1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/connode.hpp"
  29 #include "opto/convertnode.hpp"
  30 #include "opto/memnode.hpp"
  31 #include "opto/mulnode.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/subnode.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 
  38 //=============================================================================
  39 //------------------------------hash-------------------------------------------
  40 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
  41 // (commute) inputs to MulNodes willy-nilly so the hash function must return
  42 // the same value in the presence of edge swapping.
  43 uint MulNode::hash() const {
  44   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  45 }
  46 
  47 //------------------------------Identity---------------------------------------
  48 // Multiplying a one preserves the other argument
  49 Node* MulNode::Identity(PhaseGVN* phase) {
  50   const Type *one = mul_id();  // The multiplicative identity
  51   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
  52   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
  53 
  54   return this;
  55 }
  56 
  57 //------------------------------Ideal------------------------------------------
  58 // We also canonicalize the Node, moving constants to the right input,
  59 // and flatten expressions (so that 1+x+2 becomes x+3).
  60 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  61   const Type *t1 = phase->type( in(1) );
  62   const Type *t2 = phase->type( in(2) );
  63   Node *progress = NULL;        // Progress flag
  64   // We are OK if right is a constant, or right is a load and
  65   // left is a non-constant.
  66   if( !(t2->singleton() ||
  67         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
  68     if( t1->singleton() ||       // Left input is a constant?
  69         // Otherwise, sort inputs (commutativity) to help value numbering.
  70         (in(1)->_idx > in(2)->_idx) ) {
  71       swap_edges(1, 2);
  72       const Type *t = t1;
  73       t1 = t2;
  74       t2 = t;
  75       progress = this;            // Made progress
  76     }
  77   }
  78 
  79   // If the right input is a constant, and the left input is a product of a
  80   // constant, flatten the expression tree.
  81   uint op = Opcode();
  82   if( t2->singleton() &&        // Right input is a constant?
  83       op != Op_MulF &&          // Float & double cannot reassociate
  84       op != Op_MulD ) {
  85     if( t2 == Type::TOP ) return NULL;
  86     Node *mul1 = in(1);
  87 #ifdef ASSERT
  88     // Check for dead loop
  89     int   op1 = mul1->Opcode();
  90     if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
  91         ( ( op1 == mul_opcode() || op1 == add_opcode() ) &&
  92           ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
  93             phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) ) )
  94       assert(false, "dead loop in MulNode::Ideal");
  95 #endif
  96 
  97     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
  98       // Mul of a constant?
  99       const Type *t12 = phase->type( mul1->in(2) );
 100       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
 101         // Compute new constant; check for overflow
 102         const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
 103         if( tcon01->singleton() ) {
 104           // The Mul of the flattened expression
 105           set_req(1, mul1->in(1));
 106           set_req(2, phase->makecon( tcon01 ));
 107           t2 = tcon01;
 108           progress = this;      // Made progress
 109         }
 110       }
 111     }
 112     // If the right input is a constant, and the left input is an add of a
 113     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
 114     const Node *add1 = in(1);
 115     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
 116       // Add of a constant?
 117       const Type *t12 = phase->type( add1->in(2) );
 118       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
 119         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
 120         // Compute new constant; check for overflow
 121         const Type *tcon01 = mul_ring(t2,t12);
 122         if( tcon01->singleton() ) {
 123 
 124         // Convert (X+con1)*con0 into X*con0
 125           Node *mul = clone();    // mul = ()*con0
 126           mul->set_req(1,add1->in(1));  // mul = X*con0
 127           mul = phase->transform(mul);
 128 
 129           Node *add2 = add1->clone();
 130           add2->set_req(1, mul);        // X*con0 + con0*con1
 131           add2->set_req(2, phase->makecon(tcon01) );
 132           progress = add2;
 133         }
 134       }
 135     } // End of is left input an add
 136   } // End of is right input a Mul
 137 
 138   return progress;
 139 }
 140 
 141 //------------------------------Value-----------------------------------------
 142 const Type* MulNode::Value(PhaseGVN* phase) const {
 143   const Type *t1 = phase->type( in(1) );
 144   const Type *t2 = phase->type( in(2) );
 145   // Either input is TOP ==> the result is TOP
 146   if( t1 == Type::TOP ) return Type::TOP;
 147   if( t2 == Type::TOP ) return Type::TOP;
 148 
 149   // Either input is ZERO ==> the result is ZERO.
 150   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
 151   int op = Opcode();
 152   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
 153     const Type *zero = add_id();        // The multiplicative zero
 154     if( t1->higher_equal( zero ) ) return zero;
 155     if( t2->higher_equal( zero ) ) return zero;
 156   }
 157 
 158   // Either input is BOTTOM ==> the result is the local BOTTOM
 159   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
 160     return bottom_type();
 161 
 162 #if defined(IA32)
 163   // Can't trust native compilers to properly fold strict double
 164   // multiplication with round-to-zero on this platform.
 165   if (op == Op_MulD && phase->C->method()->is_strict()) {
 166     return TypeD::DOUBLE;
 167   }
 168 #endif
 169 
 170   return mul_ring(t1,t2);            // Local flavor of type multiplication
 171 }
 172 
 173 
 174 //=============================================================================
 175 //------------------------------Ideal------------------------------------------
 176 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 177 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 178   // Swap constant to right
 179   jint con;
 180   if ((con = in(1)->find_int_con(0)) != 0) {
 181     swap_edges(1, 2);
 182     // Finish rest of method to use info in 'con'
 183   } else if ((con = in(2)->find_int_con(0)) == 0) {
 184     return MulNode::Ideal(phase, can_reshape);
 185   }
 186 
 187   // Now we have a constant Node on the right and the constant in con
 188   if( con == 0 ) return NULL;   // By zero is handled by Value call
 189   if( con == 1 ) return NULL;   // By one  is handled by Identity call
 190 
 191   // Check for negative constant; if so negate the final result
 192   bool sign_flip = false;
 193   if( con < 0 ) {
 194     con = -con;
 195     sign_flip = true;
 196   }
 197 
 198   // Get low bit; check for being the only bit
 199   Node *res = NULL;
 200   jint bit1 = con & -con;       // Extract low bit
 201   if( bit1 == con ) {           // Found a power of 2?
 202     res = new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
 203   } else {
 204 
 205     // Check for constant with 2 bits set
 206     jint bit2 = con-bit1;
 207     bit2 = bit2 & -bit2;          // Extract 2nd bit
 208     if( bit2 + bit1 == con ) {    // Found all bits in con?
 209       Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
 210       Node *n2 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
 211       res = new AddINode( n2, n1 );
 212 
 213     } else if (is_power_of_2(con+1)) {
 214       // Sleezy: power-of-2 -1.  Next time be generic.
 215       jint temp = (jint) (con + 1);
 216       Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
 217       res = new SubINode( n1, in(1) );
 218     } else {
 219       return MulNode::Ideal(phase, can_reshape);
 220     }
 221   }
 222 
 223   if( sign_flip ) {             // Need to negate result?
 224     res = phase->transform(res);// Transform, before making the zero con
 225     res = new SubINode(phase->intcon(0),res);
 226   }
 227 
 228   return res;                   // Return final result
 229 }
 230 
 231 //------------------------------mul_ring---------------------------------------
 232 // Compute the product type of two integer ranges into this node.
 233 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
 234   const TypeInt *r0 = t0->is_int(); // Handy access
 235   const TypeInt *r1 = t1->is_int();
 236 
 237   // Fetch endpoints of all ranges
 238   jint lo0 = r0->_lo;
 239   double a = (double)lo0;
 240   jint hi0 = r0->_hi;
 241   double b = (double)hi0;
 242   jint lo1 = r1->_lo;
 243   double c = (double)lo1;
 244   jint hi1 = r1->_hi;
 245   double d = (double)hi1;
 246 
 247   // Compute all endpoints & check for overflow
 248   int32_t A = java_multiply(lo0, lo1);
 249   if( (double)A != a*c ) return TypeInt::INT; // Overflow?
 250   int32_t B = java_multiply(lo0, hi1);
 251   if( (double)B != a*d ) return TypeInt::INT; // Overflow?
 252   int32_t C = java_multiply(hi0, lo1);
 253   if( (double)C != b*c ) return TypeInt::INT; // Overflow?
 254   int32_t D = java_multiply(hi0, hi1);
 255   if( (double)D != b*d ) return TypeInt::INT; // Overflow?
 256 
 257   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 258   else { lo0 = B; hi0 = A; }
 259   if( C < D ) {
 260     if( C < lo0 ) lo0 = C;
 261     if( D > hi0 ) hi0 = D;
 262   } else {
 263     if( D < lo0 ) lo0 = D;
 264     if( C > hi0 ) hi0 = C;
 265   }
 266   return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 267 }
 268 
 269 
 270 //=============================================================================
 271 //------------------------------Ideal------------------------------------------
 272 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 273 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 274   // Swap constant to right
 275   jlong con;
 276   if ((con = in(1)->find_long_con(0)) != 0) {
 277     swap_edges(1, 2);
 278     // Finish rest of method to use info in 'con'
 279   } else if ((con = in(2)->find_long_con(0)) == 0) {
 280     return MulNode::Ideal(phase, can_reshape);
 281   }
 282 
 283   // Now we have a constant Node on the right and the constant in con
 284   if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
 285   if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
 286 
 287   // Check for negative constant; if so negate the final result
 288   bool sign_flip = false;
 289   if( con < 0 ) {
 290     con = -con;
 291     sign_flip = true;
 292   }
 293 
 294   // Get low bit; check for being the only bit
 295   Node *res = NULL;
 296   jlong bit1 = con & -con;      // Extract low bit
 297   if( bit1 == con ) {           // Found a power of 2?
 298     res = new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
 299   } else {
 300 
 301     // Check for constant with 2 bits set
 302     jlong bit2 = con-bit1;
 303     bit2 = bit2 & -bit2;          // Extract 2nd bit
 304     if( bit2 + bit1 == con ) {    // Found all bits in con?
 305       Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
 306       Node *n2 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
 307       res = new AddLNode( n2, n1 );
 308 
 309     } else if (is_power_of_2_long(con+1)) {
 310       // Sleezy: power-of-2 -1.  Next time be generic.
 311       jlong temp = (jlong) (con + 1);
 312       Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
 313       res = new SubLNode( n1, in(1) );
 314     } else {
 315       return MulNode::Ideal(phase, can_reshape);
 316     }
 317   }
 318 
 319   if( sign_flip ) {             // Need to negate result?
 320     res = phase->transform(res);// Transform, before making the zero con
 321     res = new SubLNode(phase->longcon(0),res);
 322   }
 323 
 324   return res;                   // Return final result
 325 }
 326 
 327 //------------------------------mul_ring---------------------------------------
 328 // Compute the product type of two integer ranges into this node.
 329 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
 330   const TypeLong *r0 = t0->is_long(); // Handy access
 331   const TypeLong *r1 = t1->is_long();
 332 
 333   // Fetch endpoints of all ranges
 334   jlong lo0 = r0->_lo;
 335   double a = (double)lo0;
 336   jlong hi0 = r0->_hi;
 337   double b = (double)hi0;
 338   jlong lo1 = r1->_lo;
 339   double c = (double)lo1;
 340   jlong hi1 = r1->_hi;
 341   double d = (double)hi1;
 342 
 343   // Compute all endpoints & check for overflow
 344   jlong A = java_multiply(lo0, lo1);
 345   if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
 346   jlong B = java_multiply(lo0, hi1);
 347   if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
 348   jlong C = java_multiply(hi0, lo1);
 349   if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
 350   jlong D = java_multiply(hi0, hi1);
 351   if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
 352 
 353   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 354   else { lo0 = B; hi0 = A; }
 355   if( C < D ) {
 356     if( C < lo0 ) lo0 = C;
 357     if( D > hi0 ) hi0 = D;
 358   } else {
 359     if( D < lo0 ) lo0 = D;
 360     if( C > hi0 ) hi0 = C;
 361   }
 362   return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 363 }
 364 
 365 //=============================================================================
 366 //------------------------------mul_ring---------------------------------------
 367 // Compute the product type of two double ranges into this node.
 368 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
 369   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
 370   return TypeF::make( t0->getf() * t1->getf() );
 371 }
 372 
 373 //=============================================================================
 374 //------------------------------mul_ring---------------------------------------
 375 // Compute the product type of two double ranges into this node.
 376 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
 377   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
 378   // We must be multiplying 2 double constants.
 379   return TypeD::make( t0->getd() * t1->getd() );
 380 }
 381 
 382 //=============================================================================
 383 //------------------------------Value------------------------------------------
 384 const Type* MulHiLNode::Value(PhaseGVN* phase) const {
 385   // Either input is TOP ==> the result is TOP
 386   const Type *t1 = phase->type( in(1) );
 387   const Type *t2 = phase->type( in(2) );
 388   if( t1 == Type::TOP ) return Type::TOP;
 389   if( t2 == Type::TOP ) return Type::TOP;
 390 
 391   // Either input is BOTTOM ==> the result is the local BOTTOM
 392   const Type *bot = bottom_type();
 393   if( (t1 == bot) || (t2 == bot) ||
 394       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 395     return bot;
 396 
 397   // It is not worth trying to constant fold this stuff!
 398   return TypeLong::LONG;
 399 }
 400 
 401 //=============================================================================
 402 //------------------------------mul_ring---------------------------------------
 403 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 404 // For the logical operations the ring's MUL is really a logical AND function.
 405 // This also type-checks the inputs for sanity.  Guaranteed never to
 406 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 407 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
 408   const TypeInt *r0 = t0->is_int(); // Handy access
 409   const TypeInt *r1 = t1->is_int();
 410   int widen = MAX2(r0->_widen,r1->_widen);
 411 
 412   // If either input is a constant, might be able to trim cases
 413   if( !r0->is_con() && !r1->is_con() )
 414     return TypeInt::INT;        // No constants to be had
 415 
 416   // Both constants?  Return bits
 417   if( r0->is_con() && r1->is_con() )
 418     return TypeInt::make( r0->get_con() & r1->get_con() );
 419 
 420   if( r0->is_con() && r0->get_con() > 0 )
 421     return TypeInt::make(0, r0->get_con(), widen);
 422 
 423   if( r1->is_con() && r1->get_con() > 0 )
 424     return TypeInt::make(0, r1->get_con(), widen);
 425 
 426   if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
 427     return TypeInt::BOOL;
 428   }
 429 
 430   return TypeInt::INT;          // No constants to be had
 431 }
 432 
 433 //------------------------------Identity---------------------------------------
 434 // Masking off the high bits of an unsigned load is not required
 435 Node* AndINode::Identity(PhaseGVN* phase) {
 436 
 437   // x & x => x
 438   if (phase->eqv(in(1), in(2))) return in(1);
 439 
 440   Node* in1 = in(1);
 441   uint op = in1->Opcode();
 442   const TypeInt* t2 = phase->type(in(2))->isa_int();
 443   if (t2 && t2->is_con()) {
 444     int con = t2->get_con();
 445     // Masking off high bits which are always zero is useless.
 446     const TypeInt* t1 = phase->type( in(1) )->isa_int();
 447     if (t1 != NULL && t1->_lo >= 0) {
 448       jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
 449       if ((t1_support & con) == t1_support)
 450         return in1;
 451     }
 452     // Masking off the high bits of a unsigned-shift-right is not
 453     // needed either.
 454     if (op == Op_URShiftI) {
 455       const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 456       if (t12 && t12->is_con()) {  // Shift is by a constant
 457         int shift = t12->get_con();
 458         shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
 459         int mask = max_juint >> shift;
 460         if ((mask & con) == mask)  // If AND is useless, skip it
 461           return in1;
 462       }
 463     }
 464   }
 465   return MulNode::Identity(phase);
 466 }
 467 
 468 //------------------------------Ideal------------------------------------------
 469 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 470   // Special case constant AND mask
 471   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 472   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 473   const int mask = t2->get_con();
 474   Node *load = in(1);
 475   uint lop = load->Opcode();
 476 
 477   // Masking bits off of a Character?  Hi bits are already zero.
 478   if( lop == Op_LoadUS &&
 479       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
 480     return new AndINode(load,phase->intcon(mask&0xFFFF));
 481 
 482   // Masking bits off of a Short?  Loading a Character does some masking
 483   if (can_reshape &&
 484       load->outcnt() == 1 && load->unique_out() == this) {
 485     if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
 486       Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase);
 487       ldus = phase->transform(ldus);
 488       return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
 489     }
 490 
 491     // Masking sign bits off of a Byte?  Do an unsigned byte load plus
 492     // an and.
 493     // Prevent transform if it feeds to CmpI. We have special matcher
 494     // for LoadB+AndI+CmpI that generates a single instruction.
 495     bool feeds_to_cmpi_zero = outcnt() == 1 &&
 496                               unique_out()->Opcode() == Op_CmpI &&
 497                               phase->type(unique_out()->in(2))->is_zero_type();
 498     if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0 && !feeds_to_cmpi_zero) {
 499       Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase);
 500       ldub = phase->transform(ldub);
 501       return new AndINode(ldub, phase->intcon(mask));
 502     }
 503   }
 504 
 505   // Masking off sign bits?  Dont make them!
 506   if( lop == Op_RShiftI ) {
 507     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
 508     if( t12 && t12->is_con() ) { // Shift is by a constant
 509       int shift = t12->get_con();
 510       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 511       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
 512       // If the AND'ing of the 2 masks has no bits, then only original shifted
 513       // bits survive.  NO sign-extension bits survive the maskings.
 514       if( (sign_bits_mask & mask) == 0 ) {
 515         // Use zero-fill shift instead
 516         Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
 517         return new AndINode( zshift, in(2) );
 518       }
 519     }
 520   }
 521 
 522   // Check for 'negate/and-1', a pattern emitted when someone asks for
 523   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
 524   // plus 1) and the mask is of the low order bit.  Skip the negate.
 525   if( lop == Op_SubI && mask == 1 && load->in(1) &&
 526       phase->type(load->in(1)) == TypeInt::ZERO )
 527     return new AndINode( load->in(2), in(2) );
 528 
 529   return MulNode::Ideal(phase, can_reshape);
 530 }
 531 
 532 //=============================================================================
 533 //------------------------------mul_ring---------------------------------------
 534 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 535 // For the logical operations the ring's MUL is really a logical AND function.
 536 // This also type-checks the inputs for sanity.  Guaranteed never to
 537 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 538 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
 539   const TypeLong *r0 = t0->is_long(); // Handy access
 540   const TypeLong *r1 = t1->is_long();
 541   int widen = MAX2(r0->_widen,r1->_widen);
 542 
 543   // If either input is a constant, might be able to trim cases
 544   if( !r0->is_con() && !r1->is_con() )
 545     return TypeLong::LONG;      // No constants to be had
 546 
 547   // Both constants?  Return bits
 548   if( r0->is_con() && r1->is_con() )
 549     return TypeLong::make( r0->get_con() & r1->get_con() );
 550 
 551   if( r0->is_con() && r0->get_con() > 0 )
 552     return TypeLong::make(CONST64(0), r0->get_con(), widen);
 553 
 554   if( r1->is_con() && r1->get_con() > 0 )
 555     return TypeLong::make(CONST64(0), r1->get_con(), widen);
 556 
 557   return TypeLong::LONG;        // No constants to be had
 558 }
 559 
 560 //------------------------------Identity---------------------------------------
 561 // Masking off the high bits of an unsigned load is not required
 562 Node* AndLNode::Identity(PhaseGVN* phase) {
 563 
 564   // x & x => x
 565   if (phase->eqv(in(1), in(2))) return in(1);
 566 
 567   Node *usr = in(1);
 568   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 569   if( t2 && t2->is_con() ) {
 570     jlong con = t2->get_con();
 571     // Masking off high bits which are always zero is useless.
 572     const TypeLong* t1 = phase->type( in(1) )->isa_long();
 573     if (t1 != NULL && t1->_lo >= 0) {
 574       int bit_count = log2_long(t1->_hi) + 1;
 575       jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
 576       if ((t1_support & con) == t1_support)
 577         return usr;
 578     }
 579     uint lop = usr->Opcode();
 580     // Masking off the high bits of a unsigned-shift-right is not
 581     // needed either.
 582     if( lop == Op_URShiftL ) {
 583       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
 584       if( t12 && t12->is_con() ) {  // Shift is by a constant
 585         int shift = t12->get_con();
 586         shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 587         jlong mask = max_julong >> shift;
 588         if( (mask&con) == mask )  // If AND is useless, skip it
 589           return usr;
 590       }
 591     }
 592   }
 593   return MulNode::Identity(phase);
 594 }
 595 
 596 //------------------------------Ideal------------------------------------------
 597 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 598   // Special case constant AND mask
 599   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 600   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 601   const jlong mask = t2->get_con();
 602 
 603   Node* in1 = in(1);
 604   uint op = in1->Opcode();
 605 
 606   // Are we masking a long that was converted from an int with a mask
 607   // that fits in 32-bits?  Commute them and use an AndINode.  Don't
 608   // convert masks which would cause a sign extension of the integer
 609   // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
 610   // would be optimized away later in Identity.
 611   if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
 612     Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
 613     andi = phase->transform(andi);
 614     return new ConvI2LNode(andi);
 615   }
 616 
 617   // Masking off sign bits?  Dont make them!
 618   if (op == Op_RShiftL) {
 619     const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 620     if( t12 && t12->is_con() ) { // Shift is by a constant
 621       int shift = t12->get_con();
 622       shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 623       const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
 624       // If the AND'ing of the 2 masks has no bits, then only original shifted
 625       // bits survive.  NO sign-extension bits survive the maskings.
 626       if( (sign_bits_mask & mask) == 0 ) {
 627         // Use zero-fill shift instead
 628         Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
 629         return new AndLNode(zshift, in(2));
 630       }
 631     }
 632   }
 633 
 634   return MulNode::Ideal(phase, can_reshape);
 635 }
 636 
 637 //=============================================================================
 638 
 639 static int getShiftCon(PhaseGVN *phase, Node *shiftNode, int retVal) {
 640   const Type *t = phase->type(shiftNode->in(2));
 641   if (t == Type::TOP) return retVal;       // Right input is dead.
 642   const TypeInt *t2 = t->isa_int();
 643   if (!t2 || !t2->is_con()) return retVal; // Right input is a constant.
 644 
 645   return t2->get_con();
 646 }
 647 
 648 static int maskShiftAmount(PhaseGVN *phase, Node *shiftNode, int nBits) {
 649   int       shift = getShiftCon(phase, shiftNode, 0);
 650   int maskedShift = shift & (nBits - 1);
 651 
 652   if (maskedShift == 0) return 0;         // Let Identity() handle 0 shift count.
 653 
 654   if (shift != maskedShift) {
 655     shiftNode->set_req(2, phase->intcon(maskedShift)); // Replace shift count with masked value.
 656     phase->igvn_rehash_node_delayed(shiftNode);
 657   }
 658 
 659   return maskedShift;
 660 }
 661 
 662 //------------------------------Identity---------------------------------------
 663 Node* LShiftINode::Identity(PhaseGVN* phase) {
 664   return ((getShiftCon(phase, this, -1) & (BitsPerJavaInteger - 1)) == 0) ? in(1) : this;
 665 }
 666 
 667 //------------------------------Ideal------------------------------------------
 668 // If the right input is a constant, and the left input is an add of a
 669 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 670 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 671   int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
 672   if (con == 0) {
 673     return NULL;
 674   }
 675 
 676   // Left input is an add of a constant?
 677   Node *add1 = in(1);
 678   int add1_op = add1->Opcode();
 679   if( add1_op == Op_AddI ) {    // Left input is an add?
 680     assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
 681     const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
 682     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 683       // Transform is legal, but check for profit.  Avoid breaking 'i2s'
 684       // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
 685       if( con < 16 ) {
 686         // Compute X << con0
 687         Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) );
 688         // Compute X<<con0 + (con1<<con0)
 689         return new AddINode( lsh, phase->intcon(t12->get_con() << con));
 690       }
 691     }
 692   }
 693 
 694   // Check for "(x>>c0)<<c0" which just masks off low bits
 695   if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
 696       add1->in(2) == in(2) )
 697     // Convert to "(x & -(1<<c0))"
 698     return new AndINode(add1->in(1),phase->intcon( -(1<<con)));
 699 
 700   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 701   if( add1_op == Op_AndI ) {
 702     Node *add2 = add1->in(1);
 703     int add2_op = add2->Opcode();
 704     if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
 705         add2->in(2) == in(2) ) {
 706       // Convert to "(x & (Y<<c0))"
 707       Node *y_sh = phase->transform( new LShiftINode( add1->in(2), in(2) ) );
 708       return new AndINode( add2->in(1), y_sh );
 709     }
 710   }
 711 
 712   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
 713   // before shifting them away.
 714   const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
 715   if( add1_op == Op_AndI &&
 716       phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
 717     return new LShiftINode( add1->in(1), in(2) );
 718 
 719   return NULL;
 720 }
 721 
 722 //------------------------------Value------------------------------------------
 723 // A LShiftINode shifts its input2 left by input1 amount.
 724 const Type* LShiftINode::Value(PhaseGVN* phase) const {
 725   const Type *t1 = phase->type( in(1) );
 726   const Type *t2 = phase->type( in(2) );
 727   // Either input is TOP ==> the result is TOP
 728   if( t1 == Type::TOP ) return Type::TOP;
 729   if( t2 == Type::TOP ) return Type::TOP;
 730 
 731   // Left input is ZERO ==> the result is ZERO.
 732   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 733   // Shift by zero does nothing
 734   if( t2 == TypeInt::ZERO ) return t1;
 735 
 736   // Either input is BOTTOM ==> the result is BOTTOM
 737   if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
 738       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 739     return TypeInt::INT;
 740 
 741   const TypeInt *r1 = t1->is_int(); // Handy access
 742   const TypeInt *r2 = t2->is_int(); // Handy access
 743 
 744   if (!r2->is_con())
 745     return TypeInt::INT;
 746 
 747   uint shift = r2->get_con();
 748   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 749   // Shift by a multiple of 32 does nothing:
 750   if (shift == 0)  return t1;
 751 
 752   // If the shift is a constant, shift the bounds of the type,
 753   // unless this could lead to an overflow.
 754   if (!r1->is_con()) {
 755     jint lo = r1->_lo, hi = r1->_hi;
 756     if (((lo << shift) >> shift) == lo &&
 757         ((hi << shift) >> shift) == hi) {
 758       // No overflow.  The range shifts up cleanly.
 759       return TypeInt::make((jint)lo << (jint)shift,
 760                            (jint)hi << (jint)shift,
 761                            MAX2(r1->_widen,r2->_widen));
 762     }
 763     return TypeInt::INT;
 764   }
 765 
 766   return TypeInt::make( (jint)r1->get_con() << (jint)shift );
 767 }
 768 
 769 //=============================================================================
 770 //------------------------------Identity---------------------------------------
 771 Node* LShiftLNode::Identity(PhaseGVN* phase) {
 772   return ((getShiftCon(phase, this, -1) & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
 773 }
 774 
 775 //------------------------------Ideal------------------------------------------
 776 // If the right input is a constant, and the left input is an add of a
 777 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 778 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 779   int con = maskShiftAmount(phase, this, BitsPerJavaLong);
 780   if (con == 0) {
 781     return NULL;
 782   }
 783 
 784   // Left input is an add of a constant?
 785   Node *add1 = in(1);
 786   int add1_op = add1->Opcode();
 787   if( add1_op == Op_AddL ) {    // Left input is an add?
 788     // Avoid dead data cycles from dead loops
 789     assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
 790     const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
 791     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 792       // Compute X << con0
 793       Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) );
 794       // Compute X<<con0 + (con1<<con0)
 795       return new AddLNode( lsh, phase->longcon(t12->get_con() << con));
 796     }
 797   }
 798 
 799   // Check for "(x>>c0)<<c0" which just masks off low bits
 800   if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
 801       add1->in(2) == in(2) )
 802     // Convert to "(x & -(1<<c0))"
 803     return new AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
 804 
 805   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 806   if( add1_op == Op_AndL ) {
 807     Node *add2 = add1->in(1);
 808     int add2_op = add2->Opcode();
 809     if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
 810         add2->in(2) == in(2) ) {
 811       // Convert to "(x & (Y<<c0))"
 812       Node *y_sh = phase->transform( new LShiftLNode( add1->in(2), in(2) ) );
 813       return new AndLNode( add2->in(1), y_sh );
 814     }
 815   }
 816 
 817   // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
 818   // before shifting them away.
 819   const jlong bits_mask = jlong(max_julong >> con);
 820   if( add1_op == Op_AndL &&
 821       phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
 822     return new LShiftLNode( add1->in(1), in(2) );
 823 
 824   return NULL;
 825 }
 826 
 827 //------------------------------Value------------------------------------------
 828 // A LShiftLNode shifts its input2 left by input1 amount.
 829 const Type* LShiftLNode::Value(PhaseGVN* phase) const {
 830   const Type *t1 = phase->type( in(1) );
 831   const Type *t2 = phase->type( in(2) );
 832   // Either input is TOP ==> the result is TOP
 833   if( t1 == Type::TOP ) return Type::TOP;
 834   if( t2 == Type::TOP ) return Type::TOP;
 835 
 836   // Left input is ZERO ==> the result is ZERO.
 837   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
 838   // Shift by zero does nothing
 839   if( t2 == TypeInt::ZERO ) return t1;
 840 
 841   // Either input is BOTTOM ==> the result is BOTTOM
 842   if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
 843       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 844     return TypeLong::LONG;
 845 
 846   const TypeLong *r1 = t1->is_long(); // Handy access
 847   const TypeInt  *r2 = t2->is_int();  // Handy access
 848 
 849   if (!r2->is_con())
 850     return TypeLong::LONG;
 851 
 852   uint shift = r2->get_con();
 853   shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 854   // Shift by a multiple of 64 does nothing:
 855   if (shift == 0)  return t1;
 856 
 857   // If the shift is a constant, shift the bounds of the type,
 858   // unless this could lead to an overflow.
 859   if (!r1->is_con()) {
 860     jlong lo = r1->_lo, hi = r1->_hi;
 861     if (((lo << shift) >> shift) == lo &&
 862         ((hi << shift) >> shift) == hi) {
 863       // No overflow.  The range shifts up cleanly.
 864       return TypeLong::make((jlong)lo << (jint)shift,
 865                             (jlong)hi << (jint)shift,
 866                             MAX2(r1->_widen,r2->_widen));
 867     }
 868     return TypeLong::LONG;
 869   }
 870 
 871   return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
 872 }
 873 
 874 //=============================================================================
 875 //------------------------------Identity---------------------------------------
 876 Node* RShiftINode::Identity(PhaseGVN* phase) {
 877   int shift = getShiftCon(phase, this, -1);
 878   if (shift == -1) return this;
 879   if ((shift & (BitsPerJavaInteger - 1)) == 0) return in(1);
 880 
 881   // Check for useless sign-masking
 882   if (in(1)->Opcode() == Op_LShiftI &&
 883       in(1)->req() == 3 &&
 884       in(1)->in(2) == in(2)) {
 885     shift &= BitsPerJavaInteger-1; // semantics of Java shifts
 886     // Compute masks for which this shifting doesn't change
 887     int lo = (-1 << (BitsPerJavaInteger - ((uint)shift)-1)); // FFFF8000
 888     int hi = ~lo;               // 00007FFF
 889     const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
 890     if (!t11) return this;
 891     // Does actual value fit inside of mask?
 892     if (lo <= t11->_lo && t11->_hi <= hi) {
 893       return in(1)->in(1);      // Then shifting is a nop
 894     }
 895   }
 896 
 897   return this;
 898 }
 899 
 900 //------------------------------Ideal------------------------------------------
 901 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 902   // Inputs may be TOP if they are dead.
 903   const TypeInt *t1 = phase->type(in(1))->isa_int();
 904   if (!t1) return NULL;        // Left input is an integer
 905   const TypeInt *t3;  // type of in(1).in(2)
 906   int shift = maskShiftAmount(phase, this, BitsPerJavaInteger);
 907   if (shift == 0) {
 908     return NULL;
 909   }
 910 
 911   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
 912   // Such expressions arise normally from shift chains like (byte)(x >> 24).
 913   const Node *mask = in(1);
 914   if( mask->Opcode() == Op_AndI &&
 915       (t3 = phase->type(mask->in(2))->isa_int()) &&
 916       t3->is_con() ) {
 917     Node *x = mask->in(1);
 918     jint maskbits = t3->get_con();
 919     // Convert to "(x >> shift) & (mask >> shift)"
 920     Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) );
 921     return new AndINode(shr_nomask, phase->intcon( maskbits >> shift));
 922   }
 923 
 924   // Check for "(short[i] <<16)>>16" which simply sign-extends
 925   const Node *shl = in(1);
 926   if( shl->Opcode() != Op_LShiftI ) return NULL;
 927 
 928   if( shift == 16 &&
 929       (t3 = phase->type(shl->in(2))->isa_int()) &&
 930       t3->is_con(16) ) {
 931     Node *ld = shl->in(1);
 932     if( ld->Opcode() == Op_LoadS ) {
 933       // Sign extension is just useless here.  Return a RShiftI of zero instead
 934       // returning 'ld' directly.  We cannot return an old Node directly as
 935       // that is the job of 'Identity' calls and Identity calls only work on
 936       // direct inputs ('ld' is an extra Node removed from 'this').  The
 937       // combined optimization requires Identity only return direct inputs.
 938       set_req(1, ld);
 939       set_req(2, phase->intcon(0));
 940       return this;
 941     }
 942     else if( can_reshape &&
 943              ld->Opcode() == Op_LoadUS &&
 944              ld->outcnt() == 1 && ld->unique_out() == shl)
 945       // Replace zero-extension-load with sign-extension-load
 946       return ld->as_Load()->convert_to_signed_load(*phase);
 947   }
 948 
 949   // Check for "(byte[i] <<24)>>24" which simply sign-extends
 950   if( shift == 24 &&
 951       (t3 = phase->type(shl->in(2))->isa_int()) &&
 952       t3->is_con(24) ) {
 953     Node *ld = shl->in(1);
 954     if( ld->Opcode() == Op_LoadB ) {
 955       // Sign extension is just useless here
 956       set_req(1, ld);
 957       set_req(2, phase->intcon(0));
 958       return this;
 959     }
 960   }
 961 
 962   return NULL;
 963 }
 964 
 965 //------------------------------Value------------------------------------------
 966 // A RShiftINode shifts its input2 right by input1 amount.
 967 const Type* RShiftINode::Value(PhaseGVN* phase) const {
 968   const Type *t1 = phase->type( in(1) );
 969   const Type *t2 = phase->type( in(2) );
 970   // Either input is TOP ==> the result is TOP
 971   if( t1 == Type::TOP ) return Type::TOP;
 972   if( t2 == Type::TOP ) return Type::TOP;
 973 
 974   // Left input is ZERO ==> the result is ZERO.
 975   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 976   // Shift by zero does nothing
 977   if( t2 == TypeInt::ZERO ) return t1;
 978 
 979   // Either input is BOTTOM ==> the result is BOTTOM
 980   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
 981     return TypeInt::INT;
 982 
 983   if (t2 == TypeInt::INT)
 984     return TypeInt::INT;
 985 
 986   const TypeInt *r1 = t1->is_int(); // Handy access
 987   const TypeInt *r2 = t2->is_int(); // Handy access
 988 
 989   // If the shift is a constant, just shift the bounds of the type.
 990   // For example, if the shift is 31, we just propagate sign bits.
 991   if (r2->is_con()) {
 992     uint shift = r2->get_con();
 993     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 994     // Shift by a multiple of 32 does nothing:
 995     if (shift == 0)  return t1;
 996     // Calculate reasonably aggressive bounds for the result.
 997     // This is necessary if we are to correctly type things
 998     // like (x<<24>>24) == ((byte)x).
 999     jint lo = (jint)r1->_lo >> (jint)shift;
1000     jint hi = (jint)r1->_hi >> (jint)shift;
1001     assert(lo <= hi, "must have valid bounds");
1002     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1003 #ifdef ASSERT
1004     // Make sure we get the sign-capture idiom correct.
1005     if (shift == BitsPerJavaInteger-1) {
1006       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
1007       if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
1008     }
1009 #endif
1010     return ti;
1011   }
1012 
1013   if( !r1->is_con() || !r2->is_con() )
1014     return TypeInt::INT;
1015 
1016   // Signed shift right
1017   return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
1018 }
1019 
1020 //=============================================================================
1021 //------------------------------Identity---------------------------------------
1022 Node* RShiftLNode::Identity(PhaseGVN* phase) {
1023   const TypeInt *ti = phase->type(in(2))->isa_int(); // Shift count is an int.
1024   return (ti && ti->is_con() && (ti->get_con() & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
1025 }
1026 
1027 //------------------------------Value------------------------------------------
1028 // A RShiftLNode shifts its input2 right by input1 amount.
1029 const Type* RShiftLNode::Value(PhaseGVN* phase) const {
1030   const Type *t1 = phase->type( in(1) );
1031   const Type *t2 = phase->type( in(2) );
1032   // Either input is TOP ==> the result is TOP
1033   if( t1 == Type::TOP ) return Type::TOP;
1034   if( t2 == Type::TOP ) return Type::TOP;
1035 
1036   // Left input is ZERO ==> the result is ZERO.
1037   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1038   // Shift by zero does nothing
1039   if( t2 == TypeInt::ZERO ) return t1;
1040 
1041   // Either input is BOTTOM ==> the result is BOTTOM
1042   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1043     return TypeLong::LONG;
1044 
1045   if (t2 == TypeInt::INT)
1046     return TypeLong::LONG;
1047 
1048   const TypeLong *r1 = t1->is_long(); // Handy access
1049   const TypeInt  *r2 = t2->is_int (); // Handy access
1050 
1051   // If the shift is a constant, just shift the bounds of the type.
1052   // For example, if the shift is 63, we just propagate sign bits.
1053   if (r2->is_con()) {
1054     uint shift = r2->get_con();
1055     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1056     // Shift by a multiple of 64 does nothing:
1057     if (shift == 0)  return t1;
1058     // Calculate reasonably aggressive bounds for the result.
1059     // This is necessary if we are to correctly type things
1060     // like (x<<24>>24) == ((byte)x).
1061     jlong lo = (jlong)r1->_lo >> (jlong)shift;
1062     jlong hi = (jlong)r1->_hi >> (jlong)shift;
1063     assert(lo <= hi, "must have valid bounds");
1064     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1065     #ifdef ASSERT
1066     // Make sure we get the sign-capture idiom correct.
1067     if (shift == (2*BitsPerJavaInteger)-1) {
1068       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1069       if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1070     }
1071     #endif
1072     return tl;
1073   }
1074 
1075   return TypeLong::LONG;                // Give up
1076 }
1077 
1078 //=============================================================================
1079 //------------------------------Identity---------------------------------------
1080 Node* URShiftINode::Identity(PhaseGVN* phase) {
1081   int shift = getShiftCon(phase, this, -1);
1082   if ((shift & (BitsPerJavaInteger - 1)) == 0) return in(1);
1083 
1084   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1085   // Happens during new-array length computation.
1086   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1087   Node *add = in(1);
1088   if (add->Opcode() == Op_AddI) {
1089     const TypeInt *t2 = phase->type(add->in(2))->isa_int();
1090     if (t2 && t2->is_con(wordSize - 1) &&
1091         add->in(1)->Opcode() == Op_LShiftI) {
1092       // Check that shift_counts are LogBytesPerWord.
1093       Node          *lshift_count   = add->in(1)->in(2);
1094       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1095       if (t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1096           t_lshift_count == phase->type(in(2))) {
1097         Node          *x   = add->in(1)->in(1);
1098         const TypeInt *t_x = phase->type(x)->isa_int();
1099         if (t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord)) {
1100           return x;
1101         }
1102       }
1103     }
1104   }
1105 
1106   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1107 }
1108 
1109 //------------------------------Ideal------------------------------------------
1110 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1111   int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
1112   if (con == 0) {
1113     return NULL;
1114   }
1115 
1116   // We'll be wanting the right-shift amount as a mask of that many bits
1117   const int mask = right_n_bits(BitsPerJavaInteger - con);
1118 
1119   int in1_op = in(1)->Opcode();
1120 
1121   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1122   if( in1_op == Op_URShiftI ) {
1123     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1124     if( t12 && t12->is_con() ) { // Right input is a constant
1125       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1126       const int con2 = t12->get_con() & 31; // Shift count is always masked
1127       const int con3 = con+con2;
1128       if( con3 < 32 )           // Only merge shifts if total is < 32
1129         return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1130     }
1131   }
1132 
1133   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1134   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1135   // If Q is "X << z" the rounding is useless.  Look for patterns like
1136   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1137   Node *add = in(1);
1138   const TypeInt *t2 = phase->type(in(2))->isa_int();
1139   if (in1_op == Op_AddI) {
1140     Node *lshl = add->in(1);
1141     if( lshl->Opcode() == Op_LShiftI &&
1142         phase->type(lshl->in(2)) == t2 ) {
1143       Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1144       Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1145       return new AndINode( sum, phase->intcon(mask) );
1146     }
1147   }
1148 
1149   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1150   // This shortens the mask.  Also, if we are extracting a high byte and
1151   // storing it to a buffer, the mask will be removed completely.
1152   Node *andi = in(1);
1153   if( in1_op == Op_AndI ) {
1154     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1155     if( t3 && t3->is_con() ) { // Right input is a constant
1156       jint mask2 = t3->get_con();
1157       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1158       Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1159       return new AndINode(newshr, phase->intcon(mask2));
1160       // The negative values are easier to materialize than positive ones.
1161       // A typical case from address arithmetic is ((x & ~15) >> 4).
1162       // It's better to change that to ((x >> 4) & ~0) versus
1163       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1164     }
1165   }
1166 
1167   // Check for "(X << z ) >>> z" which simply zero-extends
1168   Node *shl = in(1);
1169   if( in1_op == Op_LShiftI &&
1170       phase->type(shl->in(2)) == t2 )
1171     return new AndINode( shl->in(1), phase->intcon(mask) );
1172 
1173   return NULL;
1174 }
1175 
1176 //------------------------------Value------------------------------------------
1177 // A URShiftINode shifts its input2 right by input1 amount.
1178 const Type* URShiftINode::Value(PhaseGVN* phase) const {
1179   // (This is a near clone of RShiftINode::Value.)
1180   const Type *t1 = phase->type( in(1) );
1181   const Type *t2 = phase->type( in(2) );
1182   // Either input is TOP ==> the result is TOP
1183   if( t1 == Type::TOP ) return Type::TOP;
1184   if( t2 == Type::TOP ) return Type::TOP;
1185 
1186   // Left input is ZERO ==> the result is ZERO.
1187   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1188   // Shift by zero does nothing
1189   if( t2 == TypeInt::ZERO ) return t1;
1190 
1191   // Either input is BOTTOM ==> the result is BOTTOM
1192   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1193     return TypeInt::INT;
1194 
1195   if (t2 == TypeInt::INT)
1196     return TypeInt::INT;
1197 
1198   const TypeInt *r1 = t1->is_int();     // Handy access
1199   const TypeInt *r2 = t2->is_int();     // Handy access
1200 
1201   if (r2->is_con()) {
1202     uint shift = r2->get_con();
1203     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1204     // Shift by a multiple of 32 does nothing:
1205     if (shift == 0)  return t1;
1206     // Calculate reasonably aggressive bounds for the result.
1207     jint lo = (juint)r1->_lo >> (juint)shift;
1208     jint hi = (juint)r1->_hi >> (juint)shift;
1209     if (r1->_hi >= 0 && r1->_lo < 0) {
1210       // If the type has both negative and positive values,
1211       // there are two separate sub-domains to worry about:
1212       // The positive half and the negative half.
1213       jint neg_lo = lo;
1214       jint neg_hi = (juint)-1 >> (juint)shift;
1215       jint pos_lo = (juint) 0 >> (juint)shift;
1216       jint pos_hi = hi;
1217       lo = MIN2(neg_lo, pos_lo);  // == 0
1218       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1219     }
1220     assert(lo <= hi, "must have valid bounds");
1221     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1222     #ifdef ASSERT
1223     // Make sure we get the sign-capture idiom correct.
1224     if (shift == BitsPerJavaInteger-1) {
1225       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1226       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1227     }
1228     #endif
1229     return ti;
1230   }
1231 
1232   //
1233   // Do not support shifted oops in info for GC
1234   //
1235   // else if( t1->base() == Type::InstPtr ) {
1236   //
1237   //   const TypeInstPtr *o = t1->is_instptr();
1238   //   if( t1->singleton() )
1239   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1240   // }
1241   // else if( t1->base() == Type::KlassPtr ) {
1242   //   const TypeKlassPtr *o = t1->is_klassptr();
1243   //   if( t1->singleton() )
1244   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1245   // }
1246 
1247   return TypeInt::INT;
1248 }
1249 
1250 //=============================================================================
1251 //------------------------------Identity---------------------------------------
1252 Node* URShiftLNode::Identity(PhaseGVN* phase) {
1253   return ((getShiftCon(phase, this, -1) & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
1254 }
1255 
1256 //------------------------------Ideal------------------------------------------
1257 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1258   int con = maskShiftAmount(phase, this, BitsPerJavaLong);
1259   if (con == 0) {
1260     return NULL;
1261   }
1262 
1263   // We'll be wanting the right-shift amount as a mask of that many bits
1264   const jlong mask = jlong(max_julong >> con);
1265 
1266   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1267   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1268   // If Q is "X << z" the rounding is useless.  Look for patterns like
1269   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1270   Node *add = in(1);
1271   const TypeInt *t2 = phase->type(in(2))->isa_int();
1272   if (add->Opcode() == Op_AddL) {
1273     Node *lshl = add->in(1);
1274     if( lshl->Opcode() == Op_LShiftL &&
1275         phase->type(lshl->in(2)) == t2 ) {
1276       Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1277       Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1278       return new AndLNode( sum, phase->longcon(mask) );
1279     }
1280   }
1281 
1282   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1283   // This shortens the mask.  Also, if we are extracting a high byte and
1284   // storing it to a buffer, the mask will be removed completely.
1285   Node *andi = in(1);
1286   if( andi->Opcode() == Op_AndL ) {
1287     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1288     if( t3 && t3->is_con() ) { // Right input is a constant
1289       jlong mask2 = t3->get_con();
1290       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1291       Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1292       return new AndLNode(newshr, phase->longcon(mask2));
1293     }
1294   }
1295 
1296   // Check for "(X << z ) >>> z" which simply zero-extends
1297   Node *shl = in(1);
1298   if( shl->Opcode() == Op_LShiftL &&
1299       phase->type(shl->in(2)) == t2 )
1300     return new AndLNode( shl->in(1), phase->longcon(mask) );
1301 
1302   return NULL;
1303 }
1304 
1305 //------------------------------Value------------------------------------------
1306 // A URShiftINode shifts its input2 right by input1 amount.
1307 const Type* URShiftLNode::Value(PhaseGVN* phase) const {
1308   // (This is a near clone of RShiftLNode::Value.)
1309   const Type *t1 = phase->type( in(1) );
1310   const Type *t2 = phase->type( in(2) );
1311   // Either input is TOP ==> the result is TOP
1312   if( t1 == Type::TOP ) return Type::TOP;
1313   if( t2 == Type::TOP ) return Type::TOP;
1314 
1315   // Left input is ZERO ==> the result is ZERO.
1316   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1317   // Shift by zero does nothing
1318   if( t2 == TypeInt::ZERO ) return t1;
1319 
1320   // Either input is BOTTOM ==> the result is BOTTOM
1321   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1322     return TypeLong::LONG;
1323 
1324   if (t2 == TypeInt::INT)
1325     return TypeLong::LONG;
1326 
1327   const TypeLong *r1 = t1->is_long(); // Handy access
1328   const TypeInt  *r2 = t2->is_int (); // Handy access
1329 
1330   if (r2->is_con()) {
1331     uint shift = r2->get_con();
1332     shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1333     // Shift by a multiple of 64 does nothing:
1334     if (shift == 0)  return t1;
1335     // Calculate reasonably aggressive bounds for the result.
1336     jlong lo = (julong)r1->_lo >> (juint)shift;
1337     jlong hi = (julong)r1->_hi >> (juint)shift;
1338     if (r1->_hi >= 0 && r1->_lo < 0) {
1339       // If the type has both negative and positive values,
1340       // there are two separate sub-domains to worry about:
1341       // The positive half and the negative half.
1342       jlong neg_lo = lo;
1343       jlong neg_hi = (julong)-1 >> (juint)shift;
1344       jlong pos_lo = (julong) 0 >> (juint)shift;
1345       jlong pos_hi = hi;
1346       //lo = MIN2(neg_lo, pos_lo);  // == 0
1347       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1348       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1349       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1350     }
1351     assert(lo <= hi, "must have valid bounds");
1352     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1353     #ifdef ASSERT
1354     // Make sure we get the sign-capture idiom correct.
1355     if (shift == BitsPerJavaLong - 1) {
1356       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1357       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1358     }
1359     #endif
1360     return tl;
1361   }
1362 
1363   return TypeLong::LONG;                // Give up
1364 }
1365 
1366 //=============================================================================
1367 //------------------------------Value------------------------------------------
1368 const Type* FmaDNode::Value(PhaseGVN* phase) const {
1369   const Type *t1 = phase->type(in(1));
1370   if (t1 == Type::TOP) return Type::TOP;
1371   if (t1->base() != Type::DoubleCon) return Type::DOUBLE;
1372   const Type *t2 = phase->type(in(2));
1373   if (t2 == Type::TOP) return Type::TOP;
1374   if (t2->base() != Type::DoubleCon) return Type::DOUBLE;
1375   const Type *t3 = phase->type(in(3));
1376   if (t3 == Type::TOP) return Type::TOP;
1377   if (t3->base() != Type::DoubleCon) return Type::DOUBLE;
1378 #ifndef __STDC_IEC_559__
1379   return Type::DOUBLE;
1380 #else
1381   double d1 = t1->getd();
1382   double d2 = t2->getd();
1383   double d3 = t3->getd();
1384   return TypeD::make(fma(d1, d2, d3));
1385 #endif
1386 }
1387 
1388 //=============================================================================
1389 //------------------------------Value------------------------------------------
1390 const Type* FmaFNode::Value(PhaseGVN* phase) const {
1391   const Type *t1 = phase->type(in(1));
1392   if (t1 == Type::TOP) return Type::TOP;
1393   if (t1->base() != Type::FloatCon) return Type::FLOAT;
1394   const Type *t2 = phase->type(in(2));
1395   if (t2 == Type::TOP) return Type::TOP;
1396   if (t2->base() != Type::FloatCon) return Type::FLOAT;
1397   const Type *t3 = phase->type(in(3));
1398   if (t3 == Type::TOP) return Type::TOP;
1399   if (t3->base() != Type::FloatCon) return Type::FLOAT;
1400 #ifndef __STDC_IEC_559__
1401   return Type::FLOAT;
1402 #else
1403   float f1 = t1->getf();
1404   float f2 = t2->getf();
1405   float f3 = t3->getf();
1406   return TypeF::make(fma(f1, f2, f3));
1407 #endif
1408 }