1 /*
   2  * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/c2/g1BarrierSetC2.hpp"
  27 #include "gc/g1/g1BarrierSet.hpp"
  28 #include "gc/g1/g1BarrierSetRuntime.hpp"
  29 #include "gc/g1/g1CardTable.hpp"
  30 #include "gc/g1/g1ThreadLocalData.hpp"
  31 #include "gc/g1/heapRegion.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/graphKit.hpp"
  35 #include "opto/idealKit.hpp"
  36 #include "opto/macro.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/type.hpp"
  39 #include "utilities/macros.hpp"
  40 
  41 const TypeFunc *G1BarrierSetC2::write_ref_field_pre_entry_Type() {
  42   const Type **fields = TypeTuple::fields(2);
  43   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
  44   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
  45   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
  46 
  47   // create result type (range)
  48   fields = TypeTuple::fields(0);
  49   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
  50 
  51   return TypeFunc::make(domain, range);
  52 }
  53 
  54 const TypeFunc *G1BarrierSetC2::write_ref_field_post_entry_Type() {
  55   const Type **fields = TypeTuple::fields(2);
  56   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
  57   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
  58   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
  59 
  60   // create result type (range)
  61   fields = TypeTuple::fields(0);
  62   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  63 
  64   return TypeFunc::make(domain, range);
  65 }
  66 
  67 #define __ ideal.
  68 /*
  69  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
  70  * required by SATB to make sure all objects live at the start of the
  71  * marking are kept alive, all reference updates need to any previous
  72  * reference stored before writing.
  73  *
  74  * If the previous value is NULL there is no need to save the old value.
  75  * References that are NULL are filtered during runtime by the barrier
  76  * code to avoid unnecessary queuing.
  77  *
  78  * However in the case of newly allocated objects it might be possible to
  79  * prove that the reference about to be overwritten is NULL during compile
  80  * time and avoid adding the barrier code completely.
  81  *
  82  * The compiler needs to determine that the object in which a field is about
  83  * to be written is newly allocated, and that no prior store to the same field
  84  * has happened since the allocation.
  85  *
  86  * Returns true if the pre-barrier can be removed
  87  */
  88 bool G1BarrierSetC2::g1_can_remove_pre_barrier(GraphKit* kit,
  89                                                PhaseTransform* phase,
  90                                                Node* adr,
  91                                                BasicType bt,
  92                                                uint adr_idx) const {
  93   intptr_t offset = 0;
  94   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  95   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
  96 
  97   if (offset == Type::OffsetBot) {
  98     return false; // cannot unalias unless there are precise offsets
  99   }
 100 
 101   if (alloc == NULL) {
 102     return false; // No allocation found
 103   }
 104 
 105   intptr_t size_in_bytes = type2aelembytes(bt);
 106 
 107   Node* mem = kit->memory(adr_idx); // start searching here...
 108 
 109   for (int cnt = 0; cnt < 50; cnt++) {
 110 
 111     if (mem->is_Store()) {
 112 
 113       Node* st_adr = mem->in(MemNode::Address);
 114       intptr_t st_offset = 0;
 115       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 116 
 117       if (st_base == NULL) {
 118         break; // inscrutable pointer
 119       }
 120 
 121       // Break we have found a store with same base and offset as ours so break
 122       if (st_base == base && st_offset == offset) {
 123         break;
 124       }
 125 
 126       if (st_offset != offset && st_offset != Type::OffsetBot) {
 127         const int MAX_STORE = BytesPerLong;
 128         if (st_offset >= offset + size_in_bytes ||
 129             st_offset <= offset - MAX_STORE ||
 130             st_offset <= offset - mem->as_Store()->memory_size()) {
 131           // Success:  The offsets are provably independent.
 132           // (You may ask, why not just test st_offset != offset and be done?
 133           // The answer is that stores of different sizes can co-exist
 134           // in the same sequence of RawMem effects.  We sometimes initialize
 135           // a whole 'tile' of array elements with a single jint or jlong.)
 136           mem = mem->in(MemNode::Memory);
 137           continue; // advance through independent store memory
 138         }
 139       }
 140 
 141       if (st_base != base
 142           && MemNode::detect_ptr_independence(base, alloc, st_base,
 143                                               AllocateNode::Ideal_allocation(st_base, phase),
 144                                               phase)) {
 145         // Success:  The bases are provably independent.
 146         mem = mem->in(MemNode::Memory);
 147         continue; // advance through independent store memory
 148       }
 149     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 150 
 151       InitializeNode* st_init = mem->in(0)->as_Initialize();
 152       AllocateNode* st_alloc = st_init->allocation();
 153 
 154       // Make sure that we are looking at the same allocation site.
 155       // The alloc variable is guaranteed to not be null here from earlier check.
 156       if (alloc == st_alloc) {
 157         // Check that the initialization is storing NULL so that no previous store
 158         // has been moved up and directly write a reference
 159         Node* captured_store = st_init->find_captured_store(offset,
 160                                                             type2aelembytes(T_OBJECT),
 161                                                             phase);
 162         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
 163           return true;
 164         }
 165       }
 166     }
 167 
 168     // Unless there is an explicit 'continue', we must bail out here,
 169     // because 'mem' is an inscrutable memory state (e.g., a call).
 170     break;
 171   }
 172 
 173   return false;
 174 }
 175 
 176 // G1 pre/post barriers
 177 void G1BarrierSetC2::pre_barrier(GraphKit* kit,
 178                                  bool do_load,
 179                                  Node* ctl,
 180                                  Node* obj,
 181                                  Node* adr,
 182                                  uint alias_idx,
 183                                  Node* val,
 184                                  const TypeOopPtr* val_type,
 185                                  Node* pre_val,
 186                                  BasicType bt) const {
 187   // Some sanity checks
 188   // Note: val is unused in this routine.
 189 
 190   if (do_load) {
 191     // We need to generate the load of the previous value
 192     assert(obj != NULL, "must have a base");
 193     assert(adr != NULL, "where are loading from?");
 194     assert(pre_val == NULL, "loaded already?");
 195     assert(val_type != NULL, "need a type");
 196 
 197     if (use_ReduceInitialCardMarks()
 198         && g1_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
 199       return;
 200     }
 201 
 202   } else {
 203     // In this case both val_type and alias_idx are unused.
 204     assert(pre_val != NULL, "must be loaded already");
 205     // Nothing to be done if pre_val is null.
 206     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
 207     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
 208   }
 209   assert(bt == T_OBJECT, "or we shouldn't be here");
 210 
 211   IdealKit ideal(kit, true);
 212 
 213   Node* tls = __ thread(); // ThreadLocalStorage
 214 
 215   Node* no_base = __ top();
 216   Node* zero  = __ ConI(0);
 217   Node* zeroX = __ ConX(0);
 218 
 219   float likely  = PROB_LIKELY(0.999);
 220   float unlikely  = PROB_UNLIKELY(0.999);
 221 
 222   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
 223   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
 224 
 225   // Offsets into the thread
 226   const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
 227   const int index_offset   = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
 228   const int buffer_offset  = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
 229 
 230   // Now the actual pointers into the thread
 231   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
 232   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
 233   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
 234 
 235   // Now some of the values
 236   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
 237 
 238   // if (!marking)
 239   __ if_then(marking, BoolTest::ne, zero, unlikely); {
 240     BasicType index_bt = TypeX_X->basic_type();
 241     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
 242     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
 243 
 244     if (do_load) {
 245       // load original value
 246       // alias_idx correct??
 247       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
 248     }
 249 
 250     // if (pre_val != NULL)
 251     __ if_then(pre_val, BoolTest::ne, kit->null()); {
 252       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 253 
 254       // is the queue for this thread full?
 255       __ if_then(index, BoolTest::ne, zeroX, likely); {
 256 
 257         // decrement the index
 258         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 259 
 260         // Now get the buffer location we will log the previous value into and store it
 261         Node *log_addr = __ AddP(no_base, buffer, next_index);
 262         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
 263         // update the index
 264         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
 265 
 266       } __ else_(); {
 267 
 268         // logging buffer is full, call the runtime
 269         const TypeFunc *tf = write_ref_field_pre_entry_Type();
 270         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_pre_entry), "write_ref_field_pre_entry", pre_val, tls);
 271       } __ end_if();  // (!index)
 272     } __ end_if();  // (pre_val != NULL)
 273   } __ end_if();  // (!marking)
 274 
 275   // Final sync IdealKit and GraphKit.
 276   kit->final_sync(ideal);
 277 }
 278 
 279 /*
 280  * G1 similar to any GC with a Young Generation requires a way to keep track of
 281  * references from Old Generation to Young Generation to make sure all live
 282  * objects are found. G1 also requires to keep track of object references
 283  * between different regions to enable evacuation of old regions, which is done
 284  * as part of mixed collections. References are tracked in remembered sets and
 285  * is continuously updated as reference are written to with the help of the
 286  * post-barrier.
 287  *
 288  * To reduce the number of updates to the remembered set the post-barrier
 289  * filters updates to fields in objects located in the Young Generation,
 290  * the same region as the reference, when the NULL is being written or
 291  * if the card is already marked as dirty by an earlier write.
 292  *
 293  * Under certain circumstances it is possible to avoid generating the
 294  * post-barrier completely if it is possible during compile time to prove
 295  * the object is newly allocated and that no safepoint exists between the
 296  * allocation and the store.
 297  *
 298  * In the case of slow allocation the allocation code must handle the barrier
 299  * as part of the allocation in the case the allocated object is not located
 300  * in the nursery, this would happen for humongous objects. This is similar to
 301  * how CMS is required to handle this case, see the comments for the method
 302  * CollectedHeap::new_deferred_store_barrier and OptoRuntime::new_deferred_store_barrier.
 303  * A deferred card mark is required for these objects and handled in the above
 304  * mentioned methods.
 305  *
 306  * Returns true if the post barrier can be removed
 307  */
 308 bool G1BarrierSetC2::g1_can_remove_post_barrier(GraphKit* kit,
 309                                                 PhaseTransform* phase, Node* store,
 310                                                 Node* adr) const {
 311   intptr_t      offset = 0;
 312   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 313   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 314 
 315   if (offset == Type::OffsetBot) {
 316     return false; // cannot unalias unless there are precise offsets
 317   }
 318 
 319   if (alloc == NULL) {
 320      return false; // No allocation found
 321   }
 322 
 323   // Start search from Store node
 324   Node* mem = store->in(MemNode::Control);
 325   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 326 
 327     InitializeNode* st_init = mem->in(0)->as_Initialize();
 328     AllocateNode*  st_alloc = st_init->allocation();
 329 
 330     // Make sure we are looking at the same allocation
 331     if (alloc == st_alloc) {
 332       return true;
 333     }
 334   }
 335 
 336   return false;
 337 }
 338 
 339 //
 340 // Update the card table and add card address to the queue
 341 //
 342 void G1BarrierSetC2::g1_mark_card(GraphKit* kit,
 343                                   IdealKit& ideal,
 344                                   Node* card_adr,
 345                                   Node* oop_store,
 346                                   uint oop_alias_idx,
 347                                   Node* index,
 348                                   Node* index_adr,
 349                                   Node* buffer,
 350                                   const TypeFunc* tf) const {
 351   Node* zero  = __ ConI(0);
 352   Node* zeroX = __ ConX(0);
 353   Node* no_base = __ top();
 354   BasicType card_bt = T_BYTE;
 355   // Smash zero into card. MUST BE ORDERED WRT TO STORE
 356   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
 357 
 358   //  Now do the queue work
 359   __ if_then(index, BoolTest::ne, zeroX); {
 360 
 361     Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 362     Node* log_addr = __ AddP(no_base, buffer, next_index);
 363 
 364     // Order, see storeCM.
 365     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 366     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
 367 
 368   } __ else_(); {
 369     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_post_entry), "write_ref_field_post_entry", card_adr, __ thread());
 370   } __ end_if();
 371 
 372 }
 373 
 374 void G1BarrierSetC2::post_barrier(GraphKit* kit,
 375                                   Node* ctl,
 376                                   Node* oop_store,
 377                                   Node* obj,
 378                                   Node* adr,
 379                                   uint alias_idx,
 380                                   Node* val,
 381                                   BasicType bt,
 382                                   bool use_precise) const {
 383   // If we are writing a NULL then we need no post barrier
 384 
 385   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
 386     // Must be NULL
 387     const Type* t = val->bottom_type();
 388     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
 389     // No post barrier if writing NULLx
 390     return;
 391   }
 392 
 393   if (use_ReduceInitialCardMarks() && obj == kit->just_allocated_object(kit->control())) {
 394     // We can skip marks on a freshly-allocated object in Eden.
 395     // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
 396     // That routine informs GC to take appropriate compensating steps,
 397     // upon a slow-path allocation, so as to make this card-mark
 398     // elision safe.
 399     return;
 400   }
 401 
 402   if (use_ReduceInitialCardMarks()
 403       && g1_can_remove_post_barrier(kit, &kit->gvn(), oop_store, adr)) {
 404     return;
 405   }
 406 
 407   if (!use_precise) {
 408     // All card marks for a (non-array) instance are in one place:
 409     adr = obj;
 410   }
 411   // (Else it's an array (or unknown), and we want more precise card marks.)
 412   assert(adr != NULL, "");
 413 
 414   IdealKit ideal(kit, true);
 415 
 416   Node* tls = __ thread(); // ThreadLocalStorage
 417 
 418   Node* no_base = __ top();
 419   float unlikely  = PROB_UNLIKELY(0.999);
 420   Node* young_card = __ ConI((jint)G1CardTable::g1_young_card_val());
 421   Node* dirty_card = __ ConI((jint)G1CardTable::dirty_card_val());
 422   Node* zeroX = __ ConX(0);
 423 
 424   const TypeFunc *tf = write_ref_field_post_entry_Type();
 425 
 426   // Offsets into the thread
 427   const int index_offset  = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
 428   const int buffer_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
 429 
 430   // Pointers into the thread
 431 
 432   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
 433   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
 434 
 435   // Now some values
 436   // Use ctrl to avoid hoisting these values past a safepoint, which could
 437   // potentially reset these fields in the JavaThread.
 438   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
 439   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 440 
 441   // Convert the store obj pointer to an int prior to doing math on it
 442   // Must use ctrl to prevent "integerized oop" existing across safepoint
 443   Node* cast =  __ CastPX(__ ctrl(), adr);
 444 
 445   // Divide pointer by card size
 446   Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift) );
 447 
 448   // Combine card table base and card offset
 449   Node* card_adr = __ AddP(no_base, byte_map_base_node(kit), card_offset );
 450 
 451   // If we know the value being stored does it cross regions?
 452 
 453   if (val != NULL) {
 454     // Does the store cause us to cross regions?
 455 
 456     // Should be able to do an unsigned compare of region_size instead of
 457     // and extra shift. Do we have an unsigned compare??
 458     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
 459     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
 460 
 461     // if (xor_res == 0) same region so skip
 462     __ if_then(xor_res, BoolTest::ne, zeroX); {
 463 
 464       // No barrier if we are storing a NULL
 465       __ if_then(val, BoolTest::ne, kit->null(), unlikely); {
 466 
 467         // Ok must mark the card if not already dirty
 468 
 469         // load the original value of the card
 470         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
 471 
 472         __ if_then(card_val, BoolTest::ne, young_card); {
 473           kit->sync_kit(ideal);
 474           kit->insert_mem_bar(Op_MemBarVolatile, oop_store);
 475           __ sync_kit(kit);
 476 
 477           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
 478           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
 479             g1_mark_card(kit, ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
 480           } __ end_if();
 481         } __ end_if();
 482       } __ end_if();
 483     } __ end_if();
 484   } else {
 485     // The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks.
 486     // We don't need a barrier here if the destination is a newly allocated object
 487     // in Eden. Otherwise, GC verification breaks because we assume that cards in Eden
 488     // are set to 'g1_young_gen' (see G1CardTable::verify_g1_young_region()).
 489     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
 490     Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
 491     __ if_then(card_val, BoolTest::ne, young_card); {
 492       g1_mark_card(kit, ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
 493     } __ end_if();
 494   }
 495 
 496   // Final sync IdealKit and GraphKit.
 497   kit->final_sync(ideal);
 498 }
 499 
 500 // Helper that guards and inserts a pre-barrier.
 501 void G1BarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
 502                                         Node* pre_val, bool need_mem_bar) const {
 503   // We could be accessing the referent field of a reference object. If so, when G1
 504   // is enabled, we need to log the value in the referent field in an SATB buffer.
 505   // This routine performs some compile time filters and generates suitable
 506   // runtime filters that guard the pre-barrier code.
 507   // Also add memory barrier for non volatile load from the referent field
 508   // to prevent commoning of loads across safepoint.
 509 
 510   // Some compile time checks.
 511 
 512   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
 513   const TypeX* otype = offset->find_intptr_t_type();
 514   if (otype != NULL && otype->is_con() &&
 515       otype->get_con() != java_lang_ref_Reference::referent_offset) {
 516     // Constant offset but not the reference_offset so just return
 517     return;
 518   }
 519 
 520   // We only need to generate the runtime guards for instances.
 521   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
 522   if (btype != NULL) {
 523     if (btype->isa_aryptr()) {
 524       // Array type so nothing to do
 525       return;
 526     }
 527 
 528     const TypeInstPtr* itype = btype->isa_instptr();
 529     if (itype != NULL) {
 530       // Can the klass of base_oop be statically determined to be
 531       // _not_ a sub-class of Reference and _not_ Object?
 532       ciKlass* klass = itype->klass();
 533       if ( klass->is_loaded() &&
 534           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
 535           !kit->env()->Object_klass()->is_subtype_of(klass)) {
 536         return;
 537       }
 538     }
 539   }
 540 
 541   // The compile time filters did not reject base_oop/offset so
 542   // we need to generate the following runtime filters
 543   //
 544   // if (offset == java_lang_ref_Reference::_reference_offset) {
 545   //   if (instance_of(base, java.lang.ref.Reference)) {
 546   //     pre_barrier(_, pre_val, ...);
 547   //   }
 548   // }
 549 
 550   float likely   = PROB_LIKELY(  0.999);
 551   float unlikely = PROB_UNLIKELY(0.999);
 552 
 553   IdealKit ideal(kit);
 554 
 555   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
 556 
 557   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
 558       // Update graphKit memory and control from IdealKit.
 559       kit->sync_kit(ideal);
 560 
 561       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
 562       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
 563 
 564       // Update IdealKit memory and control from graphKit.
 565       __ sync_kit(kit);
 566 
 567       Node* one = __ ConI(1);
 568       // is_instof == 0 if base_oop == NULL
 569       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
 570 
 571         // Update graphKit from IdeakKit.
 572         kit->sync_kit(ideal);
 573 
 574         // Use the pre-barrier to record the value in the referent field
 575         pre_barrier(kit, false /* do_load */,
 576                     __ ctrl(),
 577                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 578                     pre_val /* pre_val */,
 579                     T_OBJECT);
 580         if (need_mem_bar) {
 581           // Add memory barrier to prevent commoning reads from this field
 582           // across safepoint since GC can change its value.
 583           kit->insert_mem_bar(Op_MemBarCPUOrder);
 584         }
 585         // Update IdealKit from graphKit.
 586         __ sync_kit(kit);
 587 
 588       } __ end_if(); // _ref_type != ref_none
 589   } __ end_if(); // offset == referent_offset
 590 
 591   // Final sync IdealKit and GraphKit.
 592   kit->final_sync(ideal);
 593 }
 594 
 595 #undef __
 596 
 597 Node* G1BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 598   DecoratorSet decorators = access.decorators();
 599   Node* adr = access.addr().node();
 600   Node* obj = access.base();
 601 
 602   bool mismatched = (decorators & C2_MISMATCHED) != 0;
 603   bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 604   bool in_heap = (decorators & IN_HEAP) != 0;
 605   bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
 606   bool is_unordered = (decorators & MO_UNORDERED) != 0;
 607   bool need_cpu_mem_bar = !is_unordered || mismatched || !in_heap;
 608 
 609   Node* top = Compile::current()->top();
 610   Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
 611   Node* load = CardTableBarrierSetC2::load_at_resolved(access, val_type);
 612 
 613   // If we are reading the value of the referent field of a Reference
 614   // object (either by using Unsafe directly or through reflection)
 615   // then, if G1 is enabled, we need to record the referent in an
 616   // SATB log buffer using the pre-barrier mechanism.
 617   // Also we need to add memory barrier to prevent commoning reads
 618   // from this field across safepoint since GC can change its value.
 619   bool need_read_barrier = in_heap && (on_weak ||
 620                                        (unknown && offset != top && obj != top));
 621 
 622   if (!access.is_oop() || !need_read_barrier) {
 623     return load;
 624   }
 625 
 626   assert(access.is_parse_access(), "entry not supported at optimization time");
 627   C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 628   GraphKit* kit = parse_access.kit();
 629 
 630   if (on_weak) {
 631     // Use the pre-barrier to record the value in the referent field
 632     pre_barrier(kit, false /* do_load */,
 633                 kit->control(),
 634                 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 635                 load /* pre_val */, T_OBJECT);
 636     // Add memory barrier to prevent commoning reads from this field
 637     // across safepoint since GC can change its value.
 638     kit->insert_mem_bar(Op_MemBarCPUOrder);
 639   } else if (unknown) {
 640     // We do not require a mem bar inside pre_barrier if need_mem_bar
 641     // is set: the barriers would be emitted by us.
 642     insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
 643   }
 644 
 645   return load;
 646 }
 647 
 648 bool G1BarrierSetC2::is_gc_barrier_node(Node* node) const {
 649   if (CardTableBarrierSetC2::is_gc_barrier_node(node)) {
 650     return true;
 651   }
 652   if (node->Opcode() != Op_CallLeaf) {
 653     return false;
 654   }
 655   CallLeafNode *call = node->as_CallLeaf();
 656   if (call->_name == NULL) {
 657     return false;
 658   }
 659 
 660   return strcmp(call->_name, "write_ref_field_pre_entry") == 0 || strcmp(call->_name, "write_ref_field_post_entry") == 0;
 661 }
 662 
 663 void G1BarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
 664   assert(node->Opcode() == Op_CastP2X, "ConvP2XNode required");
 665   assert(node->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
 666   // It could be only one user, URShift node, in Object.clone() intrinsic
 667   // but the new allocation is passed to arraycopy stub and it could not
 668   // be scalar replaced. So we don't check the case.
 669 
 670   // An other case of only one user (Xor) is when the value check for NULL
 671   // in G1 post barrier is folded after CCP so the code which used URShift
 672   // is removed.
 673 
 674   // Take Region node before eliminating post barrier since it also
 675   // eliminates CastP2X node when it has only one user.
 676   Node* this_region = node->in(0);
 677   assert(this_region != NULL, "");
 678 
 679   // Remove G1 post barrier.
 680 
 681   // Search for CastP2X->Xor->URShift->Cmp path which
 682   // checks if the store done to a different from the value's region.
 683   // And replace Cmp with #0 (false) to collapse G1 post barrier.
 684   Node* xorx = node->find_out_with(Op_XorX);
 685   if (xorx != NULL) {
 686     Node* shift = xorx->unique_out();
 687     Node* cmpx = shift->unique_out();
 688     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 689     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 690     "missing region check in G1 post barrier");
 691     macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
 692 
 693     // Remove G1 pre barrier.
 694 
 695     // Search "if (marking != 0)" check and set it to "false".
 696     // There is no G1 pre barrier if previous stored value is NULL
 697     // (for example, after initialization).
 698     if (this_region->is_Region() && this_region->req() == 3) {
 699       int ind = 1;
 700       if (!this_region->in(ind)->is_IfFalse()) {
 701         ind = 2;
 702       }
 703       if (this_region->in(ind)->is_IfFalse() &&
 704           this_region->in(ind)->in(0)->Opcode() == Op_If) {
 705         Node* bol = this_region->in(ind)->in(0)->in(1);
 706         assert(bol->is_Bool(), "");
 707         cmpx = bol->in(1);
 708         if (bol->as_Bool()->_test._test == BoolTest::ne &&
 709             cmpx->is_Cmp() && cmpx->in(2) == macro->intcon(0) &&
 710             cmpx->in(1)->is_Load()) {
 711           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 712           const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
 713           if (adr->is_AddP() && adr->in(AddPNode::Base) == macro->top() &&
 714               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 715               adr->in(AddPNode::Offset) == macro->MakeConX(marking_offset)) {
 716             macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
 717           }
 718         }
 719       }
 720     }
 721   } else {
 722     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
 723     // This is a G1 post barrier emitted by the Object.clone() intrinsic.
 724     // Search for the CastP2X->URShiftX->AddP->LoadB->Cmp path which checks if the card
 725     // is marked as young_gen and replace the Cmp with 0 (false) to collapse the barrier.
 726     Node* shift = node->find_out_with(Op_URShiftX);
 727     assert(shift != NULL, "missing G1 post barrier");
 728     Node* addp = shift->unique_out();
 729     Node* load = addp->find_out_with(Op_LoadB);
 730     assert(load != NULL, "missing G1 post barrier");
 731     Node* cmpx = load->unique_out();
 732     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 733            cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 734            "missing card value check in G1 post barrier");
 735     macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
 736     // There is no G1 pre barrier in this case
 737   }
 738   // Now CastP2X can be removed since it is used only on dead path
 739   // which currently still alive until igvn optimize it.
 740   assert(node->outcnt() == 0 || node->unique_out()->Opcode() == Op_URShiftX, "");
 741   macro->replace_node(node, macro->top());
 742 }
 743 
 744 Node* G1BarrierSetC2::step_over_gc_barrier(Node* c) const {
 745   if (!use_ReduceInitialCardMarks() &&
 746       c != NULL && c->is_Region() && c->req() == 3) {
 747     for (uint i = 1; i < c->req(); i++) {
 748       if (c->in(i) != NULL && c->in(i)->is_Region() &&
 749           c->in(i)->req() == 3) {
 750         Node* r = c->in(i);
 751         for (uint j = 1; j < r->req(); j++) {
 752           if (r->in(j) != NULL && r->in(j)->is_Proj() &&
 753               r->in(j)->in(0) != NULL &&
 754               r->in(j)->in(0)->Opcode() == Op_CallLeaf &&
 755               r->in(j)->in(0)->as_Call()->entry_point() == CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_post_entry)) {
 756             Node* call = r->in(j)->in(0);
 757             c = c->in(i == 1 ? 2 : 1);
 758             if (c != NULL) {
 759               c = c->in(0);
 760               if (c != NULL) {
 761                 c = c->in(0);
 762                 assert(call->in(0) == NULL ||
 763                        call->in(0)->in(0) == NULL ||
 764                        call->in(0)->in(0)->in(0) == NULL ||
 765                        call->in(0)->in(0)->in(0)->in(0) == NULL ||
 766                        call->in(0)->in(0)->in(0)->in(0)->in(0) == NULL ||
 767                        c == call->in(0)->in(0)->in(0)->in(0)->in(0), "bad barrier shape");
 768                 return c;
 769               }
 770             }
 771           }
 772         }
 773       }
 774     }
 775   }
 776   return c;
 777 }
 778 
 779 #ifdef ASSERT
 780 void G1BarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
 781   // Verify G1 pre-barriers
 782   const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
 783 
 784   ResourceArea *area = Thread::current()->resource_area();
 785   Unique_Node_List visited(area);
 786   Node_List worklist(area);
 787   // We're going to walk control flow backwards starting from the Root
 788   worklist.push(compile->root());
 789   while (worklist.size() > 0) {
 790     Node* x = worklist.pop();
 791     if (x == NULL || x == compile->top()) continue;
 792     if (visited.member(x)) {
 793       continue;
 794     } else {
 795       visited.push(x);
 796     }
 797 
 798     if (x->is_Region()) {
 799       for (uint i = 1; i < x->req(); i++) {
 800         worklist.push(x->in(i));
 801       }
 802     } else {
 803       worklist.push(x->in(0));
 804       // We are looking for the pattern:
 805       //                            /->ThreadLocal
 806       // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
 807       //              \->ConI(0)
 808       // We want to verify that the If and the LoadB have the same control
 809       // See GraphKit::g1_write_barrier_pre()
 810       if (x->is_If()) {
 811         IfNode *iff = x->as_If();
 812         if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
 813           CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
 814           if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
 815               && cmp->in(1)->is_Load()) {
 816             LoadNode* load = cmp->in(1)->as_Load();
 817             if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
 818                 && load->in(2)->in(3)->is_Con()
 819                 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
 820 
 821               Node* if_ctrl = iff->in(0);
 822               Node* load_ctrl = load->in(0);
 823 
 824               if (if_ctrl != load_ctrl) {
 825                 // Skip possible CProj->NeverBranch in infinite loops
 826                 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
 827                     && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
 828                   if_ctrl = if_ctrl->in(0)->in(0);
 829                 }
 830               }
 831               assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
 832             }
 833           }
 834         }
 835       }
 836     }
 837   }
 838 }
 839 #endif