1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // jobjects
 297   void clear_jweak_tag(Register possibly_jweak);
 298   void resolve_jobject(Register value, Register thread, Register tmp);
 299 
 300   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 301   void c2bool(Register x);
 302 
 303   // C++ bool manipulation
 304 
 305   void movbool(Register dst, Address src);
 306   void movbool(Address dst, bool boolconst);
 307   void movbool(Address dst, Register src);
 308   void testbool(Register dst);
 309 
 310   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 311   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 312 
 313   // oop manipulations
 314   void load_klass(Register dst, Register src);
 315   void store_klass(Register dst, Register src);
 316 
 317   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 318                       Register tmp1, Register thread_tmp);
 319   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 320                        Register tmp1, Register tmp2);
 321 
 322   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 323                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 324   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 325                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 326   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 327                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 328 
 329   // Used for storing NULL. All other oop constants should be
 330   // stored using routines that take a jobject.
 331   void store_heap_oop_null(Address dst);
 332 
 333   void load_prototype_header(Register dst, Register src);
 334 
 335 #ifdef _LP64
 336   void store_klass_gap(Register dst, Register src);
 337 
 338   // This dummy is to prevent a call to store_heap_oop from
 339   // converting a zero (like NULL) into a Register by giving
 340   // the compiler two choices it can't resolve
 341 
 342   void store_heap_oop(Address dst, void* dummy);
 343 
 344   void encode_heap_oop(Register r);
 345   void decode_heap_oop(Register r);
 346   void encode_heap_oop_not_null(Register r);
 347   void decode_heap_oop_not_null(Register r);
 348   void encode_heap_oop_not_null(Register dst, Register src);
 349   void decode_heap_oop_not_null(Register dst, Register src);
 350 
 351   void set_narrow_oop(Register dst, jobject obj);
 352   void set_narrow_oop(Address dst, jobject obj);
 353   void cmp_narrow_oop(Register dst, jobject obj);
 354   void cmp_narrow_oop(Address dst, jobject obj);
 355 
 356   void encode_klass_not_null(Register r);
 357   void decode_klass_not_null(Register r);
 358   void encode_klass_not_null(Register dst, Register src);
 359   void decode_klass_not_null(Register dst, Register src);
 360   void set_narrow_klass(Register dst, Klass* k);
 361   void set_narrow_klass(Address dst, Klass* k);
 362   void cmp_narrow_klass(Register dst, Klass* k);
 363   void cmp_narrow_klass(Address dst, Klass* k);
 364 
 365   // Returns the byte size of the instructions generated by decode_klass_not_null()
 366   // when compressed klass pointers are being used.
 367   static int instr_size_for_decode_klass_not_null();
 368 
 369   // if heap base register is used - reinit it with the correct value
 370   void reinit_heapbase();
 371 
 372   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 373 
 374 #endif // _LP64
 375 
 376   // Int division/remainder for Java
 377   // (as idivl, but checks for special case as described in JVM spec.)
 378   // returns idivl instruction offset for implicit exception handling
 379   int corrected_idivl(Register reg);
 380 
 381   // Long division/remainder for Java
 382   // (as idivq, but checks for special case as described in JVM spec.)
 383   // returns idivq instruction offset for implicit exception handling
 384   int corrected_idivq(Register reg);
 385 
 386   void int3();
 387 
 388   // Long operation macros for a 32bit cpu
 389   // Long negation for Java
 390   void lneg(Register hi, Register lo);
 391 
 392   // Long multiplication for Java
 393   // (destroys contents of eax, ebx, ecx and edx)
 394   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 395 
 396   // Long shifts for Java
 397   // (semantics as described in JVM spec.)
 398   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 399   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 400 
 401   // Long compare for Java
 402   // (semantics as described in JVM spec.)
 403   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 404 
 405 
 406   // misc
 407 
 408   // Sign extension
 409   void sign_extend_short(Register reg);
 410   void sign_extend_byte(Register reg);
 411 
 412   // Division by power of 2, rounding towards 0
 413   void division_with_shift(Register reg, int shift_value);
 414 
 415   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 416   //
 417   // CF (corresponds to C0) if x < y
 418   // PF (corresponds to C2) if unordered
 419   // ZF (corresponds to C3) if x = y
 420   //
 421   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 422   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 423   void fcmp(Register tmp);
 424   // Variant of the above which allows y to be further down the stack
 425   // and which only pops x and y if specified. If pop_right is
 426   // specified then pop_left must also be specified.
 427   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 428 
 429   // Floating-point comparison for Java
 430   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 431   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 432   // (semantics as described in JVM spec.)
 433   void fcmp2int(Register dst, bool unordered_is_less);
 434   // Variant of the above which allows y to be further down the stack
 435   // and which only pops x and y if specified. If pop_right is
 436   // specified then pop_left must also be specified.
 437   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 438 
 439   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 440   // tmp is a temporary register, if none is available use noreg
 441   void fremr(Register tmp);
 442 
 443   // dst = c = a * b + c
 444   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 445   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 446 
 447   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 448   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 449   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 450   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 451 
 452 
 453   // same as fcmp2int, but using SSE2
 454   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 455   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 456 
 457   // branch to L if FPU flag C2 is set/not set
 458   // tmp is a temporary register, if none is available use noreg
 459   void jC2 (Register tmp, Label& L);
 460   void jnC2(Register tmp, Label& L);
 461 
 462   // Pop ST (ffree & fincstp combined)
 463   void fpop();
 464 
 465   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 466   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 467   void load_float(Address src);
 468 
 469   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 470   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 471   void store_float(Address dst);
 472 
 473   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 474   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 475   void load_double(Address src);
 476 
 477   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 478   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 479   void store_double(Address dst);
 480 
 481   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 482   void push_fTOS();
 483 
 484   // pops double TOS element from CPU stack and pushes on FPU stack
 485   void pop_fTOS();
 486 
 487   void empty_FPU_stack();
 488 
 489   void push_IU_state();
 490   void pop_IU_state();
 491 
 492   void push_FPU_state();
 493   void pop_FPU_state();
 494 
 495   void push_CPU_state();
 496   void pop_CPU_state();
 497 
 498   // Round up to a power of two
 499   void round_to(Register reg, int modulus);
 500 
 501   // Callee saved registers handling
 502   void push_callee_saved_registers();
 503   void pop_callee_saved_registers();
 504 
 505   // allocation
 506   void eden_allocate(
 507     Register thread,                   // Current thread
 508     Register obj,                      // result: pointer to object after successful allocation
 509     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 510     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 511     Register t1,                       // temp register
 512     Label&   slow_case                 // continuation point if fast allocation fails
 513   );
 514   void tlab_allocate(
 515     Register thread,                   // Current thread
 516     Register obj,                      // result: pointer to object after successful allocation
 517     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 518     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 519     Register t1,                       // temp register
 520     Register t2,                       // temp register
 521     Label&   slow_case                 // continuation point if fast allocation fails
 522   );
 523   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 524 
 525   // interface method calling
 526   void lookup_interface_method(Register recv_klass,
 527                                Register intf_klass,
 528                                RegisterOrConstant itable_index,
 529                                Register method_result,
 530                                Register scan_temp,
 531                                Label& no_such_interface,
 532                                bool return_method = true);
 533 
 534   // virtual method calling
 535   void lookup_virtual_method(Register recv_klass,
 536                              RegisterOrConstant vtable_index,
 537                              Register method_result);
 538 
 539   // Test sub_klass against super_klass, with fast and slow paths.
 540 
 541   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 542   // One of the three labels can be NULL, meaning take the fall-through.
 543   // If super_check_offset is -1, the value is loaded up from super_klass.
 544   // No registers are killed, except temp_reg.
 545   void check_klass_subtype_fast_path(Register sub_klass,
 546                                      Register super_klass,
 547                                      Register temp_reg,
 548                                      Label* L_success,
 549                                      Label* L_failure,
 550                                      Label* L_slow_path,
 551                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 552 
 553   // The rest of the type check; must be wired to a corresponding fast path.
 554   // It does not repeat the fast path logic, so don't use it standalone.
 555   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 556   // Updates the sub's secondary super cache as necessary.
 557   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 558   void check_klass_subtype_slow_path(Register sub_klass,
 559                                      Register super_klass,
 560                                      Register temp_reg,
 561                                      Register temp2_reg,
 562                                      Label* L_success,
 563                                      Label* L_failure,
 564                                      bool set_cond_codes = false);
 565 
 566   // Simplified, combined version, good for typical uses.
 567   // Falls through on failure.
 568   void check_klass_subtype(Register sub_klass,
 569                            Register super_klass,
 570                            Register temp_reg,
 571                            Label& L_success);
 572 
 573   // method handles (JSR 292)
 574   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 575 
 576   //----
 577   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 578 
 579   // Debugging
 580 
 581   // only if +VerifyOops
 582   // TODO: Make these macros with file and line like sparc version!
 583   void verify_oop(Register reg, const char* s = "broken oop");
 584   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 585 
 586   // TODO: verify method and klass metadata (compare against vptr?)
 587   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 588   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 589 
 590 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 591 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 592 
 593   // only if +VerifyFPU
 594   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 595 
 596   // Verify or restore cpu control state after JNI call
 597   void restore_cpu_control_state_after_jni();
 598 
 599   // prints msg, dumps registers and stops execution
 600   void stop(const char* msg);
 601 
 602   // prints msg and continues
 603   void warn(const char* msg);
 604 
 605   // dumps registers and other state
 606   void print_state();
 607 
 608   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 609   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 610   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 611   static void print_state64(int64_t pc, int64_t regs[]);
 612 
 613   void os_breakpoint();
 614 
 615   void untested()                                { stop("untested"); }
 616 
 617   void unimplemented(const char* what = "");
 618 
 619   void should_not_reach_here()                   { stop("should not reach here"); }
 620 
 621   void print_CPU_state();
 622 
 623   // Stack overflow checking
 624   void bang_stack_with_offset(int offset) {
 625     // stack grows down, caller passes positive offset
 626     assert(offset > 0, "must bang with negative offset");
 627     movl(Address(rsp, (-offset)), rax);
 628   }
 629 
 630   // Writes to stack successive pages until offset reached to check for
 631   // stack overflow + shadow pages.  Also, clobbers tmp
 632   void bang_stack_size(Register size, Register tmp);
 633 
 634   // Check for reserved stack access in method being exited (for JIT)
 635   void reserved_stack_check();
 636 
 637   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 638                                                 Register tmp,
 639                                                 int offset);
 640 
 641   // Support for serializing memory accesses between threads
 642   void serialize_memory(Register thread, Register tmp);
 643 
 644   // If thread_reg is != noreg the code assumes the register passed contains
 645   // the thread (required on 64 bit).
 646   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 647 
 648   void verify_tlab();
 649 
 650   // Biased locking support
 651   // lock_reg and obj_reg must be loaded up with the appropriate values.
 652   // swap_reg must be rax, and is killed.
 653   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 654   // be killed; if not supplied, push/pop will be used internally to
 655   // allocate a temporary (inefficient, avoid if possible).
 656   // Optional slow case is for implementations (interpreter and C1) which branch to
 657   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 658   // Returns offset of first potentially-faulting instruction for null
 659   // check info (currently consumed only by C1). If
 660   // swap_reg_contains_mark is true then returns -1 as it is assumed
 661   // the calling code has already passed any potential faults.
 662   int biased_locking_enter(Register lock_reg, Register obj_reg,
 663                            Register swap_reg, Register tmp_reg,
 664                            bool swap_reg_contains_mark,
 665                            Label& done, Label* slow_case = NULL,
 666                            BiasedLockingCounters* counters = NULL);
 667   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 668 #ifdef COMPILER2
 669   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 670   // See full desription in macroAssembler_x86.cpp.
 671   void fast_lock(Register obj, Register box, Register tmp,
 672                  Register scr, Register cx1, Register cx2,
 673                  BiasedLockingCounters* counters,
 674                  RTMLockingCounters* rtm_counters,
 675                  RTMLockingCounters* stack_rtm_counters,
 676                  Metadata* method_data,
 677                  bool use_rtm, bool profile_rtm);
 678   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 679 #if INCLUDE_RTM_OPT
 680   void rtm_counters_update(Register abort_status, Register rtm_counters);
 681   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 682   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 683                                    RTMLockingCounters* rtm_counters,
 684                                    Metadata* method_data);
 685   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 686                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 687   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 688   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 689   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 690                          Register retry_on_abort_count,
 691                          RTMLockingCounters* stack_rtm_counters,
 692                          Metadata* method_data, bool profile_rtm,
 693                          Label& DONE_LABEL, Label& IsInflated);
 694   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 695                             Register scr, Register retry_on_busy_count,
 696                             Register retry_on_abort_count,
 697                             RTMLockingCounters* rtm_counters,
 698                             Metadata* method_data, bool profile_rtm,
 699                             Label& DONE_LABEL);
 700 #endif
 701 #endif
 702 
 703   Condition negate_condition(Condition cond);
 704 
 705   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 706   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 707   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 708   // here in MacroAssembler. The major exception to this rule is call
 709 
 710   // Arithmetics
 711 
 712 
 713   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 714   void addptr(Address dst, Register src);
 715 
 716   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 717   void addptr(Register dst, int32_t src);
 718   void addptr(Register dst, Register src);
 719   void addptr(Register dst, RegisterOrConstant src) {
 720     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 721     else                   addptr(dst,       src.as_register());
 722   }
 723 
 724   void andptr(Register dst, int32_t src);
 725   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 726 
 727   void cmp8(AddressLiteral src1, int imm);
 728 
 729   // renamed to drag out the casting of address to int32_t/intptr_t
 730   void cmp32(Register src1, int32_t imm);
 731 
 732   void cmp32(AddressLiteral src1, int32_t imm);
 733   // compare reg - mem, or reg - &mem
 734   void cmp32(Register src1, AddressLiteral src2);
 735 
 736   void cmp32(Register src1, Address src2);
 737 
 738 #ifndef _LP64
 739   void cmpklass(Address dst, Metadata* obj);
 740   void cmpklass(Register dst, Metadata* obj);
 741   void cmpoop(Address dst, jobject obj);
 742   void cmpoop_raw(Address dst, jobject obj);
 743 #endif // _LP64
 744 
 745   void cmpoop(Register src1, Register src2);
 746   void cmpoop(Register src1, Address src2);
 747   void cmpoop(Register dst, jobject obj);
 748   void cmpoop_raw(Register dst, jobject obj);
 749 
 750   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 751   void cmpptr(Address src1, AddressLiteral src2);
 752 
 753   void cmpptr(Register src1, AddressLiteral src2);
 754 
 755   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 756   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 757   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 758 
 759   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 760   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 761 
 762   // cmp64 to avoild hiding cmpq
 763   void cmp64(Register src1, AddressLiteral src);
 764 
 765   void cmpxchgptr(Register reg, Address adr);
 766 
 767   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 768 
 769 
 770   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 771   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 772 
 773 
 774   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 775 
 776   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 777 
 778   void shlptr(Register dst, int32_t shift);
 779   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 780 
 781   void shrptr(Register dst, int32_t shift);
 782   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 783 
 784   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 785   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 786 
 787   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 788 
 789   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 790   void subptr(Register dst, int32_t src);
 791   // Force generation of a 4 byte immediate value even if it fits into 8bit
 792   void subptr_imm32(Register dst, int32_t src);
 793   void subptr(Register dst, Register src);
 794   void subptr(Register dst, RegisterOrConstant src) {
 795     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 796     else                   subptr(dst,       src.as_register());
 797   }
 798 
 799   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 800   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 801 
 802   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 803   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 804 
 805   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 806 
 807 
 808 
 809   // Helper functions for statistics gathering.
 810   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 811   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 812   // Unconditional atomic increment.
 813   void atomic_incl(Address counter_addr);
 814   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 815 #ifdef _LP64
 816   void atomic_incq(Address counter_addr);
 817   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 818 #endif
 819   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 820   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 821 
 822   void lea(Register dst, AddressLiteral adr);
 823   void lea(Address dst, AddressLiteral adr);
 824   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 825 
 826   void leal32(Register dst, Address src) { leal(dst, src); }
 827 
 828   // Import other testl() methods from the parent class or else
 829   // they will be hidden by the following overriding declaration.
 830   using Assembler::testl;
 831   void testl(Register dst, AddressLiteral src);
 832 
 833   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 834   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 835   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 836   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 837 
 838   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 839   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 840   void testptr(Register src1, Register src2);
 841 
 842   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 843   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 844 
 845   // Calls
 846 
 847   void call(Label& L, relocInfo::relocType rtype);
 848   void call(Register entry);
 849 
 850   // NOTE: this call transfers to the effective address of entry NOT
 851   // the address contained by entry. This is because this is more natural
 852   // for jumps/calls.
 853   void call(AddressLiteral entry);
 854 
 855   // Emit the CompiledIC call idiom
 856   void ic_call(address entry, jint method_index = 0);
 857 
 858   // Jumps
 859 
 860   // NOTE: these jumps tranfer to the effective address of dst NOT
 861   // the address contained by dst. This is because this is more natural
 862   // for jumps/calls.
 863   void jump(AddressLiteral dst);
 864   void jump_cc(Condition cc, AddressLiteral dst);
 865 
 866   // 32bit can do a case table jump in one instruction but we no longer allow the base
 867   // to be installed in the Address class. This jump will tranfers to the address
 868   // contained in the location described by entry (not the address of entry)
 869   void jump(ArrayAddress entry);
 870 
 871   // Floating
 872 
 873   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 874   void andpd(XMMRegister dst, AddressLiteral src);
 875   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 876 
 877   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 878   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 879   void andps(XMMRegister dst, AddressLiteral src);
 880 
 881   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 882   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 883   void comiss(XMMRegister dst, AddressLiteral src);
 884 
 885   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 886   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 887   void comisd(XMMRegister dst, AddressLiteral src);
 888 
 889   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 890   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 891 
 892   void fldcw(Address src) { Assembler::fldcw(src); }
 893   void fldcw(AddressLiteral src);
 894 
 895   void fld_s(int index)   { Assembler::fld_s(index); }
 896   void fld_s(Address src) { Assembler::fld_s(src); }
 897   void fld_s(AddressLiteral src);
 898 
 899   void fld_d(Address src) { Assembler::fld_d(src); }
 900   void fld_d(AddressLiteral src);
 901 
 902   void fld_x(Address src) { Assembler::fld_x(src); }
 903   void fld_x(AddressLiteral src);
 904 
 905   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 906   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 907 
 908   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 909   void ldmxcsr(AddressLiteral src);
 910 
 911 #ifdef _LP64
 912  private:
 913   void sha256_AVX2_one_round_compute(
 914     Register  reg_old_h,
 915     Register  reg_a,
 916     Register  reg_b,
 917     Register  reg_c,
 918     Register  reg_d,
 919     Register  reg_e,
 920     Register  reg_f,
 921     Register  reg_g,
 922     Register  reg_h,
 923     int iter);
 924   void sha256_AVX2_four_rounds_compute_first(int start);
 925   void sha256_AVX2_four_rounds_compute_last(int start);
 926   void sha256_AVX2_one_round_and_sched(
 927         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 928         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 929         XMMRegister xmm_2,     /* ymm6 */
 930         XMMRegister xmm_3,     /* ymm7 */
 931         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 932         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 933         Register    reg_c,      /* edi */
 934         Register    reg_d,      /* esi */
 935         Register    reg_e,      /* r8d */
 936         Register    reg_f,      /* r9d */
 937         Register    reg_g,      /* r10d */
 938         Register    reg_h,      /* r11d */
 939         int iter);
 940 
 941   void addm(int disp, Register r1, Register r2);
 942 
 943  public:
 944   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 945                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 946                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 947                    bool multi_block, XMMRegister shuf_mask);
 948 #endif
 949 
 950 #ifdef _LP64
 951  private:
 952   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 953                                      Register e, Register f, Register g, Register h, int iteration);
 954 
 955   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 956                                           Register a, Register b, Register c, Register d, Register e, Register f,
 957                                           Register g, Register h, int iteration);
 958 
 959   void addmq(int disp, Register r1, Register r2);
 960  public:
 961   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 962                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 963                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 964                    XMMRegister shuf_mask);
 965 #endif
 966 
 967   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 968                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 969                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 970                  bool multi_block);
 971 
 972 #ifdef _LP64
 973   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 974                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 975                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 976                    bool multi_block, XMMRegister shuf_mask);
 977 #else
 978   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 979                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 980                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 981                    bool multi_block);
 982 #endif
 983 
 984   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 985                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 986                 Register rax, Register rcx, Register rdx, Register tmp);
 987 
 988 #ifdef _LP64
 989   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 990                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 991                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 992 
 993   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 994                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 995                   Register rax, Register rcx, Register rdx, Register r11);
 996 
 997   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 998                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 999                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1000 
1001   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1002                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1003                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1004                 Register tmp3, Register tmp4);
1005 
1006   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1007                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1008                 Register rax, Register rcx, Register rdx, Register tmp1,
1009                 Register tmp2, Register tmp3, Register tmp4);
1010   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1011                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1012                 Register rax, Register rcx, Register rdx, Register tmp1,
1013                 Register tmp2, Register tmp3, Register tmp4);
1014 #else
1015   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1016                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1017                 Register rax, Register rcx, Register rdx, Register tmp1);
1018 
1019   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1020                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1021                 Register rax, Register rcx, Register rdx, Register tmp);
1022 
1023   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1024                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1025                 Register rdx, Register tmp);
1026 
1027   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1028                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1029                 Register rax, Register rbx, Register rdx);
1030 
1031   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1032                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1033                 Register rax, Register rcx, Register rdx, Register tmp);
1034 
1035   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1036                         Register edx, Register ebx, Register esi, Register edi,
1037                         Register ebp, Register esp);
1038 
1039   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1040                          Register esi, Register edi, Register ebp, Register esp);
1041 
1042   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1043                         Register edx, Register ebx, Register esi, Register edi,
1044                         Register ebp, Register esp);
1045 
1046   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1047                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1048                 Register rax, Register rcx, Register rdx, Register tmp);
1049 #endif
1050 
1051   void increase_precision();
1052   void restore_precision();
1053 
1054 private:
1055 
1056   // these are private because users should be doing movflt/movdbl
1057 
1058   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1059   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1060   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1061   void movss(XMMRegister dst, AddressLiteral src);
1062 
1063   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1064   void movlpd(XMMRegister dst, AddressLiteral src);
1065 
1066 public:
1067 
1068   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1069   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1070   void addsd(XMMRegister dst, AddressLiteral src);
1071 
1072   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1073   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1074   void addss(XMMRegister dst, AddressLiteral src);
1075 
1076   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1077   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1078   void addpd(XMMRegister dst, AddressLiteral src);
1079 
1080   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1081   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1082   void divsd(XMMRegister dst, AddressLiteral src);
1083 
1084   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1085   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1086   void divss(XMMRegister dst, AddressLiteral src);
1087 
1088   // Move Unaligned Double Quadword
1089   void movdqu(Address     dst, XMMRegister src);
1090   void movdqu(XMMRegister dst, Address src);
1091   void movdqu(XMMRegister dst, XMMRegister src);
1092   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1093   // AVX Unaligned forms
1094   void vmovdqu(Address     dst, XMMRegister src);
1095   void vmovdqu(XMMRegister dst, Address src);
1096   void vmovdqu(XMMRegister dst, XMMRegister src);
1097   void vmovdqu(XMMRegister dst, AddressLiteral src);
1098 
1099   // Move Aligned Double Quadword
1100   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1101   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1102   void movdqa(XMMRegister dst, AddressLiteral src);
1103 
1104   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1105   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1106   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1107   void movsd(XMMRegister dst, AddressLiteral src);
1108 
1109   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1110   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1111   void mulpd(XMMRegister dst, AddressLiteral src);
1112 
1113   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1114   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1115   void mulsd(XMMRegister dst, AddressLiteral src);
1116 
1117   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1118   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1119   void mulss(XMMRegister dst, AddressLiteral src);
1120 
1121   // Carry-Less Multiplication Quadword
1122   void pclmulldq(XMMRegister dst, XMMRegister src) {
1123     // 0x00 - multiply lower 64 bits [0:63]
1124     Assembler::pclmulqdq(dst, src, 0x00);
1125   }
1126   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1127     // 0x11 - multiply upper 64 bits [64:127]
1128     Assembler::pclmulqdq(dst, src, 0x11);
1129   }
1130 
1131   void pcmpeqb(XMMRegister dst, XMMRegister src);
1132   void pcmpeqw(XMMRegister dst, XMMRegister src);
1133 
1134   void pcmpestri(XMMRegister dst, Address src, int imm8);
1135   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1136 
1137   void pmovzxbw(XMMRegister dst, XMMRegister src);
1138   void pmovzxbw(XMMRegister dst, Address src);
1139 
1140   void pmovmskb(Register dst, XMMRegister src);
1141 
1142   void ptest(XMMRegister dst, XMMRegister src);
1143 
1144   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1145   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1146   void sqrtsd(XMMRegister dst, AddressLiteral src);
1147 
1148   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1149   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1150   void sqrtss(XMMRegister dst, AddressLiteral src);
1151 
1152   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1153   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1154   void subsd(XMMRegister dst, AddressLiteral src);
1155 
1156   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1157   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1158   void subss(XMMRegister dst, AddressLiteral src);
1159 
1160   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1161   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1162   void ucomiss(XMMRegister dst, AddressLiteral src);
1163 
1164   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1165   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1166   void ucomisd(XMMRegister dst, AddressLiteral src);
1167 
1168   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1169   void xorpd(XMMRegister dst, XMMRegister src);
1170   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1171   void xorpd(XMMRegister dst, AddressLiteral src);
1172 
1173   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1174   void xorps(XMMRegister dst, XMMRegister src);
1175   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1176   void xorps(XMMRegister dst, AddressLiteral src);
1177 
1178   // Shuffle Bytes
1179   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1180   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1181   void pshufb(XMMRegister dst, AddressLiteral src);
1182   // AVX 3-operands instructions
1183 
1184   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1185   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1186   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1187 
1188   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1189   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1190   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1191 
1192   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1193   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1194 
1195   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1196   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1197 
1198   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1199   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1200 
1201   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1202   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1203   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1204 
1205   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1206 
1207   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1208   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1209 
1210   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1211   void vpmovmskb(Register dst, XMMRegister src);
1212 
1213   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1214   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1215 
1216   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1217   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1218 
1219   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1220   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1221 
1222   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1223   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1224 
1225   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1226   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1227 
1228   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1229   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1230 
1231   void vptest(XMMRegister dst, XMMRegister src);
1232 
1233   void punpcklbw(XMMRegister dst, XMMRegister src);
1234   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1235 
1236   void pshufd(XMMRegister dst, Address src, int mode);
1237   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1238 
1239   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1240   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1241 
1242   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1243   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1244   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1245 
1246   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1247   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1248   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1249 
1250   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1251   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1252   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1253 
1254   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1255   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1256   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1257 
1258   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1259   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1260   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1261 
1262   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1263   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1264   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1265 
1266   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1267   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1268   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1269 
1270   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1271   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1272   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1273 
1274   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1275   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1276 
1277   // AVX Vector instructions
1278 
1279   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1280   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1281   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1282 
1283   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1284   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1285   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1286 
1287   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1288     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1289       Assembler::vpxor(dst, nds, src, vector_len);
1290     else
1291       Assembler::vxorpd(dst, nds, src, vector_len);
1292   }
1293   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1294     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1295       Assembler::vpxor(dst, nds, src, vector_len);
1296     else
1297       Assembler::vxorpd(dst, nds, src, vector_len);
1298   }
1299 
1300   // Simple version for AVX2 256bit vectors
1301   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1302   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1303 
1304   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1305     if (UseAVX > 2) {
1306       Assembler::vinserti32x4(dst, dst, src, imm8);
1307     } else if (UseAVX > 1) {
1308       // vinserti128 is available only in AVX2
1309       Assembler::vinserti128(dst, nds, src, imm8);
1310     } else {
1311       Assembler::vinsertf128(dst, nds, src, imm8);
1312     }
1313   }
1314 
1315   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1316     if (UseAVX > 2) {
1317       Assembler::vinserti32x4(dst, dst, src, imm8);
1318     } else if (UseAVX > 1) {
1319       // vinserti128 is available only in AVX2
1320       Assembler::vinserti128(dst, nds, src, imm8);
1321     } else {
1322       Assembler::vinsertf128(dst, nds, src, imm8);
1323     }
1324   }
1325 
1326   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1327     if (UseAVX > 2) {
1328       Assembler::vextracti32x4(dst, src, imm8);
1329     } else if (UseAVX > 1) {
1330       // vextracti128 is available only in AVX2
1331       Assembler::vextracti128(dst, src, imm8);
1332     } else {
1333       Assembler::vextractf128(dst, src, imm8);
1334     }
1335   }
1336 
1337   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1338     if (UseAVX > 2) {
1339       Assembler::vextracti32x4(dst, src, imm8);
1340     } else if (UseAVX > 1) {
1341       // vextracti128 is available only in AVX2
1342       Assembler::vextracti128(dst, src, imm8);
1343     } else {
1344       Assembler::vextractf128(dst, src, imm8);
1345     }
1346   }
1347 
1348   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1349   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1350     vinserti128(dst, dst, src, 1);
1351   }
1352   void vinserti128_high(XMMRegister dst, Address src) {
1353     vinserti128(dst, dst, src, 1);
1354   }
1355   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1356     vextracti128(dst, src, 1);
1357   }
1358   void vextracti128_high(Address dst, XMMRegister src) {
1359     vextracti128(dst, src, 1);
1360   }
1361 
1362   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1363     if (UseAVX > 2) {
1364       Assembler::vinsertf32x4(dst, dst, src, 1);
1365     } else {
1366       Assembler::vinsertf128(dst, dst, src, 1);
1367     }
1368   }
1369 
1370   void vinsertf128_high(XMMRegister dst, Address src) {
1371     if (UseAVX > 2) {
1372       Assembler::vinsertf32x4(dst, dst, src, 1);
1373     } else {
1374       Assembler::vinsertf128(dst, dst, src, 1);
1375     }
1376   }
1377 
1378   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1379     if (UseAVX > 2) {
1380       Assembler::vextractf32x4(dst, src, 1);
1381     } else {
1382       Assembler::vextractf128(dst, src, 1);
1383     }
1384   }
1385 
1386   void vextractf128_high(Address dst, XMMRegister src) {
1387     if (UseAVX > 2) {
1388       Assembler::vextractf32x4(dst, src, 1);
1389     } else {
1390       Assembler::vextractf128(dst, src, 1);
1391     }
1392   }
1393 
1394   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1395   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1396     Assembler::vinserti64x4(dst, dst, src, 1);
1397   }
1398   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1399     Assembler::vinsertf64x4(dst, dst, src, 1);
1400   }
1401   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1402     Assembler::vextracti64x4(dst, src, 1);
1403   }
1404   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1405     Assembler::vextractf64x4(dst, src, 1);
1406   }
1407   void vextractf64x4_high(Address dst, XMMRegister src) {
1408     Assembler::vextractf64x4(dst, src, 1);
1409   }
1410   void vinsertf64x4_high(XMMRegister dst, Address src) {
1411     Assembler::vinsertf64x4(dst, dst, src, 1);
1412   }
1413 
1414   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1415   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1416     vinserti128(dst, dst, src, 0);
1417   }
1418   void vinserti128_low(XMMRegister dst, Address src) {
1419     vinserti128(dst, dst, src, 0);
1420   }
1421   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1422     vextracti128(dst, src, 0);
1423   }
1424   void vextracti128_low(Address dst, XMMRegister src) {
1425     vextracti128(dst, src, 0);
1426   }
1427 
1428   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1429     if (UseAVX > 2) {
1430       Assembler::vinsertf32x4(dst, dst, src, 0);
1431     } else {
1432       Assembler::vinsertf128(dst, dst, src, 0);
1433     }
1434   }
1435 
1436   void vinsertf128_low(XMMRegister dst, Address src) {
1437     if (UseAVX > 2) {
1438       Assembler::vinsertf32x4(dst, dst, src, 0);
1439     } else {
1440       Assembler::vinsertf128(dst, dst, src, 0);
1441     }
1442   }
1443 
1444   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1445     if (UseAVX > 2) {
1446       Assembler::vextractf32x4(dst, src, 0);
1447     } else {
1448       Assembler::vextractf128(dst, src, 0);
1449     }
1450   }
1451 
1452   void vextractf128_low(Address dst, XMMRegister src) {
1453     if (UseAVX > 2) {
1454       Assembler::vextractf32x4(dst, src, 0);
1455     } else {
1456       Assembler::vextractf128(dst, src, 0);
1457     }
1458   }
1459 
1460   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1461   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1462     Assembler::vinserti64x4(dst, dst, src, 0);
1463   }
1464   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1465     Assembler::vinsertf64x4(dst, dst, src, 0);
1466   }
1467   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1468     Assembler::vextracti64x4(dst, src, 0);
1469   }
1470   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1471     Assembler::vextractf64x4(dst, src, 0);
1472   }
1473   void vextractf64x4_low(Address dst, XMMRegister src) {
1474     Assembler::vextractf64x4(dst, src, 0);
1475   }
1476   void vinsertf64x4_low(XMMRegister dst, Address src) {
1477     Assembler::vinsertf64x4(dst, dst, src, 0);
1478   }
1479 
1480   // Carry-Less Multiplication Quadword
1481   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1482     // 0x00 - multiply lower 64 bits [0:63]
1483     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1484   }
1485   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1486     // 0x11 - multiply upper 64 bits [64:127]
1487     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1488   }
1489   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1490     // 0x00 - multiply lower 64 bits [0:63]
1491     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1492   }
1493   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1494     // 0x11 - multiply upper 64 bits [64:127]
1495     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1496   }
1497 
1498   // Data
1499 
1500   void cmov32( Condition cc, Register dst, Address  src);
1501   void cmov32( Condition cc, Register dst, Register src);
1502 
1503   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1504 
1505   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1506   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1507 
1508   void movoop(Register dst, jobject obj);
1509   void movoop(Address dst, jobject obj);
1510 
1511   void mov_metadata(Register dst, Metadata* obj);
1512   void mov_metadata(Address dst, Metadata* obj);
1513 
1514   void movptr(ArrayAddress dst, Register src);
1515   // can this do an lea?
1516   void movptr(Register dst, ArrayAddress src);
1517 
1518   void movptr(Register dst, Address src);
1519 
1520 #ifdef _LP64
1521   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1522 #else
1523   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1524 #endif
1525 
1526   void movptr(Register dst, intptr_t src);
1527   void movptr(Register dst, Register src);
1528   void movptr(Address dst, intptr_t src);
1529 
1530   void movptr(Address dst, Register src);
1531 
1532   void movptr(Register dst, RegisterOrConstant src) {
1533     if (src.is_constant()) movptr(dst, src.as_constant());
1534     else                   movptr(dst, src.as_register());
1535   }
1536 
1537 #ifdef _LP64
1538   // Generally the next two are only used for moving NULL
1539   // Although there are situations in initializing the mark word where
1540   // they could be used. They are dangerous.
1541 
1542   // They only exist on LP64 so that int32_t and intptr_t are not the same
1543   // and we have ambiguous declarations.
1544 
1545   void movptr(Address dst, int32_t imm32);
1546   void movptr(Register dst, int32_t imm32);
1547 #endif // _LP64
1548 
1549   // to avoid hiding movl
1550   void mov32(AddressLiteral dst, Register src);
1551   void mov32(Register dst, AddressLiteral src);
1552 
1553   // to avoid hiding movb
1554   void movbyte(ArrayAddress dst, int src);
1555 
1556   // Import other mov() methods from the parent class or else
1557   // they will be hidden by the following overriding declaration.
1558   using Assembler::movdl;
1559   using Assembler::movq;
1560   void movdl(XMMRegister dst, AddressLiteral src);
1561   void movq(XMMRegister dst, AddressLiteral src);
1562 
1563   // Can push value or effective address
1564   void pushptr(AddressLiteral src);
1565 
1566   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1567   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1568 
1569   void pushoop(jobject obj);
1570   void pushklass(Metadata* obj);
1571 
1572   // sign extend as need a l to ptr sized element
1573   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1574   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1575 
1576   // C2 compiled method's prolog code.
1577   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1578 
1579   // clear memory of size 'cnt' qwords, starting at 'base';
1580   // if 'is_large' is set, do not try to produce short loop
1581   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large);
1582 
1583   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1584   void xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp);
1585 
1586 #ifdef COMPILER2
1587   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1588                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1589 
1590   // IndexOf strings.
1591   // Small strings are loaded through stack if they cross page boundary.
1592   void string_indexof(Register str1, Register str2,
1593                       Register cnt1, Register cnt2,
1594                       int int_cnt2,  Register result,
1595                       XMMRegister vec, Register tmp,
1596                       int ae);
1597 
1598   // IndexOf for constant substrings with size >= 8 elements
1599   // which don't need to be loaded through stack.
1600   void string_indexofC8(Register str1, Register str2,
1601                       Register cnt1, Register cnt2,
1602                       int int_cnt2,  Register result,
1603                       XMMRegister vec, Register tmp,
1604                       int ae);
1605 
1606     // Smallest code: we don't need to load through stack,
1607     // check string tail.
1608 
1609   // helper function for string_compare
1610   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1611                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1612                           Address::ScaleFactor scale2, Register index, int ae);
1613   // Compare strings.
1614   void string_compare(Register str1, Register str2,
1615                       Register cnt1, Register cnt2, Register result,
1616                       XMMRegister vec1, int ae);
1617 
1618   // Search for Non-ASCII character (Negative byte value) in a byte array,
1619   // return true if it has any and false otherwise.
1620   void has_negatives(Register ary1, Register len,
1621                      Register result, Register tmp1,
1622                      XMMRegister vec1, XMMRegister vec2);
1623 
1624   // Compare char[] or byte[] arrays.
1625   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1626                      Register limit, Register result, Register chr,
1627                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1628 
1629 #endif
1630 
1631   // Fill primitive arrays
1632   void generate_fill(BasicType t, bool aligned,
1633                      Register to, Register value, Register count,
1634                      Register rtmp, XMMRegister xtmp);
1635 
1636   void encode_iso_array(Register src, Register dst, Register len,
1637                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1638                         XMMRegister tmp4, Register tmp5, Register result);
1639 
1640 #ifdef _LP64
1641   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1642   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1643                              Register y, Register y_idx, Register z,
1644                              Register carry, Register product,
1645                              Register idx, Register kdx);
1646   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1647                               Register yz_idx, Register idx,
1648                               Register carry, Register product, int offset);
1649   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1650                                     Register carry, Register carry2,
1651                                     Register idx, Register jdx,
1652                                     Register yz_idx1, Register yz_idx2,
1653                                     Register tmp, Register tmp3, Register tmp4);
1654   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1655                                Register yz_idx, Register idx, Register jdx,
1656                                Register carry, Register product,
1657                                Register carry2);
1658   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1659                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1660   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1661                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1662   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1663                             Register tmp2);
1664   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1665                        Register rdxReg, Register raxReg);
1666   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1667   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1668                        Register tmp3, Register tmp4);
1669   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1670                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1671 
1672   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1673                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1674                Register raxReg);
1675   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1676                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1677                Register raxReg);
1678   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1679                            Register result, Register tmp1, Register tmp2,
1680                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1681 #endif
1682 
1683   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1684   void update_byte_crc32(Register crc, Register val, Register table);
1685   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1686   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1687   // Note on a naming convention:
1688   // Prefix w = register only used on a Westmere+ architecture
1689   // Prefix n = register only used on a Nehalem architecture
1690 #ifdef _LP64
1691   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1692                        Register tmp1, Register tmp2, Register tmp3);
1693 #else
1694   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1695                        Register tmp1, Register tmp2, Register tmp3,
1696                        XMMRegister xtmp1, XMMRegister xtmp2);
1697 #endif
1698   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1699                         Register in_out,
1700                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1701                         XMMRegister w_xtmp2,
1702                         Register tmp1,
1703                         Register n_tmp2, Register n_tmp3);
1704   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1705                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1706                        Register tmp1, Register tmp2,
1707                        Register n_tmp3);
1708   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1709                          Register in_out1, Register in_out2, Register in_out3,
1710                          Register tmp1, Register tmp2, Register tmp3,
1711                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1712                          Register tmp4, Register tmp5,
1713                          Register n_tmp6);
1714   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1715                             Register tmp1, Register tmp2, Register tmp3,
1716                             Register tmp4, Register tmp5, Register tmp6,
1717                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1718                             bool is_pclmulqdq_supported);
1719   // Fold 128-bit data chunk
1720   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1721   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1722   // Fold 8-bit data
1723   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1724   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1725   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1726 
1727   // Compress char[] array to byte[].
1728   void char_array_compress(Register src, Register dst, Register len,
1729                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1730                            XMMRegister tmp4, Register tmp5, Register result);
1731 
1732   // Inflate byte[] array to char[].
1733   void byte_array_inflate(Register src, Register dst, Register len,
1734                           XMMRegister tmp1, Register tmp2);
1735 
1736 };
1737 
1738 /**
1739  * class SkipIfEqual:
1740  *
1741  * Instantiating this class will result in assembly code being output that will
1742  * jump around any code emitted between the creation of the instance and it's
1743  * automatic destruction at the end of a scope block, depending on the value of
1744  * the flag passed to the constructor, which will be checked at run-time.
1745  */
1746 class SkipIfEqual {
1747  private:
1748   MacroAssembler* _masm;
1749   Label _label;
1750 
1751  public:
1752    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1753    ~SkipIfEqual();
1754 };
1755 
1756 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP