1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 
  31 // MacroAssembler extends Assembler by frequently used macros.
  32 //
  33 // Instructions for which a 'better' code sequence exists depending
  34 // on arguments should also go in here.
  35 
  36 class MacroAssembler: public Assembler {
  37   friend class LIR_Assembler;
  38 
  39  public:
  40   using Assembler::mov;
  41   using Assembler::movi;
  42 
  43  protected:
  44 
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50   virtual void call_VM_leaf_base(
  51     address entry_point,               // the entry point
  52     int     number_of_arguments,        // the number of arguments to pop after the call
  53     Label *retaddr = NULL
  54   );
  55 
  56   virtual void call_VM_leaf_base(
  57     address entry_point,               // the entry point
  58     int     number_of_arguments,        // the number of arguments to pop after the call
  59     Label &retaddr) {
  60     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  61   }
  62 
  63   // This is the base routine called by the different versions of call_VM. The interpreter
  64   // may customize this version by overriding it for its purposes (e.g., to save/restore
  65   // additional registers when doing a VM call).
  66   //
  67   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  68   // returns the register which contains the thread upon return. If a thread register has been
  69   // specified, the return value will correspond to that register. If no last_java_sp is specified
  70   // (noreg) than rsp will be used instead.
  71   virtual void call_VM_base(           // returns the register containing the thread upon return
  72     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  73     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  74     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  75     address  entry_point,              // the entry point
  76     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  77     bool     check_exceptions          // whether to check for pending exceptions after return
  78   );
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // True if an XOR can be used to expand narrow klass references.
  83   bool use_XOR_for_compressed_class_base;
  84 
  85  public:
  86   MacroAssembler(CodeBuffer* code) : Assembler(code) {
  87     use_XOR_for_compressed_class_base
  88       = (operand_valid_for_logical_immediate(false /*is32*/,
  89                                              (uint64_t)Universe::narrow_klass_base())
  90          && ((uint64_t)Universe::narrow_klass_base()
  91              > (1UL << log2_intptr(Universe::narrow_klass_range()))));
  92   }
  93 
  94  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  95  // The implementation is only non-empty for the InterpreterMacroAssembler,
  96  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  97  virtual void check_and_handle_popframe(Register java_thread);
  98  virtual void check_and_handle_earlyret(Register java_thread);
  99 
 100   void safepoint_poll(Label& slow_path);
 101   void safepoint_poll_acquire(Label& slow_path);
 102 
 103   // Biased locking support
 104   // lock_reg and obj_reg must be loaded up with the appropriate values.
 105   // swap_reg is killed.
 106   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 107   // Optional slow case is for implementations (interpreter and C1) which branch to
 108   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 109   // Returns offset of first potentially-faulting instruction for null
 110   // check info (currently consumed only by C1). If
 111   // swap_reg_contains_mark is true then returns -1 as it is assumed
 112   // the calling code has already passed any potential faults.
 113   int biased_locking_enter(Register lock_reg, Register obj_reg,
 114                            Register swap_reg, Register tmp_reg,
 115                            bool swap_reg_contains_mark,
 116                            Label& done, Label* slow_case = NULL,
 117                            BiasedLockingCounters* counters = NULL);
 118   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 119 
 120 
 121   // Helper functions for statistics gathering.
 122   // Unconditional atomic increment.
 123   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 124   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 125     lea(tmp1, counter_addr);
 126     atomic_incw(tmp1, tmp2, tmp3);
 127   }
 128   // Load Effective Address
 129   void lea(Register r, const Address &a) {
 130     InstructionMark im(this);
 131     code_section()->relocate(inst_mark(), a.rspec());
 132     a.lea(this, r);
 133   }
 134 
 135   void addmw(Address a, Register incr, Register scratch) {
 136     ldrw(scratch, a);
 137     addw(scratch, scratch, incr);
 138     strw(scratch, a);
 139   }
 140 
 141   // Add constant to memory word
 142   void addmw(Address a, int imm, Register scratch) {
 143     ldrw(scratch, a);
 144     if (imm > 0)
 145       addw(scratch, scratch, (unsigned)imm);
 146     else
 147       subw(scratch, scratch, (unsigned)-imm);
 148     strw(scratch, a);
 149   }
 150 
 151   void bind(Label& L) {
 152     Assembler::bind(L);
 153     code()->clear_last_insn();
 154   }
 155 
 156   void membar(Membar_mask_bits order_constraint);
 157 
 158   using Assembler::ldr;
 159   using Assembler::str;
 160 
 161   void ldr(Register Rx, const Address &adr);
 162   void ldrw(Register Rw, const Address &adr);
 163   void str(Register Rx, const Address &adr);
 164   void strw(Register Rx, const Address &adr);
 165 
 166   // Frame creation and destruction shared between JITs.
 167   void build_frame(int framesize);
 168   void remove_frame(int framesize);
 169 
 170   virtual void _call_Unimplemented(address call_site) {
 171     mov(rscratch2, call_site);
 172     haltsim();
 173   }
 174 
 175 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 176 
 177   virtual void notify(int type);
 178 
 179   // aliases defined in AARCH64 spec
 180 
 181   template<class T>
 182   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 183   // imm is limited to 12 bits.
 184   inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
 185 
 186   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 187   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 188 
 189   void cset(Register Rd, Assembler::Condition cond) {
 190     csinc(Rd, zr, zr, ~cond);
 191   }
 192   void csetw(Register Rd, Assembler::Condition cond) {
 193     csincw(Rd, zr, zr, ~cond);
 194   }
 195 
 196   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 197     csneg(Rd, Rn, Rn, ~cond);
 198   }
 199   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 200     csnegw(Rd, Rn, Rn, ~cond);
 201   }
 202 
 203   inline void movw(Register Rd, Register Rn) {
 204     if (Rd == sp || Rn == sp) {
 205       addw(Rd, Rn, 0U);
 206     } else {
 207       orrw(Rd, zr, Rn);
 208     }
 209   }
 210   inline void mov(Register Rd, Register Rn) {
 211     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 212     if (Rd == Rn) {
 213     } else if (Rd == sp || Rn == sp) {
 214       add(Rd, Rn, 0U);
 215     } else {
 216       orr(Rd, zr, Rn);
 217     }
 218   }
 219 
 220   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 221   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 222 
 223   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 224   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 225 
 226   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 227   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 228 
 229   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 230     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 231   }
 232   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 233     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 234   }
 235 
 236   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 237     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 238   }
 239   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 240     bfm(Rd, Rn, lsb , (lsb + width - 1));
 241   }
 242 
 243   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 244     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 245   }
 246   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 247     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 248   }
 249 
 250   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 251     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 252   }
 253   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 254     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 255   }
 256 
 257   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 258     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 259   }
 260   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 261     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 262   }
 263 
 264   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 265     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 266   }
 267   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 268     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 269   }
 270 
 271   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 272     sbfmw(Rd, Rn, imm, 31);
 273   }
 274 
 275   inline void asr(Register Rd, Register Rn, unsigned imm) {
 276     sbfm(Rd, Rn, imm, 63);
 277   }
 278 
 279   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 280     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 281   }
 282 
 283   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 284     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 285   }
 286 
 287   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 288     ubfmw(Rd, Rn, imm, 31);
 289   }
 290 
 291   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 292     ubfm(Rd, Rn, imm, 63);
 293   }
 294 
 295   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 296     extrw(Rd, Rn, Rn, imm);
 297   }
 298 
 299   inline void ror(Register Rd, Register Rn, unsigned imm) {
 300     extr(Rd, Rn, Rn, imm);
 301   }
 302 
 303   inline void sxtbw(Register Rd, Register Rn) {
 304     sbfmw(Rd, Rn, 0, 7);
 305   }
 306   inline void sxthw(Register Rd, Register Rn) {
 307     sbfmw(Rd, Rn, 0, 15);
 308   }
 309   inline void sxtb(Register Rd, Register Rn) {
 310     sbfm(Rd, Rn, 0, 7);
 311   }
 312   inline void sxth(Register Rd, Register Rn) {
 313     sbfm(Rd, Rn, 0, 15);
 314   }
 315   inline void sxtw(Register Rd, Register Rn) {
 316     sbfm(Rd, Rn, 0, 31);
 317   }
 318 
 319   inline void uxtbw(Register Rd, Register Rn) {
 320     ubfmw(Rd, Rn, 0, 7);
 321   }
 322   inline void uxthw(Register Rd, Register Rn) {
 323     ubfmw(Rd, Rn, 0, 15);
 324   }
 325   inline void uxtb(Register Rd, Register Rn) {
 326     ubfm(Rd, Rn, 0, 7);
 327   }
 328   inline void uxth(Register Rd, Register Rn) {
 329     ubfm(Rd, Rn, 0, 15);
 330   }
 331   inline void uxtw(Register Rd, Register Rn) {
 332     ubfm(Rd, Rn, 0, 31);
 333   }
 334 
 335   inline void cmnw(Register Rn, Register Rm) {
 336     addsw(zr, Rn, Rm);
 337   }
 338   inline void cmn(Register Rn, Register Rm) {
 339     adds(zr, Rn, Rm);
 340   }
 341 
 342   inline void cmpw(Register Rn, Register Rm) {
 343     subsw(zr, Rn, Rm);
 344   }
 345   inline void cmp(Register Rn, Register Rm) {
 346     subs(zr, Rn, Rm);
 347   }
 348 
 349   inline void negw(Register Rd, Register Rn) {
 350     subw(Rd, zr, Rn);
 351   }
 352 
 353   inline void neg(Register Rd, Register Rn) {
 354     sub(Rd, zr, Rn);
 355   }
 356 
 357   inline void negsw(Register Rd, Register Rn) {
 358     subsw(Rd, zr, Rn);
 359   }
 360 
 361   inline void negs(Register Rd, Register Rn) {
 362     subs(Rd, zr, Rn);
 363   }
 364 
 365   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 366     addsw(zr, Rn, Rm, kind, shift);
 367   }
 368   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 369     adds(zr, Rn, Rm, kind, shift);
 370   }
 371 
 372   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 373     subsw(zr, Rn, Rm, kind, shift);
 374   }
 375   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 376     subs(zr, Rn, Rm, kind, shift);
 377   }
 378 
 379   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 380     subw(Rd, zr, Rn, kind, shift);
 381   }
 382 
 383   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 384     sub(Rd, zr, Rn, kind, shift);
 385   }
 386 
 387   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 388     subsw(Rd, zr, Rn, kind, shift);
 389   }
 390 
 391   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 392     subs(Rd, zr, Rn, kind, shift);
 393   }
 394 
 395   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 396     msubw(Rd, Rn, Rm, zr);
 397   }
 398   inline void mneg(Register Rd, Register Rn, Register Rm) {
 399     msub(Rd, Rn, Rm, zr);
 400   }
 401 
 402   inline void mulw(Register Rd, Register Rn, Register Rm) {
 403     maddw(Rd, Rn, Rm, zr);
 404   }
 405   inline void mul(Register Rd, Register Rn, Register Rm) {
 406     madd(Rd, Rn, Rm, zr);
 407   }
 408 
 409   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 410     smsubl(Rd, Rn, Rm, zr);
 411   }
 412   inline void smull(Register Rd, Register Rn, Register Rm) {
 413     smaddl(Rd, Rn, Rm, zr);
 414   }
 415 
 416   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 417     umsubl(Rd, Rn, Rm, zr);
 418   }
 419   inline void umull(Register Rd, Register Rn, Register Rm) {
 420     umaddl(Rd, Rn, Rm, zr);
 421   }
 422 
 423 #define WRAP(INSN)                                                            \
 424   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 425     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 426       nop();                                                                  \
 427     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 428   }
 429 
 430   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 431   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 432 #undef WRAP
 433 
 434 
 435   // macro assembly operations needed for aarch64
 436 
 437   // first two private routines for loading 32 bit or 64 bit constants
 438 private:
 439 
 440   void mov_immediate64(Register dst, u_int64_t imm64);
 441   void mov_immediate32(Register dst, u_int32_t imm32);
 442 
 443   int push(unsigned int bitset, Register stack);
 444   int pop(unsigned int bitset, Register stack);
 445 
 446   void mov(Register dst, Address a);
 447 
 448 public:
 449   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 450   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 451 
 452   // Push and pop everything that might be clobbered by a native
 453   // runtime call except rscratch1 and rscratch2.  (They are always
 454   // scratch, so we don't have to protect them.)  Only save the lower
 455   // 64 bits of each vector register.
 456   void push_call_clobbered_registers();
 457   void pop_call_clobbered_registers();
 458 
 459   // now mov instructions for loading absolute addresses and 32 or
 460   // 64 bit integers
 461 
 462   inline void mov(Register dst, address addr)
 463   {
 464     mov_immediate64(dst, (u_int64_t)addr);
 465   }
 466 
 467   inline void mov(Register dst, u_int64_t imm64)
 468   {
 469     mov_immediate64(dst, imm64);
 470   }
 471 
 472   inline void movw(Register dst, u_int32_t imm32)
 473   {
 474     mov_immediate32(dst, imm32);
 475   }
 476 
 477   inline void mov(Register dst, long l)
 478   {
 479     mov(dst, (u_int64_t)l);
 480   }
 481 
 482   inline void mov(Register dst, int i)
 483   {
 484     mov(dst, (long)i);
 485   }
 486 
 487   void mov(Register dst, RegisterOrConstant src) {
 488     if (src.is_register())
 489       mov(dst, src.as_register());
 490     else
 491       mov(dst, src.as_constant());
 492   }
 493 
 494   void movptr(Register r, uintptr_t imm64);
 495 
 496   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 497 
 498   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 499     orr(Vd, T, Vn, Vn);
 500   }
 501 
 502 public:
 503 
 504   // Generalized Test Bit And Branch, including a "far" variety which
 505   // spans more than 32KiB.
 506   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 507     assert(cond == EQ || cond == NE, "must be");
 508 
 509     if (far)
 510       cond = ~cond;
 511 
 512     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 513     if (cond == Assembler::EQ)
 514       branch = &Assembler::tbz;
 515     else
 516       branch = &Assembler::tbnz;
 517 
 518     if (far) {
 519       Label L;
 520       (this->*branch)(Rt, bitpos, L);
 521       b(dest);
 522       bind(L);
 523     } else {
 524       (this->*branch)(Rt, bitpos, dest);
 525     }
 526   }
 527 
 528   // macro instructions for accessing and updating floating point
 529   // status register
 530   //
 531   // FPSR : op1 == 011
 532   //        CRn == 0100
 533   //        CRm == 0100
 534   //        op2 == 001
 535 
 536   inline void get_fpsr(Register reg)
 537   {
 538     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 539   }
 540 
 541   inline void set_fpsr(Register reg)
 542   {
 543     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 544   }
 545 
 546   inline void clear_fpsr()
 547   {
 548     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 549   }
 550 
 551   // DCZID_EL0: op1 == 011
 552   //            CRn == 0000
 553   //            CRm == 0000
 554   //            op2 == 111
 555   inline void get_dczid_el0(Register reg)
 556   {
 557     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 558   }
 559 
 560   // CTR_EL0:   op1 == 011
 561   //            CRn == 0000
 562   //            CRm == 0000
 563   //            op2 == 001
 564   inline void get_ctr_el0(Register reg)
 565   {
 566     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 567   }
 568 
 569   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 570   int corrected_idivl(Register result, Register ra, Register rb,
 571                       bool want_remainder, Register tmp = rscratch1);
 572   int corrected_idivq(Register result, Register ra, Register rb,
 573                       bool want_remainder, Register tmp = rscratch1);
 574 
 575   // Support for NULL-checks
 576   //
 577   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 578   // If the accessed location is M[reg + offset] and the offset is known, provide the
 579   // offset. No explicit code generation is needed if the offset is within a certain
 580   // range (0 <= offset <= page_size).
 581 
 582   virtual void null_check(Register reg, int offset = -1);
 583   static bool needs_explicit_null_check(intptr_t offset);
 584 
 585   static address target_addr_for_insn(address insn_addr, unsigned insn);
 586   static address target_addr_for_insn(address insn_addr) {
 587     unsigned insn = *(unsigned*)insn_addr;
 588     return target_addr_for_insn(insn_addr, insn);
 589   }
 590 
 591   // Required platform-specific helpers for Label::patch_instructions.
 592   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 593   static int pd_patch_instruction_size(address branch, address target);
 594   static void pd_patch_instruction(address branch, address target) {
 595     pd_patch_instruction_size(branch, target);
 596   }
 597   static address pd_call_destination(address branch) {
 598     return target_addr_for_insn(branch);
 599   }
 600 #ifndef PRODUCT
 601   static void pd_print_patched_instruction(address branch);
 602 #endif
 603 
 604   static int patch_oop(address insn_addr, address o);
 605   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 606 
 607   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 608 
 609   // The following 4 methods return the offset of the appropriate move instruction
 610 
 611   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 612   int load_unsigned_byte(Register dst, Address src);
 613   int load_unsigned_short(Register dst, Address src);
 614 
 615   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 616   int load_signed_byte(Register dst, Address src);
 617   int load_signed_short(Register dst, Address src);
 618 
 619   int load_signed_byte32(Register dst, Address src);
 620   int load_signed_short32(Register dst, Address src);
 621 
 622   // Support for sign-extension (hi:lo = extend_sign(lo))
 623   void extend_sign(Register hi, Register lo);
 624 
 625   // Load and store values by size and signed-ness
 626   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 627   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 628 
 629   // Support for inc/dec with optimal instruction selection depending on value
 630 
 631   // x86_64 aliases an unqualified register/address increment and
 632   // decrement to call incrementq and decrementq but also supports
 633   // explicitly sized calls to incrementq/decrementq or
 634   // incrementl/decrementl
 635 
 636   // for aarch64 the proper convention would be to use
 637   // increment/decrement for 64 bit operatons and
 638   // incrementw/decrementw for 32 bit operations. so when porting
 639   // x86_64 code we can leave calls to increment/decrement as is,
 640   // replace incrementq/decrementq with increment/decrement and
 641   // replace incrementl/decrementl with incrementw/decrementw.
 642 
 643   // n.b. increment/decrement calls with an Address destination will
 644   // need to use a scratch register to load the value to be
 645   // incremented. increment/decrement calls which add or subtract a
 646   // constant value greater than 2^12 will need to use a 2nd scratch
 647   // register to hold the constant. so, a register increment/decrement
 648   // may trash rscratch2 and an address increment/decrement trash
 649   // rscratch and rscratch2
 650 
 651   void decrementw(Address dst, int value = 1);
 652   void decrementw(Register reg, int value = 1);
 653 
 654   void decrement(Register reg, int value = 1);
 655   void decrement(Address dst, int value = 1);
 656 
 657   void incrementw(Address dst, int value = 1);
 658   void incrementw(Register reg, int value = 1);
 659 
 660   void increment(Register reg, int value = 1);
 661   void increment(Address dst, int value = 1);
 662 
 663 
 664   // Alignment
 665   void align(int modulus);
 666 
 667   // Stack frame creation/removal
 668   void enter()
 669   {
 670     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 671     mov(rfp, sp);
 672   }
 673   void leave()
 674   {
 675     mov(sp, rfp);
 676     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 677   }
 678 
 679   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 680   // The pointer will be loaded into the thread register.
 681   void get_thread(Register thread);
 682 
 683 
 684   // Support for VM calls
 685   //
 686   // It is imperative that all calls into the VM are handled via the call_VM macros.
 687   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 688   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 689 
 690 
 691   void call_VM(Register oop_result,
 692                address entry_point,
 693                bool check_exceptions = true);
 694   void call_VM(Register oop_result,
 695                address entry_point,
 696                Register arg_1,
 697                bool check_exceptions = true);
 698   void call_VM(Register oop_result,
 699                address entry_point,
 700                Register arg_1, Register arg_2,
 701                bool check_exceptions = true);
 702   void call_VM(Register oop_result,
 703                address entry_point,
 704                Register arg_1, Register arg_2, Register arg_3,
 705                bool check_exceptions = true);
 706 
 707   // Overloadings with last_Java_sp
 708   void call_VM(Register oop_result,
 709                Register last_java_sp,
 710                address entry_point,
 711                int number_of_arguments = 0,
 712                bool check_exceptions = true);
 713   void call_VM(Register oop_result,
 714                Register last_java_sp,
 715                address entry_point,
 716                Register arg_1, bool
 717                check_exceptions = true);
 718   void call_VM(Register oop_result,
 719                Register last_java_sp,
 720                address entry_point,
 721                Register arg_1, Register arg_2,
 722                bool check_exceptions = true);
 723   void call_VM(Register oop_result,
 724                Register last_java_sp,
 725                address entry_point,
 726                Register arg_1, Register arg_2, Register arg_3,
 727                bool check_exceptions = true);
 728 
 729   void get_vm_result  (Register oop_result, Register thread);
 730   void get_vm_result_2(Register metadata_result, Register thread);
 731 
 732   // These always tightly bind to MacroAssembler::call_VM_base
 733   // bypassing the virtual implementation
 734   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 735   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 736   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 737   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 738   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 739 
 740   void call_VM_leaf(address entry_point,
 741                     int number_of_arguments = 0);
 742   void call_VM_leaf(address entry_point,
 743                     Register arg_1);
 744   void call_VM_leaf(address entry_point,
 745                     Register arg_1, Register arg_2);
 746   void call_VM_leaf(address entry_point,
 747                     Register arg_1, Register arg_2, Register arg_3);
 748 
 749   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 750   // bypassing the virtual implementation
 751   void super_call_VM_leaf(address entry_point);
 752   void super_call_VM_leaf(address entry_point, Register arg_1);
 753   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 754   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 755   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 756 
 757   // last Java Frame (fills frame anchor)
 758   void set_last_Java_frame(Register last_java_sp,
 759                            Register last_java_fp,
 760                            address last_java_pc,
 761                            Register scratch);
 762 
 763   void set_last_Java_frame(Register last_java_sp,
 764                            Register last_java_fp,
 765                            Label &last_java_pc,
 766                            Register scratch);
 767 
 768   void set_last_Java_frame(Register last_java_sp,
 769                            Register last_java_fp,
 770                            Register last_java_pc,
 771                            Register scratch);
 772 
 773   void reset_last_Java_frame(Register thread);
 774 
 775   // thread in the default location (rthread)
 776   void reset_last_Java_frame(bool clear_fp);
 777 
 778   // Stores
 779   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 780   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 781 
 782   void resolve_jobject(Register value, Register thread, Register tmp);
 783 
 784   // oop manipulations
 785   void load_klass(Register dst, Register src);
 786   void store_klass(Register dst, Register src);
 787   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 788 
 789   void resolve_oop_handle(Register result, Register tmp = r5);
 790   void load_mirror(Register dst, Register method, Register tmp = r5);
 791 
 792   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 793                       Register tmp1, Register tmp_thread);
 794 
 795   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 796                        Register tmp1, Register tmp_thread);
 797 
 798   // Resolves obj for access. Result is placed in the same register.
 799   // All other registers are preserved.
 800   void resolve(DecoratorSet decorators, Register obj);
 801 
 802   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 803                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 804 
 805   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 806                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 807   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 808                       Register tmp_thread = noreg, DecoratorSet decorators = 0);
 809 
 810   // currently unimplemented
 811   // Used for storing NULL. All other oop constants should be
 812   // stored using routines that take a jobject.
 813   void store_heap_oop_null(Address dst);
 814 
 815   void load_prototype_header(Register dst, Register src);
 816 
 817   void store_klass_gap(Register dst, Register src);
 818 
 819   // This dummy is to prevent a call to store_heap_oop from
 820   // converting a zero (like NULL) into a Register by giving
 821   // the compiler two choices it can't resolve
 822 
 823   void store_heap_oop(Address dst, void* dummy);
 824 
 825   void encode_heap_oop(Register d, Register s);
 826   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 827   void decode_heap_oop(Register d, Register s);
 828   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 829   void encode_heap_oop_not_null(Register r);
 830   void decode_heap_oop_not_null(Register r);
 831   void encode_heap_oop_not_null(Register dst, Register src);
 832   void decode_heap_oop_not_null(Register dst, Register src);
 833 
 834   void set_narrow_oop(Register dst, jobject obj);
 835 
 836   void encode_klass_not_null(Register r);
 837   void decode_klass_not_null(Register r);
 838   void encode_klass_not_null(Register dst, Register src);
 839   void decode_klass_not_null(Register dst, Register src);
 840 
 841   void set_narrow_klass(Register dst, Klass* k);
 842 
 843   // if heap base register is used - reinit it with the correct value
 844   void reinit_heapbase();
 845 
 846   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 847 
 848   void push_CPU_state(bool save_vectors = false);
 849   void pop_CPU_state(bool restore_vectors = false) ;
 850 
 851   // Round up to a power of two
 852   void round_to(Register reg, int modulus);
 853 
 854   // allocation
 855   void eden_allocate(
 856     Register obj,                      // result: pointer to object after successful allocation
 857     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 858     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 859     Register t1,                       // temp register
 860     Label&   slow_case                 // continuation point if fast allocation fails
 861   );
 862   void tlab_allocate(
 863     Register obj,                      // result: pointer to object after successful allocation
 864     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 865     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 866     Register t1,                       // temp register
 867     Register t2,                       // temp register
 868     Label&   slow_case                 // continuation point if fast allocation fails
 869   );
 870   void zero_memory(Register addr, Register len, Register t1);
 871   void verify_tlab();
 872 
 873   // interface method calling
 874   void lookup_interface_method(Register recv_klass,
 875                                Register intf_klass,
 876                                RegisterOrConstant itable_index,
 877                                Register method_result,
 878                                Register scan_temp,
 879                                Label& no_such_interface,
 880                    bool return_method = true);
 881 
 882   // virtual method calling
 883   // n.b. x86 allows RegisterOrConstant for vtable_index
 884   void lookup_virtual_method(Register recv_klass,
 885                              RegisterOrConstant vtable_index,
 886                              Register method_result);
 887 
 888   // Test sub_klass against super_klass, with fast and slow paths.
 889 
 890   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 891   // One of the three labels can be NULL, meaning take the fall-through.
 892   // If super_check_offset is -1, the value is loaded up from super_klass.
 893   // No registers are killed, except temp_reg.
 894   void check_klass_subtype_fast_path(Register sub_klass,
 895                                      Register super_klass,
 896                                      Register temp_reg,
 897                                      Label* L_success,
 898                                      Label* L_failure,
 899                                      Label* L_slow_path,
 900                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 901 
 902   // The rest of the type check; must be wired to a corresponding fast path.
 903   // It does not repeat the fast path logic, so don't use it standalone.
 904   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 905   // Updates the sub's secondary super cache as necessary.
 906   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 907   void check_klass_subtype_slow_path(Register sub_klass,
 908                                      Register super_klass,
 909                                      Register temp_reg,
 910                                      Register temp2_reg,
 911                                      Label* L_success,
 912                                      Label* L_failure,
 913                                      bool set_cond_codes = false);
 914 
 915   // Simplified, combined version, good for typical uses.
 916   // Falls through on failure.
 917   void check_klass_subtype(Register sub_klass,
 918                            Register super_klass,
 919                            Register temp_reg,
 920                            Label& L_success);
 921 
 922   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 923 
 924 
 925   // Debugging
 926 
 927   // only if +VerifyOops
 928   void verify_oop(Register reg, const char* s = "broken oop");
 929   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 930 
 931 // TODO: verify method and klass metadata (compare against vptr?)
 932   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 933   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 934 
 935 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 936 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 937 
 938   // only if +VerifyFPU
 939   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 940 
 941   // prints msg, dumps registers and stops execution
 942   void stop(const char* msg);
 943 
 944   // prints msg and continues
 945   void warn(const char* msg);
 946 
 947   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 948 
 949   void untested()                                { stop("untested"); }
 950 
 951   void unimplemented(const char* what = "");
 952 
 953   void should_not_reach_here()                   { stop("should not reach here"); }
 954 
 955   // Stack overflow checking
 956   void bang_stack_with_offset(int offset) {
 957     // stack grows down, caller passes positive offset
 958     assert(offset > 0, "must bang with negative offset");
 959     sub(rscratch2, sp, offset);
 960     str(zr, Address(rscratch2));
 961   }
 962 
 963   // Writes to stack successive pages until offset reached to check for
 964   // stack overflow + shadow pages.  Also, clobbers tmp
 965   void bang_stack_size(Register size, Register tmp);
 966 
 967   // Check for reserved stack access in method being exited (for JIT)
 968   void reserved_stack_check();
 969 
 970   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 971                                                 Register tmp,
 972                                                 int offset);
 973 
 974   // Support for serializing memory accesses between threads
 975   void serialize_memory(Register thread, Register tmp);
 976 
 977   // Arithmetics
 978 
 979   void addptr(const Address &dst, int32_t src);
 980   void cmpptr(Register src1, Address src2);
 981 
 982   void cmpoop(Register obj1, Register obj2);
 983 
 984   // Various forms of CAS
 985 
 986   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
 987                           Label &suceed, Label *fail);
 988   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 989                   Label &suceed, Label *fail);
 990 
 991   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 992                   Label &suceed, Label *fail);
 993 
 994   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 995   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
 996   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
 997   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
 998 
 999   void atomic_xchg(Register prev, Register newv, Register addr);
1000   void atomic_xchgw(Register prev, Register newv, Register addr);
1001   void atomic_xchgal(Register prev, Register newv, Register addr);
1002   void atomic_xchgalw(Register prev, Register newv, Register addr);
1003 
1004   void orptr(Address adr, RegisterOrConstant src) {
1005     ldr(rscratch1, adr);
1006     if (src.is_register())
1007       orr(rscratch1, rscratch1, src.as_register());
1008     else
1009       orr(rscratch1, rscratch1, src.as_constant());
1010     str(rscratch1, adr);
1011   }
1012 
1013   // A generic CAS; success or failure is in the EQ flag.
1014   // Clobbers rscratch1
1015   void cmpxchg(Register addr, Register expected, Register new_val,
1016                enum operand_size size,
1017                bool acquire, bool release, bool weak,
1018                Register result);
1019 
1020   // Calls
1021 
1022   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1023 
1024   static bool far_branches() {
1025     return ReservedCodeCacheSize > branch_range || UseAOT;
1026   }
1027 
1028   // Jumps that can reach anywhere in the code cache.
1029   // Trashes tmp.
1030   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1031   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1032 
1033   static int far_branch_size() {
1034     if (far_branches()) {
1035       return 3 * 4;  // adrp, add, br
1036     } else {
1037       return 4;
1038     }
1039   }
1040 
1041   // Emit the CompiledIC call idiom
1042   address ic_call(address entry, jint method_index = 0);
1043 
1044 public:
1045 
1046   // Data
1047 
1048   void mov_metadata(Register dst, Metadata* obj);
1049   Address allocate_metadata_address(Metadata* obj);
1050   Address constant_oop_address(jobject obj);
1051 
1052   void movoop(Register dst, jobject obj, bool immediate = false);
1053 
1054   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1055   void kernel_crc32(Register crc, Register buf, Register len,
1056         Register table0, Register table1, Register table2, Register table3,
1057         Register tmp, Register tmp2, Register tmp3);
1058   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1059   void kernel_crc32c(Register crc, Register buf, Register len,
1060         Register table0, Register table1, Register table2, Register table3,
1061         Register tmp, Register tmp2, Register tmp3);
1062 
1063   // Stack push and pop individual 64 bit registers
1064   void push(Register src);
1065   void pop(Register dst);
1066 
1067   // push all registers onto the stack
1068   void pusha();
1069   void popa();
1070 
1071   void repne_scan(Register addr, Register value, Register count,
1072                   Register scratch);
1073   void repne_scanw(Register addr, Register value, Register count,
1074                    Register scratch);
1075 
1076   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1077   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1078 
1079   // If a constant does not fit in an immediate field, generate some
1080   // number of MOV instructions and then perform the operation
1081   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1082                              add_sub_imm_insn insn1,
1083                              add_sub_reg_insn insn2);
1084   // Seperate vsn which sets the flags
1085   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1086                              add_sub_imm_insn insn1,
1087                              add_sub_reg_insn insn2);
1088 
1089 #define WRAP(INSN)                                                      \
1090   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1091     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1092   }                                                                     \
1093                                                                         \
1094   void INSN(Register Rd, Register Rn, Register Rm,                      \
1095              enum shift_kind kind, unsigned shift = 0) {                \
1096     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1097   }                                                                     \
1098                                                                         \
1099   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1100     Assembler::INSN(Rd, Rn, Rm);                                        \
1101   }                                                                     \
1102                                                                         \
1103   void INSN(Register Rd, Register Rn, Register Rm,                      \
1104            ext::operation option, int amount = 0) {                     \
1105     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1106   }
1107 
1108   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1109 
1110 #undef WRAP
1111 #define WRAP(INSN)                                                      \
1112   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1113     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1114   }                                                                     \
1115                                                                         \
1116   void INSN(Register Rd, Register Rn, Register Rm,                      \
1117              enum shift_kind kind, unsigned shift = 0) {                \
1118     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1119   }                                                                     \
1120                                                                         \
1121   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1122     Assembler::INSN(Rd, Rn, Rm);                                        \
1123   }                                                                     \
1124                                                                         \
1125   void INSN(Register Rd, Register Rn, Register Rm,                      \
1126            ext::operation option, int amount = 0) {                     \
1127     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1128   }
1129 
1130   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1131 
1132   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1133   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1134   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1135   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1136 
1137   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1138 
1139   void tableswitch(Register index, jint lowbound, jint highbound,
1140                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1141     adr(rscratch1, jumptable);
1142     subsw(rscratch2, index, lowbound);
1143     subsw(zr, rscratch2, highbound - lowbound);
1144     br(Assembler::HS, jumptable_end);
1145     add(rscratch1, rscratch1, rscratch2,
1146         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1147     br(rscratch1);
1148   }
1149 
1150   // Form an address from base + offset in Rd.  Rd may or may not
1151   // actually be used: you must use the Address that is returned.  It
1152   // is up to you to ensure that the shift provided matches the size
1153   // of your data.
1154   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1155 
1156   // Return true iff an address is within the 48-bit AArch64 address
1157   // space.
1158   bool is_valid_AArch64_address(address a) {
1159     return ((uint64_t)a >> 48) == 0;
1160   }
1161 
1162   // Load the base of the cardtable byte map into reg.
1163   void load_byte_map_base(Register reg);
1164 
1165   // Prolog generator routines to support switch between x86 code and
1166   // generated ARM code
1167 
1168   // routine to generate an x86 prolog for a stub function which
1169   // bootstraps into the generated ARM code which directly follows the
1170   // stub
1171   //
1172 
1173   public:
1174   // enum used for aarch64--x86 linkage to define return type of x86 function
1175   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1176 
1177 #ifdef BUILTIN_SIM
1178   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1179 #else
1180   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1181 #endif
1182 
1183   // special version of call_VM_leaf_base needed for aarch64 simulator
1184   // where we need to specify both the gp and fp arg counts and the
1185   // return type so that the linkage routine from aarch64 to x86 and
1186   // back knows which aarch64 registers to copy to x86 registers and
1187   // which x86 result register to copy back to an aarch64 register
1188 
1189   void call_VM_leaf_base1(
1190     address  entry_point,             // the entry point
1191     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1192     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1193     ret_type type,                    // the return type for the call
1194     Label*   retaddr = NULL
1195   );
1196 
1197   void ldr_constant(Register dest, const Address &const_addr) {
1198     if (NearCpool) {
1199       ldr(dest, const_addr);
1200     } else {
1201       unsigned long offset;
1202       adrp(dest, InternalAddress(const_addr.target()), offset);
1203       ldr(dest, Address(dest, offset));
1204     }
1205   }
1206 
1207   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1208   address read_polling_page(Register r, relocInfo::relocType rtype);
1209   void get_polling_page(Register dest, address page, relocInfo::relocType rtype);
1210 
1211   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1212   void update_byte_crc32(Register crc, Register val, Register table);
1213   void update_word_crc32(Register crc, Register v, Register tmp,
1214         Register table0, Register table1, Register table2, Register table3,
1215         bool upper = false);
1216 
1217   void string_compare(Register str1, Register str2,
1218                       Register cnt1, Register cnt2, Register result,
1219                       Register tmp1, Register tmp2, FloatRegister vtmp1,
1220                       FloatRegister vtmp2, FloatRegister vtmp3, int ae);
1221 
1222   void has_negatives(Register ary1, Register len, Register result);
1223 
1224   void arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1225                      Register tmp1, Register tmp2, Register tmp3, int elem_size);
1226 
1227   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1228                      int elem_size);
1229 
1230   void fill_words(Register base, Register cnt, Register value);
1231   void zero_words(Register base, u_int64_t cnt);
1232   void zero_words(Register ptr, Register cnt);
1233   void zero_dcache_blocks(Register base, Register cnt);
1234 
1235   static const int zero_words_block_size;
1236 
1237   void byte_array_inflate(Register src, Register dst, Register len,
1238                           FloatRegister vtmp1, FloatRegister vtmp2,
1239                           FloatRegister vtmp3, Register tmp4);
1240 
1241   void char_array_compress(Register src, Register dst, Register len,
1242                            FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1243                            FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1244                            Register result);
1245 
1246   void encode_iso_array(Register src, Register dst,
1247                         Register len, Register result,
1248                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1249                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1250   void string_indexof(Register str1, Register str2,
1251                       Register cnt1, Register cnt2,
1252                       Register tmp1, Register tmp2,
1253                       Register tmp3, Register tmp4,
1254                       Register tmp5, Register tmp6,
1255                       int int_cnt1, Register result, int ae);
1256   void string_indexof_char(Register str1, Register cnt1,
1257                            Register ch, Register result,
1258                            Register tmp1, Register tmp2, Register tmp3);
1259   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1260                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1261                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1262                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1263                 Register tmp3, Register tmp4, Register tmp5);
1264   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1265       address pio2, address dsin_coef, address dcos_coef);
1266  private:
1267   // begin trigonometric functions support block
1268   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1269   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1270   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1271   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1272   // end trigonometric functions support block
1273   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1274                        Register src1, Register src2);
1275   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1276     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1277   }
1278   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1279                              Register y, Register y_idx, Register z,
1280                              Register carry, Register product,
1281                              Register idx, Register kdx);
1282   void multiply_128_x_128_loop(Register y, Register z,
1283                                Register carry, Register carry2,
1284                                Register idx, Register jdx,
1285                                Register yz_idx1, Register yz_idx2,
1286                                Register tmp, Register tmp3, Register tmp4,
1287                                Register tmp7, Register product_hi);
1288   void kernel_crc32_using_crc32(Register crc, Register buf,
1289         Register len, Register tmp0, Register tmp1, Register tmp2,
1290         Register tmp3);
1291   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1292         Register len, Register tmp0, Register tmp1, Register tmp2,
1293         Register tmp3);
1294 public:
1295   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1296                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1297                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1298   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1299   // ISB may be needed because of a safepoint
1300   void maybe_isb() { isb(); }
1301 
1302 private:
1303   // Return the effective address r + (r1 << ext) + offset.
1304   // Uses rscratch2.
1305   Address offsetted_address(Register r, Register r1, Address::extend ext,
1306                             int offset, int size);
1307 
1308 private:
1309   // Returns an address on the stack which is reachable with a ldr/str of size
1310   // Uses rscratch2 if the address is not directly reachable
1311   Address spill_address(int size, int offset, Register tmp=rscratch2);
1312 
1313   bool merge_alignment_check(Register base, size_t size, long cur_offset, long prev_offset) const;
1314 
1315   // Check whether two loads/stores can be merged into ldp/stp.
1316   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1317 
1318   // Merge current load/store with previous load/store into ldp/stp.
1319   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1320 
1321   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1322   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1323 
1324 public:
1325   void spill(Register Rx, bool is64, int offset) {
1326     if (is64) {
1327       str(Rx, spill_address(8, offset));
1328     } else {
1329       strw(Rx, spill_address(4, offset));
1330     }
1331   }
1332   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1333     str(Vx, T, spill_address(1 << (int)T, offset));
1334   }
1335   void unspill(Register Rx, bool is64, int offset) {
1336     if (is64) {
1337       ldr(Rx, spill_address(8, offset));
1338     } else {
1339       ldrw(Rx, spill_address(4, offset));
1340     }
1341   }
1342   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1343     ldr(Vx, T, spill_address(1 << (int)T, offset));
1344   }
1345   void spill_copy128(int src_offset, int dst_offset,
1346                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1347     if (src_offset < 512 && (src_offset & 7) == 0 &&
1348         dst_offset < 512 && (dst_offset & 7) == 0) {
1349       ldp(tmp1, tmp2, Address(sp, src_offset));
1350       stp(tmp1, tmp2, Address(sp, dst_offset));
1351     } else {
1352       unspill(tmp1, true, src_offset);
1353       spill(tmp1, true, dst_offset);
1354       unspill(tmp1, true, src_offset+8);
1355       spill(tmp1, true, dst_offset+8);
1356     }
1357   }
1358 };
1359 
1360 #ifdef ASSERT
1361 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1362 #endif
1363 
1364 /**
1365  * class SkipIfEqual:
1366  *
1367  * Instantiating this class will result in assembly code being output that will
1368  * jump around any code emitted between the creation of the instance and it's
1369  * automatic destruction at the end of a scope block, depending on the value of
1370  * the flag passed to the constructor, which will be checked at run-time.
1371  */
1372 class SkipIfEqual {
1373  private:
1374   MacroAssembler* _masm;
1375   Label _label;
1376 
1377  public:
1378    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1379    ~SkipIfEqual();
1380 };
1381 
1382 struct tableswitch {
1383   Register _reg;
1384   int _insn_index; jint _first_key; jint _last_key;
1385   Label _after;
1386   Label _branches;
1387 };
1388 
1389 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP