1 /*
   2  * Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "opto/compile.hpp"
  26 #include "opto/castnode.hpp"
  27 #include "opto/graphKit.hpp"
  28 #include "opto/idealKit.hpp"
  29 #include "opto/loopnode.hpp"
  30 #include "opto/macro.hpp"
  31 #include "opto/node.hpp"
  32 #include "opto/type.hpp"
  33 #include "utilities/macros.hpp"
  34 #include "gc/z/c2/zBarrierSetC2.hpp"
  35 #include "gc/z/zThreadLocalData.hpp"
  36 #include "gc/z/zBarrierSetRuntime.hpp"
  37 
  38 ZBarrierSetC2State::ZBarrierSetC2State(Arena* comp_arena)
  39   : _load_barrier_nodes(new (comp_arena) GrowableArray<LoadBarrierNode*>(comp_arena, 8,  0, NULL)) {}
  40 
  41 int ZBarrierSetC2State::load_barrier_count() const {
  42   return _load_barrier_nodes->length();
  43 }
  44 
  45 void ZBarrierSetC2State::add_load_barrier_node(LoadBarrierNode * n) {
  46   assert(!_load_barrier_nodes->contains(n), " duplicate entry in expand list");
  47   _load_barrier_nodes->append(n);
  48 }
  49 
  50 void ZBarrierSetC2State::remove_load_barrier_node(LoadBarrierNode * n) {
  51   // this function may be called twice for a node so check
  52   // that the node is in the array before attempting to remove it
  53   if (_load_barrier_nodes->contains(n)) {
  54     _load_barrier_nodes->remove(n);
  55   }
  56 }
  57 
  58 LoadBarrierNode* ZBarrierSetC2State::load_barrier_node(int idx) const {
  59   return _load_barrier_nodes->at(idx);
  60 }
  61 
  62 void* ZBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
  63   return new(comp_arena) ZBarrierSetC2State(comp_arena);
  64 }
  65 
  66 ZBarrierSetC2State* ZBarrierSetC2::state() const {
  67   return reinterpret_cast<ZBarrierSetC2State*>(Compile::current()->barrier_set_state());
  68 }
  69 
  70 bool ZBarrierSetC2::is_gc_barrier_node(Node* node) const {
  71   // 1. This step follows potential oop projections of a load barrier before expansion
  72   if (node->is_Proj()) {
  73     node = node->in(0);
  74   }
  75 
  76   // 2. This step checks for unexpanded load barriers
  77   if (node->is_LoadBarrier()) {
  78     return true;
  79   }
  80 
  81   // 3. This step checks for the phi corresponding to an optimized load barrier expansion
  82   if (node->is_Phi()) {
  83     PhiNode* phi = node->as_Phi();
  84     Node* n = phi->in(1);
  85     if (n != NULL && (n->is_LoadBarrierSlowReg() ||  n->is_LoadBarrierWeakSlowReg())) {
  86       return true;
  87     }
  88   }
  89 
  90   return false;
  91 }
  92 
  93 void ZBarrierSetC2::register_potential_barrier_node(Node* node) const {
  94   if (node->is_LoadBarrier()) {
  95     state()->add_load_barrier_node(node->as_LoadBarrier());
  96   }
  97 }
  98 
  99 void ZBarrierSetC2::unregister_potential_barrier_node(Node* node) const {
 100   if (node->is_LoadBarrier()) {
 101     state()->remove_load_barrier_node(node->as_LoadBarrier());
 102   }
 103 }
 104 
 105 void ZBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const {
 106   // Remove useless LoadBarrier nodes
 107   ZBarrierSetC2State* s = state();
 108   for (int i = s->load_barrier_count()-1; i >= 0; i--) {
 109     LoadBarrierNode* n = s->load_barrier_node(i);
 110     if (!useful.member(n)) {
 111       unregister_potential_barrier_node(n);
 112     }
 113   }
 114 }
 115 
 116 void ZBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
 117   if (node->is_LoadBarrier() && !node->as_LoadBarrier()->has_true_uses()) {
 118     igvn->_worklist.push(node);
 119   }
 120 }
 121 
 122 void ZBarrierSetC2::find_dominating_barriers(PhaseIterGVN& igvn) {
 123   // Look for dominating barriers on the same address only once all
 124   // other loop opts are over: loop opts may cause a safepoint to be
 125   // inserted between a barrier and its dominating barrier.
 126   Compile* C = Compile::current();
 127   ZBarrierSetC2* bs = (ZBarrierSetC2*)BarrierSet::barrier_set()->barrier_set_c2();
 128   ZBarrierSetC2State* s = bs->state();
 129   if (s->load_barrier_count() >= 2) {
 130     Compile::TracePhase tp("idealLoop", &C->timers[Phase::_t_idealLoop]);
 131     PhaseIdealLoop ideal_loop(igvn, LoopOptsLastRound);
 132     if (C->major_progress()) C->print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
 133   }
 134 }
 135 
 136 void ZBarrierSetC2::add_users_to_worklist(Unique_Node_List* worklist) const {
 137   // Permanent temporary workaround
 138   // Loadbarriers may have non-obvious dead uses keeping them alive during parsing. The use is
 139   // removed by RemoveUseless (after parsing, before optimize) but the barriers won't be added to
 140   // the worklist. Unless we add them explicitly they are not guaranteed to end up there.
 141   ZBarrierSetC2State* s = state();
 142 
 143   for (int i = 0; i < s->load_barrier_count(); i++) {
 144     LoadBarrierNode* n = s->load_barrier_node(i);
 145     worklist->push(n);
 146   }
 147 }
 148 
 149 const TypeFunc* ZBarrierSetC2::load_barrier_Type() const {
 150   const Type** fields;
 151 
 152   // Create input types (domain)
 153   fields = TypeTuple::fields(2);
 154   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
 155   fields[TypeFunc::Parms+1] = TypeOopPtr::BOTTOM;
 156   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 157 
 158   // Create result type (range)
 159   fields = TypeTuple::fields(1);
 160   fields[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM;
 161   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 162 
 163   return TypeFunc::make(domain, range);
 164 }
 165 
 166 // == LoadBarrierNode ==
 167 
 168 LoadBarrierNode::LoadBarrierNode(Compile* C,
 169                                  Node* c,
 170                                  Node* mem,
 171                                  Node* val,
 172                                  Node* adr,
 173                                  bool weak,
 174                                  bool writeback,
 175                                  bool oop_reload_allowed) :
 176     MultiNode(Number_of_Inputs),
 177     _weak(weak),
 178     _writeback(writeback),
 179     _oop_reload_allowed(oop_reload_allowed) {
 180   init_req(Control, c);
 181   init_req(Memory, mem);
 182   init_req(Oop, val);
 183   init_req(Address, adr);
 184   init_req(Similar, C->top());
 185 
 186   init_class_id(Class_LoadBarrier);
 187   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 188   bs->register_potential_barrier_node(this);
 189 }
 190 
 191 const Type *LoadBarrierNode::bottom_type() const {
 192   const Type** floadbarrier = (const Type **)(Compile::current()->type_arena()->Amalloc_4((Number_of_Outputs)*sizeof(Type*)));
 193   Node* in_oop = in(Oop);
 194   floadbarrier[Control] = Type::CONTROL;
 195   floadbarrier[Memory] = Type::MEMORY;
 196   floadbarrier[Oop] = in_oop == NULL ? Type::TOP : in_oop->bottom_type();
 197   return TypeTuple::make(Number_of_Outputs, floadbarrier);
 198 }
 199 
 200 const Type *LoadBarrierNode::Value(PhaseGVN *phase) const {
 201   const Type** floadbarrier = (const Type **)(phase->C->type_arena()->Amalloc_4((Number_of_Outputs)*sizeof(Type*)));
 202   const Type* val_t = phase->type(in(Oop));
 203   floadbarrier[Control] = Type::CONTROL;
 204   floadbarrier[Memory] = Type::MEMORY;
 205   floadbarrier[Oop] = val_t;
 206   return TypeTuple::make(Number_of_Outputs, floadbarrier);
 207 }
 208 
 209 bool LoadBarrierNode::is_dominator(PhaseIdealLoop* phase, bool linear_only, Node *d, Node *n) {
 210   if (phase != NULL) {
 211     return phase->is_dominator(d, n);
 212   }
 213 
 214   for (int i = 0; i < 10 && n != NULL; i++) {
 215     n = IfNode::up_one_dom(n, linear_only);
 216     if (n == d) {
 217       return true;
 218     }
 219   }
 220 
 221   return false;
 222 }
 223 
 224 LoadBarrierNode* LoadBarrierNode::has_dominating_barrier(PhaseIdealLoop* phase, bool linear_only, bool look_for_similar) {
 225   Node* val = in(LoadBarrierNode::Oop);
 226   if (in(Similar)->is_Proj() && in(Similar)->in(0)->is_LoadBarrier()) {
 227     LoadBarrierNode* lb = in(Similar)->in(0)->as_LoadBarrier();
 228     assert(lb->in(Address) == in(Address), "");
 229     // Load barrier on Similar edge dominates so if it now has the Oop field it can replace this barrier.
 230     if (lb->in(Oop) == in(Oop)) {
 231       return lb;
 232     }
 233     // Follow chain of load barrier through Similar edges
 234     while (!lb->in(Similar)->is_top()) {
 235       lb = lb->in(Similar)->in(0)->as_LoadBarrier();
 236       assert(lb->in(Address) == in(Address), "");
 237     }
 238     if (lb != in(Similar)->in(0)) {
 239       return lb;
 240     }
 241   }
 242   for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
 243     Node* u = val->fast_out(i);
 244     if (u != this && u->is_LoadBarrier() && u->in(Oop) == val && u->as_LoadBarrier()->has_true_uses()) {
 245       Node* this_ctrl = in(LoadBarrierNode::Control);
 246       Node* other_ctrl = u->in(LoadBarrierNode::Control);
 247       if (is_dominator(phase, linear_only, other_ctrl, this_ctrl)) {
 248         return u->as_LoadBarrier();
 249       }
 250     }
 251   }
 252 
 253   if (ZVerifyLoadBarriers || can_be_eliminated()) {
 254     return NULL;
 255   }
 256 
 257   if (!look_for_similar) {
 258     return NULL;
 259   }
 260 
 261   Node* addr = in(LoadBarrierNode::Address);
 262   for (DUIterator_Fast imax, i = addr->fast_outs(imax); i < imax; i++) {
 263     Node* u = addr->fast_out(i);
 264     if (u != this && u->is_LoadBarrier() && u->as_LoadBarrier()->has_true_uses()) {
 265       Node* this_ctrl = in(LoadBarrierNode::Control);
 266       Node* other_ctrl = u->in(LoadBarrierNode::Control);
 267       if (is_dominator(phase, linear_only, other_ctrl, this_ctrl)) {
 268         ResourceMark rm;
 269         Unique_Node_List wq;
 270         wq.push(in(LoadBarrierNode::Control));
 271         bool ok = true;
 272         bool dom_found = false;
 273         for (uint next = 0; next < wq.size(); ++next) {
 274           Node *n = wq.at(next);
 275           if (n->is_top()) {
 276             return NULL;
 277           }
 278           assert(n->is_CFG(), "");
 279           if (n->is_SafePoint()) {
 280             ok = false;
 281             break;
 282           }
 283           if (n == u) {
 284             dom_found = true;
 285             continue;
 286           }
 287           if (n->is_Region()) {
 288             for (uint i = 1; i < n->req(); i++) {
 289               Node* m = n->in(i);
 290               if (m != NULL) {
 291                 wq.push(m);
 292               }
 293             }
 294           } else {
 295             Node* m = n->in(0);
 296             if (m != NULL) {
 297               wq.push(m);
 298             }
 299           }
 300         }
 301         if (ok) {
 302           assert(dom_found, "");
 303           return u->as_LoadBarrier();;
 304         }
 305         break;
 306       }
 307     }
 308   }
 309 
 310   return NULL;
 311 }
 312 
 313 void LoadBarrierNode::push_dominated_barriers(PhaseIterGVN* igvn) const {
 314   // Change to that barrier may affect a dominated barrier so re-push those
 315   Node* val = in(LoadBarrierNode::Oop);
 316 
 317   for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
 318     Node* u = val->fast_out(i);
 319     if (u != this && u->is_LoadBarrier() && u->in(Oop) == val) {
 320       Node* this_ctrl = in(Control);
 321       Node* other_ctrl = u->in(Control);
 322       if (is_dominator(NULL, false, this_ctrl, other_ctrl)) {
 323         igvn->_worklist.push(u);
 324       }
 325     }
 326 
 327     Node* addr = in(LoadBarrierNode::Address);
 328     for (DUIterator_Fast imax, i = addr->fast_outs(imax); i < imax; i++) {
 329       Node* u = addr->fast_out(i);
 330       if (u != this && u->is_LoadBarrier() && u->in(Similar)->is_top()) {
 331         Node* this_ctrl = in(Control);
 332         Node* other_ctrl = u->in(Control);
 333         if (is_dominator(NULL, false, this_ctrl, other_ctrl)) {
 334           igvn->_worklist.push(u);
 335         }
 336       }
 337     }
 338   }
 339 }
 340 
 341 Node *LoadBarrierNode::Identity(PhaseGVN *phase) {
 342   if (!phase->C->directive()->ZOptimizeLoadBarriersOption) {
 343     return this;
 344   }
 345 
 346   bool redundant_addr = false;
 347   LoadBarrierNode* dominating_barrier = has_dominating_barrier(NULL, true, false);
 348   if (dominating_barrier != NULL) {
 349     assert(dominating_barrier->in(Oop) == in(Oop), "");
 350     return dominating_barrier;
 351   }
 352 
 353   return this;
 354 }
 355 
 356 Node *LoadBarrierNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 357   if (remove_dead_region(phase, can_reshape)) {
 358     return this;
 359   }
 360 
 361   Node* val = in(Oop);
 362   Node* mem = in(Memory);
 363   Node* ctrl = in(Control);
 364   Node* adr = in(Address);
 365   assert(val->Opcode() != Op_LoadN, "");
 366 
 367   if (mem->is_MergeMem()) {
 368     Node* new_mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
 369     set_req(Memory, new_mem);
 370     if (mem->outcnt() == 0 && can_reshape) {
 371       phase->is_IterGVN()->_worklist.push(mem);
 372     }
 373 
 374     return this;
 375   }
 376 
 377   bool optimizeLoadBarriers = phase->C->directive()->ZOptimizeLoadBarriersOption;
 378   LoadBarrierNode* dominating_barrier = optimizeLoadBarriers ? has_dominating_barrier(NULL, !can_reshape, !phase->C->major_progress()) : NULL;
 379   if (dominating_barrier != NULL && dominating_barrier->in(Oop) != in(Oop)) {
 380     assert(in(Address) == dominating_barrier->in(Address), "");
 381     set_req(Similar, dominating_barrier->proj_out(Oop));
 382     return this;
 383   }
 384 
 385   bool eliminate = (optimizeLoadBarriers && !(val->is_Phi() || val->Opcode() == Op_LoadP || val->Opcode() == Op_GetAndSetP || val->is_DecodeN())) ||
 386                    (can_reshape && (dominating_barrier != NULL || !has_true_uses()));
 387 
 388   if (eliminate) {
 389     if (can_reshape) {
 390       PhaseIterGVN* igvn = phase->is_IterGVN();
 391       Node* out_ctrl = proj_out_or_null(Control);
 392       Node* out_res = proj_out_or_null(Oop);
 393 
 394       if (out_ctrl != NULL) {
 395         igvn->replace_node(out_ctrl, ctrl);
 396       }
 397 
 398       // That transformation may cause the Similar edge on the load barrier to be invalid
 399       fix_similar_in_uses(igvn);
 400       if (out_res != NULL) {
 401         if (dominating_barrier != NULL) {
 402           igvn->replace_node(out_res, dominating_barrier->proj_out(Oop));
 403         } else {
 404           igvn->replace_node(out_res, val);
 405         }
 406       }
 407     }
 408 
 409     return new ConINode(TypeInt::ZERO);
 410   }
 411 
 412   // If the Similar edge is no longer a load barrier, clear it
 413   Node* similar = in(Similar);
 414   if (!similar->is_top() && !(similar->is_Proj() && similar->in(0)->is_LoadBarrier())) {
 415     set_req(Similar, phase->C->top());
 416     return this;
 417   }
 418 
 419   if (can_reshape) {
 420     // If this barrier is linked through the Similar edge by a
 421     // dominated barrier and both barriers have the same Oop field,
 422     // the dominated barrier can go away, so push it for reprocessing.
 423     // We also want to avoid a barrier to depend on another dominating
 424     // barrier through its Similar edge that itself depend on another
 425     // barrier through its Similar edge and rather have the first
 426     // depend on the third.
 427     PhaseIterGVN* igvn = phase->is_IterGVN();
 428     Node* out_res = proj_out(Oop);
 429     for (DUIterator_Fast imax, i = out_res->fast_outs(imax); i < imax; i++) {
 430       Node* u = out_res->fast_out(i);
 431       if (u->is_LoadBarrier() && u->in(Similar) == out_res &&
 432           (u->in(Oop) == val || !u->in(Similar)->is_top())) {
 433         igvn->_worklist.push(u);
 434       }
 435     }
 436 
 437     push_dominated_barriers(igvn);
 438   }
 439 
 440   return NULL;
 441 }
 442 
 443 void LoadBarrierNode::fix_similar_in_uses(PhaseIterGVN* igvn) {
 444   Node* out_res = proj_out_or_null(Oop);
 445   if (out_res == NULL) {
 446     return;
 447   }
 448 
 449   for (DUIterator_Fast imax, i = out_res->fast_outs(imax); i < imax; i++) {
 450     Node* u = out_res->fast_out(i);
 451     if (u->is_LoadBarrier() && u->in(Similar) == out_res) {
 452       igvn->replace_input_of(u, Similar, igvn->C->top());
 453       --i;
 454       --imax;
 455     }
 456   }
 457 }
 458 
 459 bool LoadBarrierNode::has_true_uses() const {
 460   Node* out_res = proj_out_or_null(Oop);
 461   if (out_res == NULL) {
 462     return false;
 463   }
 464 
 465   for (DUIterator_Fast imax, i = out_res->fast_outs(imax); i < imax; i++) {
 466     Node* u = out_res->fast_out(i);
 467     if (!u->is_LoadBarrier() || u->in(Similar) != out_res) {
 468       return true;
 469     }
 470   }
 471 
 472   return false;
 473 }
 474 
 475 // == Accesses ==
 476 
 477 Node* ZBarrierSetC2::make_cas_loadbarrier(C2AtomicAccess& access) const {
 478   assert(!UseCompressedOops, "Not allowed");
 479   CompareAndSwapNode* cas = (CompareAndSwapNode*)access.raw_access();
 480   PhaseGVN& gvn = access.kit()->gvn();
 481   Compile* C = Compile::current();
 482   GraphKit* kit = access.kit();
 483 
 484   Node* in_ctrl     = cas->in(MemNode::Control);
 485   Node* in_mem      = cas->in(MemNode::Memory);
 486   Node* in_adr      = cas->in(MemNode::Address);
 487   Node* in_val      = cas->in(MemNode::ValueIn);
 488   Node* in_expected = cas->in(LoadStoreConditionalNode::ExpectedIn);
 489 
 490   float likely                   = PROB_LIKELY(0.999);
 491 
 492   const TypePtr *adr_type        = gvn.type(in_adr)->isa_ptr();
 493   Compile::AliasType* alias_type = C->alias_type(adr_type);
 494   int alias_idx                  = C->get_alias_index(adr_type);
 495 
 496   // Outer check - true: continue, false: load and check
 497   Node* region   = new RegionNode(3);
 498   Node* phi      = new PhiNode(region, TypeInt::BOOL);
 499   Node* phi_mem  = new PhiNode(region, Type::MEMORY, adr_type);
 500 
 501   // Inner check - is the healed ref equal to the expected
 502   Node* region2  = new RegionNode(3);
 503   Node* phi2     = new PhiNode(region2, TypeInt::BOOL);
 504   Node* phi_mem2 = new PhiNode(region2, Type::MEMORY, adr_type);
 505 
 506   // CAS node returns 0 or 1
 507   Node* cmp     = gvn.transform(new CmpINode(cas, kit->intcon(0)));
 508   Node* bol     = gvn.transform(new BoolNode(cmp, BoolTest::ne))->as_Bool();
 509   IfNode* iff   = gvn.transform(new IfNode(in_ctrl, bol, likely, COUNT_UNKNOWN))->as_If();
 510   Node* then    = gvn.transform(new IfTrueNode(iff));
 511   Node* elsen   = gvn.transform(new IfFalseNode(iff));
 512 
 513   Node* scmemproj1   = gvn.transform(new SCMemProjNode(cas));
 514 
 515   kit->set_memory(scmemproj1, alias_idx);
 516   phi_mem->init_req(1, scmemproj1);
 517   phi_mem2->init_req(2, scmemproj1);
 518 
 519   // CAS fail - reload and heal oop
 520   Node* reload      = kit->make_load(elsen, in_adr, TypeOopPtr::BOTTOM, T_OBJECT, MemNode::unordered);
 521   Node* barrier     = gvn.transform(new LoadBarrierNode(C, elsen, scmemproj1, reload, in_adr, false, true, false));
 522   Node* barrierctrl = gvn.transform(new ProjNode(barrier, LoadBarrierNode::Control));
 523   Node* barrierdata = gvn.transform(new ProjNode(barrier, LoadBarrierNode::Oop));
 524 
 525   // Check load
 526   Node* tmpX    = gvn.transform(new CastP2XNode(NULL, barrierdata));
 527   Node* in_expX = gvn.transform(new CastP2XNode(NULL, in_expected));
 528   Node* cmp2    = gvn.transform(new CmpXNode(tmpX, in_expX));
 529   Node *bol2    = gvn.transform(new BoolNode(cmp2, BoolTest::ne))->as_Bool();
 530   IfNode* iff2  = gvn.transform(new IfNode(barrierctrl, bol2, likely, COUNT_UNKNOWN))->as_If();
 531   Node* then2   = gvn.transform(new IfTrueNode(iff2));
 532   Node* elsen2  = gvn.transform(new IfFalseNode(iff2));
 533 
 534   // redo CAS
 535   Node* cas2       = gvn.transform(new CompareAndSwapPNode(elsen2, kit->memory(alias_idx), in_adr, in_val, in_expected, cas->order()));
 536   Node* scmemproj2 = gvn.transform(new SCMemProjNode(cas2));
 537   kit->set_control(elsen2);
 538   kit->set_memory(scmemproj2, alias_idx);
 539 
 540   // Merge inner flow - check if healed oop was equal too expected.
 541   region2->set_req(1, kit->control());
 542   region2->set_req(2, then2);
 543   phi2->set_req(1, cas2);
 544   phi2->set_req(2, kit->intcon(0));
 545   phi_mem2->init_req(1, scmemproj2);
 546   kit->set_memory(phi_mem2, alias_idx);
 547 
 548   // Merge outer flow - then check if first CAS succeeded
 549   region->set_req(1, then);
 550   region->set_req(2, region2);
 551   phi->set_req(1, kit->intcon(1));
 552   phi->set_req(2, phi2);
 553   phi_mem->init_req(2, phi_mem2);
 554   kit->set_memory(phi_mem, alias_idx);
 555 
 556   gvn.transform(region2);
 557   gvn.transform(phi2);
 558   gvn.transform(phi_mem2);
 559   gvn.transform(region);
 560   gvn.transform(phi);
 561   gvn.transform(phi_mem);
 562 
 563   kit->set_control(region);
 564   kit->insert_mem_bar(Op_MemBarCPUOrder);
 565 
 566   return phi;
 567 }
 568 
 569 Node* ZBarrierSetC2::make_cmpx_loadbarrier(C2AtomicAccess& access) const {
 570   CompareAndExchangePNode* cmpx = (CompareAndExchangePNode*)access.raw_access();
 571   GraphKit* kit = access.kit();
 572   PhaseGVN& gvn = kit->gvn();
 573   Compile* C = Compile::current();
 574 
 575   Node* in_ctrl     = cmpx->in(MemNode::Control);
 576   Node* in_mem      = cmpx->in(MemNode::Memory);
 577   Node* in_adr      = cmpx->in(MemNode::Address);
 578   Node* in_val      = cmpx->in(MemNode::ValueIn);
 579   Node* in_expected = cmpx->in(LoadStoreConditionalNode::ExpectedIn);
 580 
 581   float likely                   = PROB_LIKELY(0.999);
 582 
 583   const TypePtr *adr_type        = cmpx->get_ptr_type();
 584   Compile::AliasType* alias_type = C->alias_type(adr_type);
 585   int alias_idx                  = C->get_alias_index(adr_type);
 586 
 587   // Outer check - true: continue, false: load and check
 588   Node* region  = new RegionNode(3);
 589   Node* phi     = new PhiNode(region, adr_type);
 590 
 591   // Inner check - is the healed ref equal to the expected
 592   Node* region2 = new RegionNode(3);
 593   Node* phi2    = new PhiNode(region2, adr_type);
 594 
 595   // Check if cmpx succeeded
 596   Node* cmp     = gvn.transform(new CmpPNode(cmpx, in_expected));
 597   Node* bol     = gvn.transform(new BoolNode(cmp, BoolTest::eq))->as_Bool();
 598   IfNode* iff   = gvn.transform(new IfNode(in_ctrl, bol, likely, COUNT_UNKNOWN))->as_If();
 599   Node* then    = gvn.transform(new IfTrueNode(iff));
 600   Node* elsen   = gvn.transform(new IfFalseNode(iff));
 601 
 602   Node* scmemproj1  = gvn.transform(new SCMemProjNode(cmpx));
 603   kit->set_memory(scmemproj1, alias_idx);
 604 
 605   // CAS fail - reload and heal oop
 606   Node* reload      = kit->make_load(elsen, in_adr, TypeOopPtr::BOTTOM, T_OBJECT, MemNode::unordered);
 607   Node* barrier     = gvn.transform(new LoadBarrierNode(C, elsen, scmemproj1, reload, in_adr, false, true, false));
 608   Node* barrierctrl = gvn.transform(new ProjNode(barrier, LoadBarrierNode::Control));
 609   Node* barrierdata = gvn.transform(new ProjNode(barrier, LoadBarrierNode::Oop));
 610 
 611   // Check load
 612   Node* tmpX    = gvn.transform(new CastP2XNode(NULL, barrierdata));
 613   Node* in_expX = gvn.transform(new CastP2XNode(NULL, in_expected));
 614   Node* cmp2    = gvn.transform(new CmpXNode(tmpX, in_expX));
 615   Node *bol2    = gvn.transform(new BoolNode(cmp2, BoolTest::ne))->as_Bool();
 616   IfNode* iff2  = gvn.transform(new IfNode(barrierctrl, bol2, likely, COUNT_UNKNOWN))->as_If();
 617   Node* then2   = gvn.transform(new IfTrueNode(iff2));
 618   Node* elsen2  = gvn.transform(new IfFalseNode(iff2));
 619 
 620   // Redo CAS
 621   Node* cmpx2      = gvn.transform(new CompareAndExchangePNode(elsen2, kit->memory(alias_idx), in_adr, in_val, in_expected, adr_type, cmpx->get_ptr_type(), cmpx->order()));
 622   Node* scmemproj2 = gvn.transform(new SCMemProjNode(cmpx2));
 623   kit->set_control(elsen2);
 624   kit->set_memory(scmemproj2, alias_idx);
 625 
 626   // Merge inner flow - check if healed oop was equal too expected.
 627   region2->set_req(1, kit->control());
 628   region2->set_req(2, then2);
 629   phi2->set_req(1, cmpx2);
 630   phi2->set_req(2, barrierdata);
 631 
 632   // Merge outer flow - then check if first cas succeeded
 633   region->set_req(1, then);
 634   region->set_req(2, region2);
 635   phi->set_req(1, cmpx);
 636   phi->set_req(2, phi2);
 637 
 638   gvn.transform(region2);
 639   gvn.transform(phi2);
 640   gvn.transform(region);
 641   gvn.transform(phi);
 642 
 643   kit->set_control(region);
 644   kit->set_memory(in_mem, alias_idx);
 645   kit->insert_mem_bar(Op_MemBarCPUOrder);
 646 
 647   return phi;
 648 }
 649 
 650 Node* ZBarrierSetC2::load_barrier(GraphKit* kit, Node* val, Node* adr, bool weak, bool writeback, bool oop_reload_allowed) const {
 651   PhaseGVN& gvn = kit->gvn();
 652   Node* barrier = new LoadBarrierNode(Compile::current(), kit->control(), kit->memory(TypeRawPtr::BOTTOM), val, adr, weak, writeback, oop_reload_allowed);
 653   Node* transformed_barrier = gvn.transform(barrier);
 654 
 655   if (transformed_barrier->is_LoadBarrier()) {
 656     if (barrier == transformed_barrier) {
 657       kit->set_control(gvn.transform(new ProjNode(barrier, LoadBarrierNode::Control)));
 658     }
 659     Node* result = gvn.transform(new ProjNode(transformed_barrier, LoadBarrierNode::Oop));
 660     assert(is_gc_barrier_node(result), "sanity");
 661     assert(step_over_gc_barrier(result) == val, "sanity");
 662     return result;
 663   } else {
 664     return val;
 665   }
 666 }
 667 
 668 static bool barrier_needed(C2Access access) {
 669   return ZBarrierSet::barrier_needed(access.decorators(), access.type());
 670 }
 671 
 672 Node* ZBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 673   Node* p = BarrierSetC2::load_at_resolved(access, val_type);
 674   if (!barrier_needed(access)) {
 675     return p;
 676   }
 677 
 678   bool weak = (access.decorators() & ON_WEAK_OOP_REF) != 0;
 679 
 680   GraphKit* kit = access.kit();
 681   PhaseGVN& gvn = kit->gvn();
 682   Node* adr = access.addr().node();
 683   Node* heap_base_oop = access.base();
 684   bool unsafe = (access.decorators() & C2_UNSAFE_ACCESS) != 0;
 685   if (unsafe) {
 686     if (!ZVerifyLoadBarriers) {
 687       p = load_barrier(kit, p, adr);
 688     } else {
 689       if (!TypePtr::NULL_PTR->higher_equal(gvn.type(heap_base_oop))) {
 690         p = load_barrier(kit, p, adr);
 691       } else {
 692         IdealKit ideal(kit);
 693         IdealVariable res(ideal);
 694 #define __ ideal.
 695         __ declarations_done();
 696         __ set(res, p);
 697         __ if_then(heap_base_oop, BoolTest::ne, kit->null(), PROB_UNLIKELY(0.999)); {
 698           kit->sync_kit(ideal);
 699           p = load_barrier(kit, p, adr);
 700           __ set(res, p);
 701           __ sync_kit(kit);
 702         } __ end_if();
 703         kit->final_sync(ideal);
 704         p = __ value(res);
 705 #undef __
 706       }
 707     }
 708     return p;
 709   } else {
 710     return load_barrier(access.kit(), p, access.addr().node(), weak, true, true);
 711   }
 712 }
 713 
 714 Node* ZBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicAccess& access, Node* expected_val,
 715                                                     Node* new_val, const Type* val_type) const {
 716   Node* result = BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, val_type);
 717   if (!barrier_needed(access)) {
 718     return result;
 719   }
 720 
 721   access.set_needs_pinning(false);
 722   return make_cmpx_loadbarrier(access);
 723 }
 724 
 725 Node* ZBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicAccess& access, Node* expected_val,
 726                                                      Node* new_val, const Type* value_type) const {
 727   Node* result = BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
 728   if (!barrier_needed(access)) {
 729     return result;
 730   }
 731 
 732   Node* load_store = access.raw_access();
 733   bool weak_cas = (access.decorators() & C2_WEAK_CMPXCHG) != 0;
 734   bool expected_is_null = (expected_val->get_ptr_type() == TypePtr::NULL_PTR);
 735 
 736   if (!expected_is_null) {
 737     if (weak_cas) {
 738       access.set_needs_pinning(false);
 739       load_store = make_cas_loadbarrier(access);
 740     } else {
 741       access.set_needs_pinning(false);
 742       load_store = make_cas_loadbarrier(access);
 743     }
 744   }
 745 
 746   return load_store;
 747 }
 748 
 749 Node* ZBarrierSetC2::atomic_xchg_at_resolved(C2AtomicAccess& access, Node* new_val, const Type* val_type) const {
 750   Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, new_val, val_type);
 751   if (!barrier_needed(access)) {
 752     return result;
 753   }
 754 
 755   Node* load_store = access.raw_access();
 756   Node* adr = access.addr().node();
 757 
 758   return load_barrier(access.kit(), load_store, adr, false, false, false);
 759 }
 760 
 761 // == Macro Expansion ==
 762 
 763 void ZBarrierSetC2::expand_loadbarrier_node(PhaseMacroExpand* phase, LoadBarrierNode* barrier) const {
 764   Node* in_ctrl = barrier->in(LoadBarrierNode::Control);
 765   Node* in_mem  = barrier->in(LoadBarrierNode::Memory);
 766   Node* in_val  = barrier->in(LoadBarrierNode::Oop);
 767   Node* in_adr  = barrier->in(LoadBarrierNode::Address);
 768 
 769   Node* out_ctrl = barrier->proj_out(LoadBarrierNode::Control);
 770   Node* out_res  = barrier->proj_out(LoadBarrierNode::Oop);
 771 
 772   PhaseIterGVN &igvn = phase->igvn();
 773 
 774   if (ZVerifyLoadBarriers) {
 775     igvn.replace_node(out_res, in_val);
 776     igvn.replace_node(out_ctrl, in_ctrl);
 777     return;
 778   }
 779 
 780   if (barrier->can_be_eliminated()) {
 781     // Clone and pin the load for this barrier below the dominating
 782     // barrier: the load cannot be allowed to float above the
 783     // dominating barrier
 784     Node* load = in_val;
 785 
 786     if (load->is_Load()) {
 787       Node* new_load = load->clone();
 788       Node* addp = new_load->in(MemNode::Address);
 789       assert(addp->is_AddP() || addp->is_Phi() || addp->is_Load(), "bad address");
 790       Node* cast = new CastPPNode(addp, igvn.type(addp), true);
 791       Node* ctrl = NULL;
 792       Node* similar = barrier->in(LoadBarrierNode::Similar);
 793       if (similar->is_Phi()) {
 794         // already expanded
 795         ctrl = similar->in(0);
 796       } else {
 797         assert(similar->is_Proj() && similar->in(0)->is_LoadBarrier(), "unexpected graph shape");
 798         ctrl = similar->in(0)->as_LoadBarrier()->proj_out(LoadBarrierNode::Control);
 799       }
 800       assert(ctrl != NULL, "bad control");
 801       cast->set_req(0, ctrl);
 802       igvn.transform(cast);
 803       new_load->set_req(MemNode::Address, cast);
 804       igvn.transform(new_load);
 805 
 806       igvn.replace_node(out_res, new_load);
 807       igvn.replace_node(out_ctrl, in_ctrl);
 808       return;
 809     }
 810     // cannot eliminate
 811   }
 812 
 813   // There are two cases that require the basic loadbarrier
 814   // 1) When the writeback of a healed oop must be avoided (swap)
 815   // 2) When we must guarantee that no reload of is done (swap, cas, cmpx)
 816   if (!barrier->is_writeback()) {
 817     assert(!barrier->oop_reload_allowed(), "writeback barriers should be marked as requires oop");
 818   }
 819 
 820   if (!barrier->oop_reload_allowed()) {
 821     expand_loadbarrier_basic(phase, barrier);
 822   } else {
 823     expand_loadbarrier_optimized(phase, barrier);
 824   }
 825 }
 826 
 827 // Basic loadbarrier using conventional argument passing
 828 void ZBarrierSetC2::expand_loadbarrier_basic(PhaseMacroExpand* phase, LoadBarrierNode *barrier) const {
 829   PhaseIterGVN &igvn = phase->igvn();
 830 
 831   Node* in_ctrl = barrier->in(LoadBarrierNode::Control);
 832   Node* in_mem  = barrier->in(LoadBarrierNode::Memory);
 833   Node* in_val  = barrier->in(LoadBarrierNode::Oop);
 834   Node* in_adr  = barrier->in(LoadBarrierNode::Address);
 835 
 836   Node* out_ctrl = barrier->proj_out(LoadBarrierNode::Control);
 837   Node* out_res  = barrier->proj_out(LoadBarrierNode::Oop);
 838 
 839   float unlikely  = PROB_UNLIKELY(0.999);
 840   const Type* in_val_maybe_null_t = igvn.type(in_val);
 841 
 842   Node* jthread = igvn.transform(new ThreadLocalNode());
 843   Node* adr = phase->basic_plus_adr(jthread, in_bytes(ZThreadLocalData::address_bad_mask_offset()));
 844   Node* bad_mask = igvn.transform(LoadNode::make(igvn, in_ctrl, in_mem, adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
 845   Node* cast = igvn.transform(new CastP2XNode(in_ctrl, in_val));
 846   Node* obj_masked = igvn.transform(new AndXNode(cast, bad_mask));
 847   Node* cmp = igvn.transform(new CmpXNode(obj_masked, igvn.zerocon(TypeX_X->basic_type())));
 848   Node *bol = igvn.transform(new BoolNode(cmp, BoolTest::ne))->as_Bool();
 849   IfNode* iff = igvn.transform(new IfNode(in_ctrl, bol, unlikely, COUNT_UNKNOWN))->as_If();
 850   Node* then = igvn.transform(new IfTrueNode(iff));
 851   Node* elsen = igvn.transform(new IfFalseNode(iff));
 852 
 853   Node* result_region;
 854   Node* result_val;
 855 
 856   result_region = new RegionNode(3);
 857   result_val = new PhiNode(result_region, TypeInstPtr::BOTTOM);
 858 
 859   result_region->set_req(1, elsen);
 860   Node* res = igvn.transform(new CastPPNode(in_val, in_val_maybe_null_t));
 861   res->init_req(0, elsen);
 862   result_val->set_req(1, res);
 863 
 864   const TypeFunc *tf = load_barrier_Type();
 865   Node* call;
 866   if (barrier->is_weak()) {
 867     call = new CallLeafNode(tf,
 868                             ZBarrierSetRuntime::load_barrier_on_weak_oop_field_preloaded_addr(),
 869                             "ZBarrierSetRuntime::load_barrier_on_weak_oop_field_preloaded",
 870                             TypeRawPtr::BOTTOM);
 871   } else {
 872     call = new CallLeafNode(tf,
 873                             ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded_addr(),
 874                             "ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded",
 875                             TypeRawPtr::BOTTOM);
 876   }
 877 
 878   call->init_req(TypeFunc::Control, then);
 879   call->init_req(TypeFunc::I_O    , phase->top());
 880   call->init_req(TypeFunc::Memory , in_mem);
 881   call->init_req(TypeFunc::FramePtr, phase->top());
 882   call->init_req(TypeFunc::ReturnAdr, phase->top());
 883   call->init_req(TypeFunc::Parms+0, in_val);
 884   if (barrier->is_writeback()) {
 885     call->init_req(TypeFunc::Parms+1, in_adr);
 886   } else {
 887     // When slow path is called with a null address, the healed oop will not be written back
 888     call->init_req(TypeFunc::Parms+1, igvn.zerocon(T_OBJECT));
 889   }
 890   call = igvn.transform(call);
 891 
 892   Node* ctrl = igvn.transform(new ProjNode(call, TypeFunc::Control));
 893   res = igvn.transform(new ProjNode(call, TypeFunc::Parms));
 894   res = igvn.transform(new CheckCastPPNode(ctrl, res, in_val_maybe_null_t));
 895 
 896   result_region->set_req(2, ctrl);
 897   result_val->set_req(2, res);
 898 
 899   result_region = igvn.transform(result_region);
 900   result_val = igvn.transform(result_val);
 901 
 902   if (out_ctrl != NULL) { // Added if cond
 903     igvn.replace_node(out_ctrl, result_region);
 904   }
 905   igvn.replace_node(out_res, result_val);
 906 }
 907 
 908 // Optimized, low spill, loadbarrier variant using stub specialized on register used
 909 void ZBarrierSetC2::expand_loadbarrier_optimized(PhaseMacroExpand* phase, LoadBarrierNode *barrier) const {
 910   PhaseIterGVN &igvn = phase->igvn();
 911 #ifdef PRINT_NODE_TRAVERSALS
 912   Node* preceding_barrier_node = barrier->in(LoadBarrierNode::Oop);
 913 #endif
 914 
 915   Node* in_ctrl = barrier->in(LoadBarrierNode::Control);
 916   Node* in_mem = barrier->in(LoadBarrierNode::Memory);
 917   Node* in_val = barrier->in(LoadBarrierNode::Oop);
 918   Node* in_adr = barrier->in(LoadBarrierNode::Address);
 919 
 920   Node* out_ctrl = barrier->proj_out(LoadBarrierNode::Control);
 921   Node* out_res = barrier->proj_out(LoadBarrierNode::Oop);
 922 
 923   assert(barrier->in(LoadBarrierNode::Oop) != NULL, "oop to loadbarrier node cannot be null");
 924 
 925 #ifdef PRINT_NODE_TRAVERSALS
 926   tty->print("\n\n\nBefore barrier optimization:\n");
 927   traverse(barrier, out_ctrl, out_res, -1);
 928 
 929   tty->print("\nBefore barrier optimization:  preceding_barrier_node\n");
 930   traverse(preceding_barrier_node, out_ctrl, out_res, -1);
 931 #endif
 932 
 933   float unlikely  = PROB_UNLIKELY(0.999);
 934 
 935   Node* jthread = igvn.transform(new ThreadLocalNode());
 936   Node* adr = phase->basic_plus_adr(jthread, in_bytes(ZThreadLocalData::address_bad_mask_offset()));
 937   Node* bad_mask = igvn.transform(LoadNode::make(igvn, in_ctrl, in_mem, adr,
 938                                                  TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(),
 939                                                  MemNode::unordered));
 940   Node* cast = igvn.transform(new CastP2XNode(in_ctrl, in_val));
 941   Node* obj_masked = igvn.transform(new AndXNode(cast, bad_mask));
 942   Node* cmp = igvn.transform(new CmpXNode(obj_masked, igvn.zerocon(TypeX_X->basic_type())));
 943   Node *bol = igvn.transform(new BoolNode(cmp, BoolTest::ne))->as_Bool();
 944   IfNode* iff = igvn.transform(new IfNode(in_ctrl, bol, unlikely, COUNT_UNKNOWN))->as_If();
 945   Node* then = igvn.transform(new IfTrueNode(iff));
 946   Node* elsen = igvn.transform(new IfFalseNode(iff));
 947 
 948   Node* slow_path_surrogate;
 949   if (!barrier->is_weak()) {
 950     slow_path_surrogate = igvn.transform(new LoadBarrierSlowRegNode(then, in_mem, in_adr, in_val->adr_type(),
 951                                                                     (const TypePtr*) in_val->bottom_type(), MemNode::unordered));
 952   } else {
 953     slow_path_surrogate = igvn.transform(new LoadBarrierWeakSlowRegNode(then, in_mem, in_adr, in_val->adr_type(),
 954                                                                         (const TypePtr*) in_val->bottom_type(), MemNode::unordered));
 955   }
 956 
 957   Node *new_loadp;
 958   new_loadp = slow_path_surrogate;
 959   // Create the final region/phi pair to converge cntl/data paths to downstream code
 960   Node* result_region = igvn.transform(new RegionNode(3));
 961   result_region->set_req(1, then);
 962   result_region->set_req(2, elsen);
 963 
 964   Node* result_phi = igvn.transform(new PhiNode(result_region, TypeInstPtr::BOTTOM));
 965   result_phi->set_req(1, new_loadp);
 966   result_phi->set_req(2, barrier->in(LoadBarrierNode::Oop));
 967 
 968   // Finally, connect the original outputs to the barrier region and phi to complete the expansion/substitution
 969   // igvn.replace_node(out_ctrl, result_region);
 970   if (out_ctrl != NULL) { // added if cond
 971     igvn.replace_node(out_ctrl, result_region);
 972   }
 973   igvn.replace_node(out_res, result_phi);
 974 
 975   assert(barrier->outcnt() == 0,"LoadBarrier macro node has non-null outputs after expansion!");
 976 
 977 #ifdef PRINT_NODE_TRAVERSALS
 978   tty->print("\nAfter barrier optimization:  old out_ctrl\n");
 979   traverse(out_ctrl, out_ctrl, out_res, -1);
 980   tty->print("\nAfter barrier optimization:  old out_res\n");
 981   traverse(out_res, out_ctrl, out_res, -1);
 982   tty->print("\nAfter barrier optimization:  old barrier\n");
 983   traverse(barrier, out_ctrl, out_res, -1);
 984   tty->print("\nAfter barrier optimization:  preceding_barrier_node\n");
 985   traverse(preceding_barrier_node, result_region, result_phi, -1);
 986 #endif
 987 
 988   assert(is_gc_barrier_node(result_phi), "sanity");
 989   assert(step_over_gc_barrier(result_phi) == in_val, "sanity");
 990 
 991   return;
 992 }
 993 
 994 bool ZBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const {
 995   Compile* C = Compile::current();
 996   PhaseIterGVN &igvn = macro->igvn();
 997   ZBarrierSetC2State* s = state();
 998   if (s->load_barrier_count() > 0) {
 999 #ifdef ASSERT
1000     verify_gc_barriers(false);
1001 #endif
1002     igvn.set_delay_transform(true);
1003     int skipped = 0;
1004     while (s->load_barrier_count() > skipped) {
1005       int load_barrier_count = s->load_barrier_count();
1006       LoadBarrierNode * n = s->load_barrier_node(load_barrier_count-1-skipped);
1007       if (igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
1008         // Node is unreachable, so don't try to expand it
1009         s->remove_load_barrier_node(n);
1010         continue;
1011       }
1012       if (!n->can_be_eliminated()) {
1013         skipped++;
1014         continue;
1015       }
1016       expand_loadbarrier_node(macro, n);
1017       assert(s->load_barrier_count() < load_barrier_count, "must have deleted a node from load barrier list");
1018       if (C->failing())  return true;
1019     }
1020     while (s->load_barrier_count() > 0) {
1021       int load_barrier_count = s->load_barrier_count();
1022       LoadBarrierNode* n = s->load_barrier_node(load_barrier_count - 1);
1023       assert(!(igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())), "should have been processed already");
1024       assert(!n->can_be_eliminated(), "should have been processed already");
1025       expand_loadbarrier_node(macro, n);
1026       assert(s->load_barrier_count() < load_barrier_count, "must have deleted a node from load barrier list");
1027       if (C->failing())  return true;
1028     }
1029     igvn.set_delay_transform(false);
1030     igvn.optimize();
1031     if (C->failing())  return true;
1032   }
1033   return false;
1034 }
1035 
1036 // == Loop optimization ==
1037 
1038 static bool replace_with_dominating_barrier(PhaseIdealLoop* phase, LoadBarrierNode* lb, bool last_round) {
1039   PhaseIterGVN &igvn = phase->igvn();
1040   Compile* C = Compile::current();
1041 
1042   LoadBarrierNode* lb2 = lb->has_dominating_barrier(phase, false, last_round);
1043   if (lb2 != NULL) {
1044     if (lb->in(LoadBarrierNode::Oop) != lb2->in(LoadBarrierNode::Oop)) {
1045       assert(lb->in(LoadBarrierNode::Address) == lb2->in(LoadBarrierNode::Address), "");
1046       igvn.replace_input_of(lb, LoadBarrierNode::Similar, lb2->proj_out(LoadBarrierNode::Oop));
1047       C->set_major_progress();
1048     } else  {
1049       // That transformation may cause the Similar edge on dominated load barriers to be invalid
1050       lb->fix_similar_in_uses(&igvn);
1051 
1052       Node* val = lb->proj_out(LoadBarrierNode::Oop);
1053       assert(lb2->has_true_uses(), "");
1054       assert(lb2->in(LoadBarrierNode::Oop) == lb->in(LoadBarrierNode::Oop), "");
1055 
1056       phase->lazy_update(lb, lb->in(LoadBarrierNode::Control));
1057       phase->lazy_replace(lb->proj_out(LoadBarrierNode::Control), lb->in(LoadBarrierNode::Control));
1058       igvn.replace_node(val, lb2->proj_out(LoadBarrierNode::Oop));
1059 
1060       return true;
1061     }
1062   }
1063   return false;
1064 }
1065 
1066 static Node* find_dominating_memory(PhaseIdealLoop* phase, Node* mem, Node* dom, int i) {
1067   assert(dom->is_Region() || i == -1, "");
1068   Node* m = mem;
1069   while(phase->is_dominator(dom, phase->has_ctrl(m) ? phase->get_ctrl(m) : m->in(0))) {
1070     if (m->is_Mem()) {
1071       assert(m->as_Mem()->adr_type() == TypeRawPtr::BOTTOM, "");
1072       m = m->in(MemNode::Memory);
1073     } else if (m->is_MergeMem()) {
1074       m = m->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1075     } else if (m->is_Phi()) {
1076       if (m->in(0) == dom && i != -1) {
1077         m = m->in(i);
1078         break;
1079       } else {
1080         m = m->in(LoopNode::EntryControl);
1081       }
1082     } else if (m->is_Proj()) {
1083       m = m->in(0);
1084     } else if (m->is_SafePoint() || m->is_MemBar()) {
1085       m = m->in(TypeFunc::Memory);
1086     } else {
1087 #ifdef ASSERT
1088       m->dump();
1089 #endif
1090       ShouldNotReachHere();
1091     }
1092   }
1093   return m;
1094 }
1095 
1096 static LoadBarrierNode* clone_load_barrier(PhaseIdealLoop* phase, LoadBarrierNode* lb, Node* ctl, Node* mem, Node* oop_in) {
1097   PhaseIterGVN &igvn = phase->igvn();
1098   Compile* C = Compile::current();
1099   Node* the_clone = lb->clone();
1100   the_clone->set_req(LoadBarrierNode::Control, ctl);
1101   the_clone->set_req(LoadBarrierNode::Memory, mem);
1102   if (oop_in != NULL) {
1103     the_clone->set_req(LoadBarrierNode::Oop, oop_in);
1104   }
1105 
1106   LoadBarrierNode* new_lb = the_clone->as_LoadBarrier();
1107   igvn.register_new_node_with_optimizer(new_lb);
1108   IdealLoopTree *loop = phase->get_loop(new_lb->in(0));
1109   phase->set_ctrl(new_lb, new_lb->in(0));
1110   phase->set_loop(new_lb, loop);
1111   phase->set_idom(new_lb, new_lb->in(0), phase->dom_depth(new_lb->in(0))+1);
1112   if (!loop->_child) {
1113     loop->_body.push(new_lb);
1114   }
1115 
1116   Node* proj_ctl = new ProjNode(new_lb, LoadBarrierNode::Control);
1117   igvn.register_new_node_with_optimizer(proj_ctl);
1118   phase->set_ctrl(proj_ctl, proj_ctl->in(0));
1119   phase->set_loop(proj_ctl, loop);
1120   phase->set_idom(proj_ctl, new_lb, phase->dom_depth(new_lb)+1);
1121   if (!loop->_child) {
1122     loop->_body.push(proj_ctl);
1123   }
1124 
1125   Node* proj_oop = new ProjNode(new_lb, LoadBarrierNode::Oop);
1126   phase->register_new_node(proj_oop, new_lb);
1127 
1128   if (!new_lb->in(LoadBarrierNode::Similar)->is_top()) {
1129     LoadBarrierNode* similar = new_lb->in(LoadBarrierNode::Similar)->in(0)->as_LoadBarrier();
1130     if (!phase->is_dominator(similar, ctl)) {
1131       igvn.replace_input_of(new_lb, LoadBarrierNode::Similar, C->top());
1132     }
1133   }
1134 
1135   return new_lb;
1136 }
1137 
1138 static void replace_barrier(PhaseIdealLoop* phase, LoadBarrierNode* lb, Node* new_val) {
1139   PhaseIterGVN &igvn = phase->igvn();
1140   Node* val = lb->proj_out(LoadBarrierNode::Oop);
1141   igvn.replace_node(val, new_val);
1142   phase->lazy_update(lb, lb->in(LoadBarrierNode::Control));
1143   phase->lazy_replace(lb->proj_out(LoadBarrierNode::Control), lb->in(LoadBarrierNode::Control));
1144 }
1145 
1146 static bool split_barrier_thru_phi(PhaseIdealLoop* phase, LoadBarrierNode* lb) {
1147   PhaseIterGVN &igvn = phase->igvn();
1148   Compile* C = Compile::current();
1149 
1150   if (lb->in(LoadBarrierNode::Oop)->is_Phi()) {
1151     Node* oop_phi = lb->in(LoadBarrierNode::Oop);
1152 
1153     if (oop_phi->in(2) == oop_phi) {
1154       // Ignore phis with only one input
1155       return false;
1156     }
1157 
1158     if (phase->is_dominator(phase->get_ctrl(lb->in(LoadBarrierNode::Address)),
1159                             oop_phi->in(0)) && phase->get_ctrl(lb->in(LoadBarrierNode::Address)) != oop_phi->in(0)) {
1160       // That transformation may cause the Similar edge on dominated load barriers to be invalid
1161       lb->fix_similar_in_uses(&igvn);
1162 
1163       RegionNode* region = oop_phi->in(0)->as_Region();
1164 
1165       int backedge = LoopNode::LoopBackControl;
1166       if (region->is_Loop() && region->in(backedge)->is_Proj() && region->in(backedge)->in(0)->is_If()) {
1167         Node* c = region->in(backedge)->in(0)->in(0);
1168         assert(c->unique_ctrl_out() == region->in(backedge)->in(0), "");
1169         Node* oop = lb->in(LoadBarrierNode::Oop)->in(backedge);
1170         Node* oop_c = phase->has_ctrl(oop) ? phase->get_ctrl(oop) : oop;
1171         if (!phase->is_dominator(oop_c, c)) {
1172           return false;
1173         }
1174       }
1175 
1176       // If the node on the backedge above the phi is the node itself - we have a self loop.
1177       // Don't clone - this will be folded later.
1178       if (oop_phi->in(LoopNode::LoopBackControl) == lb->proj_out(LoadBarrierNode::Oop)) {
1179         return false;
1180       }
1181 
1182       bool is_strip_mined = region->is_CountedLoop() && region->as_CountedLoop()->is_strip_mined();
1183       Node *phi = oop_phi->clone();
1184 
1185       for (uint i = 1; i < region->req(); i++) {
1186         Node* ctrl = region->in(i);
1187         if (ctrl != C->top()) {
1188           assert(!phase->is_dominator(ctrl, region) || region->is_Loop(), "");
1189 
1190           Node* mem = lb->in(LoadBarrierNode::Memory);
1191           Node* m = find_dominating_memory(phase, mem, region, i);
1192 
1193           if (region->is_Loop() && i == LoopNode::LoopBackControl && ctrl->is_Proj() && ctrl->in(0)->is_If()) {
1194             ctrl = ctrl->in(0)->in(0);
1195           } else if (region->is_Loop() && is_strip_mined) {
1196             // If this is a strip mined loop, control must move above OuterStripMinedLoop
1197             assert(i == LoopNode::EntryControl, "check");
1198             assert(ctrl->is_OuterStripMinedLoop(), "sanity");
1199             ctrl = ctrl->as_OuterStripMinedLoop()->in(LoopNode::EntryControl);
1200           }
1201 
1202           LoadBarrierNode* new_lb = clone_load_barrier(phase, lb, ctrl, m, lb->in(LoadBarrierNode::Oop)->in(i));
1203           Node* out_ctrl = new_lb->proj_out(LoadBarrierNode::Control);
1204 
1205           if (is_strip_mined && (i == LoopNode::EntryControl)) {
1206             assert(region->in(i)->is_OuterStripMinedLoop(), "");
1207             igvn.replace_input_of(region->in(i), i, out_ctrl);
1208             phase->set_idom(region->in(i), out_ctrl, phase->dom_depth(out_ctrl));
1209           } else if (ctrl == region->in(i)) {
1210             igvn.replace_input_of(region, i, out_ctrl);
1211             // Only update the idom if is the loop entry we are updating
1212             // - A loop backedge doesn't change the idom
1213             if (region->is_Loop() && i == LoopNode::EntryControl) {
1214               phase->set_idom(region, out_ctrl, phase->dom_depth(out_ctrl));
1215             }
1216           } else {
1217             Node* iff = region->in(i)->in(0);
1218             igvn.replace_input_of(iff, 0, out_ctrl);
1219             phase->set_idom(iff, out_ctrl, phase->dom_depth(out_ctrl)+1);
1220           }
1221           phi->set_req(i, new_lb->proj_out(LoadBarrierNode::Oop));
1222         }
1223       }
1224       phase->register_new_node(phi, region);
1225       replace_barrier(phase, lb, phi);
1226 
1227       if (region->is_Loop()) {
1228         // Load barrier moved to the back edge of the Loop may now
1229         // have a safepoint on the path to the barrier on the Similar
1230         // edge
1231         igvn.replace_input_of(phi->in(LoopNode::LoopBackControl)->in(0), LoadBarrierNode::Similar, C->top());
1232         Node* head = region->in(LoopNode::EntryControl);
1233         phase->set_idom(region, head, phase->dom_depth(head)+1);
1234         phase->recompute_dom_depth();
1235         if (head->is_CountedLoop() && head->as_CountedLoop()->is_main_loop()) {
1236           head->as_CountedLoop()->set_normal_loop();
1237         }
1238       }
1239 
1240       return true;
1241     }
1242   }
1243 
1244   return false;
1245 }
1246 
1247 static bool move_out_of_loop(PhaseIdealLoop* phase, LoadBarrierNode* lb) {
1248   PhaseIterGVN &igvn = phase->igvn();
1249   IdealLoopTree *lb_loop = phase->get_loop(lb->in(0));
1250   if (lb_loop != phase->ltree_root() && !lb_loop->_irreducible) {
1251     Node* oop_ctrl = phase->get_ctrl(lb->in(LoadBarrierNode::Oop));
1252     IdealLoopTree *oop_loop = phase->get_loop(oop_ctrl);
1253     IdealLoopTree* adr_loop = phase->get_loop(phase->get_ctrl(lb->in(LoadBarrierNode::Address)));
1254     if (!lb_loop->is_member(oop_loop) && !lb_loop->is_member(adr_loop)) {
1255       // That transformation may cause the Similar edge on dominated load barriers to be invalid
1256       lb->fix_similar_in_uses(&igvn);
1257 
1258       Node* head = lb_loop->_head;
1259       assert(head->is_Loop(), "");
1260 
1261       if (phase->is_dominator(head, oop_ctrl)) {
1262         assert(oop_ctrl->Opcode() == Op_CProj && oop_ctrl->in(0)->Opcode() == Op_NeverBranch, "");
1263         assert(lb_loop->is_member(phase->get_loop(oop_ctrl->in(0)->in(0))), "");
1264         return false;
1265       }
1266 
1267       if (head->is_CountedLoop()) {
1268         CountedLoopNode* cloop = head->as_CountedLoop();
1269         if (cloop->is_main_loop()) {
1270           cloop->set_normal_loop();
1271         }
1272         // When we are moving barrier out of a counted loop,
1273         // make sure we move it all the way out of the strip mined outer loop.
1274         if (cloop->is_strip_mined()) {
1275           head = cloop->outer_loop();
1276         }
1277       }
1278 
1279       Node* mem = lb->in(LoadBarrierNode::Memory);
1280       Node* m = find_dominating_memory(phase, mem, head, -1);
1281 
1282       LoadBarrierNode* new_lb = clone_load_barrier(phase, lb, head->in(LoopNode::EntryControl), m, NULL);
1283 
1284       assert(phase->idom(head) == head->in(LoopNode::EntryControl), "");
1285       Node* proj_ctl = new_lb->proj_out(LoadBarrierNode::Control);
1286       igvn.replace_input_of(head, LoopNode::EntryControl, proj_ctl);
1287       phase->set_idom(head, proj_ctl, phase->dom_depth(proj_ctl) + 1);
1288 
1289       replace_barrier(phase, lb, new_lb->proj_out(LoadBarrierNode::Oop));
1290 
1291       phase->recompute_dom_depth();
1292 
1293       return true;
1294     }
1295   }
1296 
1297   return false;
1298 }
1299 
1300 static bool common_barriers(PhaseIdealLoop* phase, LoadBarrierNode* lb) {
1301   PhaseIterGVN &igvn = phase->igvn();
1302   Node* in_val = lb->in(LoadBarrierNode::Oop);
1303   for (DUIterator_Fast imax, i = in_val->fast_outs(imax); i < imax; i++) {
1304     Node* u = in_val->fast_out(i);
1305     if (u != lb && u->is_LoadBarrier() && u->as_LoadBarrier()->has_true_uses()) {
1306       Node* this_ctrl = lb->in(LoadBarrierNode::Control);
1307       Node* other_ctrl = u->in(LoadBarrierNode::Control);
1308 
1309       Node* lca = phase->dom_lca(this_ctrl, other_ctrl);
1310       bool ok = true;
1311 
1312       Node* proj1 = NULL;
1313       Node* proj2 = NULL;
1314 
1315       while (this_ctrl != lca && ok) {
1316         if (this_ctrl->in(0) != NULL &&
1317             this_ctrl->in(0)->is_MultiBranch()) {
1318           if (this_ctrl->in(0)->in(0) == lca) {
1319             assert(proj1 == NULL, "");
1320             assert(this_ctrl->is_Proj(), "");
1321             proj1 = this_ctrl;
1322           } else if (!(this_ctrl->in(0)->is_If() && this_ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none))) {
1323             ok = false;
1324           }
1325         }
1326         this_ctrl = phase->idom(this_ctrl);
1327       }
1328       while (other_ctrl != lca && ok) {
1329         if (other_ctrl->in(0) != NULL &&
1330             other_ctrl->in(0)->is_MultiBranch()) {
1331           if (other_ctrl->in(0)->in(0) == lca) {
1332             assert(other_ctrl->is_Proj(), "");
1333             assert(proj2 == NULL, "");
1334             proj2 = other_ctrl;
1335           } else if (!(other_ctrl->in(0)->is_If() && other_ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none))) {
1336             ok = false;
1337           }
1338         }
1339         other_ctrl = phase->idom(other_ctrl);
1340       }
1341       assert(proj1 == NULL || proj2 == NULL || proj1->in(0) == proj2->in(0), "");
1342       if (ok && proj1 && proj2 && proj1 != proj2 && proj1->in(0)->is_If()) {
1343         // That transformation may cause the Similar edge on dominated load barriers to be invalid
1344         lb->fix_similar_in_uses(&igvn);
1345         u->as_LoadBarrier()->fix_similar_in_uses(&igvn);
1346 
1347         Node* split = lca->unique_ctrl_out();
1348         assert(split->in(0) == lca, "");
1349 
1350         Node* mem = lb->in(LoadBarrierNode::Memory);
1351         Node* m = find_dominating_memory(phase, mem, split, -1);
1352         LoadBarrierNode* new_lb = clone_load_barrier(phase, lb, lca, m, NULL);
1353 
1354         Node* proj_ctl = new_lb->proj_out(LoadBarrierNode::Control);
1355         igvn.replace_input_of(split, 0, new_lb->proj_out(LoadBarrierNode::Control));
1356         phase->set_idom(split, proj_ctl, phase->dom_depth(proj_ctl)+1);
1357 
1358         Node* proj_oop = new_lb->proj_out(LoadBarrierNode::Oop);
1359         replace_barrier(phase, lb, proj_oop);
1360         replace_barrier(phase, u->as_LoadBarrier(), proj_oop);
1361 
1362         phase->recompute_dom_depth();
1363 
1364         return true;
1365       }
1366     }
1367   }
1368 
1369   return false;
1370 }
1371 
1372 static void optimize_load_barrier(PhaseIdealLoop* phase, LoadBarrierNode* lb, bool last_round) {
1373   Compile* C = Compile::current();
1374 
1375   if (!C->directive()->ZOptimizeLoadBarriersOption) {
1376     return;
1377   }
1378 
1379   if (lb->has_true_uses()) {
1380     if (replace_with_dominating_barrier(phase, lb, last_round)) {
1381       return;
1382     }
1383 
1384     if (split_barrier_thru_phi(phase, lb)) {
1385       return;
1386     }
1387 
1388     if (move_out_of_loop(phase, lb)) {
1389       return;
1390     }
1391 
1392     if (common_barriers(phase, lb)) {
1393       return;
1394     }
1395   }
1396 }
1397 
1398 void ZBarrierSetC2::loop_optimize_gc_barrier(PhaseIdealLoop* phase, Node* node, bool last_round) {
1399   if (node->is_LoadBarrier()) {
1400     optimize_load_barrier(phase, node->as_LoadBarrier(), last_round);
1401   }
1402 }
1403 
1404 Node* ZBarrierSetC2::step_over_gc_barrier(Node* c) const {
1405   Node* node = c;
1406 
1407   // 1. This step follows potential oop projections of a load barrier before expansion
1408   if (node->is_Proj()) {
1409     node = node->in(0);
1410   }
1411 
1412   // 2. This step checks for unexpanded load barriers
1413   if (node->is_LoadBarrier()) {
1414     return node->in(LoadBarrierNode::Oop);
1415   }
1416 
1417   // 3. This step checks for the phi corresponding to an optimized load barrier expansion
1418   if (node->is_Phi()) {
1419     PhiNode* phi = node->as_Phi();
1420     Node* n = phi->in(1);
1421     if (n != NULL && (n->is_LoadBarrierSlowReg() ||  n->is_LoadBarrierWeakSlowReg())) {
1422       assert(c == node, "projections from step 1 should only be seen before macro expansion");
1423       return phi->in(2);
1424     }
1425   }
1426 
1427   return c;
1428 }
1429 
1430 bool ZBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, ArrayCopyPhase phase) const {
1431   return type == T_OBJECT || type == T_ARRAY;
1432 }
1433 
1434 // == Verification ==
1435 
1436 #ifdef ASSERT
1437 
1438 static bool look_for_barrier(Node* n, bool post_parse, VectorSet& visited) {
1439   if (visited.test_set(n->_idx)) {
1440     return true;
1441   }
1442 
1443   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1444     Node* u = n->fast_out(i);
1445     if (u->is_LoadBarrier()) {
1446     } else if ((u->is_Phi() || u->is_CMove()) && !post_parse) {
1447       if (!look_for_barrier(u, post_parse, visited)) {
1448         return false;
1449       }
1450     } else if (u->Opcode() == Op_EncodeP || u->Opcode() == Op_DecodeN) {
1451       if (!look_for_barrier(u, post_parse, visited)) {
1452         return false;
1453       }
1454     } else if (u->Opcode() != Op_SCMemProj) {
1455       tty->print("bad use"); u->dump();
1456       return false;
1457     }
1458   }
1459 
1460   return true;
1461 }
1462 
1463 void ZBarrierSetC2::verify_gc_barriers(bool post_parse) const {
1464   ZBarrierSetC2State* s = state();
1465   Compile* C = Compile::current();
1466   ResourceMark rm;
1467   VectorSet visited(Thread::current()->resource_area());
1468   for (int i = 0; i < s->load_barrier_count(); i++) {
1469     LoadBarrierNode* n = s->load_barrier_node(i);
1470 
1471     // The dominating barrier on the same address if it exists and
1472     // this barrier must not be applied on the value from the same
1473     // load otherwise the value is not reloaded before it's used the
1474     // second time.
1475     assert(n->in(LoadBarrierNode::Similar)->is_top() ||
1476            (n->in(LoadBarrierNode::Similar)->in(0)->is_LoadBarrier() &&
1477             n->in(LoadBarrierNode::Similar)->in(0)->in(LoadBarrierNode::Address) == n->in(LoadBarrierNode::Address) &&
1478             n->in(LoadBarrierNode::Similar)->in(0)->in(LoadBarrierNode::Oop) != n->in(LoadBarrierNode::Oop)),
1479            "broken similar edge");
1480 
1481     assert(post_parse || n->as_LoadBarrier()->has_true_uses(),
1482            "found unneeded load barrier");
1483 
1484     // Several load barrier nodes chained through their Similar edge
1485     // break the code that remove the barriers in final graph reshape.
1486     assert(n->in(LoadBarrierNode::Similar)->is_top() ||
1487            (n->in(LoadBarrierNode::Similar)->in(0)->is_LoadBarrier() &&
1488             n->in(LoadBarrierNode::Similar)->in(0)->in(LoadBarrierNode::Similar)->is_top()),
1489            "chain of Similar load barriers");
1490 
1491     if (!n->in(LoadBarrierNode::Similar)->is_top()) {
1492       ResourceMark rm;
1493       Unique_Node_List wq;
1494       Node* other = n->in(LoadBarrierNode::Similar)->in(0);
1495       wq.push(n);
1496       bool ok = true;
1497       bool dom_found = false;
1498       for (uint next = 0; next < wq.size(); ++next) {
1499         Node *n = wq.at(next);
1500         assert(n->is_CFG(), "");
1501         assert(!n->is_SafePoint(), "");
1502 
1503         if (n == other) {
1504           continue;
1505         }
1506 
1507         if (n->is_Region()) {
1508           for (uint i = 1; i < n->req(); i++) {
1509             Node* m = n->in(i);
1510             if (m != NULL) {
1511               wq.push(m);
1512             }
1513           }
1514         } else {
1515           Node* m = n->in(0);
1516           if (m != NULL) {
1517             wq.push(m);
1518           }
1519         }
1520       }
1521     }
1522 
1523     if (ZVerifyLoadBarriers) {
1524       if ((n->is_Load() || n->is_LoadStore()) && n->bottom_type()->make_oopptr() != NULL) {
1525         visited.Clear();
1526         bool found = look_for_barrier(n, post_parse, visited);
1527         if (!found) {
1528           n->dump(1);
1529           n->dump(-3);
1530           stringStream ss;
1531           C->method()->print_short_name(&ss);
1532           tty->print_cr("-%s-", ss.as_string());
1533           assert(found, "");
1534         }
1535       }
1536     }
1537   }
1538 }
1539 
1540 #endif