       jccb(Assembler::notZero, COPY_SUBSTR);
7116 
7117       pop(cnt2);
7118       movptr(str2, rsp);  // New substring address
7119     } // non constant
7120 
7121     bind(CHECK_STR);
7122     cmpl(cnt1, stride);
7123     jccb(Assembler::aboveEqual, BIG_STRINGS);
7124 
7125     // Check cross page boundary.
7126     movl(result, str1); // We need only low 32 bits
7127     andl(result, (os::vm_page_size()-1));
7128     cmpl(result, (os::vm_page_size()-16));
7129     jccb(Assembler::belowEqual, BIG_STRINGS);
7130 
7131     subptr(rsp, 16);
7132     int stk_offset = -(1<<scale1);
7133     if (int_cnt2 < 0) { // not constant
7134       push(cnt2);
7135       stk_offset += wordSize;
7136     }
7137     movl(cnt2, cnt1);
7138 
7139     bind(COPY_STR);
7140     if (ae == StrIntrinsicNode::LL) {
7141       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7142       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7143     } else {
7144       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7145       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7146     }
7147     decrement(cnt2);
7148     jccb(Assembler::notZero, COPY_STR);
7149 
7150     if (int_cnt2 < 0) { // not constant
7151       pop(cnt2);
7152     }
7153     movptr(str1, rsp);  // New string address
7154 
7155     bind(BIG_STRINGS);
7156     // Load substring.
7157     if (int_cnt2 < 0) { // -1
7158       if (ae == StrIntrinsicNode::UL) {
7159         pmovzxbw(vec, Address(str2, 0));
7160       } else {
7161         movdqu(vec, Address(str2, 0));
7162       }
7163       push(cnt2);       // substr count
7164       push(str2);       // substr addr
7165       push(str1);       // string addr
7166     } else {
7167       // Small (< 8 chars) constant substrings are loaded already.
7168       movl(cnt2, int_cnt2);
7169     }
7170     push(tmp);  // original SP
7171 
7172   } // Finished loading
7173 
7174   //========================================================
7175   // Start search
7176   //
7177 
7178   movptr(result, str1); // string addr
7179 
7180   if (int_cnt2  < 0) {  // Only for non constant substring
7181     jmpb(SCAN_TO_SUBSTR);
7182 
7183     // SP saved at sp+0
7184     // String saved at sp+1*wordSize
7185     // Substr saved at sp+2*wordSize
7186     // Substr count saved at sp+3*wordSize
7187 
7188     // Reload substr for rescan, this code
7189     // is executed only for large substrings (> 8 chars)
7190     bind(RELOAD_SUBSTR);
7191     movptr(str2, Address(rsp, 2*wordSize));
7192     movl(cnt2, Address(rsp, 3*wordSize));
7193     if (ae == StrIntrinsicNode::UL) {
7194       pmovzxbw(vec, Address(str2, 0));
7195     } else {
7196       movdqu(vec, Address(str2, 0));
7197     }
7198     // We came here after the beginning of the substring was
7199     // matched but the rest of it was not so we need to search
7200     // again. Start from the next element after the previous match.
7201     subptr(str1, result); // Restore counter
7202     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7203       shrl(str1, 1);
7204     }
7205     addl(cnt1, str1);
7206     decrementl(cnt1);   // Shift to next element
7207     cmpl(cnt1, cnt2);
7208     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7209 
7210     addptr(result, (1<<scale1));
7211   } // non constant
7212 
7213   // Scan string for start of substr in 16-byte vectors
7214   bind(SCAN_TO_SUBSTR);
7215   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7216   pcmpestri(vec, Address(result, 0), mode);
7217   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7218   subl(cnt1, stride);
7219   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7220   cmpl(cnt1, cnt2);
7221   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7222   addptr(result, 16);
7223 
7224   bind(ADJUST_STR);
7225   cmpl(cnt1, stride); // Do not read beyond string
7226   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7227   // Back-up string to avoid reading beyond string.
7228   lea(result, Address(result, cnt1, scale1, -16));
7229   movl(cnt1, stride);
7230   jmpb(SCAN_TO_SUBSTR);
7231 
7232   // Found a potential substr
7233   bind(FOUND_CANDIDATE);
7234   // After pcmpestri tmp(rcx) contains matched element index
7235 
7236   // Make sure string is still long enough
7237   subl(cnt1, tmp);
7238   cmpl(cnt1, cnt2);
7239   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7240   // Left less then substring.
7241 
7242   bind(RET_NOT_FOUND);
7243   movl(result, -1);
7244   jmpb(CLEANUP);
7245 
7246   bind(FOUND_SUBSTR);
7247   // Compute start addr of substr
7248   lea(result, Address(result, tmp, scale1));
7249   if (int_cnt2 > 0) { // Constant substring
7250     // Repeat search for small substring (< 8 chars)
7251     // from new point without reloading substring.
7252     // Have to check that we don't read beyond string.
7253     cmpl(tmp, stride-int_cnt2);
7254     jccb(Assembler::greater, ADJUST_STR);
7255     // Fall through if matched whole substring.
7256   } else { // non constant
7257     assert(int_cnt2 == -1, "should be != 0");
7258 
7259     addl(tmp, cnt2);
7260     // Found result if we matched whole substring.
7261     cmpl(tmp, stride);
7262     jccb(Assembler::lessEqual, RET_FOUND);
7263 
7264     // Repeat search for small substring (<= 8 chars)
7265     // from new point 'str1' without reloading substring.
7266     cmpl(cnt2, stride);
7267     // Have to check that we don't read beyond string.
7268     jccb(Assembler::lessEqual, ADJUST_STR);
7269 
7270     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7271     // Compare the rest of substring (> 8 chars).
7272     movptr(str1, result);
7273 
7274     cmpl(tmp, cnt2);
7275     // First 8 chars are already matched.
7276     jccb(Assembler::equal, CHECK_NEXT);
7277 
7278     bind(SCAN_SUBSTR);
7279     pcmpestri(vec, Address(str1, 0), mode);
7280     // Need to reload strings pointers if not matched whole vector
7281     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7282 
7283     bind(CHECK_NEXT);
7284     subl(cnt2, stride);
7285     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7286     addptr(str1, 16);
7287     if (ae == StrIntrinsicNode::UL) {
7288       addptr(str2, 8);
7289     } else {
7290       addptr(str2, 16);
7291     }
7292     subl(cnt1, stride);
7293     cmpl(cnt2, stride); // Do not read beyond substring
7294     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7295     // Back-up strings to avoid reading beyond substring.
7296 
7297     if (ae == StrIntrinsicNode::UL) {
7298       lea(str2, Address(str2, cnt2, scale2, -8));
7299       lea(str1, Address(str1, cnt2, scale1, -16));
7300     } else {
7301       lea(str2, Address(str2, cnt2, scale2, -16));
7302       lea(str1, Address(str1, cnt2, scale1, -16));
7303     }
7304     subl(cnt1, cnt2);
7305     movl(cnt2, stride);
7306     addl(cnt1, stride);
7307     bind(CONT_SCAN_SUBSTR);
7308     if (ae == StrIntrinsicNode::UL) {
7309       pmovzxbw(vec, Address(str2, 0));
7310     } else {
7311       movdqu(vec, Address(str2, 0));
7312     }
7313     jmp(SCAN_SUBSTR);
7314 
7315     bind(RET_FOUND_LONG);
7316     movptr(str1, Address(rsp, wordSize));
7317   } // non constant
7318 
7319   bind(RET_FOUND);
7320   // Compute substr offset
7321   subptr(result, str1);
7322   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7323     shrl(result, 1); // index
7324   }
7325   bind(CLEANUP);
7326   pop(rsp); // restore SP
7327 
7328 } // string_indexof
7329 
7330 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7331                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7332   ShortBranchVerifier sbv(this);
7333   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7334 
7335   int stride = 8;
7336 
7337   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7338         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7339         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7340         FOUND_SEQ_CHAR, DONE_LABEL;
7341 
7342   movptr(result, str1);
7343   if (UseAVX >= 2) {
7344     cmpl(cnt1, stride);
7345     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7346     cmpl(cnt1, 2*stride);
7347     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7348     movdl(vec1, ch);
7349     vpbroadcastw(vec1, vec1);
7350     vpxor(vec2, vec2);
7351     movl(tmp, cnt1);
7352     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7353     andl(cnt1,0x0000000F);  //tail count (in chars)
7354 
7355     bind(SCAN_TO_16_CHAR_LOOP);
7356     vmovdqu(vec3, Address(result, 0));
7357     vpcmpeqw(vec3, vec3, vec1, 1);
7358     vptest(vec2, vec3);
7359     jcc(Assembler::carryClear, FOUND_CHAR);
7360     addptr(result, 32);
7361     subl(tmp, 2*stride);
7362     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7363     jmp(SCAN_TO_8_CHAR);
7364     bind(SCAN_TO_8_CHAR_INIT);
7365     movdl(vec1, ch);
7366     pshuflw(vec1, vec1, 0x00);
7367     pshufd(vec1, vec1, 0);
7368     pxor(vec2, vec2);
7369   }
7370   bind(SCAN_TO_8_CHAR);
7371   cmpl(cnt1, stride);
7372   if (UseAVX >= 2) {
7373     jcc(Assembler::less, SCAN_TO_CHAR);
7374   } else {
7375     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7376     movdl(vec1, ch);
7377     pshuflw(vec1, vec1, 0x00);
7378     pshufd(vec1, vec1, 0);
7379     pxor(vec2, vec2);
7380   }
7381   movl(tmp, cnt1);
7382   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7383   andl(cnt1,0x00000007);  //tail count (in chars)
7384 
7385   bind(SCAN_TO_8_CHAR_LOOP);
7386   movdqu(vec3, Address(result, 0));
7387   pcmpeqw(vec3, vec1);
7388   ptest(vec2, vec3);
7389   jcc(Assembler::carryClear, FOUND_CHAR);
7390   addptr(result, 16);
7391   subl(tmp, stride);
7392   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7393   bind(SCAN_TO_CHAR);
7394   testl(cnt1, cnt1);
7395   jcc(Assembler::zero, RET_NOT_FOUND);
7396   bind(SCAN_TO_CHAR_LOOP);
7397   load_unsigned_short(tmp, Address(result, 0));
7398   cmpl(ch, tmp);
7399   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7400   addptr(result, 2);
7401   subl(cnt1, 1);
7402   jccb(Assembler::zero, RET_NOT_FOUND);
7403   jmp(SCAN_TO_CHAR_LOOP);
7404 
7405   bind(RET_NOT_FOUND);
7406   movl(result, -1);
7407   jmpb(DONE_LABEL);
7408 
7409   bind(FOUND_CHAR);
7410   if (UseAVX >= 2) {
7411     vpmovmskb(tmp, vec3);
7412   } else {
7413     pmovmskb(tmp, vec3);
7414   }
7415   bsfl(ch, tmp);
7416   addl(result, ch);
7417 
7418   bind(FOUND_SEQ_CHAR);
7419   subptr(result, str1);
7420   shrl(result, 1);
7421 
7422   bind(DONE_LABEL);
7423 } // string_indexof_char
7424 
7425 // helper function for string_compare
7426 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7427                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7428                                         Address::ScaleFactor scale2, Register index, int ae) {
7429   if (ae == StrIntrinsicNode::LL) {
7430     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7431     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7432   } else if (ae == StrIntrinsicNode::UU) {
7433     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7434     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7435   } else {
7436     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7437     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7438   }
7439 }
7440 
7441 // Compare strings, used for char[] and byte[].
7442 void MacroAssembler::string_compare(Register str1, Register str2,
7443                                     Register cnt1, Register cnt2, Register result,
7444                                     XMMRegister vec1, int ae) {
7445   ShortBranchVerifier sbv(this);
7446   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7447   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7448   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7449   int stride2x2 = 0x40;
7450   Address::ScaleFactor scale = Address::no_scale;
7451   Address::ScaleFactor scale1 = Address::no_scale;
7452   Address::ScaleFactor scale2 = Address::no_scale;
7453 
7454   if (ae != StrIntrinsicNode::LL) {
7455     stride2x2 = 0x20;
7456   }
7457 
7458   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7459     shrl(cnt2, 1);
7460   }
7461   // Compute the minimum of the string lengths and the
7462   // difference of the string lengths (stack).
7463   // Do the conditional move stuff
7464   movl(result, cnt1);
7465   subl(cnt1, cnt2);
7466   push(cnt1);
7467   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7468 
7469   // Is the minimum length zero?
7470   testl(cnt2, cnt2);
7471   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7472   if (ae == StrIntrinsicNode::LL) {
7473     // Load first bytes
7474     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7475     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7476   } else if (ae == StrIntrinsicNode::UU) {
7477     // Load first characters
7478     load_unsigned_short(result, Address(str1, 0));
7479     load_unsigned_short(cnt1, Address(str2, 0));
7480   } else {
7481     load_unsigned_byte(result, Address(str1, 0));
7482     load_unsigned_short(cnt1, Address(str2, 0));
7483   }
7484   subl(result, cnt1);
7485   jcc(Assembler::notZero,  POP_LABEL);
7486 
7487   if (ae == StrIntrinsicNode::UU) {
7488     // Divide length by 2 to get number of chars
7489     shrl(cnt2, 1);
7490   }
7491   cmpl(cnt2, 1);
7492   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7493 
7494   // Check if the strings start at the same location and setup scale and stride
7495   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7496     cmpptr(str1, str2);
7497     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7498     if (ae == StrIntrinsicNode::LL) {
7499       scale = Address::times_1;
7500       stride = 16;
7501     } else {
7502       scale = Address::times_2;
7503       stride = 8;
7504     }
7505   } else {
7506     scale1 = Address::times_1;
7507     scale2 = Address::times_2;
7508     // scale not used
7509     stride = 8;
7510   }
7511 
7512   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7513     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7514     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7515     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7516     Label COMPARE_TAIL_LONG;
7517     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7518 
7519     int pcmpmask = 0x19;
7520     if (ae == StrIntrinsicNode::LL) {
7521       pcmpmask &= ~0x01;
7522     }
7523 
7524     // Setup to compare 16-chars (32-bytes) vectors,
7525     // start from first character again because it has aligned address.
7526     if (ae == StrIntrinsicNode::LL) {
7527       stride2 = 32;
7528     } else {
7529       stride2 = 16;
7530     }
7531     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7532       adr_stride = stride << scale;
7533     } else {
7534       adr_stride1 = 8;  //stride << scale1;
7535       adr_stride2 = 16; //stride << scale2;
7536     }
7537 
7538     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7539     // rax and rdx are used by pcmpestri as elements counters
7540     movl(result, cnt2);
7541     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7542     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7543 
7544     // fast path : compare first 2 8-char vectors.
7545     bind(COMPARE_16_CHARS);
7546     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7547       movdqu(vec1, Address(str1, 0));
7548     } else {
7549       pmovzxbw(vec1, Address(str1, 0));
7550     }
7551     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7552     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7553 
7554     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7555       movdqu(vec1, Address(str1, adr_stride));
7556       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7557     } else {
7558       pmovzxbw(vec1, Address(str1, adr_stride1));
7559       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7560     }
7561     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7562     addl(cnt1, stride);
7563 
7564     // Compare the characters at index in cnt1
7565     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7566     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7567     subl(result, cnt2);
7568     jmp(POP_LABEL);
7569 
7570     // Setup the registers to start vector comparison loop
7571     bind(COMPARE_WIDE_VECTORS);
7572     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7573       lea(str1, Address(str1, result, scale));
7574       lea(str2, Address(str2, result, scale));
7575     } else {
7576       lea(str1, Address(str1, result, scale1));
7577       lea(str2, Address(str2, result, scale2));
7578     }
7579     subl(result, stride2);
7580     subl(cnt2, stride2);
7581     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7582     negptr(result);
7583 
7584     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7585     bind(COMPARE_WIDE_VECTORS_LOOP);
7586 
7587 #ifdef _LP64
7588     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7589       cmpl(cnt2, stride2x2);
7590       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7591       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7592       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7593 
7594       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7595       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7596         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7597         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7598       } else {
7599         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7600         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7601       }
7602       kortestql(k7, k7);
7603       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7604       addptr(result, stride2x2);  // update since we already compared at this addr
7605       subl(cnt2, stride2x2);      // and sub the size too
7606       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7607 
7608       vpxor(vec1, vec1);
7609       jmpb(COMPARE_WIDE_TAIL);
7610     }//if (VM_Version::supports_avx512vlbw())
7611 #endif // _LP64
7612 
7613 
7614     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7615     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7616       vmovdqu(vec1, Address(str1, result, scale));
7617       vpxor(vec1, Address(str2, result, scale));
7618     } else {
7619       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7620       vpxor(vec1, Address(str2, result, scale2));
7621     }
7622     vptest(vec1, vec1);
7623     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7624     addptr(result, stride2);
7625     subl(cnt2, stride2);
7626     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7627     // clean upper bits of YMM registers
7628     vpxor(vec1, vec1);
7629 
7630     // compare wide vectors tail
7631     bind(COMPARE_WIDE_TAIL);
7632     testptr(result, result);
7633     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7634 
7635     movl(result, stride2);
7636     movl(cnt2, result);
7637     negptr(result);
7638     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7639 
7640     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7641     bind(VECTOR_NOT_EQUAL);
7642     // clean upper bits of YMM registers
7643     vpxor(vec1, vec1);
7644     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7645       lea(str1, Address(str1, result, scale));
7646       lea(str2, Address(str2, result, scale));
7647     } else {
7648       lea(str1, Address(str1, result, scale1));
7649       lea(str2, Address(str2, result, scale2));
7650     }
7651     jmp(COMPARE_16_CHARS);
7652 
7653     // Compare tail chars, length between 1 to 15 chars
7654     bind(COMPARE_TAIL_LONG);
7655     movl(cnt2, result);
7656     cmpl(cnt2, stride);
7657     jcc(Assembler::less, COMPARE_SMALL_STR);
7658 
7659     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7660       movdqu(vec1, Address(str1, 0));
7661     } else {
7662       pmovzxbw(vec1, Address(str1, 0));
7663     }
7664     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7665     jcc(Assembler::below, COMPARE_INDEX_CHAR);
7666     subptr(cnt2, stride);
7667     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7668     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7669       lea(str1, Address(str1, result, scale));
7670       lea(str2, Address(str2, result, scale));
7671     } else {
7672       lea(str1, Address(str1, result, scale1));
7673       lea(str2, Address(str2, result, scale2));
7674     }
7675     negptr(cnt2);
7676     jmpb(WHILE_HEAD_LABEL);
7677 
7678     bind(COMPARE_SMALL_STR);
7679   } else if (UseSSE42Intrinsics) {
7680     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
7681     int pcmpmask = 0x19;
7682     // Setup to compare 8-char (16-byte) vectors,
7683     // start from first character again because it has aligned address.
7684     movl(result, cnt2);
7685     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
7686     if (ae == StrIntrinsicNode::LL) {
7687       pcmpmask &= ~0x01;
7688     }
7689     jcc(Assembler::zero, COMPARE_TAIL);
7690     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7691       lea(str1, Address(str1, result, scale));
7692       lea(str2, Address(str2, result, scale));
7693     } else {
7694       lea(str1, Address(str1, result, scale1));
7695       lea(str2, Address(str2, result, scale2));
7696     }
7697     negptr(result);
7698 
7699     // pcmpestri
7700     //   inputs:
7701     //     vec1- substring
7702     //     rax - negative string length (elements count)
7703     //     mem - scanned string
7704     //     rdx - string length (elements count)
7705     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
7706     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
7707     //   outputs:
7708     //     rcx - first mismatched element index
7709     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7710 
7711     bind(COMPARE_WIDE_VECTORS);
7712     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7713       movdqu(vec1, Address(str1, result, scale));
7714       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7715     } else {
7716       pmovzxbw(vec1, Address(str1, result, scale1));
7717       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7718     }
7719     // After pcmpestri cnt1(rcx) contains mismatched element index
7720 
7721     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
7722     addptr(result, stride);
7723     subptr(cnt2, stride);
7724     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
7725 
7726     // compare wide vectors tail
7727     testptr(result, result);
7728     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7729 
7730     movl(cnt2, stride);
7731     movl(result, stride);
7732     negptr(result);
7733     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7734       movdqu(vec1, Address(str1, result, scale));
7735       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7736     } else {
7737       pmovzxbw(vec1, Address(str1, result, scale1));
7738       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7739     }
7740     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
7741 
7742     // Mismatched characters in the vectors
7743     bind(VECTOR_NOT_EQUAL);
7744     addptr(cnt1, result);
7745     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7746     subl(result, cnt2);
7747     jmpb(POP_LABEL);
7748 
7749     bind(COMPARE_TAIL); // limit is zero
7750     movl(cnt2, result);
7751     // Fallthru to tail compare
7752   }
7753   // Shift str2 and str1 to the end of the arrays, negate min
7754   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7755     lea(str1, Address(str1, cnt2, scale));
7756     lea(str2, Address(str2, cnt2, scale));
7757   } else {
7758     lea(str1, Address(str1, cnt2, scale1));
7759     lea(str2, Address(str2, cnt2, scale2));
7760   }
7761   decrementl(cnt2);  // first character was compared already
7762   negptr(cnt2);
7763 
7764   // Compare the rest of the elements
7765   bind(WHILE_HEAD_LABEL);
7766   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
7767   subl(result, cnt1);
7768   jccb(Assembler::notZero, POP_LABEL);
7769   increment(cnt2);
7770   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
7771 
7772   // Strings are equal up to min length.  Return the length difference.
7773   bind(LENGTH_DIFF_LABEL);
7774   pop(result);
7775   if (ae == StrIntrinsicNode::UU) {
7776     // Divide diff by 2 to get number of chars
7777     sarl(result, 1);
7778   }
7779   jmpb(DONE_LABEL);
7780 
7781 #ifdef _LP64
7782   if (VM_Version::supports_avx512vlbw()) {
7783 
7784     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
7785 
7786     kmovql(cnt1, k7);
7787     notq(cnt1);
7788     bsfq(cnt2, cnt1);
7789     if (ae != StrIntrinsicNode::LL) {
7790       // Divide diff by 2 to get number of chars
7791       sarl(cnt2, 1);
7792     }
7793     addq(result, cnt2);
7794     if (ae == StrIntrinsicNode::LL) {
7795       load_unsigned_byte(cnt1, Address(str2, result));
7796       load_unsigned_byte(result, Address(str1, result));
7797     } else if (ae == StrIntrinsicNode::UU) {
7798       load_unsigned_short(cnt1, Address(str2, result, scale));
7799       load_unsigned_short(result, Address(str1, result, scale));
7800     } else {
7801       load_unsigned_short(cnt1, Address(str2, result, scale2));
7802       load_unsigned_byte(result, Address(str1, result, scale1));
7803     }
7804     subl(result, cnt1);
7805     jmpb(POP_LABEL);
7806   }//if (VM_Version::supports_avx512vlbw())
7807 #endif // _LP64
7808 
7809   // Discard the stored length difference
7810   bind(POP_LABEL);
7811   pop(cnt1);
7812 
7813   // That's it
7814   bind(DONE_LABEL);
7815   if(ae == StrIntrinsicNode::UL) {
7816     negl(result);
7817   }
7818 
7819 }
7820 
7821 // Search for Non-ASCII character (Negative byte value) in a byte array,
7822 // return true if it has any and false otherwise.
7823 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
7824 //   @HotSpotIntrinsicCandidate
7825 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
7826 //     for (int i = off; i < off + len; i++) {
7827 //       if (ba[i] < 0) {
7828 //         return true;
7829 //       }
7830 //     }
7831 //     return false;
7832 //   }
7833 void MacroAssembler::has_negatives(Register ary1, Register len,
7834   Register result, Register tmp1,
7835   XMMRegister vec1, XMMRegister vec2) {
7836   // rsi: byte array
7837   // rcx: len
7838   // rax: result
7839   ShortBranchVerifier sbv(this);
7840   assert_different_registers(ary1, len, result, tmp1);
7841   assert_different_registers(vec1, vec2);
7842   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
7843 
7844   // len == 0
7845   testl(len, len);
7846   jcc(Assembler::zero, FALSE_LABEL);
7847 
7848   if ((UseAVX > 2) && // AVX512
7849     VM_Version::supports_avx512vlbw() &&
7850     VM_Version::supports_bmi2()) {
7851 
7852     set_vector_masking();  // opening of the stub context for programming mask registers
7853 
7854     Label test_64_loop, test_tail;
7855     Register tmp3_aliased = len;
7856 
7857     movl(tmp1, len);
7858     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
7859 
7860     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
7861     andl(len, ~(64 - 1));    // vector count (in chars)
7862     jccb(Assembler::zero, test_tail);
7863 
7864     lea(ary1, Address(ary1, len, Address::times_1));
7865     negptr(len);
7866 
7867     bind(test_64_loop);
7868     // Check whether our 64 elements of size byte contain negatives
7869     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
7870     kortestql(k2, k2);
7871     jcc(Assembler::notZero, TRUE_LABEL);
7872 
7873     addptr(len, 64);
7874     jccb(Assembler::notZero, test_64_loop);
7875 
7876 
7877     bind(test_tail);
7878     // bail out when there is nothing to be done
7879     testl(tmp1, -1);
7880     jcc(Assembler::zero, FALSE_LABEL);
7881 
7882     // Save k1
7883     kmovql(k3, k1);
7884 
7885     // ~(~0 << len) applied up to two times (for 32-bit scenario)
7886 #ifdef _LP64
7887     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
7888     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
7889     notq(tmp3_aliased);
7890     kmovql(k1, tmp3_aliased);
7891 #else
7892     Label k_init;
7893     jmp(k_init);
7894 
7895     // We could not read 64-bits from a general purpose register thus we move
7896     // data required to compose 64 1's to the instruction stream
7897     // We emit 64 byte wide series of elements from 0..63 which later on would
7898     // be used as a compare targets with tail count contained in tmp1 register.
7899     // Result would be a k1 register having tmp1 consecutive number or 1
7900     // counting from least significant bit.
7901     address tmp = pc();
7902     emit_int64(0x0706050403020100);
7903     emit_int64(0x0F0E0D0C0B0A0908);
7904     emit_int64(0x1716151413121110);
7905     emit_int64(0x1F1E1D1C1B1A1918);
7906     emit_int64(0x2726252423222120);
7907     emit_int64(0x2F2E2D2C2B2A2928);
7908     emit_int64(0x3736353433323130);
7909     emit_int64(0x3F3E3D3C3B3A3938);
7910 
7911     bind(k_init);
7912     lea(len, InternalAddress(tmp));
7913     // create mask to test for negative byte inside a vector
7914     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
7915     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
7916 
7917 #endif
7918     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
7919     ktestq(k2, k1);
7920     // Restore k1
7921     kmovql(k1, k3);
7922     jcc(Assembler::notZero, TRUE_LABEL);
7923 
7924     jmp(FALSE_LABEL);
7925 
7926     clear_vector_masking();   // closing of the stub context for programming mask registers
7927   } else {
7928     movl(result, len); // copy
7929 
7930     if (UseAVX == 2 && UseSSE >= 2) {
7931       // With AVX2, use 32-byte vector compare
7932       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7933 
7934       // Compare 32-byte vectors
7935       andl(result, 0x0000001f);  //   tail count (in bytes)
7936       andl(len, 0xffffffe0);   // vector count (in bytes)
7937       jccb(Assembler::zero, COMPARE_TAIL);
7938 
7939       lea(ary1, Address(ary1, len, Address::times_1));
7940       negptr(len);
7941 
7942       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
7943       movdl(vec2, tmp1);
7944       vpbroadcastd(vec2, vec2);
7945 
7946       bind(COMPARE_WIDE_VECTORS);
7947       vmovdqu(vec1, Address(ary1, len, Address::times_1));
7948       vptest(vec1, vec2);
7949       jccb(Assembler::notZero, TRUE_LABEL);
7950       addptr(len, 32);
7951       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7952 
7953       testl(result, result);
7954       jccb(Assembler::zero, FALSE_LABEL);
7955 
7956       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7957       vptest(vec1, vec2);
7958       jccb(Assembler::notZero, TRUE_LABEL);
7959       jmpb(FALSE_LABEL);
7960 
7961       bind(COMPARE_TAIL); // len is zero
7962       movl(len, result);
7963       // Fallthru to tail compare
7964     } else if (UseSSE42Intrinsics) {
7965       // With SSE4.2, use double quad vector compare
7966       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7967 
7968       // Compare 16-byte vectors
7969       andl(result, 0x0000000f);  //   tail count (in bytes)
7970       andl(len, 0xfffffff0);   // vector count (in bytes)
7971       jccb(Assembler::zero, COMPARE_TAIL);
7972 
7973       lea(ary1, Address(ary1, len, Address::times_1));
7974       negptr(len);
7975 
7976       movl(tmp1, 0x80808080);
7977       movdl(vec2, tmp1);
7978       pshufd(vec2, vec2, 0);
7979 
7980       bind(COMPARE_WIDE_VECTORS);
7981       movdqu(vec1, Address(ary1, len, Address::times_1));
7982       ptest(vec1, vec2);
7983       jccb(Assembler::notZero, TRUE_LABEL);
7984       addptr(len, 16);
7985       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7986 
7987       testl(result, result);
7988       jccb(Assembler::zero, FALSE_LABEL);
7989 
7990       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7991       ptest(vec1, vec2);
7992       jccb(Assembler::notZero, TRUE_LABEL);
7993       jmpb(FALSE_LABEL);
7994 
7995       bind(COMPARE_TAIL); // len is zero
7996       movl(len, result);
7997       // Fallthru to tail compare
7998     }
7999   }
8000   // Compare 4-byte vectors
8001   andl(len, 0xfffffffc); // vector count (in bytes)
8002   jccb(Assembler::zero, COMPARE_CHAR);
8003 
8004   lea(ary1, Address(ary1, len, Address::times_1));
8005   negptr(len);
8006 
8007   bind(COMPARE_VECTORS);
8008   movl(tmp1, Address(ary1, len, Address::times_1));
8009   andl(tmp1, 0x80808080);
8010   jccb(Assembler::notZero, TRUE_LABEL);
8011   addptr(len, 4);
8012   jcc(Assembler::notZero, COMPARE_VECTORS);
8013 
8014   // Compare trailing char (final 2 bytes), if any
8015   bind(COMPARE_CHAR);
8016   testl(result, 0x2);   // tail  char
8017   jccb(Assembler::zero, COMPARE_BYTE);
8018   load_unsigned_short(tmp1, Address(ary1, 0));
8019   andl(tmp1, 0x00008080);
8020   jccb(Assembler::notZero, TRUE_LABEL);
8021   subptr(result, 2);
8022   lea(ary1, Address(ary1, 2));
8023 
8024   bind(COMPARE_BYTE);
8025   testl(result, 0x1);   // tail  byte
8026   jccb(Assembler::zero, FALSE_LABEL);
8027   load_unsigned_byte(tmp1, Address(ary1, 0));
8028   andl(tmp1, 0x00000080);
8029   jccb(Assembler::notEqual, TRUE_LABEL);
8030   jmpb(FALSE_LABEL);
8031 
8032   bind(TRUE_LABEL);
8033   movl(result, 1);   // return true
8034   jmpb(DONE);
8035 
8036   bind(FALSE_LABEL);
8037   xorl(result, result); // return false
8038 
8039   // That's it
8040   bind(DONE);
8041   if (UseAVX >= 2 && UseSSE >= 2) {
8042     // clean upper bits of YMM registers
8043     vpxor(vec1, vec1);
8044     vpxor(vec2, vec2);
8045   }
8046 }
8047 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8048 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8049                                    Register limit, Register result, Register chr,
8050                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8051   ShortBranchVerifier sbv(this);
8052   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8053 
8054   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8055   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8056 
8057   if (is_array_equ) {
8058     // Check the input args
8059     cmpoop(ary1, ary2);
8060     jcc(Assembler::equal, TRUE_LABEL);
8061 
8062     // Need additional checks for arrays_equals.
8063     testptr(ary1, ary1);
8064     jcc(Assembler::zero, FALSE_LABEL);
8065     testptr(ary2, ary2);
8066     jcc(Assembler::zero, FALSE_LABEL);
8067 
8068     // Check the lengths
8069     movl(limit, Address(ary1, length_offset));
8070     cmpl(limit, Address(ary2, length_offset));
8071     jcc(Assembler::notEqual, FALSE_LABEL);
8072   }
8073 
8074   // count == 0
8075   testl(limit, limit);
8076   jcc(Assembler::zero, TRUE_LABEL);
8077 
8078   if (is_array_equ) {
8079     // Load array address
8080     lea(ary1, Address(ary1, base_offset));
8081     lea(ary2, Address(ary2, base_offset));
8082   }
8083 
8084   if (is_array_equ && is_char) {
8085     // arrays_equals when used for char[].
8086     shll(limit, 1);      // byte count != 0
8087   }
8088   movl(result, limit); // copy
8089 
8090   if (UseAVX >= 2) {
8091     // With AVX2, use 32-byte vector compare
8092     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8093 
8094     // Compare 32-byte vectors
8095     andl(result, 0x0000001f);  //   tail count (in bytes)
8096     andl(limit, 0xffffffe0);   // vector count (in bytes)
8097     jcc(Assembler::zero, COMPARE_TAIL);
8098 
8099     lea(ary1, Address(ary1, limit, Address::times_1));
8100     lea(ary2, Address(ary2, limit, Address::times_1));
8101     negptr(limit);
8102 
8103     bind(COMPARE_WIDE_VECTORS);
8104 
8105 #ifdef _LP64
8106     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8107       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8108 
8109       cmpl(limit, -64);
8110       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8111 
8112       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8113 
8114       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8115       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8116       kortestql(k7, k7);
8117       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8118       addptr(limit, 64);  // update since we already compared at this addr
8119       cmpl(limit, -64);
8120       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8121 
8122       // At this point we may still need to compare -limit+result bytes.
8123       // We could execute the next two instruction and just continue via non-wide path:
8124       //  cmpl(limit, 0);
8125       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8126       // But since we stopped at the points ary{1,2}+limit which are
8127       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8128       // (|limit| <= 32 and result < 32),
8129       // we may just compare the last 64 bytes.
8130       //
8131       addptr(result, -64);   // it is safe, bc we just came from this area
8132       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8133       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8134       kortestql(k7, k7);
8135       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8136 
8137       jmp(TRUE_LABEL);
8138 
8139       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8140 
8141     }//if (VM_Version::supports_avx512vlbw())
8142 #endif //_LP64
8143 
8144     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8145     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8146     vpxor(vec1, vec2);
8147 
8148     vptest(vec1, vec1);
8149     jcc(Assembler::notZero, FALSE_LABEL);
8150     addptr(limit, 32);
8151     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8152 
8153     testl(result, result);
8154     jcc(Assembler::zero, TRUE_LABEL);
8155 
8156     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8157     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8158     vpxor(vec1, vec2);
8159 
8160     vptest(vec1, vec1);
8161     jccb(Assembler::notZero, FALSE_LABEL);
8162     jmpb(TRUE_LABEL);
8163 
8164     bind(COMPARE_TAIL); // limit is zero
8165     movl(limit, result);
8166     // Fallthru to tail compare
8167   } else if (UseSSE42Intrinsics) {
8168     // With SSE4.2, use double quad vector compare
8169     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8170 
8171     // Compare 16-byte vectors
8172     andl(result, 0x0000000f);  //   tail count (in bytes)
8173     andl(limit, 0xfffffff0);   // vector count (in bytes)
8174     jcc(Assembler::zero, COMPARE_TAIL);
8175 
8176     lea(ary1, Address(ary1, limit, Address::times_1));
8177     lea(ary2, Address(ary2, limit, Address::times_1));
8178     negptr(limit);
8179 
8180     bind(COMPARE_WIDE_VECTORS);
8181     movdqu(vec1, Address(ary1, limit, Address::times_1));
8182     movdqu(vec2, Address(ary2, limit, Address::times_1));
8183     pxor(vec1, vec2);
8184 
8185     ptest(vec1, vec1);
8186     jcc(Assembler::notZero, FALSE_LABEL);
8187     addptr(limit, 16);
8188     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8189 
8190     testl(result, result);
8191     jcc(Assembler::zero, TRUE_LABEL);
8192 
8193     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8194     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8195     pxor(vec1, vec2);
8196 
8197     ptest(vec1, vec1);
8198     jccb(Assembler::notZero, FALSE_LABEL);
8199     jmpb(TRUE_LABEL);
8200 
8201     bind(COMPARE_TAIL); // limit is zero
8202     movl(limit, result);
8203     // Fallthru to tail compare
8204   }
8205 
8206   // Compare 4-byte vectors
8207   andl(limit, 0xfffffffc); // vector count (in bytes)
8208   jccb(Assembler::zero, COMPARE_CHAR);
8209 
8210   lea(ary1, Address(ary1, limit, Address::times_1));
8211   lea(ary2, Address(ary2, limit, Address::times_1));
8212   negptr(limit);
8213 
8214   bind(COMPARE_VECTORS);
8215   movl(chr, Address(ary1, limit, Address::times_1));
8216   cmpl(chr, Address(ary2, limit, Address::times_1));
8217   jccb(Assembler::notEqual, FALSE_LABEL);
8218   addptr(limit, 4);
8219   jcc(Assembler::notZero, COMPARE_VECTORS);
8220 
8221   // Compare trailing char (final 2 bytes), if any
8222   bind(COMPARE_CHAR);
8223   testl(result, 0x2);   // tail  char
8224   jccb(Assembler::zero, COMPARE_BYTE);
8225   load_unsigned_short(chr, Address(ary1, 0));
8226   load_unsigned_short(limit, Address(ary2, 0));
8227   cmpl(chr, limit);
8228   jccb(Assembler::notEqual, FALSE_LABEL);
8229 
8230   if (is_array_equ && is_char) {
8231     bind(COMPARE_BYTE);
8232   } else {
8233     lea(ary1, Address(ary1, 2));
8234     lea(ary2, Address(ary2, 2));
8235 
8236     bind(COMPARE_BYTE);
8237     testl(result, 0x1);   // tail  byte
8238     jccb(Assembler::zero, TRUE_LABEL);
8239     load_unsigned_byte(chr, Address(ary1, 0));
8240     load_unsigned_byte(limit, Address(ary2, 0));
8241     cmpl(chr, limit);
8242     jccb(Assembler::notEqual, FALSE_LABEL);
8243   }
8244   bind(TRUE_LABEL);
8245   movl(result, 1);   // return true
8246   jmpb(DONE);
8247 
8248   bind(FALSE_LABEL);
8249   xorl(result, result); // return false
8250 
8251   // That's it
8252   bind(DONE);
8253   if (UseAVX >= 2) {
8254     // clean upper bits of YMM registers
8255     vpxor(vec1, vec1);
8256     vpxor(vec2, vec2);
8257   }
8258 }
8259 
8260 #endif
8261 
8262 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8263                                    Register to, Register value, Register count,
8264                                    Register rtmp, XMMRegister xtmp) {
8265   ShortBranchVerifier sbv(this);
8266   assert_different_registers(to, value, count, rtmp);
8267   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8268   Label L_fill_2_bytes, L_fill_4_bytes;
8269 
8270   int shift = -1;
8271   switch (t) {
8272     case T_BYTE:
8273       shift = 2;
8274       break;
8275     case T_SHORT:
8276       shift = 1;
8277       break;
8278     case T_INT:
8279       shift = 0;
8280       break;
8281     default: ShouldNotReachHere();
8282   }
8283 
8284   if (t == T_BYTE) {
8285     andl(value, 0xff);
8286     movl(rtmp, value);
8287     shll(rtmp, 8);
8288     orl(value, rtmp);
8289   }
8290   if (t == T_SHORT) {
8291     andl(value, 0xffff);
8292   }
8293   if (t == T_BYTE || t == T_SHORT) {
8294     movl(rtmp, value);
8295     shll(rtmp, 16);
8296     orl(value, rtmp);
8297   }
8298 
8299   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8300   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8301   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8302     // align source address at 4 bytes address boundary
8303     if (t == T_BYTE) {
8304       // One byte misalignment happens only for byte arrays
8305       testptr(to, 1);
8306       jccb(Assembler::zero, L_skip_align1);
8307       movb(Address(to, 0), value);
8308       increment(to);
8309       decrement(count);
8310       BIND(L_skip_align1);
8311     }
8312     // Two bytes misalignment happens only for byte and short (char) arrays
8313     testptr(to, 2);
8314     jccb(Assembler::zero, L_skip_align2);
8315     movw(Address(to, 0), value);
8316     addptr(to, 2);
8317     subl(count, 1<<(shift-1));
8318     BIND(L_skip_align2);
8319   }
8320   if (UseSSE < 2) {
8321     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8322     // Fill 32-byte chunks
8323     subl(count, 8 << shift);
8324     jcc(Assembler::less, L_check_fill_8_bytes);
8325     align(16);
8326 
8327     BIND(L_fill_32_bytes_loop);
8328 
8329     for (int i = 0; i < 32; i += 4) {
8330       movl(Address(to, i), value);
8331     }
8332 
8333     addptr(to, 32);
8334     subl(count, 8 << shift);
8335     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8336     BIND(L_check_fill_8_bytes);
8337     addl(count, 8 << shift);
8338     jccb(Assembler::zero, L_exit);
8339     jmpb(L_fill_8_bytes);
8340 
8341     //
8342     // length is too short, just fill qwords
8343     //
8344     BIND(L_fill_8_bytes_loop);
8345     movl(Address(to, 0), value);
8346     movl(Address(to, 4), value);
8347     addptr(to, 8);
8348     BIND(L_fill_8_bytes);
8349     subl(count, 1 << (shift + 1));
8350     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8351     // fall through to fill 4 bytes
8352   } else {
8353     Label L_fill_32_bytes;
8354     if (!UseUnalignedLoadStores) {
8355       // align to 8 bytes, we know we are 4 byte aligned to start
8356       testptr(to, 4);
8357       jccb(Assembler::zero, L_fill_32_bytes);
8358       movl(Address(to, 0), value);
8359       addptr(to, 4);
8360       subl(count, 1<<shift);
8361     }
8362     BIND(L_fill_32_bytes);
8363     {
8364       assert( UseSSE >= 2, "supported cpu only" );
8365       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8366       if (UseAVX > 2) {
8367         movl(rtmp, 0xffff);
8368         kmovwl(k1, rtmp);
8369       }
8370       movdl(xtmp, value);
8371       if (UseAVX > 2 && UseUnalignedLoadStores) {
8372         // Fill 64-byte chunks
8373         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8374         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8375 
8376         subl(count, 16 << shift);
8377         jcc(Assembler::less, L_check_fill_32_bytes);
8378         align(16);
8379 
8380         BIND(L_fill_64_bytes_loop);
8381         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8382         addptr(to, 64);
8383         subl(count, 16 << shift);
8384         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8385 
8386         BIND(L_check_fill_32_bytes);
8387         addl(count, 8 << shift);
8388         jccb(Assembler::less, L_check_fill_8_bytes);
8389         vmovdqu(Address(to, 0), xtmp);
8390         addptr(to, 32);
8391         subl(count, 8 << shift);
8392 
8393         BIND(L_check_fill_8_bytes);
8394       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8395         // Fill 64-byte chunks
8396         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8397         vpbroadcastd(xtmp, xtmp);
8398 
8399         subl(count, 16 << shift);
8400         jcc(Assembler::less, L_check_fill_32_bytes);
8401         align(16);
8402 
8403         BIND(L_fill_64_bytes_loop);
8404         vmovdqu(Address(to, 0), xtmp);
8405         vmovdqu(Address(to, 32), xtmp);
8406         addptr(to, 64);
8407         subl(count, 16 << shift);
8408         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8409 
8410         BIND(L_check_fill_32_bytes);
8411         addl(count, 8 << shift);
8412         jccb(Assembler::less, L_check_fill_8_bytes);
8413         vmovdqu(Address(to, 0), xtmp);
8414         addptr(to, 32);
8415         subl(count, 8 << shift);
8416 
8417         BIND(L_check_fill_8_bytes);
8418         // clean upper bits of YMM registers
8419         movdl(xtmp, value);
8420         pshufd(xtmp, xtmp, 0);
8421       } else {
8422         // Fill 32-byte chunks
8423         pshufd(xtmp, xtmp, 0);
8424 
8425         subl(count, 8 << shift);
8426         jcc(Assembler::less, L_check_fill_8_bytes);
8427         align(16);
8428 
8429         BIND(L_fill_32_bytes_loop);
8430 
8431         if (UseUnalignedLoadStores) {
8432           movdqu(Address(to, 0), xtmp);
8433           movdqu(Address(to, 16), xtmp);
8434         } else {
8435           movq(Address(to, 0), xtmp);
8436           movq(Address(to, 8), xtmp);
8437           movq(Address(to, 16), xtmp);
8438           movq(Address(to, 24), xtmp);
8439         }
8440 
8441         addptr(to, 32);
8442         subl(count, 8 << shift);
8443         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8444 
8445         BIND(L_check_fill_8_bytes);
8446       }
8447       addl(count, 8 << shift);
8448       jccb(Assembler::zero, L_exit);
8449       jmpb(L_fill_8_bytes);
8450 
8451       //
8452       // length is too short, just fill qwords
8453       //
8454       BIND(L_fill_8_bytes_loop);
8455       movq(Address(to, 0), xtmp);
8456       addptr(to, 8);
8457       BIND(L_fill_8_bytes);
8458       subl(count, 1 << (shift + 1));
8459       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8460     }
8461   }
8462   // fill trailing 4 bytes
8463   BIND(L_fill_4_bytes);
8464   testl(count, 1<<shift);
8465   jccb(Assembler::zero, L_fill_2_bytes);
8466   movl(Address(to, 0), value);
8467   if (t == T_BYTE || t == T_SHORT) {
8468     addptr(to, 4);
8469     BIND(L_fill_2_bytes);
8470     // fill trailing 2 bytes
8471     testl(count, 1<<(shift-1));
8472     jccb(Assembler::zero, L_fill_byte);
8473     movw(Address(to, 0), value);
8474     if (t == T_BYTE) {
8475       addptr(to, 2);
8476       BIND(L_fill_byte);
8477       // fill trailing byte
8478       testl(count, 1);
8479       jccb(Assembler::zero, L_exit);
8480       movb(Address(to, 0), value);
8481     } else {
8482       BIND(L_fill_byte);
8483     }
8484   } else {
8485     BIND(L_fill_2_bytes);
8486   }
8487   BIND(L_exit);
8488 }
8489 
8490 // encode char[] to byte[] in ISO_8859_1
8491    //@HotSpotIntrinsicCandidate
8492    //private static int implEncodeISOArray(byte[] sa, int sp,
8493    //byte[] da, int dp, int len) {
8494    //  int i = 0;
8495    //  for (; i < len; i++) {
8496    //    char c = StringUTF16.getChar(sa, sp++);
8497    //    if (c > '\u00FF')
8498    //      break;
8499    //    da[dp++] = (byte)c;
8500    //  }
8501    //  return i;
8502    //}
8503 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8504   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8505   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8506   Register tmp5, Register result) {
8507 
8508   // rsi: src
8509   // rdi: dst
8510   // rdx: len
8511   // rcx: tmp5
8512   // rax: result
8513   ShortBranchVerifier sbv(this);
8514   assert_different_registers(src, dst, len, tmp5, result);
8515   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8516 
8517   // set result
8518   xorl(result, result);
8519   // check for zero length
8520   testl(len, len);
8521   jcc(Assembler::zero, L_done);
8522 
8523   movl(result, len);
8524 
8525   // Setup pointers
8526   lea(src, Address(src, len, Address::times_2)); // char[]
8527   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8528   negptr(len);
8529 
8530   if (UseSSE42Intrinsics || UseAVX >= 2) {
8531     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8532     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8533 
8534     if (UseAVX >= 2) {
8535       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8536       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8537       movdl(tmp1Reg, tmp5);
8538       vpbroadcastd(tmp1Reg, tmp1Reg);
8539       jmp(L_chars_32_check);
8540 
8541       bind(L_copy_32_chars);
8542       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8543       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8544       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8545       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8546       jccb(Assembler::notZero, L_copy_32_chars_exit);
8547       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8548       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8549       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8550 
8551       bind(L_chars_32_check);
8552       addptr(len, 32);
8553       jcc(Assembler::lessEqual, L_copy_32_chars);
8554 
8555       bind(L_copy_32_chars_exit);
8556       subptr(len, 16);
8557       jccb(Assembler::greater, L_copy_16_chars_exit);
8558 
8559     } else if (UseSSE42Intrinsics) {
8560       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8561       movdl(tmp1Reg, tmp5);
8562       pshufd(tmp1Reg, tmp1Reg, 0);
8563       jmpb(L_chars_16_check);
8564     }
8565 
8566     bind(L_copy_16_chars);
8567     if (UseAVX >= 2) {
8568       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8569       vptest(tmp2Reg, tmp1Reg);
8570       jcc(Assembler::notZero, L_copy_16_chars_exit);
8571       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8572       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8573     } else {
8574       if (UseAVX > 0) {
8575         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8576         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8577         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8578       } else {
8579         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8580         por(tmp2Reg, tmp3Reg);
8581         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8582         por(tmp2Reg, tmp4Reg);
8583       }
8584       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8585       jccb(Assembler::notZero, L_copy_16_chars_exit);
8586       packuswb(tmp3Reg, tmp4Reg);
8587     }
8588     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8589 
8590     bind(L_chars_16_check);
8591     addptr(len, 16);
8592     jcc(Assembler::lessEqual, L_copy_16_chars);
8593 
8594     bind(L_copy_16_chars_exit);
8595     if (UseAVX >= 2) {
8596       // clean upper bits of YMM registers
8597       vpxor(tmp2Reg, tmp2Reg);
8598       vpxor(tmp3Reg, tmp3Reg);
8599       vpxor(tmp4Reg, tmp4Reg);
8600       movdl(tmp1Reg, tmp5);
8601       pshufd(tmp1Reg, tmp1Reg, 0);
8602     }
8603     subptr(len, 8);
8604     jccb(Assembler::greater, L_copy_8_chars_exit);
8605 
8606     bind(L_copy_8_chars);
8607     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8608     ptest(tmp3Reg, tmp1Reg);
8609     jccb(Assembler::notZero, L_copy_8_chars_exit);
8610     packuswb(tmp3Reg, tmp1Reg);
8611     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8612     addptr(len, 8);
8613     jccb(Assembler::lessEqual, L_copy_8_chars);
8614 
8615     bind(L_copy_8_chars_exit);
8616     subptr(len, 8);
8617     jccb(Assembler::zero, L_done);
8618   }
8619 
8620   bind(L_copy_1_char);
8621   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8622   testl(tmp5, 0xff00);      // check if Unicode char
8623   jccb(Assembler::notZero, L_copy_1_char_exit);
8624   movb(Address(dst, len, Address::times_1, 0), tmp5);
8625   addptr(len, 1);
8626   jccb(Assembler::less, L_copy_1_char);
8627 
8628   bind(L_copy_1_char_exit);
8629   addptr(result, len); // len is negative count of not processed elements
8630 
8631   bind(L_done);
8632 }
8633 
8634 #ifdef _LP64
8635 /**
8636  * Helper for multiply_to_len().
8637  */
8638 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8639   addq(dest_lo, src1);
8640   adcq(dest_hi, 0);
8641   addq(dest_lo, src2);
8642   adcq(dest_hi, 0);
8643 }
8644 
8645 /**
8646  * Multiply 64 bit by 64 bit first loop.
8647  */
8648 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8649                                            Register y, Register y_idx, Register z,
8650                                            Register carry, Register product,
8651                                            Register idx, Register kdx) {
8652   //
8653   //  jlong carry, x[], y[], z[];
8654   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8655   //    huge_128 product = y[idx] * x[xstart] + carry;
8656   //    z[kdx] = (jlong)product;
8657   //    carry  = (jlong)(product >>> 64);
8658   //  }
8659   //  z[xstart] = carry;
8660   //
8661 
8662   Label L_first_loop, L_first_loop_exit;
8663   Label L_one_x, L_one_y, L_multiply;
8664 
8665   decrementl(xstart);
8666   jcc(Assembler::negative, L_one_x);
8667 
8668   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8669   rorq(x_xstart, 32); // convert big-endian to little-endian
8670 
8671   bind(L_first_loop);
8672   decrementl(idx);
8673   jcc(Assembler::negative, L_first_loop_exit);
8674   decrementl(idx);
8675   jcc(Assembler::negative, L_one_y);
8676   movq(y_idx, Address(y, idx, Address::times_4,  0));
8677   rorq(y_idx, 32); // convert big-endian to little-endian
8678   bind(L_multiply);
8679   movq(product, x_xstart);
8680   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8681   addq(product, carry);
8682   adcq(rdx, 0);
8683   subl(kdx, 2);
8684   movl(Address(z, kdx, Address::times_4,  4), product);
8685   shrq(product, 32);
8686   movl(Address(z, kdx, Address::times_4,  0), product);
8687   movq(carry, rdx);
8688   jmp(L_first_loop);
8689 
8690   bind(L_one_y);
8691   movl(y_idx, Address(y,  0));
8692   jmp(L_multiply);
8693 
8694   bind(L_one_x);
8695   movl(x_xstart, Address(x,  0));
8696   jmp(L_first_loop);
8697 
8698   bind(L_first_loop_exit);
8699 }
8700 
8701 /**
8702  * Multiply 64 bit by 64 bit and add 128 bit.
8703  */
8704 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
8705                                             Register yz_idx, Register idx,
8706                                             Register carry, Register product, int offset) {
8707   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
8708   //     z[kdx] = (jlong)product;
8709 
8710   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
8711   rorq(yz_idx, 32); // convert big-endian to little-endian
8712   movq(product, x_xstart);
8713   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
8714   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
8715   rorq(yz_idx, 32); // convert big-endian to little-endian
8716 
8717   add2_with_carry(rdx, product, carry, yz_idx);
8718 
8719   movl(Address(z, idx, Address::times_4,  offset+4), product);
8720   shrq(product, 32);
8721   movl(Address(z, idx, Address::times_4,  offset), product);
8722 
8723 }
8724 
8725 /**
8726  * Multiply 128 bit by 128 bit. Unrolled inner loop.
8727  */
8728 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
8729                                              Register yz_idx, Register idx, Register jdx,
8730                                              Register carry, Register product,
8731                                              Register carry2) {
8732   //   jlong carry, x[], y[], z[];
8733   //   int kdx = ystart+1;
8734   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8735   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
8736   //     z[kdx+idx+1] = (jlong)product;
8737   //     jlong carry2  = (jlong)(product >>> 64);
8738   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
8739   //     z[kdx+idx] = (jlong)product;
8740   //     carry  = (jlong)(product >>> 64);
8741   //   }
8742   //   idx += 2;
8743   //   if (idx > 0) {
8744   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
8745   //     z[kdx+idx] = (jlong)product;
8746   //     carry  = (jlong)(product >>> 64);
8747   //   }
8748   //
8749 
8750   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8751 
8752   movl(jdx, idx);
8753   andl(jdx, 0xFFFFFFFC);
8754   shrl(jdx, 2);
8755 
8756   bind(L_third_loop);
8757   subl(jdx, 1);
8758   jcc(Assembler::negative, L_third_loop_exit);
8759   subl(idx, 4);
8760 
8761   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
8762   movq(carry2, rdx);
8763 
8764   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
8765   movq(carry, rdx);
8766   jmp(L_third_loop);
8767 
8768   bind (L_third_loop_exit);
8769 
8770   andl (idx, 0x3);
8771   jcc(Assembler::zero, L_post_third_loop_done);
8772 
8773   Label L_check_1;
8774   subl(idx, 2);
8775   jcc(Assembler::negative, L_check_1);
8776 
8777   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
8778   movq(carry, rdx);
8779 
8780   bind (L_check_1);
8781   addl (idx, 0x2);
8782   andl (idx, 0x1);
8783   subl(idx, 1);
8784   jcc(Assembler::negative, L_post_third_loop_done);
8785 
8786   movl(yz_idx, Address(y, idx, Address::times_4,  0));
8787   movq(product, x_xstart);
8788   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
8789   movl(yz_idx, Address(z, idx, Address::times_4,  0));
8790 
8791   add2_with_carry(rdx, product, yz_idx, carry);
8792 
8793   movl(Address(z, idx, Address::times_4,  0), product);
8794   shrq(product, 32);
8795 
8796   shlq(rdx, 32);
8797   orq(product, rdx);
8798   movq(carry, product);
8799 
8800   bind(L_post_third_loop_done);
8801 }
8802 
8803 /**
8804  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
8805  *
8806  */
8807 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
8808                                                   Register carry, Register carry2,
8809                                                   Register idx, Register jdx,
8810                                                   Register yz_idx1, Register yz_idx2,
8811                                                   Register tmp, Register tmp3, Register tmp4) {
8812   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
8813 
8814   //   jlong carry, x[], y[], z[];
8815   //   int kdx = ystart+1;
8816   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8817   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
8818   //     jlong carry2  = (jlong)(tmp3 >>> 64);
8819   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
8820   //     carry  = (jlong)(tmp4 >>> 64);
8821   //     z[kdx+idx+1] = (jlong)tmp3;
8822   //     z[kdx+idx] = (jlong)tmp4;
8823   //   }
8824   //   idx += 2;
8825   //   if (idx > 0) {
8826   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
8827   //     z[kdx+idx] = (jlong)yz_idx1;
8828   //     carry  = (jlong)(yz_idx1 >>> 64);
8829   //   }
8830   //
8831 
8832   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8833 
8834   movl(jdx, idx);
8835   andl(jdx, 0xFFFFFFFC);
8836   shrl(jdx, 2);
8837 
8838   bind(L_third_loop);
8839   subl(jdx, 1);
8840   jcc(Assembler::negative, L_third_loop_exit);
8841   subl(idx, 4);
8842 
8843   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
8844   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
8845   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
8846   rorxq(yz_idx2, yz_idx2, 32);
8847 
8848   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
8849   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
8850 
8851   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
8852   rorxq(yz_idx1, yz_idx1, 32);
8853   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
8854   rorxq(yz_idx2, yz_idx2, 32);
8855 
8856   if (VM_Version::supports_adx()) {
8857     adcxq(tmp3, carry);
8858     adoxq(tmp3, yz_idx1);
8859 
8860     adcxq(tmp4, tmp);
8861     adoxq(tmp4, yz_idx2);
8862 
8863     movl(carry, 0); // does not affect flags
8864     adcxq(carry2, carry);
8865     adoxq(carry2, carry);
8866   } else {
8867     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
8868     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
8869   }
8870   movq(carry, carry2);
8871 
8872   movl(Address(z, idx, Address::times_4, 12), tmp3);
8873   shrq(tmp3, 32);
8874   movl(Address(z, idx, Address::times_4,  8), tmp3);
8875 
8876   movl(Address(z, idx, Address::times_4,  4), tmp4);
8877   shrq(tmp4, 32);
8878   movl(Address(z, idx, Address::times_4,  0), tmp4);
8879 
8880   jmp(L_third_loop);
8881 
8882   bind (L_third_loop_exit);
8883 
8884   andl (idx, 0x3);
8885   jcc(Assembler::zero, L_post_third_loop_done);
8886 
8887   Label L_check_1;
8888   subl(idx, 2);
8889   jcc(Assembler::negative, L_check_1);
8890 
8891   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
8892   rorxq(yz_idx1, yz_idx1, 32);
8893   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
8894   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
8895   rorxq(yz_idx2, yz_idx2, 32);
8896 
8897   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
8898 
8899   movl(Address(z, idx, Address::times_4,  4), tmp3);
8900   shrq(tmp3, 32);
8901   movl(Address(z, idx, Address::times_4,  0), tmp3);
8902   movq(carry, tmp4);
8903 
8904   bind (L_check_1);
8905   addl (idx, 0x2);
8906   andl (idx, 0x1);
8907   subl(idx, 1);
8908   jcc(Assembler::negative, L_post_third_loop_done);
8909   movl(tmp4, Address(y, idx, Address::times_4,  0));
8910   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
8911   movl(tmp4, Address(z, idx, Address::times_4,  0));
8912 
8913   add2_with_carry(carry2, tmp3, tmp4, carry);
8914 
8915   movl(Address(z, idx, Address::times_4,  0), tmp3);
8916   shrq(tmp3, 32);
8917 
8918   shlq(carry2, 32);
8919   orq(tmp3, carry2);
8920   movq(carry, tmp3);
8921 
8922   bind(L_post_third_loop_done);
8923 }
8924 
8925 /**
8926  * Code for BigInteger::multiplyToLen() instrinsic.
8927  *
8928  * rdi: x
8929  * rax: xlen
8930  * rsi: y
8931  * rcx: ylen
8932  * r8:  z
8933  * r11: zlen
8934  * r12: tmp1
8935  * r13: tmp2
8936  * r14: tmp3
8937  * r15: tmp4
8938  * rbx: tmp5
8939  *
8940  */
8941 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
8942                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
8943   ShortBranchVerifier sbv(this);
8944   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
8945 
8946   push(tmp1);
8947   push(tmp2);
8948   push(tmp3);
8949   push(tmp4);
8950   push(tmp5);
8951 
8952   push(xlen);
8953   push(zlen);
8954 
8955   const Register idx = tmp1;
8956   const Register kdx = tmp2;
8957   const Register xstart = tmp3;
8958 
8959   const Register y_idx = tmp4;
8960   const Register carry = tmp5;
8961   const Register product  = xlen;
8962   const Register x_xstart = zlen;  // reuse register
8963 
8964   // First Loop.
8965   //
8966   //  final static long LONG_MASK = 0xffffffffL;
8967   //  int xstart = xlen - 1;
8968   //  int ystart = ylen - 1;
8969   //  long carry = 0;
8970   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8971   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
8972   //    z[kdx] = (int)product;
8973   //    carry = product >>> 32;
8974   //  }
8975   //  z[xstart] = (int)carry;
8976   //
8977 
8978   movl(idx, ylen);      // idx = ylen;
8979   movl(kdx, zlen);      // kdx = xlen+ylen;
8980   xorq(carry, carry);   // carry = 0;
8981 
8982   Label L_done;
8983 
8984   movl(xstart, xlen);
8985   decrementl(xstart);
8986   jcc(Assembler::negative, L_done);
8987 
8988   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
8989 
8990   Label L_second_loop;
8991   testl(kdx, kdx);
8992   jcc(Assembler::zero, L_second_loop);
8993 
8994   Label L_carry;
8995   subl(kdx, 1);
8996   jcc(Assembler::zero, L_carry);
8997 
8998   movl(Address(z, kdx, Address::times_4,  0), carry);
8999   shrq(carry, 32);
9000   subl(kdx, 1);
9001 
9002   bind(L_carry);
9003   movl(Address(z, kdx, Address::times_4,  0), carry);
9004 
9005   // Second and third (nested) loops.
9006   //
9007   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9008   //   carry = 0;
9009   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9010   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9011   //                    (z[k] & LONG_MASK) + carry;
9012   //     z[k] = (int)product;
9013   //     carry = product >>> 32;
9014   //   }
9015   //   z[i] = (int)carry;
9016   // }
9017   //
9018   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9019 
9020   const Register jdx = tmp1;
9021 
9022   bind(L_second_loop);
9023   xorl(carry, carry);    // carry = 0;
9024   movl(jdx, ylen);       // j = ystart+1
9025 
9026   subl(xstart, 1);       // i = xstart-1;
9027   jcc(Assembler::negative, L_done);
9028 
9029   push (z);
9030 
9031   Label L_last_x;
9032   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9033   subl(xstart, 1);       // i = xstart-1;
9034   jcc(Assembler::negative, L_last_x);
9035 
9036   if (UseBMI2Instructions) {
9037     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9038     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9039   } else {
9040     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9041     rorq(x_xstart, 32);  // convert big-endian to little-endian
9042   }
9043 
9044   Label L_third_loop_prologue;
9045   bind(L_third_loop_prologue);
9046 
9047   push (x);
9048   push (xstart);
9049   push (ylen);
9050 
9051 
9052   if (UseBMI2Instructions) {
9053     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9054   } else { // !UseBMI2Instructions
9055     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9056   }
9057 
9058   pop(ylen);
9059   pop(xlen);
9060   pop(x);
9061   pop(z);
9062 
9063   movl(tmp3, xlen);
9064   addl(tmp3, 1);
9065   movl(Address(z, tmp3, Address::times_4,  0), carry);
9066   subl(tmp3, 1);
9067   jccb(Assembler::negative, L_done);
9068 
9069   shrq(carry, 32);
9070   movl(Address(z, tmp3, Address::times_4,  0), carry);
9071   jmp(L_second_loop);
9072 
9073   // Next infrequent code is moved outside loops.
9074   bind(L_last_x);
9075   if (UseBMI2Instructions) {
9076     movl(rdx, Address(x,  0));
9077   } else {
9078     movl(x_xstart, Address(x,  0));
9079   }
9080   jmp(L_third_loop_prologue);
9081 
9082   bind(L_done);
9083 
9084   pop(zlen);
9085   pop(xlen);
9086 
9087   pop(tmp5);
9088   pop(tmp4);
9089   pop(tmp3);
9090   pop(tmp2);
9091   pop(tmp1);
9092 }
9093 
9094 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9095   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9096   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9097   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
9098   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9099   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9100   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9101   Label SAME_TILL_END, DONE;
9102   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9103 
9104   //scale is in rcx in both Win64 and Unix
9105   ShortBranchVerifier sbv(this);
9106 
9107   shlq(length);
9108   xorq(result, result);
9109 
9110   if ((UseAVX > 2) &&
9111       VM_Version::supports_avx512vlbw()) {
9112     set_vector_masking();  // opening of the stub context for programming mask registers
9113     cmpq(length, 64);
9114     jcc(Assembler::less, VECTOR32_TAIL);
9115     movq(tmp1, length);
9116     andq(tmp1, 0x3F);      // tail count
9117     andq(length, ~(0x3F)); //vector count
9118 
9119     bind(VECTOR64_LOOP);
9120     // AVX512 code to compare 64 byte vectors.
9121     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9122     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9123     kortestql(k7, k7);
9124     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9125     addq(result, 64);
9126     subq(length, 64);
9127     jccb(Assembler::notZero, VECTOR64_LOOP);
9128 
9129     //bind(VECTOR64_TAIL);
9130     testq(tmp1, tmp1);
9131     jcc(Assembler::zero, SAME_TILL_END);
9132 
9133     bind(VECTOR64_TAIL);
9134     // AVX512 code to compare upto 63 byte vectors.
9135     // Save k1
9136     kmovql(k3, k1);
9137     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9138     shlxq(tmp2, tmp2, tmp1);
9139     notq(tmp2);
9140     kmovql(k1, tmp2);
9141 
9142     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9143     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9144 
9145     ktestql(k7, k1);
9146     // Restore k1
9147     kmovql(k1, k3);
9148     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9149 
9150     bind(VECTOR64_NOT_EQUAL);
9151     kmovql(tmp1, k7);
9152     notq(tmp1);
9153     tzcntq(tmp1, tmp1);
9154     addq(result, tmp1);
9155     shrq(result);
9156     jmp(DONE);
9157     bind(VECTOR32_TAIL);
9158     clear_vector_masking();   // closing of the stub context for programming mask registers
9159   }
9160 
9161   cmpq(length, 8);
9162   jcc(Assembler::equal, VECTOR8_LOOP);
9163   jcc(Assembler::less, VECTOR4_TAIL);
9164 
9165   if (UseAVX >= 2) {
9166 
9167     cmpq(length, 16);
9168     jcc(Assembler::equal, VECTOR16_LOOP);
9169     jcc(Assembler::less, VECTOR8_LOOP);
9170 
9171     cmpq(length, 32);
9172     jccb(Assembler::less, VECTOR16_TAIL);
9173 
9174     subq(length, 32);
9175     bind(VECTOR32_LOOP);
9176     vmovdqu(rymm0, Address(obja, result));
9177     vmovdqu(rymm1, Address(objb, result));
9178     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9179     vptest(rymm2, rymm2);
9180     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9181     addq(result, 32);
9182     subq(length, 32);
9183     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9184     addq(length, 32);
9185     jcc(Assembler::equal, SAME_TILL_END);
9186     //falling through if less than 32 bytes left //close the branch here.
9187 
9188     bind(VECTOR16_TAIL);
9189     cmpq(length, 16);
9190     jccb(Assembler::less, VECTOR8_TAIL);
9191     bind(VECTOR16_LOOP);
9192     movdqu(rymm0, Address(obja, result));
9193     movdqu(rymm1, Address(objb, result));
9194     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9195     ptest(rymm2, rymm2);
9196     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9197     addq(result, 16);
9198     subq(length, 16);
9199     jcc(Assembler::equal, SAME_TILL_END);
9200     //falling through if less than 16 bytes left
9201   } else {//regular intrinsics
9202 
9203     cmpq(length, 16);
9204     jccb(Assembler::less, VECTOR8_TAIL);
9205 
9206     subq(length, 16);
9207     bind(VECTOR16_LOOP);
9208     movdqu(rymm0, Address(obja, result));
9209     movdqu(rymm1, Address(objb, result));
9210     pxor(rymm0, rymm1);
9211     ptest(rymm0, rymm0);
9212     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9213     addq(result, 16);
9214     subq(length, 16);
9215     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9216     addq(length, 16);
9217     jcc(Assembler::equal, SAME_TILL_END);
9218     //falling through if less than 16 bytes left
9219   }
9220 
9221   bind(VECTOR8_TAIL);
9222   cmpq(length, 8);
9223   jccb(Assembler::less, VECTOR4_TAIL);
9224   bind(VECTOR8_LOOP);
9225   movq(tmp1, Address(obja, result));
9226   movq(tmp2, Address(objb, result));
9227   xorq(tmp1, tmp2);
9228   testq(tmp1, tmp1);
9229   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9230   addq(result, 8);
9231   subq(length, 8);
9232   jcc(Assembler::equal, SAME_TILL_END);
9233   //falling through if less than 8 bytes left
9234 
9235   bind(VECTOR4_TAIL);
9236   cmpq(length, 4);
9237   jccb(Assembler::less, BYTES_TAIL);
9238   bind(VECTOR4_LOOP);
9239   movl(tmp1, Address(obja, result));
9240   xorl(tmp1, Address(objb, result));
9241   testl(tmp1, tmp1);
9242   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9243   addq(result, 4);
9244   subq(length, 4);
9245   jcc(Assembler::equal, SAME_TILL_END);
9246   //falling through if less than 4 bytes left
9247 
9248   bind(BYTES_TAIL);
9249   bind(BYTES_LOOP);
9250   load_unsigned_byte(tmp1, Address(obja, result));
9251   load_unsigned_byte(tmp2, Address(objb, result));
9252   xorl(tmp1, tmp2);
9253   testl(tmp1, tmp1);
9254   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9255   decq(length);
9256   jccb(Assembler::zero, SAME_TILL_END);
9257   incq(result);
9258   load_unsigned_byte(tmp1, Address(obja, result));
9259   load_unsigned_byte(tmp2, Address(objb, result));
9260   xorl(tmp1, tmp2);
9261   testl(tmp1, tmp1);
9262   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9263   decq(length);
9264   jccb(Assembler::zero, SAME_TILL_END);
9265   incq(result);
9266   load_unsigned_byte(tmp1, Address(obja, result));
9267   load_unsigned_byte(tmp2, Address(objb, result));
9268   xorl(tmp1, tmp2);
9269   testl(tmp1, tmp1);
9270   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9271   jmpb(SAME_TILL_END);
9272 
9273   if (UseAVX >= 2) {
9274     bind(VECTOR32_NOT_EQUAL);
9275     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9276     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9277     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9278     vpmovmskb(tmp1, rymm0);
9279     bsfq(tmp1, tmp1);
9280     addq(result, tmp1);
9281     shrq(result);
9282     jmpb(DONE);
9283   }
9284 
9285   bind(VECTOR16_NOT_EQUAL);
9286   if (UseAVX >= 2) {
9287     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9288     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9289     pxor(rymm0, rymm2);
9290   } else {
9291     pcmpeqb(rymm2, rymm2);
9292     pxor(rymm0, rymm1);
9293     pcmpeqb(rymm0, rymm1);
9294     pxor(rymm0, rymm2);
9295   }
9296   pmovmskb(tmp1, rymm0);
9297   bsfq(tmp1, tmp1);
9298   addq(result, tmp1);
9299   shrq(result);
9300   jmpb(DONE);
9301 
9302   bind(VECTOR8_NOT_EQUAL);
9303   bind(VECTOR4_NOT_EQUAL);
9304   bsfq(tmp1, tmp1);
9305   shrq(tmp1, 3);
9306   addq(result, tmp1);
9307   bind(BYTES_NOT_EQUAL);
9308   shrq(result);
9309   jmpb(DONE);
9310 
9311   bind(SAME_TILL_END);
9312   mov64(result, -1);
9313 
9314   bind(DONE);
9315 }
9316 
9317 //Helper functions for square_to_len()
9318 
9319 /**
9320  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9321  * Preserves x and z and modifies rest of the registers.
9322  */
9323 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9324   // Perform square and right shift by 1
9325   // Handle odd xlen case first, then for even xlen do the following
9326   // jlong carry = 0;
9327   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9328   //     huge_128 product = x[j:j+1] * x[j:j+1];
9329   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9330   //     z[i+2:i+3] = (jlong)(product >>> 1);
9331   //     carry = (jlong)product;
9332   // }
9333 
9334   xorq(tmp5, tmp5);     // carry
9335   xorq(rdxReg, rdxReg);
9336   xorl(tmp1, tmp1);     // index for x
9337   xorl(tmp4, tmp4);     // index for z
9338 
9339   Label L_first_loop, L_first_loop_exit;
9340 
9341   testl(xlen, 1);
9342   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9343 
9344   // Square and right shift by 1 the odd element using 32 bit multiply
9345   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9346   imulq(raxReg, raxReg);
9347   shrq(raxReg, 1);
9348   adcq(tmp5, 0);
9349   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9350   incrementl(tmp1);
9351   addl(tmp4, 2);
9352 
9353   // Square and  right shift by 1 the rest using 64 bit multiply
9354   bind(L_first_loop);
9355   cmpptr(tmp1, xlen);
9356   jccb(Assembler::equal, L_first_loop_exit);
9357 
9358   // Square
9359   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9360   rorq(raxReg, 32);    // convert big-endian to little-endian
9361   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9362 
9363   // Right shift by 1 and save carry
9364   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9365   rcrq(rdxReg, 1);
9366   rcrq(raxReg, 1);
9367   adcq(tmp5, 0);
9368 
9369   // Store result in z
9370   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9371   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9372 
9373   // Update indices for x and z
9374   addl(tmp1, 2);
9375   addl(tmp4, 4);
9376   jmp(L_first_loop);
9377 
9378   bind(L_first_loop_exit);
9379 }
9380 
9381 
9382 /**
9383  * Perform the following multiply add operation using BMI2 instructions
9384  * carry:sum = sum + op1*op2 + carry
9385  * op2 should be in rdx
9386  * op2 is preserved, all other registers are modified
9387  */
9388 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9389   // assert op2 is rdx
9390   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9391   addq(sum, carry);
9392   adcq(tmp2, 0);
9393   addq(sum, op1);
9394   adcq(tmp2, 0);
9395   movq(carry, tmp2);
9396 }
9397 
9398 /**
9399  * Perform the following multiply add operation:
9400  * carry:sum = sum + op1*op2 + carry
9401  * Preserves op1, op2 and modifies rest of registers
9402  */
9403 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9404   // rdx:rax = op1 * op2
9405   movq(raxReg, op2);
9406   mulq(op1);
9407 
9408   //  rdx:rax = sum + carry + rdx:rax
9409   addq(sum, carry);
9410   adcq(rdxReg, 0);
9411   addq(sum, raxReg);
9412   adcq(rdxReg, 0);
9413 
9414   // carry:sum = rdx:sum
9415   movq(carry, rdxReg);
9416 }
9417 
9418 /**
9419  * Add 64 bit long carry into z[] with carry propogation.
9420  * Preserves z and carry register values and modifies rest of registers.
9421  *
9422  */
9423 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9424   Label L_fourth_loop, L_fourth_loop_exit;
9425 
9426   movl(tmp1, 1);
9427   subl(zlen, 2);
9428   addq(Address(z, zlen, Address::times_4, 0), carry);
9429 
9430   bind(L_fourth_loop);
9431   jccb(Assembler::carryClear, L_fourth_loop_exit);
9432   subl(zlen, 2);
9433   jccb(Assembler::negative, L_fourth_loop_exit);
9434   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9435   jmp(L_fourth_loop);
9436   bind(L_fourth_loop_exit);
9437 }
9438 
9439 /**
9440  * Shift z[] left by 1 bit.
9441  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9442  *
9443  */
9444 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9445 
9446   Label L_fifth_loop, L_fifth_loop_exit;
9447 
9448   // Fifth loop
9449   // Perform primitiveLeftShift(z, zlen, 1)
9450 
9451   const Register prev_carry = tmp1;
9452   const Register new_carry = tmp4;
9453   const Register value = tmp2;
9454   const Register zidx = tmp3;
9455 
9456   // int zidx, carry;
9457   // long value;
9458   // carry = 0;
9459   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9460   //    (carry:value)  = (z[i] << 1) | carry ;
9461   //    z[i] = value;
9462   // }
9463 
9464   movl(zidx, zlen);
9465   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9466 
9467   bind(L_fifth_loop);
9468   decl(zidx);  // Use decl to preserve carry flag
9469   decl(zidx);
9470   jccb(Assembler::negative, L_fifth_loop_exit);
9471 
9472   if (UseBMI2Instructions) {
9473      movq(value, Address(z, zidx, Address::times_4, 0));
9474      rclq(value, 1);
9475      rorxq(value, value, 32);
9476      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9477   }
9478   else {
9479     // clear new_carry
9480     xorl(new_carry, new_carry);
9481 
9482     // Shift z[i] by 1, or in previous carry and save new carry
9483     movq(value, Address(z, zidx, Address::times_4, 0));
9484     shlq(value, 1);
9485     adcl(new_carry, 0);
9486 
9487     orq(value, prev_carry);
9488     rorq(value, 0x20);
9489     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9490 
9491     // Set previous carry = new carry
9492     movl(prev_carry, new_carry);
9493   }
9494   jmp(L_fifth_loop);
9495 
9496   bind(L_fifth_loop_exit);
9497 }
9498 
9499 
9500 /**
9501  * Code for BigInteger::squareToLen() intrinsic
9502  *
9503  * rdi: x
9504  * rsi: len
9505  * r8:  z
9506  * rcx: zlen
9507  * r12: tmp1
9508  * r13: tmp2
9509  * r14: tmp3
9510  * r15: tmp4
9511  * rbx: tmp5
9512  *
9513  */
9514 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9515 
9516   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9517   push(tmp1);
9518   push(tmp2);
9519   push(tmp3);
9520   push(tmp4);
9521   push(tmp5);
9522 
9523   // First loop
9524   // Store the squares, right shifted one bit (i.e., divided by 2).
9525   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9526 
9527   // Add in off-diagonal sums.
9528   //
9529   // Second, third (nested) and fourth loops.
9530   // zlen +=2;
9531   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9532   //    carry = 0;
9533   //    long op2 = x[xidx:xidx+1];
9534   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9535   //       k -= 2;
9536   //       long op1 = x[j:j+1];
9537   //       long sum = z[k:k+1];
9538   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9539   //       z[k:k+1] = sum;
9540   //    }
9541   //    add_one_64(z, k, carry, tmp_regs);
9542   // }
9543 
9544   const Register carry = tmp5;
9545   const Register sum = tmp3;
9546   const Register op1 = tmp4;
9547   Register op2 = tmp2;
9548 
9549   push(zlen);
9550   push(len);
9551   addl(zlen,2);
9552   bind(L_second_loop);
9553   xorq(carry, carry);
9554   subl(zlen, 4);
9555   subl(len, 2);
9556   push(zlen);
9557   push(len);
9558   cmpl(len, 0);
9559   jccb(Assembler::lessEqual, L_second_loop_exit);
9560 
9561   // Multiply an array by one 64 bit long.
9562   if (UseBMI2Instructions) {
9563     op2 = rdxReg;
9564     movq(op2, Address(x, len, Address::times_4,  0));
9565     rorxq(op2, op2, 32);
9566   }
9567   else {
9568     movq(op2, Address(x, len, Address::times_4,  0));
9569     rorq(op2, 32);
9570   }
9571 
9572   bind(L_third_loop);
9573   decrementl(len);
9574   jccb(Assembler::negative, L_third_loop_exit);
9575   decrementl(len);
9576   jccb(Assembler::negative, L_last_x);
9577 
9578   movq(op1, Address(x, len, Address::times_4,  0));
9579   rorq(op1, 32);
9580 
9581   bind(L_multiply);
9582   subl(zlen, 2);
9583   movq(sum, Address(z, zlen, Address::times_4,  0));
9584 
9585   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9586   if (UseBMI2Instructions) {
9587     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9588   }
9589   else {
9590     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9591   }
9592 
9593   movq(Address(z, zlen, Address::times_4, 0), sum);
9594 
9595   jmp(L_third_loop);
9596   bind(L_third_loop_exit);
9597 
9598   // Fourth loop
9599   // Add 64 bit long carry into z with carry propogation.
9600   // Uses offsetted zlen.
9601   add_one_64(z, zlen, carry, tmp1);
9602 
9603   pop(len);
9604   pop(zlen);
9605   jmp(L_second_loop);
9606 
9607   // Next infrequent code is moved outside loops.
9608   bind(L_last_x);
9609   movl(op1, Address(x, 0));
9610   jmp(L_multiply);
9611 
9612   bind(L_second_loop_exit);
9613   pop(len);
9614   pop(zlen);
9615   pop(len);
9616   pop(zlen);
9617 
9618   // Fifth loop
9619   // Shift z left 1 bit.
9620   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9621 
9622   // z[zlen-1] |= x[len-1] & 1;
9623   movl(tmp3, Address(x, len, Address::times_4, -4));
9624   andl(tmp3, 1);
9625   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9626 
9627   pop(tmp5);
9628   pop(tmp4);
9629   pop(tmp3);
9630   pop(tmp2);
9631   pop(tmp1);
9632 }
9633 
9634 /**
9635  * Helper function for mul_add()
9636  * Multiply the in[] by int k and add to out[] starting at offset offs using
9637  * 128 bit by 32 bit multiply and return the carry in tmp5.
9638  * Only quad int aligned length of in[] is operated on in this function.
9639  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9640  * This function preserves out, in and k registers.
9641  * len and offset point to the appropriate index in "in" & "out" correspondingly
9642  * tmp5 has the carry.
9643  * other registers are temporary and are modified.
9644  *
9645  */
9646 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9647   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9648   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9649 
9650   Label L_first_loop, L_first_loop_exit;
9651 
9652   movl(tmp1, len);
9653   shrl(tmp1, 2);
9654 
9655   bind(L_first_loop);
9656   subl(tmp1, 1);
9657   jccb(Assembler::negative, L_first_loop_exit);
9658 
9659   subl(len, 4);
9660   subl(offset, 4);
9661 
9662   Register op2 = tmp2;
9663   const Register sum = tmp3;
9664   const Register op1 = tmp4;
9665   const Register carry = tmp5;
9666 
9667   if (UseBMI2Instructions) {
9668     op2 = rdxReg;
9669   }
9670 
9671   movq(op1, Address(in, len, Address::times_4,  8));
9672   rorq(op1, 32);
9673   movq(sum, Address(out, offset, Address::times_4,  8));
9674   rorq(sum, 32);
9675   if (UseBMI2Instructions) {
9676     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9677   }
9678   else {
9679     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9680   }
9681   // Store back in big endian from little endian
9682   rorq(sum, 0x20);
9683   movq(Address(out, offset, Address::times_4,  8), sum);
9684 
9685   movq(op1, Address(in, len, Address::times_4,  0));
9686   rorq(op1, 32);
9687   movq(sum, Address(out, offset, Address::times_4,  0));
9688   rorq(sum, 32);
9689   if (UseBMI2Instructions) {
9690     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9691   }
9692   else {
9693     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9694   }
9695   // Store back in big endian from little endian
9696   rorq(sum, 0x20);
9697   movq(Address(out, offset, Address::times_4,  0), sum);
9698 
9699   jmp(L_first_loop);
9700   bind(L_first_loop_exit);
9701 }
9702 
9703 /**
9704  * Code for BigInteger::mulAdd() intrinsic
9705  *
9706  * rdi: out
9707  * rsi: in
9708  * r11: offs (out.length - offset)
9709  * rcx: len
9710  * r8:  k
9711  * r12: tmp1
9712  * r13: tmp2
9713  * r14: tmp3
9714  * r15: tmp4
9715  * rbx: tmp5
9716  * Multiply the in[] by word k and add to out[], return the carry in rax
9717  */
9718 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9719    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9720    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9721 
9722   Label L_carry, L_last_in, L_done;
9723 
9724 // carry = 0;
9725 // for (int j=len-1; j >= 0; j--) {
9726 //    long product = (in[j] & LONG_MASK) * kLong +
9727 //                   (out[offs] & LONG_MASK) + carry;
9728 //    out[offs--] = (int)product;
9729 //    carry = product >>> 32;
9730 // }
9731 //
9732   push(tmp1);
9733   push(tmp2);
9734   push(tmp3);
9735   push(tmp4);
9736   push(tmp5);
9737 
9738   Register op2 = tmp2;
9739   const Register sum = tmp3;
9740   const Register op1 = tmp4;
9741   const Register carry =  tmp5;
9742 
9743   if (UseBMI2Instructions) {
9744     op2 = rdxReg;
9745     movl(op2, k);
9746   }
9747   else {
9748     movl(op2, k);
9749   }
9750 
9751   xorq(carry, carry);
9752 
9753   //First loop
9754 
9755   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
9756   //The carry is in tmp5
9757   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
9758 
9759   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
9760   decrementl(len);
9761   jccb(Assembler::negative, L_carry);
9762   decrementl(len);
9763   jccb(Assembler::negative, L_last_in);
9764 
9765   movq(op1, Address(in, len, Address::times_4,  0));
9766   rorq(op1, 32);
9767 
9768   subl(offs, 2);
9769   movq(sum, Address(out, offs, Address::times_4,  0));
9770   rorq(sum, 32);
9771 
9772   if (UseBMI2Instructions) {
9773     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9774   }
9775   else {
9776     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9777   }
9778 
9779   // Store back in big endian from little endian
9780   rorq(sum, 0x20);
9781   movq(Address(out, offs, Address::times_4,  0), sum);
9782 
9783   testl(len, len);
9784   jccb(Assembler::zero, L_carry);
9785 
9786   //Multiply the last in[] entry, if any
9787   bind(L_last_in);
9788   movl(op1, Address(in, 0));
9789   movl(sum, Address(out, offs, Address::times_4,  -4));
9790 
9791   movl(raxReg, k);
9792   mull(op1); //tmp4 * eax -> edx:eax
9793   addl(sum, carry);
9794   adcl(rdxReg, 0);
9795   addl(sum, raxReg);
9796   adcl(rdxReg, 0);
9797   movl(carry, rdxReg);
9798 
9799   movl(Address(out, offs, Address::times_4,  -4), sum);
9800 
9801   bind(L_carry);
9802   //return tmp5/carry as carry in rax
9803   movl(rax, carry);
9804 
9805   bind(L_done);
9806   pop(tmp5);
9807   pop(tmp4);
9808   pop(tmp3);
9809   pop(tmp2);
9810   pop(tmp1);
9811 }
9812 #endif
9813 
9814 /**
9815  * Emits code to update CRC-32 with a byte value according to constants in table
9816  *
9817  * @param [in,out]crc   Register containing the crc.
9818  * @param [in]val       Register containing the byte to fold into the CRC.
9819  * @param [in]table     Register containing the table of crc constants.
9820  *
9821  * uint32_t crc;
9822  * val = crc_table[(val ^ crc) & 0xFF];
9823  * crc = val ^ (crc >> 8);
9824  *
9825  */
9826 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
9827   xorl(val, crc);
9828   andl(val, 0xFF);
9829   shrl(crc, 8); // unsigned shift
9830   xorl(crc, Address(table, val, Address::times_4, 0));
9831 }
9832 
9833 /**
9834 * Fold four 128-bit data chunks
9835 */
9836 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
9837   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
9838   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
9839   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
9840   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
9841 }
9842 
9843 /**
9844  * Fold 128-bit data chunk
9845  */
9846 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
9847   if (UseAVX > 0) {
9848     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
9849     vpclmulldq(xcrc, xK, xcrc); // [63:0]
9850     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
9851     pxor(xcrc, xtmp);
9852   } else {
9853     movdqa(xtmp, xcrc);
9854     pclmulhdq(xtmp, xK);   // [123:64]
9855     pclmulldq(xcrc, xK);   // [63:0]
9856     pxor(xcrc, xtmp);
9857     movdqu(xtmp, Address(buf, offset));
9858     pxor(xcrc, xtmp);
9859   }
9860 }
9861 
9862 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
9863   if (UseAVX > 0) {
9864     vpclmulhdq(xtmp, xK, xcrc);
9865     vpclmulldq(xcrc, xK, xcrc);
9866     pxor(xcrc, xbuf);
9867     pxor(xcrc, xtmp);
9868   } else {
9869     movdqa(xtmp, xcrc);
9870     pclmulhdq(xtmp, xK);
9871     pclmulldq(xcrc, xK);
9872     pxor(xcrc, xbuf);
9873     pxor(xcrc, xtmp);
9874   }
9875 }
9876 
9877 /**
9878  * 8-bit folds to compute 32-bit CRC
9879  *
9880  * uint64_t xcrc;
9881  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
9882  */
9883 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
9884   movdl(tmp, xcrc);
9885   andl(tmp, 0xFF);
9886   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
9887   psrldq(xcrc, 1); // unsigned shift one byte
9888   pxor(xcrc, xtmp);
9889 }
9890 
9891 /**
9892  * uint32_t crc;
9893  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
9894  */
9895 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
9896   movl(tmp, crc);
9897   andl(tmp, 0xFF);
9898   shrl(crc, 8);
9899   xorl(crc, Address(table, tmp, Address::times_4, 0));
9900 }
9901 
9902 /**
9903  * @param crc   register containing existing CRC (32-bit)
9904  * @param buf   register pointing to input byte buffer (byte*)
9905  * @param len   register containing number of bytes
9906  * @param table register that will contain address of CRC table
9907  * @param tmp   scratch register
9908  */
9909 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
9910   assert_different_registers(crc, buf, len, table, tmp, rax);
9911 
9912   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
9913   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
9914 
9915   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
9916   // context for the registers used, where all instructions below are using 128-bit mode
9917   // On EVEX without VL and BW, these instructions will all be AVX.
9918   if (VM_Version::supports_avx512vlbw()) {
9919     movl(tmp, 0xffff);
9920     kmovwl(k1, tmp);
9921   }
9922 
9923   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
9924   notl(crc); // ~crc
9925   cmpl(len, 16);
9926   jcc(Assembler::less, L_tail);
9927 
9928   // Align buffer to 16 bytes
9929   movl(tmp, buf);
9930   andl(tmp, 0xF);
9931   jccb(Assembler::zero, L_aligned);
9932   subl(tmp,  16);
9933   addl(len, tmp);
9934 
9935   align(4);
9936   BIND(L_align_loop);
9937   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9938   update_byte_crc32(crc, rax, table);
9939   increment(buf);
9940   incrementl(tmp);
9941   jccb(Assembler::less, L_align_loop);
9942 
9943   BIND(L_aligned);
9944   movl(tmp, len); // save
9945   shrl(len, 4);
9946   jcc(Assembler::zero, L_tail_restore);
9947 
9948   // Fold total 512 bits of polynomial on each iteration
9949   if (VM_Version::supports_vpclmulqdq()) {
9950     Label Parallel_loop, L_No_Parallel;
9951 
9952     cmpl(len, 8);
9953     jccb(Assembler::less, L_No_Parallel);
9954 
9955     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9956     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
9957     movdl(xmm5, crc);
9958     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
9959     addptr(buf, 64);
9960     subl(len, 7);
9961     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
9962 
9963     BIND(Parallel_loop);
9964     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
9965     addptr(buf, 64);
9966     subl(len, 4);
9967     jcc(Assembler::greater, Parallel_loop);
9968 
9969     vextracti64x2(xmm2, xmm1, 0x01);
9970     vextracti64x2(xmm3, xmm1, 0x02);
9971     vextracti64x2(xmm4, xmm1, 0x03);
9972     jmp(L_fold_512b);
9973 
9974     BIND(L_No_Parallel);
9975   }
9976   // Fold crc into first bytes of vector
9977   movdqa(xmm1, Address(buf, 0));
9978   movdl(rax, xmm1);
9979   xorl(crc, rax);
9980   if (VM_Version::supports_sse4_1()) {
9981     pinsrd(xmm1, crc, 0);
9982   } else {
9983     pinsrw(xmm1, crc, 0);
9984     shrl(crc, 16);
9985     pinsrw(xmm1, crc, 1);
9986   }
9987   addptr(buf, 16);
9988   subl(len, 4); // len > 0
9989   jcc(Assembler::less, L_fold_tail);
9990 
9991   movdqa(xmm2, Address(buf,  0));
9992   movdqa(xmm3, Address(buf, 16));
9993   movdqa(xmm4, Address(buf, 32));
9994   addptr(buf, 48);
9995   subl(len, 3);
9996   jcc(Assembler::lessEqual, L_fold_512b);
9997 
9998   // Fold total 512 bits of polynomial on each iteration,
9999   // 128 bits per each of 4 parallel streams.
10000   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10001 
10002   align(32);
10003   BIND(L_fold_512b_loop);
10004   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10005   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10006   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10007   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10008   addptr(buf, 64);
10009   subl(len, 4);
10010   jcc(Assembler::greater, L_fold_512b_loop);
10011 
10012   // Fold 512 bits to 128 bits.
10013   BIND(L_fold_512b);
10014   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10015   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10016   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10017   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10018 
10019   // Fold the rest of 128 bits data chunks
10020   BIND(L_fold_tail);
10021   addl(len, 3);
10022   jccb(Assembler::lessEqual, L_fold_128b);
10023   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10024 
10025   BIND(L_fold_tail_loop);
10026   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10027   addptr(buf, 16);
10028   decrementl(len);
10029   jccb(Assembler::greater, L_fold_tail_loop);
10030 
10031   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10032   BIND(L_fold_128b);
10033   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10034   if (UseAVX > 0) {
10035     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10036     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10037     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10038   } else {
10039     movdqa(xmm2, xmm0);
10040     pclmulqdq(xmm2, xmm1, 0x1);
10041     movdqa(xmm3, xmm0);
10042     pand(xmm3, xmm2);
10043     pclmulqdq(xmm0, xmm3, 0x1);
10044   }
10045   psrldq(xmm1, 8);
10046   psrldq(xmm2, 4);
10047   pxor(xmm0, xmm1);
10048   pxor(xmm0, xmm2);
10049 
10050   // 8 8-bit folds to compute 32-bit CRC.
10051   for (int j = 0; j < 4; j++) {
10052     fold_8bit_crc32(xmm0, table, xmm1, rax);
10053   }
10054   movdl(crc, xmm0); // mov 32 bits to general register
10055   for (int j = 0; j < 4; j++) {
10056     fold_8bit_crc32(crc, table, rax);
10057   }
10058 
10059   BIND(L_tail_restore);
10060   movl(len, tmp); // restore
10061   BIND(L_tail);
10062   andl(len, 0xf);
10063   jccb(Assembler::zero, L_exit);
10064 
10065   // Fold the rest of bytes
10066   align(4);
10067   BIND(L_tail_loop);
10068   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10069   update_byte_crc32(crc, rax, table);
10070   increment(buf);
10071   decrementl(len);
10072   jccb(Assembler::greater, L_tail_loop);
10073 
10074   BIND(L_exit);
10075   notl(crc); // ~c
10076 }
10077 
10078 #ifdef _LP64
10079 // S. Gueron / Information Processing Letters 112 (2012) 184
10080 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10081 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10082 // Output: the 64-bit carry-less product of B * CONST
10083 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10084                                      Register tmp1, Register tmp2, Register tmp3) {
10085   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10086   if (n > 0) {
10087     addq(tmp3, n * 256 * 8);
10088   }
10089   //    Q1 = TABLEExt[n][B & 0xFF];
10090   movl(tmp1, in);
10091   andl(tmp1, 0x000000FF);
10092   shll(tmp1, 3);
10093   addq(tmp1, tmp3);
10094   movq(tmp1, Address(tmp1, 0));
10095 
10096   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10097   movl(tmp2, in);
10098   shrl(tmp2, 8);
10099   andl(tmp2, 0x000000FF);
10100   shll(tmp2, 3);
10101   addq(tmp2, tmp3);
10102   movq(tmp2, Address(tmp2, 0));
10103 
10104   shlq(tmp2, 8);
10105   xorq(tmp1, tmp2);
10106 
10107   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10108   movl(tmp2, in);
10109   shrl(tmp2, 16);
10110   andl(tmp2, 0x000000FF);
10111   shll(tmp2, 3);
10112   addq(tmp2, tmp3);
10113   movq(tmp2, Address(tmp2, 0));
10114 
10115   shlq(tmp2, 16);
10116   xorq(tmp1, tmp2);
10117 
10118   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10119   shrl(in, 24);
10120   andl(in, 0x000000FF);
10121   shll(in, 3);
10122   addq(in, tmp3);
10123   movq(in, Address(in, 0));
10124 
10125   shlq(in, 24);
10126   xorq(in, tmp1);
10127   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10128 }
10129 
10130 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10131                                       Register in_out,
10132                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10133                                       XMMRegister w_xtmp2,
10134                                       Register tmp1,
10135                                       Register n_tmp2, Register n_tmp3) {
10136   if (is_pclmulqdq_supported) {
10137     movdl(w_xtmp1, in_out); // modified blindly
10138 
10139     movl(tmp1, const_or_pre_comp_const_index);
10140     movdl(w_xtmp2, tmp1);
10141     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10142 
10143     movdq(in_out, w_xtmp1);
10144   } else {
10145     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10146   }
10147 }
10148 
10149 // Recombination Alternative 2: No bit-reflections
10150 // T1 = (CRC_A * U1) << 1
10151 // T2 = (CRC_B * U2) << 1
10152 // C1 = T1 >> 32
10153 // C2 = T2 >> 32
10154 // T1 = T1 & 0xFFFFFFFF
10155 // T2 = T2 & 0xFFFFFFFF
10156 // T1 = CRC32(0, T1)
10157 // T2 = CRC32(0, T2)
10158 // C1 = C1 ^ T1
10159 // C2 = C2 ^ T2
10160 // CRC = C1 ^ C2 ^ CRC_C
10161 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10162                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10163                                      Register tmp1, Register tmp2,
10164                                      Register n_tmp3) {
10165   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10166   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10167   shlq(in_out, 1);
10168   movl(tmp1, in_out);
10169   shrq(in_out, 32);
10170   xorl(tmp2, tmp2);
10171   crc32(tmp2, tmp1, 4);
10172   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10173   shlq(in1, 1);
10174   movl(tmp1, in1);
10175   shrq(in1, 32);
10176   xorl(tmp2, tmp2);
10177   crc32(tmp2, tmp1, 4);
10178   xorl(in1, tmp2);
10179   xorl(in_out, in1);
10180   xorl(in_out, in2);
10181 }
10182 
10183 // Set N to predefined value
10184 // Subtract from a lenght of a buffer
10185 // execute in a loop:
10186 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10187 // for i = 1 to N do
10188 //  CRC_A = CRC32(CRC_A, A[i])
10189 //  CRC_B = CRC32(CRC_B, B[i])
10190 //  CRC_C = CRC32(CRC_C, C[i])
10191 // end for
10192 // Recombine
10193 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10194                                        Register in_out1, Register in_out2, Register in_out3,
10195                                        Register tmp1, Register tmp2, Register tmp3,
10196                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10197                                        Register tmp4, Register tmp5,
10198                                        Register n_tmp6) {
10199   Label L_processPartitions;
10200   Label L_processPartition;
10201   Label L_exit;
10202 
10203   bind(L_processPartitions);
10204   cmpl(in_out1, 3 * size);
10205   jcc(Assembler::less, L_exit);
10206     xorl(tmp1, tmp1);
10207     xorl(tmp2, tmp2);
10208     movq(tmp3, in_out2);
10209     addq(tmp3, size);
10210 
10211     bind(L_processPartition);
10212       crc32(in_out3, Address(in_out2, 0), 8);
10213       crc32(tmp1, Address(in_out2, size), 8);
10214       crc32(tmp2, Address(in_out2, size * 2), 8);
10215       addq(in_out2, 8);
10216       cmpq(in_out2, tmp3);
10217       jcc(Assembler::less, L_processPartition);
10218     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10219             w_xtmp1, w_xtmp2, w_xtmp3,
10220             tmp4, tmp5,
10221             n_tmp6);
10222     addq(in_out2, 2 * size);
10223     subl(in_out1, 3 * size);
10224     jmp(L_processPartitions);
10225 
10226   bind(L_exit);
10227 }
10228 #else
10229 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10230                                      Register tmp1, Register tmp2, Register tmp3,
10231                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10232   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10233   if (n > 0) {
10234     addl(tmp3, n * 256 * 8);
10235   }
10236   //    Q1 = TABLEExt[n][B & 0xFF];
10237   movl(tmp1, in_out);
10238   andl(tmp1, 0x000000FF);
10239   shll(tmp1, 3);
10240   addl(tmp1, tmp3);
10241   movq(xtmp1, Address(tmp1, 0));
10242 
10243   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10244   movl(tmp2, in_out);
10245   shrl(tmp2, 8);
10246   andl(tmp2, 0x000000FF);
10247   shll(tmp2, 3);
10248   addl(tmp2, tmp3);
10249   movq(xtmp2, Address(tmp2, 0));
10250 
10251   psllq(xtmp2, 8);
10252   pxor(xtmp1, xtmp2);
10253 
10254   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10255   movl(tmp2, in_out);
10256   shrl(tmp2, 16);
10257   andl(tmp2, 0x000000FF);
10258   shll(tmp2, 3);
10259   addl(tmp2, tmp3);
10260   movq(xtmp2, Address(tmp2, 0));
10261 
10262   psllq(xtmp2, 16);
10263   pxor(xtmp1, xtmp2);
10264 
10265   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10266   shrl(in_out, 24);
10267   andl(in_out, 0x000000FF);
10268   shll(in_out, 3);
10269   addl(in_out, tmp3);
10270   movq(xtmp2, Address(in_out, 0));
10271 
10272   psllq(xtmp2, 24);
10273   pxor(xtmp1, xtmp2); // Result in CXMM
10274   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10275 }
10276 
10277 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10278                                       Register in_out,
10279                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10280                                       XMMRegister w_xtmp2,
10281                                       Register tmp1,
10282                                       Register n_tmp2, Register n_tmp3) {
10283   if (is_pclmulqdq_supported) {
10284     movdl(w_xtmp1, in_out);
10285 
10286     movl(tmp1, const_or_pre_comp_const_index);
10287     movdl(w_xtmp2, tmp1);
10288     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10289     // Keep result in XMM since GPR is 32 bit in length
10290   } else {
10291     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10292   }
10293 }
10294 
10295 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10296                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10297                                      Register tmp1, Register tmp2,
10298                                      Register n_tmp3) {
10299   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10300   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10301 
10302   psllq(w_xtmp1, 1);
10303   movdl(tmp1, w_xtmp1);
10304   psrlq(w_xtmp1, 32);
10305   movdl(in_out, w_xtmp1);
10306 
10307   xorl(tmp2, tmp2);
10308   crc32(tmp2, tmp1, 4);
10309   xorl(in_out, tmp2);
10310 
10311   psllq(w_xtmp2, 1);
10312   movdl(tmp1, w_xtmp2);
10313   psrlq(w_xtmp2, 32);
10314   movdl(in1, w_xtmp2);
10315 
10316   xorl(tmp2, tmp2);
10317   crc32(tmp2, tmp1, 4);
10318   xorl(in1, tmp2);
10319   xorl(in_out, in1);
10320   xorl(in_out, in2);
10321 }
10322 
10323 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10324                                        Register in_out1, Register in_out2, Register in_out3,
10325                                        Register tmp1, Register tmp2, Register tmp3,
10326                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10327                                        Register tmp4, Register tmp5,
10328                                        Register n_tmp6) {
10329   Label L_processPartitions;
10330   Label L_processPartition;
10331   Label L_exit;
10332 
10333   bind(L_processPartitions);
10334   cmpl(in_out1, 3 * size);
10335   jcc(Assembler::less, L_exit);
10336     xorl(tmp1, tmp1);
10337     xorl(tmp2, tmp2);
10338     movl(tmp3, in_out2);
10339     addl(tmp3, size);
10340 
10341     bind(L_processPartition);
10342       crc32(in_out3, Address(in_out2, 0), 4);
10343       crc32(tmp1, Address(in_out2, size), 4);
10344       crc32(tmp2, Address(in_out2, size*2), 4);
10345       crc32(in_out3, Address(in_out2, 0+4), 4);
10346       crc32(tmp1, Address(in_out2, size+4), 4);
10347       crc32(tmp2, Address(in_out2, size*2+4), 4);
10348       addl(in_out2, 8);
10349       cmpl(in_out2, tmp3);
10350       jcc(Assembler::less, L_processPartition);
10351 
10352         push(tmp3);
10353         push(in_out1);
10354         push(in_out2);
10355         tmp4 = tmp3;
10356         tmp5 = in_out1;
10357         n_tmp6 = in_out2;
10358 
10359       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10360             w_xtmp1, w_xtmp2, w_xtmp3,
10361             tmp4, tmp5,
10362             n_tmp6);
10363 
10364         pop(in_out2);
10365         pop(in_out1);
10366         pop(tmp3);
10367 
10368     addl(in_out2, 2 * size);
10369     subl(in_out1, 3 * size);
10370     jmp(L_processPartitions);
10371 
10372   bind(L_exit);
10373 }
10374 #endif //LP64
10375 
10376 #ifdef _LP64
10377 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10378 // Input: A buffer I of L bytes.
10379 // Output: the CRC32C value of the buffer.
10380 // Notations:
10381 // Write L = 24N + r, with N = floor (L/24).
10382 // r = L mod 24 (0 <= r < 24).
10383 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10384 // N quadwords, and R consists of r bytes.
10385 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10386 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10387 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10388 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10389 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10390                                           Register tmp1, Register tmp2, Register tmp3,
10391                                           Register tmp4, Register tmp5, Register tmp6,
10392                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10393                                           bool is_pclmulqdq_supported) {
10394   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10395   Label L_wordByWord;
10396   Label L_byteByByteProlog;
10397   Label L_byteByByte;
10398   Label L_exit;
10399 
10400   if (is_pclmulqdq_supported ) {
10401     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10402     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10403 
10404     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10405     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10406 
10407     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10408     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10409     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10410   } else {
10411     const_or_pre_comp_const_index[0] = 1;
10412     const_or_pre_comp_const_index[1] = 0;
10413 
10414     const_or_pre_comp_const_index[2] = 3;
10415     const_or_pre_comp_const_index[3] = 2;
10416 
10417     const_or_pre_comp_const_index[4] = 5;
10418     const_or_pre_comp_const_index[5] = 4;
10419    }
10420   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10421                     in2, in1, in_out,
10422                     tmp1, tmp2, tmp3,
10423                     w_xtmp1, w_xtmp2, w_xtmp3,
10424                     tmp4, tmp5,
10425                     tmp6);
10426   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10427                     in2, in1, in_out,
10428                     tmp1, tmp2, tmp3,
10429                     w_xtmp1, w_xtmp2, w_xtmp3,
10430                     tmp4, tmp5,
10431                     tmp6);
10432   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10433                     in2, in1, in_out,
10434                     tmp1, tmp2, tmp3,
10435                     w_xtmp1, w_xtmp2, w_xtmp3,
10436                     tmp4, tmp5,
10437                     tmp6);
10438   movl(tmp1, in2);
10439   andl(tmp1, 0x00000007);
10440   negl(tmp1);
10441   addl(tmp1, in2);
10442   addq(tmp1, in1);
10443 
10444   BIND(L_wordByWord);
10445   cmpq(in1, tmp1);
10446   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10447     crc32(in_out, Address(in1, 0), 4);
10448     addq(in1, 4);
10449     jmp(L_wordByWord);
10450 
10451   BIND(L_byteByByteProlog);
10452   andl(in2, 0x00000007);
10453   movl(tmp2, 1);
10454 
10455   BIND(L_byteByByte);
10456   cmpl(tmp2, in2);
10457   jccb(Assembler::greater, L_exit);
10458     crc32(in_out, Address(in1, 0), 1);
10459     incq(in1);
10460     incl(tmp2);
10461     jmp(L_byteByByte);
10462 
10463   BIND(L_exit);
10464 }
10465 #else
10466 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10467                                           Register tmp1, Register  tmp2, Register tmp3,
10468                                           Register tmp4, Register  tmp5, Register tmp6,
10469                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10470                                           bool is_pclmulqdq_supported) {
10471   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10472   Label L_wordByWord;
10473   Label L_byteByByteProlog;
10474   Label L_byteByByte;
10475   Label L_exit;
10476 
10477   if (is_pclmulqdq_supported) {
10478     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10479     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10480 
10481     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10482     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10483 
10484     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10485     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10486   } else {
10487     const_or_pre_comp_const_index[0] = 1;
10488     const_or_pre_comp_const_index[1] = 0;
10489 
10490     const_or_pre_comp_const_index[2] = 3;
10491     const_or_pre_comp_const_index[3] = 2;
10492 
10493     const_or_pre_comp_const_index[4] = 5;
10494     const_or_pre_comp_const_index[5] = 4;
10495   }
10496   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10497                     in2, in1, in_out,
10498                     tmp1, tmp2, tmp3,
10499                     w_xtmp1, w_xtmp2, w_xtmp3,
10500                     tmp4, tmp5,
10501                     tmp6);
10502   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10503                     in2, in1, in_out,
10504                     tmp1, tmp2, tmp3,
10505                     w_xtmp1, w_xtmp2, w_xtmp3,
10506                     tmp4, tmp5,
10507                     tmp6);
10508   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10509                     in2, in1, in_out,
10510                     tmp1, tmp2, tmp3,
10511                     w_xtmp1, w_xtmp2, w_xtmp3,
10512                     tmp4, tmp5,
10513                     tmp6);
10514   movl(tmp1, in2);
10515   andl(tmp1, 0x00000007);
10516   negl(tmp1);
10517   addl(tmp1, in2);
10518   addl(tmp1, in1);
10519 
10520   BIND(L_wordByWord);
10521   cmpl(in1, tmp1);
10522   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10523     crc32(in_out, Address(in1,0), 4);
10524     addl(in1, 4);
10525     jmp(L_wordByWord);
10526 
10527   BIND(L_byteByByteProlog);
10528   andl(in2, 0x00000007);
10529   movl(tmp2, 1);
10530 
10531   BIND(L_byteByByte);
10532   cmpl(tmp2, in2);
10533   jccb(Assembler::greater, L_exit);
10534     movb(tmp1, Address(in1, 0));
10535     crc32(in_out, tmp1, 1);
10536     incl(in1);
10537     incl(tmp2);
10538     jmp(L_byteByByte);
10539 
10540   BIND(L_exit);
10541 }
10542 #endif // LP64
10543 #undef BIND
10544 #undef BLOCK_COMMENT
10545 
10546 // Compress char[] array to byte[].
10547 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10548 //   @HotSpotIntrinsicCandidate
10549 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10550 //     for (int i = 0; i < len; i++) {
10551 //       int c = src[srcOff++];
10552 //       if (c >>> 8 != 0) {
10553 //         return 0;
10554 //       }
10555 //       dst[dstOff++] = (byte)c;
10556 //     }
10557 //     return len;
10558 //   }
10559 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10560   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10561   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10562   Register tmp5, Register result) {
10563   Label copy_chars_loop, return_length, return_zero, done, below_threshold;
10564 
10565   // rsi: src
10566   // rdi: dst
10567   // rdx: len
10568   // rcx: tmp5
10569   // rax: result
10570 
10571   // rsi holds start addr of source char[] to be compressed
10572   // rdi holds start addr of destination byte[]
10573   // rdx holds length
10574 
10575   assert(len != result, "");
10576 
10577   // save length for return
10578   push(len);
10579 
10580   if ((UseAVX > 2) && // AVX512
10581     VM_Version::supports_avx512vlbw() &&
10582     VM_Version::supports_bmi2()) {
10583 
10584     set_vector_masking();  // opening of the stub context for programming mask registers
10585 
10586     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero;
10587 
10588     // alignement
10589     Label post_alignement;
10590 
10591     // if length of the string is less than 16, handle it in an old fashioned
10592     // way
10593     testl(len, -32);
10594     jcc(Assembler::zero, below_threshold);
10595 
10596     // First check whether a character is compressable ( <= 0xFF).
10597     // Create mask to test for Unicode chars inside zmm vector
10598     movl(result, 0x00FF);
10599     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10600 
10601     // Save k1
10602     kmovql(k3, k1);
10603 
10604     testl(len, -64);
10605     jcc(Assembler::zero, post_alignement);
10606 
10607     movl(tmp5, dst);
10608     andl(tmp5, (32 - 1));
10609     negl(tmp5);
10610     andl(tmp5, (32 - 1));
10611 
10612     // bail out when there is nothing to be done
10613     testl(tmp5, 0xFFFFFFFF);
10614     jcc(Assembler::zero, post_alignement);
10615 
10616     // ~(~0 << len), where len is the # of remaining elements to process
10617     movl(result, 0xFFFFFFFF);
10618     shlxl(result, result, tmp5);
10619     notl(result);
10620     kmovdl(k1, result);
10621 
10622     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10623     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10624     ktestd(k2, k1);
10625     jcc(Assembler::carryClear, restore_k1_return_zero);
10626 
10627     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10628 
10629     addptr(src, tmp5);
10630     addptr(src, tmp5);
10631     addptr(dst, tmp5);
10632     subl(len, tmp5);
10633 
10634     bind(post_alignement);
10635     // end of alignement
10636 
10637     movl(tmp5, len);
10638     andl(tmp5, (32 - 1));    // tail count (in chars)
10639     andl(len, ~(32 - 1));    // vector count (in chars)
10640     jcc(Assembler::zero, copy_loop_tail);
10641 
10642     lea(src, Address(src, len, Address::times_2));
10643     lea(dst, Address(dst, len, Address::times_1));
10644     negptr(len);
10645 
10646     bind(copy_32_loop);
10647     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10648     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10649     kortestdl(k2, k2);
10650     jcc(Assembler::carryClear, restore_k1_return_zero);
10651 
10652     // All elements in current processed chunk are valid candidates for
10653     // compression. Write a truncated byte elements to the memory.
10654     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10655     addptr(len, 32);
10656     jcc(Assembler::notZero, copy_32_loop);
10657 
10658     bind(copy_loop_tail);
10659     // bail out when there is nothing to be done
10660     testl(tmp5, 0xFFFFFFFF);
10661     // Restore k1
10662     kmovql(k1, k3);
10663     jcc(Assembler::zero, return_length);
10664 
10665     movl(len, tmp5);
10666 
10667     // ~(~0 << len), where len is the # of remaining elements to process
10668     movl(result, 0xFFFFFFFF);
10669     shlxl(result, result, len);
10670     notl(result);
10671 
10672     kmovdl(k1, result);
10673 
10674     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10675     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10676     ktestd(k2, k1);
10677     jcc(Assembler::carryClear, restore_k1_return_zero);
10678 
10679     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10680     // Restore k1
10681     kmovql(k1, k3);
10682     jmp(return_length);
10683 
10684     bind(restore_k1_return_zero);
10685     // Restore k1
10686     kmovql(k1, k3);
10687     jmp(return_zero);
10688 
10689     clear_vector_masking();   // closing of the stub context for programming mask registers
10690   }
10691   if (UseSSE42Intrinsics) {
10692     Label copy_32_loop, copy_16, copy_tail;
10693 
10694     bind(below_threshold);
10695 
10696     movl(result, len);
10697 
10698     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10699 
10700     // vectored compression
10701     andl(len, 0xfffffff0);    // vector count (in chars)
10702     andl(result, 0x0000000f);    // tail count (in chars)
10703     testl(len, len);
10704     jccb(Assembler::zero, copy_16);
10705 
10706     // compress 16 chars per iter
10707     movdl(tmp1Reg, tmp5);
10708     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10709     pxor(tmp4Reg, tmp4Reg);
10710 
10711     lea(src, Address(src, len, Address::times_2));
10712     lea(dst, Address(dst, len, Address::times_1));
10713     negptr(len);
10714 
10715     bind(copy_32_loop);
10716     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10717     por(tmp4Reg, tmp2Reg);
10718     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10719     por(tmp4Reg, tmp3Reg);
10720     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10721     jcc(Assembler::notZero, return_zero);
10722     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10723     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10724     addptr(len, 16);
10725     jcc(Assembler::notZero, copy_32_loop);
10726 
10727     // compress next vector of 8 chars (if any)
10728     bind(copy_16);
10729     movl(len, result);
10730     andl(len, 0xfffffff8);    // vector count (in chars)
10731     andl(result, 0x00000007);    // tail count (in chars)
10732     testl(len, len);
10733     jccb(Assembler::zero, copy_tail);
10734 
10735     movdl(tmp1Reg, tmp5);
10736     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10737     pxor(tmp3Reg, tmp3Reg);
10738 
10739     movdqu(tmp2Reg, Address(src, 0));
10740     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10741     jccb(Assembler::notZero, return_zero);
10742     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10743     movq(Address(dst, 0), tmp2Reg);
10744     addptr(src, 16);
10745     addptr(dst, 8);
10746 
10747     bind(copy_tail);
10748     movl(len, result);
10749   }
10750   // compress 1 char per iter
10751   testl(len, len);
10752   jccb(Assembler::zero, return_length);
10753   lea(src, Address(src, len, Address::times_2));
10754   lea(dst, Address(dst, len, Address::times_1));
10755   negptr(len);
10756 
10757   bind(copy_chars_loop);
10758   load_unsigned_short(result, Address(src, len, Address::times_2));
10759   testl(result, 0xff00);      // check if Unicode char
10760   jccb(Assembler::notZero, return_zero);
10761   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
10762   increment(len);
10763   jcc(Assembler::notZero, copy_chars_loop);
10764 
10765   // if compression succeeded, return length
10766   bind(return_length);
10767   pop(result);
10768   jmpb(done);
10769 
10770   // if compression failed, return 0
10771   bind(return_zero);
10772   xorl(result, result);
10773   addptr(rsp, wordSize);
10774 
10775   bind(done);
10776 }
10777 
10778 // Inflate byte[] array to char[].
10779 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
10780 //   @HotSpotIntrinsicCandidate
10781 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
10782 //     for (int i = 0; i < len; i++) {
10783 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
10784 //     }
10785 //   }
10786 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
10787   XMMRegister tmp1, Register tmp2) {
10788   Label copy_chars_loop, done, below_threshold;
10789   // rsi: src
10790   // rdi: dst
10791   // rdx: len
10792   // rcx: tmp2
10793 
10794   // rsi holds start addr of source byte[] to be inflated
10795   // rdi holds start addr of destination char[]
10796   // rdx holds length
10797   assert_different_registers(src, dst, len, tmp2);
10798 
10799   if ((UseAVX > 2) && // AVX512
10800     VM_Version::supports_avx512vlbw() &&
10801     VM_Version::supports_bmi2()) {
10802 
10803     set_vector_masking();  // opening of the stub context for programming mask registers
10804 
10805     Label copy_32_loop, copy_tail;
10806     Register tmp3_aliased = len;
10807 
10808     // if length of the string is less than 16, handle it in an old fashioned
10809     // way
10810     testl(len, -16);
10811     jcc(Assembler::zero, below_threshold);
10812 
10813     // In order to use only one arithmetic operation for the main loop we use
10814     // this pre-calculation
10815     movl(tmp2, len);
10816     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
10817     andl(len, -32);     // vector count
10818     jccb(Assembler::zero, copy_tail);
10819 
10820     lea(src, Address(src, len, Address::times_1));
10821     lea(dst, Address(dst, len, Address::times_2));
10822     negptr(len);
10823 
10824 
10825     // inflate 32 chars per iter
10826     bind(copy_32_loop);
10827     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
10828     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
10829     addptr(len, 32);
10830     jcc(Assembler::notZero, copy_32_loop);
10831 
10832     bind(copy_tail);
10833     // bail out when there is nothing to be done
10834     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
10835     jcc(Assembler::zero, done);
10836 
10837     // Save k1
10838     kmovql(k2, k1);
10839 
10840     // ~(~0 << length), where length is the # of remaining elements to process
10841     movl(tmp3_aliased, -1);
10842     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
10843     notl(tmp3_aliased);
10844     kmovdl(k1, tmp3_aliased);
10845     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
10846     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
10847 
10848     // Restore k1
10849     kmovql(k1, k2);
10850     jmp(done);
10851 
10852     clear_vector_masking();   // closing of the stub context for programming mask registers
10853   }
10854   if (UseSSE42Intrinsics) {
10855     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
10856 
10857     movl(tmp2, len);
10858 
10859     if (UseAVX > 1) {
10860       andl(tmp2, (16 - 1));
10861       andl(len, -16);
10862       jccb(Assembler::zero, copy_new_tail);
10863     } else {
10864       andl(tmp2, 0x00000007);   // tail count (in chars)
10865       andl(len, 0xfffffff8);    // vector count (in chars)
10866       jccb(Assembler::zero, copy_tail);
10867     }
10868 
10869     // vectored inflation
10870     lea(src, Address(src, len, Address::times_1));
10871     lea(dst, Address(dst, len, Address::times_2));
10872     negptr(len);
10873 
10874     if (UseAVX > 1) {
10875       bind(copy_16_loop);
10876       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
10877       vmovdqu(Address(dst, len, Address::times_2), tmp1);
10878       addptr(len, 16);
10879       jcc(Assembler::notZero, copy_16_loop);
10880 
10881       bind(below_threshold);
10882       bind(copy_new_tail);
10883       if ((UseAVX > 2) &&
10884         VM_Version::supports_avx512vlbw() &&
10885         VM_Version::supports_bmi2()) {
10886         movl(tmp2, len);
10887       } else {
10888         movl(len, tmp2);
10889       }
10890       andl(tmp2, 0x00000007);
10891       andl(len, 0xFFFFFFF8);
10892       jccb(Assembler::zero, copy_tail);
10893 
10894       pmovzxbw(tmp1, Address(src, 0));
10895       movdqu(Address(dst, 0), tmp1);
10896       addptr(src, 8);
10897       addptr(dst, 2 * 8);
10898 
10899       jmp(copy_tail, true);
10900     }
10901 
10902     // inflate 8 chars per iter
10903     bind(copy_8_loop);
10904     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
10905     movdqu(Address(dst, len, Address::times_2), tmp1);
10906     addptr(len, 8);
10907     jcc(Assembler::notZero, copy_8_loop);
10908 
10909     bind(copy_tail);
10910     movl(len, tmp2);
10911 
10912     cmpl(len, 4);
10913     jccb(Assembler::less, copy_bytes);
10914 
10915     movdl(tmp1, Address(src, 0));  // load 4 byte chars
10916     pmovzxbw(tmp1, tmp1);
10917     movq(Address(dst, 0), tmp1);
10918     subptr(len, 4);
10919     addptr(src, 4);
10920     addptr(dst, 8);
10921 
10922     bind(copy_bytes);
10923   }
10924   testl(len, len);
10925   jccb(Assembler::zero, done);
10926   lea(src, Address(src, len, Address::times_1));
10927   lea(dst, Address(dst, len, Address::times_2));
10928   negptr(len);
10929 
10930   // inflate 1 char per iter
10931   bind(copy_chars_loop);
10932   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
10933   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
10934   increment(len);
10935   jcc(Assembler::notZero, copy_chars_loop);
10936 
10937   bind(done);
10938 }
10939 
10940 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10941   switch (cond) {
10942     // Note some conditions are synonyms for others
10943     case Assembler::zero:         return Assembler::notZero;
10944     case Assembler::notZero:      return Assembler::zero;
10945     case Assembler::less:         return Assembler::greaterEqual;
10946     case Assembler::lessEqual:    return Assembler::greater;
10947     case Assembler::greater:      return Assembler::lessEqual;
10948     case Assembler::greaterEqual: return Assembler::less;
10949     case Assembler::below:        return Assembler::aboveEqual;
10950     case Assembler::belowEqual:   return Assembler::above;
10951     case Assembler::above:        return Assembler::belowEqual;
10952     case Assembler::aboveEqual:   return Assembler::below;
10953     case Assembler::overflow:     return Assembler::noOverflow;
10954     case Assembler::noOverflow:   return Assembler::overflow;
10955     case Assembler::negative:     return Assembler::positive;
10956     case Assembler::positive:     return Assembler::negative;
10957     case Assembler::parity:       return Assembler::noParity;
10958     case Assembler::noParity:     return Assembler::parity;
10959   }
10960   ShouldNotReachHere(); return Assembler::overflow;
10961 }
10962 
10963 SkipIfEqual::SkipIfEqual(
10964     MacroAssembler* masm, const bool* flag_addr, bool value) {
10965   _masm = masm;
10966   _masm->cmp8(ExternalAddress((address)flag_addr), value);
10967   _masm->jcc(Assembler::equal, _label);
10968 }
10969 
10970 SkipIfEqual::~SkipIfEqual() {
10971   _masm->bind(_label);
10972 }
10973 
10974 // 32-bit Windows has its own fast-path implementation
10975 // of get_thread
10976 #if !defined(WIN32) || defined(_LP64)
10977 
10978 // This is simply a call to Thread::current()
10979 void MacroAssembler::get_thread(Register thread) {
10980   if (thread != rax) {
10981     push(rax);
10982   }
10983   LP64_ONLY(push(rdi);)
10984   LP64_ONLY(push(rsi);)
10985   push(rdx);
10986   push(rcx);
10987 #ifdef _LP64
10988   push(r8);
10989   push(r9);
10990   push(r10);
10991   push(r11);
10992 #endif
10993 
10994   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10995 
10996 #ifdef _LP64
10997   pop(r11);
10998   pop(r10);
10999   pop(r9);
11000   pop(r8);
11001 #endif
11002   pop(rcx);
11003   pop(rdx);
11004   LP64_ONLY(pop(rsi);)
11005   LP64_ONLY(pop(rdi);)
11006   if (thread != rax) {
11007     mov(thread, rax);
11008     pop(rax);
11009   }
11010 }
11011 
11012 #endif