1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d", file, line);
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159 #ifdef COMPILER2
 160   // special instructions for EVEX
 161   void setvectmask(Register dst, Register src);
 162   void restorevectmask();
 163 #endif
 164 
 165   // Support optimal SSE move instructions.
 166   void movflt(XMMRegister dst, XMMRegister src) {
 167     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 168     else                       { movss (dst, src); return; }
 169   }
 170   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 171   void movflt(XMMRegister dst, AddressLiteral src);
 172   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 173 
 174   void movdbl(XMMRegister dst, XMMRegister src) {
 175     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 176     else                       { movsd (dst, src); return; }
 177   }
 178 
 179   void movdbl(XMMRegister dst, AddressLiteral src);
 180 
 181   void movdbl(XMMRegister dst, Address src) {
 182     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 183     else                         { movlpd(dst, src); return; }
 184   }
 185   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 186 
 187   void incrementl(AddressLiteral dst);
 188   void incrementl(ArrayAddress dst);
 189 
 190   void incrementq(AddressLiteral dst);
 191 
 192   // Alignment
 193   void align(int modulus);
 194   void align(int modulus, int target);
 195 
 196   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 197   void fat_nop();
 198 
 199   // Stack frame creation/removal
 200   void enter();
 201   void leave();
 202 
 203   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 204   // The pointer will be loaded into the thread register.
 205   void get_thread(Register thread);
 206 
 207 
 208   // Support for VM calls
 209   //
 210   // It is imperative that all calls into the VM are handled via the call_VM macros.
 211   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 212   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 213 
 214 
 215   void call_VM(Register oop_result,
 216                address entry_point,
 217                bool check_exceptions = true);
 218   void call_VM(Register oop_result,
 219                address entry_point,
 220                Register arg_1,
 221                bool check_exceptions = true);
 222   void call_VM(Register oop_result,
 223                address entry_point,
 224                Register arg_1, Register arg_2,
 225                bool check_exceptions = true);
 226   void call_VM(Register oop_result,
 227                address entry_point,
 228                Register arg_1, Register arg_2, Register arg_3,
 229                bool check_exceptions = true);
 230 
 231   // Overloadings with last_Java_sp
 232   void call_VM(Register oop_result,
 233                Register last_java_sp,
 234                address entry_point,
 235                int number_of_arguments = 0,
 236                bool check_exceptions = true);
 237   void call_VM(Register oop_result,
 238                Register last_java_sp,
 239                address entry_point,
 240                Register arg_1, bool
 241                check_exceptions = true);
 242   void call_VM(Register oop_result,
 243                Register last_java_sp,
 244                address entry_point,
 245                Register arg_1, Register arg_2,
 246                bool check_exceptions = true);
 247   void call_VM(Register oop_result,
 248                Register last_java_sp,
 249                address entry_point,
 250                Register arg_1, Register arg_2, Register arg_3,
 251                bool check_exceptions = true);
 252 
 253   void get_vm_result  (Register oop_result, Register thread);
 254   void get_vm_result_2(Register metadata_result, Register thread);
 255 
 256   // These always tightly bind to MacroAssembler::call_VM_base
 257   // bypassing the virtual implementation
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 261   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 262   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 263 
 264   void call_VM_leaf0(address entry_point);
 265   void call_VM_leaf(address entry_point,
 266                     int number_of_arguments = 0);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2);
 271   void call_VM_leaf(address entry_point,
 272                     Register arg_1, Register arg_2, Register arg_3);
 273 
 274   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 275   // bypassing the virtual implementation
 276   void super_call_VM_leaf(address entry_point);
 277   void super_call_VM_leaf(address entry_point, Register arg_1);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 279   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 280   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 281 
 282   // last Java Frame (fills frame anchor)
 283   void set_last_Java_frame(Register thread,
 284                            Register last_java_sp,
 285                            Register last_java_fp,
 286                            address last_java_pc);
 287 
 288   // thread in the default location (r15_thread on 64bit)
 289   void set_last_Java_frame(Register last_java_sp,
 290                            Register last_java_fp,
 291                            address last_java_pc);
 292 
 293   void reset_last_Java_frame(Register thread, bool clear_fp);
 294 
 295   // thread in the default location (r15_thread on 64bit)
 296   void reset_last_Java_frame(bool clear_fp);
 297 
 298   // jobjects
 299   void clear_jweak_tag(Register possibly_jweak);
 300   void resolve_jobject(Register value, Register thread, Register tmp);
 301 
 302   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 303   void c2bool(Register x);
 304 
 305   // C++ bool manipulation
 306 
 307   void movbool(Register dst, Address src);
 308   void movbool(Address dst, bool boolconst);
 309   void movbool(Address dst, Register src);
 310   void testbool(Register dst);
 311 
 312   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 313   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 314 
 315   // oop manipulations
 316   void load_klass(Register dst, Register src);
 317   void store_klass(Register dst, Register src);
 318 
 319   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 320                       Register tmp1, Register thread_tmp);
 321   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 322                        Register tmp1, Register tmp2);
 323 
 324   // Resolves obj access. Result is placed in the same register.
 325   // All other registers are preserved.
 326   void resolve(DecoratorSet decorators, Register obj);
 327 
 328   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 329                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 330   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 331                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 332   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 333                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 334 
 335   // Used for storing NULL. All other oop constants should be
 336   // stored using routines that take a jobject.
 337   void store_heap_oop_null(Address dst);
 338 
 339   void load_prototype_header(Register dst, Register src);
 340 
 341 #ifdef _LP64
 342   void store_klass_gap(Register dst, Register src);
 343 
 344   // This dummy is to prevent a call to store_heap_oop from
 345   // converting a zero (like NULL) into a Register by giving
 346   // the compiler two choices it can't resolve
 347 
 348   void store_heap_oop(Address dst, void* dummy);
 349 
 350   void encode_heap_oop(Register r);
 351   void decode_heap_oop(Register r);
 352   void encode_heap_oop_not_null(Register r);
 353   void decode_heap_oop_not_null(Register r);
 354   void encode_heap_oop_not_null(Register dst, Register src);
 355   void decode_heap_oop_not_null(Register dst, Register src);
 356 
 357   void set_narrow_oop(Register dst, jobject obj);
 358   void set_narrow_oop(Address dst, jobject obj);
 359   void cmp_narrow_oop(Register dst, jobject obj);
 360   void cmp_narrow_oop(Address dst, jobject obj);
 361 
 362   void encode_klass_not_null(Register r);
 363   void decode_klass_not_null(Register r);
 364   void encode_klass_not_null(Register dst, Register src);
 365   void decode_klass_not_null(Register dst, Register src);
 366   void set_narrow_klass(Register dst, Klass* k);
 367   void set_narrow_klass(Address dst, Klass* k);
 368   void cmp_narrow_klass(Register dst, Klass* k);
 369   void cmp_narrow_klass(Address dst, Klass* k);
 370 
 371   // Returns the byte size of the instructions generated by decode_klass_not_null()
 372   // when compressed klass pointers are being used.
 373   static int instr_size_for_decode_klass_not_null();
 374 
 375   // if heap base register is used - reinit it with the correct value
 376   void reinit_heapbase();
 377 
 378   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 379 
 380 #endif // _LP64
 381 
 382   // Int division/remainder for Java
 383   // (as idivl, but checks for special case as described in JVM spec.)
 384   // returns idivl instruction offset for implicit exception handling
 385   int corrected_idivl(Register reg);
 386 
 387   // Long division/remainder for Java
 388   // (as idivq, but checks for special case as described in JVM spec.)
 389   // returns idivq instruction offset for implicit exception handling
 390   int corrected_idivq(Register reg);
 391 
 392   void int3();
 393 
 394   // Long operation macros for a 32bit cpu
 395   // Long negation for Java
 396   void lneg(Register hi, Register lo);
 397 
 398   // Long multiplication for Java
 399   // (destroys contents of eax, ebx, ecx and edx)
 400   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 401 
 402   // Long shifts for Java
 403   // (semantics as described in JVM spec.)
 404   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 405   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 406 
 407   // Long compare for Java
 408   // (semantics as described in JVM spec.)
 409   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 410 
 411 
 412   // misc
 413 
 414   // Sign extension
 415   void sign_extend_short(Register reg);
 416   void sign_extend_byte(Register reg);
 417 
 418   // Division by power of 2, rounding towards 0
 419   void division_with_shift(Register reg, int shift_value);
 420 
 421   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 422   //
 423   // CF (corresponds to C0) if x < y
 424   // PF (corresponds to C2) if unordered
 425   // ZF (corresponds to C3) if x = y
 426   //
 427   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 428   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 429   void fcmp(Register tmp);
 430   // Variant of the above which allows y to be further down the stack
 431   // and which only pops x and y if specified. If pop_right is
 432   // specified then pop_left must also be specified.
 433   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 434 
 435   // Floating-point comparison for Java
 436   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 437   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 438   // (semantics as described in JVM spec.)
 439   void fcmp2int(Register dst, bool unordered_is_less);
 440   // Variant of the above which allows y to be further down the stack
 441   // and which only pops x and y if specified. If pop_right is
 442   // specified then pop_left must also be specified.
 443   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 444 
 445   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 446   // tmp is a temporary register, if none is available use noreg
 447   void fremr(Register tmp);
 448 
 449   // dst = c = a * b + c
 450   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 451   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 452 
 453   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 454   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 455   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 456   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 457 
 458 
 459   // same as fcmp2int, but using SSE2
 460   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 461   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 462 
 463   // branch to L if FPU flag C2 is set/not set
 464   // tmp is a temporary register, if none is available use noreg
 465   void jC2 (Register tmp, Label& L);
 466   void jnC2(Register tmp, Label& L);
 467 
 468   // Pop ST (ffree & fincstp combined)
 469   void fpop();
 470 
 471   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 472   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 473   void load_float(Address src);
 474 
 475   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 476   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 477   void store_float(Address dst);
 478 
 479   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 480   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 481   void load_double(Address src);
 482 
 483   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 484   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 485   void store_double(Address dst);
 486 
 487   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 488   void push_fTOS();
 489 
 490   // pops double TOS element from CPU stack and pushes on FPU stack
 491   void pop_fTOS();
 492 
 493   void empty_FPU_stack();
 494 
 495   void push_IU_state();
 496   void pop_IU_state();
 497 
 498   void push_FPU_state();
 499   void pop_FPU_state();
 500 
 501   void push_CPU_state();
 502   void pop_CPU_state();
 503 
 504   // Round up to a power of two
 505   void round_to(Register reg, int modulus);
 506 
 507   // Callee saved registers handling
 508   void push_callee_saved_registers();
 509   void pop_callee_saved_registers();
 510 
 511   // allocation
 512   void eden_allocate(
 513     Register thread,                   // Current thread
 514     Register obj,                      // result: pointer to object after successful allocation
 515     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 516     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 517     Register t1,                       // temp register
 518     Label&   slow_case                 // continuation point if fast allocation fails
 519   );
 520   void tlab_allocate(
 521     Register thread,                   // Current thread
 522     Register obj,                      // result: pointer to object after successful allocation
 523     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 524     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 525     Register t1,                       // temp register
 526     Register t2,                       // temp register
 527     Label&   slow_case                 // continuation point if fast allocation fails
 528   );
 529   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 530 
 531   // interface method calling
 532   void lookup_interface_method(Register recv_klass,
 533                                Register intf_klass,
 534                                RegisterOrConstant itable_index,
 535                                Register method_result,
 536                                Register scan_temp,
 537                                Label& no_such_interface,
 538                                bool return_method = true);
 539 
 540   // virtual method calling
 541   void lookup_virtual_method(Register recv_klass,
 542                              RegisterOrConstant vtable_index,
 543                              Register method_result);
 544 
 545   // Test sub_klass against super_klass, with fast and slow paths.
 546 
 547   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 548   // One of the three labels can be NULL, meaning take the fall-through.
 549   // If super_check_offset is -1, the value is loaded up from super_klass.
 550   // No registers are killed, except temp_reg.
 551   void check_klass_subtype_fast_path(Register sub_klass,
 552                                      Register super_klass,
 553                                      Register temp_reg,
 554                                      Label* L_success,
 555                                      Label* L_failure,
 556                                      Label* L_slow_path,
 557                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 558 
 559   // The rest of the type check; must be wired to a corresponding fast path.
 560   // It does not repeat the fast path logic, so don't use it standalone.
 561   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 562   // Updates the sub's secondary super cache as necessary.
 563   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 564   void check_klass_subtype_slow_path(Register sub_klass,
 565                                      Register super_klass,
 566                                      Register temp_reg,
 567                                      Register temp2_reg,
 568                                      Label* L_success,
 569                                      Label* L_failure,
 570                                      bool set_cond_codes = false);
 571 
 572   // Simplified, combined version, good for typical uses.
 573   // Falls through on failure.
 574   void check_klass_subtype(Register sub_klass,
 575                            Register super_klass,
 576                            Register temp_reg,
 577                            Label& L_success);
 578 
 579   // method handles (JSR 292)
 580   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 581 
 582   //----
 583   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 584 
 585   // Debugging
 586 
 587   // only if +VerifyOops
 588   // TODO: Make these macros with file and line like sparc version!
 589   void verify_oop(Register reg, const char* s = "broken oop");
 590   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 591 
 592   // TODO: verify method and klass metadata (compare against vptr?)
 593   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 594   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 595 
 596 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 597 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 598 
 599   // only if +VerifyFPU
 600   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 601 
 602   // Verify or restore cpu control state after JNI call
 603   void restore_cpu_control_state_after_jni();
 604 
 605   // prints msg, dumps registers and stops execution
 606   void stop(const char* msg);
 607 
 608   // prints msg and continues
 609   void warn(const char* msg);
 610 
 611   // dumps registers and other state
 612   void print_state();
 613 
 614   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 615   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 616   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 617   static void print_state64(int64_t pc, int64_t regs[]);
 618 
 619   void os_breakpoint();
 620 
 621   void untested()                                { stop("untested"); }
 622 
 623   void unimplemented(const char* what = "");
 624 
 625   void should_not_reach_here()                   { stop("should not reach here"); }
 626 
 627   void print_CPU_state();
 628 
 629   // Stack overflow checking
 630   void bang_stack_with_offset(int offset) {
 631     // stack grows down, caller passes positive offset
 632     assert(offset > 0, "must bang with negative offset");
 633     movl(Address(rsp, (-offset)), rax);
 634   }
 635 
 636   // Writes to stack successive pages until offset reached to check for
 637   // stack overflow + shadow pages.  Also, clobbers tmp
 638   void bang_stack_size(Register size, Register tmp);
 639 
 640   // Check for reserved stack access in method being exited (for JIT)
 641   void reserved_stack_check();
 642 
 643   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 644                                                 Register tmp,
 645                                                 int offset);
 646 
 647   // Support for serializing memory accesses between threads
 648   void serialize_memory(Register thread, Register tmp);
 649 
 650   // If thread_reg is != noreg the code assumes the register passed contains
 651   // the thread (required on 64 bit).
 652   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 653 
 654   void verify_tlab();
 655 
 656   // Biased locking support
 657   // lock_reg and obj_reg must be loaded up with the appropriate values.
 658   // swap_reg must be rax, and is killed.
 659   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 660   // be killed; if not supplied, push/pop will be used internally to
 661   // allocate a temporary (inefficient, avoid if possible).
 662   // Optional slow case is for implementations (interpreter and C1) which branch to
 663   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 664   // Returns offset of first potentially-faulting instruction for null
 665   // check info (currently consumed only by C1). If
 666   // swap_reg_contains_mark is true then returns -1 as it is assumed
 667   // the calling code has already passed any potential faults.
 668   int biased_locking_enter(Register lock_reg, Register obj_reg,
 669                            Register swap_reg, Register tmp_reg,
 670                            bool swap_reg_contains_mark,
 671                            Label& done, Label* slow_case = NULL,
 672                            BiasedLockingCounters* counters = NULL);
 673   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 674 #ifdef COMPILER2
 675   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 676   // See full desription in macroAssembler_x86.cpp.
 677   void fast_lock(Register obj, Register box, Register tmp,
 678                  Register scr, Register cx1, Register cx2,
 679                  BiasedLockingCounters* counters,
 680                  RTMLockingCounters* rtm_counters,
 681                  RTMLockingCounters* stack_rtm_counters,
 682                  Metadata* method_data,
 683                  bool use_rtm, bool profile_rtm);
 684   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 685 #if INCLUDE_RTM_OPT
 686   void rtm_counters_update(Register abort_status, Register rtm_counters);
 687   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 688   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 689                                    RTMLockingCounters* rtm_counters,
 690                                    Metadata* method_data);
 691   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 692                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 693   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 694   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 695   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 696                          Register retry_on_abort_count,
 697                          RTMLockingCounters* stack_rtm_counters,
 698                          Metadata* method_data, bool profile_rtm,
 699                          Label& DONE_LABEL, Label& IsInflated);
 700   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 701                             Register scr, Register retry_on_busy_count,
 702                             Register retry_on_abort_count,
 703                             RTMLockingCounters* rtm_counters,
 704                             Metadata* method_data, bool profile_rtm,
 705                             Label& DONE_LABEL);
 706 #endif
 707 #endif
 708 
 709   Condition negate_condition(Condition cond);
 710 
 711   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 712   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 713   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 714   // here in MacroAssembler. The major exception to this rule is call
 715 
 716   // Arithmetics
 717 
 718 
 719   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 720   void addptr(Address dst, Register src);
 721 
 722   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 723   void addptr(Register dst, int32_t src);
 724   void addptr(Register dst, Register src);
 725   void addptr(Register dst, RegisterOrConstant src) {
 726     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 727     else                   addptr(dst,       src.as_register());
 728   }
 729 
 730   void andptr(Register dst, int32_t src);
 731   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 732 
 733   void cmp8(AddressLiteral src1, int imm);
 734 
 735   // renamed to drag out the casting of address to int32_t/intptr_t
 736   void cmp32(Register src1, int32_t imm);
 737 
 738   void cmp32(AddressLiteral src1, int32_t imm);
 739   // compare reg - mem, or reg - &mem
 740   void cmp32(Register src1, AddressLiteral src2);
 741 
 742   void cmp32(Register src1, Address src2);
 743 
 744 #ifndef _LP64
 745   void cmpklass(Address dst, Metadata* obj);
 746   void cmpklass(Register dst, Metadata* obj);
 747   void cmpoop(Address dst, jobject obj);
 748   void cmpoop_raw(Address dst, jobject obj);
 749 #endif // _LP64
 750 
 751   void cmpoop(Register src1, Register src2);
 752   void cmpoop(Register src1, Address src2);
 753   void cmpoop(Register dst, jobject obj);
 754   void cmpoop_raw(Register dst, jobject obj);
 755 
 756   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 757   void cmpptr(Address src1, AddressLiteral src2);
 758 
 759   void cmpptr(Register src1, AddressLiteral src2);
 760 
 761   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 762   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 763   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 764 
 765   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 766   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 767 
 768   // cmp64 to avoild hiding cmpq
 769   void cmp64(Register src1, AddressLiteral src);
 770 
 771   void cmpxchgptr(Register reg, Address adr);
 772 
 773   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 774 
 775 
 776   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 777   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 778 
 779 
 780   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 781 
 782   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 783 
 784   void shlptr(Register dst, int32_t shift);
 785   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 786 
 787   void shrptr(Register dst, int32_t shift);
 788   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 789 
 790   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 791   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 792 
 793   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 794 
 795   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 796   void subptr(Register dst, int32_t src);
 797   // Force generation of a 4 byte immediate value even if it fits into 8bit
 798   void subptr_imm32(Register dst, int32_t src);
 799   void subptr(Register dst, Register src);
 800   void subptr(Register dst, RegisterOrConstant src) {
 801     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 802     else                   subptr(dst,       src.as_register());
 803   }
 804 
 805   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 806   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 807 
 808   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 809   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 810 
 811   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 812 
 813 
 814 
 815   // Helper functions for statistics gathering.
 816   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 817   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 818   // Unconditional atomic increment.
 819   void atomic_incl(Address counter_addr);
 820   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 821 #ifdef _LP64
 822   void atomic_incq(Address counter_addr);
 823   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 824 #endif
 825   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 826   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 827 
 828   void lea(Register dst, AddressLiteral adr);
 829   void lea(Address dst, AddressLiteral adr);
 830   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 831 
 832   void leal32(Register dst, Address src) { leal(dst, src); }
 833 
 834   // Import other testl() methods from the parent class or else
 835   // they will be hidden by the following overriding declaration.
 836   using Assembler::testl;
 837   void testl(Register dst, AddressLiteral src);
 838 
 839   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 840   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 841   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 842   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 843 
 844   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 845   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 846   void testptr(Register src1, Register src2);
 847 
 848   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 849   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 850 
 851   // Calls
 852 
 853   void call(Label& L, relocInfo::relocType rtype);
 854   void call(Register entry);
 855 
 856   // NOTE: this call transfers to the effective address of entry NOT
 857   // the address contained by entry. This is because this is more natural
 858   // for jumps/calls.
 859   void call(AddressLiteral entry);
 860 
 861   // Emit the CompiledIC call idiom
 862   void ic_call(address entry, jint method_index = 0);
 863 
 864   // Jumps
 865 
 866   // NOTE: these jumps tranfer to the effective address of dst NOT
 867   // the address contained by dst. This is because this is more natural
 868   // for jumps/calls.
 869   void jump(AddressLiteral dst);
 870   void jump_cc(Condition cc, AddressLiteral dst);
 871 
 872   // 32bit can do a case table jump in one instruction but we no longer allow the base
 873   // to be installed in the Address class. This jump will tranfers to the address
 874   // contained in the location described by entry (not the address of entry)
 875   void jump(ArrayAddress entry);
 876 
 877   // Floating
 878 
 879   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 880   void andpd(XMMRegister dst, AddressLiteral src);
 881   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 882 
 883   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 884   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 885   void andps(XMMRegister dst, AddressLiteral src);
 886 
 887   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 888   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 889   void comiss(XMMRegister dst, AddressLiteral src);
 890 
 891   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 892   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 893   void comisd(XMMRegister dst, AddressLiteral src);
 894 
 895   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 896   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 897 
 898   void fldcw(Address src) { Assembler::fldcw(src); }
 899   void fldcw(AddressLiteral src);
 900 
 901   void fld_s(int index)   { Assembler::fld_s(index); }
 902   void fld_s(Address src) { Assembler::fld_s(src); }
 903   void fld_s(AddressLiteral src);
 904 
 905   void fld_d(Address src) { Assembler::fld_d(src); }
 906   void fld_d(AddressLiteral src);
 907 
 908   void fld_x(Address src) { Assembler::fld_x(src); }
 909   void fld_x(AddressLiteral src);
 910 
 911   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 912   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 913 
 914   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 915   void ldmxcsr(AddressLiteral src);
 916 
 917 #ifdef _LP64
 918  private:
 919   void sha256_AVX2_one_round_compute(
 920     Register  reg_old_h,
 921     Register  reg_a,
 922     Register  reg_b,
 923     Register  reg_c,
 924     Register  reg_d,
 925     Register  reg_e,
 926     Register  reg_f,
 927     Register  reg_g,
 928     Register  reg_h,
 929     int iter);
 930   void sha256_AVX2_four_rounds_compute_first(int start);
 931   void sha256_AVX2_four_rounds_compute_last(int start);
 932   void sha256_AVX2_one_round_and_sched(
 933         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 934         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 935         XMMRegister xmm_2,     /* ymm6 */
 936         XMMRegister xmm_3,     /* ymm7 */
 937         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 938         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 939         Register    reg_c,      /* edi */
 940         Register    reg_d,      /* esi */
 941         Register    reg_e,      /* r8d */
 942         Register    reg_f,      /* r9d */
 943         Register    reg_g,      /* r10d */
 944         Register    reg_h,      /* r11d */
 945         int iter);
 946 
 947   void addm(int disp, Register r1, Register r2);
 948 
 949  public:
 950   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 951                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 952                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 953                    bool multi_block, XMMRegister shuf_mask);
 954 #endif
 955 
 956 #ifdef _LP64
 957  private:
 958   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 959                                      Register e, Register f, Register g, Register h, int iteration);
 960 
 961   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 962                                           Register a, Register b, Register c, Register d, Register e, Register f,
 963                                           Register g, Register h, int iteration);
 964 
 965   void addmq(int disp, Register r1, Register r2);
 966  public:
 967   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 968                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 969                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 970                    XMMRegister shuf_mask);
 971 #endif
 972 
 973   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 974                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 975                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 976                  bool multi_block);
 977 
 978 #ifdef _LP64
 979   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 980                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 981                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 982                    bool multi_block, XMMRegister shuf_mask);
 983 #else
 984   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 985                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 986                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 987                    bool multi_block);
 988 #endif
 989 
 990   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 991                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 992                 Register rax, Register rcx, Register rdx, Register tmp);
 993 
 994 #ifdef _LP64
 995   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 996                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 997                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 998 
 999   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1000                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1001                   Register rax, Register rcx, Register rdx, Register r11);
1002 
1003   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1004                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1005                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1006 
1007   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1008                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1009                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1010                 Register tmp3, Register tmp4);
1011 
1012   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1013                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1014                 Register rax, Register rcx, Register rdx, Register tmp1,
1015                 Register tmp2, Register tmp3, Register tmp4);
1016   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1017                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1018                 Register rax, Register rcx, Register rdx, Register tmp1,
1019                 Register tmp2, Register tmp3, Register tmp4);
1020 #else
1021   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1022                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1023                 Register rax, Register rcx, Register rdx, Register tmp1);
1024 
1025   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1026                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1027                 Register rax, Register rcx, Register rdx, Register tmp);
1028 
1029   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1030                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1031                 Register rdx, Register tmp);
1032 
1033   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1034                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1035                 Register rax, Register rbx, Register rdx);
1036 
1037   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1038                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1039                 Register rax, Register rcx, Register rdx, Register tmp);
1040 
1041   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1042                         Register edx, Register ebx, Register esi, Register edi,
1043                         Register ebp, Register esp);
1044 
1045   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1046                          Register esi, Register edi, Register ebp, Register esp);
1047 
1048   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1049                         Register edx, Register ebx, Register esi, Register edi,
1050                         Register ebp, Register esp);
1051 
1052   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1053                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1054                 Register rax, Register rcx, Register rdx, Register tmp);
1055 #endif
1056 
1057   void increase_precision();
1058   void restore_precision();
1059 
1060 private:
1061 
1062   // these are private because users should be doing movflt/movdbl
1063 
1064   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1065   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1066   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1067   void movss(XMMRegister dst, AddressLiteral src);
1068 
1069   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1070   void movlpd(XMMRegister dst, AddressLiteral src);
1071 
1072 public:
1073 
1074   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1075   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1076   void addsd(XMMRegister dst, AddressLiteral src);
1077 
1078   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1079   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1080   void addss(XMMRegister dst, AddressLiteral src);
1081 
1082   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1083   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1084   void addpd(XMMRegister dst, AddressLiteral src);
1085 
1086   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1087   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1088   void divsd(XMMRegister dst, AddressLiteral src);
1089 
1090   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1091   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1092   void divss(XMMRegister dst, AddressLiteral src);
1093 
1094   // Move Unaligned Double Quadword
1095   void movdqu(Address     dst, XMMRegister src);
1096   void movdqu(XMMRegister dst, Address src);
1097   void movdqu(XMMRegister dst, XMMRegister src);
1098   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1099   // AVX Unaligned forms
1100   void vmovdqu(Address     dst, XMMRegister src);
1101   void vmovdqu(XMMRegister dst, Address src);
1102   void vmovdqu(XMMRegister dst, XMMRegister src);
1103   void vmovdqu(XMMRegister dst, AddressLiteral src);
1104   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1105   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1106   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1107   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1108 
1109   // Move Aligned Double Quadword
1110   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1111   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1112   void movdqa(XMMRegister dst, AddressLiteral src);
1113 
1114   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1115   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1116   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1117   void movsd(XMMRegister dst, AddressLiteral src);
1118 
1119   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1120   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1121   void mulpd(XMMRegister dst, AddressLiteral src);
1122 
1123   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1124   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1125   void mulsd(XMMRegister dst, AddressLiteral src);
1126 
1127   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1128   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1129   void mulss(XMMRegister dst, AddressLiteral src);
1130 
1131   // Carry-Less Multiplication Quadword
1132   void pclmulldq(XMMRegister dst, XMMRegister src) {
1133     // 0x00 - multiply lower 64 bits [0:63]
1134     Assembler::pclmulqdq(dst, src, 0x00);
1135   }
1136   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1137     // 0x11 - multiply upper 64 bits [64:127]
1138     Assembler::pclmulqdq(dst, src, 0x11);
1139   }
1140 
1141   void pcmpeqb(XMMRegister dst, XMMRegister src);
1142   void pcmpeqw(XMMRegister dst, XMMRegister src);
1143 
1144   void pcmpestri(XMMRegister dst, Address src, int imm8);
1145   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1146 
1147   void pmovzxbw(XMMRegister dst, XMMRegister src);
1148   void pmovzxbw(XMMRegister dst, Address src);
1149 
1150   void pmovmskb(Register dst, XMMRegister src);
1151 
1152   void ptest(XMMRegister dst, XMMRegister src);
1153 
1154   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1155   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1156   void sqrtsd(XMMRegister dst, AddressLiteral src);
1157 
1158   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1159   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1160   void sqrtss(XMMRegister dst, AddressLiteral src);
1161 
1162   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1163   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1164   void subsd(XMMRegister dst, AddressLiteral src);
1165 
1166   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1167   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1168   void subss(XMMRegister dst, AddressLiteral src);
1169 
1170   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1171   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1172   void ucomiss(XMMRegister dst, AddressLiteral src);
1173 
1174   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1175   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1176   void ucomisd(XMMRegister dst, AddressLiteral src);
1177 
1178   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1179   void xorpd(XMMRegister dst, XMMRegister src);
1180   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1181   void xorpd(XMMRegister dst, AddressLiteral src);
1182 
1183   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1184   void xorps(XMMRegister dst, XMMRegister src);
1185   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1186   void xorps(XMMRegister dst, AddressLiteral src);
1187 
1188   // Shuffle Bytes
1189   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1190   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1191   void pshufb(XMMRegister dst, AddressLiteral src);
1192   // AVX 3-operands instructions
1193 
1194   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1195   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1196   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1197 
1198   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1199   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1200   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1201 
1202   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1203   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1204 
1205   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1206   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1207 
1208   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1209   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1210 
1211   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1212   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1213   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1214 
1215   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1216   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1217 
1218   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1219 
1220   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1221 
1222   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1223   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1224 
1225   void vpmovmskb(Register dst, XMMRegister src);
1226 
1227   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1228   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1229 
1230   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1231   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1232 
1233   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1234   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1235 
1236   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1237   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1238 
1239   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1240   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1241 
1242   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1243   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1244 
1245   void vptest(XMMRegister dst, XMMRegister src);
1246 
1247   void punpcklbw(XMMRegister dst, XMMRegister src);
1248   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1249 
1250   void pshufd(XMMRegister dst, Address src, int mode);
1251   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1252 
1253   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1254   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1255 
1256   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1257   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1258   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1259 
1260   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1261   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1262   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1263 
1264   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1265   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1266   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1267 
1268   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1269   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1270   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1271 
1272   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1273   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1274   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1275 
1276   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1277   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1278   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1279 
1280   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1281   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1282   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1283 
1284   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1285   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1286   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1287 
1288   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1289   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1290 
1291   // AVX Vector instructions
1292 
1293   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1294   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1295   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1296 
1297   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1298   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1299   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1300 
1301   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1302     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1303       Assembler::vpxor(dst, nds, src, vector_len);
1304     else
1305       Assembler::vxorpd(dst, nds, src, vector_len);
1306   }
1307   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1308     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1309       Assembler::vpxor(dst, nds, src, vector_len);
1310     else
1311       Assembler::vxorpd(dst, nds, src, vector_len);
1312   }
1313 
1314   // Simple version for AVX2 256bit vectors
1315   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1316   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1317 
1318   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1319     if (UseAVX > 2) {
1320       Assembler::vinserti32x4(dst, dst, src, imm8);
1321     } else if (UseAVX > 1) {
1322       // vinserti128 is available only in AVX2
1323       Assembler::vinserti128(dst, nds, src, imm8);
1324     } else {
1325       Assembler::vinsertf128(dst, nds, src, imm8);
1326     }
1327   }
1328 
1329   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1330     if (UseAVX > 2) {
1331       Assembler::vinserti32x4(dst, dst, src, imm8);
1332     } else if (UseAVX > 1) {
1333       // vinserti128 is available only in AVX2
1334       Assembler::vinserti128(dst, nds, src, imm8);
1335     } else {
1336       Assembler::vinsertf128(dst, nds, src, imm8);
1337     }
1338   }
1339 
1340   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1341     if (UseAVX > 2) {
1342       Assembler::vextracti32x4(dst, src, imm8);
1343     } else if (UseAVX > 1) {
1344       // vextracti128 is available only in AVX2
1345       Assembler::vextracti128(dst, src, imm8);
1346     } else {
1347       Assembler::vextractf128(dst, src, imm8);
1348     }
1349   }
1350 
1351   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1352     if (UseAVX > 2) {
1353       Assembler::vextracti32x4(dst, src, imm8);
1354     } else if (UseAVX > 1) {
1355       // vextracti128 is available only in AVX2
1356       Assembler::vextracti128(dst, src, imm8);
1357     } else {
1358       Assembler::vextractf128(dst, src, imm8);
1359     }
1360   }
1361 
1362   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1363   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1364     vinserti128(dst, dst, src, 1);
1365   }
1366   void vinserti128_high(XMMRegister dst, Address src) {
1367     vinserti128(dst, dst, src, 1);
1368   }
1369   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1370     vextracti128(dst, src, 1);
1371   }
1372   void vextracti128_high(Address dst, XMMRegister src) {
1373     vextracti128(dst, src, 1);
1374   }
1375 
1376   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1377     if (UseAVX > 2) {
1378       Assembler::vinsertf32x4(dst, dst, src, 1);
1379     } else {
1380       Assembler::vinsertf128(dst, dst, src, 1);
1381     }
1382   }
1383 
1384   void vinsertf128_high(XMMRegister dst, Address src) {
1385     if (UseAVX > 2) {
1386       Assembler::vinsertf32x4(dst, dst, src, 1);
1387     } else {
1388       Assembler::vinsertf128(dst, dst, src, 1);
1389     }
1390   }
1391 
1392   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1393     if (UseAVX > 2) {
1394       Assembler::vextractf32x4(dst, src, 1);
1395     } else {
1396       Assembler::vextractf128(dst, src, 1);
1397     }
1398   }
1399 
1400   void vextractf128_high(Address dst, XMMRegister src) {
1401     if (UseAVX > 2) {
1402       Assembler::vextractf32x4(dst, src, 1);
1403     } else {
1404       Assembler::vextractf128(dst, src, 1);
1405     }
1406   }
1407 
1408   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1409   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1410     Assembler::vinserti64x4(dst, dst, src, 1);
1411   }
1412   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1413     Assembler::vinsertf64x4(dst, dst, src, 1);
1414   }
1415   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1416     Assembler::vextracti64x4(dst, src, 1);
1417   }
1418   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1419     Assembler::vextractf64x4(dst, src, 1);
1420   }
1421   void vextractf64x4_high(Address dst, XMMRegister src) {
1422     Assembler::vextractf64x4(dst, src, 1);
1423   }
1424   void vinsertf64x4_high(XMMRegister dst, Address src) {
1425     Assembler::vinsertf64x4(dst, dst, src, 1);
1426   }
1427 
1428   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1429   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1430     vinserti128(dst, dst, src, 0);
1431   }
1432   void vinserti128_low(XMMRegister dst, Address src) {
1433     vinserti128(dst, dst, src, 0);
1434   }
1435   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1436     vextracti128(dst, src, 0);
1437   }
1438   void vextracti128_low(Address dst, XMMRegister src) {
1439     vextracti128(dst, src, 0);
1440   }
1441 
1442   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1443     if (UseAVX > 2) {
1444       Assembler::vinsertf32x4(dst, dst, src, 0);
1445     } else {
1446       Assembler::vinsertf128(dst, dst, src, 0);
1447     }
1448   }
1449 
1450   void vinsertf128_low(XMMRegister dst, Address src) {
1451     if (UseAVX > 2) {
1452       Assembler::vinsertf32x4(dst, dst, src, 0);
1453     } else {
1454       Assembler::vinsertf128(dst, dst, src, 0);
1455     }
1456   }
1457 
1458   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1459     if (UseAVX > 2) {
1460       Assembler::vextractf32x4(dst, src, 0);
1461     } else {
1462       Assembler::vextractf128(dst, src, 0);
1463     }
1464   }
1465 
1466   void vextractf128_low(Address dst, XMMRegister src) {
1467     if (UseAVX > 2) {
1468       Assembler::vextractf32x4(dst, src, 0);
1469     } else {
1470       Assembler::vextractf128(dst, src, 0);
1471     }
1472   }
1473 
1474   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1475   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1476     Assembler::vinserti64x4(dst, dst, src, 0);
1477   }
1478   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1479     Assembler::vinsertf64x4(dst, dst, src, 0);
1480   }
1481   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1482     Assembler::vextracti64x4(dst, src, 0);
1483   }
1484   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1485     Assembler::vextractf64x4(dst, src, 0);
1486   }
1487   void vextractf64x4_low(Address dst, XMMRegister src) {
1488     Assembler::vextractf64x4(dst, src, 0);
1489   }
1490   void vinsertf64x4_low(XMMRegister dst, Address src) {
1491     Assembler::vinsertf64x4(dst, dst, src, 0);
1492   }
1493 
1494   // Carry-Less Multiplication Quadword
1495   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1496     // 0x00 - multiply lower 64 bits [0:63]
1497     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1498   }
1499   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1500     // 0x11 - multiply upper 64 bits [64:127]
1501     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1502   }
1503   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1504     // 0x00 - multiply lower 64 bits [0:63]
1505     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1506   }
1507   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1508     // 0x11 - multiply upper 64 bits [64:127]
1509     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1510   }
1511 
1512   // Data
1513 
1514   void cmov32( Condition cc, Register dst, Address  src);
1515   void cmov32( Condition cc, Register dst, Register src);
1516 
1517   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1518 
1519   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1520   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1521 
1522   void movoop(Register dst, jobject obj);
1523   void movoop(Address dst, jobject obj);
1524 
1525   void mov_metadata(Register dst, Metadata* obj);
1526   void mov_metadata(Address dst, Metadata* obj);
1527 
1528   void movptr(ArrayAddress dst, Register src);
1529   // can this do an lea?
1530   void movptr(Register dst, ArrayAddress src);
1531 
1532   void movptr(Register dst, Address src);
1533 
1534 #ifdef _LP64
1535   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1536 #else
1537   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1538 #endif
1539 
1540   void movptr(Register dst, intptr_t src);
1541   void movptr(Register dst, Register src);
1542   void movptr(Address dst, intptr_t src);
1543 
1544   void movptr(Address dst, Register src);
1545 
1546   void movptr(Register dst, RegisterOrConstant src) {
1547     if (src.is_constant()) movptr(dst, src.as_constant());
1548     else                   movptr(dst, src.as_register());
1549   }
1550 
1551 #ifdef _LP64
1552   // Generally the next two are only used for moving NULL
1553   // Although there are situations in initializing the mark word where
1554   // they could be used. They are dangerous.
1555 
1556   // They only exist on LP64 so that int32_t and intptr_t are not the same
1557   // and we have ambiguous declarations.
1558 
1559   void movptr(Address dst, int32_t imm32);
1560   void movptr(Register dst, int32_t imm32);
1561 #endif // _LP64
1562 
1563   // to avoid hiding movl
1564   void mov32(AddressLiteral dst, Register src);
1565   void mov32(Register dst, AddressLiteral src);
1566 
1567   // to avoid hiding movb
1568   void movbyte(ArrayAddress dst, int src);
1569 
1570   // Import other mov() methods from the parent class or else
1571   // they will be hidden by the following overriding declaration.
1572   using Assembler::movdl;
1573   using Assembler::movq;
1574   void movdl(XMMRegister dst, AddressLiteral src);
1575   void movq(XMMRegister dst, AddressLiteral src);
1576 
1577   // Can push value or effective address
1578   void pushptr(AddressLiteral src);
1579 
1580   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1581   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1582 
1583   void pushoop(jobject obj);
1584   void pushklass(Metadata* obj);
1585 
1586   // sign extend as need a l to ptr sized element
1587   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1588   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1589 
1590   // C2 compiled method's prolog code.
1591   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub);
1592 
1593   // clear memory of size 'cnt' qwords, starting at 'base';
1594   // if 'is_large' is set, do not try to produce short loop
1595   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large);
1596 
1597   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1598   void xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp);
1599 
1600 #ifdef COMPILER2
1601   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1602                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1603 
1604   // IndexOf strings.
1605   // Small strings are loaded through stack if they cross page boundary.
1606   void string_indexof(Register str1, Register str2,
1607                       Register cnt1, Register cnt2,
1608                       int int_cnt2,  Register result,
1609                       XMMRegister vec, Register tmp,
1610                       int ae);
1611 
1612   // IndexOf for constant substrings with size >= 8 elements
1613   // which don't need to be loaded through stack.
1614   void string_indexofC8(Register str1, Register str2,
1615                       Register cnt1, Register cnt2,
1616                       int int_cnt2,  Register result,
1617                       XMMRegister vec, Register tmp,
1618                       int ae);
1619 
1620     // Smallest code: we don't need to load through stack,
1621     // check string tail.
1622 
1623   // helper function for string_compare
1624   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1625                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1626                           Address::ScaleFactor scale2, Register index, int ae);
1627   // Compare strings.
1628   void string_compare(Register str1, Register str2,
1629                       Register cnt1, Register cnt2, Register result,
1630                       XMMRegister vec1, int ae);
1631 
1632   // Search for Non-ASCII character (Negative byte value) in a byte array,
1633   // return true if it has any and false otherwise.
1634   void has_negatives(Register ary1, Register len,
1635                      Register result, Register tmp1,
1636                      XMMRegister vec1, XMMRegister vec2);
1637 
1638   // Compare char[] or byte[] arrays.
1639   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1640                      Register limit, Register result, Register chr,
1641                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1642 
1643 #endif
1644 
1645   // Fill primitive arrays
1646   void generate_fill(BasicType t, bool aligned,
1647                      Register to, Register value, Register count,
1648                      Register rtmp, XMMRegister xtmp);
1649 
1650   void encode_iso_array(Register src, Register dst, Register len,
1651                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1652                         XMMRegister tmp4, Register tmp5, Register result);
1653 
1654 #ifdef _LP64
1655   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1656   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1657                              Register y, Register y_idx, Register z,
1658                              Register carry, Register product,
1659                              Register idx, Register kdx);
1660   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1661                               Register yz_idx, Register idx,
1662                               Register carry, Register product, int offset);
1663   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1664                                     Register carry, Register carry2,
1665                                     Register idx, Register jdx,
1666                                     Register yz_idx1, Register yz_idx2,
1667                                     Register tmp, Register tmp3, Register tmp4);
1668   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1669                                Register yz_idx, Register idx, Register jdx,
1670                                Register carry, Register product,
1671                                Register carry2);
1672   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1673                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1674   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1675                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1676   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1677                             Register tmp2);
1678   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1679                        Register rdxReg, Register raxReg);
1680   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1681   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1682                        Register tmp3, Register tmp4);
1683   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1684                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1685 
1686   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1687                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1688                Register raxReg);
1689   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1690                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1691                Register raxReg);
1692   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1693                            Register result, Register tmp1, Register tmp2,
1694                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1695 #endif
1696 
1697   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1698   void update_byte_crc32(Register crc, Register val, Register table);
1699   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1700   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1701   // Note on a naming convention:
1702   // Prefix w = register only used on a Westmere+ architecture
1703   // Prefix n = register only used on a Nehalem architecture
1704 #ifdef _LP64
1705   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1706                        Register tmp1, Register tmp2, Register tmp3);
1707 #else
1708   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1709                        Register tmp1, Register tmp2, Register tmp3,
1710                        XMMRegister xtmp1, XMMRegister xtmp2);
1711 #endif
1712   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1713                         Register in_out,
1714                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1715                         XMMRegister w_xtmp2,
1716                         Register tmp1,
1717                         Register n_tmp2, Register n_tmp3);
1718   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1719                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1720                        Register tmp1, Register tmp2,
1721                        Register n_tmp3);
1722   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1723                          Register in_out1, Register in_out2, Register in_out3,
1724                          Register tmp1, Register tmp2, Register tmp3,
1725                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1726                          Register tmp4, Register tmp5,
1727                          Register n_tmp6);
1728   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1729                             Register tmp1, Register tmp2, Register tmp3,
1730                             Register tmp4, Register tmp5, Register tmp6,
1731                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1732                             bool is_pclmulqdq_supported);
1733   // Fold 128-bit data chunk
1734   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1735   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1736   // Fold 8-bit data
1737   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1738   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1739   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1740 
1741   // Compress char[] array to byte[].
1742   void char_array_compress(Register src, Register dst, Register len,
1743                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1744                            XMMRegister tmp4, Register tmp5, Register result);
1745 
1746   // Inflate byte[] array to char[].
1747   void byte_array_inflate(Register src, Register dst, Register len,
1748                           XMMRegister tmp1, Register tmp2);
1749 
1750 };
1751 
1752 /**
1753  * class SkipIfEqual:
1754  *
1755  * Instantiating this class will result in assembly code being output that will
1756  * jump around any code emitted between the creation of the instance and it's
1757  * automatic destruction at the end of a scope block, depending on the value of
1758  * the flag passed to the constructor, which will be checked at run-time.
1759  */
1760 class SkipIfEqual {
1761  private:
1762   MacroAssembler* _masm;
1763   Label _label;
1764 
1765  public:
1766    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1767    ~SkipIfEqual();
1768 };
1769 
1770 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP