/* * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shared/collectedHeap.hpp" #include "gc/shared/threadLocalAllocBuffer.inline.hpp" #include "logging/log.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/oop.inline.hpp" #include "runtime/thread.inline.hpp" #include "runtime/threadSMR.hpp" #include "utilities/copy.hpp" size_t ThreadLocalAllocBuffer::_max_size = 0; int ThreadLocalAllocBuffer::_reserve_for_allocation_prefetch = 0; unsigned int ThreadLocalAllocBuffer::_target_refills = 0; size_t ThreadLocalAllocBuffer::remaining() { if (end() == NULL) { return 0; } return pointer_delta(hard_end(), top()); } void ThreadLocalAllocBuffer::accumulate_and_reset_statistics(ThreadLocalAllocStats* stats) { Thread* thr = thread(); size_t capacity = Universe::heap()->tlab_capacity(thr); size_t used = Universe::heap()->tlab_used(thr); _gc_waste += (unsigned)remaining(); size_t total_allocated = thr->allocated_bytes(); size_t allocated_since_last_gc = total_allocated - _allocated_before_last_gc; _allocated_before_last_gc = total_allocated; print_stats("gc"); if (_number_of_refills > 0) { // Update allocation history if a reasonable amount of eden was allocated. bool update_allocation_history = used > 0.5 * capacity; if (update_allocation_history) { // Average the fraction of eden allocated in a tlab by this // thread for use in the next resize operation. // _gc_waste is not subtracted because it's included in // "used". // The result can be larger than 1.0 due to direct to old allocations. // These allocations should ideally not be counted but since it is not possible // to filter them out here we just cap the fraction to be at most 1.0. double alloc_frac = MIN2(1.0, (double) allocated_since_last_gc / used); _allocation_fraction.sample(alloc_frac); } stats->update_fast_allocations(_number_of_refills, _allocated_size, _gc_waste, _fast_refill_waste, _slow_refill_waste); } else { assert(_number_of_refills == 0 && _fast_refill_waste == 0 && _slow_refill_waste == 0 && _gc_waste == 0, "tlab stats == 0"); } stats->update_slow_allocations(_slow_allocations); reset_statistics(); } void ThreadLocalAllocBuffer::insert_filler() { assert(end() != NULL, "Must not be retired"); Universe::heap()->fill_with_dummy_object(top(), hard_end(), true); } void ThreadLocalAllocBuffer::make_parsable() { if (end() != NULL) { invariants(); if (ZeroTLAB) { retire(); } else { insert_filler(); } } } void ThreadLocalAllocBuffer::retire(ThreadLocalAllocStats* stats) { if (stats != NULL) { accumulate_and_reset_statistics(stats); } if (end() != NULL) { invariants(); thread()->incr_allocated_bytes(used_bytes()); insert_filler(); initialize(NULL, NULL, NULL); } } void ThreadLocalAllocBuffer::retire_before_allocation() { _slow_refill_waste += (unsigned int)remaining(); retire(); } void ThreadLocalAllocBuffer::resize() { // Compute the next tlab size using expected allocation amount assert(ResizeTLAB, "Should not call this otherwise"); size_t alloc = (size_t)(_allocation_fraction.average() * (Universe::heap()->tlab_capacity(thread()) / HeapWordSize)); size_t new_size = alloc / _target_refills; new_size = MIN2(MAX2(new_size, min_size()), max_size()); size_t aligned_new_size = align_object_size(new_size); log_trace(gc, tlab)("TLAB new size: thread: " INTPTR_FORMAT " [id: %2d]" " refills %d alloc: %8.6f desired_size: " SIZE_FORMAT " -> " SIZE_FORMAT, p2i(thread()), thread()->osthread()->thread_id(), _target_refills, _allocation_fraction.average(), desired_size(), aligned_new_size); set_desired_size(aligned_new_size); set_refill_waste_limit(initial_refill_waste_limit()); } void ThreadLocalAllocBuffer::reset_statistics() { _number_of_refills = 0; _fast_refill_waste = 0; _slow_refill_waste = 0; _gc_waste = 0; _slow_allocations = 0; _allocated_size = 0; } void ThreadLocalAllocBuffer::fill(HeapWord* start, HeapWord* top, size_t new_size) { _number_of_refills++; _allocated_size += new_size; print_stats("fill"); assert(top <= start + new_size - alignment_reserve(), "size too small"); initialize(start, top, start + new_size - alignment_reserve()); // Reset amount of internal fragmentation set_refill_waste_limit(initial_refill_waste_limit()); } void ThreadLocalAllocBuffer::initialize(HeapWord* start, HeapWord* top, HeapWord* end) { set_start(start); set_top(top); set_pf_top(top); set_end(end); set_allocation_end(end); invariants(); } void ThreadLocalAllocBuffer::initialize() { initialize(NULL, // start NULL, // top NULL); // end set_desired_size(initial_desired_size()); size_t capacity = Universe::heap()->tlab_capacity(thread()) / HeapWordSize; double alloc_frac = desired_size() * target_refills() / (double) capacity; _allocation_fraction.sample(alloc_frac); set_refill_waste_limit(initial_refill_waste_limit()); reset_statistics(); } void ThreadLocalAllocBuffer::startup_initialization() { ThreadLocalAllocStats::initialize(); // Assuming each thread's active tlab is, on average, // 1/2 full at a GC _target_refills = 100 / (2 * TLABWasteTargetPercent); // We need to set initial target refills to 2 to avoid a GC which causes VM // abort during VM initialization. _target_refills = MAX2(_target_refills, 2U); #ifdef COMPILER2 // If the C2 compiler is present, extra space is needed at the end of // TLABs, otherwise prefetching instructions generated by the C2 // compiler will fault (due to accessing memory outside of heap). // The amount of space is the max of the number of lines to // prefetch for array and for instance allocations. (Extra space must be // reserved to accommodate both types of allocations.) // // Only SPARC-specific BIS instructions are known to fault. (Those // instructions are generated if AllocatePrefetchStyle==3 and // AllocatePrefetchInstr==1). To be on the safe side, however, // extra space is reserved for all combinations of // AllocatePrefetchStyle and AllocatePrefetchInstr. // // If the C2 compiler is not present, no space is reserved. // +1 for rounding up to next cache line, +1 to be safe if (is_server_compilation_mode_vm()) { int lines = MAX2(AllocatePrefetchLines, AllocateInstancePrefetchLines) + 2; _reserve_for_allocation_prefetch = (AllocatePrefetchDistance + AllocatePrefetchStepSize * lines) / (int)HeapWordSize; } #endif // During jvm startup, the main thread is initialized // before the heap is initialized. So reinitialize it now. guarantee(Thread::current()->is_Java_thread(), "tlab initialization thread not Java thread"); Thread::current()->tlab().initialize(); log_develop_trace(gc, tlab)("TLAB min: " SIZE_FORMAT " initial: " SIZE_FORMAT " max: " SIZE_FORMAT, min_size(), Thread::current()->tlab().initial_desired_size(), max_size()); } size_t ThreadLocalAllocBuffer::initial_desired_size() { size_t init_sz = 0; if (TLABSize > 0) { init_sz = TLABSize / HeapWordSize; } else { // Initial size is a function of the average number of allocating threads. unsigned int nof_threads = ThreadLocalAllocStats::allocating_threads_avg(); init_sz = (Universe::heap()->tlab_capacity(thread()) / HeapWordSize) / (nof_threads * target_refills()); init_sz = align_object_size(init_sz); } init_sz = MIN2(MAX2(init_sz, min_size()), max_size()); return init_sz; } void ThreadLocalAllocBuffer::print_stats(const char* tag) { Log(gc, tlab) log; if (!log.is_trace()) { return; } Thread* thrd = thread(); size_t waste = _gc_waste + _slow_refill_waste + _fast_refill_waste; double waste_percent = percent_of(waste, _allocated_size); size_t tlab_used = Universe::heap()->tlab_used(thrd); log.trace("TLAB: %s thread: " INTPTR_FORMAT " [id: %2d]" " desired_size: " SIZE_FORMAT "KB" " slow allocs: %d refill waste: " SIZE_FORMAT "B" " alloc:%8.5f %8.0fKB refills: %d waste %4.1f%% gc: %dB" " slow: %dB fast: %dB", tag, p2i(thrd), thrd->osthread()->thread_id(), _desired_size / (K / HeapWordSize), _slow_allocations, _refill_waste_limit * HeapWordSize, _allocation_fraction.average(), _allocation_fraction.average() * tlab_used / K, _number_of_refills, waste_percent, _gc_waste * HeapWordSize, _slow_refill_waste * HeapWordSize, _fast_refill_waste * HeapWordSize); } void ThreadLocalAllocBuffer::verify() { HeapWord* p = start(); HeapWord* t = top(); HeapWord* prev_p = NULL; while (p < t) { oopDesc::verify(oop(p)); prev_p = p; p += oop(p)->size(); } guarantee(p == top(), "end of last object must match end of space"); } void ThreadLocalAllocBuffer::set_sample_end() { size_t heap_words_remaining = pointer_delta(_end, _top); size_t bytes_until_sample = thread()->heap_sampler().bytes_until_sample(); size_t words_until_sample = bytes_until_sample / HeapWordSize; if (heap_words_remaining > words_until_sample) { HeapWord* new_end = _top + words_until_sample; set_end(new_end); _bytes_since_last_sample_point = bytes_until_sample; } else { _bytes_since_last_sample_point = heap_words_remaining * HeapWordSize; } } Thread* ThreadLocalAllocBuffer::thread() { return (Thread*)(((char*)this) + in_bytes(start_offset()) - in_bytes(Thread::tlab_start_offset())); } void ThreadLocalAllocBuffer::set_back_allocation_end() { _end = _allocation_end; } HeapWord* ThreadLocalAllocBuffer::hard_end() { return _allocation_end + alignment_reserve(); } PerfVariable* ThreadLocalAllocStats::_perf_allocating_threads; PerfVariable* ThreadLocalAllocStats::_perf_total_refills; PerfVariable* ThreadLocalAllocStats::_perf_max_refills; PerfVariable* ThreadLocalAllocStats::_perf_total_allocations; PerfVariable* ThreadLocalAllocStats::_perf_total_gc_waste; PerfVariable* ThreadLocalAllocStats::_perf_max_gc_waste; PerfVariable* ThreadLocalAllocStats::_perf_total_slow_refill_waste; PerfVariable* ThreadLocalAllocStats::_perf_max_slow_refill_waste; PerfVariable* ThreadLocalAllocStats::_perf_total_fast_refill_waste; PerfVariable* ThreadLocalAllocStats::_perf_max_fast_refill_waste; PerfVariable* ThreadLocalAllocStats::_perf_total_slow_allocations; PerfVariable* ThreadLocalAllocStats::_perf_max_slow_allocations; AdaptiveWeightedAverage ThreadLocalAllocStats::_allocating_threads_avg(0); static PerfVariable* create_perf_variable(const char* name, PerfData::Units unit, TRAPS) { ResourceMark rm; return PerfDataManager::create_variable(SUN_GC, PerfDataManager::counter_name("tlab", name), unit, THREAD); } void ThreadLocalAllocStats::initialize() { _allocating_threads_avg = AdaptiveWeightedAverage(TLABAllocationWeight); _allocating_threads_avg.sample(1); // One allocating thread at startup if (UsePerfData) { EXCEPTION_MARK; _perf_allocating_threads = create_perf_variable("allocThreads", PerfData::U_None, CHECK); _perf_total_refills = create_perf_variable("fills", PerfData::U_None, CHECK); _perf_max_refills = create_perf_variable("maxFills", PerfData::U_None, CHECK); _perf_total_allocations = create_perf_variable("alloc", PerfData::U_Bytes, CHECK); _perf_total_gc_waste = create_perf_variable("gcWaste", PerfData::U_Bytes, CHECK); _perf_max_gc_waste = create_perf_variable("maxGcWaste", PerfData::U_Bytes, CHECK); _perf_total_slow_refill_waste = create_perf_variable("slowWaste", PerfData::U_Bytes, CHECK); _perf_max_slow_refill_waste = create_perf_variable("maxSlowWaste", PerfData::U_Bytes, CHECK); _perf_total_fast_refill_waste = create_perf_variable("fastWaste", PerfData::U_Bytes, CHECK); _perf_max_fast_refill_waste = create_perf_variable("maxFastWaste", PerfData::U_Bytes, CHECK); _perf_total_slow_allocations = create_perf_variable("slowAlloc", PerfData::U_None, CHECK); _perf_max_slow_allocations = create_perf_variable("maxSlowAlloc", PerfData::U_None, CHECK); } } ThreadLocalAllocStats::ThreadLocalAllocStats() : _allocating_threads(0), _total_refills(0), _max_refills(0), _total_allocations(0), _total_gc_waste(0), _max_gc_waste(0), _total_fast_refill_waste(0), _max_fast_refill_waste(0), _total_slow_refill_waste(0), _max_slow_refill_waste(0), _total_slow_allocations(0), _max_slow_allocations(0) {} unsigned int ThreadLocalAllocStats::allocating_threads_avg() { return MAX2((unsigned int)(_allocating_threads_avg.average() + 0.5), 1U); } void ThreadLocalAllocStats::update_fast_allocations(unsigned int refills, size_t allocations, size_t gc_waste, size_t fast_refill_waste, size_t slow_refill_waste) { _allocating_threads += 1; _total_refills += refills; _max_refills = MAX2(_max_refills, refills); _total_allocations += allocations; _total_gc_waste += gc_waste; _max_gc_waste = MAX2(_max_gc_waste, gc_waste); _total_fast_refill_waste += fast_refill_waste; _max_fast_refill_waste = MAX2(_max_fast_refill_waste, fast_refill_waste); _total_slow_refill_waste += slow_refill_waste; _max_slow_refill_waste = MAX2(_max_slow_refill_waste, slow_refill_waste); } void ThreadLocalAllocStats::update_slow_allocations(unsigned int allocations) { _total_slow_allocations += allocations; _max_slow_allocations = MAX2(_max_slow_allocations, allocations); } void ThreadLocalAllocStats::update(const ThreadLocalAllocStats& other) { _allocating_threads += other._allocating_threads; _total_refills += other._total_refills; _max_refills = MAX2(_max_refills, other._max_refills); _total_allocations += other._total_allocations; _total_gc_waste += other._total_gc_waste; _max_gc_waste = MAX2(_max_gc_waste, other._max_gc_waste); _total_fast_refill_waste += other._total_fast_refill_waste; _max_fast_refill_waste = MAX2(_max_fast_refill_waste, other._max_fast_refill_waste); _total_slow_refill_waste += other._total_slow_refill_waste; _max_slow_refill_waste = MAX2(_max_slow_refill_waste, other._max_slow_refill_waste); _total_slow_allocations += other._total_slow_allocations; _max_slow_allocations = MAX2(_max_slow_allocations, other._max_slow_allocations); } void ThreadLocalAllocStats::reset() { _allocating_threads = 0; _total_refills = 0; _max_refills = 0; _total_allocations = 0; _total_gc_waste = 0; _max_gc_waste = 0; _total_fast_refill_waste = 0; _max_fast_refill_waste = 0; _total_slow_refill_waste = 0; _max_slow_refill_waste = 0; _total_slow_allocations = 0; _max_slow_allocations = 0; } void ThreadLocalAllocStats::publish() { if (_total_allocations == 0) { return; } _allocating_threads_avg.sample(_allocating_threads); const size_t waste = _total_gc_waste + _total_slow_refill_waste + _total_fast_refill_waste; const double waste_percent = percent_of(waste, _total_allocations); log_debug(gc, tlab)("TLAB totals: thrds: %d refills: %d max: %d" " slow allocs: %d max %d waste: %4.1f%%" " gc: " SIZE_FORMAT "B max: " SIZE_FORMAT "B" " slow: " SIZE_FORMAT "B max: " SIZE_FORMAT "B" " fast: " SIZE_FORMAT "B max: " SIZE_FORMAT "B", _allocating_threads, _total_refills, _max_refills, _total_slow_allocations, _max_slow_allocations, waste_percent, _total_gc_waste * HeapWordSize, _max_gc_waste * HeapWordSize, _total_slow_refill_waste * HeapWordSize, _max_slow_refill_waste * HeapWordSize, _total_fast_refill_waste * HeapWordSize, _max_fast_refill_waste * HeapWordSize); if (UsePerfData) { _perf_allocating_threads ->set_value(_allocating_threads); _perf_total_refills ->set_value(_total_refills); _perf_max_refills ->set_value(_max_refills); _perf_total_allocations ->set_value(_total_allocations); _perf_total_gc_waste ->set_value(_total_gc_waste); _perf_max_gc_waste ->set_value(_max_gc_waste); _perf_total_slow_refill_waste ->set_value(_total_slow_refill_waste); _perf_max_slow_refill_waste ->set_value(_max_slow_refill_waste); _perf_total_fast_refill_waste ->set_value(_total_fast_refill_waste); _perf_max_fast_refill_waste ->set_value(_max_fast_refill_waste); _perf_total_slow_allocations ->set_value(_total_slow_allocations); _perf_max_slow_allocations ->set_value(_max_slow_allocations); } } size_t ThreadLocalAllocBuffer::end_reserve() { size_t reserve_size = Universe::heap()->tlab_alloc_reserve(); return MAX2(reserve_size, (size_t)_reserve_for_allocation_prefetch); }