1 /*
   2  * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2018, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "gc/shared/barrierSetAssembler.hpp"
  29 #include "interpreter/bytecodeHistogram.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "interpreter/interp_masm.hpp"
  33 #include "interpreter/templateInterpreterGenerator.hpp"
  34 #include "interpreter/templateTable.hpp"
  35 #include "interpreter/bytecodeTracer.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/arrayOop.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "oops/method.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/timer.hpp"
  50 #include "runtime/vframeArray.hpp"
  51 #include "utilities/debug.hpp"
  52 #include <sys/types.h>
  53 
  54 #ifndef PRODUCT
  55 #include "oops/method.hpp"
  56 #endif // !PRODUCT
  57 
  58 #ifdef BUILTIN_SIM
  59 #include "../../../../../../simulator/simulator.hpp"
  60 #endif
  61 
  62 // Size of interpreter code.  Increase if too small.  Interpreter will
  63 // fail with a guarantee ("not enough space for interpreter generation");
  64 // if too small.
  65 // Run with +PrintInterpreter to get the VM to print out the size.
  66 // Max size with JVMTI
  67 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
  68 
  69 #define __ _masm->
  70 
  71 //-----------------------------------------------------------------------------
  72 
  73 extern "C" void entry(CodeBuffer*);
  74 
  75 //-----------------------------------------------------------------------------
  76 
  77 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  78   address entry = __ pc();
  79 
  80   __ andr(esp, esp, -16);
  81   __ mov(c_rarg3, esp);
  82   // rmethod
  83   // rlocals
  84   // c_rarg3: first stack arg - wordSize
  85 
  86   // adjust sp
  87   __ sub(sp, c_rarg3, 18 * wordSize);
  88   __ str(lr, Address(__ pre(sp, -2 * wordSize)));
  89   __ call_VM(noreg,
  90              CAST_FROM_FN_PTR(address,
  91                               InterpreterRuntime::slow_signature_handler),
  92              rmethod, rlocals, c_rarg3);
  93 
  94   // r0: result handler
  95 
  96   // Stack layout:
  97   // rsp: return address           <- sp
  98   //      1 garbage
  99   //      8 integer args (if static first is unused)
 100   //      1 float/double identifiers
 101   //      8 double args
 102   //        stack args              <- esp
 103   //        garbage
 104   //        expression stack bottom
 105   //        bcp (NULL)
 106   //        ...
 107 
 108   // Restore LR
 109   __ ldr(lr, Address(__ post(sp, 2 * wordSize)));
 110 
 111   // Do FP first so we can use c_rarg3 as temp
 112   __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
 113 
 114   for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
 115     const FloatRegister r = as_FloatRegister(i);
 116 
 117     Label d, done;
 118 
 119     __ tbnz(c_rarg3, i, d);
 120     __ ldrs(r, Address(sp, (10 + i) * wordSize));
 121     __ b(done);
 122     __ bind(d);
 123     __ ldrd(r, Address(sp, (10 + i) * wordSize));
 124     __ bind(done);
 125   }
 126 
 127   // c_rarg0 contains the result from the call of
 128   // InterpreterRuntime::slow_signature_handler so we don't touch it
 129   // here.  It will be loaded with the JNIEnv* later.
 130   __ ldr(c_rarg1, Address(sp, 1 * wordSize));
 131   for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
 132     Register rm = as_Register(i), rn = as_Register(i+1);
 133     __ ldp(rm, rn, Address(sp, i * wordSize));
 134   }
 135 
 136   __ add(sp, sp, 18 * wordSize);
 137   __ ret(lr);
 138 
 139   return entry;
 140 }
 141 
 142 
 143 //
 144 // Various method entries
 145 //
 146 
 147 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 148   // rmethod: Method*
 149   // r13: sender sp
 150   // esp: args
 151 
 152   if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
 153 
 154   // These don't need a safepoint check because they aren't virtually
 155   // callable. We won't enter these intrinsics from compiled code.
 156   // If in the future we added an intrinsic which was virtually callable
 157   // we'd have to worry about how to safepoint so that this code is used.
 158 
 159   // mathematical functions inlined by compiler
 160   // (interpreter must provide identical implementation
 161   // in order to avoid monotonicity bugs when switching
 162   // from interpreter to compiler in the middle of some
 163   // computation)
 164   //
 165   // stack:
 166   //        [ arg ] <-- esp
 167   //        [ arg ]
 168   // retaddr in lr
 169 
 170   address entry_point = NULL;
 171   Register continuation = lr;
 172   switch (kind) {
 173   case Interpreter::java_lang_math_abs:
 174     entry_point = __ pc();
 175     __ ldrd(v0, Address(esp));
 176     __ fabsd(v0, v0);
 177     __ mov(sp, r13); // Restore caller's SP
 178     break;
 179   case Interpreter::java_lang_math_sqrt:
 180     entry_point = __ pc();
 181     __ ldrd(v0, Address(esp));
 182     __ fsqrtd(v0, v0);
 183     __ mov(sp, r13);
 184     break;
 185   case Interpreter::java_lang_math_sin :
 186   case Interpreter::java_lang_math_cos :
 187   case Interpreter::java_lang_math_tan :
 188   case Interpreter::java_lang_math_log :
 189   case Interpreter::java_lang_math_log10 :
 190   case Interpreter::java_lang_math_exp :
 191     entry_point = __ pc();
 192     __ ldrd(v0, Address(esp));
 193     __ mov(sp, r13);
 194     __ mov(r19, lr);
 195     continuation = r19;  // The first callee-saved register
 196     generate_transcendental_entry(kind, 1);
 197     break;
 198   case Interpreter::java_lang_math_pow :
 199     entry_point = __ pc();
 200     __ mov(r19, lr);
 201     continuation = r19;
 202     __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
 203     __ ldrd(v1, Address(esp));
 204     __ mov(sp, r13);
 205     generate_transcendental_entry(kind, 2);
 206     break;
 207   case Interpreter::java_lang_math_fmaD :
 208     if (UseFMA) {
 209       entry_point = __ pc();
 210       __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize));
 211       __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize));
 212       __ ldrd(v2, Address(esp));
 213       __ fmaddd(v0, v0, v1, v2);
 214       __ mov(sp, r13); // Restore caller's SP
 215     }
 216     break;
 217   case Interpreter::java_lang_math_fmaF :
 218     if (UseFMA) {
 219       entry_point = __ pc();
 220       __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize));
 221       __ ldrs(v1, Address(esp, Interpreter::stackElementSize));
 222       __ ldrs(v2, Address(esp));
 223       __ fmadds(v0, v0, v1, v2);
 224       __ mov(sp, r13); // Restore caller's SP
 225     }
 226     break;
 227   default:
 228     ;
 229   }
 230   if (entry_point) {
 231     __ br(continuation);
 232   }
 233 
 234   return entry_point;
 235 }
 236 
 237   // double trigonometrics and transcendentals
 238   // static jdouble dsin(jdouble x);
 239   // static jdouble dcos(jdouble x);
 240   // static jdouble dtan(jdouble x);
 241   // static jdouble dlog(jdouble x);
 242   // static jdouble dlog10(jdouble x);
 243   // static jdouble dexp(jdouble x);
 244   // static jdouble dpow(jdouble x, jdouble y);
 245 
 246 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
 247   address fn;
 248   switch (kind) {
 249   case Interpreter::java_lang_math_sin :
 250     if (StubRoutines::dsin() == NULL) {
 251       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 252     } else {
 253       fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin());
 254     }
 255     break;
 256   case Interpreter::java_lang_math_cos :
 257     if (StubRoutines::dcos() == NULL) {
 258       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 259     } else {
 260       fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos());
 261     }
 262     break;
 263   case Interpreter::java_lang_math_tan :
 264     if (StubRoutines::dtan() == NULL) {
 265       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 266     } else {
 267       fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan());
 268     }
 269     break;
 270   case Interpreter::java_lang_math_log :
 271     if (StubRoutines::dlog() == NULL) {
 272       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 273     } else {
 274       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog());
 275     }
 276     break;
 277   case Interpreter::java_lang_math_log10 :
 278     if (StubRoutines::dlog10() == NULL) {
 279       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 280     } else {
 281       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10());
 282     }
 283     break;
 284   case Interpreter::java_lang_math_exp :
 285     if (StubRoutines::dexp() == NULL) {
 286       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 287     } else {
 288       fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp());
 289     }
 290     break;
 291   case Interpreter::java_lang_math_pow :
 292     fpargs = 2;
 293     if (StubRoutines::dpow() == NULL) {
 294       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 295     } else {
 296       fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow());
 297     }
 298     break;
 299   default:
 300     ShouldNotReachHere();
 301     fn = NULL;  // unreachable
 302   }
 303   const int gpargs = 0, rtype = 3;
 304   __ mov(rscratch1, fn);
 305   __ blrt(rscratch1, gpargs, fpargs, rtype);
 306 }
 307 
 308 // Abstract method entry
 309 // Attempt to execute abstract method. Throw exception
 310 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 311   // rmethod: Method*
 312   // r13: sender SP
 313 
 314   address entry_point = __ pc();
 315 
 316   // abstract method entry
 317 
 318   //  pop return address, reset last_sp to NULL
 319   __ empty_expression_stack();
 320   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
 321   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
 322 
 323   // throw exception
 324   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 325                                      InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
 326                                      rmethod);
 327   // the call_VM checks for exception, so we should never return here.
 328   __ should_not_reach_here();
 329 
 330   return entry_point;
 331 }
 332 
 333 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 334   address entry = __ pc();
 335 
 336 #ifdef ASSERT
 337   {
 338     Label L;
 339     __ ldr(rscratch1, Address(rfp,
 340                        frame::interpreter_frame_monitor_block_top_offset *
 341                        wordSize));
 342     __ mov(rscratch2, sp);
 343     __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
 344                            // grows negative)
 345     __ br(Assembler::HS, L); // check if frame is complete
 346     __ stop ("interpreter frame not set up");
 347     __ bind(L);
 348   }
 349 #endif // ASSERT
 350   // Restore bcp under the assumption that the current frame is still
 351   // interpreted
 352   __ restore_bcp();
 353 
 354   // expression stack must be empty before entering the VM if an
 355   // exception happened
 356   __ empty_expression_stack();
 357   // throw exception
 358   __ call_VM(noreg,
 359              CAST_FROM_FN_PTR(address,
 360                               InterpreterRuntime::throw_StackOverflowError));
 361   return entry;
 362 }
 363 
 364 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
 365   address entry = __ pc();
 366   // expression stack must be empty before entering the VM if an
 367   // exception happened
 368   __ empty_expression_stack();
 369   // setup parameters
 370 
 371   // ??? convention: expect aberrant index in register r1
 372   __ movw(c_rarg2, r1);
 373   // ??? convention: expect array in register r3
 374   __ mov(c_rarg1, r3);
 375   __ call_VM(noreg,
 376              CAST_FROM_FN_PTR(address,
 377                               InterpreterRuntime::
 378                               throw_ArrayIndexOutOfBoundsException),
 379              c_rarg1, c_rarg2);
 380   return entry;
 381 }
 382 
 383 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 384   address entry = __ pc();
 385 
 386   // object is at TOS
 387   __ pop(c_rarg1);
 388 
 389   // expression stack must be empty before entering the VM if an
 390   // exception happened
 391   __ empty_expression_stack();
 392 
 393   __ call_VM(noreg,
 394              CAST_FROM_FN_PTR(address,
 395                               InterpreterRuntime::
 396                               throw_ClassCastException),
 397              c_rarg1);
 398   return entry;
 399 }
 400 
 401 address TemplateInterpreterGenerator::generate_exception_handler_common(
 402         const char* name, const char* message, bool pass_oop) {
 403   assert(!pass_oop || message == NULL, "either oop or message but not both");
 404   address entry = __ pc();
 405   if (pass_oop) {
 406     // object is at TOS
 407     __ pop(c_rarg2);
 408   }
 409   // expression stack must be empty before entering the VM if an
 410   // exception happened
 411   __ empty_expression_stack();
 412   // setup parameters
 413   __ lea(c_rarg1, Address((address)name));
 414   if (pass_oop) {
 415     __ call_VM(r0, CAST_FROM_FN_PTR(address,
 416                                     InterpreterRuntime::
 417                                     create_klass_exception),
 418                c_rarg1, c_rarg2);
 419   } else {
 420     // kind of lame ExternalAddress can't take NULL because
 421     // external_word_Relocation will assert.
 422     if (message != NULL) {
 423       __ lea(c_rarg2, Address((address)message));
 424     } else {
 425       __ mov(c_rarg2, NULL_WORD);
 426     }
 427     __ call_VM(r0,
 428                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 429                c_rarg1, c_rarg2);
 430   }
 431   // throw exception
 432   __ b(address(Interpreter::throw_exception_entry()));
 433   return entry;
 434 }
 435 
 436 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 437   address entry = __ pc();
 438 
 439   // Restore stack bottom in case i2c adjusted stack
 440   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 441   // and NULL it as marker that esp is now tos until next java call
 442   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 443   __ restore_bcp();
 444   __ restore_locals();
 445   __ restore_constant_pool_cache();
 446   __ get_method(rmethod);
 447 
 448   if (state == atos) {
 449     Register obj = r0;
 450     Register mdp = r1;
 451     Register tmp = r2;
 452     __ ldr(mdp, Address(rmethod, Method::method_data_offset()));
 453     __ profile_return_type(mdp, obj, tmp);
 454   }
 455 
 456   // Pop N words from the stack
 457   __ get_cache_and_index_at_bcp(r1, r2, 1, index_size);
 458   __ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 459   __ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask);
 460 
 461   __ add(esp, esp, r1, Assembler::LSL, 3);
 462 
 463   // Restore machine SP
 464   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 465   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 466   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 467   __ ldr(rscratch2,
 468          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 469   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
 470   __ andr(sp, rscratch1, -16);
 471 
 472 #ifndef PRODUCT
 473   // tell the simulator that the method has been reentered
 474   if (NotifySimulator) {
 475     __ notify(Assembler::method_reentry);
 476   }
 477 #endif
 478 
 479  __ check_and_handle_popframe(rthread);
 480  __ check_and_handle_earlyret(rthread);
 481 
 482   __ get_dispatch();
 483   __ dispatch_next(state, step);
 484 
 485   return entry;
 486 }
 487 
 488 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 489                                                                int step,
 490                                                                address continuation) {
 491   address entry = __ pc();
 492   __ restore_bcp();
 493   __ restore_locals();
 494   __ restore_constant_pool_cache();
 495   __ get_method(rmethod);
 496   __ get_dispatch();
 497 
 498   // Calculate stack limit
 499   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 500   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 501   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 502   __ ldr(rscratch2,
 503          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 504   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
 505   __ andr(sp, rscratch1, -16);
 506 
 507   // Restore expression stack pointer
 508   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 509   // NULL last_sp until next java call
 510   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 511 
 512 #if INCLUDE_JVMCI
 513   // Check if we need to take lock at entry of synchronized method.  This can
 514   // only occur on method entry so emit it only for vtos with step 0.
 515   if ((EnableJVMCI || UseAOT) && state == vtos && step == 0) {
 516     Label L;
 517     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 518     __ cbz(rscratch1, L);
 519     // Clear flag.
 520     __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
 521     // Take lock.
 522     lock_method();
 523     __ bind(L);
 524   } else {
 525 #ifdef ASSERT
 526     if (EnableJVMCI) {
 527       Label L;
 528       __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 529       __ cbz(rscratch1, L);
 530       __ stop("unexpected pending monitor in deopt entry");
 531       __ bind(L);
 532     }
 533 #endif
 534   }
 535 #endif
 536   // handle exceptions
 537   {
 538     Label L;
 539     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 540     __ cbz(rscratch1, L);
 541     __ call_VM(noreg,
 542                CAST_FROM_FN_PTR(address,
 543                                 InterpreterRuntime::throw_pending_exception));
 544     __ should_not_reach_here();
 545     __ bind(L);
 546   }
 547 
 548   if (continuation == NULL) {
 549     __ dispatch_next(state, step);
 550   } else {
 551     __ jump_to_entry(continuation);
 552   }
 553   return entry;
 554 }
 555 
 556 address TemplateInterpreterGenerator::generate_result_handler_for(
 557         BasicType type) {
 558     address entry = __ pc();
 559   switch (type) {
 560   case T_BOOLEAN: __ uxtb(r0, r0);        break;
 561   case T_CHAR   : __ uxth(r0, r0);       break;
 562   case T_BYTE   : __ sxtb(r0, r0);        break;
 563   case T_SHORT  : __ sxth(r0, r0);        break;
 564   case T_INT    : __ uxtw(r0, r0);        break;  // FIXME: We almost certainly don't need this
 565   case T_LONG   : /* nothing to do */        break;
 566   case T_VOID   : /* nothing to do */        break;
 567   case T_FLOAT  : /* nothing to do */        break;
 568   case T_DOUBLE : /* nothing to do */        break;
 569   case T_OBJECT :
 570     // retrieve result from frame
 571     __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
 572     // and verify it
 573     __ verify_oop(r0);
 574     break;
 575   default       : ShouldNotReachHere();
 576   }
 577   __ ret(lr);                                  // return from result handler
 578   return entry;
 579 }
 580 
 581 address TemplateInterpreterGenerator::generate_safept_entry_for(
 582         TosState state,
 583         address runtime_entry) {
 584   address entry = __ pc();
 585   __ push(state);
 586   __ call_VM(noreg, runtime_entry);
 587   __ membar(Assembler::AnyAny);
 588   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 589   return entry;
 590 }
 591 
 592 // Helpers for commoning out cases in the various type of method entries.
 593 //
 594 
 595 
 596 // increment invocation count & check for overflow
 597 //
 598 // Note: checking for negative value instead of overflow
 599 //       so we have a 'sticky' overflow test
 600 //
 601 // rmethod: method
 602 //
 603 void TemplateInterpreterGenerator::generate_counter_incr(
 604         Label* overflow,
 605         Label* profile_method,
 606         Label* profile_method_continue) {
 607   Label done;
 608   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 609   if (TieredCompilation) {
 610     int increment = InvocationCounter::count_increment;
 611     Label no_mdo;
 612     if (ProfileInterpreter) {
 613       // Are we profiling?
 614       __ ldr(r0, Address(rmethod, Method::method_data_offset()));
 615       __ cbz(r0, no_mdo);
 616       // Increment counter in the MDO
 617       const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
 618                                                 in_bytes(InvocationCounter::counter_offset()));
 619       const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
 620       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
 621       __ b(done);
 622     }
 623     __ bind(no_mdo);
 624     // Increment counter in MethodCounters
 625     const Address invocation_counter(rscratch2,
 626                   MethodCounters::invocation_counter_offset() +
 627                   InvocationCounter::counter_offset());
 628     __ get_method_counters(rmethod, rscratch2, done);
 629     const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
 630     __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
 631     __ bind(done);
 632   } else { // not TieredCompilation
 633     const Address backedge_counter(rscratch2,
 634                   MethodCounters::backedge_counter_offset() +
 635                   InvocationCounter::counter_offset());
 636     const Address invocation_counter(rscratch2,
 637                   MethodCounters::invocation_counter_offset() +
 638                   InvocationCounter::counter_offset());
 639 
 640     __ get_method_counters(rmethod, rscratch2, done);
 641 
 642     if (ProfileInterpreter) { // %%% Merge this into MethodData*
 643       __ ldrw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 644       __ addw(r1, r1, 1);
 645       __ strw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 646     }
 647     // Update standard invocation counters
 648     __ ldrw(r1, invocation_counter);
 649     __ ldrw(r0, backedge_counter);
 650 
 651     __ addw(r1, r1, InvocationCounter::count_increment);
 652     __ andw(r0, r0, InvocationCounter::count_mask_value);
 653 
 654     __ strw(r1, invocation_counter);
 655     __ addw(r0, r0, r1);                // add both counters
 656 
 657     // profile_method is non-null only for interpreted method so
 658     // profile_method != NULL == !native_call
 659 
 660     if (ProfileInterpreter && profile_method != NULL) {
 661       // Test to see if we should create a method data oop
 662       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 663       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
 664       __ cmpw(r0, rscratch2);
 665       __ br(Assembler::LT, *profile_method_continue);
 666 
 667       // if no method data exists, go to profile_method
 668       __ test_method_data_pointer(rscratch2, *profile_method);
 669     }
 670 
 671     {
 672       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 673       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_invocation_limit_offset())));
 674       __ cmpw(r0, rscratch2);
 675       __ br(Assembler::HS, *overflow);
 676     }
 677     __ bind(done);
 678   }
 679 }
 680 
 681 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 682 
 683   // Asm interpreter on entry
 684   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 685   // Everything as it was on entry
 686 
 687   // InterpreterRuntime::frequency_counter_overflow takes two
 688   // arguments, the first (thread) is passed by call_VM, the second
 689   // indicates if the counter overflow occurs at a backwards branch
 690   // (NULL bcp).  We pass zero for it.  The call returns the address
 691   // of the verified entry point for the method or NULL if the
 692   // compilation did not complete (either went background or bailed
 693   // out).
 694   __ mov(c_rarg1, 0);
 695   __ call_VM(noreg,
 696              CAST_FROM_FN_PTR(address,
 697                               InterpreterRuntime::frequency_counter_overflow),
 698              c_rarg1);
 699 
 700   __ b(do_continue);
 701 }
 702 
 703 // See if we've got enough room on the stack for locals plus overhead
 704 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 705 // without going through the signal handler, i.e., reserved and yellow zones
 706 // will not be made usable. The shadow zone must suffice to handle the
 707 // overflow.
 708 // The expression stack grows down incrementally, so the normal guard
 709 // page mechanism will work for that.
 710 //
 711 // NOTE: Since the additional locals are also always pushed (wasn't
 712 // obvious in generate_method_entry) so the guard should work for them
 713 // too.
 714 //
 715 // Args:
 716 //      r3: number of additional locals this frame needs (what we must check)
 717 //      rmethod: Method*
 718 //
 719 // Kills:
 720 //      r0
 721 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 722 
 723   // monitor entry size: see picture of stack set
 724   // (generate_method_entry) and frame_amd64.hpp
 725   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 726 
 727   // total overhead size: entry_size + (saved rbp through expr stack
 728   // bottom).  be sure to change this if you add/subtract anything
 729   // to/from the overhead area
 730   const int overhead_size =
 731     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 732 
 733   const int page_size = os::vm_page_size();
 734 
 735   Label after_frame_check;
 736 
 737   // see if the frame is greater than one page in size. If so,
 738   // then we need to verify there is enough stack space remaining
 739   // for the additional locals.
 740   //
 741   // Note that we use SUBS rather than CMP here because the immediate
 742   // field of this instruction may overflow.  SUBS can cope with this
 743   // because it is a macro that will expand to some number of MOV
 744   // instructions and a register operation.
 745   __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
 746   __ br(Assembler::LS, after_frame_check);
 747 
 748   // compute rsp as if this were going to be the last frame on
 749   // the stack before the red zone
 750 
 751   // locals + overhead, in bytes
 752   __ mov(r0, overhead_size);
 753   __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize);  // 2 slots per parameter.
 754 
 755   const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
 756   __ ldr(rscratch1, stack_limit);
 757 
 758 #ifdef ASSERT
 759   Label limit_okay;
 760   // Verify that thread stack limit is non-zero.
 761   __ cbnz(rscratch1, limit_okay);
 762   __ stop("stack overflow limit is zero");
 763   __ bind(limit_okay);
 764 #endif
 765 
 766   // Add stack limit to locals.
 767   __ add(r0, r0, rscratch1);
 768 
 769   // Check against the current stack bottom.
 770   __ cmp(sp, r0);
 771   __ br(Assembler::HI, after_frame_check);
 772 
 773   // Remove the incoming args, peeling the machine SP back to where it
 774   // was in the caller.  This is not strictly necessary, but unless we
 775   // do so the stack frame may have a garbage FP; this ensures a
 776   // correct call stack that we can always unwind.  The ANDR should be
 777   // unnecessary because the sender SP in r13 is always aligned, but
 778   // it doesn't hurt.
 779   __ andr(sp, r13, -16);
 780 
 781   // Note: the restored frame is not necessarily interpreted.
 782   // Use the shared runtime version of the StackOverflowError.
 783   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 784   __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry()));
 785 
 786   // all done with frame size check
 787   __ bind(after_frame_check);
 788 }
 789 
 790 // Allocate monitor and lock method (asm interpreter)
 791 //
 792 // Args:
 793 //      rmethod: Method*
 794 //      rlocals: locals
 795 //
 796 // Kills:
 797 //      r0
 798 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 799 //      rscratch1, rscratch2 (scratch regs)
 800 void TemplateInterpreterGenerator::lock_method() {
 801   // synchronize method
 802   const Address access_flags(rmethod, Method::access_flags_offset());
 803   const Address monitor_block_top(
 804         rfp,
 805         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 806   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 807 
 808 #ifdef ASSERT
 809   {
 810     Label L;
 811     __ ldrw(r0, access_flags);
 812     __ tst(r0, JVM_ACC_SYNCHRONIZED);
 813     __ br(Assembler::NE, L);
 814     __ stop("method doesn't need synchronization");
 815     __ bind(L);
 816   }
 817 #endif // ASSERT
 818 
 819   // get synchronization object
 820   {
 821     Label done;
 822     __ ldrw(r0, access_flags);
 823     __ tst(r0, JVM_ACC_STATIC);
 824     // get receiver (assume this is frequent case)
 825     __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
 826     __ br(Assembler::EQ, done);
 827     __ load_mirror(r0, rmethod);
 828 
 829 #ifdef ASSERT
 830     {
 831       Label L;
 832       __ cbnz(r0, L);
 833       __ stop("synchronization object is NULL");
 834       __ bind(L);
 835     }
 836 #endif // ASSERT
 837 
 838     __ bind(done);
 839   }
 840 
 841   // add space for monitor & lock
 842   __ sub(sp, sp, entry_size); // add space for a monitor entry
 843   __ sub(esp, esp, entry_size);
 844   __ mov(rscratch1, esp);
 845   __ str(rscratch1, monitor_block_top);  // set new monitor block top
 846   // store object
 847   __ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes()));
 848   __ mov(c_rarg1, esp); // object address
 849   __ lock_object(c_rarg1);
 850 }
 851 
 852 // Generate a fixed interpreter frame. This is identical setup for
 853 // interpreted methods and for native methods hence the shared code.
 854 //
 855 // Args:
 856 //      lr: return address
 857 //      rmethod: Method*
 858 //      rlocals: pointer to locals
 859 //      rcpool: cp cache
 860 //      stack_pointer: previous sp
 861 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 862   // initialize fixed part of activation frame
 863   if (native_call) {
 864     __ sub(esp, sp, 14 *  wordSize);
 865     __ mov(rbcp, zr);
 866     __ stp(esp, zr, Address(__ pre(sp, -14 * wordSize)));
 867     // add 2 zero-initialized slots for native calls
 868     __ stp(zr, zr, Address(sp, 12 * wordSize));
 869   } else {
 870     __ sub(esp, sp, 12 *  wordSize);
 871     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));      // get ConstMethod
 872     __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase
 873     __ stp(esp, rbcp, Address(__ pre(sp, -12 * wordSize)));
 874   }
 875 
 876   if (ProfileInterpreter) {
 877     Label method_data_continue;
 878     __ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
 879     __ cbz(rscratch1, method_data_continue);
 880     __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
 881     __ bind(method_data_continue);
 882     __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize));  // save Method* and mdp (method data pointer)
 883   } else {
 884     __ stp(zr, rmethod, Address(sp, 6 * wordSize));        // save Method* (no mdp)
 885   }
 886 
 887   // Get mirror and store it in the frame as GC root for this Method*
 888   __ load_mirror(rscratch1, rmethod);
 889   __ stp(rscratch1, zr, Address(sp, 4 * wordSize));
 890 
 891   __ ldr(rcpool, Address(rmethod, Method::const_offset()));
 892   __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset()));
 893   __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes()));
 894   __ stp(rlocals, rcpool, Address(sp, 2 * wordSize));
 895 
 896   __ stp(rfp, lr, Address(sp, 10 * wordSize));
 897   __ lea(rfp, Address(sp, 10 * wordSize));
 898 
 899   // set sender sp
 900   // leave last_sp as null
 901   __ stp(zr, r13, Address(sp, 8 * wordSize));
 902 
 903   // Move SP out of the way
 904   if (! native_call) {
 905     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 906     __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 907     __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 908     __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
 909     __ andr(sp, rscratch1, -16);
 910   }
 911 }
 912 
 913 // End of helpers
 914 
 915 // Various method entries
 916 //------------------------------------------------------------------------------------------------------------------------
 917 //
 918 //
 919 
 920 // Method entry for java.lang.ref.Reference.get.
 921 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 922   // Code: _aload_0, _getfield, _areturn
 923   // parameter size = 1
 924   //
 925   // The code that gets generated by this routine is split into 2 parts:
 926   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 927   //    2. The slow path - which is an expansion of the regular method entry.
 928   //
 929   // Notes:-
 930   // * In the G1 code we do not check whether we need to block for
 931   //   a safepoint. If G1 is enabled then we must execute the specialized
 932   //   code for Reference.get (except when the Reference object is null)
 933   //   so that we can log the value in the referent field with an SATB
 934   //   update buffer.
 935   //   If the code for the getfield template is modified so that the
 936   //   G1 pre-barrier code is executed when the current method is
 937   //   Reference.get() then going through the normal method entry
 938   //   will be fine.
 939   // * The G1 code can, however, check the receiver object (the instance
 940   //   of java.lang.Reference) and jump to the slow path if null. If the
 941   //   Reference object is null then we obviously cannot fetch the referent
 942   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 943   //   regular method entry code to generate the NPE.
 944   //
 945   // This code is based on generate_accessor_entry.
 946   //
 947   // rmethod: Method*
 948   // r13: senderSP must preserve for slow path, set SP to it on fast path
 949 
 950   // LR is live.  It must be saved around calls.
 951 
 952   address entry = __ pc();
 953 
 954   const int referent_offset = java_lang_ref_Reference::referent_offset;
 955   guarantee(referent_offset > 0, "referent offset not initialized");
 956 
 957   Label slow_path;
 958   const Register local_0 = c_rarg0;
 959   // Check if local 0 != NULL
 960   // If the receiver is null then it is OK to jump to the slow path.
 961   __ ldr(local_0, Address(esp, 0));
 962   __ cbz(local_0, slow_path);
 963 
 964   __ mov(r19, r13);   // Move senderSP to a callee-saved register
 965 
 966   // Load the value of the referent field.
 967   const Address field_address(local_0, referent_offset);
 968   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
 969   bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch2, /*tmp2*/ rscratch1);
 970 
 971   // areturn
 972   __ andr(sp, r19, -16);  // done with stack
 973   __ ret(lr);
 974 
 975   // generate a vanilla interpreter entry as the slow path
 976   __ bind(slow_path);
 977   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 978   return entry;
 979 
 980 }
 981 
 982 /**
 983  * Method entry for static native methods:
 984  *   int java.util.zip.CRC32.update(int crc, int b)
 985  */
 986 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 987   if (UseCRC32Intrinsics) {
 988     address entry = __ pc();
 989 
 990     // rmethod: Method*
 991     // r13: senderSP must preserved for slow path
 992     // esp: args
 993 
 994     Label slow_path;
 995     // If we need a safepoint check, generate full interpreter entry.
 996     __ safepoint_poll(slow_path);
 997 
 998     // We don't generate local frame and don't align stack because
 999     // we call stub code and there is no safepoint on this path.
1000 
1001     // Load parameters
1002     const Register crc = c_rarg0;  // crc
1003     const Register val = c_rarg1;  // source java byte value
1004     const Register tbl = c_rarg2;  // scratch
1005 
1006     // Arguments are reversed on java expression stack
1007     __ ldrw(val, Address(esp, 0));              // byte value
1008     __ ldrw(crc, Address(esp, wordSize));       // Initial CRC
1009 
1010     unsigned long offset;
1011     __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
1012     __ add(tbl, tbl, offset);
1013 
1014     __ mvnw(crc, crc); // ~crc
1015     __ update_byte_crc32(crc, val, tbl);
1016     __ mvnw(crc, crc); // ~crc
1017 
1018     // result in c_rarg0
1019 
1020     __ andr(sp, r13, -16);
1021     __ ret(lr);
1022 
1023     // generate a vanilla native entry as the slow path
1024     __ bind(slow_path);
1025     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1026     return entry;
1027   }
1028   return NULL;
1029 }
1030 
1031 /**
1032  * Method entry for static native methods:
1033  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1034  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1035  */
1036 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1037   if (UseCRC32Intrinsics) {
1038     address entry = __ pc();
1039 
1040     // rmethod,: Method*
1041     // r13: senderSP must preserved for slow path
1042 
1043     Label slow_path;
1044     // If we need a safepoint check, generate full interpreter entry.
1045     __ safepoint_poll(slow_path);
1046 
1047     // We don't generate local frame and don't align stack because
1048     // we call stub code and there is no safepoint on this path.
1049 
1050     // Load parameters
1051     const Register crc = c_rarg0;  // crc
1052     const Register buf = c_rarg1;  // source java byte array address
1053     const Register len = c_rarg2;  // length
1054     const Register off = len;      // offset (never overlaps with 'len')
1055 
1056     // Arguments are reversed on java expression stack
1057     // Calculate address of start element
1058     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1059       __ ldr(buf, Address(esp, 2*wordSize)); // long buf
1060       __ ldrw(off, Address(esp, wordSize)); // offset
1061       __ add(buf, buf, off); // + offset
1062       __ ldrw(crc,   Address(esp, 4*wordSize)); // Initial CRC
1063     } else {
1064       __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
1065       __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1066       __ ldrw(off, Address(esp, wordSize)); // offset
1067       __ add(buf, buf, off); // + offset
1068       __ ldrw(crc,   Address(esp, 3*wordSize)); // Initial CRC
1069     }
1070     // Can now load 'len' since we're finished with 'off'
1071     __ ldrw(len, Address(esp, 0x0)); // Length
1072 
1073     __ andr(sp, r13, -16); // Restore the caller's SP
1074 
1075     // We are frameless so we can just jump to the stub.
1076     __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
1077 
1078     // generate a vanilla native entry as the slow path
1079     __ bind(slow_path);
1080     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1081     return entry;
1082   }
1083   return NULL;
1084 }
1085 
1086 /**
1087  * Method entry for intrinsic-candidate (non-native) methods:
1088  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1089  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1090  * Unlike CRC32, CRC32C does not have any methods marked as native
1091  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1092  */
1093 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1094   if (UseCRC32CIntrinsics) {
1095     address entry = __ pc();
1096 
1097     // Prepare jump to stub using parameters from the stack
1098     const Register crc = c_rarg0; // initial crc
1099     const Register buf = c_rarg1; // source java byte array address
1100     const Register len = c_rarg2; // len argument to the kernel
1101 
1102     const Register end = len; // index of last element to process
1103     const Register off = crc; // offset
1104 
1105     __ ldrw(end, Address(esp)); // int end
1106     __ ldrw(off, Address(esp, wordSize)); // int offset
1107     __ sub(len, end, off);
1108     __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf
1109     __ add(buf, buf, off); // + offset
1110     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1111       __ ldrw(crc, Address(esp, 4*wordSize)); // long crc
1112     } else {
1113       __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1114       __ ldrw(crc, Address(esp, 3*wordSize)); // long crc
1115     }
1116 
1117     __ andr(sp, r13, -16); // Restore the caller's SP
1118 
1119     // Jump to the stub.
1120     __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C()));
1121 
1122     return entry;
1123   }
1124   return NULL;
1125 }
1126 
1127 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1128   // Bang each page in the shadow zone. We can't assume it's been done for
1129   // an interpreter frame with greater than a page of locals, so each page
1130   // needs to be checked.  Only true for non-native.
1131   if (UseStackBanging) {
1132     const int n_shadow_pages = JavaThread::stack_shadow_zone_size() / os::vm_page_size();
1133     const int start_page = native_call ? n_shadow_pages : 1;
1134     const int page_size = os::vm_page_size();
1135     for (int pages = start_page; pages <= n_shadow_pages ; pages++) {
1136       __ sub(rscratch2, sp, pages*page_size);
1137       __ str(zr, Address(rscratch2));
1138     }
1139   }
1140 }
1141 
1142 
1143 // Interpreter stub for calling a native method. (asm interpreter)
1144 // This sets up a somewhat different looking stack for calling the
1145 // native method than the typical interpreter frame setup.
1146 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1147   // determine code generation flags
1148   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1149 
1150   // r1: Method*
1151   // rscratch1: sender sp
1152 
1153   address entry_point = __ pc();
1154 
1155   const Address constMethod       (rmethod, Method::const_offset());
1156   const Address access_flags      (rmethod, Method::access_flags_offset());
1157   const Address size_of_parameters(r2, ConstMethod::
1158                                        size_of_parameters_offset());
1159 
1160   // get parameter size (always needed)
1161   __ ldr(r2, constMethod);
1162   __ load_unsigned_short(r2, size_of_parameters);
1163 
1164   // Native calls don't need the stack size check since they have no
1165   // expression stack and the arguments are already on the stack and
1166   // we only add a handful of words to the stack.
1167 
1168   // rmethod: Method*
1169   // r2: size of parameters
1170   // rscratch1: sender sp
1171 
1172   // for natives the size of locals is zero
1173 
1174   // compute beginning of parameters (rlocals)
1175   __ add(rlocals, esp, r2, ext::uxtx, 3);
1176   __ add(rlocals, rlocals, -wordSize);
1177 
1178   // Pull SP back to minimum size: this avoids holes in the stack
1179   __ andr(sp, esp, -16);
1180 
1181   // initialize fixed part of activation frame
1182   generate_fixed_frame(true);
1183 #ifndef PRODUCT
1184   // tell the simulator that a method has been entered
1185   if (NotifySimulator) {
1186     __ notify(Assembler::method_entry);
1187   }
1188 #endif
1189 
1190   // make sure method is native & not abstract
1191 #ifdef ASSERT
1192   __ ldrw(r0, access_flags);
1193   {
1194     Label L;
1195     __ tst(r0, JVM_ACC_NATIVE);
1196     __ br(Assembler::NE, L);
1197     __ stop("tried to execute non-native method as native");
1198     __ bind(L);
1199   }
1200   {
1201     Label L;
1202     __ tst(r0, JVM_ACC_ABSTRACT);
1203     __ br(Assembler::EQ, L);
1204     __ stop("tried to execute abstract method in interpreter");
1205     __ bind(L);
1206   }
1207 #endif
1208 
1209   // Since at this point in the method invocation the exception
1210   // handler would try to exit the monitor of synchronized methods
1211   // which hasn't been entered yet, we set the thread local variable
1212   // _do_not_unlock_if_synchronized to true. The remove_activation
1213   // will check this flag.
1214 
1215    const Address do_not_unlock_if_synchronized(rthread,
1216         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1217   __ mov(rscratch2, true);
1218   __ strb(rscratch2, do_not_unlock_if_synchronized);
1219 
1220   // increment invocation count & check for overflow
1221   Label invocation_counter_overflow;
1222   if (inc_counter) {
1223     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1224   }
1225 
1226   Label continue_after_compile;
1227   __ bind(continue_after_compile);
1228 
1229   bang_stack_shadow_pages(true);
1230 
1231   // reset the _do_not_unlock_if_synchronized flag
1232   __ strb(zr, do_not_unlock_if_synchronized);
1233 
1234   // check for synchronized methods
1235   // Must happen AFTER invocation_counter check and stack overflow check,
1236   // so method is not locked if overflows.
1237   if (synchronized) {
1238     lock_method();
1239   } else {
1240     // no synchronization necessary
1241 #ifdef ASSERT
1242     {
1243       Label L;
1244       __ ldrw(r0, access_flags);
1245       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1246       __ br(Assembler::EQ, L);
1247       __ stop("method needs synchronization");
1248       __ bind(L);
1249     }
1250 #endif
1251   }
1252 
1253   // start execution
1254 #ifdef ASSERT
1255   {
1256     Label L;
1257     const Address monitor_block_top(rfp,
1258                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1259     __ ldr(rscratch1, monitor_block_top);
1260     __ cmp(esp, rscratch1);
1261     __ br(Assembler::EQ, L);
1262     __ stop("broken stack frame setup in interpreter");
1263     __ bind(L);
1264   }
1265 #endif
1266 
1267   // jvmti support
1268   __ notify_method_entry();
1269 
1270   // work registers
1271   const Register t = r17;
1272   const Register result_handler = r19;
1273 
1274   // allocate space for parameters
1275   __ ldr(t, Address(rmethod, Method::const_offset()));
1276   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1277 
1278   __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
1279   __ andr(sp, rscratch1, -16);
1280   __ mov(esp, rscratch1);
1281 
1282   // get signature handler
1283   {
1284     Label L;
1285     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1286     __ cbnz(t, L);
1287     __ call_VM(noreg,
1288                CAST_FROM_FN_PTR(address,
1289                                 InterpreterRuntime::prepare_native_call),
1290                rmethod);
1291     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1292     __ bind(L);
1293   }
1294 
1295   // call signature handler
1296   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1297          "adjust this code");
1298   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
1299          "adjust this code");
1300   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1301           "adjust this code");
1302 
1303   // The generated handlers do not touch rmethod (the method).
1304   // However, large signatures cannot be cached and are generated
1305   // each time here.  The slow-path generator can do a GC on return,
1306   // so we must reload it after the call.
1307   __ blr(t);
1308   __ get_method(rmethod);        // slow path can do a GC, reload rmethod
1309 
1310 
1311   // result handler is in r0
1312   // set result handler
1313   __ mov(result_handler, r0);
1314   // pass mirror handle if static call
1315   {
1316     Label L;
1317     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1318     __ tbz(t, exact_log2(JVM_ACC_STATIC), L);
1319     // get mirror
1320     __ load_mirror(t, rmethod);
1321     // copy mirror into activation frame
1322     __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
1323     // pass handle to mirror
1324     __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
1325     __ bind(L);
1326   }
1327 
1328   // get native function entry point in r10
1329   {
1330     Label L;
1331     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1332     address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1333     __ mov(rscratch2, unsatisfied);
1334     __ ldr(rscratch2, rscratch2);
1335     __ cmp(r10, rscratch2);
1336     __ br(Assembler::NE, L);
1337     __ call_VM(noreg,
1338                CAST_FROM_FN_PTR(address,
1339                                 InterpreterRuntime::prepare_native_call),
1340                rmethod);
1341     __ get_method(rmethod);
1342     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1343     __ bind(L);
1344   }
1345 
1346   // pass JNIEnv
1347   __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
1348 
1349   // It is enough that the pc() points into the right code
1350   // segment. It does not have to be the correct return pc.
1351   __ set_last_Java_frame(esp, rfp, (address)NULL, rscratch1);
1352 
1353   // change thread state
1354 #ifdef ASSERT
1355   {
1356     Label L;
1357     __ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
1358     __ cmp(t, _thread_in_Java);
1359     __ br(Assembler::EQ, L);
1360     __ stop("Wrong thread state in native stub");
1361     __ bind(L);
1362   }
1363 #endif
1364 
1365   // Change state to native
1366   __ mov(rscratch1, _thread_in_native);
1367   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1368   __ stlrw(rscratch1, rscratch2);
1369 
1370   // Call the native method.
1371   __ blrt(r10, rscratch1);
1372   __ maybe_isb();
1373   __ get_method(rmethod);
1374   // result potentially in r0 or v0
1375 
1376   // make room for the pushes we're about to do
1377   __ sub(rscratch1, esp, 4 * wordSize);
1378   __ andr(sp, rscratch1, -16);
1379 
1380   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1381   // in order to extract the result of a method call. If the order of these
1382   // pushes change or anything else is added to the stack then the code in
1383   // interpreter_frame_result must also change.
1384   __ push(dtos);
1385   __ push(ltos);
1386 
1387   // change thread state
1388   __ mov(rscratch1, _thread_in_native_trans);
1389   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1390   __ stlrw(rscratch1, rscratch2);
1391 
1392   if (os::is_MP()) {
1393     if (UseMembar) {
1394       // Force this write out before the read below
1395       __ dmb(Assembler::ISH);
1396     } else {
1397       // Write serialization page so VM thread can do a pseudo remote membar.
1398       // We use the current thread pointer to calculate a thread specific
1399       // offset to write to within the page. This minimizes bus traffic
1400       // due to cache line collision.
1401       __ serialize_memory(rthread, rscratch2);
1402     }
1403   }
1404 
1405   // check for safepoint operation in progress and/or pending suspend requests
1406   {
1407     Label L, Continue;
1408     __ safepoint_poll_acquire(L);
1409     __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
1410     __ cbz(rscratch2, Continue);
1411     __ bind(L);
1412 
1413     // Don't use call_VM as it will see a possible pending exception
1414     // and forward it and never return here preventing us from
1415     // clearing _last_native_pc down below. So we do a runtime call by
1416     // hand.
1417     //
1418     __ mov(c_rarg0, rthread);
1419     __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1420     __ blrt(rscratch2, 1, 0, 0);
1421     __ maybe_isb();
1422     __ get_method(rmethod);
1423     __ reinit_heapbase();
1424     __ bind(Continue);
1425   }
1426 
1427   // change thread state
1428   __ mov(rscratch1, _thread_in_Java);
1429   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1430   __ stlrw(rscratch1, rscratch2);
1431 
1432   // reset_last_Java_frame
1433   __ reset_last_Java_frame(true);
1434 
1435   if (CheckJNICalls) {
1436     // clear_pending_jni_exception_check
1437     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1438   }
1439 
1440   // reset handle block
1441   __ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
1442   __ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes()));
1443 
1444   // If result is an oop unbox and store it in frame where gc will see it
1445   // and result handler will pick it up
1446 
1447   {
1448     Label no_oop, not_weak, store_result;
1449     __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1450     __ cmp(t, result_handler);
1451     __ br(Assembler::NE, no_oop);
1452     // Unbox oop result, e.g. JNIHandles::resolve result.
1453     __ pop(ltos);
1454     __ resolve_jobject(r0, rthread, t);
1455     __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
1456     // keep stack depth as expected by pushing oop which will eventually be discarded
1457     __ push(ltos);
1458     __ bind(no_oop);
1459   }
1460 
1461   {
1462     Label no_reguard;
1463     __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
1464     __ ldrw(rscratch1, Address(rscratch1));
1465     __ cmp(rscratch1, JavaThread::stack_guard_yellow_reserved_disabled);
1466     __ br(Assembler::NE, no_reguard);
1467 
1468     __ pusha(); // XXX only save smashed registers
1469     __ mov(c_rarg0, rthread);
1470     __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1471     __ blrt(rscratch2, 0, 0, 0);
1472     __ popa(); // XXX only restore smashed registers
1473     __ bind(no_reguard);
1474   }
1475 
1476   // The method register is junk from after the thread_in_native transition
1477   // until here.  Also can't call_VM until the bcp has been
1478   // restored.  Need bcp for throwing exception below so get it now.
1479   __ get_method(rmethod);
1480 
1481   // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
1482   // rbcp == code_base()
1483   __ ldr(rbcp, Address(rmethod, Method::const_offset()));   // get ConstMethod*
1484   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));          // get codebase
1485   // handle exceptions (exception handling will handle unlocking!)
1486   {
1487     Label L;
1488     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
1489     __ cbz(rscratch1, L);
1490     // Note: At some point we may want to unify this with the code
1491     // used in call_VM_base(); i.e., we should use the
1492     // StubRoutines::forward_exception code. For now this doesn't work
1493     // here because the rsp is not correctly set at this point.
1494     __ MacroAssembler::call_VM(noreg,
1495                                CAST_FROM_FN_PTR(address,
1496                                InterpreterRuntime::throw_pending_exception));
1497     __ should_not_reach_here();
1498     __ bind(L);
1499   }
1500 
1501   // do unlocking if necessary
1502   {
1503     Label L;
1504     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1505     __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
1506     // the code below should be shared with interpreter macro
1507     // assembler implementation
1508     {
1509       Label unlock;
1510       // BasicObjectLock will be first in list, since this is a
1511       // synchronized method. However, need to check that the object
1512       // has not been unlocked by an explicit monitorexit bytecode.
1513 
1514       // monitor expect in c_rarg1 for slow unlock path
1515       __ lea (c_rarg1, Address(rfp,   // address of first monitor
1516                                (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1517                                           wordSize - sizeof(BasicObjectLock))));
1518 
1519       __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
1520       __ cbnz(t, unlock);
1521 
1522       // Entry already unlocked, need to throw exception
1523       __ MacroAssembler::call_VM(noreg,
1524                                  CAST_FROM_FN_PTR(address,
1525                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1526       __ should_not_reach_here();
1527 
1528       __ bind(unlock);
1529       __ unlock_object(c_rarg1);
1530     }
1531     __ bind(L);
1532   }
1533 
1534   // jvmti support
1535   // Note: This must happen _after_ handling/throwing any exceptions since
1536   //       the exception handler code notifies the runtime of method exits
1537   //       too. If this happens before, method entry/exit notifications are
1538   //       not properly paired (was bug - gri 11/22/99).
1539   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1540 
1541   // restore potential result in r0:d0, call result handler to
1542   // restore potential result in ST0 & handle result
1543 
1544   __ pop(ltos);
1545   __ pop(dtos);
1546 
1547   __ blr(result_handler);
1548 
1549   // remove activation
1550   __ ldr(esp, Address(rfp,
1551                     frame::interpreter_frame_sender_sp_offset *
1552                     wordSize)); // get sender sp
1553   // remove frame anchor
1554   __ leave();
1555 
1556   // resture sender sp
1557   __ mov(sp, esp);
1558 
1559   __ ret(lr);
1560 
1561   if (inc_counter) {
1562     // Handle overflow of counter and compile method
1563     __ bind(invocation_counter_overflow);
1564     generate_counter_overflow(continue_after_compile);
1565   }
1566 
1567   return entry_point;
1568 }
1569 
1570 //
1571 // Generic interpreted method entry to (asm) interpreter
1572 //
1573 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1574   // determine code generation flags
1575   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1576 
1577   // rscratch1: sender sp
1578   address entry_point = __ pc();
1579 
1580   const Address constMethod(rmethod, Method::const_offset());
1581   const Address access_flags(rmethod, Method::access_flags_offset());
1582   const Address size_of_parameters(r3,
1583                                    ConstMethod::size_of_parameters_offset());
1584   const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
1585 
1586   // get parameter size (always needed)
1587   // need to load the const method first
1588   __ ldr(r3, constMethod);
1589   __ load_unsigned_short(r2, size_of_parameters);
1590 
1591   // r2: size of parameters
1592 
1593   __ load_unsigned_short(r3, size_of_locals); // get size of locals in words
1594   __ sub(r3, r3, r2); // r3 = no. of additional locals
1595 
1596   // see if we've got enough room on the stack for locals plus overhead.
1597   generate_stack_overflow_check();
1598 
1599   // compute beginning of parameters (rlocals)
1600   __ add(rlocals, esp, r2, ext::uxtx, 3);
1601   __ sub(rlocals, rlocals, wordSize);
1602 
1603   // Make room for locals
1604   __ sub(rscratch1, esp, r3, ext::uxtx, 3);
1605   __ andr(sp, rscratch1, -16);
1606 
1607   // r3 - # of additional locals
1608   // allocate space for locals
1609   // explicitly initialize locals
1610   {
1611     Label exit, loop;
1612     __ ands(zr, r3, r3);
1613     __ br(Assembler::LE, exit); // do nothing if r3 <= 0
1614     __ bind(loop);
1615     __ str(zr, Address(__ post(rscratch1, wordSize)));
1616     __ sub(r3, r3, 1); // until everything initialized
1617     __ cbnz(r3, loop);
1618     __ bind(exit);
1619   }
1620 
1621   // And the base dispatch table
1622   __ get_dispatch();
1623 
1624   // initialize fixed part of activation frame
1625   generate_fixed_frame(false);
1626 #ifndef PRODUCT
1627   // tell the simulator that a method has been entered
1628   if (NotifySimulator) {
1629     __ notify(Assembler::method_entry);
1630   }
1631 #endif
1632   // make sure method is not native & not abstract
1633 #ifdef ASSERT
1634   __ ldrw(r0, access_flags);
1635   {
1636     Label L;
1637     __ tst(r0, JVM_ACC_NATIVE);
1638     __ br(Assembler::EQ, L);
1639     __ stop("tried to execute native method as non-native");
1640     __ bind(L);
1641   }
1642  {
1643     Label L;
1644     __ tst(r0, JVM_ACC_ABSTRACT);
1645     __ br(Assembler::EQ, L);
1646     __ stop("tried to execute abstract method in interpreter");
1647     __ bind(L);
1648   }
1649 #endif
1650 
1651   // Since at this point in the method invocation the exception
1652   // handler would try to exit the monitor of synchronized methods
1653   // which hasn't been entered yet, we set the thread local variable
1654   // _do_not_unlock_if_synchronized to true. The remove_activation
1655   // will check this flag.
1656 
1657    const Address do_not_unlock_if_synchronized(rthread,
1658         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1659   __ mov(rscratch2, true);
1660   __ strb(rscratch2, do_not_unlock_if_synchronized);
1661 
1662   Label no_mdp;
1663   Register mdp = r3;
1664   __ ldr(mdp, Address(rmethod, Method::method_data_offset()));
1665   __ cbz(mdp, no_mdp);
1666   __ add(mdp, mdp, in_bytes(MethodData::data_offset()));
1667   __ profile_parameters_type(mdp, r1, r2);
1668   __ bind(no_mdp);
1669 
1670   // increment invocation count & check for overflow
1671   Label invocation_counter_overflow;
1672   Label profile_method;
1673   Label profile_method_continue;
1674   if (inc_counter) {
1675     generate_counter_incr(&invocation_counter_overflow,
1676                           &profile_method,
1677                           &profile_method_continue);
1678     if (ProfileInterpreter) {
1679       __ bind(profile_method_continue);
1680     }
1681   }
1682 
1683   Label continue_after_compile;
1684   __ bind(continue_after_compile);
1685 
1686   bang_stack_shadow_pages(false);
1687 
1688   // reset the _do_not_unlock_if_synchronized flag
1689   __ strb(zr, do_not_unlock_if_synchronized);
1690 
1691   // check for synchronized methods
1692   // Must happen AFTER invocation_counter check and stack overflow check,
1693   // so method is not locked if overflows.
1694   if (synchronized) {
1695     // Allocate monitor and lock method
1696     lock_method();
1697   } else {
1698     // no synchronization necessary
1699 #ifdef ASSERT
1700     {
1701       Label L;
1702       __ ldrw(r0, access_flags);
1703       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1704       __ br(Assembler::EQ, L);
1705       __ stop("method needs synchronization");
1706       __ bind(L);
1707     }
1708 #endif
1709   }
1710 
1711   // start execution
1712 #ifdef ASSERT
1713   {
1714     Label L;
1715      const Address monitor_block_top (rfp,
1716                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1717     __ ldr(rscratch1, monitor_block_top);
1718     __ cmp(esp, rscratch1);
1719     __ br(Assembler::EQ, L);
1720     __ stop("broken stack frame setup in interpreter");
1721     __ bind(L);
1722   }
1723 #endif
1724 
1725   // jvmti support
1726   __ notify_method_entry();
1727 
1728   __ dispatch_next(vtos);
1729 
1730   // invocation counter overflow
1731   if (inc_counter) {
1732     if (ProfileInterpreter) {
1733       // We have decided to profile this method in the interpreter
1734       __ bind(profile_method);
1735       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1736       __ set_method_data_pointer_for_bcp();
1737       // don't think we need this
1738       __ get_method(r1);
1739       __ b(profile_method_continue);
1740     }
1741     // Handle overflow of counter and compile method
1742     __ bind(invocation_counter_overflow);
1743     generate_counter_overflow(continue_after_compile);
1744   }
1745 
1746   return entry_point;
1747 }
1748 
1749 //-----------------------------------------------------------------------------
1750 // Exceptions
1751 
1752 void TemplateInterpreterGenerator::generate_throw_exception() {
1753   // Entry point in previous activation (i.e., if the caller was
1754   // interpreted)
1755   Interpreter::_rethrow_exception_entry = __ pc();
1756   // Restore sp to interpreter_frame_last_sp even though we are going
1757   // to empty the expression stack for the exception processing.
1758   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1759   // r0: exception
1760   // r3: return address/pc that threw exception
1761   __ restore_bcp();    // rbcp points to call/send
1762   __ restore_locals();
1763   __ restore_constant_pool_cache();
1764   __ reinit_heapbase();  // restore rheapbase as heapbase.
1765   __ get_dispatch();
1766 
1767 #ifndef PRODUCT
1768   // tell the simulator that the caller method has been reentered
1769   if (NotifySimulator) {
1770     __ get_method(rmethod);
1771     __ notify(Assembler::method_reentry);
1772   }
1773 #endif
1774   // Entry point for exceptions thrown within interpreter code
1775   Interpreter::_throw_exception_entry = __ pc();
1776   // If we came here via a NullPointerException on the receiver of a
1777   // method, rmethod may be corrupt.
1778   __ get_method(rmethod);
1779   // expression stack is undefined here
1780   // r0: exception
1781   // rbcp: exception bcp
1782   __ verify_oop(r0);
1783   __ mov(c_rarg1, r0);
1784 
1785   // expression stack must be empty before entering the VM in case of
1786   // an exception
1787   __ empty_expression_stack();
1788   // find exception handler address and preserve exception oop
1789   __ call_VM(r3,
1790              CAST_FROM_FN_PTR(address,
1791                           InterpreterRuntime::exception_handler_for_exception),
1792              c_rarg1);
1793 
1794   // Calculate stack limit
1795   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1796   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1797   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1798   __ ldr(rscratch2,
1799          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1800   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
1801   __ andr(sp, rscratch1, -16);
1802 
1803   // r0: exception handler entry point
1804   // r3: preserved exception oop
1805   // rbcp: bcp for exception handler
1806   __ push_ptr(r3); // push exception which is now the only value on the stack
1807   __ br(r0); // jump to exception handler (may be _remove_activation_entry!)
1808 
1809   // If the exception is not handled in the current frame the frame is
1810   // removed and the exception is rethrown (i.e. exception
1811   // continuation is _rethrow_exception).
1812   //
1813   // Note: At this point the bci is still the bxi for the instruction
1814   // which caused the exception and the expression stack is
1815   // empty. Thus, for any VM calls at this point, GC will find a legal
1816   // oop map (with empty expression stack).
1817 
1818   //
1819   // JVMTI PopFrame support
1820   //
1821 
1822   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1823   __ empty_expression_stack();
1824   // Set the popframe_processing bit in pending_popframe_condition
1825   // indicating that we are currently handling popframe, so that
1826   // call_VMs that may happen later do not trigger new popframe
1827   // handling cycles.
1828   __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1829   __ orr(r3, r3, JavaThread::popframe_processing_bit);
1830   __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1831 
1832   {
1833     // Check to see whether we are returning to a deoptimized frame.
1834     // (The PopFrame call ensures that the caller of the popped frame is
1835     // either interpreted or compiled and deoptimizes it if compiled.)
1836     // In this case, we can't call dispatch_next() after the frame is
1837     // popped, but instead must save the incoming arguments and restore
1838     // them after deoptimization has occurred.
1839     //
1840     // Note that we don't compare the return PC against the
1841     // deoptimization blob's unpack entry because of the presence of
1842     // adapter frames in C2.
1843     Label caller_not_deoptimized;
1844     __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
1845     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1846                                InterpreterRuntime::interpreter_contains), c_rarg1);
1847     __ cbnz(r0, caller_not_deoptimized);
1848 
1849     // Compute size of arguments for saving when returning to
1850     // deoptimized caller
1851     __ get_method(r0);
1852     __ ldr(r0, Address(r0, Method::const_offset()));
1853     __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
1854                                                     size_of_parameters_offset())));
1855     __ lsl(r0, r0, Interpreter::logStackElementSize);
1856     __ restore_locals(); // XXX do we need this?
1857     __ sub(rlocals, rlocals, r0);
1858     __ add(rlocals, rlocals, wordSize);
1859     // Save these arguments
1860     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1861                                            Deoptimization::
1862                                            popframe_preserve_args),
1863                           rthread, r0, rlocals);
1864 
1865     __ remove_activation(vtos,
1866                          /* throw_monitor_exception */ false,
1867                          /* install_monitor_exception */ false,
1868                          /* notify_jvmdi */ false);
1869 
1870     // Inform deoptimization that it is responsible for restoring
1871     // these arguments
1872     __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1873     __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
1874 
1875     // Continue in deoptimization handler
1876     __ ret(lr);
1877 
1878     __ bind(caller_not_deoptimized);
1879   }
1880 
1881   __ remove_activation(vtos,
1882                        /* throw_monitor_exception */ false,
1883                        /* install_monitor_exception */ false,
1884                        /* notify_jvmdi */ false);
1885 
1886   // Restore the last_sp and null it out
1887   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1888   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1889 
1890   __ restore_bcp();
1891   __ restore_locals();
1892   __ restore_constant_pool_cache();
1893   __ get_method(rmethod);
1894 
1895   // The method data pointer was incremented already during
1896   // call profiling. We have to restore the mdp for the current bcp.
1897   if (ProfileInterpreter) {
1898     __ set_method_data_pointer_for_bcp();
1899   }
1900 
1901   // Clear the popframe condition flag
1902   __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
1903   assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
1904 
1905 #if INCLUDE_JVMTI
1906   {
1907     Label L_done;
1908 
1909     __ ldrb(rscratch1, Address(rbcp, 0));
1910     __ cmpw(r1, Bytecodes::_invokestatic);
1911     __ br(Assembler::EQ, L_done);
1912 
1913     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1914     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1915 
1916     __ ldr(c_rarg0, Address(rlocals, 0));
1917     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
1918 
1919     __ cbz(r0, L_done);
1920 
1921     __ str(r0, Address(esp, 0));
1922     __ bind(L_done);
1923   }
1924 #endif // INCLUDE_JVMTI
1925 
1926   // Restore machine SP
1927   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1928   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1929   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1930   __ ldr(rscratch2,
1931          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1932   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
1933   __ andr(sp, rscratch1, -16);
1934 
1935   __ dispatch_next(vtos);
1936   // end of PopFrame support
1937 
1938   Interpreter::_remove_activation_entry = __ pc();
1939 
1940   // preserve exception over this code sequence
1941   __ pop_ptr(r0);
1942   __ str(r0, Address(rthread, JavaThread::vm_result_offset()));
1943   // remove the activation (without doing throws on illegalMonitorExceptions)
1944   __ remove_activation(vtos, false, true, false);
1945   // restore exception
1946   // restore exception
1947   __ get_vm_result(r0, rthread);
1948 
1949   // In between activations - previous activation type unknown yet
1950   // compute continuation point - the continuation point expects the
1951   // following registers set up:
1952   //
1953   // r0: exception
1954   // lr: return address/pc that threw exception
1955   // rsp: expression stack of caller
1956   // rfp: fp of caller
1957   // FIXME: There's no point saving LR here because VM calls don't trash it
1958   __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize)));  // save exception & return address
1959   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1960                           SharedRuntime::exception_handler_for_return_address),
1961                         rthread, lr);
1962   __ mov(r1, r0);                               // save exception handler
1963   __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize)));  // restore exception & return address
1964   // We might be returning to a deopt handler that expects r3 to
1965   // contain the exception pc
1966   __ mov(r3, lr);
1967   // Note that an "issuing PC" is actually the next PC after the call
1968   __ br(r1);                                    // jump to exception
1969                                                 // handler of caller
1970 }
1971 
1972 
1973 //
1974 // JVMTI ForceEarlyReturn support
1975 //
1976 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1977   address entry = __ pc();
1978 
1979   __ restore_bcp();
1980   __ restore_locals();
1981   __ empty_expression_stack();
1982   __ load_earlyret_value(state);
1983 
1984   __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
1985   Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
1986 
1987   // Clear the earlyret state
1988   assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
1989   __ str(zr, cond_addr);
1990 
1991   __ remove_activation(state,
1992                        false, /* throw_monitor_exception */
1993                        false, /* install_monitor_exception */
1994                        true); /* notify_jvmdi */
1995   __ ret(lr);
1996 
1997   return entry;
1998 } // end of ForceEarlyReturn support
1999 
2000 
2001 
2002 //-----------------------------------------------------------------------------
2003 // Helper for vtos entry point generation
2004 
2005 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2006                                                          address& bep,
2007                                                          address& cep,
2008                                                          address& sep,
2009                                                          address& aep,
2010                                                          address& iep,
2011                                                          address& lep,
2012                                                          address& fep,
2013                                                          address& dep,
2014                                                          address& vep) {
2015   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2016   Label L;
2017   aep = __ pc();  __ push_ptr();  __ b(L);
2018   fep = __ pc();  __ push_f();    __ b(L);
2019   dep = __ pc();  __ push_d();    __ b(L);
2020   lep = __ pc();  __ push_l();    __ b(L);
2021   bep = cep = sep =
2022   iep = __ pc();  __ push_i();
2023   vep = __ pc();
2024   __ bind(L);
2025   generate_and_dispatch(t);
2026 }
2027 
2028 //-----------------------------------------------------------------------------
2029 
2030 // Non-product code
2031 #ifndef PRODUCT
2032 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2033   address entry = __ pc();
2034 
2035   __ push(lr);
2036   __ push(state);
2037   __ push(RegSet::range(r0, r15), sp);
2038   __ mov(c_rarg2, r0);  // Pass itos
2039   __ call_VM(noreg,
2040              CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
2041              c_rarg1, c_rarg2, c_rarg3);
2042   __ pop(RegSet::range(r0, r15), sp);
2043   __ pop(state);
2044   __ pop(lr);
2045   __ ret(lr);                                   // return from result handler
2046 
2047   return entry;
2048 }
2049 
2050 void TemplateInterpreterGenerator::count_bytecode() {
2051   Register rscratch3 = r0;
2052   __ push(rscratch1);
2053   __ push(rscratch2);
2054   __ push(rscratch3);
2055   __ mov(rscratch3, (address) &BytecodeCounter::_counter_value);
2056   __ atomic_add(noreg, 1, rscratch3);
2057   __ pop(rscratch3);
2058   __ pop(rscratch2);
2059   __ pop(rscratch1);
2060 }
2061 
2062 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; }
2063 
2064 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; }
2065 
2066 
2067 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2068   // Call a little run-time stub to avoid blow-up for each bytecode.
2069   // The run-time runtime saves the right registers, depending on
2070   // the tosca in-state for the given template.
2071 
2072   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2073          "entry must have been generated");
2074   __ bl(Interpreter::trace_code(t->tos_in()));
2075   __ reinit_heapbase();
2076 }
2077 
2078 
2079 void TemplateInterpreterGenerator::stop_interpreter_at() {
2080   Label L;
2081   __ push(rscratch1);
2082   __ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
2083   __ ldr(rscratch1, Address(rscratch1));
2084   __ mov(rscratch2, StopInterpreterAt);
2085   __ cmpw(rscratch1, rscratch2);
2086   __ br(Assembler::NE, L);
2087   __ brk(0);
2088   __ bind(L);
2089   __ pop(rscratch1);
2090 }
2091 
2092 #ifdef BUILTIN_SIM
2093 
2094 #include <sys/mman.h>
2095 #include <unistd.h>
2096 
2097 extern "C" {
2098   static int PAGESIZE = getpagesize();
2099   int is_mapped_address(u_int64_t address)
2100   {
2101     address = (address & ~((u_int64_t)PAGESIZE - 1));
2102     if (msync((void *)address, PAGESIZE, MS_ASYNC) == 0) {
2103       return true;
2104     }
2105     if (errno != ENOMEM) {
2106       return true;
2107     }
2108     return false;
2109   }
2110 
2111   void bccheck1(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2112   {
2113     if (method != 0) {
2114       method[0] = '\0';
2115     }
2116     if (bcidx != 0) {
2117       *bcidx = -2;
2118     }
2119     if (decode != 0) {
2120       decode[0] = 0;
2121     }
2122 
2123     if (framesize != 0) {
2124       *framesize = -1;
2125     }
2126 
2127     if (Interpreter::contains((address)pc)) {
2128       AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
2129       Method* meth;
2130       address bcp;
2131       if (fp) {
2132 #define FRAME_SLOT_METHOD 3
2133 #define FRAME_SLOT_BCP 7
2134         meth = (Method*)sim->getMemory()->loadU64(fp - (FRAME_SLOT_METHOD << 3));
2135         bcp = (address)sim->getMemory()->loadU64(fp - (FRAME_SLOT_BCP << 3));
2136 #undef FRAME_SLOT_METHOD
2137 #undef FRAME_SLOT_BCP
2138       } else {
2139         meth = (Method*)sim->getCPUState().xreg(RMETHOD, 0);
2140         bcp = (address)sim->getCPUState().xreg(RBCP, 0);
2141       }
2142       if (meth->is_native()) {
2143         return;
2144       }
2145       if(method && meth->is_method()) {
2146         ResourceMark rm;
2147         method[0] = 'I';
2148         method[1] = ' ';
2149         meth->name_and_sig_as_C_string(method + 2, 398);
2150       }
2151       if (bcidx) {
2152         if (meth->contains(bcp)) {
2153           *bcidx = meth->bci_from(bcp);
2154         } else {
2155           *bcidx = -2;
2156         }
2157       }
2158       if (decode) {
2159         if (!BytecodeTracer::closure()) {
2160           BytecodeTracer::set_closure(BytecodeTracer::std_closure());
2161         }
2162         stringStream str(decode, 400);
2163         BytecodeTracer::trace(meth, bcp, &str);
2164       }
2165     } else {
2166       if (method) {
2167         CodeBlob *cb = CodeCache::find_blob((address)pc);
2168         if (cb != NULL) {
2169           if (cb->is_nmethod()) {
2170             ResourceMark rm;
2171             nmethod* nm = (nmethod*)cb;
2172             method[0] = 'C';
2173             method[1] = ' ';
2174             nm->method()->name_and_sig_as_C_string(method + 2, 398);
2175           } else if (cb->is_adapter_blob()) {
2176             strcpy(method, "B adapter blob");
2177           } else if (cb->is_runtime_stub()) {
2178             strcpy(method, "B runtime stub");
2179           } else if (cb->is_exception_stub()) {
2180             strcpy(method, "B exception stub");
2181           } else if (cb->is_deoptimization_stub()) {
2182             strcpy(method, "B deoptimization stub");
2183           } else if (cb->is_safepoint_stub()) {
2184             strcpy(method, "B safepoint stub");
2185           } else if (cb->is_uncommon_trap_stub()) {
2186             strcpy(method, "B uncommon trap stub");
2187           } else if (cb->contains((address)StubRoutines::call_stub())) {
2188             strcpy(method, "B call stub");
2189           } else {
2190             strcpy(method, "B unknown blob : ");
2191             strcat(method, cb->name());
2192           }
2193           if (framesize != NULL) {
2194             *framesize = cb->frame_size();
2195           }
2196         }
2197       }
2198     }
2199   }
2200 
2201 
2202   JNIEXPORT void bccheck(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2203   {
2204     bccheck1(pc, fp, method, bcidx, framesize, decode);
2205   }
2206 }
2207 
2208 #endif // BUILTIN_SIM
2209 #endif // !PRODUCT