1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 
  31 // MacroAssembler extends Assembler by frequently used macros.
  32 //
  33 // Instructions for which a 'better' code sequence exists depending
  34 // on arguments should also go in here.
  35 
  36 class MacroAssembler: public Assembler {
  37   friend class LIR_Assembler;
  38 
  39  public:
  40   using Assembler::mov;
  41   using Assembler::movi;
  42 
  43  protected:
  44 
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50   virtual void call_VM_leaf_base(
  51     address entry_point,               // the entry point
  52     int     number_of_arguments,        // the number of arguments to pop after the call
  53     Label *retaddr = NULL
  54   );
  55 
  56   virtual void call_VM_leaf_base(
  57     address entry_point,               // the entry point
  58     int     number_of_arguments,        // the number of arguments to pop after the call
  59     Label &retaddr) {
  60     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  61   }
  62 
  63   // This is the base routine called by the different versions of call_VM. The interpreter
  64   // may customize this version by overriding it for its purposes (e.g., to save/restore
  65   // additional registers when doing a VM call).
  66   //
  67   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  68   // returns the register which contains the thread upon return. If a thread register has been
  69   // specified, the return value will correspond to that register. If no last_java_sp is specified
  70   // (noreg) than rsp will be used instead.
  71   virtual void call_VM_base(           // returns the register containing the thread upon return
  72     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  73     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  74     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  75     address  entry_point,              // the entry point
  76     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  77     bool     check_exceptions          // whether to check for pending exceptions after return
  78   );
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // True if an XOR can be used to expand narrow klass references.
  83   bool use_XOR_for_compressed_class_base;
  84 
  85  public:
  86   MacroAssembler(CodeBuffer* code) : Assembler(code) {
  87     use_XOR_for_compressed_class_base
  88       = (operand_valid_for_logical_immediate(false /*is32*/,
  89                                              (uint64_t)Universe::narrow_klass_base())
  90          && ((uint64_t)Universe::narrow_klass_base()
  91              > (1UL << log2_intptr(Universe::narrow_klass_range()))));
  92   }
  93 
  94  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  95  // The implementation is only non-empty for the InterpreterMacroAssembler,
  96  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  97  virtual void check_and_handle_popframe(Register java_thread);
  98  virtual void check_and_handle_earlyret(Register java_thread);
  99 
 100   void safepoint_poll(Label& slow_path);
 101   void safepoint_poll_acquire(Label& slow_path);
 102 
 103   // Biased locking support
 104   // lock_reg and obj_reg must be loaded up with the appropriate values.
 105   // swap_reg is killed.
 106   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 107   // Optional slow case is for implementations (interpreter and C1) which branch to
 108   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 109   // Returns offset of first potentially-faulting instruction for null
 110   // check info (currently consumed only by C1). If
 111   // swap_reg_contains_mark is true then returns -1 as it is assumed
 112   // the calling code has already passed any potential faults.
 113   int biased_locking_enter(Register lock_reg, Register obj_reg,
 114                            Register swap_reg, Register tmp_reg,
 115                            bool swap_reg_contains_mark,
 116                            Label& done, Label* slow_case = NULL,
 117                            BiasedLockingCounters* counters = NULL);
 118   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 119 
 120 
 121   // Helper functions for statistics gathering.
 122   // Unconditional atomic increment.
 123   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 124   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 125     lea(tmp1, counter_addr);
 126     atomic_incw(tmp1, tmp2, tmp3);
 127   }
 128   // Load Effective Address
 129   void lea(Register r, const Address &a) {
 130     InstructionMark im(this);
 131     code_section()->relocate(inst_mark(), a.rspec());
 132     a.lea(this, r);
 133   }
 134 
 135   void addmw(Address a, Register incr, Register scratch) {
 136     ldrw(scratch, a);
 137     addw(scratch, scratch, incr);
 138     strw(scratch, a);
 139   }
 140 
 141   // Add constant to memory word
 142   void addmw(Address a, int imm, Register scratch) {
 143     ldrw(scratch, a);
 144     if (imm > 0)
 145       addw(scratch, scratch, (unsigned)imm);
 146     else
 147       subw(scratch, scratch, (unsigned)-imm);
 148     strw(scratch, a);
 149   }
 150 
 151   void bind(Label& L) {
 152     Assembler::bind(L);
 153     code()->clear_last_insn();
 154   }
 155 
 156   void membar(Membar_mask_bits order_constraint);
 157 
 158   using Assembler::ldr;
 159   using Assembler::str;
 160 
 161   void ldr(Register Rx, const Address &adr);
 162   void ldrw(Register Rw, const Address &adr);
 163   void str(Register Rx, const Address &adr);
 164   void strw(Register Rx, const Address &adr);
 165 
 166   // Frame creation and destruction shared between JITs.
 167   void build_frame(int framesize);
 168   void remove_frame(int framesize);
 169 
 170   virtual void _call_Unimplemented(address call_site) {
 171     mov(rscratch2, call_site);
 172     haltsim();
 173   }
 174 
 175 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 176 
 177   virtual void notify(int type);
 178 
 179   // aliases defined in AARCH64 spec
 180 
 181   template<class T>
 182   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 183   // imm is limited to 12 bits.
 184   inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
 185 
 186   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 187   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 188 
 189   void cset(Register Rd, Assembler::Condition cond) {
 190     csinc(Rd, zr, zr, ~cond);
 191   }
 192   void csetw(Register Rd, Assembler::Condition cond) {
 193     csincw(Rd, zr, zr, ~cond);
 194   }
 195 
 196   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 197     csneg(Rd, Rn, Rn, ~cond);
 198   }
 199   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 200     csnegw(Rd, Rn, Rn, ~cond);
 201   }
 202 
 203   inline void movw(Register Rd, Register Rn) {
 204     if (Rd == sp || Rn == sp) {
 205       addw(Rd, Rn, 0U);
 206     } else {
 207       orrw(Rd, zr, Rn);
 208     }
 209   }
 210   inline void mov(Register Rd, Register Rn) {
 211     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 212     if (Rd == Rn) {
 213     } else if (Rd == sp || Rn == sp) {
 214       add(Rd, Rn, 0U);
 215     } else {
 216       orr(Rd, zr, Rn);
 217     }
 218   }
 219 
 220   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 221   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 222 
 223   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 224   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 225 
 226   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 227   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 228 
 229   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 230     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 231   }
 232   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 233     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 234   }
 235 
 236   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 237     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 238   }
 239   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 240     bfm(Rd, Rn, lsb , (lsb + width - 1));
 241   }
 242 
 243   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 244     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 245   }
 246   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 247     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 248   }
 249 
 250   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 251     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 252   }
 253   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 254     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 255   }
 256 
 257   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 258     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 259   }
 260   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 261     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 262   }
 263 
 264   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 265     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 266   }
 267   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 268     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 269   }
 270 
 271   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 272     sbfmw(Rd, Rn, imm, 31);
 273   }
 274 
 275   inline void asr(Register Rd, Register Rn, unsigned imm) {
 276     sbfm(Rd, Rn, imm, 63);
 277   }
 278 
 279   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 280     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 281   }
 282 
 283   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 284     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 285   }
 286 
 287   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 288     ubfmw(Rd, Rn, imm, 31);
 289   }
 290 
 291   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 292     ubfm(Rd, Rn, imm, 63);
 293   }
 294 
 295   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 296     extrw(Rd, Rn, Rn, imm);
 297   }
 298 
 299   inline void ror(Register Rd, Register Rn, unsigned imm) {
 300     extr(Rd, Rn, Rn, imm);
 301   }
 302 
 303   inline void sxtbw(Register Rd, Register Rn) {
 304     sbfmw(Rd, Rn, 0, 7);
 305   }
 306   inline void sxthw(Register Rd, Register Rn) {
 307     sbfmw(Rd, Rn, 0, 15);
 308   }
 309   inline void sxtb(Register Rd, Register Rn) {
 310     sbfm(Rd, Rn, 0, 7);
 311   }
 312   inline void sxth(Register Rd, Register Rn) {
 313     sbfm(Rd, Rn, 0, 15);
 314   }
 315   inline void sxtw(Register Rd, Register Rn) {
 316     sbfm(Rd, Rn, 0, 31);
 317   }
 318 
 319   inline void uxtbw(Register Rd, Register Rn) {
 320     ubfmw(Rd, Rn, 0, 7);
 321   }
 322   inline void uxthw(Register Rd, Register Rn) {
 323     ubfmw(Rd, Rn, 0, 15);
 324   }
 325   inline void uxtb(Register Rd, Register Rn) {
 326     ubfm(Rd, Rn, 0, 7);
 327   }
 328   inline void uxth(Register Rd, Register Rn) {
 329     ubfm(Rd, Rn, 0, 15);
 330   }
 331   inline void uxtw(Register Rd, Register Rn) {
 332     ubfm(Rd, Rn, 0, 31);
 333   }
 334 
 335   inline void cmnw(Register Rn, Register Rm) {
 336     addsw(zr, Rn, Rm);
 337   }
 338   inline void cmn(Register Rn, Register Rm) {
 339     adds(zr, Rn, Rm);
 340   }
 341 
 342   inline void cmpw(Register Rn, Register Rm) {
 343     subsw(zr, Rn, Rm);
 344   }
 345   inline void cmp(Register Rn, Register Rm) {
 346     subs(zr, Rn, Rm);
 347   }
 348 
 349   inline void negw(Register Rd, Register Rn) {
 350     subw(Rd, zr, Rn);
 351   }
 352 
 353   inline void neg(Register Rd, Register Rn) {
 354     sub(Rd, zr, Rn);
 355   }
 356 
 357   inline void negsw(Register Rd, Register Rn) {
 358     subsw(Rd, zr, Rn);
 359   }
 360 
 361   inline void negs(Register Rd, Register Rn) {
 362     subs(Rd, zr, Rn);
 363   }
 364 
 365   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 366     addsw(zr, Rn, Rm, kind, shift);
 367   }
 368   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 369     adds(zr, Rn, Rm, kind, shift);
 370   }
 371 
 372   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 373     subsw(zr, Rn, Rm, kind, shift);
 374   }
 375   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 376     subs(zr, Rn, Rm, kind, shift);
 377   }
 378 
 379   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 380     subw(Rd, zr, Rn, kind, shift);
 381   }
 382 
 383   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 384     sub(Rd, zr, Rn, kind, shift);
 385   }
 386 
 387   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 388     subsw(Rd, zr, Rn, kind, shift);
 389   }
 390 
 391   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 392     subs(Rd, zr, Rn, kind, shift);
 393   }
 394 
 395   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 396     msubw(Rd, Rn, Rm, zr);
 397   }
 398   inline void mneg(Register Rd, Register Rn, Register Rm) {
 399     msub(Rd, Rn, Rm, zr);
 400   }
 401 
 402   inline void mulw(Register Rd, Register Rn, Register Rm) {
 403     maddw(Rd, Rn, Rm, zr);
 404   }
 405   inline void mul(Register Rd, Register Rn, Register Rm) {
 406     madd(Rd, Rn, Rm, zr);
 407   }
 408 
 409   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 410     smsubl(Rd, Rn, Rm, zr);
 411   }
 412   inline void smull(Register Rd, Register Rn, Register Rm) {
 413     smaddl(Rd, Rn, Rm, zr);
 414   }
 415 
 416   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 417     umsubl(Rd, Rn, Rm, zr);
 418   }
 419   inline void umull(Register Rd, Register Rn, Register Rm) {
 420     umaddl(Rd, Rn, Rm, zr);
 421   }
 422 
 423 #define WRAP(INSN)                                                            \
 424   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 425     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 426       nop();                                                                  \
 427     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 428   }
 429 
 430   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 431   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 432 #undef WRAP
 433 
 434 
 435   // macro assembly operations needed for aarch64
 436 
 437   // first two private routines for loading 32 bit or 64 bit constants
 438 private:
 439 
 440   void mov_immediate64(Register dst, u_int64_t imm64);
 441   void mov_immediate32(Register dst, u_int32_t imm32);
 442 
 443   int push(unsigned int bitset, Register stack);
 444   int pop(unsigned int bitset, Register stack);
 445 
 446   void mov(Register dst, Address a);
 447 
 448 public:
 449   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 450   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 451 
 452   // Push and pop everything that might be clobbered by a native
 453   // runtime call except rscratch1 and rscratch2.  (They are always
 454   // scratch, so we don't have to protect them.)  Only save the lower
 455   // 64 bits of each vector register.
 456   void push_call_clobbered_registers();
 457   void pop_call_clobbered_registers();
 458 
 459   // now mov instructions for loading absolute addresses and 32 or
 460   // 64 bit integers
 461 
 462   inline void mov(Register dst, address addr)
 463   {
 464     mov_immediate64(dst, (u_int64_t)addr);
 465   }
 466 
 467   inline void mov(Register dst, u_int64_t imm64)
 468   {
 469     mov_immediate64(dst, imm64);
 470   }
 471 
 472   inline void movw(Register dst, u_int32_t imm32)
 473   {
 474     mov_immediate32(dst, imm32);
 475   }
 476 
 477   inline void mov(Register dst, long l)
 478   {
 479     mov(dst, (u_int64_t)l);
 480   }
 481 
 482   inline void mov(Register dst, int i)
 483   {
 484     mov(dst, (long)i);
 485   }
 486 
 487   void mov(Register dst, RegisterOrConstant src) {
 488     if (src.is_register())
 489       mov(dst, src.as_register());
 490     else
 491       mov(dst, src.as_constant());
 492   }
 493 
 494   void movptr(Register r, uintptr_t imm64);
 495 
 496   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 497 
 498   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 499     orr(Vd, T, Vn, Vn);
 500   }
 501 
 502 public:
 503 
 504   // Generalized Test Bit And Branch, including a "far" variety which
 505   // spans more than 32KiB.
 506   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 507     assert(cond == EQ || cond == NE, "must be");
 508 
 509     if (far)
 510       cond = ~cond;
 511 
 512     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 513     if (cond == Assembler::EQ)
 514       branch = &Assembler::tbz;
 515     else
 516       branch = &Assembler::tbnz;
 517 
 518     if (far) {
 519       Label L;
 520       (this->*branch)(Rt, bitpos, L);
 521       b(dest);
 522       bind(L);
 523     } else {
 524       (this->*branch)(Rt, bitpos, dest);
 525     }
 526   }
 527 
 528   // macro instructions for accessing and updating floating point
 529   // status register
 530   //
 531   // FPSR : op1 == 011
 532   //        CRn == 0100
 533   //        CRm == 0100
 534   //        op2 == 001
 535 
 536   inline void get_fpsr(Register reg)
 537   {
 538     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 539   }
 540 
 541   inline void set_fpsr(Register reg)
 542   {
 543     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 544   }
 545 
 546   inline void clear_fpsr()
 547   {
 548     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 549   }
 550 
 551   // DCZID_EL0: op1 == 011
 552   //            CRn == 0000
 553   //            CRm == 0000
 554   //            op2 == 111
 555   inline void get_dczid_el0(Register reg)
 556   {
 557     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 558   }
 559 
 560   // CTR_EL0:   op1 == 011
 561   //            CRn == 0000
 562   //            CRm == 0000
 563   //            op2 == 001
 564   inline void get_ctr_el0(Register reg)
 565   {
 566     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 567   }
 568 
 569   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 570   int corrected_idivl(Register result, Register ra, Register rb,
 571                       bool want_remainder, Register tmp = rscratch1);
 572   int corrected_idivq(Register result, Register ra, Register rb,
 573                       bool want_remainder, Register tmp = rscratch1);
 574 
 575   // Support for NULL-checks
 576   //
 577   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 578   // If the accessed location is M[reg + offset] and the offset is known, provide the
 579   // offset. No explicit code generation is needed if the offset is within a certain
 580   // range (0 <= offset <= page_size).
 581 
 582   virtual void null_check(Register reg, int offset = -1);
 583   static bool needs_explicit_null_check(intptr_t offset);
 584 
 585   static address target_addr_for_insn(address insn_addr, unsigned insn);
 586   static address target_addr_for_insn(address insn_addr) {
 587     unsigned insn = *(unsigned*)insn_addr;
 588     return target_addr_for_insn(insn_addr, insn);
 589   }
 590 
 591   // Required platform-specific helpers for Label::patch_instructions.
 592   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 593   static int pd_patch_instruction_size(address branch, address target);
 594   static void pd_patch_instruction(address branch, address target) {
 595     pd_patch_instruction_size(branch, target);
 596   }
 597   static address pd_call_destination(address branch) {
 598     return target_addr_for_insn(branch);
 599   }
 600 #ifndef PRODUCT
 601   static void pd_print_patched_instruction(address branch);
 602 #endif
 603 
 604   static int patch_oop(address insn_addr, address o);
 605   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 606 
 607   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 608 
 609   // The following 4 methods return the offset of the appropriate move instruction
 610 
 611   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 612   int load_unsigned_byte(Register dst, Address src);
 613   int load_unsigned_short(Register dst, Address src);
 614 
 615   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 616   int load_signed_byte(Register dst, Address src);
 617   int load_signed_short(Register dst, Address src);
 618 
 619   int load_signed_byte32(Register dst, Address src);
 620   int load_signed_short32(Register dst, Address src);
 621 
 622   // Support for sign-extension (hi:lo = extend_sign(lo))
 623   void extend_sign(Register hi, Register lo);
 624 
 625   // Load and store values by size and signed-ness
 626   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 627   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 628 
 629   // Support for inc/dec with optimal instruction selection depending on value
 630 
 631   // x86_64 aliases an unqualified register/address increment and
 632   // decrement to call incrementq and decrementq but also supports
 633   // explicitly sized calls to incrementq/decrementq or
 634   // incrementl/decrementl
 635 
 636   // for aarch64 the proper convention would be to use
 637   // increment/decrement for 64 bit operatons and
 638   // incrementw/decrementw for 32 bit operations. so when porting
 639   // x86_64 code we can leave calls to increment/decrement as is,
 640   // replace incrementq/decrementq with increment/decrement and
 641   // replace incrementl/decrementl with incrementw/decrementw.
 642 
 643   // n.b. increment/decrement calls with an Address destination will
 644   // need to use a scratch register to load the value to be
 645   // incremented. increment/decrement calls which add or subtract a
 646   // constant value greater than 2^12 will need to use a 2nd scratch
 647   // register to hold the constant. so, a register increment/decrement
 648   // may trash rscratch2 and an address increment/decrement trash
 649   // rscratch and rscratch2
 650 
 651   void decrementw(Address dst, int value = 1);
 652   void decrementw(Register reg, int value = 1);
 653 
 654   void decrement(Register reg, int value = 1);
 655   void decrement(Address dst, int value = 1);
 656 
 657   void incrementw(Address dst, int value = 1);
 658   void incrementw(Register reg, int value = 1);
 659 
 660   void increment(Register reg, int value = 1);
 661   void increment(Address dst, int value = 1);
 662 
 663 
 664   // Alignment
 665   void align(int modulus);
 666 
 667   // Stack frame creation/removal
 668   void enter()
 669   {
 670     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 671     mov(rfp, sp);
 672   }
 673   void leave()
 674   {
 675     mov(sp, rfp);
 676     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 677   }
 678 
 679   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 680   // The pointer will be loaded into the thread register.
 681   void get_thread(Register thread);
 682 
 683 
 684   // Support for VM calls
 685   //
 686   // It is imperative that all calls into the VM are handled via the call_VM macros.
 687   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 688   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 689 
 690 
 691   void call_VM(Register oop_result,
 692                address entry_point,
 693                bool check_exceptions = true);
 694   void call_VM(Register oop_result,
 695                address entry_point,
 696                Register arg_1,
 697                bool check_exceptions = true);
 698   void call_VM(Register oop_result,
 699                address entry_point,
 700                Register arg_1, Register arg_2,
 701                bool check_exceptions = true);
 702   void call_VM(Register oop_result,
 703                address entry_point,
 704                Register arg_1, Register arg_2, Register arg_3,
 705                bool check_exceptions = true);
 706 
 707   // Overloadings with last_Java_sp
 708   void call_VM(Register oop_result,
 709                Register last_java_sp,
 710                address entry_point,
 711                int number_of_arguments = 0,
 712                bool check_exceptions = true);
 713   void call_VM(Register oop_result,
 714                Register last_java_sp,
 715                address entry_point,
 716                Register arg_1, bool
 717                check_exceptions = true);
 718   void call_VM(Register oop_result,
 719                Register last_java_sp,
 720                address entry_point,
 721                Register arg_1, Register arg_2,
 722                bool check_exceptions = true);
 723   void call_VM(Register oop_result,
 724                Register last_java_sp,
 725                address entry_point,
 726                Register arg_1, Register arg_2, Register arg_3,
 727                bool check_exceptions = true);
 728 
 729   void get_vm_result  (Register oop_result, Register thread);
 730   void get_vm_result_2(Register metadata_result, Register thread);
 731 
 732   // These always tightly bind to MacroAssembler::call_VM_base
 733   // bypassing the virtual implementation
 734   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 735   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 736   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 737   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 738   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 739 
 740   void call_VM_leaf(address entry_point,
 741                     int number_of_arguments = 0);
 742   void call_VM_leaf(address entry_point,
 743                     Register arg_1);
 744   void call_VM_leaf(address entry_point,
 745                     Register arg_1, Register arg_2);
 746   void call_VM_leaf(address entry_point,
 747                     Register arg_1, Register arg_2, Register arg_3);
 748 
 749   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 750   // bypassing the virtual implementation
 751   void super_call_VM_leaf(address entry_point);
 752   void super_call_VM_leaf(address entry_point, Register arg_1);
 753   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 754   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 755   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 756 
 757   // last Java Frame (fills frame anchor)
 758   void set_last_Java_frame(Register last_java_sp,
 759                            Register last_java_fp,
 760                            address last_java_pc,
 761                            Register scratch);
 762 
 763   void set_last_Java_frame(Register last_java_sp,
 764                            Register last_java_fp,
 765                            Label &last_java_pc,
 766                            Register scratch);
 767 
 768   void set_last_Java_frame(Register last_java_sp,
 769                            Register last_java_fp,
 770                            Register last_java_pc,
 771                            Register scratch);
 772 
 773   void reset_last_Java_frame(Register thread);
 774 
 775   // thread in the default location (rthread)
 776   void reset_last_Java_frame(bool clear_fp);
 777 
 778   // Stores
 779   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 780   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 781 
 782   void resolve_jobject(Register value, Register thread, Register tmp);
 783 
 784   // oop manipulations
 785   void load_klass(Register dst, Register src);
 786   void store_klass(Register dst, Register src);
 787   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 788 
 789   void resolve_oop_handle(Register result, Register tmp = r5);
 790   void load_mirror(Register dst, Register method, Register tmp = r5);
 791 
 792   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 793                       Register tmp1, Register tmp_thread);
 794 
 795   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 796                        Register tmp1, Register tmp_thread);
 797 
 798   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 799                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 800 
 801   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 802                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 803   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 804                       Register tmp_thread = noreg, DecoratorSet decorators = 0);
 805 
 806   // currently unimplemented
 807   // Used for storing NULL. All other oop constants should be
 808   // stored using routines that take a jobject.
 809   void store_heap_oop_null(Address dst);
 810 
 811   void load_prototype_header(Register dst, Register src);
 812 
 813   void store_klass_gap(Register dst, Register src);
 814 
 815   // This dummy is to prevent a call to store_heap_oop from
 816   // converting a zero (like NULL) into a Register by giving
 817   // the compiler two choices it can't resolve
 818 
 819   void store_heap_oop(Address dst, void* dummy);
 820 
 821   void encode_heap_oop(Register d, Register s);
 822   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 823   void decode_heap_oop(Register d, Register s);
 824   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 825   void encode_heap_oop_not_null(Register r);
 826   void decode_heap_oop_not_null(Register r);
 827   void encode_heap_oop_not_null(Register dst, Register src);
 828   void decode_heap_oop_not_null(Register dst, Register src);
 829 
 830   void set_narrow_oop(Register dst, jobject obj);
 831 
 832   void encode_klass_not_null(Register r);
 833   void decode_klass_not_null(Register r);
 834   void encode_klass_not_null(Register dst, Register src);
 835   void decode_klass_not_null(Register dst, Register src);
 836 
 837   void set_narrow_klass(Register dst, Klass* k);
 838 
 839   // if heap base register is used - reinit it with the correct value
 840   void reinit_heapbase();
 841 
 842   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 843 
 844   void push_CPU_state(bool save_vectors = false);
 845   void pop_CPU_state(bool restore_vectors = false) ;
 846 
 847   // Round up to a power of two
 848   void round_to(Register reg, int modulus);
 849 
 850   // allocation
 851   void eden_allocate(
 852     Register obj,                      // result: pointer to object after successful allocation
 853     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 854     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 855     Register t1,                       // temp register
 856     Label&   slow_case                 // continuation point if fast allocation fails
 857   );
 858   void tlab_allocate(
 859     Register obj,                      // result: pointer to object after successful allocation
 860     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 861     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 862     Register t1,                       // temp register
 863     Register t2,                       // temp register
 864     Label&   slow_case                 // continuation point if fast allocation fails
 865   );
 866   void zero_memory(Register addr, Register len, Register t1);
 867   void verify_tlab();
 868 
 869   // interface method calling
 870   void lookup_interface_method(Register recv_klass,
 871                                Register intf_klass,
 872                                RegisterOrConstant itable_index,
 873                                Register method_result,
 874                                Register scan_temp,
 875                                Label& no_such_interface,
 876                    bool return_method = true);
 877 
 878   // virtual method calling
 879   // n.b. x86 allows RegisterOrConstant for vtable_index
 880   void lookup_virtual_method(Register recv_klass,
 881                              RegisterOrConstant vtable_index,
 882                              Register method_result);
 883 
 884   // Test sub_klass against super_klass, with fast and slow paths.
 885 
 886   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 887   // One of the three labels can be NULL, meaning take the fall-through.
 888   // If super_check_offset is -1, the value is loaded up from super_klass.
 889   // No registers are killed, except temp_reg.
 890   void check_klass_subtype_fast_path(Register sub_klass,
 891                                      Register super_klass,
 892                                      Register temp_reg,
 893                                      Label* L_success,
 894                                      Label* L_failure,
 895                                      Label* L_slow_path,
 896                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 897 
 898   // The rest of the type check; must be wired to a corresponding fast path.
 899   // It does not repeat the fast path logic, so don't use it standalone.
 900   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 901   // Updates the sub's secondary super cache as necessary.
 902   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 903   void check_klass_subtype_slow_path(Register sub_klass,
 904                                      Register super_klass,
 905                                      Register temp_reg,
 906                                      Register temp2_reg,
 907                                      Label* L_success,
 908                                      Label* L_failure,
 909                                      bool set_cond_codes = false);
 910 
 911   // Simplified, combined version, good for typical uses.
 912   // Falls through on failure.
 913   void check_klass_subtype(Register sub_klass,
 914                            Register super_klass,
 915                            Register temp_reg,
 916                            Label& L_success);
 917 
 918   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 919 
 920 
 921   // Debugging
 922 
 923   // only if +VerifyOops
 924   void verify_oop(Register reg, const char* s = "broken oop");
 925   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 926 
 927 // TODO: verify method and klass metadata (compare against vptr?)
 928   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 929   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 930 
 931 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 932 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 933 
 934   // only if +VerifyFPU
 935   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 936 
 937   // prints msg, dumps registers and stops execution
 938   void stop(const char* msg);
 939 
 940   // prints msg and continues
 941   void warn(const char* msg);
 942 
 943   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 944 
 945   void untested()                                { stop("untested"); }
 946 
 947   void unimplemented(const char* what = "");
 948 
 949   void should_not_reach_here()                   { stop("should not reach here"); }
 950 
 951   // Stack overflow checking
 952   void bang_stack_with_offset(int offset) {
 953     // stack grows down, caller passes positive offset
 954     assert(offset > 0, "must bang with negative offset");
 955     sub(rscratch2, sp, offset);
 956     str(zr, Address(rscratch2));
 957   }
 958 
 959   // Writes to stack successive pages until offset reached to check for
 960   // stack overflow + shadow pages.  Also, clobbers tmp
 961   void bang_stack_size(Register size, Register tmp);
 962 
 963   // Check for reserved stack access in method being exited (for JIT)
 964   void reserved_stack_check();
 965 
 966   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 967                                                 Register tmp,
 968                                                 int offset);
 969 
 970   // Support for serializing memory accesses between threads
 971   void serialize_memory(Register thread, Register tmp);
 972 
 973   // Arithmetics
 974 
 975   void addptr(const Address &dst, int32_t src);
 976   void cmpptr(Register src1, Address src2);
 977 
 978   void cmpoop(Register obj1, Register obj2);
 979 
 980   // Various forms of CAS
 981 
 982   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
 983                           Label &suceed, Label *fail);
 984   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 985                   Label &suceed, Label *fail);
 986 
 987   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 988                   Label &suceed, Label *fail);
 989 
 990   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 991   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
 992   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
 993   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
 994 
 995   void atomic_xchg(Register prev, Register newv, Register addr);
 996   void atomic_xchgw(Register prev, Register newv, Register addr);
 997   void atomic_xchgal(Register prev, Register newv, Register addr);
 998   void atomic_xchgalw(Register prev, Register newv, Register addr);
 999 
1000   void orptr(Address adr, RegisterOrConstant src) {
1001     ldr(rscratch1, adr);
1002     if (src.is_register())
1003       orr(rscratch1, rscratch1, src.as_register());
1004     else
1005       orr(rscratch1, rscratch1, src.as_constant());
1006     str(rscratch1, adr);
1007   }
1008 
1009   // A generic CAS; success or failure is in the EQ flag.
1010   // Clobbers rscratch1
1011   void cmpxchg(Register addr, Register expected, Register new_val,
1012                enum operand_size size,
1013                bool acquire, bool release, bool weak,
1014                Register result);
1015 
1016   // Calls
1017 
1018   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1019 
1020   static bool far_branches() {
1021     return ReservedCodeCacheSize > branch_range || UseAOT;
1022   }
1023 
1024   // Jumps that can reach anywhere in the code cache.
1025   // Trashes tmp.
1026   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1027   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1028 
1029   static int far_branch_size() {
1030     if (far_branches()) {
1031       return 3 * 4;  // adrp, add, br
1032     } else {
1033       return 4;
1034     }
1035   }
1036 
1037   // Emit the CompiledIC call idiom
1038   address ic_call(address entry, jint method_index = 0);
1039 
1040 public:
1041 
1042   // Data
1043 
1044   void mov_metadata(Register dst, Metadata* obj);
1045   Address allocate_metadata_address(Metadata* obj);
1046   Address constant_oop_address(jobject obj);
1047 
1048   void movoop(Register dst, jobject obj, bool immediate = false);
1049 
1050   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1051   void kernel_crc32(Register crc, Register buf, Register len,
1052         Register table0, Register table1, Register table2, Register table3,
1053         Register tmp, Register tmp2, Register tmp3);
1054   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1055   void kernel_crc32c(Register crc, Register buf, Register len,
1056         Register table0, Register table1, Register table2, Register table3,
1057         Register tmp, Register tmp2, Register tmp3);
1058 
1059   // Stack push and pop individual 64 bit registers
1060   void push(Register src);
1061   void pop(Register dst);
1062 
1063   // push all registers onto the stack
1064   void pusha();
1065   void popa();
1066 
1067   void repne_scan(Register addr, Register value, Register count,
1068                   Register scratch);
1069   void repne_scanw(Register addr, Register value, Register count,
1070                    Register scratch);
1071 
1072   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1073   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1074 
1075   // If a constant does not fit in an immediate field, generate some
1076   // number of MOV instructions and then perform the operation
1077   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1078                              add_sub_imm_insn insn1,
1079                              add_sub_reg_insn insn2);
1080   // Seperate vsn which sets the flags
1081   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1082                              add_sub_imm_insn insn1,
1083                              add_sub_reg_insn insn2);
1084 
1085 #define WRAP(INSN)                                                      \
1086   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1087     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1088   }                                                                     \
1089                                                                         \
1090   void INSN(Register Rd, Register Rn, Register Rm,                      \
1091              enum shift_kind kind, unsigned shift = 0) {                \
1092     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1093   }                                                                     \
1094                                                                         \
1095   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1096     Assembler::INSN(Rd, Rn, Rm);                                        \
1097   }                                                                     \
1098                                                                         \
1099   void INSN(Register Rd, Register Rn, Register Rm,                      \
1100            ext::operation option, int amount = 0) {                     \
1101     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1102   }
1103 
1104   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1105 
1106 #undef WRAP
1107 #define WRAP(INSN)                                                      \
1108   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1109     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1110   }                                                                     \
1111                                                                         \
1112   void INSN(Register Rd, Register Rn, Register Rm,                      \
1113              enum shift_kind kind, unsigned shift = 0) {                \
1114     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1115   }                                                                     \
1116                                                                         \
1117   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1118     Assembler::INSN(Rd, Rn, Rm);                                        \
1119   }                                                                     \
1120                                                                         \
1121   void INSN(Register Rd, Register Rn, Register Rm,                      \
1122            ext::operation option, int amount = 0) {                     \
1123     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1124   }
1125 
1126   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1127 
1128   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1129   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1130   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1131   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1132 
1133   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1134 
1135   void tableswitch(Register index, jint lowbound, jint highbound,
1136                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1137     adr(rscratch1, jumptable);
1138     subsw(rscratch2, index, lowbound);
1139     subsw(zr, rscratch2, highbound - lowbound);
1140     br(Assembler::HS, jumptable_end);
1141     add(rscratch1, rscratch1, rscratch2,
1142         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1143     br(rscratch1);
1144   }
1145 
1146   // Form an address from base + offset in Rd.  Rd may or may not
1147   // actually be used: you must use the Address that is returned.  It
1148   // is up to you to ensure that the shift provided matches the size
1149   // of your data.
1150   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1151 
1152   // Return true iff an address is within the 48-bit AArch64 address
1153   // space.
1154   bool is_valid_AArch64_address(address a) {
1155     return ((uint64_t)a >> 48) == 0;
1156   }
1157 
1158   // Load the base of the cardtable byte map into reg.
1159   void load_byte_map_base(Register reg);
1160 
1161   // Prolog generator routines to support switch between x86 code and
1162   // generated ARM code
1163 
1164   // routine to generate an x86 prolog for a stub function which
1165   // bootstraps into the generated ARM code which directly follows the
1166   // stub
1167   //
1168 
1169   public:
1170   // enum used for aarch64--x86 linkage to define return type of x86 function
1171   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1172 
1173 #ifdef BUILTIN_SIM
1174   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1175 #else
1176   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1177 #endif
1178 
1179   // special version of call_VM_leaf_base needed for aarch64 simulator
1180   // where we need to specify both the gp and fp arg counts and the
1181   // return type so that the linkage routine from aarch64 to x86 and
1182   // back knows which aarch64 registers to copy to x86 registers and
1183   // which x86 result register to copy back to an aarch64 register
1184 
1185   void call_VM_leaf_base1(
1186     address  entry_point,             // the entry point
1187     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1188     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1189     ret_type type,                    // the return type for the call
1190     Label*   retaddr = NULL
1191   );
1192 
1193   void ldr_constant(Register dest, const Address &const_addr) {
1194     if (NearCpool) {
1195       ldr(dest, const_addr);
1196     } else {
1197       unsigned long offset;
1198       adrp(dest, InternalAddress(const_addr.target()), offset);
1199       ldr(dest, Address(dest, offset));
1200     }
1201   }
1202 
1203   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1204   address read_polling_page(Register r, relocInfo::relocType rtype);
1205   void get_polling_page(Register dest, address page, relocInfo::relocType rtype);
1206 
1207   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1208   void update_byte_crc32(Register crc, Register val, Register table);
1209   void update_word_crc32(Register crc, Register v, Register tmp,
1210         Register table0, Register table1, Register table2, Register table3,
1211         bool upper = false);
1212 
1213   void string_compare(Register str1, Register str2,
1214                       Register cnt1, Register cnt2, Register result,
1215                       Register tmp1, Register tmp2, FloatRegister vtmp1,
1216                       FloatRegister vtmp2, FloatRegister vtmp3, int ae);
1217 
1218   void has_negatives(Register ary1, Register len, Register result);
1219 
1220   void arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1221                      Register tmp1, Register tmp2, Register tmp3, int elem_size);
1222 
1223   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1224                      int elem_size);
1225 
1226   void fill_words(Register base, Register cnt, Register value);
1227   void zero_words(Register base, u_int64_t cnt);
1228   void zero_words(Register ptr, Register cnt);
1229   void zero_dcache_blocks(Register base, Register cnt);
1230 
1231   static const int zero_words_block_size;
1232 
1233   void byte_array_inflate(Register src, Register dst, Register len,
1234                           FloatRegister vtmp1, FloatRegister vtmp2,
1235                           FloatRegister vtmp3, Register tmp4);
1236 
1237   void char_array_compress(Register src, Register dst, Register len,
1238                            FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1239                            FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1240                            Register result);
1241 
1242   void encode_iso_array(Register src, Register dst,
1243                         Register len, Register result,
1244                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1245                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1246   void string_indexof(Register str1, Register str2,
1247                       Register cnt1, Register cnt2,
1248                       Register tmp1, Register tmp2,
1249                       Register tmp3, Register tmp4,
1250                       Register tmp5, Register tmp6,
1251                       int int_cnt1, Register result, int ae);
1252   void string_indexof_char(Register str1, Register cnt1,
1253                            Register ch, Register result,
1254                            Register tmp1, Register tmp2, Register tmp3);
1255   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1256                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1257                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1258                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1259                 Register tmp3, Register tmp4, Register tmp5);
1260   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1261       address pio2, address dsin_coef, address dcos_coef);
1262  private:
1263   // begin trigonometric functions support block
1264   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1265   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1266   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1267   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1268   // end trigonometric functions support block
1269   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1270                        Register src1, Register src2);
1271   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1272     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1273   }
1274   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1275                              Register y, Register y_idx, Register z,
1276                              Register carry, Register product,
1277                              Register idx, Register kdx);
1278   void multiply_128_x_128_loop(Register y, Register z,
1279                                Register carry, Register carry2,
1280                                Register idx, Register jdx,
1281                                Register yz_idx1, Register yz_idx2,
1282                                Register tmp, Register tmp3, Register tmp4,
1283                                Register tmp7, Register product_hi);
1284   void kernel_crc32_using_crc32(Register crc, Register buf,
1285         Register len, Register tmp0, Register tmp1, Register tmp2,
1286         Register tmp3);
1287   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1288         Register len, Register tmp0, Register tmp1, Register tmp2,
1289         Register tmp3);
1290 public:
1291   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1292                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1293                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1294   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1295   // ISB may be needed because of a safepoint
1296   void maybe_isb() { isb(); }
1297 
1298 private:
1299   // Return the effective address r + (r1 << ext) + offset.
1300   // Uses rscratch2.
1301   Address offsetted_address(Register r, Register r1, Address::extend ext,
1302                             int offset, int size);
1303 
1304 private:
1305   // Returns an address on the stack which is reachable with a ldr/str of size
1306   // Uses rscratch2 if the address is not directly reachable
1307   Address spill_address(int size, int offset, Register tmp=rscratch2);
1308 
1309   bool merge_alignment_check(Register base, size_t size, long cur_offset, long prev_offset) const;
1310 
1311   // Check whether two loads/stores can be merged into ldp/stp.
1312   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1313 
1314   // Merge current load/store with previous load/store into ldp/stp.
1315   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1316 
1317   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1318   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1319 
1320 public:
1321   void spill(Register Rx, bool is64, int offset) {
1322     if (is64) {
1323       str(Rx, spill_address(8, offset));
1324     } else {
1325       strw(Rx, spill_address(4, offset));
1326     }
1327   }
1328   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1329     str(Vx, T, spill_address(1 << (int)T, offset));
1330   }
1331   void unspill(Register Rx, bool is64, int offset) {
1332     if (is64) {
1333       ldr(Rx, spill_address(8, offset));
1334     } else {
1335       ldrw(Rx, spill_address(4, offset));
1336     }
1337   }
1338   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1339     ldr(Vx, T, spill_address(1 << (int)T, offset));
1340   }
1341   void spill_copy128(int src_offset, int dst_offset,
1342                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1343     if (src_offset < 512 && (src_offset & 7) == 0 &&
1344         dst_offset < 512 && (dst_offset & 7) == 0) {
1345       ldp(tmp1, tmp2, Address(sp, src_offset));
1346       stp(tmp1, tmp2, Address(sp, dst_offset));
1347     } else {
1348       unspill(tmp1, true, src_offset);
1349       spill(tmp1, true, dst_offset);
1350       unspill(tmp1, true, src_offset+8);
1351       spill(tmp1, true, dst_offset+8);
1352     }
1353   }
1354 };
1355 
1356 #ifdef ASSERT
1357 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1358 #endif
1359 
1360 /**
1361  * class SkipIfEqual:
1362  *
1363  * Instantiating this class will result in assembly code being output that will
1364  * jump around any code emitted between the creation of the instance and it's
1365  * automatic destruction at the end of a scope block, depending on the value of
1366  * the flag passed to the constructor, which will be checked at run-time.
1367  */
1368 class SkipIfEqual {
1369  private:
1370   MacroAssembler* _masm;
1371   Label _label;
1372 
1373  public:
1374    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1375    ~SkipIfEqual();
1376 };
1377 
1378 struct tableswitch {
1379   Register _reg;
1380   int _insn_index; jint _first_key; jint _last_key;
1381   Label _after;
1382   Label _branches;
1383 };
1384 
1385 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP