1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/vectornode.hpp"
  71 #include "runtime/arguments.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/timer.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/copy.hpp"
  78 #include "utilities/macros.hpp"
  79 #if INCLUDE_G1GC
  80 #include "gc/g1/g1ThreadLocalData.hpp"
  81 #endif // INCLUDE_G1GC
  82 #if INCLUDE_ZGC
  83 #include "gc/z/c2/zBarrierSetC2.hpp"
  84 #endif
  85 
  86 
  87 // -------------------- Compile::mach_constant_base_node -----------------------
  88 // Constant table base node singleton.
  89 MachConstantBaseNode* Compile::mach_constant_base_node() {
  90   if (_mach_constant_base_node == NULL) {
  91     _mach_constant_base_node = new MachConstantBaseNode();
  92     _mach_constant_base_node->add_req(C->root());
  93   }
  94   return _mach_constant_base_node;
  95 }
  96 
  97 
  98 /// Support for intrinsics.
  99 
 100 // Return the index at which m must be inserted (or already exists).
 101 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 102 class IntrinsicDescPair {
 103  private:
 104   ciMethod* _m;
 105   bool _is_virtual;
 106  public:
 107   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 108   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 109     ciMethod* m= elt->method();
 110     ciMethod* key_m = key->_m;
 111     if (key_m < m)      return -1;
 112     else if (key_m > m) return 1;
 113     else {
 114       bool is_virtual = elt->is_virtual();
 115       bool key_virtual = key->_is_virtual;
 116       if (key_virtual < is_virtual)      return -1;
 117       else if (key_virtual > is_virtual) return 1;
 118       else                               return 0;
 119     }
 120   }
 121 };
 122 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 123 #ifdef ASSERT
 124   for (int i = 1; i < _intrinsics->length(); i++) {
 125     CallGenerator* cg1 = _intrinsics->at(i-1);
 126     CallGenerator* cg2 = _intrinsics->at(i);
 127     assert(cg1->method() != cg2->method()
 128            ? cg1->method()     < cg2->method()
 129            : cg1->is_virtual() < cg2->is_virtual(),
 130            "compiler intrinsics list must stay sorted");
 131   }
 132 #endif
 133   IntrinsicDescPair pair(m, is_virtual);
 134   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 135 }
 136 
 137 void Compile::register_intrinsic(CallGenerator* cg) {
 138   if (_intrinsics == NULL) {
 139     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 140   }
 141   int len = _intrinsics->length();
 142   bool found = false;
 143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 144   assert(!found, "registering twice");
 145   _intrinsics->insert_before(index, cg);
 146   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 147 }
 148 
 149 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 150   assert(m->is_loaded(), "don't try this on unloaded methods");
 151   if (_intrinsics != NULL) {
 152     bool found = false;
 153     int index = intrinsic_insertion_index(m, is_virtual, found);
 154      if (found) {
 155       return _intrinsics->at(index);
 156     }
 157   }
 158   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 159   if (m->intrinsic_id() != vmIntrinsics::_none &&
 160       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 161     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 162     if (cg != NULL) {
 163       // Save it for next time:
 164       register_intrinsic(cg);
 165       return cg;
 166     } else {
 167       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 168     }
 169   }
 170   return NULL;
 171 }
 172 
 173 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 174 // in library_call.cpp.
 175 
 176 
 177 #ifndef PRODUCT
 178 // statistics gathering...
 179 
 180 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 181 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 182 
 183 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 184   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 185   int oflags = _intrinsic_hist_flags[id];
 186   assert(flags != 0, "what happened?");
 187   if (is_virtual) {
 188     flags |= _intrinsic_virtual;
 189   }
 190   bool changed = (flags != oflags);
 191   if ((flags & _intrinsic_worked) != 0) {
 192     juint count = (_intrinsic_hist_count[id] += 1);
 193     if (count == 1) {
 194       changed = true;           // first time
 195     }
 196     // increment the overall count also:
 197     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 198   }
 199   if (changed) {
 200     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 201       // Something changed about the intrinsic's virtuality.
 202       if ((flags & _intrinsic_virtual) != 0) {
 203         // This is the first use of this intrinsic as a virtual call.
 204         if (oflags != 0) {
 205           // We already saw it as a non-virtual, so note both cases.
 206           flags |= _intrinsic_both;
 207         }
 208       } else if ((oflags & _intrinsic_both) == 0) {
 209         // This is the first use of this intrinsic as a non-virtual
 210         flags |= _intrinsic_both;
 211       }
 212     }
 213     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 214   }
 215   // update the overall flags also:
 216   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 217   return changed;
 218 }
 219 
 220 static char* format_flags(int flags, char* buf) {
 221   buf[0] = 0;
 222   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 223   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 224   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 225   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 226   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 227   if (buf[0] == 0)  strcat(buf, ",");
 228   assert(buf[0] == ',', "must be");
 229   return &buf[1];
 230 }
 231 
 232 void Compile::print_intrinsic_statistics() {
 233   char flagsbuf[100];
 234   ttyLocker ttyl;
 235   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 236   tty->print_cr("Compiler intrinsic usage:");
 237   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 238   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 239   #define PRINT_STAT_LINE(name, c, f) \
 240     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 241   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 242     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 243     int   flags = _intrinsic_hist_flags[id];
 244     juint count = _intrinsic_hist_count[id];
 245     if ((flags | count) != 0) {
 246       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 247     }
 248   }
 249   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 250   if (xtty != NULL)  xtty->tail("statistics");
 251 }
 252 
 253 void Compile::print_statistics() {
 254   { ttyLocker ttyl;
 255     if (xtty != NULL)  xtty->head("statistics type='opto'");
 256     Parse::print_statistics();
 257     PhaseCCP::print_statistics();
 258     PhaseRegAlloc::print_statistics();
 259     Scheduling::print_statistics();
 260     PhasePeephole::print_statistics();
 261     PhaseIdealLoop::print_statistics();
 262     if (xtty != NULL)  xtty->tail("statistics");
 263   }
 264   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 265     // put this under its own <statistics> element.
 266     print_intrinsic_statistics();
 267   }
 268 }
 269 #endif //PRODUCT
 270 
 271 // Support for bundling info
 272 Bundle* Compile::node_bundling(const Node *n) {
 273   assert(valid_bundle_info(n), "oob");
 274   return &_node_bundling_base[n->_idx];
 275 }
 276 
 277 bool Compile::valid_bundle_info(const Node *n) {
 278   return (_node_bundling_limit > n->_idx);
 279 }
 280 
 281 
 282 void Compile::gvn_replace_by(Node* n, Node* nn) {
 283   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 284     Node* use = n->last_out(i);
 285     bool is_in_table = initial_gvn()->hash_delete(use);
 286     uint uses_found = 0;
 287     for (uint j = 0; j < use->len(); j++) {
 288       if (use->in(j) == n) {
 289         if (j < use->req())
 290           use->set_req(j, nn);
 291         else
 292           use->set_prec(j, nn);
 293         uses_found++;
 294       }
 295     }
 296     if (is_in_table) {
 297       // reinsert into table
 298       initial_gvn()->hash_find_insert(use);
 299     }
 300     record_for_igvn(use);
 301     i -= uses_found;    // we deleted 1 or more copies of this edge
 302   }
 303 }
 304 
 305 
 306 static inline bool not_a_node(const Node* n) {
 307   if (n == NULL)                   return true;
 308   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 309   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 310   return false;
 311 }
 312 
 313 // Identify all nodes that are reachable from below, useful.
 314 // Use breadth-first pass that records state in a Unique_Node_List,
 315 // recursive traversal is slower.
 316 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 317   int estimated_worklist_size = live_nodes();
 318   useful.map( estimated_worklist_size, NULL );  // preallocate space
 319 
 320   // Initialize worklist
 321   if (root() != NULL)     { useful.push(root()); }
 322   // If 'top' is cached, declare it useful to preserve cached node
 323   if( cached_top_node() ) { useful.push(cached_top_node()); }
 324 
 325   // Push all useful nodes onto the list, breadthfirst
 326   for( uint next = 0; next < useful.size(); ++next ) {
 327     assert( next < unique(), "Unique useful nodes < total nodes");
 328     Node *n  = useful.at(next);
 329     uint max = n->len();
 330     for( uint i = 0; i < max; ++i ) {
 331       Node *m = n->in(i);
 332       if (not_a_node(m))  continue;
 333       useful.push(m);
 334     }
 335   }
 336 }
 337 
 338 // Update dead_node_list with any missing dead nodes using useful
 339 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 340 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 341   uint max_idx = unique();
 342   VectorSet& useful_node_set = useful.member_set();
 343 
 344   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 345     // If node with index node_idx is not in useful set,
 346     // mark it as dead in dead node list.
 347     if (! useful_node_set.test(node_idx) ) {
 348       record_dead_node(node_idx);
 349     }
 350   }
 351 }
 352 
 353 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 354   int shift = 0;
 355   for (int i = 0; i < inlines->length(); i++) {
 356     CallGenerator* cg = inlines->at(i);
 357     CallNode* call = cg->call_node();
 358     if (shift > 0) {
 359       inlines->at_put(i-shift, cg);
 360     }
 361     if (!useful.member(call)) {
 362       shift++;
 363     }
 364   }
 365   inlines->trunc_to(inlines->length()-shift);
 366 }
 367 
 368 // Disconnect all useless nodes by disconnecting those at the boundary.
 369 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 370   uint next = 0;
 371   while (next < useful.size()) {
 372     Node *n = useful.at(next++);
 373     if (n->is_SafePoint()) {
 374       // We're done with a parsing phase. Replaced nodes are not valid
 375       // beyond that point.
 376       n->as_SafePoint()->delete_replaced_nodes();
 377     }
 378     // Use raw traversal of out edges since this code removes out edges
 379     int max = n->outcnt();
 380     for (int j = 0; j < max; ++j) {
 381       Node* child = n->raw_out(j);
 382       if (! useful.member(child)) {
 383         assert(!child->is_top() || child != top(),
 384                "If top is cached in Compile object it is in useful list");
 385         // Only need to remove this out-edge to the useless node
 386         n->raw_del_out(j);
 387         --j;
 388         --max;
 389       }
 390     }
 391     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 392       record_for_igvn(n->unique_out());
 393     }
 394   }
 395   // Remove useless macro and predicate opaq nodes
 396   for (int i = C->macro_count()-1; i >= 0; i--) {
 397     Node* n = C->macro_node(i);
 398     if (!useful.member(n)) {
 399       remove_macro_node(n);
 400     }
 401   }
 402   // Remove useless CastII nodes with range check dependency
 403   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 404     Node* cast = range_check_cast_node(i);
 405     if (!useful.member(cast)) {
 406       remove_range_check_cast(cast);
 407     }
 408   }
 409   // Remove useless expensive nodes
 410   for (int i = C->expensive_count()-1; i >= 0; i--) {
 411     Node* n = C->expensive_node(i);
 412     if (!useful.member(n)) {
 413       remove_expensive_node(n);
 414     }
 415   }
 416   // Remove useless Opaque4 nodes
 417   for (int i = opaque4_count() - 1; i >= 0; i--) {
 418     Node* opaq = opaque4_node(i);
 419     if (!useful.member(opaq)) {
 420       remove_opaque4_node(opaq);
 421     }
 422   }
 423   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 424   bs->eliminate_useless_gc_barriers(useful, this);
 425   // clean up the late inline lists
 426   remove_useless_late_inlines(&_string_late_inlines, useful);
 427   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 428   remove_useless_late_inlines(&_late_inlines, useful);
 429   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 430 }
 431 
 432 //------------------------------frame_size_in_words-----------------------------
 433 // frame_slots in units of words
 434 int Compile::frame_size_in_words() const {
 435   // shift is 0 in LP32 and 1 in LP64
 436   const int shift = (LogBytesPerWord - LogBytesPerInt);
 437   int words = _frame_slots >> shift;
 438   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 439   return words;
 440 }
 441 
 442 // To bang the stack of this compiled method we use the stack size
 443 // that the interpreter would need in case of a deoptimization. This
 444 // removes the need to bang the stack in the deoptimization blob which
 445 // in turn simplifies stack overflow handling.
 446 int Compile::bang_size_in_bytes() const {
 447   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 448 }
 449 
 450 // ============================================================================
 451 //------------------------------CompileWrapper---------------------------------
 452 class CompileWrapper : public StackObj {
 453   Compile *const _compile;
 454  public:
 455   CompileWrapper(Compile* compile);
 456 
 457   ~CompileWrapper();
 458 };
 459 
 460 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 461   // the Compile* pointer is stored in the current ciEnv:
 462   ciEnv* env = compile->env();
 463   assert(env == ciEnv::current(), "must already be a ciEnv active");
 464   assert(env->compiler_data() == NULL, "compile already active?");
 465   env->set_compiler_data(compile);
 466   assert(compile == Compile::current(), "sanity");
 467 
 468   compile->set_type_dict(NULL);
 469   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 470   compile->clone_map().set_clone_idx(0);
 471   compile->set_type_hwm(NULL);
 472   compile->set_type_last_size(0);
 473   compile->set_last_tf(NULL, NULL);
 474   compile->set_indexSet_arena(NULL);
 475   compile->set_indexSet_free_block_list(NULL);
 476   compile->init_type_arena();
 477   Type::Initialize(compile);
 478   _compile->set_scratch_buffer_blob(NULL);
 479   _compile->begin_method();
 480   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 481 }
 482 CompileWrapper::~CompileWrapper() {
 483   _compile->end_method();
 484   if (_compile->scratch_buffer_blob() != NULL)
 485     BufferBlob::free(_compile->scratch_buffer_blob());
 486   _compile->env()->set_compiler_data(NULL);
 487 }
 488 
 489 
 490 //----------------------------print_compile_messages---------------------------
 491 void Compile::print_compile_messages() {
 492 #ifndef PRODUCT
 493   // Check if recompiling
 494   if (_subsume_loads == false && PrintOpto) {
 495     // Recompiling without allowing machine instructions to subsume loads
 496     tty->print_cr("*********************************************************");
 497     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 498     tty->print_cr("*********************************************************");
 499   }
 500   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 501     // Recompiling without escape analysis
 502     tty->print_cr("*********************************************************");
 503     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 504     tty->print_cr("*********************************************************");
 505   }
 506   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 507     // Recompiling without boxing elimination
 508     tty->print_cr("*********************************************************");
 509     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 510     tty->print_cr("*********************************************************");
 511   }
 512   if (C->directive()->BreakAtCompileOption) {
 513     // Open the debugger when compiling this method.
 514     tty->print("### Breaking when compiling: ");
 515     method()->print_short_name();
 516     tty->cr();
 517     BREAKPOINT;
 518   }
 519 
 520   if( PrintOpto ) {
 521     if (is_osr_compilation()) {
 522       tty->print("[OSR]%3d", _compile_id);
 523     } else {
 524       tty->print("%3d", _compile_id);
 525     }
 526   }
 527 #endif
 528 }
 529 
 530 
 531 //-----------------------init_scratch_buffer_blob------------------------------
 532 // Construct a temporary BufferBlob and cache it for this compile.
 533 void Compile::init_scratch_buffer_blob(int const_size) {
 534   // If there is already a scratch buffer blob allocated and the
 535   // constant section is big enough, use it.  Otherwise free the
 536   // current and allocate a new one.
 537   BufferBlob* blob = scratch_buffer_blob();
 538   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 539     // Use the current blob.
 540   } else {
 541     if (blob != NULL) {
 542       BufferBlob::free(blob);
 543     }
 544 
 545     ResourceMark rm;
 546     _scratch_const_size = const_size;
 547     int size = C2Compiler::initial_code_buffer_size(const_size);
 548     blob = BufferBlob::create("Compile::scratch_buffer", size);
 549     // Record the buffer blob for next time.
 550     set_scratch_buffer_blob(blob);
 551     // Have we run out of code space?
 552     if (scratch_buffer_blob() == NULL) {
 553       // Let CompilerBroker disable further compilations.
 554       record_failure("Not enough space for scratch buffer in CodeCache");
 555       return;
 556     }
 557   }
 558 
 559   // Initialize the relocation buffers
 560   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 561   set_scratch_locs_memory(locs_buf);
 562 }
 563 
 564 
 565 //-----------------------scratch_emit_size-------------------------------------
 566 // Helper function that computes size by emitting code
 567 uint Compile::scratch_emit_size(const Node* n) {
 568   // Start scratch_emit_size section.
 569   set_in_scratch_emit_size(true);
 570 
 571   // Emit into a trash buffer and count bytes emitted.
 572   // This is a pretty expensive way to compute a size,
 573   // but it works well enough if seldom used.
 574   // All common fixed-size instructions are given a size
 575   // method by the AD file.
 576   // Note that the scratch buffer blob and locs memory are
 577   // allocated at the beginning of the compile task, and
 578   // may be shared by several calls to scratch_emit_size.
 579   // The allocation of the scratch buffer blob is particularly
 580   // expensive, since it has to grab the code cache lock.
 581   BufferBlob* blob = this->scratch_buffer_blob();
 582   assert(blob != NULL, "Initialize BufferBlob at start");
 583   assert(blob->size() > MAX_inst_size, "sanity");
 584   relocInfo* locs_buf = scratch_locs_memory();
 585   address blob_begin = blob->content_begin();
 586   address blob_end   = (address)locs_buf;
 587   assert(blob->contains(blob_end), "sanity");
 588   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 589   buf.initialize_consts_size(_scratch_const_size);
 590   buf.initialize_stubs_size(MAX_stubs_size);
 591   assert(locs_buf != NULL, "sanity");
 592   int lsize = MAX_locs_size / 3;
 593   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 594   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 595   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 596   // Mark as scratch buffer.
 597   buf.consts()->set_scratch_emit();
 598   buf.insts()->set_scratch_emit();
 599   buf.stubs()->set_scratch_emit();
 600 
 601   // Do the emission.
 602 
 603   Label fakeL; // Fake label for branch instructions.
 604   Label*   saveL = NULL;
 605   uint save_bnum = 0;
 606   bool is_branch = n->is_MachBranch();
 607   if (is_branch) {
 608     MacroAssembler masm(&buf);
 609     masm.bind(fakeL);
 610     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 611     n->as_MachBranch()->label_set(&fakeL, 0);
 612   }
 613   n->emit(buf, this->regalloc());
 614 
 615   // Emitting into the scratch buffer should not fail
 616   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 617 
 618   if (is_branch) // Restore label.
 619     n->as_MachBranch()->label_set(saveL, save_bnum);
 620 
 621   // End scratch_emit_size section.
 622   set_in_scratch_emit_size(false);
 623 
 624   return buf.insts_size();
 625 }
 626 
 627 
 628 // ============================================================================
 629 //------------------------------Compile standard-------------------------------
 630 debug_only( int Compile::_debug_idx = 100000; )
 631 
 632 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 633 // the continuation bci for on stack replacement.
 634 
 635 
 636 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 637                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 638                 : Phase(Compiler),
 639                   _compile_id(ci_env->compile_id()),
 640                   _save_argument_registers(false),
 641                   _subsume_loads(subsume_loads),
 642                   _do_escape_analysis(do_escape_analysis),
 643                   _eliminate_boxing(eliminate_boxing),
 644                   _method(target),
 645                   _entry_bci(osr_bci),
 646                   _stub_function(NULL),
 647                   _stub_name(NULL),
 648                   _stub_entry_point(NULL),
 649                   _max_node_limit(MaxNodeLimit),
 650                   _orig_pc_slot(0),
 651                   _orig_pc_slot_offset_in_bytes(0),
 652                   _inlining_progress(false),
 653                   _inlining_incrementally(false),
 654                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 655 #ifndef PRODUCT
 656                   _trace_opto_output(directive->TraceOptoOutputOption),
 657 #endif
 658                   _has_method_handle_invokes(false),
 659                   _comp_arena(mtCompiler),
 660                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 661                   _env(ci_env),
 662                   _directive(directive),
 663                   _log(ci_env->log()),
 664                   _failure_reason(NULL),
 665                   _congraph(NULL),
 666 #ifndef PRODUCT
 667                   _printer(IdealGraphPrinter::printer()),
 668 #endif
 669                   _dead_node_list(comp_arena()),
 670                   _dead_node_count(0),
 671                   _node_arena(mtCompiler),
 672                   _old_arena(mtCompiler),
 673                   _mach_constant_base_node(NULL),
 674                   _Compile_types(mtCompiler),
 675                   _initial_gvn(NULL),
 676                   _for_igvn(NULL),
 677                   _warm_calls(NULL),
 678                   _late_inlines(comp_arena(), 2, 0, NULL),
 679                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 680                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 681                   _late_inlines_pos(0),
 682                   _number_of_mh_late_inlines(0),
 683                   _print_inlining_stream(NULL),
 684                   _print_inlining_list(NULL),
 685                   _print_inlining_idx(0),
 686                   _print_inlining_output(NULL),
 687                   _replay_inline_data(NULL),
 688                   _java_calls(0),
 689                   _inner_loops(0),
 690                   _interpreter_frame_size(0),
 691                   _node_bundling_limit(0),
 692                   _node_bundling_base(NULL),
 693                   _code_buffer("Compile::Fill_buffer"),
 694                   _scratch_const_size(-1),
 695                   _in_scratch_emit_size(false)
 696 #ifndef PRODUCT
 697                   , _in_dump_cnt(0)
 698 #endif
 699 {
 700   C = this;
 701 #ifndef PRODUCT
 702   if (_printer != NULL) {
 703     _printer->set_compile(this);
 704   }
 705 #endif
 706   CompileWrapper cw(this);
 707 
 708   if (CITimeVerbose) {
 709     tty->print(" ");
 710     target->holder()->name()->print();
 711     tty->print(".");
 712     target->print_short_name();
 713     tty->print("  ");
 714   }
 715   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 716   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 717 
 718 #ifndef PRODUCT
 719   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 720   if (!print_opto_assembly) {
 721     bool print_assembly = directive->PrintAssemblyOption;
 722     if (print_assembly && !Disassembler::can_decode()) {
 723       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 724       print_opto_assembly = true;
 725     }
 726   }
 727   set_print_assembly(print_opto_assembly);
 728   set_parsed_irreducible_loop(false);
 729 
 730   if (directive->ReplayInlineOption) {
 731     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 732   }
 733 #endif
 734   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 735   set_print_intrinsics(directive->PrintIntrinsicsOption);
 736   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 737 
 738   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 739     // Make sure the method being compiled gets its own MDO,
 740     // so we can at least track the decompile_count().
 741     // Need MDO to record RTM code generation state.
 742     method()->ensure_method_data();
 743   }
 744 
 745   Init(::AliasLevel);
 746 
 747 
 748   print_compile_messages();
 749 
 750   _ilt = InlineTree::build_inline_tree_root();
 751 
 752   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 753   assert(num_alias_types() >= AliasIdxRaw, "");
 754 
 755 #define MINIMUM_NODE_HASH  1023
 756   // Node list that Iterative GVN will start with
 757   Unique_Node_List for_igvn(comp_arena());
 758   set_for_igvn(&for_igvn);
 759 
 760   // GVN that will be run immediately on new nodes
 761   uint estimated_size = method()->code_size()*4+64;
 762   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 763   PhaseGVN gvn(node_arena(), estimated_size);
 764   set_initial_gvn(&gvn);
 765 
 766   print_inlining_init();
 767   { // Scope for timing the parser
 768     TracePhase tp("parse", &timers[_t_parser]);
 769 
 770     // Put top into the hash table ASAP.
 771     initial_gvn()->transform_no_reclaim(top());
 772 
 773     // Set up tf(), start(), and find a CallGenerator.
 774     CallGenerator* cg = NULL;
 775     if (is_osr_compilation()) {
 776       const TypeTuple *domain = StartOSRNode::osr_domain();
 777       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 778       init_tf(TypeFunc::make(domain, range));
 779       StartNode* s = new StartOSRNode(root(), domain);
 780       initial_gvn()->set_type_bottom(s);
 781       init_start(s);
 782       cg = CallGenerator::for_osr(method(), entry_bci());
 783     } else {
 784       // Normal case.
 785       init_tf(TypeFunc::make(method()));
 786       StartNode* s = new StartNode(root(), tf()->domain());
 787       initial_gvn()->set_type_bottom(s);
 788       init_start(s);
 789       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 790         // With java.lang.ref.reference.get() we must go through the
 791         // intrinsic - even when get() is the root
 792         // method of the compile - so that, if necessary, the value in
 793         // the referent field of the reference object gets recorded by
 794         // the pre-barrier code.
 795         cg = find_intrinsic(method(), false);
 796       }
 797       if (cg == NULL) {
 798         float past_uses = method()->interpreter_invocation_count();
 799         float expected_uses = past_uses;
 800         cg = CallGenerator::for_inline(method(), expected_uses);
 801       }
 802     }
 803     if (failing())  return;
 804     if (cg == NULL) {
 805       record_method_not_compilable("cannot parse method");
 806       return;
 807     }
 808     JVMState* jvms = build_start_state(start(), tf());
 809     if ((jvms = cg->generate(jvms)) == NULL) {
 810       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 811         record_method_not_compilable("method parse failed");
 812       }
 813       return;
 814     }
 815     GraphKit kit(jvms);
 816 
 817     if (!kit.stopped()) {
 818       // Accept return values, and transfer control we know not where.
 819       // This is done by a special, unique ReturnNode bound to root.
 820       return_values(kit.jvms());
 821     }
 822 
 823     if (kit.has_exceptions()) {
 824       // Any exceptions that escape from this call must be rethrown
 825       // to whatever caller is dynamically above us on the stack.
 826       // This is done by a special, unique RethrowNode bound to root.
 827       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 828     }
 829 
 830     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 831 
 832     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 833       inline_string_calls(true);
 834     }
 835 
 836     if (failing())  return;
 837 
 838     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 839 
 840     // Remove clutter produced by parsing.
 841     if (!failing()) {
 842       ResourceMark rm;
 843       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 844     }
 845   }
 846 
 847   // Note:  Large methods are capped off in do_one_bytecode().
 848   if (failing())  return;
 849 
 850   // After parsing, node notes are no longer automagic.
 851   // They must be propagated by register_new_node_with_optimizer(),
 852   // clone(), or the like.
 853   set_default_node_notes(NULL);
 854 
 855   for (;;) {
 856     int successes = Inline_Warm();
 857     if (failing())  return;
 858     if (successes == 0)  break;
 859   }
 860 
 861   // Drain the list.
 862   Finish_Warm();
 863 #ifndef PRODUCT
 864   if (_printer && _printer->should_print(1)) {
 865     _printer->print_inlining();
 866   }
 867 #endif
 868 
 869   if (failing())  return;
 870   NOT_PRODUCT( verify_graph_edges(); )
 871 
 872   // Now optimize
 873   Optimize();
 874   if (failing())  return;
 875   NOT_PRODUCT( verify_graph_edges(); )
 876 
 877 #ifndef PRODUCT
 878   if (PrintIdeal) {
 879     ttyLocker ttyl;  // keep the following output all in one block
 880     // This output goes directly to the tty, not the compiler log.
 881     // To enable tools to match it up with the compilation activity,
 882     // be sure to tag this tty output with the compile ID.
 883     if (xtty != NULL) {
 884       xtty->head("ideal compile_id='%d'%s", compile_id(),
 885                  is_osr_compilation()    ? " compile_kind='osr'" :
 886                  "");
 887     }
 888     root()->dump(9999);
 889     if (xtty != NULL) {
 890       xtty->tail("ideal");
 891     }
 892   }
 893 #endif
 894 
 895   NOT_PRODUCT( verify_barriers(); )
 896 
 897   // Dump compilation data to replay it.
 898   if (directive->DumpReplayOption) {
 899     env()->dump_replay_data(_compile_id);
 900   }
 901   if (directive->DumpInlineOption && (ilt() != NULL)) {
 902     env()->dump_inline_data(_compile_id);
 903   }
 904 
 905   // Now that we know the size of all the monitors we can add a fixed slot
 906   // for the original deopt pc.
 907 
 908   _orig_pc_slot =  fixed_slots();
 909   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 910   set_fixed_slots(next_slot);
 911 
 912   // Compute when to use implicit null checks. Used by matching trap based
 913   // nodes and NullCheck optimization.
 914   set_allowed_deopt_reasons();
 915 
 916   // Now generate code
 917   Code_Gen();
 918   if (failing())  return;
 919 
 920   // Check if we want to skip execution of all compiled code.
 921   {
 922 #ifndef PRODUCT
 923     if (OptoNoExecute) {
 924       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 925       return;
 926     }
 927 #endif
 928     TracePhase tp("install_code", &timers[_t_registerMethod]);
 929 
 930     if (is_osr_compilation()) {
 931       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 932       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 933     } else {
 934       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 935       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 936     }
 937 
 938     env()->register_method(_method, _entry_bci,
 939                            &_code_offsets,
 940                            _orig_pc_slot_offset_in_bytes,
 941                            code_buffer(),
 942                            frame_size_in_words(), _oop_map_set,
 943                            &_handler_table, &_inc_table,
 944                            compiler,
 945                            has_unsafe_access(),
 946                            SharedRuntime::is_wide_vector(max_vector_size()),
 947                            rtm_state()
 948                            );
 949 
 950     if (log() != NULL) // Print code cache state into compiler log
 951       log()->code_cache_state();
 952   }
 953 }
 954 
 955 //------------------------------Compile----------------------------------------
 956 // Compile a runtime stub
 957 Compile::Compile( ciEnv* ci_env,
 958                   TypeFunc_generator generator,
 959                   address stub_function,
 960                   const char *stub_name,
 961                   int is_fancy_jump,
 962                   bool pass_tls,
 963                   bool save_arg_registers,
 964                   bool return_pc,
 965                   DirectiveSet* directive)
 966   : Phase(Compiler),
 967     _compile_id(0),
 968     _save_argument_registers(save_arg_registers),
 969     _subsume_loads(true),
 970     _do_escape_analysis(false),
 971     _eliminate_boxing(false),
 972     _method(NULL),
 973     _entry_bci(InvocationEntryBci),
 974     _stub_function(stub_function),
 975     _stub_name(stub_name),
 976     _stub_entry_point(NULL),
 977     _max_node_limit(MaxNodeLimit),
 978     _orig_pc_slot(0),
 979     _orig_pc_slot_offset_in_bytes(0),
 980     _inlining_progress(false),
 981     _inlining_incrementally(false),
 982     _has_reserved_stack_access(false),
 983 #ifndef PRODUCT
 984     _trace_opto_output(directive->TraceOptoOutputOption),
 985 #endif
 986     _has_method_handle_invokes(false),
 987     _comp_arena(mtCompiler),
 988     _env(ci_env),
 989     _directive(directive),
 990     _log(ci_env->log()),
 991     _failure_reason(NULL),
 992     _congraph(NULL),
 993 #ifndef PRODUCT
 994     _printer(NULL),
 995 #endif
 996     _dead_node_list(comp_arena()),
 997     _dead_node_count(0),
 998     _node_arena(mtCompiler),
 999     _old_arena(mtCompiler),
1000     _mach_constant_base_node(NULL),
1001     _Compile_types(mtCompiler),
1002     _initial_gvn(NULL),
1003     _for_igvn(NULL),
1004     _warm_calls(NULL),
1005     _number_of_mh_late_inlines(0),
1006     _print_inlining_stream(NULL),
1007     _print_inlining_list(NULL),
1008     _print_inlining_idx(0),
1009     _print_inlining_output(NULL),
1010     _replay_inline_data(NULL),
1011     _java_calls(0),
1012     _inner_loops(0),
1013     _interpreter_frame_size(0),
1014     _node_bundling_limit(0),
1015     _node_bundling_base(NULL),
1016     _code_buffer("Compile::Fill_buffer"),
1017 #ifndef PRODUCT
1018     _in_dump_cnt(0),
1019 #endif
1020     _allowed_reasons(0) {
1021   C = this;
1022 
1023   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1024   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1025 
1026 #ifndef PRODUCT
1027   set_print_assembly(PrintFrameConverterAssembly);
1028   set_parsed_irreducible_loop(false);
1029 #endif
1030   set_has_irreducible_loop(false); // no loops
1031 
1032   CompileWrapper cw(this);
1033   Init(/*AliasLevel=*/ 0);
1034   init_tf((*generator)());
1035 
1036   {
1037     // The following is a dummy for the sake of GraphKit::gen_stub
1038     Unique_Node_List for_igvn(comp_arena());
1039     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1040     PhaseGVN gvn(Thread::current()->resource_area(),255);
1041     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1042     gvn.transform_no_reclaim(top());
1043 
1044     GraphKit kit;
1045     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1046   }
1047 
1048   NOT_PRODUCT( verify_graph_edges(); )
1049   Code_Gen();
1050   if (failing())  return;
1051 
1052 
1053   // Entry point will be accessed using compile->stub_entry_point();
1054   if (code_buffer() == NULL) {
1055     Matcher::soft_match_failure();
1056   } else {
1057     if (PrintAssembly && (WizardMode || Verbose))
1058       tty->print_cr("### Stub::%s", stub_name);
1059 
1060     if (!failing()) {
1061       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1062 
1063       // Make the NMethod
1064       // For now we mark the frame as never safe for profile stackwalking
1065       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1066                                                       code_buffer(),
1067                                                       CodeOffsets::frame_never_safe,
1068                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1069                                                       frame_size_in_words(),
1070                                                       _oop_map_set,
1071                                                       save_arg_registers);
1072       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1073 
1074       _stub_entry_point = rs->entry_point();
1075     }
1076   }
1077 }
1078 
1079 //------------------------------Init-------------------------------------------
1080 // Prepare for a single compilation
1081 void Compile::Init(int aliaslevel) {
1082   _unique  = 0;
1083   _regalloc = NULL;
1084 
1085   _tf      = NULL;  // filled in later
1086   _top     = NULL;  // cached later
1087   _matcher = NULL;  // filled in later
1088   _cfg     = NULL;  // filled in later
1089 
1090   set_24_bit_selection_and_mode(Use24BitFP, false);
1091 
1092   _node_note_array = NULL;
1093   _default_node_notes = NULL;
1094   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1095 
1096   _immutable_memory = NULL; // filled in at first inquiry
1097 
1098   // Globally visible Nodes
1099   // First set TOP to NULL to give safe behavior during creation of RootNode
1100   set_cached_top_node(NULL);
1101   set_root(new RootNode());
1102   // Now that you have a Root to point to, create the real TOP
1103   set_cached_top_node( new ConNode(Type::TOP) );
1104   set_recent_alloc(NULL, NULL);
1105 
1106   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1107   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1108   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1109   env()->set_dependencies(new Dependencies(env()));
1110 
1111   _fixed_slots = 0;
1112   set_has_split_ifs(false);
1113   set_has_loops(has_method() && method()->has_loops()); // first approximation
1114   set_has_stringbuilder(false);
1115   set_has_boxed_value(false);
1116   _trap_can_recompile = false;  // no traps emitted yet
1117   _major_progress = true; // start out assuming good things will happen
1118   set_has_unsafe_access(false);
1119   set_max_vector_size(0);
1120   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1121   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1122   set_decompile_count(0);
1123 
1124   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1125   set_num_loop_opts(LoopOptsCount);
1126   set_do_inlining(Inline);
1127   set_max_inline_size(MaxInlineSize);
1128   set_freq_inline_size(FreqInlineSize);
1129   set_do_scheduling(OptoScheduling);
1130   set_do_count_invocations(false);
1131   set_do_method_data_update(false);
1132 
1133   set_do_vector_loop(false);
1134 
1135   if (AllowVectorizeOnDemand) {
1136     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1137       set_do_vector_loop(true);
1138       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1139     } else if (has_method() && method()->name() != 0 &&
1140                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1141       set_do_vector_loop(true);
1142     }
1143   }
1144   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1145   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1146 
1147   set_age_code(has_method() && method()->profile_aging());
1148   set_rtm_state(NoRTM); // No RTM lock eliding by default
1149   _max_node_limit = _directive->MaxNodeLimitOption;
1150 
1151 #if INCLUDE_RTM_OPT
1152   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1153     int rtm_state = method()->method_data()->rtm_state();
1154     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1155       // Don't generate RTM lock eliding code.
1156       set_rtm_state(NoRTM);
1157     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1158       // Generate RTM lock eliding code without abort ratio calculation code.
1159       set_rtm_state(UseRTM);
1160     } else if (UseRTMDeopt) {
1161       // Generate RTM lock eliding code and include abort ratio calculation
1162       // code if UseRTMDeopt is on.
1163       set_rtm_state(ProfileRTM);
1164     }
1165   }
1166 #endif
1167   if (debug_info()->recording_non_safepoints()) {
1168     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1169                         (comp_arena(), 8, 0, NULL));
1170     set_default_node_notes(Node_Notes::make(this));
1171   }
1172 
1173   // // -- Initialize types before each compile --
1174   // // Update cached type information
1175   // if( _method && _method->constants() )
1176   //   Type::update_loaded_types(_method, _method->constants());
1177 
1178   // Init alias_type map.
1179   if (!_do_escape_analysis && aliaslevel == 3)
1180     aliaslevel = 2;  // No unique types without escape analysis
1181   _AliasLevel = aliaslevel;
1182   const int grow_ats = 16;
1183   _max_alias_types = grow_ats;
1184   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1185   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1186   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1187   {
1188     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1189   }
1190   // Initialize the first few types.
1191   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1192   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1193   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1194   _num_alias_types = AliasIdxRaw+1;
1195   // Zero out the alias type cache.
1196   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1197   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1198   probe_alias_cache(NULL)->_index = AliasIdxTop;
1199 
1200   _intrinsics = NULL;
1201   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1202   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1203   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1204   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1205   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1206   register_library_intrinsics();
1207 }
1208 
1209 //---------------------------init_start----------------------------------------
1210 // Install the StartNode on this compile object.
1211 void Compile::init_start(StartNode* s) {
1212   if (failing())
1213     return; // already failing
1214   assert(s == start(), "");
1215 }
1216 
1217 /**
1218  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1219  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1220  * the ideal graph.
1221  */
1222 StartNode* Compile::start() const {
1223   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1224   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1225     Node* start = root()->fast_out(i);
1226     if (start->is_Start()) {
1227       return start->as_Start();
1228     }
1229   }
1230   fatal("Did not find Start node!");
1231   return NULL;
1232 }
1233 
1234 //-------------------------------immutable_memory-------------------------------------
1235 // Access immutable memory
1236 Node* Compile::immutable_memory() {
1237   if (_immutable_memory != NULL) {
1238     return _immutable_memory;
1239   }
1240   StartNode* s = start();
1241   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1242     Node *p = s->fast_out(i);
1243     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1244       _immutable_memory = p;
1245       return _immutable_memory;
1246     }
1247   }
1248   ShouldNotReachHere();
1249   return NULL;
1250 }
1251 
1252 //----------------------set_cached_top_node------------------------------------
1253 // Install the cached top node, and make sure Node::is_top works correctly.
1254 void Compile::set_cached_top_node(Node* tn) {
1255   if (tn != NULL)  verify_top(tn);
1256   Node* old_top = _top;
1257   _top = tn;
1258   // Calling Node::setup_is_top allows the nodes the chance to adjust
1259   // their _out arrays.
1260   if (_top != NULL)     _top->setup_is_top();
1261   if (old_top != NULL)  old_top->setup_is_top();
1262   assert(_top == NULL || top()->is_top(), "");
1263 }
1264 
1265 #ifdef ASSERT
1266 uint Compile::count_live_nodes_by_graph_walk() {
1267   Unique_Node_List useful(comp_arena());
1268   // Get useful node list by walking the graph.
1269   identify_useful_nodes(useful);
1270   return useful.size();
1271 }
1272 
1273 void Compile::print_missing_nodes() {
1274 
1275   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1276   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1277     return;
1278   }
1279 
1280   // This is an expensive function. It is executed only when the user
1281   // specifies VerifyIdealNodeCount option or otherwise knows the
1282   // additional work that needs to be done to identify reachable nodes
1283   // by walking the flow graph and find the missing ones using
1284   // _dead_node_list.
1285 
1286   Unique_Node_List useful(comp_arena());
1287   // Get useful node list by walking the graph.
1288   identify_useful_nodes(useful);
1289 
1290   uint l_nodes = C->live_nodes();
1291   uint l_nodes_by_walk = useful.size();
1292 
1293   if (l_nodes != l_nodes_by_walk) {
1294     if (_log != NULL) {
1295       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1296       _log->stamp();
1297       _log->end_head();
1298     }
1299     VectorSet& useful_member_set = useful.member_set();
1300     int last_idx = l_nodes_by_walk;
1301     for (int i = 0; i < last_idx; i++) {
1302       if (useful_member_set.test(i)) {
1303         if (_dead_node_list.test(i)) {
1304           if (_log != NULL) {
1305             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1306           }
1307           if (PrintIdealNodeCount) {
1308             // Print the log message to tty
1309               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1310               useful.at(i)->dump();
1311           }
1312         }
1313       }
1314       else if (! _dead_node_list.test(i)) {
1315         if (_log != NULL) {
1316           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1317         }
1318         if (PrintIdealNodeCount) {
1319           // Print the log message to tty
1320           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1321         }
1322       }
1323     }
1324     if (_log != NULL) {
1325       _log->tail("mismatched_nodes");
1326     }
1327   }
1328 }
1329 void Compile::record_modified_node(Node* n) {
1330   if (_modified_nodes != NULL && !_inlining_incrementally &&
1331       n->outcnt() != 0 && !n->is_Con()) {
1332     _modified_nodes->push(n);
1333   }
1334 }
1335 
1336 void Compile::remove_modified_node(Node* n) {
1337   if (_modified_nodes != NULL) {
1338     _modified_nodes->remove(n);
1339   }
1340 }
1341 #endif
1342 
1343 #ifndef PRODUCT
1344 void Compile::verify_top(Node* tn) const {
1345   if (tn != NULL) {
1346     assert(tn->is_Con(), "top node must be a constant");
1347     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1348     assert(tn->in(0) != NULL, "must have live top node");
1349   }
1350 }
1351 #endif
1352 
1353 
1354 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1355 
1356 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1357   guarantee(arr != NULL, "");
1358   int num_blocks = arr->length();
1359   if (grow_by < num_blocks)  grow_by = num_blocks;
1360   int num_notes = grow_by * _node_notes_block_size;
1361   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1362   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1363   while (num_notes > 0) {
1364     arr->append(notes);
1365     notes     += _node_notes_block_size;
1366     num_notes -= _node_notes_block_size;
1367   }
1368   assert(num_notes == 0, "exact multiple, please");
1369 }
1370 
1371 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1372   if (source == NULL || dest == NULL)  return false;
1373 
1374   if (dest->is_Con())
1375     return false;               // Do not push debug info onto constants.
1376 
1377 #ifdef ASSERT
1378   // Leave a bread crumb trail pointing to the original node:
1379   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1380     dest->set_debug_orig(source);
1381   }
1382 #endif
1383 
1384   if (node_note_array() == NULL)
1385     return false;               // Not collecting any notes now.
1386 
1387   // This is a copy onto a pre-existing node, which may already have notes.
1388   // If both nodes have notes, do not overwrite any pre-existing notes.
1389   Node_Notes* source_notes = node_notes_at(source->_idx);
1390   if (source_notes == NULL || source_notes->is_clear())  return false;
1391   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1392   if (dest_notes == NULL || dest_notes->is_clear()) {
1393     return set_node_notes_at(dest->_idx, source_notes);
1394   }
1395 
1396   Node_Notes merged_notes = (*source_notes);
1397   // The order of operations here ensures that dest notes will win...
1398   merged_notes.update_from(dest_notes);
1399   return set_node_notes_at(dest->_idx, &merged_notes);
1400 }
1401 
1402 
1403 //--------------------------allow_range_check_smearing-------------------------
1404 // Gating condition for coalescing similar range checks.
1405 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1406 // single covering check that is at least as strong as any of them.
1407 // If the optimization succeeds, the simplified (strengthened) range check
1408 // will always succeed.  If it fails, we will deopt, and then give up
1409 // on the optimization.
1410 bool Compile::allow_range_check_smearing() const {
1411   // If this method has already thrown a range-check,
1412   // assume it was because we already tried range smearing
1413   // and it failed.
1414   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1415   return !already_trapped;
1416 }
1417 
1418 
1419 //------------------------------flatten_alias_type-----------------------------
1420 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1421   int offset = tj->offset();
1422   TypePtr::PTR ptr = tj->ptr();
1423 
1424   // Known instance (scalarizable allocation) alias only with itself.
1425   bool is_known_inst = tj->isa_oopptr() != NULL &&
1426                        tj->is_oopptr()->is_known_instance();
1427 
1428   // Process weird unsafe references.
1429   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1430     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1431     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1432     tj = TypeOopPtr::BOTTOM;
1433     ptr = tj->ptr();
1434     offset = tj->offset();
1435   }
1436 
1437   // Array pointers need some flattening
1438   const TypeAryPtr *ta = tj->isa_aryptr();
1439   if (ta && ta->is_stable()) {
1440     // Erase stability property for alias analysis.
1441     tj = ta = ta->cast_to_stable(false);
1442   }
1443   if( ta && is_known_inst ) {
1444     if ( offset != Type::OffsetBot &&
1445          offset > arrayOopDesc::length_offset_in_bytes() ) {
1446       offset = Type::OffsetBot; // Flatten constant access into array body only
1447       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1448     }
1449   } else if( ta && _AliasLevel >= 2 ) {
1450     // For arrays indexed by constant indices, we flatten the alias
1451     // space to include all of the array body.  Only the header, klass
1452     // and array length can be accessed un-aliased.
1453     if( offset != Type::OffsetBot ) {
1454       if( ta->const_oop() ) { // MethodData* or Method*
1455         offset = Type::OffsetBot;   // Flatten constant access into array body
1456         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1457       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1458         // range is OK as-is.
1459         tj = ta = TypeAryPtr::RANGE;
1460       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1461         tj = TypeInstPtr::KLASS; // all klass loads look alike
1462         ta = TypeAryPtr::RANGE; // generic ignored junk
1463         ptr = TypePtr::BotPTR;
1464       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1465         tj = TypeInstPtr::MARK;
1466         ta = TypeAryPtr::RANGE; // generic ignored junk
1467         ptr = TypePtr::BotPTR;
1468       } else {                  // Random constant offset into array body
1469         offset = Type::OffsetBot;   // Flatten constant access into array body
1470         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1471       }
1472     }
1473     // Arrays of fixed size alias with arrays of unknown size.
1474     if (ta->size() != TypeInt::POS) {
1475       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1476       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1477     }
1478     // Arrays of known objects become arrays of unknown objects.
1479     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1480       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1481       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1482     }
1483     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1484       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1485       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1486     }
1487     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1488     // cannot be distinguished by bytecode alone.
1489     if (ta->elem() == TypeInt::BOOL) {
1490       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1491       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1492       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1493     }
1494     // During the 2nd round of IterGVN, NotNull castings are removed.
1495     // Make sure the Bottom and NotNull variants alias the same.
1496     // Also, make sure exact and non-exact variants alias the same.
1497     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1498       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1499     }
1500   }
1501 
1502   // Oop pointers need some flattening
1503   const TypeInstPtr *to = tj->isa_instptr();
1504   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1505     ciInstanceKlass *k = to->klass()->as_instance_klass();
1506     if( ptr == TypePtr::Constant ) {
1507       if (to->klass() != ciEnv::current()->Class_klass() ||
1508           offset < k->size_helper() * wordSize) {
1509         // No constant oop pointers (such as Strings); they alias with
1510         // unknown strings.
1511         assert(!is_known_inst, "not scalarizable allocation");
1512         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1513       }
1514     } else if( is_known_inst ) {
1515       tj = to; // Keep NotNull and klass_is_exact for instance type
1516     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1517       // During the 2nd round of IterGVN, NotNull castings are removed.
1518       // Make sure the Bottom and NotNull variants alias the same.
1519       // Also, make sure exact and non-exact variants alias the same.
1520       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1521     }
1522     if (to->speculative() != NULL) {
1523       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1524     }
1525     // Canonicalize the holder of this field
1526     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1527       // First handle header references such as a LoadKlassNode, even if the
1528       // object's klass is unloaded at compile time (4965979).
1529       if (!is_known_inst) { // Do it only for non-instance types
1530         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1531       }
1532     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1533       // Static fields are in the space above the normal instance
1534       // fields in the java.lang.Class instance.
1535       if (to->klass() != ciEnv::current()->Class_klass()) {
1536         to = NULL;
1537         tj = TypeOopPtr::BOTTOM;
1538         offset = tj->offset();
1539       }
1540     } else {
1541       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1542       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1543         if( is_known_inst ) {
1544           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1545         } else {
1546           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1547         }
1548       }
1549     }
1550   }
1551 
1552   // Klass pointers to object array klasses need some flattening
1553   const TypeKlassPtr *tk = tj->isa_klassptr();
1554   if( tk ) {
1555     // If we are referencing a field within a Klass, we need
1556     // to assume the worst case of an Object.  Both exact and
1557     // inexact types must flatten to the same alias class so
1558     // use NotNull as the PTR.
1559     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1560 
1561       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1562                                    TypeKlassPtr::OBJECT->klass(),
1563                                    offset);
1564     }
1565 
1566     ciKlass* klass = tk->klass();
1567     if( klass->is_obj_array_klass() ) {
1568       ciKlass* k = TypeAryPtr::OOPS->klass();
1569       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1570         k = TypeInstPtr::BOTTOM->klass();
1571       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1572     }
1573 
1574     // Check for precise loads from the primary supertype array and force them
1575     // to the supertype cache alias index.  Check for generic array loads from
1576     // the primary supertype array and also force them to the supertype cache
1577     // alias index.  Since the same load can reach both, we need to merge
1578     // these 2 disparate memories into the same alias class.  Since the
1579     // primary supertype array is read-only, there's no chance of confusion
1580     // where we bypass an array load and an array store.
1581     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1582     if (offset == Type::OffsetBot ||
1583         (offset >= primary_supers_offset &&
1584          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1585         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1586       offset = in_bytes(Klass::secondary_super_cache_offset());
1587       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1588     }
1589   }
1590 
1591   // Flatten all Raw pointers together.
1592   if (tj->base() == Type::RawPtr)
1593     tj = TypeRawPtr::BOTTOM;
1594 
1595   if (tj->base() == Type::AnyPtr)
1596     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1597 
1598   // Flatten all to bottom for now
1599   switch( _AliasLevel ) {
1600   case 0:
1601     tj = TypePtr::BOTTOM;
1602     break;
1603   case 1:                       // Flatten to: oop, static, field or array
1604     switch (tj->base()) {
1605     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1606     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1607     case Type::AryPtr:   // do not distinguish arrays at all
1608     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1609     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1610     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1611     default: ShouldNotReachHere();
1612     }
1613     break;
1614   case 2:                       // No collapsing at level 2; keep all splits
1615   case 3:                       // No collapsing at level 3; keep all splits
1616     break;
1617   default:
1618     Unimplemented();
1619   }
1620 
1621   offset = tj->offset();
1622   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1623 
1624   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1625           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1626           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1627           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1628           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1629           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1630           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1631           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1632   assert( tj->ptr() != TypePtr::TopPTR &&
1633           tj->ptr() != TypePtr::AnyNull &&
1634           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1635 //    assert( tj->ptr() != TypePtr::Constant ||
1636 //            tj->base() == Type::RawPtr ||
1637 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1638 
1639   return tj;
1640 }
1641 
1642 void Compile::AliasType::Init(int i, const TypePtr* at) {
1643   _index = i;
1644   _adr_type = at;
1645   _field = NULL;
1646   _element = NULL;
1647   _is_rewritable = true; // default
1648   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1649   if (atoop != NULL && atoop->is_known_instance()) {
1650     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1651     _general_index = Compile::current()->get_alias_index(gt);
1652   } else {
1653     _general_index = 0;
1654   }
1655 }
1656 
1657 BasicType Compile::AliasType::basic_type() const {
1658   if (element() != NULL) {
1659     const Type* element = adr_type()->is_aryptr()->elem();
1660     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1661   } if (field() != NULL) {
1662     return field()->layout_type();
1663   } else {
1664     return T_ILLEGAL; // unknown
1665   }
1666 }
1667 
1668 //---------------------------------print_on------------------------------------
1669 #ifndef PRODUCT
1670 void Compile::AliasType::print_on(outputStream* st) {
1671   if (index() < 10)
1672         st->print("@ <%d> ", index());
1673   else  st->print("@ <%d>",  index());
1674   st->print(is_rewritable() ? "   " : " RO");
1675   int offset = adr_type()->offset();
1676   if (offset == Type::OffsetBot)
1677         st->print(" +any");
1678   else  st->print(" +%-3d", offset);
1679   st->print(" in ");
1680   adr_type()->dump_on(st);
1681   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1682   if (field() != NULL && tjp) {
1683     if (tjp->klass()  != field()->holder() ||
1684         tjp->offset() != field()->offset_in_bytes()) {
1685       st->print(" != ");
1686       field()->print();
1687       st->print(" ***");
1688     }
1689   }
1690 }
1691 
1692 void print_alias_types() {
1693   Compile* C = Compile::current();
1694   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1695   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1696     C->alias_type(idx)->print_on(tty);
1697     tty->cr();
1698   }
1699 }
1700 #endif
1701 
1702 
1703 //----------------------------probe_alias_cache--------------------------------
1704 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1705   intptr_t key = (intptr_t) adr_type;
1706   key ^= key >> logAliasCacheSize;
1707   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1708 }
1709 
1710 
1711 //-----------------------------grow_alias_types--------------------------------
1712 void Compile::grow_alias_types() {
1713   const int old_ats  = _max_alias_types; // how many before?
1714   const int new_ats  = old_ats;          // how many more?
1715   const int grow_ats = old_ats+new_ats;  // how many now?
1716   _max_alias_types = grow_ats;
1717   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1718   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1719   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1720   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1721 }
1722 
1723 
1724 //--------------------------------find_alias_type------------------------------
1725 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1726   if (_AliasLevel == 0)
1727     return alias_type(AliasIdxBot);
1728 
1729   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1730   if (ace->_adr_type == adr_type) {
1731     return alias_type(ace->_index);
1732   }
1733 
1734   // Handle special cases.
1735   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1736   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1737 
1738   // Do it the slow way.
1739   const TypePtr* flat = flatten_alias_type(adr_type);
1740 
1741 #ifdef ASSERT
1742   {
1743     ResourceMark rm;
1744     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1745            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1746     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1747            Type::str(adr_type));
1748     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1749       const TypeOopPtr* foop = flat->is_oopptr();
1750       // Scalarizable allocations have exact klass always.
1751       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1752       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1753       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1754              Type::str(foop), Type::str(xoop));
1755     }
1756   }
1757 #endif
1758 
1759   int idx = AliasIdxTop;
1760   for (int i = 0; i < num_alias_types(); i++) {
1761     if (alias_type(i)->adr_type() == flat) {
1762       idx = i;
1763       break;
1764     }
1765   }
1766 
1767   if (idx == AliasIdxTop) {
1768     if (no_create)  return NULL;
1769     // Grow the array if necessary.
1770     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1771     // Add a new alias type.
1772     idx = _num_alias_types++;
1773     _alias_types[idx]->Init(idx, flat);
1774     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1775     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1776     if (flat->isa_instptr()) {
1777       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1778           && flat->is_instptr()->klass() == env()->Class_klass())
1779         alias_type(idx)->set_rewritable(false);
1780     }
1781     if (flat->isa_aryptr()) {
1782 #ifdef ASSERT
1783       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1784       // (T_BYTE has the weakest alignment and size restrictions...)
1785       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1786 #endif
1787       if (flat->offset() == TypePtr::OffsetBot) {
1788         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1789       }
1790     }
1791     if (flat->isa_klassptr()) {
1792       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1793         alias_type(idx)->set_rewritable(false);
1794       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1795         alias_type(idx)->set_rewritable(false);
1796       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1797         alias_type(idx)->set_rewritable(false);
1798       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1799         alias_type(idx)->set_rewritable(false);
1800     }
1801     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1802     // but the base pointer type is not distinctive enough to identify
1803     // references into JavaThread.)
1804 
1805     // Check for final fields.
1806     const TypeInstPtr* tinst = flat->isa_instptr();
1807     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1808       ciField* field;
1809       if (tinst->const_oop() != NULL &&
1810           tinst->klass() == ciEnv::current()->Class_klass() &&
1811           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1812         // static field
1813         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1814         field = k->get_field_by_offset(tinst->offset(), true);
1815       } else {
1816         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1817         field = k->get_field_by_offset(tinst->offset(), false);
1818       }
1819       assert(field == NULL ||
1820              original_field == NULL ||
1821              (field->holder() == original_field->holder() &&
1822               field->offset() == original_field->offset() &&
1823               field->is_static() == original_field->is_static()), "wrong field?");
1824       // Set field() and is_rewritable() attributes.
1825       if (field != NULL)  alias_type(idx)->set_field(field);
1826     }
1827   }
1828 
1829   // Fill the cache for next time.
1830   ace->_adr_type = adr_type;
1831   ace->_index    = idx;
1832   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1833 
1834   // Might as well try to fill the cache for the flattened version, too.
1835   AliasCacheEntry* face = probe_alias_cache(flat);
1836   if (face->_adr_type == NULL) {
1837     face->_adr_type = flat;
1838     face->_index    = idx;
1839     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1840   }
1841 
1842   return alias_type(idx);
1843 }
1844 
1845 
1846 Compile::AliasType* Compile::alias_type(ciField* field) {
1847   const TypeOopPtr* t;
1848   if (field->is_static())
1849     t = TypeInstPtr::make(field->holder()->java_mirror());
1850   else
1851     t = TypeOopPtr::make_from_klass_raw(field->holder());
1852   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1853   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1854   return atp;
1855 }
1856 
1857 
1858 //------------------------------have_alias_type--------------------------------
1859 bool Compile::have_alias_type(const TypePtr* adr_type) {
1860   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1861   if (ace->_adr_type == adr_type) {
1862     return true;
1863   }
1864 
1865   // Handle special cases.
1866   if (adr_type == NULL)             return true;
1867   if (adr_type == TypePtr::BOTTOM)  return true;
1868 
1869   return find_alias_type(adr_type, true, NULL) != NULL;
1870 }
1871 
1872 //-----------------------------must_alias--------------------------------------
1873 // True if all values of the given address type are in the given alias category.
1874 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1875   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1876   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1877   if (alias_idx == AliasIdxTop)         return false; // the empty category
1878   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1879 
1880   // the only remaining possible overlap is identity
1881   int adr_idx = get_alias_index(adr_type);
1882   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1883   assert(adr_idx == alias_idx ||
1884          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1885           && adr_type                       != TypeOopPtr::BOTTOM),
1886          "should not be testing for overlap with an unsafe pointer");
1887   return adr_idx == alias_idx;
1888 }
1889 
1890 //------------------------------can_alias--------------------------------------
1891 // True if any values of the given address type are in the given alias category.
1892 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1893   if (alias_idx == AliasIdxTop)         return false; // the empty category
1894   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1895   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1896   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1897 
1898   // the only remaining possible overlap is identity
1899   int adr_idx = get_alias_index(adr_type);
1900   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1901   return adr_idx == alias_idx;
1902 }
1903 
1904 
1905 
1906 //---------------------------pop_warm_call-------------------------------------
1907 WarmCallInfo* Compile::pop_warm_call() {
1908   WarmCallInfo* wci = _warm_calls;
1909   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1910   return wci;
1911 }
1912 
1913 //----------------------------Inline_Warm--------------------------------------
1914 int Compile::Inline_Warm() {
1915   // If there is room, try to inline some more warm call sites.
1916   // %%% Do a graph index compaction pass when we think we're out of space?
1917   if (!InlineWarmCalls)  return 0;
1918 
1919   int calls_made_hot = 0;
1920   int room_to_grow   = NodeCountInliningCutoff - unique();
1921   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1922   int amount_grown   = 0;
1923   WarmCallInfo* call;
1924   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1925     int est_size = (int)call->size();
1926     if (est_size > (room_to_grow - amount_grown)) {
1927       // This one won't fit anyway.  Get rid of it.
1928       call->make_cold();
1929       continue;
1930     }
1931     call->make_hot();
1932     calls_made_hot++;
1933     amount_grown   += est_size;
1934     amount_to_grow -= est_size;
1935   }
1936 
1937   if (calls_made_hot > 0)  set_major_progress();
1938   return calls_made_hot;
1939 }
1940 
1941 
1942 //----------------------------Finish_Warm--------------------------------------
1943 void Compile::Finish_Warm() {
1944   if (!InlineWarmCalls)  return;
1945   if (failing())  return;
1946   if (warm_calls() == NULL)  return;
1947 
1948   // Clean up loose ends, if we are out of space for inlining.
1949   WarmCallInfo* call;
1950   while ((call = pop_warm_call()) != NULL) {
1951     call->make_cold();
1952   }
1953 }
1954 
1955 //---------------------cleanup_loop_predicates-----------------------
1956 // Remove the opaque nodes that protect the predicates so that all unused
1957 // checks and uncommon_traps will be eliminated from the ideal graph
1958 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1959   if (predicate_count()==0) return;
1960   for (int i = predicate_count(); i > 0; i--) {
1961     Node * n = predicate_opaque1_node(i-1);
1962     assert(n->Opcode() == Op_Opaque1, "must be");
1963     igvn.replace_node(n, n->in(1));
1964   }
1965   assert(predicate_count()==0, "should be clean!");
1966 }
1967 
1968 void Compile::add_range_check_cast(Node* n) {
1969   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1970   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1971   _range_check_casts->append(n);
1972 }
1973 
1974 // Remove all range check dependent CastIINodes.
1975 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1976   for (int i = range_check_cast_count(); i > 0; i--) {
1977     Node* cast = range_check_cast_node(i-1);
1978     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1979     igvn.replace_node(cast, cast->in(1));
1980   }
1981   assert(range_check_cast_count() == 0, "should be empty");
1982 }
1983 
1984 void Compile::add_opaque4_node(Node* n) {
1985   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
1986   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
1987   _opaque4_nodes->append(n);
1988 }
1989 
1990 // Remove all Opaque4 nodes.
1991 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
1992   for (int i = opaque4_count(); i > 0; i--) {
1993     Node* opaq = opaque4_node(i-1);
1994     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
1995     igvn.replace_node(opaq, opaq->in(2));
1996   }
1997   assert(opaque4_count() == 0, "should be empty");
1998 }
1999 
2000 // StringOpts and late inlining of string methods
2001 void Compile::inline_string_calls(bool parse_time) {
2002   {
2003     // remove useless nodes to make the usage analysis simpler
2004     ResourceMark rm;
2005     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2006   }
2007 
2008   {
2009     ResourceMark rm;
2010     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2011     PhaseStringOpts pso(initial_gvn(), for_igvn());
2012     print_method(PHASE_AFTER_STRINGOPTS, 3);
2013   }
2014 
2015   // now inline anything that we skipped the first time around
2016   if (!parse_time) {
2017     _late_inlines_pos = _late_inlines.length();
2018   }
2019 
2020   while (_string_late_inlines.length() > 0) {
2021     CallGenerator* cg = _string_late_inlines.pop();
2022     cg->do_late_inline();
2023     if (failing())  return;
2024   }
2025   _string_late_inlines.trunc_to(0);
2026 }
2027 
2028 // Late inlining of boxing methods
2029 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2030   if (_boxing_late_inlines.length() > 0) {
2031     assert(has_boxed_value(), "inconsistent");
2032 
2033     PhaseGVN* gvn = initial_gvn();
2034     set_inlining_incrementally(true);
2035 
2036     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2037     for_igvn()->clear();
2038     gvn->replace_with(&igvn);
2039 
2040     _late_inlines_pos = _late_inlines.length();
2041 
2042     while (_boxing_late_inlines.length() > 0) {
2043       CallGenerator* cg = _boxing_late_inlines.pop();
2044       cg->do_late_inline();
2045       if (failing())  return;
2046     }
2047     _boxing_late_inlines.trunc_to(0);
2048 
2049     {
2050       ResourceMark rm;
2051       PhaseRemoveUseless pru(gvn, for_igvn());
2052     }
2053 
2054     igvn = PhaseIterGVN(gvn);
2055     igvn.optimize();
2056 
2057     set_inlining_progress(false);
2058     set_inlining_incrementally(false);
2059   }
2060 }
2061 
2062 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2063   assert(IncrementalInline, "incremental inlining should be on");
2064   PhaseGVN* gvn = initial_gvn();
2065 
2066   set_inlining_progress(false);
2067   for_igvn()->clear();
2068   gvn->replace_with(&igvn);
2069 
2070   {
2071     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2072     int i = 0;
2073     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2074       CallGenerator* cg = _late_inlines.at(i);
2075       _late_inlines_pos = i+1;
2076       cg->do_late_inline();
2077       if (failing())  return;
2078     }
2079     int j = 0;
2080     for (; i < _late_inlines.length(); i++, j++) {
2081       _late_inlines.at_put(j, _late_inlines.at(i));
2082     }
2083     _late_inlines.trunc_to(j);
2084   }
2085 
2086   {
2087     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2088     ResourceMark rm;
2089     PhaseRemoveUseless pru(gvn, for_igvn());
2090   }
2091 
2092   {
2093     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2094     igvn = PhaseIterGVN(gvn);
2095   }
2096 }
2097 
2098 // Perform incremental inlining until bound on number of live nodes is reached
2099 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2100   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2101 
2102   PhaseGVN* gvn = initial_gvn();
2103 
2104   set_inlining_incrementally(true);
2105   set_inlining_progress(true);
2106   uint low_live_nodes = 0;
2107 
2108   while(inlining_progress() && _late_inlines.length() > 0) {
2109 
2110     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2111       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2112         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2113         // PhaseIdealLoop is expensive so we only try it once we are
2114         // out of live nodes and we only try it again if the previous
2115         // helped got the number of nodes down significantly
2116         PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2117         if (failing())  return;
2118         low_live_nodes = live_nodes();
2119         _major_progress = true;
2120       }
2121 
2122       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2123         break;
2124       }
2125     }
2126 
2127     inline_incrementally_one(igvn);
2128 
2129     if (failing())  return;
2130 
2131     {
2132       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2133       igvn.optimize();
2134     }
2135 
2136     if (failing())  return;
2137   }
2138 
2139   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2140 
2141   if (_string_late_inlines.length() > 0) {
2142     assert(has_stringbuilder(), "inconsistent");
2143     for_igvn()->clear();
2144     initial_gvn()->replace_with(&igvn);
2145 
2146     inline_string_calls(false);
2147 
2148     if (failing())  return;
2149 
2150     {
2151       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2152       ResourceMark rm;
2153       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2154     }
2155 
2156     {
2157       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2158       igvn = PhaseIterGVN(gvn);
2159       igvn.optimize();
2160     }
2161   }
2162 
2163   set_inlining_incrementally(false);
2164 }
2165 
2166 
2167 bool Compile::optimize_loops(int& loop_opts_cnt, PhaseIterGVN& igvn, LoopOptsMode mode) {
2168   if(loop_opts_cnt > 0) {
2169     debug_only( int cnt = 0; );
2170     while(major_progress() && (loop_opts_cnt > 0)) {
2171       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2172       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2173       PhaseIdealLoop ideal_loop(igvn, mode);
2174       loop_opts_cnt--;
2175       if (failing())  return false;
2176       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2177     }
2178   }
2179   return true;
2180 }
2181 
2182 //------------------------------Optimize---------------------------------------
2183 // Given a graph, optimize it.
2184 void Compile::Optimize() {
2185   TracePhase tp("optimizer", &timers[_t_optimizer]);
2186 
2187 #ifndef PRODUCT
2188   if (_directive->BreakAtCompileOption) {
2189     BREAKPOINT;
2190   }
2191 
2192 #endif
2193 
2194 #ifdef ASSERT
2195   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2196   bs->verify_gc_barriers(true);
2197 #endif
2198 
2199   ResourceMark rm;
2200   int          loop_opts_cnt;
2201 
2202   print_inlining_reinit();
2203 
2204   NOT_PRODUCT( verify_graph_edges(); )
2205 
2206   print_method(PHASE_AFTER_PARSING);
2207 
2208  {
2209   // Iterative Global Value Numbering, including ideal transforms
2210   // Initialize IterGVN with types and values from parse-time GVN
2211   PhaseIterGVN igvn(initial_gvn());
2212 #ifdef ASSERT
2213   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2214 #endif
2215   {
2216     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2217     igvn.optimize();
2218   }
2219 
2220   if (failing())  return;
2221 
2222   print_method(PHASE_ITER_GVN1, 2);
2223 
2224   inline_incrementally(igvn);
2225 
2226   print_method(PHASE_INCREMENTAL_INLINE, 2);
2227 
2228   if (failing())  return;
2229 
2230   if (eliminate_boxing()) {
2231     // Inline valueOf() methods now.
2232     inline_boxing_calls(igvn);
2233 
2234     if (AlwaysIncrementalInline) {
2235       inline_incrementally(igvn);
2236     }
2237 
2238     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2239 
2240     if (failing())  return;
2241   }
2242 
2243   // Remove the speculative part of types and clean up the graph from
2244   // the extra CastPP nodes whose only purpose is to carry them. Do
2245   // that early so that optimizations are not disrupted by the extra
2246   // CastPP nodes.
2247   remove_speculative_types(igvn);
2248 
2249   // No more new expensive nodes will be added to the list from here
2250   // so keep only the actual candidates for optimizations.
2251   cleanup_expensive_nodes(igvn);
2252 
2253   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2254     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2255     initial_gvn()->replace_with(&igvn);
2256     for_igvn()->clear();
2257     Unique_Node_List new_worklist(C->comp_arena());
2258     {
2259       ResourceMark rm;
2260       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2261     }
2262     set_for_igvn(&new_worklist);
2263     igvn = PhaseIterGVN(initial_gvn());
2264     igvn.optimize();
2265   }
2266 
2267   // Perform escape analysis
2268   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2269     if (has_loops()) {
2270       // Cleanup graph (remove dead nodes).
2271       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2272       PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2273       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2274       if (failing())  return;
2275     }
2276     ConnectionGraph::do_analysis(this, &igvn);
2277 
2278     if (failing())  return;
2279 
2280     // Optimize out fields loads from scalar replaceable allocations.
2281     igvn.optimize();
2282     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2283 
2284     if (failing())  return;
2285 
2286     if (congraph() != NULL && macro_count() > 0) {
2287       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2288       PhaseMacroExpand mexp(igvn);
2289       mexp.eliminate_macro_nodes();
2290       igvn.set_delay_transform(false);
2291 
2292       igvn.optimize();
2293       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2294 
2295       if (failing())  return;
2296     }
2297   }
2298 
2299   // Loop transforms on the ideal graph.  Range Check Elimination,
2300   // peeling, unrolling, etc.
2301 
2302   // Set loop opts counter
2303   loop_opts_cnt = num_loop_opts();
2304   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2305     {
2306       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2307       PhaseIdealLoop ideal_loop(igvn, LoopOptsDefault);
2308       loop_opts_cnt--;
2309       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2310       if (failing())  return;
2311     }
2312     // Loop opts pass if partial peeling occurred in previous pass
2313     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2314       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2315       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2316       loop_opts_cnt--;
2317       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2318       if (failing())  return;
2319     }
2320     // Loop opts pass for loop-unrolling before CCP
2321     if(major_progress() && (loop_opts_cnt > 0)) {
2322       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2323       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2324       loop_opts_cnt--;
2325       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2326     }
2327     if (!failing()) {
2328       // Verify that last round of loop opts produced a valid graph
2329       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2330       PhaseIdealLoop::verify(igvn);
2331     }
2332   }
2333   if (failing())  return;
2334 
2335   // Conditional Constant Propagation;
2336   PhaseCCP ccp( &igvn );
2337   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2338   {
2339     TracePhase tp("ccp", &timers[_t_ccp]);
2340     ccp.do_transform();
2341   }
2342   print_method(PHASE_CPP1, 2);
2343 
2344   assert( true, "Break here to ccp.dump_old2new_map()");
2345 
2346   // Iterative Global Value Numbering, including ideal transforms
2347   {
2348     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2349     igvn = ccp;
2350     igvn.optimize();
2351   }
2352 
2353   print_method(PHASE_ITER_GVN2, 2);
2354 
2355   if (failing())  return;
2356 
2357   // Loop transforms on the ideal graph.  Range Check Elimination,
2358   // peeling, unrolling, etc.
2359   if (!optimize_loops(loop_opts_cnt, igvn, LoopOptsDefault)) {
2360     return;
2361   }
2362 
2363 #if INCLUDE_ZGC
2364   if (UseZGC) {
2365     ZBarrierSetC2::find_dominating_barriers(igvn);
2366   }
2367 #endif
2368 
2369   if (failing())  return;
2370 
2371   // Ensure that major progress is now clear
2372   C->clear_major_progress();
2373 
2374   {
2375     // Verify that all previous optimizations produced a valid graph
2376     // at least to this point, even if no loop optimizations were done.
2377     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2378     PhaseIdealLoop::verify(igvn);
2379   }
2380 
2381   if (range_check_cast_count() > 0) {
2382     // No more loop optimizations. Remove all range check dependent CastIINodes.
2383     C->remove_range_check_casts(igvn);
2384     igvn.optimize();
2385   }
2386 
2387 #ifdef ASSERT
2388   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2389   bs->verify_gc_barriers(false);
2390 #endif
2391 
2392   {
2393     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2394     PhaseMacroExpand  mex(igvn);
2395     print_method(PHASE_BEFORE_MACRO_EXPANSION, 2);
2396     if (mex.expand_macro_nodes()) {
2397       assert(failing(), "must bail out w/ explicit message");
2398       return;
2399     }
2400   }
2401 
2402   if (opaque4_count() > 0) {
2403     C->remove_opaque4_nodes(igvn);
2404     igvn.optimize();
2405   }
2406 
2407   DEBUG_ONLY( _modified_nodes = NULL; )
2408  } // (End scope of igvn; run destructor if necessary for asserts.)
2409 
2410  process_print_inlining();
2411  // A method with only infinite loops has no edges entering loops from root
2412  {
2413    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2414    if (final_graph_reshaping()) {
2415      assert(failing(), "must bail out w/ explicit message");
2416      return;
2417    }
2418  }
2419 
2420  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2421 }
2422 
2423 
2424 //------------------------------Code_Gen---------------------------------------
2425 // Given a graph, generate code for it
2426 void Compile::Code_Gen() {
2427   if (failing()) {
2428     return;
2429   }
2430 
2431   // Perform instruction selection.  You might think we could reclaim Matcher
2432   // memory PDQ, but actually the Matcher is used in generating spill code.
2433   // Internals of the Matcher (including some VectorSets) must remain live
2434   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2435   // set a bit in reclaimed memory.
2436 
2437   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2438   // nodes.  Mapping is only valid at the root of each matched subtree.
2439   NOT_PRODUCT( verify_graph_edges(); )
2440 
2441   Matcher matcher;
2442   _matcher = &matcher;
2443   {
2444     TracePhase tp("matcher", &timers[_t_matcher]);
2445     matcher.match();
2446   }
2447   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2448   // nodes.  Mapping is only valid at the root of each matched subtree.
2449   NOT_PRODUCT( verify_graph_edges(); )
2450 
2451   // If you have too many nodes, or if matching has failed, bail out
2452   check_node_count(0, "out of nodes matching instructions");
2453   if (failing()) {
2454     return;
2455   }
2456 
2457   print_method(PHASE_MATCHING, 2);
2458 
2459   // Build a proper-looking CFG
2460   PhaseCFG cfg(node_arena(), root(), matcher);
2461   _cfg = &cfg;
2462   {
2463     TracePhase tp("scheduler", &timers[_t_scheduler]);
2464     bool success = cfg.do_global_code_motion();
2465     if (!success) {
2466       return;
2467     }
2468 
2469     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2470     NOT_PRODUCT( verify_graph_edges(); )
2471     debug_only( cfg.verify(); )
2472   }
2473 
2474   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2475   _regalloc = &regalloc;
2476   {
2477     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2478     // Perform register allocation.  After Chaitin, use-def chains are
2479     // no longer accurate (at spill code) and so must be ignored.
2480     // Node->LRG->reg mappings are still accurate.
2481     _regalloc->Register_Allocate();
2482 
2483     // Bail out if the allocator builds too many nodes
2484     if (failing()) {
2485       return;
2486     }
2487   }
2488 
2489   // Prior to register allocation we kept empty basic blocks in case the
2490   // the allocator needed a place to spill.  After register allocation we
2491   // are not adding any new instructions.  If any basic block is empty, we
2492   // can now safely remove it.
2493   {
2494     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2495     cfg.remove_empty_blocks();
2496     if (do_freq_based_layout()) {
2497       PhaseBlockLayout layout(cfg);
2498     } else {
2499       cfg.set_loop_alignment();
2500     }
2501     cfg.fixup_flow();
2502   }
2503 
2504   // Apply peephole optimizations
2505   if( OptoPeephole ) {
2506     TracePhase tp("peephole", &timers[_t_peephole]);
2507     PhasePeephole peep( _regalloc, cfg);
2508     peep.do_transform();
2509   }
2510 
2511   // Do late expand if CPU requires this.
2512   if (Matcher::require_postalloc_expand) {
2513     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2514     cfg.postalloc_expand(_regalloc);
2515   }
2516 
2517   // Convert Nodes to instruction bits in a buffer
2518   {
2519     TraceTime tp("output", &timers[_t_output], CITime);
2520     Output();
2521   }
2522 
2523   print_method(PHASE_FINAL_CODE);
2524 
2525   // He's dead, Jim.
2526   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2527   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2528 }
2529 
2530 
2531 //------------------------------dump_asm---------------------------------------
2532 // Dump formatted assembly
2533 #ifndef PRODUCT
2534 void Compile::dump_asm(int *pcs, uint pc_limit) {
2535   bool cut_short = false;
2536   tty->print_cr("#");
2537   tty->print("#  ");  _tf->dump();  tty->cr();
2538   tty->print_cr("#");
2539 
2540   // For all blocks
2541   int pc = 0x0;                 // Program counter
2542   char starts_bundle = ' ';
2543   _regalloc->dump_frame();
2544 
2545   Node *n = NULL;
2546   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2547     if (VMThread::should_terminate()) {
2548       cut_short = true;
2549       break;
2550     }
2551     Block* block = _cfg->get_block(i);
2552     if (block->is_connector() && !Verbose) {
2553       continue;
2554     }
2555     n = block->head();
2556     if (pcs && n->_idx < pc_limit) {
2557       tty->print("%3.3x   ", pcs[n->_idx]);
2558     } else {
2559       tty->print("      ");
2560     }
2561     block->dump_head(_cfg);
2562     if (block->is_connector()) {
2563       tty->print_cr("        # Empty connector block");
2564     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2565       tty->print_cr("        # Block is sole successor of call");
2566     }
2567 
2568     // For all instructions
2569     Node *delay = NULL;
2570     for (uint j = 0; j < block->number_of_nodes(); j++) {
2571       if (VMThread::should_terminate()) {
2572         cut_short = true;
2573         break;
2574       }
2575       n = block->get_node(j);
2576       if (valid_bundle_info(n)) {
2577         Bundle* bundle = node_bundling(n);
2578         if (bundle->used_in_unconditional_delay()) {
2579           delay = n;
2580           continue;
2581         }
2582         if (bundle->starts_bundle()) {
2583           starts_bundle = '+';
2584         }
2585       }
2586 
2587       if (WizardMode) {
2588         n->dump();
2589       }
2590 
2591       if( !n->is_Region() &&    // Dont print in the Assembly
2592           !n->is_Phi() &&       // a few noisely useless nodes
2593           !n->is_Proj() &&
2594           !n->is_MachTemp() &&
2595           !n->is_SafePointScalarObject() &&
2596           !n->is_Catch() &&     // Would be nice to print exception table targets
2597           !n->is_MergeMem() &&  // Not very interesting
2598           !n->is_top() &&       // Debug info table constants
2599           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2600           ) {
2601         if (pcs && n->_idx < pc_limit)
2602           tty->print("%3.3x", pcs[n->_idx]);
2603         else
2604           tty->print("   ");
2605         tty->print(" %c ", starts_bundle);
2606         starts_bundle = ' ';
2607         tty->print("\t");
2608         n->format(_regalloc, tty);
2609         tty->cr();
2610       }
2611 
2612       // If we have an instruction with a delay slot, and have seen a delay,
2613       // then back up and print it
2614       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2615         assert(delay != NULL, "no unconditional delay instruction");
2616         if (WizardMode) delay->dump();
2617 
2618         if (node_bundling(delay)->starts_bundle())
2619           starts_bundle = '+';
2620         if (pcs && n->_idx < pc_limit)
2621           tty->print("%3.3x", pcs[n->_idx]);
2622         else
2623           tty->print("   ");
2624         tty->print(" %c ", starts_bundle);
2625         starts_bundle = ' ';
2626         tty->print("\t");
2627         delay->format(_regalloc, tty);
2628         tty->cr();
2629         delay = NULL;
2630       }
2631 
2632       // Dump the exception table as well
2633       if( n->is_Catch() && (Verbose || WizardMode) ) {
2634         // Print the exception table for this offset
2635         _handler_table.print_subtable_for(pc);
2636       }
2637     }
2638 
2639     if (pcs && n->_idx < pc_limit)
2640       tty->print_cr("%3.3x", pcs[n->_idx]);
2641     else
2642       tty->cr();
2643 
2644     assert(cut_short || delay == NULL, "no unconditional delay branch");
2645 
2646   } // End of per-block dump
2647   tty->cr();
2648 
2649   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2650 }
2651 #endif
2652 
2653 //------------------------------Final_Reshape_Counts---------------------------
2654 // This class defines counters to help identify when a method
2655 // may/must be executed using hardware with only 24-bit precision.
2656 struct Final_Reshape_Counts : public StackObj {
2657   int  _call_count;             // count non-inlined 'common' calls
2658   int  _float_count;            // count float ops requiring 24-bit precision
2659   int  _double_count;           // count double ops requiring more precision
2660   int  _java_call_count;        // count non-inlined 'java' calls
2661   int  _inner_loop_count;       // count loops which need alignment
2662   VectorSet _visited;           // Visitation flags
2663   Node_List _tests;             // Set of IfNodes & PCTableNodes
2664 
2665   Final_Reshape_Counts() :
2666     _call_count(0), _float_count(0), _double_count(0),
2667     _java_call_count(0), _inner_loop_count(0),
2668     _visited( Thread::current()->resource_area() ) { }
2669 
2670   void inc_call_count  () { _call_count  ++; }
2671   void inc_float_count () { _float_count ++; }
2672   void inc_double_count() { _double_count++; }
2673   void inc_java_call_count() { _java_call_count++; }
2674   void inc_inner_loop_count() { _inner_loop_count++; }
2675 
2676   int  get_call_count  () const { return _call_count  ; }
2677   int  get_float_count () const { return _float_count ; }
2678   int  get_double_count() const { return _double_count; }
2679   int  get_java_call_count() const { return _java_call_count; }
2680   int  get_inner_loop_count() const { return _inner_loop_count; }
2681 };
2682 
2683 #ifdef ASSERT
2684 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2685   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2686   // Make sure the offset goes inside the instance layout.
2687   return k->contains_field_offset(tp->offset());
2688   // Note that OffsetBot and OffsetTop are very negative.
2689 }
2690 #endif
2691 
2692 // Eliminate trivially redundant StoreCMs and accumulate their
2693 // precedence edges.
2694 void Compile::eliminate_redundant_card_marks(Node* n) {
2695   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2696   if (n->in(MemNode::Address)->outcnt() > 1) {
2697     // There are multiple users of the same address so it might be
2698     // possible to eliminate some of the StoreCMs
2699     Node* mem = n->in(MemNode::Memory);
2700     Node* adr = n->in(MemNode::Address);
2701     Node* val = n->in(MemNode::ValueIn);
2702     Node* prev = n;
2703     bool done = false;
2704     // Walk the chain of StoreCMs eliminating ones that match.  As
2705     // long as it's a chain of single users then the optimization is
2706     // safe.  Eliminating partially redundant StoreCMs would require
2707     // cloning copies down the other paths.
2708     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2709       if (adr == mem->in(MemNode::Address) &&
2710           val == mem->in(MemNode::ValueIn)) {
2711         // redundant StoreCM
2712         if (mem->req() > MemNode::OopStore) {
2713           // Hasn't been processed by this code yet.
2714           n->add_prec(mem->in(MemNode::OopStore));
2715         } else {
2716           // Already converted to precedence edge
2717           for (uint i = mem->req(); i < mem->len(); i++) {
2718             // Accumulate any precedence edges
2719             if (mem->in(i) != NULL) {
2720               n->add_prec(mem->in(i));
2721             }
2722           }
2723           // Everything above this point has been processed.
2724           done = true;
2725         }
2726         // Eliminate the previous StoreCM
2727         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2728         assert(mem->outcnt() == 0, "should be dead");
2729         mem->disconnect_inputs(NULL, this);
2730       } else {
2731         prev = mem;
2732       }
2733       mem = prev->in(MemNode::Memory);
2734     }
2735   }
2736 }
2737 
2738 //------------------------------final_graph_reshaping_impl----------------------
2739 // Implement items 1-5 from final_graph_reshaping below.
2740 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2741 
2742   if ( n->outcnt() == 0 ) return; // dead node
2743   uint nop = n->Opcode();
2744 
2745   // Check for 2-input instruction with "last use" on right input.
2746   // Swap to left input.  Implements item (2).
2747   if( n->req() == 3 &&          // two-input instruction
2748       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2749       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2750       n->in(2)->outcnt() == 1 &&// right use IS a last use
2751       !n->in(2)->is_Con() ) {   // right use is not a constant
2752     // Check for commutative opcode
2753     switch( nop ) {
2754     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2755     case Op_MaxI:  case Op_MinI:
2756     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2757     case Op_AndL:  case Op_XorL:  case Op_OrL:
2758     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2759       // Move "last use" input to left by swapping inputs
2760       n->swap_edges(1, 2);
2761       break;
2762     }
2763     default:
2764       break;
2765     }
2766   }
2767 
2768 #ifdef ASSERT
2769   if( n->is_Mem() ) {
2770     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2771     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2772             // oop will be recorded in oop map if load crosses safepoint
2773             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2774                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2775             "raw memory operations should have control edge");
2776   }
2777   if (n->is_MemBar()) {
2778     MemBarNode* mb = n->as_MemBar();
2779     if (mb->trailing_store() || mb->trailing_load_store()) {
2780       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2781       Node* mem = mb->in(MemBarNode::Precedent);
2782       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2783              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2784     } else if (mb->leading()) {
2785       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2786     }
2787   }
2788 #endif
2789   // Count FPU ops and common calls, implements item (3)
2790   switch( nop ) {
2791   // Count all float operations that may use FPU
2792   case Op_AddF:
2793   case Op_SubF:
2794   case Op_MulF:
2795   case Op_DivF:
2796   case Op_NegF:
2797   case Op_ModF:
2798   case Op_ConvI2F:
2799   case Op_ConF:
2800   case Op_CmpF:
2801   case Op_CmpF3:
2802   // case Op_ConvL2F: // longs are split into 32-bit halves
2803     frc.inc_float_count();
2804     break;
2805 
2806   case Op_ConvF2D:
2807   case Op_ConvD2F:
2808     frc.inc_float_count();
2809     frc.inc_double_count();
2810     break;
2811 
2812   // Count all double operations that may use FPU
2813   case Op_AddD:
2814   case Op_SubD:
2815   case Op_MulD:
2816   case Op_DivD:
2817   case Op_NegD:
2818   case Op_ModD:
2819   case Op_ConvI2D:
2820   case Op_ConvD2I:
2821   // case Op_ConvL2D: // handled by leaf call
2822   // case Op_ConvD2L: // handled by leaf call
2823   case Op_ConD:
2824   case Op_CmpD:
2825   case Op_CmpD3:
2826     frc.inc_double_count();
2827     break;
2828   case Op_Opaque1:              // Remove Opaque Nodes before matching
2829   case Op_Opaque2:              // Remove Opaque Nodes before matching
2830   case Op_Opaque3:
2831     n->subsume_by(n->in(1), this);
2832     break;
2833   case Op_CallStaticJava:
2834   case Op_CallJava:
2835   case Op_CallDynamicJava:
2836     frc.inc_java_call_count(); // Count java call site;
2837   case Op_CallRuntime:
2838   case Op_CallLeaf:
2839   case Op_CallLeafNoFP: {
2840     assert (n->is_Call(), "");
2841     CallNode *call = n->as_Call();
2842     // Count call sites where the FP mode bit would have to be flipped.
2843     // Do not count uncommon runtime calls:
2844     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2845     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2846     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2847       frc.inc_call_count();   // Count the call site
2848     } else {                  // See if uncommon argument is shared
2849       Node *n = call->in(TypeFunc::Parms);
2850       int nop = n->Opcode();
2851       // Clone shared simple arguments to uncommon calls, item (1).
2852       if (n->outcnt() > 1 &&
2853           !n->is_Proj() &&
2854           nop != Op_CreateEx &&
2855           nop != Op_CheckCastPP &&
2856           nop != Op_DecodeN &&
2857           nop != Op_DecodeNKlass &&
2858           !n->is_Mem() &&
2859           !n->is_Phi()) {
2860         Node *x = n->clone();
2861         call->set_req(TypeFunc::Parms, x);
2862       }
2863     }
2864     break;
2865   }
2866 
2867   case Op_StoreD:
2868   case Op_LoadD:
2869   case Op_LoadD_unaligned:
2870     frc.inc_double_count();
2871     goto handle_mem;
2872   case Op_StoreF:
2873   case Op_LoadF:
2874     frc.inc_float_count();
2875     goto handle_mem;
2876 
2877   case Op_StoreCM:
2878     {
2879       // Convert OopStore dependence into precedence edge
2880       Node* prec = n->in(MemNode::OopStore);
2881       n->del_req(MemNode::OopStore);
2882       n->add_prec(prec);
2883       eliminate_redundant_card_marks(n);
2884     }
2885 
2886     // fall through
2887 
2888   case Op_StoreB:
2889   case Op_StoreC:
2890   case Op_StorePConditional:
2891   case Op_StoreI:
2892   case Op_StoreL:
2893   case Op_StoreIConditional:
2894   case Op_StoreLConditional:
2895   case Op_CompareAndSwapB:
2896   case Op_CompareAndSwapS:
2897   case Op_CompareAndSwapI:
2898   case Op_CompareAndSwapL:
2899   case Op_CompareAndSwapP:
2900   case Op_CompareAndSwapN:
2901   case Op_WeakCompareAndSwapB:
2902   case Op_WeakCompareAndSwapS:
2903   case Op_WeakCompareAndSwapI:
2904   case Op_WeakCompareAndSwapL:
2905   case Op_WeakCompareAndSwapP:
2906   case Op_WeakCompareAndSwapN:
2907   case Op_CompareAndExchangeB:
2908   case Op_CompareAndExchangeS:
2909   case Op_CompareAndExchangeI:
2910   case Op_CompareAndExchangeL:
2911   case Op_CompareAndExchangeP:
2912   case Op_CompareAndExchangeN:
2913   case Op_GetAndAddS:
2914   case Op_GetAndAddB:
2915   case Op_GetAndAddI:
2916   case Op_GetAndAddL:
2917   case Op_GetAndSetS:
2918   case Op_GetAndSetB:
2919   case Op_GetAndSetI:
2920   case Op_GetAndSetL:
2921   case Op_GetAndSetP:
2922   case Op_GetAndSetN:
2923   case Op_StoreP:
2924   case Op_StoreN:
2925   case Op_StoreNKlass:
2926   case Op_LoadB:
2927   case Op_LoadUB:
2928   case Op_LoadUS:
2929   case Op_LoadI:
2930   case Op_LoadKlass:
2931   case Op_LoadNKlass:
2932   case Op_LoadL:
2933   case Op_LoadL_unaligned:
2934   case Op_LoadPLocked:
2935   case Op_LoadP:
2936 #if INCLUDE_ZGC
2937   case Op_LoadBarrierSlowReg:
2938   case Op_LoadBarrierWeakSlowReg:
2939 #endif
2940   case Op_LoadN:
2941   case Op_LoadRange:
2942   case Op_LoadS: {
2943   handle_mem:
2944 #ifdef ASSERT
2945     if( VerifyOptoOopOffsets ) {
2946       assert( n->is_Mem(), "" );
2947       MemNode *mem  = (MemNode*)n;
2948       // Check to see if address types have grounded out somehow.
2949       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2950       assert( !tp || oop_offset_is_sane(tp), "" );
2951     }
2952 #endif
2953     break;
2954   }
2955 
2956   case Op_AddP: {               // Assert sane base pointers
2957     Node *addp = n->in(AddPNode::Address);
2958     assert( !addp->is_AddP() ||
2959             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2960             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2961             "Base pointers must match (addp %u)", addp->_idx );
2962 #ifdef _LP64
2963     if ((UseCompressedOops || UseCompressedClassPointers) &&
2964         addp->Opcode() == Op_ConP &&
2965         addp == n->in(AddPNode::Base) &&
2966         n->in(AddPNode::Offset)->is_Con()) {
2967       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2968       // on the platform and on the compressed oops mode.
2969       // Use addressing with narrow klass to load with offset on x86.
2970       // Some platforms can use the constant pool to load ConP.
2971       // Do this transformation here since IGVN will convert ConN back to ConP.
2972       const Type* t = addp->bottom_type();
2973       bool is_oop   = t->isa_oopptr() != NULL;
2974       bool is_klass = t->isa_klassptr() != NULL;
2975 
2976       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
2977           (is_klass && Matcher::const_klass_prefer_decode())) {
2978         Node* nn = NULL;
2979 
2980         int op = is_oop ? Op_ConN : Op_ConNKlass;
2981 
2982         // Look for existing ConN node of the same exact type.
2983         Node* r  = root();
2984         uint cnt = r->outcnt();
2985         for (uint i = 0; i < cnt; i++) {
2986           Node* m = r->raw_out(i);
2987           if (m!= NULL && m->Opcode() == op &&
2988               m->bottom_type()->make_ptr() == t) {
2989             nn = m;
2990             break;
2991           }
2992         }
2993         if (nn != NULL) {
2994           // Decode a narrow oop to match address
2995           // [R12 + narrow_oop_reg<<3 + offset]
2996           if (is_oop) {
2997             nn = new DecodeNNode(nn, t);
2998           } else {
2999             nn = new DecodeNKlassNode(nn, t);
3000           }
3001           // Check for succeeding AddP which uses the same Base.
3002           // Otherwise we will run into the assertion above when visiting that guy.
3003           for (uint i = 0; i < n->outcnt(); ++i) {
3004             Node *out_i = n->raw_out(i);
3005             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3006               out_i->set_req(AddPNode::Base, nn);
3007 #ifdef ASSERT
3008               for (uint j = 0; j < out_i->outcnt(); ++j) {
3009                 Node *out_j = out_i->raw_out(j);
3010                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3011                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3012               }
3013 #endif
3014             }
3015           }
3016           n->set_req(AddPNode::Base, nn);
3017           n->set_req(AddPNode::Address, nn);
3018           if (addp->outcnt() == 0) {
3019             addp->disconnect_inputs(NULL, this);
3020           }
3021         }
3022       }
3023     }
3024 #endif
3025     // platform dependent reshaping of the address expression
3026     reshape_address(n->as_AddP());
3027     break;
3028   }
3029 
3030   case Op_CastPP: {
3031     // Remove CastPP nodes to gain more freedom during scheduling but
3032     // keep the dependency they encode as control or precedence edges
3033     // (if control is set already) on memory operations. Some CastPP
3034     // nodes don't have a control (don't carry a dependency): skip
3035     // those.
3036     if (n->in(0) != NULL) {
3037       ResourceMark rm;
3038       Unique_Node_List wq;
3039       wq.push(n);
3040       for (uint next = 0; next < wq.size(); ++next) {
3041         Node *m = wq.at(next);
3042         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3043           Node* use = m->fast_out(i);
3044           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3045             use->ensure_control_or_add_prec(n->in(0));
3046           } else {
3047             switch(use->Opcode()) {
3048             case Op_AddP:
3049             case Op_DecodeN:
3050             case Op_DecodeNKlass:
3051             case Op_CheckCastPP:
3052             case Op_CastPP:
3053               wq.push(use);
3054               break;
3055             }
3056           }
3057         }
3058       }
3059     }
3060     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3061     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3062       Node* in1 = n->in(1);
3063       const Type* t = n->bottom_type();
3064       Node* new_in1 = in1->clone();
3065       new_in1->as_DecodeN()->set_type(t);
3066 
3067       if (!Matcher::narrow_oop_use_complex_address()) {
3068         //
3069         // x86, ARM and friends can handle 2 adds in addressing mode
3070         // and Matcher can fold a DecodeN node into address by using
3071         // a narrow oop directly and do implicit NULL check in address:
3072         //
3073         // [R12 + narrow_oop_reg<<3 + offset]
3074         // NullCheck narrow_oop_reg
3075         //
3076         // On other platforms (Sparc) we have to keep new DecodeN node and
3077         // use it to do implicit NULL check in address:
3078         //
3079         // decode_not_null narrow_oop_reg, base_reg
3080         // [base_reg + offset]
3081         // NullCheck base_reg
3082         //
3083         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3084         // to keep the information to which NULL check the new DecodeN node
3085         // corresponds to use it as value in implicit_null_check().
3086         //
3087         new_in1->set_req(0, n->in(0));
3088       }
3089 
3090       n->subsume_by(new_in1, this);
3091       if (in1->outcnt() == 0) {
3092         in1->disconnect_inputs(NULL, this);
3093       }
3094     } else {
3095       n->subsume_by(n->in(1), this);
3096       if (n->outcnt() == 0) {
3097         n->disconnect_inputs(NULL, this);
3098       }
3099     }
3100     break;
3101   }
3102 #ifdef _LP64
3103   case Op_CmpP:
3104     // Do this transformation here to preserve CmpPNode::sub() and
3105     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3106     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3107       Node* in1 = n->in(1);
3108       Node* in2 = n->in(2);
3109       if (!in1->is_DecodeNarrowPtr()) {
3110         in2 = in1;
3111         in1 = n->in(2);
3112       }
3113       assert(in1->is_DecodeNarrowPtr(), "sanity");
3114 
3115       Node* new_in2 = NULL;
3116       if (in2->is_DecodeNarrowPtr()) {
3117         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3118         new_in2 = in2->in(1);
3119       } else if (in2->Opcode() == Op_ConP) {
3120         const Type* t = in2->bottom_type();
3121         if (t == TypePtr::NULL_PTR) {
3122           assert(in1->is_DecodeN(), "compare klass to null?");
3123           // Don't convert CmpP null check into CmpN if compressed
3124           // oops implicit null check is not generated.
3125           // This will allow to generate normal oop implicit null check.
3126           if (Matcher::gen_narrow_oop_implicit_null_checks())
3127             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3128           //
3129           // This transformation together with CastPP transformation above
3130           // will generated code for implicit NULL checks for compressed oops.
3131           //
3132           // The original code after Optimize()
3133           //
3134           //    LoadN memory, narrow_oop_reg
3135           //    decode narrow_oop_reg, base_reg
3136           //    CmpP base_reg, NULL
3137           //    CastPP base_reg // NotNull
3138           //    Load [base_reg + offset], val_reg
3139           //
3140           // after these transformations will be
3141           //
3142           //    LoadN memory, narrow_oop_reg
3143           //    CmpN narrow_oop_reg, NULL
3144           //    decode_not_null narrow_oop_reg, base_reg
3145           //    Load [base_reg + offset], val_reg
3146           //
3147           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3148           // since narrow oops can be used in debug info now (see the code in
3149           // final_graph_reshaping_walk()).
3150           //
3151           // At the end the code will be matched to
3152           // on x86:
3153           //
3154           //    Load_narrow_oop memory, narrow_oop_reg
3155           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3156           //    NullCheck narrow_oop_reg
3157           //
3158           // and on sparc:
3159           //
3160           //    Load_narrow_oop memory, narrow_oop_reg
3161           //    decode_not_null narrow_oop_reg, base_reg
3162           //    Load [base_reg + offset], val_reg
3163           //    NullCheck base_reg
3164           //
3165         } else if (t->isa_oopptr()) {
3166           new_in2 = ConNode::make(t->make_narrowoop());
3167         } else if (t->isa_klassptr()) {
3168           new_in2 = ConNode::make(t->make_narrowklass());
3169         }
3170       }
3171       if (new_in2 != NULL) {
3172         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3173         n->subsume_by(cmpN, this);
3174         if (in1->outcnt() == 0) {
3175           in1->disconnect_inputs(NULL, this);
3176         }
3177         if (in2->outcnt() == 0) {
3178           in2->disconnect_inputs(NULL, this);
3179         }
3180       }
3181     }
3182     break;
3183 
3184   case Op_DecodeN:
3185   case Op_DecodeNKlass:
3186     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3187     // DecodeN could be pinned when it can't be fold into
3188     // an address expression, see the code for Op_CastPP above.
3189     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3190     break;
3191 
3192   case Op_EncodeP:
3193   case Op_EncodePKlass: {
3194     Node* in1 = n->in(1);
3195     if (in1->is_DecodeNarrowPtr()) {
3196       n->subsume_by(in1->in(1), this);
3197     } else if (in1->Opcode() == Op_ConP) {
3198       const Type* t = in1->bottom_type();
3199       if (t == TypePtr::NULL_PTR) {
3200         assert(t->isa_oopptr(), "null klass?");
3201         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3202       } else if (t->isa_oopptr()) {
3203         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3204       } else if (t->isa_klassptr()) {
3205         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3206       }
3207     }
3208     if (in1->outcnt() == 0) {
3209       in1->disconnect_inputs(NULL, this);
3210     }
3211     break;
3212   }
3213 
3214   case Op_Proj: {
3215     if (OptimizeStringConcat) {
3216       ProjNode* p = n->as_Proj();
3217       if (p->_is_io_use) {
3218         // Separate projections were used for the exception path which
3219         // are normally removed by a late inline.  If it wasn't inlined
3220         // then they will hang around and should just be replaced with
3221         // the original one.
3222         Node* proj = NULL;
3223         // Replace with just one
3224         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3225           Node *use = i.get();
3226           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3227             proj = use;
3228             break;
3229           }
3230         }
3231         assert(proj != NULL, "must be found");
3232         p->subsume_by(proj, this);
3233       }
3234     }
3235     break;
3236   }
3237 
3238   case Op_Phi:
3239     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3240       // The EncodeP optimization may create Phi with the same edges
3241       // for all paths. It is not handled well by Register Allocator.
3242       Node* unique_in = n->in(1);
3243       assert(unique_in != NULL, "");
3244       uint cnt = n->req();
3245       for (uint i = 2; i < cnt; i++) {
3246         Node* m = n->in(i);
3247         assert(m != NULL, "");
3248         if (unique_in != m)
3249           unique_in = NULL;
3250       }
3251       if (unique_in != NULL) {
3252         n->subsume_by(unique_in, this);
3253       }
3254     }
3255     break;
3256 
3257 #endif
3258 
3259 #ifdef ASSERT
3260   case Op_CastII:
3261     // Verify that all range check dependent CastII nodes were removed.
3262     if (n->isa_CastII()->has_range_check()) {
3263       n->dump(3);
3264       assert(false, "Range check dependent CastII node was not removed");
3265     }
3266     break;
3267 #endif
3268 
3269   case Op_ModI:
3270     if (UseDivMod) {
3271       // Check if a%b and a/b both exist
3272       Node* d = n->find_similar(Op_DivI);
3273       if (d) {
3274         // Replace them with a fused divmod if supported
3275         if (Matcher::has_match_rule(Op_DivModI)) {
3276           DivModINode* divmod = DivModINode::make(n);
3277           d->subsume_by(divmod->div_proj(), this);
3278           n->subsume_by(divmod->mod_proj(), this);
3279         } else {
3280           // replace a%b with a-((a/b)*b)
3281           Node* mult = new MulINode(d, d->in(2));
3282           Node* sub  = new SubINode(d->in(1), mult);
3283           n->subsume_by(sub, this);
3284         }
3285       }
3286     }
3287     break;
3288 
3289   case Op_ModL:
3290     if (UseDivMod) {
3291       // Check if a%b and a/b both exist
3292       Node* d = n->find_similar(Op_DivL);
3293       if (d) {
3294         // Replace them with a fused divmod if supported
3295         if (Matcher::has_match_rule(Op_DivModL)) {
3296           DivModLNode* divmod = DivModLNode::make(n);
3297           d->subsume_by(divmod->div_proj(), this);
3298           n->subsume_by(divmod->mod_proj(), this);
3299         } else {
3300           // replace a%b with a-((a/b)*b)
3301           Node* mult = new MulLNode(d, d->in(2));
3302           Node* sub  = new SubLNode(d->in(1), mult);
3303           n->subsume_by(sub, this);
3304         }
3305       }
3306     }
3307     break;
3308 
3309   case Op_LoadVector:
3310   case Op_StoreVector:
3311     break;
3312 
3313   case Op_AddReductionVI:
3314   case Op_AddReductionVL:
3315   case Op_AddReductionVF:
3316   case Op_AddReductionVD:
3317   case Op_MulReductionVI:
3318   case Op_MulReductionVL:
3319   case Op_MulReductionVF:
3320   case Op_MulReductionVD:
3321     break;
3322 
3323   case Op_PackB:
3324   case Op_PackS:
3325   case Op_PackI:
3326   case Op_PackF:
3327   case Op_PackL:
3328   case Op_PackD:
3329     if (n->req()-1 > 2) {
3330       // Replace many operand PackNodes with a binary tree for matching
3331       PackNode* p = (PackNode*) n;
3332       Node* btp = p->binary_tree_pack(1, n->req());
3333       n->subsume_by(btp, this);
3334     }
3335     break;
3336   case Op_Loop:
3337   case Op_CountedLoop:
3338   case Op_OuterStripMinedLoop:
3339     if (n->as_Loop()->is_inner_loop()) {
3340       frc.inc_inner_loop_count();
3341     }
3342     n->as_Loop()->verify_strip_mined(0);
3343     break;
3344   case Op_LShiftI:
3345   case Op_RShiftI:
3346   case Op_URShiftI:
3347   case Op_LShiftL:
3348   case Op_RShiftL:
3349   case Op_URShiftL:
3350     if (Matcher::need_masked_shift_count) {
3351       // The cpu's shift instructions don't restrict the count to the
3352       // lower 5/6 bits. We need to do the masking ourselves.
3353       Node* in2 = n->in(2);
3354       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3355       const TypeInt* t = in2->find_int_type();
3356       if (t != NULL && t->is_con()) {
3357         juint shift = t->get_con();
3358         if (shift > mask) { // Unsigned cmp
3359           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3360         }
3361       } else {
3362         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3363           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3364           n->set_req(2, shift);
3365         }
3366       }
3367       if (in2->outcnt() == 0) { // Remove dead node
3368         in2->disconnect_inputs(NULL, this);
3369       }
3370     }
3371     break;
3372   case Op_MemBarStoreStore:
3373   case Op_MemBarRelease:
3374     // Break the link with AllocateNode: it is no longer useful and
3375     // confuses register allocation.
3376     if (n->req() > MemBarNode::Precedent) {
3377       n->set_req(MemBarNode::Precedent, top());
3378     }
3379     break;
3380   case Op_MemBarAcquire: {
3381     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3382       // At parse time, the trailing MemBarAcquire for a volatile load
3383       // is created with an edge to the load. After optimizations,
3384       // that input may be a chain of Phis. If those phis have no
3385       // other use, then the MemBarAcquire keeps them alive and
3386       // register allocation can be confused.
3387       ResourceMark rm;
3388       Unique_Node_List wq;
3389       wq.push(n->in(MemBarNode::Precedent));
3390       n->set_req(MemBarNode::Precedent, top());
3391       while (wq.size() > 0) {
3392         Node* m = wq.pop();
3393         if (m->outcnt() == 0) {
3394           for (uint j = 0; j < m->req(); j++) {
3395             Node* in = m->in(j);
3396             if (in != NULL) {
3397               wq.push(in);
3398             }
3399           }
3400           m->disconnect_inputs(NULL, this);
3401         }
3402       }
3403     }
3404     break;
3405   }
3406   case Op_RangeCheck: {
3407     RangeCheckNode* rc = n->as_RangeCheck();
3408     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3409     n->subsume_by(iff, this);
3410     frc._tests.push(iff);
3411     break;
3412   }
3413   case Op_ConvI2L: {
3414     if (!Matcher::convi2l_type_required) {
3415       // Code generation on some platforms doesn't need accurate
3416       // ConvI2L types. Widening the type can help remove redundant
3417       // address computations.
3418       n->as_Type()->set_type(TypeLong::INT);
3419       ResourceMark rm;
3420       Node_List wq;
3421       wq.push(n);
3422       for (uint next = 0; next < wq.size(); next++) {
3423         Node *m = wq.at(next);
3424 
3425         for(;;) {
3426           // Loop over all nodes with identical inputs edges as m
3427           Node* k = m->find_similar(m->Opcode());
3428           if (k == NULL) {
3429             break;
3430           }
3431           // Push their uses so we get a chance to remove node made
3432           // redundant
3433           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3434             Node* u = k->fast_out(i);
3435             assert(!wq.contains(u), "shouldn't process one node several times");
3436             if (u->Opcode() == Op_LShiftL ||
3437                 u->Opcode() == Op_AddL ||
3438                 u->Opcode() == Op_SubL ||
3439                 u->Opcode() == Op_AddP) {
3440               wq.push(u);
3441             }
3442           }
3443           // Replace all nodes with identical edges as m with m
3444           k->subsume_by(m, this);
3445         }
3446       }
3447     }
3448     break;
3449   }
3450   case Op_CmpUL: {
3451     if (!Matcher::has_match_rule(Op_CmpUL)) {
3452       // We don't support unsigned long comparisons. Set 'max_idx_expr'
3453       // to max_julong if < 0 to make the signed comparison fail.
3454       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3455       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3456       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3457       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3458       Node* andl = new AndLNode(orl, remove_sign_mask);
3459       Node* cmp = new CmpLNode(andl, n->in(2));
3460       n->subsume_by(cmp, this);
3461     }
3462     break;
3463   }
3464   default:
3465     assert( !n->is_Call(), "" );
3466     assert( !n->is_Mem(), "" );
3467     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3468     break;
3469   }
3470 
3471   // Collect CFG split points
3472   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3473     frc._tests.push(n);
3474   }
3475 }
3476 
3477 //------------------------------final_graph_reshaping_walk---------------------
3478 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3479 // requires that the walk visits a node's inputs before visiting the node.
3480 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3481   ResourceArea *area = Thread::current()->resource_area();
3482   Unique_Node_List sfpt(area);
3483 
3484   frc._visited.set(root->_idx); // first, mark node as visited
3485   uint cnt = root->req();
3486   Node *n = root;
3487   uint  i = 0;
3488   while (true) {
3489     if (i < cnt) {
3490       // Place all non-visited non-null inputs onto stack
3491       Node* m = n->in(i);
3492       ++i;
3493       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3494         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3495           // compute worst case interpreter size in case of a deoptimization
3496           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3497 
3498           sfpt.push(m);
3499         }
3500         cnt = m->req();
3501         nstack.push(n, i); // put on stack parent and next input's index
3502         n = m;
3503         i = 0;
3504       }
3505     } else {
3506       // Now do post-visit work
3507       final_graph_reshaping_impl( n, frc );
3508       if (nstack.is_empty())
3509         break;             // finished
3510       n = nstack.node();   // Get node from stack
3511       cnt = n->req();
3512       i = nstack.index();
3513       nstack.pop();        // Shift to the next node on stack
3514     }
3515   }
3516 
3517   // Skip next transformation if compressed oops are not used.
3518   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3519       (!UseCompressedOops && !UseCompressedClassPointers))
3520     return;
3521 
3522   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3523   // It could be done for an uncommon traps or any safepoints/calls
3524   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3525   while (sfpt.size() > 0) {
3526     n = sfpt.pop();
3527     JVMState *jvms = n->as_SafePoint()->jvms();
3528     assert(jvms != NULL, "sanity");
3529     int start = jvms->debug_start();
3530     int end   = n->req();
3531     bool is_uncommon = (n->is_CallStaticJava() &&
3532                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3533     for (int j = start; j < end; j++) {
3534       Node* in = n->in(j);
3535       if (in->is_DecodeNarrowPtr()) {
3536         bool safe_to_skip = true;
3537         if (!is_uncommon ) {
3538           // Is it safe to skip?
3539           for (uint i = 0; i < in->outcnt(); i++) {
3540             Node* u = in->raw_out(i);
3541             if (!u->is_SafePoint() ||
3542                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3543               safe_to_skip = false;
3544             }
3545           }
3546         }
3547         if (safe_to_skip) {
3548           n->set_req(j, in->in(1));
3549         }
3550         if (in->outcnt() == 0) {
3551           in->disconnect_inputs(NULL, this);
3552         }
3553       }
3554     }
3555   }
3556 }
3557 
3558 //------------------------------final_graph_reshaping--------------------------
3559 // Final Graph Reshaping.
3560 //
3561 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3562 //     and not commoned up and forced early.  Must come after regular
3563 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3564 //     inputs to Loop Phis; these will be split by the allocator anyways.
3565 //     Remove Opaque nodes.
3566 // (2) Move last-uses by commutative operations to the left input to encourage
3567 //     Intel update-in-place two-address operations and better register usage
3568 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3569 //     calls canonicalizing them back.
3570 // (3) Count the number of double-precision FP ops, single-precision FP ops
3571 //     and call sites.  On Intel, we can get correct rounding either by
3572 //     forcing singles to memory (requires extra stores and loads after each
3573 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3574 //     clearing the mode bit around call sites).  The mode bit is only used
3575 //     if the relative frequency of single FP ops to calls is low enough.
3576 //     This is a key transform for SPEC mpeg_audio.
3577 // (4) Detect infinite loops; blobs of code reachable from above but not
3578 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3579 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3580 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3581 //     Detection is by looking for IfNodes where only 1 projection is
3582 //     reachable from below or CatchNodes missing some targets.
3583 // (5) Assert for insane oop offsets in debug mode.
3584 
3585 bool Compile::final_graph_reshaping() {
3586   // an infinite loop may have been eliminated by the optimizer,
3587   // in which case the graph will be empty.
3588   if (root()->req() == 1) {
3589     record_method_not_compilable("trivial infinite loop");
3590     return true;
3591   }
3592 
3593   // Expensive nodes have their control input set to prevent the GVN
3594   // from freely commoning them. There's no GVN beyond this point so
3595   // no need to keep the control input. We want the expensive nodes to
3596   // be freely moved to the least frequent code path by gcm.
3597   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3598   for (int i = 0; i < expensive_count(); i++) {
3599     _expensive_nodes->at(i)->set_req(0, NULL);
3600   }
3601 
3602   Final_Reshape_Counts frc;
3603 
3604   // Visit everybody reachable!
3605   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3606   Node_Stack nstack(live_nodes() >> 1);
3607   final_graph_reshaping_walk(nstack, root(), frc);
3608 
3609   // Check for unreachable (from below) code (i.e., infinite loops).
3610   for( uint i = 0; i < frc._tests.size(); i++ ) {
3611     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3612     // Get number of CFG targets.
3613     // Note that PCTables include exception targets after calls.
3614     uint required_outcnt = n->required_outcnt();
3615     if (n->outcnt() != required_outcnt) {
3616       // Check for a few special cases.  Rethrow Nodes never take the
3617       // 'fall-thru' path, so expected kids is 1 less.
3618       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3619         if (n->in(0)->in(0)->is_Call()) {
3620           CallNode *call = n->in(0)->in(0)->as_Call();
3621           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3622             required_outcnt--;      // Rethrow always has 1 less kid
3623           } else if (call->req() > TypeFunc::Parms &&
3624                      call->is_CallDynamicJava()) {
3625             // Check for null receiver. In such case, the optimizer has
3626             // detected that the virtual call will always result in a null
3627             // pointer exception. The fall-through projection of this CatchNode
3628             // will not be populated.
3629             Node *arg0 = call->in(TypeFunc::Parms);
3630             if (arg0->is_Type() &&
3631                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3632               required_outcnt--;
3633             }
3634           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3635                      call->req() > TypeFunc::Parms+1 &&
3636                      call->is_CallStaticJava()) {
3637             // Check for negative array length. In such case, the optimizer has
3638             // detected that the allocation attempt will always result in an
3639             // exception. There is no fall-through projection of this CatchNode .
3640             Node *arg1 = call->in(TypeFunc::Parms+1);
3641             if (arg1->is_Type() &&
3642                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3643               required_outcnt--;
3644             }
3645           }
3646         }
3647       }
3648       // Recheck with a better notion of 'required_outcnt'
3649       if (n->outcnt() != required_outcnt) {
3650         record_method_not_compilable("malformed control flow");
3651         return true;            // Not all targets reachable!
3652       }
3653     }
3654     // Check that I actually visited all kids.  Unreached kids
3655     // must be infinite loops.
3656     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3657       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3658         record_method_not_compilable("infinite loop");
3659         return true;            // Found unvisited kid; must be unreach
3660       }
3661 
3662     // Here so verification code in final_graph_reshaping_walk()
3663     // always see an OuterStripMinedLoopEnd
3664     if (n->is_OuterStripMinedLoopEnd()) {
3665       IfNode* init_iff = n->as_If();
3666       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3667       n->subsume_by(iff, this);
3668     }
3669   }
3670 
3671   // If original bytecodes contained a mixture of floats and doubles
3672   // check if the optimizer has made it homogenous, item (3).
3673   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3674       frc.get_float_count() > 32 &&
3675       frc.get_double_count() == 0 &&
3676       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3677     set_24_bit_selection_and_mode( false,  true );
3678   }
3679 
3680   set_java_calls(frc.get_java_call_count());
3681   set_inner_loops(frc.get_inner_loop_count());
3682 
3683   // No infinite loops, no reason to bail out.
3684   return false;
3685 }
3686 
3687 //-----------------------------too_many_traps----------------------------------
3688 // Report if there are too many traps at the current method and bci.
3689 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3690 bool Compile::too_many_traps(ciMethod* method,
3691                              int bci,
3692                              Deoptimization::DeoptReason reason) {
3693   ciMethodData* md = method->method_data();
3694   if (md->is_empty()) {
3695     // Assume the trap has not occurred, or that it occurred only
3696     // because of a transient condition during start-up in the interpreter.
3697     return false;
3698   }
3699   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3700   if (md->has_trap_at(bci, m, reason) != 0) {
3701     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3702     // Also, if there are multiple reasons, or if there is no per-BCI record,
3703     // assume the worst.
3704     if (log())
3705       log()->elem("observe trap='%s' count='%d'",
3706                   Deoptimization::trap_reason_name(reason),
3707                   md->trap_count(reason));
3708     return true;
3709   } else {
3710     // Ignore method/bci and see if there have been too many globally.
3711     return too_many_traps(reason, md);
3712   }
3713 }
3714 
3715 // Less-accurate variant which does not require a method and bci.
3716 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3717                              ciMethodData* logmd) {
3718   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3719     // Too many traps globally.
3720     // Note that we use cumulative trap_count, not just md->trap_count.
3721     if (log()) {
3722       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3723       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3724                   Deoptimization::trap_reason_name(reason),
3725                   mcount, trap_count(reason));
3726     }
3727     return true;
3728   } else {
3729     // The coast is clear.
3730     return false;
3731   }
3732 }
3733 
3734 //--------------------------too_many_recompiles--------------------------------
3735 // Report if there are too many recompiles at the current method and bci.
3736 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3737 // Is not eager to return true, since this will cause the compiler to use
3738 // Action_none for a trap point, to avoid too many recompilations.
3739 bool Compile::too_many_recompiles(ciMethod* method,
3740                                   int bci,
3741                                   Deoptimization::DeoptReason reason) {
3742   ciMethodData* md = method->method_data();
3743   if (md->is_empty()) {
3744     // Assume the trap has not occurred, or that it occurred only
3745     // because of a transient condition during start-up in the interpreter.
3746     return false;
3747   }
3748   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3749   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3750   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3751   Deoptimization::DeoptReason per_bc_reason
3752     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3753   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3754   if ((per_bc_reason == Deoptimization::Reason_none
3755        || md->has_trap_at(bci, m, reason) != 0)
3756       // The trap frequency measure we care about is the recompile count:
3757       && md->trap_recompiled_at(bci, m)
3758       && md->overflow_recompile_count() >= bc_cutoff) {
3759     // Do not emit a trap here if it has already caused recompilations.
3760     // Also, if there are multiple reasons, or if there is no per-BCI record,
3761     // assume the worst.
3762     if (log())
3763       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3764                   Deoptimization::trap_reason_name(reason),
3765                   md->trap_count(reason),
3766                   md->overflow_recompile_count());
3767     return true;
3768   } else if (trap_count(reason) != 0
3769              && decompile_count() >= m_cutoff) {
3770     // Too many recompiles globally, and we have seen this sort of trap.
3771     // Use cumulative decompile_count, not just md->decompile_count.
3772     if (log())
3773       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3774                   Deoptimization::trap_reason_name(reason),
3775                   md->trap_count(reason), trap_count(reason),
3776                   md->decompile_count(), decompile_count());
3777     return true;
3778   } else {
3779     // The coast is clear.
3780     return false;
3781   }
3782 }
3783 
3784 // Compute when not to trap. Used by matching trap based nodes and
3785 // NullCheck optimization.
3786 void Compile::set_allowed_deopt_reasons() {
3787   _allowed_reasons = 0;
3788   if (is_method_compilation()) {
3789     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3790       assert(rs < BitsPerInt, "recode bit map");
3791       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3792         _allowed_reasons |= nth_bit(rs);
3793       }
3794     }
3795   }
3796 }
3797 
3798 #ifndef PRODUCT
3799 //------------------------------verify_graph_edges---------------------------
3800 // Walk the Graph and verify that there is a one-to-one correspondence
3801 // between Use-Def edges and Def-Use edges in the graph.
3802 void Compile::verify_graph_edges(bool no_dead_code) {
3803   if (VerifyGraphEdges) {
3804     ResourceArea *area = Thread::current()->resource_area();
3805     Unique_Node_List visited(area);
3806     // Call recursive graph walk to check edges
3807     _root->verify_edges(visited);
3808     if (no_dead_code) {
3809       // Now make sure that no visited node is used by an unvisited node.
3810       bool dead_nodes = false;
3811       Unique_Node_List checked(area);
3812       while (visited.size() > 0) {
3813         Node* n = visited.pop();
3814         checked.push(n);
3815         for (uint i = 0; i < n->outcnt(); i++) {
3816           Node* use = n->raw_out(i);
3817           if (checked.member(use))  continue;  // already checked
3818           if (visited.member(use))  continue;  // already in the graph
3819           if (use->is_Con())        continue;  // a dead ConNode is OK
3820           // At this point, we have found a dead node which is DU-reachable.
3821           if (!dead_nodes) {
3822             tty->print_cr("*** Dead nodes reachable via DU edges:");
3823             dead_nodes = true;
3824           }
3825           use->dump(2);
3826           tty->print_cr("---");
3827           checked.push(use);  // No repeats; pretend it is now checked.
3828         }
3829       }
3830       assert(!dead_nodes, "using nodes must be reachable from root");
3831     }
3832   }
3833 }
3834 
3835 // Verify GC barriers consistency
3836 // Currently supported:
3837 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3838 void Compile::verify_barriers() {
3839 #if INCLUDE_G1GC
3840   if (UseG1GC) {
3841     // Verify G1 pre-barriers
3842     const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
3843 
3844     ResourceArea *area = Thread::current()->resource_area();
3845     Unique_Node_List visited(area);
3846     Node_List worklist(area);
3847     // We're going to walk control flow backwards starting from the Root
3848     worklist.push(_root);
3849     while (worklist.size() > 0) {
3850       Node* x = worklist.pop();
3851       if (x == NULL || x == top()) continue;
3852       if (visited.member(x)) {
3853         continue;
3854       } else {
3855         visited.push(x);
3856       }
3857 
3858       if (x->is_Region()) {
3859         for (uint i = 1; i < x->req(); i++) {
3860           worklist.push(x->in(i));
3861         }
3862       } else {
3863         worklist.push(x->in(0));
3864         // We are looking for the pattern:
3865         //                            /->ThreadLocal
3866         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3867         //              \->ConI(0)
3868         // We want to verify that the If and the LoadB have the same control
3869         // See GraphKit::g1_write_barrier_pre()
3870         if (x->is_If()) {
3871           IfNode *iff = x->as_If();
3872           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3873             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3874             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3875                 && cmp->in(1)->is_Load()) {
3876               LoadNode* load = cmp->in(1)->as_Load();
3877               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3878                   && load->in(2)->in(3)->is_Con()
3879                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3880 
3881                 Node* if_ctrl = iff->in(0);
3882                 Node* load_ctrl = load->in(0);
3883 
3884                 if (if_ctrl != load_ctrl) {
3885                   // Skip possible CProj->NeverBranch in infinite loops
3886                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3887                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3888                     if_ctrl = if_ctrl->in(0)->in(0);
3889                   }
3890                 }
3891                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3892               }
3893             }
3894           }
3895         }
3896       }
3897     }
3898   }
3899 #endif
3900 }
3901 
3902 #endif
3903 
3904 // The Compile object keeps track of failure reasons separately from the ciEnv.
3905 // This is required because there is not quite a 1-1 relation between the
3906 // ciEnv and its compilation task and the Compile object.  Note that one
3907 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3908 // to backtrack and retry without subsuming loads.  Other than this backtracking
3909 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3910 // by the logic in C2Compiler.
3911 void Compile::record_failure(const char* reason) {
3912   if (log() != NULL) {
3913     log()->elem("failure reason='%s' phase='compile'", reason);
3914   }
3915   if (_failure_reason == NULL) {
3916     // Record the first failure reason.
3917     _failure_reason = reason;
3918   }
3919 
3920   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3921     C->print_method(PHASE_FAILURE);
3922   }
3923   _root = NULL;  // flush the graph, too
3924 }
3925 
3926 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3927   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3928     _phase_name(name), _dolog(CITimeVerbose)
3929 {
3930   if (_dolog) {
3931     C = Compile::current();
3932     _log = C->log();
3933   } else {
3934     C = NULL;
3935     _log = NULL;
3936   }
3937   if (_log != NULL) {
3938     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3939     _log->stamp();
3940     _log->end_head();
3941   }
3942 }
3943 
3944 Compile::TracePhase::~TracePhase() {
3945 
3946   C = Compile::current();
3947   if (_dolog) {
3948     _log = C->log();
3949   } else {
3950     _log = NULL;
3951   }
3952 
3953 #ifdef ASSERT
3954   if (PrintIdealNodeCount) {
3955     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3956                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3957   }
3958 
3959   if (VerifyIdealNodeCount) {
3960     Compile::current()->print_missing_nodes();
3961   }
3962 #endif
3963 
3964   if (_log != NULL) {
3965     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3966   }
3967 }
3968 
3969 //=============================================================================
3970 // Two Constant's are equal when the type and the value are equal.
3971 bool Compile::Constant::operator==(const Constant& other) {
3972   if (type()          != other.type()         )  return false;
3973   if (can_be_reused() != other.can_be_reused())  return false;
3974   // For floating point values we compare the bit pattern.
3975   switch (type()) {
3976   case T_INT:
3977   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3978   case T_LONG:
3979   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3980   case T_OBJECT:
3981   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3982   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3983   case T_METADATA: return (_v._metadata == other._v._metadata);
3984   default: ShouldNotReachHere(); return false;
3985   }
3986 }
3987 
3988 static int type_to_size_in_bytes(BasicType t) {
3989   switch (t) {
3990   case T_INT:     return sizeof(jint   );
3991   case T_LONG:    return sizeof(jlong  );
3992   case T_FLOAT:   return sizeof(jfloat );
3993   case T_DOUBLE:  return sizeof(jdouble);
3994   case T_METADATA: return sizeof(Metadata*);
3995     // We use T_VOID as marker for jump-table entries (labels) which
3996     // need an internal word relocation.
3997   case T_VOID:
3998   case T_ADDRESS:
3999   case T_OBJECT:  return sizeof(jobject);
4000   default:
4001     ShouldNotReachHere();
4002     return -1;
4003   }
4004 }
4005 
4006 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4007   // sort descending
4008   if (a->freq() > b->freq())  return -1;
4009   if (a->freq() < b->freq())  return  1;
4010   return 0;
4011 }
4012 
4013 void Compile::ConstantTable::calculate_offsets_and_size() {
4014   // First, sort the array by frequencies.
4015   _constants.sort(qsort_comparator);
4016 
4017 #ifdef ASSERT
4018   // Make sure all jump-table entries were sorted to the end of the
4019   // array (they have a negative frequency).
4020   bool found_void = false;
4021   for (int i = 0; i < _constants.length(); i++) {
4022     Constant con = _constants.at(i);
4023     if (con.type() == T_VOID)
4024       found_void = true;  // jump-tables
4025     else
4026       assert(!found_void, "wrong sorting");
4027   }
4028 #endif
4029 
4030   int offset = 0;
4031   for (int i = 0; i < _constants.length(); i++) {
4032     Constant* con = _constants.adr_at(i);
4033 
4034     // Align offset for type.
4035     int typesize = type_to_size_in_bytes(con->type());
4036     offset = align_up(offset, typesize);
4037     con->set_offset(offset);   // set constant's offset
4038 
4039     if (con->type() == T_VOID) {
4040       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4041       offset = offset + typesize * n->outcnt();  // expand jump-table
4042     } else {
4043       offset = offset + typesize;
4044     }
4045   }
4046 
4047   // Align size up to the next section start (which is insts; see
4048   // CodeBuffer::align_at_start).
4049   assert(_size == -1, "already set?");
4050   _size = align_up(offset, (int)CodeEntryAlignment);
4051 }
4052 
4053 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4054   MacroAssembler _masm(&cb);
4055   for (int i = 0; i < _constants.length(); i++) {
4056     Constant con = _constants.at(i);
4057     address constant_addr = NULL;
4058     switch (con.type()) {
4059     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4060     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4061     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4062     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4063     case T_OBJECT: {
4064       jobject obj = con.get_jobject();
4065       int oop_index = _masm.oop_recorder()->find_index(obj);
4066       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4067       break;
4068     }
4069     case T_ADDRESS: {
4070       address addr = (address) con.get_jobject();
4071       constant_addr = _masm.address_constant(addr);
4072       break;
4073     }
4074     // We use T_VOID as marker for jump-table entries (labels) which
4075     // need an internal word relocation.
4076     case T_VOID: {
4077       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4078       // Fill the jump-table with a dummy word.  The real value is
4079       // filled in later in fill_jump_table.
4080       address dummy = (address) n;
4081       constant_addr = _masm.address_constant(dummy);
4082       // Expand jump-table
4083       for (uint i = 1; i < n->outcnt(); i++) {
4084         address temp_addr = _masm.address_constant(dummy + i);
4085         assert(temp_addr, "consts section too small");
4086       }
4087       break;
4088     }
4089     case T_METADATA: {
4090       Metadata* obj = con.get_metadata();
4091       int metadata_index = _masm.oop_recorder()->find_index(obj);
4092       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4093       break;
4094     }
4095     default: ShouldNotReachHere();
4096     }
4097     assert(constant_addr, "consts section too small");
4098     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4099             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4100   }
4101 }
4102 
4103 int Compile::ConstantTable::find_offset(Constant& con) const {
4104   int idx = _constants.find(con);
4105   guarantee(idx != -1, "constant must be in constant table");
4106   int offset = _constants.at(idx).offset();
4107   guarantee(offset != -1, "constant table not emitted yet?");
4108   return offset;
4109 }
4110 
4111 void Compile::ConstantTable::add(Constant& con) {
4112   if (con.can_be_reused()) {
4113     int idx = _constants.find(con);
4114     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4115       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4116       return;
4117     }
4118   }
4119   (void) _constants.append(con);
4120 }
4121 
4122 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4123   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4124   Constant con(type, value, b->_freq);
4125   add(con);
4126   return con;
4127 }
4128 
4129 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4130   Constant con(metadata);
4131   add(con);
4132   return con;
4133 }
4134 
4135 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4136   jvalue value;
4137   BasicType type = oper->type()->basic_type();
4138   switch (type) {
4139   case T_LONG:    value.j = oper->constantL(); break;
4140   case T_FLOAT:   value.f = oper->constantF(); break;
4141   case T_DOUBLE:  value.d = oper->constantD(); break;
4142   case T_OBJECT:
4143   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4144   case T_METADATA: return add((Metadata*)oper->constant()); break;
4145   default: guarantee(false, "unhandled type: %s", type2name(type));
4146   }
4147   return add(n, type, value);
4148 }
4149 
4150 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4151   jvalue value;
4152   // We can use the node pointer here to identify the right jump-table
4153   // as this method is called from Compile::Fill_buffer right before
4154   // the MachNodes are emitted and the jump-table is filled (means the
4155   // MachNode pointers do not change anymore).
4156   value.l = (jobject) n;
4157   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4158   add(con);
4159   return con;
4160 }
4161 
4162 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4163   // If called from Compile::scratch_emit_size do nothing.
4164   if (Compile::current()->in_scratch_emit_size())  return;
4165 
4166   assert(labels.is_nonempty(), "must be");
4167   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4168 
4169   // Since MachConstantNode::constant_offset() also contains
4170   // table_base_offset() we need to subtract the table_base_offset()
4171   // to get the plain offset into the constant table.
4172   int offset = n->constant_offset() - table_base_offset();
4173 
4174   MacroAssembler _masm(&cb);
4175   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4176 
4177   for (uint i = 0; i < n->outcnt(); i++) {
4178     address* constant_addr = &jump_table_base[i];
4179     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4180     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4181     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4182   }
4183 }
4184 
4185 //----------------------------static_subtype_check-----------------------------
4186 // Shortcut important common cases when superklass is exact:
4187 // (0) superklass is java.lang.Object (can occur in reflective code)
4188 // (1) subklass is already limited to a subtype of superklass => always ok
4189 // (2) subklass does not overlap with superklass => always fail
4190 // (3) superklass has NO subtypes and we can check with a simple compare.
4191 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4192   if (StressReflectiveCode) {
4193     return SSC_full_test;       // Let caller generate the general case.
4194   }
4195 
4196   if (superk == env()->Object_klass()) {
4197     return SSC_always_true;     // (0) this test cannot fail
4198   }
4199 
4200   ciType* superelem = superk;
4201   if (superelem->is_array_klass())
4202     superelem = superelem->as_array_klass()->base_element_type();
4203 
4204   if (!subk->is_interface()) {  // cannot trust static interface types yet
4205     if (subk->is_subtype_of(superk)) {
4206       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4207     }
4208     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4209         !superk->is_subtype_of(subk)) {
4210       return SSC_always_false;
4211     }
4212   }
4213 
4214   // If casting to an instance klass, it must have no subtypes
4215   if (superk->is_interface()) {
4216     // Cannot trust interfaces yet.
4217     // %%% S.B. superk->nof_implementors() == 1
4218   } else if (superelem->is_instance_klass()) {
4219     ciInstanceKlass* ik = superelem->as_instance_klass();
4220     if (!ik->has_subklass() && !ik->is_interface()) {
4221       if (!ik->is_final()) {
4222         // Add a dependency if there is a chance of a later subclass.
4223         dependencies()->assert_leaf_type(ik);
4224       }
4225       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4226     }
4227   } else {
4228     // A primitive array type has no subtypes.
4229     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4230   }
4231 
4232   return SSC_full_test;
4233 }
4234 
4235 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4236 #ifdef _LP64
4237   // The scaled index operand to AddP must be a clean 64-bit value.
4238   // Java allows a 32-bit int to be incremented to a negative
4239   // value, which appears in a 64-bit register as a large
4240   // positive number.  Using that large positive number as an
4241   // operand in pointer arithmetic has bad consequences.
4242   // On the other hand, 32-bit overflow is rare, and the possibility
4243   // can often be excluded, if we annotate the ConvI2L node with
4244   // a type assertion that its value is known to be a small positive
4245   // number.  (The prior range check has ensured this.)
4246   // This assertion is used by ConvI2LNode::Ideal.
4247   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4248   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4249   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4250   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4251 #endif
4252   return idx;
4253 }
4254 
4255 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4256 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4257   if (ctrl != NULL) {
4258     // Express control dependency by a CastII node with a narrow type.
4259     value = new CastIINode(value, itype, false, true /* range check dependency */);
4260     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4261     // node from floating above the range check during loop optimizations. Otherwise, the
4262     // ConvI2L node may be eliminated independently of the range check, causing the data path
4263     // to become TOP while the control path is still there (although it's unreachable).
4264     value->set_req(0, ctrl);
4265     // Save CastII node to remove it after loop optimizations.
4266     phase->C->add_range_check_cast(value);
4267     value = phase->transform(value);
4268   }
4269   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4270   return phase->transform(new ConvI2LNode(value, ltype));
4271 }
4272 
4273 // The message about the current inlining is accumulated in
4274 // _print_inlining_stream and transfered into the _print_inlining_list
4275 // once we know whether inlining succeeds or not. For regular
4276 // inlining, messages are appended to the buffer pointed by
4277 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4278 // a new buffer is added after _print_inlining_idx in the list. This
4279 // way we can update the inlining message for late inlining call site
4280 // when the inlining is attempted again.
4281 void Compile::print_inlining_init() {
4282   if (print_inlining() || print_intrinsics()) {
4283     _print_inlining_stream = new stringStream();
4284     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4285   }
4286 }
4287 
4288 void Compile::print_inlining_reinit() {
4289   if (print_inlining() || print_intrinsics()) {
4290     // Re allocate buffer when we change ResourceMark
4291     _print_inlining_stream = new stringStream();
4292   }
4293 }
4294 
4295 void Compile::print_inlining_reset() {
4296   _print_inlining_stream->reset();
4297 }
4298 
4299 void Compile::print_inlining_commit() {
4300   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4301   // Transfer the message from _print_inlining_stream to the current
4302   // _print_inlining_list buffer and clear _print_inlining_stream.
4303   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4304   print_inlining_reset();
4305 }
4306 
4307 void Compile::print_inlining_push() {
4308   // Add new buffer to the _print_inlining_list at current position
4309   _print_inlining_idx++;
4310   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4311 }
4312 
4313 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4314   return _print_inlining_list->at(_print_inlining_idx);
4315 }
4316 
4317 void Compile::print_inlining_update(CallGenerator* cg) {
4318   if (print_inlining() || print_intrinsics()) {
4319     if (!cg->is_late_inline()) {
4320       if (print_inlining_current().cg() != NULL) {
4321         print_inlining_push();
4322       }
4323       print_inlining_commit();
4324     } else {
4325       if (print_inlining_current().cg() != cg &&
4326           (print_inlining_current().cg() != NULL ||
4327            print_inlining_current().ss()->size() != 0)) {
4328         print_inlining_push();
4329       }
4330       print_inlining_commit();
4331       print_inlining_current().set_cg(cg);
4332     }
4333   }
4334 }
4335 
4336 void Compile::print_inlining_move_to(CallGenerator* cg) {
4337   // We resume inlining at a late inlining call site. Locate the
4338   // corresponding inlining buffer so that we can update it.
4339   if (print_inlining()) {
4340     for (int i = 0; i < _print_inlining_list->length(); i++) {
4341       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4342         _print_inlining_idx = i;
4343         return;
4344       }
4345     }
4346     ShouldNotReachHere();
4347   }
4348 }
4349 
4350 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4351   if (print_inlining()) {
4352     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4353     assert(print_inlining_current().cg() == cg, "wrong entry");
4354     // replace message with new message
4355     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4356     print_inlining_commit();
4357     print_inlining_current().set_cg(cg);
4358   }
4359 }
4360 
4361 void Compile::print_inlining_assert_ready() {
4362   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4363 }
4364 
4365 void Compile::process_print_inlining() {
4366   bool do_print_inlining = print_inlining() || print_intrinsics();
4367   if (do_print_inlining || log() != NULL) {
4368     // Print inlining message for candidates that we couldn't inline
4369     // for lack of space
4370     for (int i = 0; i < _late_inlines.length(); i++) {
4371       CallGenerator* cg = _late_inlines.at(i);
4372       if (!cg->is_mh_late_inline()) {
4373         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4374         if (do_print_inlining) {
4375           cg->print_inlining_late(msg);
4376         }
4377         log_late_inline_failure(cg, msg);
4378       }
4379     }
4380   }
4381   if (do_print_inlining) {
4382     ResourceMark rm;
4383     stringStream ss;
4384     for (int i = 0; i < _print_inlining_list->length(); i++) {
4385       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4386     }
4387     size_t end = ss.size();
4388     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4389     strncpy(_print_inlining_output, ss.base(), end+1);
4390     _print_inlining_output[end] = 0;
4391   }
4392 }
4393 
4394 void Compile::dump_print_inlining() {
4395   if (_print_inlining_output != NULL) {
4396     tty->print_raw(_print_inlining_output);
4397   }
4398 }
4399 
4400 void Compile::log_late_inline(CallGenerator* cg) {
4401   if (log() != NULL) {
4402     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4403                 cg->unique_id());
4404     JVMState* p = cg->call_node()->jvms();
4405     while (p != NULL) {
4406       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4407       p = p->caller();
4408     }
4409     log()->tail("late_inline");
4410   }
4411 }
4412 
4413 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4414   log_late_inline(cg);
4415   if (log() != NULL) {
4416     log()->inline_fail(msg);
4417   }
4418 }
4419 
4420 void Compile::log_inline_id(CallGenerator* cg) {
4421   if (log() != NULL) {
4422     // The LogCompilation tool needs a unique way to identify late
4423     // inline call sites. This id must be unique for this call site in
4424     // this compilation. Try to have it unique across compilations as
4425     // well because it can be convenient when grepping through the log
4426     // file.
4427     // Distinguish OSR compilations from others in case CICountOSR is
4428     // on.
4429     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4430     cg->set_unique_id(id);
4431     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4432   }
4433 }
4434 
4435 void Compile::log_inline_failure(const char* msg) {
4436   if (C->log() != NULL) {
4437     C->log()->inline_fail(msg);
4438   }
4439 }
4440 
4441 
4442 // Dump inlining replay data to the stream.
4443 // Don't change thread state and acquire any locks.
4444 void Compile::dump_inline_data(outputStream* out) {
4445   InlineTree* inl_tree = ilt();
4446   if (inl_tree != NULL) {
4447     out->print(" inline %d", inl_tree->count());
4448     inl_tree->dump_replay_data(out);
4449   }
4450 }
4451 
4452 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4453   if (n1->Opcode() < n2->Opcode())      return -1;
4454   else if (n1->Opcode() > n2->Opcode()) return 1;
4455 
4456   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4457   for (uint i = 1; i < n1->req(); i++) {
4458     if (n1->in(i) < n2->in(i))      return -1;
4459     else if (n1->in(i) > n2->in(i)) return 1;
4460   }
4461 
4462   return 0;
4463 }
4464 
4465 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4466   Node* n1 = *n1p;
4467   Node* n2 = *n2p;
4468 
4469   return cmp_expensive_nodes(n1, n2);
4470 }
4471 
4472 void Compile::sort_expensive_nodes() {
4473   if (!expensive_nodes_sorted()) {
4474     _expensive_nodes->sort(cmp_expensive_nodes);
4475   }
4476 }
4477 
4478 bool Compile::expensive_nodes_sorted() const {
4479   for (int i = 1; i < _expensive_nodes->length(); i++) {
4480     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4481       return false;
4482     }
4483   }
4484   return true;
4485 }
4486 
4487 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4488   if (_expensive_nodes->length() == 0) {
4489     return false;
4490   }
4491 
4492   assert(OptimizeExpensiveOps, "optimization off?");
4493 
4494   // Take this opportunity to remove dead nodes from the list
4495   int j = 0;
4496   for (int i = 0; i < _expensive_nodes->length(); i++) {
4497     Node* n = _expensive_nodes->at(i);
4498     if (!n->is_unreachable(igvn)) {
4499       assert(n->is_expensive(), "should be expensive");
4500       _expensive_nodes->at_put(j, n);
4501       j++;
4502     }
4503   }
4504   _expensive_nodes->trunc_to(j);
4505 
4506   // Then sort the list so that similar nodes are next to each other
4507   // and check for at least two nodes of identical kind with same data
4508   // inputs.
4509   sort_expensive_nodes();
4510 
4511   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4512     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4513       return true;
4514     }
4515   }
4516 
4517   return false;
4518 }
4519 
4520 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4521   if (_expensive_nodes->length() == 0) {
4522     return;
4523   }
4524 
4525   assert(OptimizeExpensiveOps, "optimization off?");
4526 
4527   // Sort to bring similar nodes next to each other and clear the
4528   // control input of nodes for which there's only a single copy.
4529   sort_expensive_nodes();
4530 
4531   int j = 0;
4532   int identical = 0;
4533   int i = 0;
4534   bool modified = false;
4535   for (; i < _expensive_nodes->length()-1; i++) {
4536     assert(j <= i, "can't write beyond current index");
4537     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4538       identical++;
4539       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4540       continue;
4541     }
4542     if (identical > 0) {
4543       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4544       identical = 0;
4545     } else {
4546       Node* n = _expensive_nodes->at(i);
4547       igvn.replace_input_of(n, 0, NULL);
4548       igvn.hash_insert(n);
4549       modified = true;
4550     }
4551   }
4552   if (identical > 0) {
4553     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4554   } else if (_expensive_nodes->length() >= 1) {
4555     Node* n = _expensive_nodes->at(i);
4556     igvn.replace_input_of(n, 0, NULL);
4557     igvn.hash_insert(n);
4558     modified = true;
4559   }
4560   _expensive_nodes->trunc_to(j);
4561   if (modified) {
4562     igvn.optimize();
4563   }
4564 }
4565 
4566 void Compile::add_expensive_node(Node * n) {
4567   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4568   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4569   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4570   if (OptimizeExpensiveOps) {
4571     _expensive_nodes->append(n);
4572   } else {
4573     // Clear control input and let IGVN optimize expensive nodes if
4574     // OptimizeExpensiveOps is off.
4575     n->set_req(0, NULL);
4576   }
4577 }
4578 
4579 /**
4580  * Remove the speculative part of types and clean up the graph
4581  */
4582 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4583   if (UseTypeSpeculation) {
4584     Unique_Node_List worklist;
4585     worklist.push(root());
4586     int modified = 0;
4587     // Go over all type nodes that carry a speculative type, drop the
4588     // speculative part of the type and enqueue the node for an igvn
4589     // which may optimize it out.
4590     for (uint next = 0; next < worklist.size(); ++next) {
4591       Node *n  = worklist.at(next);
4592       if (n->is_Type()) {
4593         TypeNode* tn = n->as_Type();
4594         const Type* t = tn->type();
4595         const Type* t_no_spec = t->remove_speculative();
4596         if (t_no_spec != t) {
4597           bool in_hash = igvn.hash_delete(n);
4598           assert(in_hash, "node should be in igvn hash table");
4599           tn->set_type(t_no_spec);
4600           igvn.hash_insert(n);
4601           igvn._worklist.push(n); // give it a chance to go away
4602           modified++;
4603         }
4604       }
4605       uint max = n->len();
4606       for( uint i = 0; i < max; ++i ) {
4607         Node *m = n->in(i);
4608         if (not_a_node(m))  continue;
4609         worklist.push(m);
4610       }
4611     }
4612     // Drop the speculative part of all types in the igvn's type table
4613     igvn.remove_speculative_types();
4614     if (modified > 0) {
4615       igvn.optimize();
4616     }
4617 #ifdef ASSERT
4618     // Verify that after the IGVN is over no speculative type has resurfaced
4619     worklist.clear();
4620     worklist.push(root());
4621     for (uint next = 0; next < worklist.size(); ++next) {
4622       Node *n  = worklist.at(next);
4623       const Type* t = igvn.type_or_null(n);
4624       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4625       if (n->is_Type()) {
4626         t = n->as_Type()->type();
4627         assert(t == t->remove_speculative(), "no more speculative types");
4628       }
4629       uint max = n->len();
4630       for( uint i = 0; i < max; ++i ) {
4631         Node *m = n->in(i);
4632         if (not_a_node(m))  continue;
4633         worklist.push(m);
4634       }
4635     }
4636     igvn.check_no_speculative_types();
4637 #endif
4638   }
4639 }
4640 
4641 // Auxiliary method to support randomized stressing/fuzzing.
4642 //
4643 // This method can be called the arbitrary number of times, with current count
4644 // as the argument. The logic allows selecting a single candidate from the
4645 // running list of candidates as follows:
4646 //    int count = 0;
4647 //    Cand* selected = null;
4648 //    while(cand = cand->next()) {
4649 //      if (randomized_select(++count)) {
4650 //        selected = cand;
4651 //      }
4652 //    }
4653 //
4654 // Including count equalizes the chances any candidate is "selected".
4655 // This is useful when we don't have the complete list of candidates to choose
4656 // from uniformly. In this case, we need to adjust the randomicity of the
4657 // selection, or else we will end up biasing the selection towards the latter
4658 // candidates.
4659 //
4660 // Quick back-envelope calculation shows that for the list of n candidates
4661 // the equal probability for the candidate to persist as "best" can be
4662 // achieved by replacing it with "next" k-th candidate with the probability
4663 // of 1/k. It can be easily shown that by the end of the run, the
4664 // probability for any candidate is converged to 1/n, thus giving the
4665 // uniform distribution among all the candidates.
4666 //
4667 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4668 #define RANDOMIZED_DOMAIN_POW 29
4669 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4670 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4671 bool Compile::randomized_select(int count) {
4672   assert(count > 0, "only positive");
4673   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4674 }
4675 
4676 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4677 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4678 
4679 void NodeCloneInfo::dump() const {
4680   tty->print(" {%d:%d} ", idx(), gen());
4681 }
4682 
4683 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4684   uint64_t val = value(old->_idx);
4685   NodeCloneInfo cio(val);
4686   assert(val != 0, "old node should be in the map");
4687   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4688   insert(nnn->_idx, cin.get());
4689 #ifndef PRODUCT
4690   if (is_debug()) {
4691     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4692   }
4693 #endif
4694 }
4695 
4696 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4697   NodeCloneInfo cio(value(old->_idx));
4698   if (cio.get() == 0) {
4699     cio.set(old->_idx, 0);
4700     insert(old->_idx, cio.get());
4701 #ifndef PRODUCT
4702     if (is_debug()) {
4703       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4704     }
4705 #endif
4706   }
4707   clone(old, nnn, gen);
4708 }
4709 
4710 int CloneMap::max_gen() const {
4711   int g = 0;
4712   DictI di(_dict);
4713   for(; di.test(); ++di) {
4714     int t = gen(di._key);
4715     if (g < t) {
4716       g = t;
4717 #ifndef PRODUCT
4718       if (is_debug()) {
4719         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4720       }
4721 #endif
4722     }
4723   }
4724   return g;
4725 }
4726 
4727 void CloneMap::dump(node_idx_t key) const {
4728   uint64_t val = value(key);
4729   if (val != 0) {
4730     NodeCloneInfo ni(val);
4731     ni.dump();
4732   }
4733 }