1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/vectornode.hpp"
  71 #include "runtime/arguments.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/timer.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/copy.hpp"
  78 #include "utilities/macros.hpp"
  79 #if INCLUDE_G1GC
  80 #include "gc/g1/g1ThreadLocalData.hpp"
  81 #endif // INCLUDE_G1GC
  82 #if INCLUDE_ZGC
  83 #include "gc/z/c2/zBarrierSetC2.hpp"
  84 #endif
  85 
  86 
  87 // -------------------- Compile::mach_constant_base_node -----------------------
  88 // Constant table base node singleton.
  89 MachConstantBaseNode* Compile::mach_constant_base_node() {
  90   if (_mach_constant_base_node == NULL) {
  91     _mach_constant_base_node = new MachConstantBaseNode();
  92     _mach_constant_base_node->add_req(C->root());
  93   }
  94   return _mach_constant_base_node;
  95 }
  96 
  97 
  98 /// Support for intrinsics.
  99 
 100 // Return the index at which m must be inserted (or already exists).
 101 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 102 class IntrinsicDescPair {
 103  private:
 104   ciMethod* _m;
 105   bool _is_virtual;
 106  public:
 107   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 108   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 109     ciMethod* m= elt->method();
 110     ciMethod* key_m = key->_m;
 111     if (key_m < m)      return -1;
 112     else if (key_m > m) return 1;
 113     else {
 114       bool is_virtual = elt->is_virtual();
 115       bool key_virtual = key->_is_virtual;
 116       if (key_virtual < is_virtual)      return -1;
 117       else if (key_virtual > is_virtual) return 1;
 118       else                               return 0;
 119     }
 120   }
 121 };
 122 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 123 #ifdef ASSERT
 124   for (int i = 1; i < _intrinsics->length(); i++) {
 125     CallGenerator* cg1 = _intrinsics->at(i-1);
 126     CallGenerator* cg2 = _intrinsics->at(i);
 127     assert(cg1->method() != cg2->method()
 128            ? cg1->method()     < cg2->method()
 129            : cg1->is_virtual() < cg2->is_virtual(),
 130            "compiler intrinsics list must stay sorted");
 131   }
 132 #endif
 133   IntrinsicDescPair pair(m, is_virtual);
 134   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 135 }
 136 
 137 void Compile::register_intrinsic(CallGenerator* cg) {
 138   if (_intrinsics == NULL) {
 139     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 140   }
 141   int len = _intrinsics->length();
 142   bool found = false;
 143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 144   assert(!found, "registering twice");
 145   _intrinsics->insert_before(index, cg);
 146   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 147 }
 148 
 149 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 150   assert(m->is_loaded(), "don't try this on unloaded methods");
 151   if (_intrinsics != NULL) {
 152     bool found = false;
 153     int index = intrinsic_insertion_index(m, is_virtual, found);
 154      if (found) {
 155       return _intrinsics->at(index);
 156     }
 157   }
 158   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 159   if (m->intrinsic_id() != vmIntrinsics::_none &&
 160       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 161     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 162     if (cg != NULL) {
 163       // Save it for next time:
 164       register_intrinsic(cg);
 165       return cg;
 166     } else {
 167       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 168     }
 169   }
 170   return NULL;
 171 }
 172 
 173 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 174 // in library_call.cpp.
 175 
 176 
 177 #ifndef PRODUCT
 178 // statistics gathering...
 179 
 180 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 181 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 182 
 183 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 184   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 185   int oflags = _intrinsic_hist_flags[id];
 186   assert(flags != 0, "what happened?");
 187   if (is_virtual) {
 188     flags |= _intrinsic_virtual;
 189   }
 190   bool changed = (flags != oflags);
 191   if ((flags & _intrinsic_worked) != 0) {
 192     juint count = (_intrinsic_hist_count[id] += 1);
 193     if (count == 1) {
 194       changed = true;           // first time
 195     }
 196     // increment the overall count also:
 197     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 198   }
 199   if (changed) {
 200     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 201       // Something changed about the intrinsic's virtuality.
 202       if ((flags & _intrinsic_virtual) != 0) {
 203         // This is the first use of this intrinsic as a virtual call.
 204         if (oflags != 0) {
 205           // We already saw it as a non-virtual, so note both cases.
 206           flags |= _intrinsic_both;
 207         }
 208       } else if ((oflags & _intrinsic_both) == 0) {
 209         // This is the first use of this intrinsic as a non-virtual
 210         flags |= _intrinsic_both;
 211       }
 212     }
 213     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 214   }
 215   // update the overall flags also:
 216   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 217   return changed;
 218 }
 219 
 220 static char* format_flags(int flags, char* buf) {
 221   buf[0] = 0;
 222   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 223   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 224   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 225   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 226   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 227   if (buf[0] == 0)  strcat(buf, ",");
 228   assert(buf[0] == ',', "must be");
 229   return &buf[1];
 230 }
 231 
 232 void Compile::print_intrinsic_statistics() {
 233   char flagsbuf[100];
 234   ttyLocker ttyl;
 235   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 236   tty->print_cr("Compiler intrinsic usage:");
 237   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 238   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 239   #define PRINT_STAT_LINE(name, c, f) \
 240     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 241   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 242     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 243     int   flags = _intrinsic_hist_flags[id];
 244     juint count = _intrinsic_hist_count[id];
 245     if ((flags | count) != 0) {
 246       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 247     }
 248   }
 249   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 250   if (xtty != NULL)  xtty->tail("statistics");
 251 }
 252 
 253 void Compile::print_statistics() {
 254   { ttyLocker ttyl;
 255     if (xtty != NULL)  xtty->head("statistics type='opto'");
 256     Parse::print_statistics();
 257     PhaseCCP::print_statistics();
 258     PhaseRegAlloc::print_statistics();
 259     Scheduling::print_statistics();
 260     PhasePeephole::print_statistics();
 261     PhaseIdealLoop::print_statistics();
 262     if (xtty != NULL)  xtty->tail("statistics");
 263   }
 264   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 265     // put this under its own <statistics> element.
 266     print_intrinsic_statistics();
 267   }
 268 }
 269 #endif //PRODUCT
 270 
 271 // Support for bundling info
 272 Bundle* Compile::node_bundling(const Node *n) {
 273   assert(valid_bundle_info(n), "oob");
 274   return &_node_bundling_base[n->_idx];
 275 }
 276 
 277 bool Compile::valid_bundle_info(const Node *n) {
 278   return (_node_bundling_limit > n->_idx);
 279 }
 280 
 281 
 282 void Compile::gvn_replace_by(Node* n, Node* nn) {
 283   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 284     Node* use = n->last_out(i);
 285     bool is_in_table = initial_gvn()->hash_delete(use);
 286     uint uses_found = 0;
 287     for (uint j = 0; j < use->len(); j++) {
 288       if (use->in(j) == n) {
 289         if (j < use->req())
 290           use->set_req(j, nn);
 291         else
 292           use->set_prec(j, nn);
 293         uses_found++;
 294       }
 295     }
 296     if (is_in_table) {
 297       // reinsert into table
 298       initial_gvn()->hash_find_insert(use);
 299     }
 300     record_for_igvn(use);
 301     i -= uses_found;    // we deleted 1 or more copies of this edge
 302   }
 303 }
 304 
 305 
 306 static inline bool not_a_node(const Node* n) {
 307   if (n == NULL)                   return true;
 308   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 309   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 310   return false;
 311 }
 312 
 313 // Identify all nodes that are reachable from below, useful.
 314 // Use breadth-first pass that records state in a Unique_Node_List,
 315 // recursive traversal is slower.
 316 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 317   int estimated_worklist_size = live_nodes();
 318   useful.map( estimated_worklist_size, NULL );  // preallocate space
 319 
 320   // Initialize worklist
 321   if (root() != NULL)     { useful.push(root()); }
 322   // If 'top' is cached, declare it useful to preserve cached node
 323   if( cached_top_node() ) { useful.push(cached_top_node()); }
 324 
 325   // Push all useful nodes onto the list, breadthfirst
 326   for( uint next = 0; next < useful.size(); ++next ) {
 327     assert( next < unique(), "Unique useful nodes < total nodes");
 328     Node *n  = useful.at(next);
 329     uint max = n->len();
 330     for( uint i = 0; i < max; ++i ) {
 331       Node *m = n->in(i);
 332       if (not_a_node(m))  continue;
 333       useful.push(m);
 334     }
 335   }
 336 }
 337 
 338 // Update dead_node_list with any missing dead nodes using useful
 339 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 340 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 341   uint max_idx = unique();
 342   VectorSet& useful_node_set = useful.member_set();
 343 
 344   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 345     // If node with index node_idx is not in useful set,
 346     // mark it as dead in dead node list.
 347     if (! useful_node_set.test(node_idx) ) {
 348       record_dead_node(node_idx);
 349     }
 350   }
 351 }
 352 
 353 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 354   int shift = 0;
 355   for (int i = 0; i < inlines->length(); i++) {
 356     CallGenerator* cg = inlines->at(i);
 357     CallNode* call = cg->call_node();
 358     if (shift > 0) {
 359       inlines->at_put(i-shift, cg);
 360     }
 361     if (!useful.member(call)) {
 362       shift++;
 363     }
 364   }
 365   inlines->trunc_to(inlines->length()-shift);
 366 }
 367 
 368 // Disconnect all useless nodes by disconnecting those at the boundary.
 369 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 370   uint next = 0;
 371   while (next < useful.size()) {
 372     Node *n = useful.at(next++);
 373     if (n->is_SafePoint()) {
 374       // We're done with a parsing phase. Replaced nodes are not valid
 375       // beyond that point.
 376       n->as_SafePoint()->delete_replaced_nodes();
 377     }
 378     // Use raw traversal of out edges since this code removes out edges
 379     int max = n->outcnt();
 380     for (int j = 0; j < max; ++j) {
 381       Node* child = n->raw_out(j);
 382       if (! useful.member(child)) {
 383         assert(!child->is_top() || child != top(),
 384                "If top is cached in Compile object it is in useful list");
 385         // Only need to remove this out-edge to the useless node
 386         n->raw_del_out(j);
 387         --j;
 388         --max;
 389       }
 390     }
 391     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 392       record_for_igvn(n->unique_out());
 393     }
 394   }
 395   // Remove useless macro and predicate opaq nodes
 396   for (int i = C->macro_count()-1; i >= 0; i--) {
 397     Node* n = C->macro_node(i);
 398     if (!useful.member(n)) {
 399       remove_macro_node(n);
 400     }
 401   }
 402   // Remove useless CastII nodes with range check dependency
 403   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 404     Node* cast = range_check_cast_node(i);
 405     if (!useful.member(cast)) {
 406       remove_range_check_cast(cast);
 407     }
 408   }
 409   // Remove useless expensive nodes
 410   for (int i = C->expensive_count()-1; i >= 0; i--) {
 411     Node* n = C->expensive_node(i);
 412     if (!useful.member(n)) {
 413       remove_expensive_node(n);
 414     }
 415   }
 416   // Remove useless Opaque4 nodes
 417   for (int i = opaque4_count() - 1; i >= 0; i--) {
 418     Node* opaq = opaque4_node(i);
 419     if (!useful.member(opaq)) {
 420       remove_opaque4_node(opaq);
 421     }
 422   }
 423   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 424   bs->eliminate_useless_gc_barriers(useful, this);
 425   // clean up the late inline lists
 426   remove_useless_late_inlines(&_string_late_inlines, useful);
 427   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 428   remove_useless_late_inlines(&_late_inlines, useful);
 429   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 430 }
 431 
 432 //------------------------------frame_size_in_words-----------------------------
 433 // frame_slots in units of words
 434 int Compile::frame_size_in_words() const {
 435   // shift is 0 in LP32 and 1 in LP64
 436   const int shift = (LogBytesPerWord - LogBytesPerInt);
 437   int words = _frame_slots >> shift;
 438   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 439   return words;
 440 }
 441 
 442 // To bang the stack of this compiled method we use the stack size
 443 // that the interpreter would need in case of a deoptimization. This
 444 // removes the need to bang the stack in the deoptimization blob which
 445 // in turn simplifies stack overflow handling.
 446 int Compile::bang_size_in_bytes() const {
 447   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 448 }
 449 
 450 // ============================================================================
 451 //------------------------------CompileWrapper---------------------------------
 452 class CompileWrapper : public StackObj {
 453   Compile *const _compile;
 454  public:
 455   CompileWrapper(Compile* compile);
 456 
 457   ~CompileWrapper();
 458 };
 459 
 460 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 461   // the Compile* pointer is stored in the current ciEnv:
 462   ciEnv* env = compile->env();
 463   assert(env == ciEnv::current(), "must already be a ciEnv active");
 464   assert(env->compiler_data() == NULL, "compile already active?");
 465   env->set_compiler_data(compile);
 466   assert(compile == Compile::current(), "sanity");
 467 
 468   compile->set_type_dict(NULL);
 469   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 470   compile->clone_map().set_clone_idx(0);
 471   compile->set_type_hwm(NULL);
 472   compile->set_type_last_size(0);
 473   compile->set_last_tf(NULL, NULL);
 474   compile->set_indexSet_arena(NULL);
 475   compile->set_indexSet_free_block_list(NULL);
 476   compile->init_type_arena();
 477   Type::Initialize(compile);
 478   _compile->set_scratch_buffer_blob(NULL);
 479   _compile->begin_method();
 480   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 481 }
 482 CompileWrapper::~CompileWrapper() {
 483   _compile->end_method();
 484   if (_compile->scratch_buffer_blob() != NULL)
 485     BufferBlob::free(_compile->scratch_buffer_blob());
 486   _compile->env()->set_compiler_data(NULL);
 487 }
 488 
 489 
 490 //----------------------------print_compile_messages---------------------------
 491 void Compile::print_compile_messages() {
 492 #ifndef PRODUCT
 493   // Check if recompiling
 494   if (_subsume_loads == false && PrintOpto) {
 495     // Recompiling without allowing machine instructions to subsume loads
 496     tty->print_cr("*********************************************************");
 497     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 498     tty->print_cr("*********************************************************");
 499   }
 500   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 501     // Recompiling without escape analysis
 502     tty->print_cr("*********************************************************");
 503     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 504     tty->print_cr("*********************************************************");
 505   }
 506   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 507     // Recompiling without boxing elimination
 508     tty->print_cr("*********************************************************");
 509     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 510     tty->print_cr("*********************************************************");
 511   }
 512   if (C->directive()->BreakAtCompileOption) {
 513     // Open the debugger when compiling this method.
 514     tty->print("### Breaking when compiling: ");
 515     method()->print_short_name();
 516     tty->cr();
 517     BREAKPOINT;
 518   }
 519 
 520   if( PrintOpto ) {
 521     if (is_osr_compilation()) {
 522       tty->print("[OSR]%3d", _compile_id);
 523     } else {
 524       tty->print("%3d", _compile_id);
 525     }
 526   }
 527 #endif
 528 }
 529 
 530 
 531 //-----------------------init_scratch_buffer_blob------------------------------
 532 // Construct a temporary BufferBlob and cache it for this compile.
 533 void Compile::init_scratch_buffer_blob(int const_size) {
 534   // If there is already a scratch buffer blob allocated and the
 535   // constant section is big enough, use it.  Otherwise free the
 536   // current and allocate a new one.
 537   BufferBlob* blob = scratch_buffer_blob();
 538   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 539     // Use the current blob.
 540   } else {
 541     if (blob != NULL) {
 542       BufferBlob::free(blob);
 543     }
 544 
 545     ResourceMark rm;
 546     _scratch_const_size = const_size;
 547     int size = C2Compiler::initial_code_buffer_size(const_size);
 548     blob = BufferBlob::create("Compile::scratch_buffer", size);
 549     // Record the buffer blob for next time.
 550     set_scratch_buffer_blob(blob);
 551     // Have we run out of code space?
 552     if (scratch_buffer_blob() == NULL) {
 553       // Let CompilerBroker disable further compilations.
 554       record_failure("Not enough space for scratch buffer in CodeCache");
 555       return;
 556     }
 557   }
 558 
 559   // Initialize the relocation buffers
 560   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 561   set_scratch_locs_memory(locs_buf);
 562 }
 563 
 564 
 565 //-----------------------scratch_emit_size-------------------------------------
 566 // Helper function that computes size by emitting code
 567 uint Compile::scratch_emit_size(const Node* n) {
 568   // Start scratch_emit_size section.
 569   set_in_scratch_emit_size(true);
 570 
 571   // Emit into a trash buffer and count bytes emitted.
 572   // This is a pretty expensive way to compute a size,
 573   // but it works well enough if seldom used.
 574   // All common fixed-size instructions are given a size
 575   // method by the AD file.
 576   // Note that the scratch buffer blob and locs memory are
 577   // allocated at the beginning of the compile task, and
 578   // may be shared by several calls to scratch_emit_size.
 579   // The allocation of the scratch buffer blob is particularly
 580   // expensive, since it has to grab the code cache lock.
 581   BufferBlob* blob = this->scratch_buffer_blob();
 582   assert(blob != NULL, "Initialize BufferBlob at start");
 583   assert(blob->size() > MAX_inst_size, "sanity");
 584   relocInfo* locs_buf = scratch_locs_memory();
 585   address blob_begin = blob->content_begin();
 586   address blob_end   = (address)locs_buf;
 587   assert(blob->contains(blob_end), "sanity");
 588   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 589   buf.initialize_consts_size(_scratch_const_size);
 590   buf.initialize_stubs_size(MAX_stubs_size);
 591   assert(locs_buf != NULL, "sanity");
 592   int lsize = MAX_locs_size / 3;
 593   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 594   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 595   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 596   // Mark as scratch buffer.
 597   buf.consts()->set_scratch_emit();
 598   buf.insts()->set_scratch_emit();
 599   buf.stubs()->set_scratch_emit();
 600 
 601   // Do the emission.
 602 
 603   Label fakeL; // Fake label for branch instructions.
 604   Label*   saveL = NULL;
 605   uint save_bnum = 0;
 606   bool is_branch = n->is_MachBranch();
 607   if (is_branch) {
 608     MacroAssembler masm(&buf);
 609     masm.bind(fakeL);
 610     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 611     n->as_MachBranch()->label_set(&fakeL, 0);
 612   }
 613   n->emit(buf, this->regalloc());
 614 
 615   // Emitting into the scratch buffer should not fail
 616   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 617 
 618   if (is_branch) // Restore label.
 619     n->as_MachBranch()->label_set(saveL, save_bnum);
 620 
 621   // End scratch_emit_size section.
 622   set_in_scratch_emit_size(false);
 623 
 624   return buf.insts_size();
 625 }
 626 
 627 
 628 // ============================================================================
 629 //------------------------------Compile standard-------------------------------
 630 debug_only( int Compile::_debug_idx = 100000; )
 631 
 632 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 633 // the continuation bci for on stack replacement.
 634 
 635 
 636 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 637                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 638                 : Phase(Compiler),
 639                   _compile_id(ci_env->compile_id()),
 640                   _save_argument_registers(false),
 641                   _subsume_loads(subsume_loads),
 642                   _do_escape_analysis(do_escape_analysis),
 643                   _eliminate_boxing(eliminate_boxing),
 644                   _method(target),
 645                   _entry_bci(osr_bci),
 646                   _stub_function(NULL),
 647                   _stub_name(NULL),
 648                   _stub_entry_point(NULL),
 649                   _max_node_limit(MaxNodeLimit),
 650                   _orig_pc_slot(0),
 651                   _orig_pc_slot_offset_in_bytes(0),
 652                   _inlining_progress(false),
 653                   _inlining_incrementally(false),
 654                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 655 #ifndef PRODUCT
 656                   _trace_opto_output(directive->TraceOptoOutputOption),
 657 #endif
 658                   _has_method_handle_invokes(false),
 659                   _comp_arena(mtCompiler),
 660                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 661                   _env(ci_env),
 662                   _directive(directive),
 663                   _log(ci_env->log()),
 664                   _failure_reason(NULL),
 665                   _congraph(NULL),
 666 #ifndef PRODUCT
 667                   _printer(IdealGraphPrinter::printer()),
 668 #endif
 669                   _dead_node_list(comp_arena()),
 670                   _dead_node_count(0),
 671                   _node_arena(mtCompiler),
 672                   _old_arena(mtCompiler),
 673                   _mach_constant_base_node(NULL),
 674                   _Compile_types(mtCompiler),
 675                   _initial_gvn(NULL),
 676                   _for_igvn(NULL),
 677                   _warm_calls(NULL),
 678                   _late_inlines(comp_arena(), 2, 0, NULL),
 679                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 680                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 681                   _late_inlines_pos(0),
 682                   _number_of_mh_late_inlines(0),
 683                   _print_inlining_stream(NULL),
 684                   _print_inlining_list(NULL),
 685                   _print_inlining_idx(0),
 686                   _print_inlining_output(NULL),
 687                   _replay_inline_data(NULL),
 688                   _java_calls(0),
 689                   _inner_loops(0),
 690                   _interpreter_frame_size(0),
 691                   _node_bundling_limit(0),
 692                   _node_bundling_base(NULL),
 693                   _code_buffer("Compile::Fill_buffer"),
 694                   _scratch_const_size(-1),
 695                   _in_scratch_emit_size(false)
 696 #ifndef PRODUCT
 697                   , _in_dump_cnt(0)
 698 #endif
 699 {
 700   C = this;
 701 #ifndef PRODUCT
 702   if (_printer != NULL) {
 703     _printer->set_compile(this);
 704   }
 705 #endif
 706   CompileWrapper cw(this);
 707 
 708   if (CITimeVerbose) {
 709     tty->print(" ");
 710     target->holder()->name()->print();
 711     tty->print(".");
 712     target->print_short_name();
 713     tty->print("  ");
 714   }
 715   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 716   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 717 
 718 #ifndef PRODUCT
 719   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 720   if (!print_opto_assembly) {
 721     bool print_assembly = directive->PrintAssemblyOption;
 722     if (print_assembly && !Disassembler::can_decode()) {
 723       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 724       print_opto_assembly = true;
 725     }
 726   }
 727   set_print_assembly(print_opto_assembly);
 728   set_parsed_irreducible_loop(false);
 729 
 730   if (directive->ReplayInlineOption) {
 731     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 732   }
 733 #endif
 734   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 735   set_print_intrinsics(directive->PrintIntrinsicsOption);
 736   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 737 
 738   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 739     // Make sure the method being compiled gets its own MDO,
 740     // so we can at least track the decompile_count().
 741     // Need MDO to record RTM code generation state.
 742     method()->ensure_method_data();
 743   }
 744 
 745   Init(::AliasLevel);
 746 
 747 
 748   print_compile_messages();
 749 
 750   _ilt = InlineTree::build_inline_tree_root();
 751 
 752   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 753   assert(num_alias_types() >= AliasIdxRaw, "");
 754 
 755 #define MINIMUM_NODE_HASH  1023
 756   // Node list that Iterative GVN will start with
 757   Unique_Node_List for_igvn(comp_arena());
 758   set_for_igvn(&for_igvn);
 759 
 760   // GVN that will be run immediately on new nodes
 761   uint estimated_size = method()->code_size()*4+64;
 762   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 763   PhaseGVN gvn(node_arena(), estimated_size);
 764   set_initial_gvn(&gvn);
 765 
 766   print_inlining_init();
 767   { // Scope for timing the parser
 768     TracePhase tp("parse", &timers[_t_parser]);
 769 
 770     // Put top into the hash table ASAP.
 771     initial_gvn()->transform_no_reclaim(top());
 772 
 773     // Set up tf(), start(), and find a CallGenerator.
 774     CallGenerator* cg = NULL;
 775     if (is_osr_compilation()) {
 776       const TypeTuple *domain = StartOSRNode::osr_domain();
 777       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 778       init_tf(TypeFunc::make(domain, range));
 779       StartNode* s = new StartOSRNode(root(), domain);
 780       initial_gvn()->set_type_bottom(s);
 781       init_start(s);
 782       cg = CallGenerator::for_osr(method(), entry_bci());
 783     } else {
 784       // Normal case.
 785       init_tf(TypeFunc::make(method()));
 786       StartNode* s = new StartNode(root(), tf()->domain());
 787       initial_gvn()->set_type_bottom(s);
 788       init_start(s);
 789       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 790         // With java.lang.ref.reference.get() we must go through the
 791         // intrinsic - even when get() is the root
 792         // method of the compile - so that, if necessary, the value in
 793         // the referent field of the reference object gets recorded by
 794         // the pre-barrier code.
 795         cg = find_intrinsic(method(), false);
 796       }
 797       if (cg == NULL) {
 798         float past_uses = method()->interpreter_invocation_count();
 799         float expected_uses = past_uses;
 800         cg = CallGenerator::for_inline(method(), expected_uses);
 801       }
 802     }
 803     if (failing())  return;
 804     if (cg == NULL) {
 805       record_method_not_compilable("cannot parse method");
 806       return;
 807     }
 808     JVMState* jvms = build_start_state(start(), tf());
 809     if ((jvms = cg->generate(jvms)) == NULL) {
 810       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 811         record_method_not_compilable("method parse failed");
 812       }
 813       return;
 814     }
 815     GraphKit kit(jvms);
 816 
 817     if (!kit.stopped()) {
 818       // Accept return values, and transfer control we know not where.
 819       // This is done by a special, unique ReturnNode bound to root.
 820       return_values(kit.jvms());
 821     }
 822 
 823     if (kit.has_exceptions()) {
 824       // Any exceptions that escape from this call must be rethrown
 825       // to whatever caller is dynamically above us on the stack.
 826       // This is done by a special, unique RethrowNode bound to root.
 827       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 828     }
 829 
 830     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 831 
 832     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 833       inline_string_calls(true);
 834     }
 835 
 836     if (failing())  return;
 837 
 838     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 839 
 840     // Remove clutter produced by parsing.
 841     if (!failing()) {
 842       ResourceMark rm;
 843       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 844     }
 845   }
 846 
 847   // Note:  Large methods are capped off in do_one_bytecode().
 848   if (failing())  return;
 849 
 850   // After parsing, node notes are no longer automagic.
 851   // They must be propagated by register_new_node_with_optimizer(),
 852   // clone(), or the like.
 853   set_default_node_notes(NULL);
 854 
 855   for (;;) {
 856     int successes = Inline_Warm();
 857     if (failing())  return;
 858     if (successes == 0)  break;
 859   }
 860 
 861   // Drain the list.
 862   Finish_Warm();
 863 #ifndef PRODUCT
 864   if (_printer && _printer->should_print(1)) {
 865     _printer->print_inlining();
 866   }
 867 #endif
 868 
 869   if (failing())  return;
 870   NOT_PRODUCT( verify_graph_edges(); )
 871 
 872   // Now optimize
 873   Optimize();
 874   if (failing())  return;
 875   NOT_PRODUCT( verify_graph_edges(); )
 876 
 877 #ifndef PRODUCT
 878   if (PrintIdeal) {
 879     ttyLocker ttyl;  // keep the following output all in one block
 880     // This output goes directly to the tty, not the compiler log.
 881     // To enable tools to match it up with the compilation activity,
 882     // be sure to tag this tty output with the compile ID.
 883     if (xtty != NULL) {
 884       xtty->head("ideal compile_id='%d'%s", compile_id(),
 885                  is_osr_compilation()    ? " compile_kind='osr'" :
 886                  "");
 887     }
 888     root()->dump(9999);
 889     if (xtty != NULL) {
 890       xtty->tail("ideal");
 891     }
 892   }
 893 #endif
 894 
 895 #ifdef ASSERT
 896   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 897   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 898 #endif
 899 
 900   // Dump compilation data to replay it.
 901   if (directive->DumpReplayOption) {
 902     env()->dump_replay_data(_compile_id);
 903   }
 904   if (directive->DumpInlineOption && (ilt() != NULL)) {
 905     env()->dump_inline_data(_compile_id);
 906   }
 907 
 908   // Now that we know the size of all the monitors we can add a fixed slot
 909   // for the original deopt pc.
 910 
 911   _orig_pc_slot =  fixed_slots();
 912   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 913   set_fixed_slots(next_slot);
 914 
 915   // Compute when to use implicit null checks. Used by matching trap based
 916   // nodes and NullCheck optimization.
 917   set_allowed_deopt_reasons();
 918 
 919   // Now generate code
 920   Code_Gen();
 921   if (failing())  return;
 922 
 923   // Check if we want to skip execution of all compiled code.
 924   {
 925 #ifndef PRODUCT
 926     if (OptoNoExecute) {
 927       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 928       return;
 929     }
 930 #endif
 931     TracePhase tp("install_code", &timers[_t_registerMethod]);
 932 
 933     if (is_osr_compilation()) {
 934       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 935       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 936     } else {
 937       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 938       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 939     }
 940 
 941     env()->register_method(_method, _entry_bci,
 942                            &_code_offsets,
 943                            _orig_pc_slot_offset_in_bytes,
 944                            code_buffer(),
 945                            frame_size_in_words(), _oop_map_set,
 946                            &_handler_table, &_inc_table,
 947                            compiler,
 948                            has_unsafe_access(),
 949                            SharedRuntime::is_wide_vector(max_vector_size()),
 950                            rtm_state()
 951                            );
 952 
 953     if (log() != NULL) // Print code cache state into compiler log
 954       log()->code_cache_state();
 955   }
 956 }
 957 
 958 //------------------------------Compile----------------------------------------
 959 // Compile a runtime stub
 960 Compile::Compile( ciEnv* ci_env,
 961                   TypeFunc_generator generator,
 962                   address stub_function,
 963                   const char *stub_name,
 964                   int is_fancy_jump,
 965                   bool pass_tls,
 966                   bool save_arg_registers,
 967                   bool return_pc,
 968                   DirectiveSet* directive)
 969   : Phase(Compiler),
 970     _compile_id(0),
 971     _save_argument_registers(save_arg_registers),
 972     _subsume_loads(true),
 973     _do_escape_analysis(false),
 974     _eliminate_boxing(false),
 975     _method(NULL),
 976     _entry_bci(InvocationEntryBci),
 977     _stub_function(stub_function),
 978     _stub_name(stub_name),
 979     _stub_entry_point(NULL),
 980     _max_node_limit(MaxNodeLimit),
 981     _orig_pc_slot(0),
 982     _orig_pc_slot_offset_in_bytes(0),
 983     _inlining_progress(false),
 984     _inlining_incrementally(false),
 985     _has_reserved_stack_access(false),
 986 #ifndef PRODUCT
 987     _trace_opto_output(directive->TraceOptoOutputOption),
 988 #endif
 989     _has_method_handle_invokes(false),
 990     _comp_arena(mtCompiler),
 991     _env(ci_env),
 992     _directive(directive),
 993     _log(ci_env->log()),
 994     _failure_reason(NULL),
 995     _congraph(NULL),
 996 #ifndef PRODUCT
 997     _printer(NULL),
 998 #endif
 999     _dead_node_list(comp_arena()),
1000     _dead_node_count(0),
1001     _node_arena(mtCompiler),
1002     _old_arena(mtCompiler),
1003     _mach_constant_base_node(NULL),
1004     _Compile_types(mtCompiler),
1005     _initial_gvn(NULL),
1006     _for_igvn(NULL),
1007     _warm_calls(NULL),
1008     _number_of_mh_late_inlines(0),
1009     _print_inlining_stream(NULL),
1010     _print_inlining_list(NULL),
1011     _print_inlining_idx(0),
1012     _print_inlining_output(NULL),
1013     _replay_inline_data(NULL),
1014     _java_calls(0),
1015     _inner_loops(0),
1016     _interpreter_frame_size(0),
1017     _node_bundling_limit(0),
1018     _node_bundling_base(NULL),
1019     _code_buffer("Compile::Fill_buffer"),
1020 #ifndef PRODUCT
1021     _in_dump_cnt(0),
1022 #endif
1023     _allowed_reasons(0) {
1024   C = this;
1025 
1026   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1027   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1028 
1029 #ifndef PRODUCT
1030   set_print_assembly(PrintFrameConverterAssembly);
1031   set_parsed_irreducible_loop(false);
1032 #endif
1033   set_has_irreducible_loop(false); // no loops
1034 
1035   CompileWrapper cw(this);
1036   Init(/*AliasLevel=*/ 0);
1037   init_tf((*generator)());
1038 
1039   {
1040     // The following is a dummy for the sake of GraphKit::gen_stub
1041     Unique_Node_List for_igvn(comp_arena());
1042     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1043     PhaseGVN gvn(Thread::current()->resource_area(),255);
1044     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1045     gvn.transform_no_reclaim(top());
1046 
1047     GraphKit kit;
1048     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1049   }
1050 
1051   NOT_PRODUCT( verify_graph_edges(); )
1052   Code_Gen();
1053   if (failing())  return;
1054 
1055 
1056   // Entry point will be accessed using compile->stub_entry_point();
1057   if (code_buffer() == NULL) {
1058     Matcher::soft_match_failure();
1059   } else {
1060     if (PrintAssembly && (WizardMode || Verbose))
1061       tty->print_cr("### Stub::%s", stub_name);
1062 
1063     if (!failing()) {
1064       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1065 
1066       // Make the NMethod
1067       // For now we mark the frame as never safe for profile stackwalking
1068       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1069                                                       code_buffer(),
1070                                                       CodeOffsets::frame_never_safe,
1071                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1072                                                       frame_size_in_words(),
1073                                                       _oop_map_set,
1074                                                       save_arg_registers);
1075       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1076 
1077       _stub_entry_point = rs->entry_point();
1078     }
1079   }
1080 }
1081 
1082 //------------------------------Init-------------------------------------------
1083 // Prepare for a single compilation
1084 void Compile::Init(int aliaslevel) {
1085   _unique  = 0;
1086   _regalloc = NULL;
1087 
1088   _tf      = NULL;  // filled in later
1089   _top     = NULL;  // cached later
1090   _matcher = NULL;  // filled in later
1091   _cfg     = NULL;  // filled in later
1092 
1093   set_24_bit_selection_and_mode(Use24BitFP, false);
1094 
1095   _node_note_array = NULL;
1096   _default_node_notes = NULL;
1097   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1098 
1099   _immutable_memory = NULL; // filled in at first inquiry
1100 
1101   // Globally visible Nodes
1102   // First set TOP to NULL to give safe behavior during creation of RootNode
1103   set_cached_top_node(NULL);
1104   set_root(new RootNode());
1105   // Now that you have a Root to point to, create the real TOP
1106   set_cached_top_node( new ConNode(Type::TOP) );
1107   set_recent_alloc(NULL, NULL);
1108 
1109   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1110   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1111   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1112   env()->set_dependencies(new Dependencies(env()));
1113 
1114   _fixed_slots = 0;
1115   set_has_split_ifs(false);
1116   set_has_loops(has_method() && method()->has_loops()); // first approximation
1117   set_has_stringbuilder(false);
1118   set_has_boxed_value(false);
1119   _trap_can_recompile = false;  // no traps emitted yet
1120   _major_progress = true; // start out assuming good things will happen
1121   set_has_unsafe_access(false);
1122   set_max_vector_size(0);
1123   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1124   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1125   set_decompile_count(0);
1126 
1127   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1128   set_num_loop_opts(LoopOptsCount);
1129   set_do_inlining(Inline);
1130   set_max_inline_size(MaxInlineSize);
1131   set_freq_inline_size(FreqInlineSize);
1132   set_do_scheduling(OptoScheduling);
1133   set_do_count_invocations(false);
1134   set_do_method_data_update(false);
1135 
1136   set_do_vector_loop(false);
1137 
1138   if (AllowVectorizeOnDemand) {
1139     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1140       set_do_vector_loop(true);
1141       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1142     } else if (has_method() && method()->name() != 0 &&
1143                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1144       set_do_vector_loop(true);
1145     }
1146   }
1147   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1148   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1149 
1150   set_age_code(has_method() && method()->profile_aging());
1151   set_rtm_state(NoRTM); // No RTM lock eliding by default
1152   _max_node_limit = _directive->MaxNodeLimitOption;
1153 
1154 #if INCLUDE_RTM_OPT
1155   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1156     int rtm_state = method()->method_data()->rtm_state();
1157     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1158       // Don't generate RTM lock eliding code.
1159       set_rtm_state(NoRTM);
1160     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1161       // Generate RTM lock eliding code without abort ratio calculation code.
1162       set_rtm_state(UseRTM);
1163     } else if (UseRTMDeopt) {
1164       // Generate RTM lock eliding code and include abort ratio calculation
1165       // code if UseRTMDeopt is on.
1166       set_rtm_state(ProfileRTM);
1167     }
1168   }
1169 #endif
1170   if (debug_info()->recording_non_safepoints()) {
1171     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1172                         (comp_arena(), 8, 0, NULL));
1173     set_default_node_notes(Node_Notes::make(this));
1174   }
1175 
1176   // // -- Initialize types before each compile --
1177   // // Update cached type information
1178   // if( _method && _method->constants() )
1179   //   Type::update_loaded_types(_method, _method->constants());
1180 
1181   // Init alias_type map.
1182   if (!_do_escape_analysis && aliaslevel == 3)
1183     aliaslevel = 2;  // No unique types without escape analysis
1184   _AliasLevel = aliaslevel;
1185   const int grow_ats = 16;
1186   _max_alias_types = grow_ats;
1187   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1188   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1189   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1190   {
1191     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1192   }
1193   // Initialize the first few types.
1194   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1195   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1196   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1197   _num_alias_types = AliasIdxRaw+1;
1198   // Zero out the alias type cache.
1199   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1200   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1201   probe_alias_cache(NULL)->_index = AliasIdxTop;
1202 
1203   _intrinsics = NULL;
1204   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1205   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1206   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1207   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1208   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1209   register_library_intrinsics();
1210 }
1211 
1212 //---------------------------init_start----------------------------------------
1213 // Install the StartNode on this compile object.
1214 void Compile::init_start(StartNode* s) {
1215   if (failing())
1216     return; // already failing
1217   assert(s == start(), "");
1218 }
1219 
1220 /**
1221  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1222  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1223  * the ideal graph.
1224  */
1225 StartNode* Compile::start() const {
1226   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1227   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1228     Node* start = root()->fast_out(i);
1229     if (start->is_Start()) {
1230       return start->as_Start();
1231     }
1232   }
1233   fatal("Did not find Start node!");
1234   return NULL;
1235 }
1236 
1237 //-------------------------------immutable_memory-------------------------------------
1238 // Access immutable memory
1239 Node* Compile::immutable_memory() {
1240   if (_immutable_memory != NULL) {
1241     return _immutable_memory;
1242   }
1243   StartNode* s = start();
1244   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1245     Node *p = s->fast_out(i);
1246     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1247       _immutable_memory = p;
1248       return _immutable_memory;
1249     }
1250   }
1251   ShouldNotReachHere();
1252   return NULL;
1253 }
1254 
1255 //----------------------set_cached_top_node------------------------------------
1256 // Install the cached top node, and make sure Node::is_top works correctly.
1257 void Compile::set_cached_top_node(Node* tn) {
1258   if (tn != NULL)  verify_top(tn);
1259   Node* old_top = _top;
1260   _top = tn;
1261   // Calling Node::setup_is_top allows the nodes the chance to adjust
1262   // their _out arrays.
1263   if (_top != NULL)     _top->setup_is_top();
1264   if (old_top != NULL)  old_top->setup_is_top();
1265   assert(_top == NULL || top()->is_top(), "");
1266 }
1267 
1268 #ifdef ASSERT
1269 uint Compile::count_live_nodes_by_graph_walk() {
1270   Unique_Node_List useful(comp_arena());
1271   // Get useful node list by walking the graph.
1272   identify_useful_nodes(useful);
1273   return useful.size();
1274 }
1275 
1276 void Compile::print_missing_nodes() {
1277 
1278   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1279   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1280     return;
1281   }
1282 
1283   // This is an expensive function. It is executed only when the user
1284   // specifies VerifyIdealNodeCount option or otherwise knows the
1285   // additional work that needs to be done to identify reachable nodes
1286   // by walking the flow graph and find the missing ones using
1287   // _dead_node_list.
1288 
1289   Unique_Node_List useful(comp_arena());
1290   // Get useful node list by walking the graph.
1291   identify_useful_nodes(useful);
1292 
1293   uint l_nodes = C->live_nodes();
1294   uint l_nodes_by_walk = useful.size();
1295 
1296   if (l_nodes != l_nodes_by_walk) {
1297     if (_log != NULL) {
1298       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1299       _log->stamp();
1300       _log->end_head();
1301     }
1302     VectorSet& useful_member_set = useful.member_set();
1303     int last_idx = l_nodes_by_walk;
1304     for (int i = 0; i < last_idx; i++) {
1305       if (useful_member_set.test(i)) {
1306         if (_dead_node_list.test(i)) {
1307           if (_log != NULL) {
1308             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1309           }
1310           if (PrintIdealNodeCount) {
1311             // Print the log message to tty
1312               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1313               useful.at(i)->dump();
1314           }
1315         }
1316       }
1317       else if (! _dead_node_list.test(i)) {
1318         if (_log != NULL) {
1319           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1320         }
1321         if (PrintIdealNodeCount) {
1322           // Print the log message to tty
1323           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1324         }
1325       }
1326     }
1327     if (_log != NULL) {
1328       _log->tail("mismatched_nodes");
1329     }
1330   }
1331 }
1332 void Compile::record_modified_node(Node* n) {
1333   if (_modified_nodes != NULL && !_inlining_incrementally &&
1334       n->outcnt() != 0 && !n->is_Con()) {
1335     _modified_nodes->push(n);
1336   }
1337 }
1338 
1339 void Compile::remove_modified_node(Node* n) {
1340   if (_modified_nodes != NULL) {
1341     _modified_nodes->remove(n);
1342   }
1343 }
1344 #endif
1345 
1346 #ifndef PRODUCT
1347 void Compile::verify_top(Node* tn) const {
1348   if (tn != NULL) {
1349     assert(tn->is_Con(), "top node must be a constant");
1350     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1351     assert(tn->in(0) != NULL, "must have live top node");
1352   }
1353 }
1354 #endif
1355 
1356 
1357 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1358 
1359 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1360   guarantee(arr != NULL, "");
1361   int num_blocks = arr->length();
1362   if (grow_by < num_blocks)  grow_by = num_blocks;
1363   int num_notes = grow_by * _node_notes_block_size;
1364   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1365   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1366   while (num_notes > 0) {
1367     arr->append(notes);
1368     notes     += _node_notes_block_size;
1369     num_notes -= _node_notes_block_size;
1370   }
1371   assert(num_notes == 0, "exact multiple, please");
1372 }
1373 
1374 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1375   if (source == NULL || dest == NULL)  return false;
1376 
1377   if (dest->is_Con())
1378     return false;               // Do not push debug info onto constants.
1379 
1380 #ifdef ASSERT
1381   // Leave a bread crumb trail pointing to the original node:
1382   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1383     dest->set_debug_orig(source);
1384   }
1385 #endif
1386 
1387   if (node_note_array() == NULL)
1388     return false;               // Not collecting any notes now.
1389 
1390   // This is a copy onto a pre-existing node, which may already have notes.
1391   // If both nodes have notes, do not overwrite any pre-existing notes.
1392   Node_Notes* source_notes = node_notes_at(source->_idx);
1393   if (source_notes == NULL || source_notes->is_clear())  return false;
1394   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1395   if (dest_notes == NULL || dest_notes->is_clear()) {
1396     return set_node_notes_at(dest->_idx, source_notes);
1397   }
1398 
1399   Node_Notes merged_notes = (*source_notes);
1400   // The order of operations here ensures that dest notes will win...
1401   merged_notes.update_from(dest_notes);
1402   return set_node_notes_at(dest->_idx, &merged_notes);
1403 }
1404 
1405 
1406 //--------------------------allow_range_check_smearing-------------------------
1407 // Gating condition for coalescing similar range checks.
1408 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1409 // single covering check that is at least as strong as any of them.
1410 // If the optimization succeeds, the simplified (strengthened) range check
1411 // will always succeed.  If it fails, we will deopt, and then give up
1412 // on the optimization.
1413 bool Compile::allow_range_check_smearing() const {
1414   // If this method has already thrown a range-check,
1415   // assume it was because we already tried range smearing
1416   // and it failed.
1417   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1418   return !already_trapped;
1419 }
1420 
1421 
1422 //------------------------------flatten_alias_type-----------------------------
1423 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1424   int offset = tj->offset();
1425   TypePtr::PTR ptr = tj->ptr();
1426 
1427   // Known instance (scalarizable allocation) alias only with itself.
1428   bool is_known_inst = tj->isa_oopptr() != NULL &&
1429                        tj->is_oopptr()->is_known_instance();
1430 
1431   // Process weird unsafe references.
1432   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1433     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1434     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1435     tj = TypeOopPtr::BOTTOM;
1436     ptr = tj->ptr();
1437     offset = tj->offset();
1438   }
1439 
1440   // Array pointers need some flattening
1441   const TypeAryPtr *ta = tj->isa_aryptr();
1442   if (ta && ta->is_stable()) {
1443     // Erase stability property for alias analysis.
1444     tj = ta = ta->cast_to_stable(false);
1445   }
1446   if( ta && is_known_inst ) {
1447     if ( offset != Type::OffsetBot &&
1448          offset > arrayOopDesc::length_offset_in_bytes() ) {
1449       offset = Type::OffsetBot; // Flatten constant access into array body only
1450       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1451     }
1452   } else if( ta && _AliasLevel >= 2 ) {
1453     // For arrays indexed by constant indices, we flatten the alias
1454     // space to include all of the array body.  Only the header, klass
1455     // and array length can be accessed un-aliased.
1456     if( offset != Type::OffsetBot ) {
1457       if( ta->const_oop() ) { // MethodData* or Method*
1458         offset = Type::OffsetBot;   // Flatten constant access into array body
1459         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1460       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1461         // range is OK as-is.
1462         tj = ta = TypeAryPtr::RANGE;
1463       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1464         tj = TypeInstPtr::KLASS; // all klass loads look alike
1465         ta = TypeAryPtr::RANGE; // generic ignored junk
1466         ptr = TypePtr::BotPTR;
1467       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1468         tj = TypeInstPtr::MARK;
1469         ta = TypeAryPtr::RANGE; // generic ignored junk
1470         ptr = TypePtr::BotPTR;
1471       } else {                  // Random constant offset into array body
1472         offset = Type::OffsetBot;   // Flatten constant access into array body
1473         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1474       }
1475     }
1476     // Arrays of fixed size alias with arrays of unknown size.
1477     if (ta->size() != TypeInt::POS) {
1478       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1479       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1480     }
1481     // Arrays of known objects become arrays of unknown objects.
1482     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1483       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1484       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1485     }
1486     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1487       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1488       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1489     }
1490     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1491     // cannot be distinguished by bytecode alone.
1492     if (ta->elem() == TypeInt::BOOL) {
1493       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1494       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1495       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1496     }
1497     // During the 2nd round of IterGVN, NotNull castings are removed.
1498     // Make sure the Bottom and NotNull variants alias the same.
1499     // Also, make sure exact and non-exact variants alias the same.
1500     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1501       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1502     }
1503   }
1504 
1505   // Oop pointers need some flattening
1506   const TypeInstPtr *to = tj->isa_instptr();
1507   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1508     ciInstanceKlass *k = to->klass()->as_instance_klass();
1509     if( ptr == TypePtr::Constant ) {
1510       if (to->klass() != ciEnv::current()->Class_klass() ||
1511           offset < k->size_helper() * wordSize) {
1512         // No constant oop pointers (such as Strings); they alias with
1513         // unknown strings.
1514         assert(!is_known_inst, "not scalarizable allocation");
1515         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1516       }
1517     } else if( is_known_inst ) {
1518       tj = to; // Keep NotNull and klass_is_exact for instance type
1519     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1520       // During the 2nd round of IterGVN, NotNull castings are removed.
1521       // Make sure the Bottom and NotNull variants alias the same.
1522       // Also, make sure exact and non-exact variants alias the same.
1523       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1524     }
1525     if (to->speculative() != NULL) {
1526       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1527     }
1528     // Canonicalize the holder of this field
1529     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1530       // First handle header references such as a LoadKlassNode, even if the
1531       // object's klass is unloaded at compile time (4965979).
1532       if (!is_known_inst) { // Do it only for non-instance types
1533         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1534       }
1535     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1536       // Static fields are in the space above the normal instance
1537       // fields in the java.lang.Class instance.
1538       if (to->klass() != ciEnv::current()->Class_klass()) {
1539         to = NULL;
1540         tj = TypeOopPtr::BOTTOM;
1541         offset = tj->offset();
1542       }
1543     } else {
1544       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1545       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1546         if( is_known_inst ) {
1547           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1548         } else {
1549           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1550         }
1551       }
1552     }
1553   }
1554 
1555   // Klass pointers to object array klasses need some flattening
1556   const TypeKlassPtr *tk = tj->isa_klassptr();
1557   if( tk ) {
1558     // If we are referencing a field within a Klass, we need
1559     // to assume the worst case of an Object.  Both exact and
1560     // inexact types must flatten to the same alias class so
1561     // use NotNull as the PTR.
1562     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1563 
1564       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1565                                    TypeKlassPtr::OBJECT->klass(),
1566                                    offset);
1567     }
1568 
1569     ciKlass* klass = tk->klass();
1570     if( klass->is_obj_array_klass() ) {
1571       ciKlass* k = TypeAryPtr::OOPS->klass();
1572       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1573         k = TypeInstPtr::BOTTOM->klass();
1574       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1575     }
1576 
1577     // Check for precise loads from the primary supertype array and force them
1578     // to the supertype cache alias index.  Check for generic array loads from
1579     // the primary supertype array and also force them to the supertype cache
1580     // alias index.  Since the same load can reach both, we need to merge
1581     // these 2 disparate memories into the same alias class.  Since the
1582     // primary supertype array is read-only, there's no chance of confusion
1583     // where we bypass an array load and an array store.
1584     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1585     if (offset == Type::OffsetBot ||
1586         (offset >= primary_supers_offset &&
1587          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1588         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1589       offset = in_bytes(Klass::secondary_super_cache_offset());
1590       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1591     }
1592   }
1593 
1594   // Flatten all Raw pointers together.
1595   if (tj->base() == Type::RawPtr)
1596     tj = TypeRawPtr::BOTTOM;
1597 
1598   if (tj->base() == Type::AnyPtr)
1599     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1600 
1601   // Flatten all to bottom for now
1602   switch( _AliasLevel ) {
1603   case 0:
1604     tj = TypePtr::BOTTOM;
1605     break;
1606   case 1:                       // Flatten to: oop, static, field or array
1607     switch (tj->base()) {
1608     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1609     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1610     case Type::AryPtr:   // do not distinguish arrays at all
1611     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1612     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1613     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1614     default: ShouldNotReachHere();
1615     }
1616     break;
1617   case 2:                       // No collapsing at level 2; keep all splits
1618   case 3:                       // No collapsing at level 3; keep all splits
1619     break;
1620   default:
1621     Unimplemented();
1622   }
1623 
1624   offset = tj->offset();
1625   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1626 
1627   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1628           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1629           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1630           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1631           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1632           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1633           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1634           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1635   assert( tj->ptr() != TypePtr::TopPTR &&
1636           tj->ptr() != TypePtr::AnyNull &&
1637           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1638 //    assert( tj->ptr() != TypePtr::Constant ||
1639 //            tj->base() == Type::RawPtr ||
1640 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1641 
1642   return tj;
1643 }
1644 
1645 void Compile::AliasType::Init(int i, const TypePtr* at) {
1646   _index = i;
1647   _adr_type = at;
1648   _field = NULL;
1649   _element = NULL;
1650   _is_rewritable = true; // default
1651   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1652   if (atoop != NULL && atoop->is_known_instance()) {
1653     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1654     _general_index = Compile::current()->get_alias_index(gt);
1655   } else {
1656     _general_index = 0;
1657   }
1658 }
1659 
1660 BasicType Compile::AliasType::basic_type() const {
1661   if (element() != NULL) {
1662     const Type* element = adr_type()->is_aryptr()->elem();
1663     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1664   } if (field() != NULL) {
1665     return field()->layout_type();
1666   } else {
1667     return T_ILLEGAL; // unknown
1668   }
1669 }
1670 
1671 //---------------------------------print_on------------------------------------
1672 #ifndef PRODUCT
1673 void Compile::AliasType::print_on(outputStream* st) {
1674   if (index() < 10)
1675         st->print("@ <%d> ", index());
1676   else  st->print("@ <%d>",  index());
1677   st->print(is_rewritable() ? "   " : " RO");
1678   int offset = adr_type()->offset();
1679   if (offset == Type::OffsetBot)
1680         st->print(" +any");
1681   else  st->print(" +%-3d", offset);
1682   st->print(" in ");
1683   adr_type()->dump_on(st);
1684   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1685   if (field() != NULL && tjp) {
1686     if (tjp->klass()  != field()->holder() ||
1687         tjp->offset() != field()->offset_in_bytes()) {
1688       st->print(" != ");
1689       field()->print();
1690       st->print(" ***");
1691     }
1692   }
1693 }
1694 
1695 void print_alias_types() {
1696   Compile* C = Compile::current();
1697   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1698   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1699     C->alias_type(idx)->print_on(tty);
1700     tty->cr();
1701   }
1702 }
1703 #endif
1704 
1705 
1706 //----------------------------probe_alias_cache--------------------------------
1707 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1708   intptr_t key = (intptr_t) adr_type;
1709   key ^= key >> logAliasCacheSize;
1710   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1711 }
1712 
1713 
1714 //-----------------------------grow_alias_types--------------------------------
1715 void Compile::grow_alias_types() {
1716   const int old_ats  = _max_alias_types; // how many before?
1717   const int new_ats  = old_ats;          // how many more?
1718   const int grow_ats = old_ats+new_ats;  // how many now?
1719   _max_alias_types = grow_ats;
1720   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1721   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1722   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1723   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1724 }
1725 
1726 
1727 //--------------------------------find_alias_type------------------------------
1728 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1729   if (_AliasLevel == 0)
1730     return alias_type(AliasIdxBot);
1731 
1732   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1733   if (ace->_adr_type == adr_type) {
1734     return alias_type(ace->_index);
1735   }
1736 
1737   // Handle special cases.
1738   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1739   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1740 
1741   // Do it the slow way.
1742   const TypePtr* flat = flatten_alias_type(adr_type);
1743 
1744 #ifdef ASSERT
1745   {
1746     ResourceMark rm;
1747     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1748            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1749     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1750            Type::str(adr_type));
1751     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1752       const TypeOopPtr* foop = flat->is_oopptr();
1753       // Scalarizable allocations have exact klass always.
1754       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1755       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1756       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1757              Type::str(foop), Type::str(xoop));
1758     }
1759   }
1760 #endif
1761 
1762   int idx = AliasIdxTop;
1763   for (int i = 0; i < num_alias_types(); i++) {
1764     if (alias_type(i)->adr_type() == flat) {
1765       idx = i;
1766       break;
1767     }
1768   }
1769 
1770   if (idx == AliasIdxTop) {
1771     if (no_create)  return NULL;
1772     // Grow the array if necessary.
1773     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1774     // Add a new alias type.
1775     idx = _num_alias_types++;
1776     _alias_types[idx]->Init(idx, flat);
1777     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1778     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1779     if (flat->isa_instptr()) {
1780       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1781           && flat->is_instptr()->klass() == env()->Class_klass())
1782         alias_type(idx)->set_rewritable(false);
1783     }
1784     if (flat->isa_aryptr()) {
1785 #ifdef ASSERT
1786       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1787       // (T_BYTE has the weakest alignment and size restrictions...)
1788       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1789 #endif
1790       if (flat->offset() == TypePtr::OffsetBot) {
1791         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1792       }
1793     }
1794     if (flat->isa_klassptr()) {
1795       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1796         alias_type(idx)->set_rewritable(false);
1797       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1798         alias_type(idx)->set_rewritable(false);
1799       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1800         alias_type(idx)->set_rewritable(false);
1801       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1802         alias_type(idx)->set_rewritable(false);
1803     }
1804     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1805     // but the base pointer type is not distinctive enough to identify
1806     // references into JavaThread.)
1807 
1808     // Check for final fields.
1809     const TypeInstPtr* tinst = flat->isa_instptr();
1810     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1811       ciField* field;
1812       if (tinst->const_oop() != NULL &&
1813           tinst->klass() == ciEnv::current()->Class_klass() &&
1814           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1815         // static field
1816         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1817         field = k->get_field_by_offset(tinst->offset(), true);
1818       } else {
1819         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1820         field = k->get_field_by_offset(tinst->offset(), false);
1821       }
1822       assert(field == NULL ||
1823              original_field == NULL ||
1824              (field->holder() == original_field->holder() &&
1825               field->offset() == original_field->offset() &&
1826               field->is_static() == original_field->is_static()), "wrong field?");
1827       // Set field() and is_rewritable() attributes.
1828       if (field != NULL)  alias_type(idx)->set_field(field);
1829     }
1830   }
1831 
1832   // Fill the cache for next time.
1833   ace->_adr_type = adr_type;
1834   ace->_index    = idx;
1835   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1836 
1837   // Might as well try to fill the cache for the flattened version, too.
1838   AliasCacheEntry* face = probe_alias_cache(flat);
1839   if (face->_adr_type == NULL) {
1840     face->_adr_type = flat;
1841     face->_index    = idx;
1842     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1843   }
1844 
1845   return alias_type(idx);
1846 }
1847 
1848 
1849 Compile::AliasType* Compile::alias_type(ciField* field) {
1850   const TypeOopPtr* t;
1851   if (field->is_static())
1852     t = TypeInstPtr::make(field->holder()->java_mirror());
1853   else
1854     t = TypeOopPtr::make_from_klass_raw(field->holder());
1855   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1856   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1857   return atp;
1858 }
1859 
1860 
1861 //------------------------------have_alias_type--------------------------------
1862 bool Compile::have_alias_type(const TypePtr* adr_type) {
1863   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1864   if (ace->_adr_type == adr_type) {
1865     return true;
1866   }
1867 
1868   // Handle special cases.
1869   if (adr_type == NULL)             return true;
1870   if (adr_type == TypePtr::BOTTOM)  return true;
1871 
1872   return find_alias_type(adr_type, true, NULL) != NULL;
1873 }
1874 
1875 //-----------------------------must_alias--------------------------------------
1876 // True if all values of the given address type are in the given alias category.
1877 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1878   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1879   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1880   if (alias_idx == AliasIdxTop)         return false; // the empty category
1881   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1882 
1883   // the only remaining possible overlap is identity
1884   int adr_idx = get_alias_index(adr_type);
1885   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1886   assert(adr_idx == alias_idx ||
1887          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1888           && adr_type                       != TypeOopPtr::BOTTOM),
1889          "should not be testing for overlap with an unsafe pointer");
1890   return adr_idx == alias_idx;
1891 }
1892 
1893 //------------------------------can_alias--------------------------------------
1894 // True if any values of the given address type are in the given alias category.
1895 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1896   if (alias_idx == AliasIdxTop)         return false; // the empty category
1897   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1898   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1899   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1900 
1901   // the only remaining possible overlap is identity
1902   int adr_idx = get_alias_index(adr_type);
1903   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1904   return adr_idx == alias_idx;
1905 }
1906 
1907 
1908 
1909 //---------------------------pop_warm_call-------------------------------------
1910 WarmCallInfo* Compile::pop_warm_call() {
1911   WarmCallInfo* wci = _warm_calls;
1912   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1913   return wci;
1914 }
1915 
1916 //----------------------------Inline_Warm--------------------------------------
1917 int Compile::Inline_Warm() {
1918   // If there is room, try to inline some more warm call sites.
1919   // %%% Do a graph index compaction pass when we think we're out of space?
1920   if (!InlineWarmCalls)  return 0;
1921 
1922   int calls_made_hot = 0;
1923   int room_to_grow   = NodeCountInliningCutoff - unique();
1924   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1925   int amount_grown   = 0;
1926   WarmCallInfo* call;
1927   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1928     int est_size = (int)call->size();
1929     if (est_size > (room_to_grow - amount_grown)) {
1930       // This one won't fit anyway.  Get rid of it.
1931       call->make_cold();
1932       continue;
1933     }
1934     call->make_hot();
1935     calls_made_hot++;
1936     amount_grown   += est_size;
1937     amount_to_grow -= est_size;
1938   }
1939 
1940   if (calls_made_hot > 0)  set_major_progress();
1941   return calls_made_hot;
1942 }
1943 
1944 
1945 //----------------------------Finish_Warm--------------------------------------
1946 void Compile::Finish_Warm() {
1947   if (!InlineWarmCalls)  return;
1948   if (failing())  return;
1949   if (warm_calls() == NULL)  return;
1950 
1951   // Clean up loose ends, if we are out of space for inlining.
1952   WarmCallInfo* call;
1953   while ((call = pop_warm_call()) != NULL) {
1954     call->make_cold();
1955   }
1956 }
1957 
1958 //---------------------cleanup_loop_predicates-----------------------
1959 // Remove the opaque nodes that protect the predicates so that all unused
1960 // checks and uncommon_traps will be eliminated from the ideal graph
1961 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1962   if (predicate_count()==0) return;
1963   for (int i = predicate_count(); i > 0; i--) {
1964     Node * n = predicate_opaque1_node(i-1);
1965     assert(n->Opcode() == Op_Opaque1, "must be");
1966     igvn.replace_node(n, n->in(1));
1967   }
1968   assert(predicate_count()==0, "should be clean!");
1969 }
1970 
1971 void Compile::add_range_check_cast(Node* n) {
1972   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1973   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1974   _range_check_casts->append(n);
1975 }
1976 
1977 // Remove all range check dependent CastIINodes.
1978 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1979   for (int i = range_check_cast_count(); i > 0; i--) {
1980     Node* cast = range_check_cast_node(i-1);
1981     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1982     igvn.replace_node(cast, cast->in(1));
1983   }
1984   assert(range_check_cast_count() == 0, "should be empty");
1985 }
1986 
1987 void Compile::add_opaque4_node(Node* n) {
1988   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
1989   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
1990   _opaque4_nodes->append(n);
1991 }
1992 
1993 // Remove all Opaque4 nodes.
1994 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
1995   for (int i = opaque4_count(); i > 0; i--) {
1996     Node* opaq = opaque4_node(i-1);
1997     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
1998     igvn.replace_node(opaq, opaq->in(2));
1999   }
2000   assert(opaque4_count() == 0, "should be empty");
2001 }
2002 
2003 // StringOpts and late inlining of string methods
2004 void Compile::inline_string_calls(bool parse_time) {
2005   {
2006     // remove useless nodes to make the usage analysis simpler
2007     ResourceMark rm;
2008     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2009   }
2010 
2011   {
2012     ResourceMark rm;
2013     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2014     PhaseStringOpts pso(initial_gvn(), for_igvn());
2015     print_method(PHASE_AFTER_STRINGOPTS, 3);
2016   }
2017 
2018   // now inline anything that we skipped the first time around
2019   if (!parse_time) {
2020     _late_inlines_pos = _late_inlines.length();
2021   }
2022 
2023   while (_string_late_inlines.length() > 0) {
2024     CallGenerator* cg = _string_late_inlines.pop();
2025     cg->do_late_inline();
2026     if (failing())  return;
2027   }
2028   _string_late_inlines.trunc_to(0);
2029 }
2030 
2031 // Late inlining of boxing methods
2032 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2033   if (_boxing_late_inlines.length() > 0) {
2034     assert(has_boxed_value(), "inconsistent");
2035 
2036     PhaseGVN* gvn = initial_gvn();
2037     set_inlining_incrementally(true);
2038 
2039     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2040     for_igvn()->clear();
2041     gvn->replace_with(&igvn);
2042 
2043     _late_inlines_pos = _late_inlines.length();
2044 
2045     while (_boxing_late_inlines.length() > 0) {
2046       CallGenerator* cg = _boxing_late_inlines.pop();
2047       cg->do_late_inline();
2048       if (failing())  return;
2049     }
2050     _boxing_late_inlines.trunc_to(0);
2051 
2052     {
2053       ResourceMark rm;
2054       PhaseRemoveUseless pru(gvn, for_igvn());
2055     }
2056 
2057     igvn = PhaseIterGVN(gvn);
2058     igvn.optimize();
2059 
2060     set_inlining_progress(false);
2061     set_inlining_incrementally(false);
2062   }
2063 }
2064 
2065 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2066   assert(IncrementalInline, "incremental inlining should be on");
2067   PhaseGVN* gvn = initial_gvn();
2068 
2069   set_inlining_progress(false);
2070   for_igvn()->clear();
2071   gvn->replace_with(&igvn);
2072 
2073   {
2074     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2075     int i = 0;
2076     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2077       CallGenerator* cg = _late_inlines.at(i);
2078       _late_inlines_pos = i+1;
2079       cg->do_late_inline();
2080       if (failing())  return;
2081     }
2082     int j = 0;
2083     for (; i < _late_inlines.length(); i++, j++) {
2084       _late_inlines.at_put(j, _late_inlines.at(i));
2085     }
2086     _late_inlines.trunc_to(j);
2087   }
2088 
2089   {
2090     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2091     ResourceMark rm;
2092     PhaseRemoveUseless pru(gvn, for_igvn());
2093   }
2094 
2095   {
2096     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2097     igvn = PhaseIterGVN(gvn);
2098   }
2099 }
2100 
2101 // Perform incremental inlining until bound on number of live nodes is reached
2102 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2103   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2104 
2105   PhaseGVN* gvn = initial_gvn();
2106 
2107   set_inlining_incrementally(true);
2108   set_inlining_progress(true);
2109   uint low_live_nodes = 0;
2110 
2111   while(inlining_progress() && _late_inlines.length() > 0) {
2112 
2113     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2114       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2115         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2116         // PhaseIdealLoop is expensive so we only try it once we are
2117         // out of live nodes and we only try it again if the previous
2118         // helped got the number of nodes down significantly
2119         PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2120         if (failing())  return;
2121         low_live_nodes = live_nodes();
2122         _major_progress = true;
2123       }
2124 
2125       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2126         break;
2127       }
2128     }
2129 
2130     inline_incrementally_one(igvn);
2131 
2132     if (failing())  return;
2133 
2134     {
2135       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2136       igvn.optimize();
2137     }
2138 
2139     if (failing())  return;
2140   }
2141 
2142   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2143 
2144   if (_string_late_inlines.length() > 0) {
2145     assert(has_stringbuilder(), "inconsistent");
2146     for_igvn()->clear();
2147     initial_gvn()->replace_with(&igvn);
2148 
2149     inline_string_calls(false);
2150 
2151     if (failing())  return;
2152 
2153     {
2154       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2155       ResourceMark rm;
2156       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2157     }
2158 
2159     {
2160       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2161       igvn = PhaseIterGVN(gvn);
2162       igvn.optimize();
2163     }
2164   }
2165 
2166   set_inlining_incrementally(false);
2167 }
2168 
2169 
2170 bool Compile::optimize_loops(int& loop_opts_cnt, PhaseIterGVN& igvn, LoopOptsMode mode) {
2171   if(loop_opts_cnt > 0) {
2172     debug_only( int cnt = 0; );
2173     while(major_progress() && (loop_opts_cnt > 0)) {
2174       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2175       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2176       PhaseIdealLoop ideal_loop(igvn, mode);
2177       loop_opts_cnt--;
2178       if (failing())  return false;
2179       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2180     }
2181   }
2182   return true;
2183 }
2184 
2185 //------------------------------Optimize---------------------------------------
2186 // Given a graph, optimize it.
2187 void Compile::Optimize() {
2188   TracePhase tp("optimizer", &timers[_t_optimizer]);
2189 
2190 #ifndef PRODUCT
2191   if (_directive->BreakAtCompileOption) {
2192     BREAKPOINT;
2193   }
2194 
2195 #endif
2196 
2197 #ifdef ASSERT
2198   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2199   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2200 #endif
2201 
2202   ResourceMark rm;
2203   int          loop_opts_cnt;
2204 
2205   print_inlining_reinit();
2206 
2207   NOT_PRODUCT( verify_graph_edges(); )
2208 
2209   print_method(PHASE_AFTER_PARSING);
2210 
2211  {
2212   // Iterative Global Value Numbering, including ideal transforms
2213   // Initialize IterGVN with types and values from parse-time GVN
2214   PhaseIterGVN igvn(initial_gvn());
2215 #ifdef ASSERT
2216   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2217 #endif
2218   {
2219     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2220     igvn.optimize();
2221   }
2222 
2223   if (failing())  return;
2224 
2225   print_method(PHASE_ITER_GVN1, 2);
2226 
2227   inline_incrementally(igvn);
2228 
2229   print_method(PHASE_INCREMENTAL_INLINE, 2);
2230 
2231   if (failing())  return;
2232 
2233   if (eliminate_boxing()) {
2234     // Inline valueOf() methods now.
2235     inline_boxing_calls(igvn);
2236 
2237     if (AlwaysIncrementalInline) {
2238       inline_incrementally(igvn);
2239     }
2240 
2241     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2242 
2243     if (failing())  return;
2244   }
2245 
2246   // Remove the speculative part of types and clean up the graph from
2247   // the extra CastPP nodes whose only purpose is to carry them. Do
2248   // that early so that optimizations are not disrupted by the extra
2249   // CastPP nodes.
2250   remove_speculative_types(igvn);
2251 
2252   // No more new expensive nodes will be added to the list from here
2253   // so keep only the actual candidates for optimizations.
2254   cleanup_expensive_nodes(igvn);
2255 
2256   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2257     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2258     initial_gvn()->replace_with(&igvn);
2259     for_igvn()->clear();
2260     Unique_Node_List new_worklist(C->comp_arena());
2261     {
2262       ResourceMark rm;
2263       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2264     }
2265     set_for_igvn(&new_worklist);
2266     igvn = PhaseIterGVN(initial_gvn());
2267     igvn.optimize();
2268   }
2269 
2270   // Perform escape analysis
2271   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2272     if (has_loops()) {
2273       // Cleanup graph (remove dead nodes).
2274       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2275       PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2276       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2277       if (failing())  return;
2278     }
2279     ConnectionGraph::do_analysis(this, &igvn);
2280 
2281     if (failing())  return;
2282 
2283     // Optimize out fields loads from scalar replaceable allocations.
2284     igvn.optimize();
2285     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2286 
2287     if (failing())  return;
2288 
2289     if (congraph() != NULL && macro_count() > 0) {
2290       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2291       PhaseMacroExpand mexp(igvn);
2292       mexp.eliminate_macro_nodes();
2293       igvn.set_delay_transform(false);
2294 
2295       igvn.optimize();
2296       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2297 
2298       if (failing())  return;
2299     }
2300   }
2301 
2302   // Loop transforms on the ideal graph.  Range Check Elimination,
2303   // peeling, unrolling, etc.
2304 
2305   // Set loop opts counter
2306   loop_opts_cnt = num_loop_opts();
2307   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2308     {
2309       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2310       PhaseIdealLoop ideal_loop(igvn, LoopOptsDefault);
2311       loop_opts_cnt--;
2312       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2313       if (failing())  return;
2314     }
2315     // Loop opts pass if partial peeling occurred in previous pass
2316     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2317       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2318       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2319       loop_opts_cnt--;
2320       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2321       if (failing())  return;
2322     }
2323     // Loop opts pass for loop-unrolling before CCP
2324     if(major_progress() && (loop_opts_cnt > 0)) {
2325       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2326       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2327       loop_opts_cnt--;
2328       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2329     }
2330     if (!failing()) {
2331       // Verify that last round of loop opts produced a valid graph
2332       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2333       PhaseIdealLoop::verify(igvn);
2334     }
2335   }
2336   if (failing())  return;
2337 
2338   // Conditional Constant Propagation;
2339   PhaseCCP ccp( &igvn );
2340   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2341   {
2342     TracePhase tp("ccp", &timers[_t_ccp]);
2343     ccp.do_transform();
2344   }
2345   print_method(PHASE_CPP1, 2);
2346 
2347   assert( true, "Break here to ccp.dump_old2new_map()");
2348 
2349   // Iterative Global Value Numbering, including ideal transforms
2350   {
2351     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2352     igvn = ccp;
2353     igvn.optimize();
2354   }
2355 
2356   print_method(PHASE_ITER_GVN2, 2);
2357 
2358   if (failing())  return;
2359 
2360   // Loop transforms on the ideal graph.  Range Check Elimination,
2361   // peeling, unrolling, etc.
2362   if (!optimize_loops(loop_opts_cnt, igvn, LoopOptsDefault)) {
2363     return;
2364   }
2365 
2366 #if INCLUDE_ZGC
2367   if (UseZGC) {
2368     ZBarrierSetC2::find_dominating_barriers(igvn);
2369   }
2370 #endif
2371 
2372   if (failing())  return;
2373 
2374   // Ensure that major progress is now clear
2375   C->clear_major_progress();
2376 
2377   {
2378     // Verify that all previous optimizations produced a valid graph
2379     // at least to this point, even if no loop optimizations were done.
2380     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2381     PhaseIdealLoop::verify(igvn);
2382   }
2383 
2384   if (range_check_cast_count() > 0) {
2385     // No more loop optimizations. Remove all range check dependent CastIINodes.
2386     C->remove_range_check_casts(igvn);
2387     igvn.optimize();
2388   }
2389 
2390 #ifdef ASSERT
2391   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2392   bs->verify_gc_barriers(this, BarrierSetC2::BeforeExpand);
2393 #endif
2394 
2395   {
2396     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2397     PhaseMacroExpand  mex(igvn);
2398     print_method(PHASE_BEFORE_MACRO_EXPANSION, 2);
2399     if (mex.expand_macro_nodes()) {
2400       assert(failing(), "must bail out w/ explicit message");
2401       return;
2402     }
2403   }
2404 
2405   if (opaque4_count() > 0) {
2406     C->remove_opaque4_nodes(igvn);
2407     igvn.optimize();
2408   }
2409 
2410   DEBUG_ONLY( _modified_nodes = NULL; )
2411  } // (End scope of igvn; run destructor if necessary for asserts.)
2412 
2413  process_print_inlining();
2414  // A method with only infinite loops has no edges entering loops from root
2415  {
2416    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2417    if (final_graph_reshaping()) {
2418      assert(failing(), "must bail out w/ explicit message");
2419      return;
2420    }
2421  }
2422 
2423  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2424 }
2425 
2426 
2427 //------------------------------Code_Gen---------------------------------------
2428 // Given a graph, generate code for it
2429 void Compile::Code_Gen() {
2430   if (failing()) {
2431     return;
2432   }
2433 
2434   // Perform instruction selection.  You might think we could reclaim Matcher
2435   // memory PDQ, but actually the Matcher is used in generating spill code.
2436   // Internals of the Matcher (including some VectorSets) must remain live
2437   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2438   // set a bit in reclaimed memory.
2439 
2440   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2441   // nodes.  Mapping is only valid at the root of each matched subtree.
2442   NOT_PRODUCT( verify_graph_edges(); )
2443 
2444   Matcher matcher;
2445   _matcher = &matcher;
2446   {
2447     TracePhase tp("matcher", &timers[_t_matcher]);
2448     matcher.match();
2449   }
2450   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2451   // nodes.  Mapping is only valid at the root of each matched subtree.
2452   NOT_PRODUCT( verify_graph_edges(); )
2453 
2454   // If you have too many nodes, or if matching has failed, bail out
2455   check_node_count(0, "out of nodes matching instructions");
2456   if (failing()) {
2457     return;
2458   }
2459 
2460   print_method(PHASE_MATCHING, 2);
2461 
2462   // Build a proper-looking CFG
2463   PhaseCFG cfg(node_arena(), root(), matcher);
2464   _cfg = &cfg;
2465   {
2466     TracePhase tp("scheduler", &timers[_t_scheduler]);
2467     bool success = cfg.do_global_code_motion();
2468     if (!success) {
2469       return;
2470     }
2471 
2472     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2473     NOT_PRODUCT( verify_graph_edges(); )
2474     debug_only( cfg.verify(); )
2475   }
2476 
2477   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2478   _regalloc = &regalloc;
2479   {
2480     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2481     // Perform register allocation.  After Chaitin, use-def chains are
2482     // no longer accurate (at spill code) and so must be ignored.
2483     // Node->LRG->reg mappings are still accurate.
2484     _regalloc->Register_Allocate();
2485 
2486     // Bail out if the allocator builds too many nodes
2487     if (failing()) {
2488       return;
2489     }
2490   }
2491 
2492   // Prior to register allocation we kept empty basic blocks in case the
2493   // the allocator needed a place to spill.  After register allocation we
2494   // are not adding any new instructions.  If any basic block is empty, we
2495   // can now safely remove it.
2496   {
2497     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2498     cfg.remove_empty_blocks();
2499     if (do_freq_based_layout()) {
2500       PhaseBlockLayout layout(cfg);
2501     } else {
2502       cfg.set_loop_alignment();
2503     }
2504     cfg.fixup_flow();
2505   }
2506 
2507   // Apply peephole optimizations
2508   if( OptoPeephole ) {
2509     TracePhase tp("peephole", &timers[_t_peephole]);
2510     PhasePeephole peep( _regalloc, cfg);
2511     peep.do_transform();
2512   }
2513 
2514   // Do late expand if CPU requires this.
2515   if (Matcher::require_postalloc_expand) {
2516     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2517     cfg.postalloc_expand(_regalloc);
2518   }
2519 
2520   // Convert Nodes to instruction bits in a buffer
2521   {
2522     TraceTime tp("output", &timers[_t_output], CITime);
2523     Output();
2524   }
2525 
2526   print_method(PHASE_FINAL_CODE);
2527 
2528   // He's dead, Jim.
2529   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2530   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2531 }
2532 
2533 
2534 //------------------------------dump_asm---------------------------------------
2535 // Dump formatted assembly
2536 #ifndef PRODUCT
2537 void Compile::dump_asm(int *pcs, uint pc_limit) {
2538   bool cut_short = false;
2539   tty->print_cr("#");
2540   tty->print("#  ");  _tf->dump();  tty->cr();
2541   tty->print_cr("#");
2542 
2543   // For all blocks
2544   int pc = 0x0;                 // Program counter
2545   char starts_bundle = ' ';
2546   _regalloc->dump_frame();
2547 
2548   Node *n = NULL;
2549   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2550     if (VMThread::should_terminate()) {
2551       cut_short = true;
2552       break;
2553     }
2554     Block* block = _cfg->get_block(i);
2555     if (block->is_connector() && !Verbose) {
2556       continue;
2557     }
2558     n = block->head();
2559     if (pcs && n->_idx < pc_limit) {
2560       tty->print("%3.3x   ", pcs[n->_idx]);
2561     } else {
2562       tty->print("      ");
2563     }
2564     block->dump_head(_cfg);
2565     if (block->is_connector()) {
2566       tty->print_cr("        # Empty connector block");
2567     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2568       tty->print_cr("        # Block is sole successor of call");
2569     }
2570 
2571     // For all instructions
2572     Node *delay = NULL;
2573     for (uint j = 0; j < block->number_of_nodes(); j++) {
2574       if (VMThread::should_terminate()) {
2575         cut_short = true;
2576         break;
2577       }
2578       n = block->get_node(j);
2579       if (valid_bundle_info(n)) {
2580         Bundle* bundle = node_bundling(n);
2581         if (bundle->used_in_unconditional_delay()) {
2582           delay = n;
2583           continue;
2584         }
2585         if (bundle->starts_bundle()) {
2586           starts_bundle = '+';
2587         }
2588       }
2589 
2590       if (WizardMode) {
2591         n->dump();
2592       }
2593 
2594       if( !n->is_Region() &&    // Dont print in the Assembly
2595           !n->is_Phi() &&       // a few noisely useless nodes
2596           !n->is_Proj() &&
2597           !n->is_MachTemp() &&
2598           !n->is_SafePointScalarObject() &&
2599           !n->is_Catch() &&     // Would be nice to print exception table targets
2600           !n->is_MergeMem() &&  // Not very interesting
2601           !n->is_top() &&       // Debug info table constants
2602           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2603           ) {
2604         if (pcs && n->_idx < pc_limit)
2605           tty->print("%3.3x", pcs[n->_idx]);
2606         else
2607           tty->print("   ");
2608         tty->print(" %c ", starts_bundle);
2609         starts_bundle = ' ';
2610         tty->print("\t");
2611         n->format(_regalloc, tty);
2612         tty->cr();
2613       }
2614 
2615       // If we have an instruction with a delay slot, and have seen a delay,
2616       // then back up and print it
2617       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2618         assert(delay != NULL, "no unconditional delay instruction");
2619         if (WizardMode) delay->dump();
2620 
2621         if (node_bundling(delay)->starts_bundle())
2622           starts_bundle = '+';
2623         if (pcs && n->_idx < pc_limit)
2624           tty->print("%3.3x", pcs[n->_idx]);
2625         else
2626           tty->print("   ");
2627         tty->print(" %c ", starts_bundle);
2628         starts_bundle = ' ';
2629         tty->print("\t");
2630         delay->format(_regalloc, tty);
2631         tty->cr();
2632         delay = NULL;
2633       }
2634 
2635       // Dump the exception table as well
2636       if( n->is_Catch() && (Verbose || WizardMode) ) {
2637         // Print the exception table for this offset
2638         _handler_table.print_subtable_for(pc);
2639       }
2640     }
2641 
2642     if (pcs && n->_idx < pc_limit)
2643       tty->print_cr("%3.3x", pcs[n->_idx]);
2644     else
2645       tty->cr();
2646 
2647     assert(cut_short || delay == NULL, "no unconditional delay branch");
2648 
2649   } // End of per-block dump
2650   tty->cr();
2651 
2652   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2653 }
2654 #endif
2655 
2656 //------------------------------Final_Reshape_Counts---------------------------
2657 // This class defines counters to help identify when a method
2658 // may/must be executed using hardware with only 24-bit precision.
2659 struct Final_Reshape_Counts : public StackObj {
2660   int  _call_count;             // count non-inlined 'common' calls
2661   int  _float_count;            // count float ops requiring 24-bit precision
2662   int  _double_count;           // count double ops requiring more precision
2663   int  _java_call_count;        // count non-inlined 'java' calls
2664   int  _inner_loop_count;       // count loops which need alignment
2665   VectorSet _visited;           // Visitation flags
2666   Node_List _tests;             // Set of IfNodes & PCTableNodes
2667 
2668   Final_Reshape_Counts() :
2669     _call_count(0), _float_count(0), _double_count(0),
2670     _java_call_count(0), _inner_loop_count(0),
2671     _visited( Thread::current()->resource_area() ) { }
2672 
2673   void inc_call_count  () { _call_count  ++; }
2674   void inc_float_count () { _float_count ++; }
2675   void inc_double_count() { _double_count++; }
2676   void inc_java_call_count() { _java_call_count++; }
2677   void inc_inner_loop_count() { _inner_loop_count++; }
2678 
2679   int  get_call_count  () const { return _call_count  ; }
2680   int  get_float_count () const { return _float_count ; }
2681   int  get_double_count() const { return _double_count; }
2682   int  get_java_call_count() const { return _java_call_count; }
2683   int  get_inner_loop_count() const { return _inner_loop_count; }
2684 };
2685 
2686 #ifdef ASSERT
2687 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2688   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2689   // Make sure the offset goes inside the instance layout.
2690   return k->contains_field_offset(tp->offset());
2691   // Note that OffsetBot and OffsetTop are very negative.
2692 }
2693 #endif
2694 
2695 // Eliminate trivially redundant StoreCMs and accumulate their
2696 // precedence edges.
2697 void Compile::eliminate_redundant_card_marks(Node* n) {
2698   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2699   if (n->in(MemNode::Address)->outcnt() > 1) {
2700     // There are multiple users of the same address so it might be
2701     // possible to eliminate some of the StoreCMs
2702     Node* mem = n->in(MemNode::Memory);
2703     Node* adr = n->in(MemNode::Address);
2704     Node* val = n->in(MemNode::ValueIn);
2705     Node* prev = n;
2706     bool done = false;
2707     // Walk the chain of StoreCMs eliminating ones that match.  As
2708     // long as it's a chain of single users then the optimization is
2709     // safe.  Eliminating partially redundant StoreCMs would require
2710     // cloning copies down the other paths.
2711     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2712       if (adr == mem->in(MemNode::Address) &&
2713           val == mem->in(MemNode::ValueIn)) {
2714         // redundant StoreCM
2715         if (mem->req() > MemNode::OopStore) {
2716           // Hasn't been processed by this code yet.
2717           n->add_prec(mem->in(MemNode::OopStore));
2718         } else {
2719           // Already converted to precedence edge
2720           for (uint i = mem->req(); i < mem->len(); i++) {
2721             // Accumulate any precedence edges
2722             if (mem->in(i) != NULL) {
2723               n->add_prec(mem->in(i));
2724             }
2725           }
2726           // Everything above this point has been processed.
2727           done = true;
2728         }
2729         // Eliminate the previous StoreCM
2730         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2731         assert(mem->outcnt() == 0, "should be dead");
2732         mem->disconnect_inputs(NULL, this);
2733       } else {
2734         prev = mem;
2735       }
2736       mem = prev->in(MemNode::Memory);
2737     }
2738   }
2739 }
2740 
2741 //------------------------------final_graph_reshaping_impl----------------------
2742 // Implement items 1-5 from final_graph_reshaping below.
2743 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2744 
2745   if ( n->outcnt() == 0 ) return; // dead node
2746   uint nop = n->Opcode();
2747 
2748   // Check for 2-input instruction with "last use" on right input.
2749   // Swap to left input.  Implements item (2).
2750   if( n->req() == 3 &&          // two-input instruction
2751       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2752       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2753       n->in(2)->outcnt() == 1 &&// right use IS a last use
2754       !n->in(2)->is_Con() ) {   // right use is not a constant
2755     // Check for commutative opcode
2756     switch( nop ) {
2757     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2758     case Op_MaxI:  case Op_MinI:
2759     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2760     case Op_AndL:  case Op_XorL:  case Op_OrL:
2761     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2762       // Move "last use" input to left by swapping inputs
2763       n->swap_edges(1, 2);
2764       break;
2765     }
2766     default:
2767       break;
2768     }
2769   }
2770 
2771 #ifdef ASSERT
2772   if( n->is_Mem() ) {
2773     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2774     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2775             // oop will be recorded in oop map if load crosses safepoint
2776             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2777                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2778             "raw memory operations should have control edge");
2779   }
2780   if (n->is_MemBar()) {
2781     MemBarNode* mb = n->as_MemBar();
2782     if (mb->trailing_store() || mb->trailing_load_store()) {
2783       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2784       Node* mem = mb->in(MemBarNode::Precedent);
2785       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2786              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2787     } else if (mb->leading()) {
2788       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2789     }
2790   }
2791 #endif
2792   // Count FPU ops and common calls, implements item (3)
2793   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n);
2794   switch( nop ) {
2795   // Count all float operations that may use FPU
2796   case Op_AddF:
2797   case Op_SubF:
2798   case Op_MulF:
2799   case Op_DivF:
2800   case Op_NegF:
2801   case Op_ModF:
2802   case Op_ConvI2F:
2803   case Op_ConF:
2804   case Op_CmpF:
2805   case Op_CmpF3:
2806   // case Op_ConvL2F: // longs are split into 32-bit halves
2807     frc.inc_float_count();
2808     break;
2809 
2810   case Op_ConvF2D:
2811   case Op_ConvD2F:
2812     frc.inc_float_count();
2813     frc.inc_double_count();
2814     break;
2815 
2816   // Count all double operations that may use FPU
2817   case Op_AddD:
2818   case Op_SubD:
2819   case Op_MulD:
2820   case Op_DivD:
2821   case Op_NegD:
2822   case Op_ModD:
2823   case Op_ConvI2D:
2824   case Op_ConvD2I:
2825   // case Op_ConvL2D: // handled by leaf call
2826   // case Op_ConvD2L: // handled by leaf call
2827   case Op_ConD:
2828   case Op_CmpD:
2829   case Op_CmpD3:
2830     frc.inc_double_count();
2831     break;
2832   case Op_Opaque1:              // Remove Opaque Nodes before matching
2833   case Op_Opaque2:              // Remove Opaque Nodes before matching
2834   case Op_Opaque3:
2835     n->subsume_by(n->in(1), this);
2836     break;
2837   case Op_CallStaticJava:
2838   case Op_CallJava:
2839   case Op_CallDynamicJava:
2840     frc.inc_java_call_count(); // Count java call site;
2841   case Op_CallRuntime:
2842   case Op_CallLeaf:
2843   case Op_CallLeafNoFP: {
2844     assert (n->is_Call(), "");
2845     CallNode *call = n->as_Call();
2846     // Count call sites where the FP mode bit would have to be flipped.
2847     // Do not count uncommon runtime calls:
2848     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2849     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2850     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2851       frc.inc_call_count();   // Count the call site
2852     } else {                  // See if uncommon argument is shared
2853       Node *n = call->in(TypeFunc::Parms);
2854       int nop = n->Opcode();
2855       // Clone shared simple arguments to uncommon calls, item (1).
2856       if (n->outcnt() > 1 &&
2857           !n->is_Proj() &&
2858           nop != Op_CreateEx &&
2859           nop != Op_CheckCastPP &&
2860           nop != Op_DecodeN &&
2861           nop != Op_DecodeNKlass &&
2862           !n->is_Mem() &&
2863           !n->is_Phi()) {
2864         Node *x = n->clone();
2865         call->set_req(TypeFunc::Parms, x);
2866       }
2867     }
2868     break;
2869   }
2870 
2871   case Op_StoreD:
2872   case Op_LoadD:
2873   case Op_LoadD_unaligned:
2874     frc.inc_double_count();
2875     goto handle_mem;
2876   case Op_StoreF:
2877   case Op_LoadF:
2878     frc.inc_float_count();
2879     goto handle_mem;
2880 
2881   case Op_StoreCM:
2882     {
2883       // Convert OopStore dependence into precedence edge
2884       Node* prec = n->in(MemNode::OopStore);
2885       n->del_req(MemNode::OopStore);
2886       n->add_prec(prec);
2887       eliminate_redundant_card_marks(n);
2888     }
2889 
2890     // fall through
2891 
2892   case Op_StoreB:
2893   case Op_StoreC:
2894   case Op_StorePConditional:
2895   case Op_StoreI:
2896   case Op_StoreL:
2897   case Op_StoreIConditional:
2898   case Op_StoreLConditional:
2899   case Op_CompareAndSwapB:
2900   case Op_CompareAndSwapS:
2901   case Op_CompareAndSwapI:
2902   case Op_CompareAndSwapL:
2903   case Op_CompareAndSwapP:
2904   case Op_CompareAndSwapN:
2905   case Op_WeakCompareAndSwapB:
2906   case Op_WeakCompareAndSwapS:
2907   case Op_WeakCompareAndSwapI:
2908   case Op_WeakCompareAndSwapL:
2909   case Op_WeakCompareAndSwapP:
2910   case Op_WeakCompareAndSwapN:
2911   case Op_CompareAndExchangeB:
2912   case Op_CompareAndExchangeS:
2913   case Op_CompareAndExchangeI:
2914   case Op_CompareAndExchangeL:
2915   case Op_CompareAndExchangeP:
2916   case Op_CompareAndExchangeN:
2917   case Op_GetAndAddS:
2918   case Op_GetAndAddB:
2919   case Op_GetAndAddI:
2920   case Op_GetAndAddL:
2921   case Op_GetAndSetS:
2922   case Op_GetAndSetB:
2923   case Op_GetAndSetI:
2924   case Op_GetAndSetL:
2925   case Op_GetAndSetP:
2926   case Op_GetAndSetN:
2927   case Op_StoreP:
2928   case Op_StoreN:
2929   case Op_StoreNKlass:
2930   case Op_LoadB:
2931   case Op_LoadUB:
2932   case Op_LoadUS:
2933   case Op_LoadI:
2934   case Op_LoadKlass:
2935   case Op_LoadNKlass:
2936   case Op_LoadL:
2937   case Op_LoadL_unaligned:
2938   case Op_LoadPLocked:
2939   case Op_LoadP:
2940 #if INCLUDE_ZGC
2941   case Op_LoadBarrierSlowReg:
2942   case Op_LoadBarrierWeakSlowReg:
2943 #endif
2944   case Op_LoadN:
2945   case Op_LoadRange:
2946   case Op_LoadS: {
2947   handle_mem:
2948 #ifdef ASSERT
2949     if( VerifyOptoOopOffsets ) {
2950       assert( n->is_Mem(), "" );
2951       MemNode *mem  = (MemNode*)n;
2952       // Check to see if address types have grounded out somehow.
2953       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2954       assert( !tp || oop_offset_is_sane(tp), "" );
2955     }
2956 #endif
2957     break;
2958   }
2959 
2960   case Op_AddP: {               // Assert sane base pointers
2961     Node *addp = n->in(AddPNode::Address);
2962     assert( !addp->is_AddP() ||
2963             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2964             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2965             "Base pointers must match (addp %u)", addp->_idx );
2966 #ifdef _LP64
2967     if ((UseCompressedOops || UseCompressedClassPointers) &&
2968         addp->Opcode() == Op_ConP &&
2969         addp == n->in(AddPNode::Base) &&
2970         n->in(AddPNode::Offset)->is_Con()) {
2971       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2972       // on the platform and on the compressed oops mode.
2973       // Use addressing with narrow klass to load with offset on x86.
2974       // Some platforms can use the constant pool to load ConP.
2975       // Do this transformation here since IGVN will convert ConN back to ConP.
2976       const Type* t = addp->bottom_type();
2977       bool is_oop   = t->isa_oopptr() != NULL;
2978       bool is_klass = t->isa_klassptr() != NULL;
2979 
2980       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
2981           (is_klass && Matcher::const_klass_prefer_decode())) {
2982         Node* nn = NULL;
2983 
2984         int op = is_oop ? Op_ConN : Op_ConNKlass;
2985 
2986         // Look for existing ConN node of the same exact type.
2987         Node* r  = root();
2988         uint cnt = r->outcnt();
2989         for (uint i = 0; i < cnt; i++) {
2990           Node* m = r->raw_out(i);
2991           if (m!= NULL && m->Opcode() == op &&
2992               m->bottom_type()->make_ptr() == t) {
2993             nn = m;
2994             break;
2995           }
2996         }
2997         if (nn != NULL) {
2998           // Decode a narrow oop to match address
2999           // [R12 + narrow_oop_reg<<3 + offset]
3000           if (is_oop) {
3001             nn = new DecodeNNode(nn, t);
3002           } else {
3003             nn = new DecodeNKlassNode(nn, t);
3004           }
3005           // Check for succeeding AddP which uses the same Base.
3006           // Otherwise we will run into the assertion above when visiting that guy.
3007           for (uint i = 0; i < n->outcnt(); ++i) {
3008             Node *out_i = n->raw_out(i);
3009             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3010               out_i->set_req(AddPNode::Base, nn);
3011 #ifdef ASSERT
3012               for (uint j = 0; j < out_i->outcnt(); ++j) {
3013                 Node *out_j = out_i->raw_out(j);
3014                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3015                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3016               }
3017 #endif
3018             }
3019           }
3020           n->set_req(AddPNode::Base, nn);
3021           n->set_req(AddPNode::Address, nn);
3022           if (addp->outcnt() == 0) {
3023             addp->disconnect_inputs(NULL, this);
3024           }
3025         }
3026       }
3027     }
3028 #endif
3029     // platform dependent reshaping of the address expression
3030     reshape_address(n->as_AddP());
3031     break;
3032   }
3033 
3034   case Op_CastPP: {
3035     // Remove CastPP nodes to gain more freedom during scheduling but
3036     // keep the dependency they encode as control or precedence edges
3037     // (if control is set already) on memory operations. Some CastPP
3038     // nodes don't have a control (don't carry a dependency): skip
3039     // those.
3040     if (n->in(0) != NULL) {
3041       ResourceMark rm;
3042       Unique_Node_List wq;
3043       wq.push(n);
3044       for (uint next = 0; next < wq.size(); ++next) {
3045         Node *m = wq.at(next);
3046         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3047           Node* use = m->fast_out(i);
3048           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3049             use->ensure_control_or_add_prec(n->in(0));
3050           } else {
3051             switch(use->Opcode()) {
3052             case Op_AddP:
3053             case Op_DecodeN:
3054             case Op_DecodeNKlass:
3055             case Op_CheckCastPP:
3056             case Op_CastPP:
3057               wq.push(use);
3058               break;
3059             }
3060           }
3061         }
3062       }
3063     }
3064     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3065     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3066       Node* in1 = n->in(1);
3067       const Type* t = n->bottom_type();
3068       Node* new_in1 = in1->clone();
3069       new_in1->as_DecodeN()->set_type(t);
3070 
3071       if (!Matcher::narrow_oop_use_complex_address()) {
3072         //
3073         // x86, ARM and friends can handle 2 adds in addressing mode
3074         // and Matcher can fold a DecodeN node into address by using
3075         // a narrow oop directly and do implicit NULL check in address:
3076         //
3077         // [R12 + narrow_oop_reg<<3 + offset]
3078         // NullCheck narrow_oop_reg
3079         //
3080         // On other platforms (Sparc) we have to keep new DecodeN node and
3081         // use it to do implicit NULL check in address:
3082         //
3083         // decode_not_null narrow_oop_reg, base_reg
3084         // [base_reg + offset]
3085         // NullCheck base_reg
3086         //
3087         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3088         // to keep the information to which NULL check the new DecodeN node
3089         // corresponds to use it as value in implicit_null_check().
3090         //
3091         new_in1->set_req(0, n->in(0));
3092       }
3093 
3094       n->subsume_by(new_in1, this);
3095       if (in1->outcnt() == 0) {
3096         in1->disconnect_inputs(NULL, this);
3097       }
3098     } else {
3099       n->subsume_by(n->in(1), this);
3100       if (n->outcnt() == 0) {
3101         n->disconnect_inputs(NULL, this);
3102       }
3103     }
3104     break;
3105   }
3106 #ifdef _LP64
3107   case Op_CmpP:
3108     // Do this transformation here to preserve CmpPNode::sub() and
3109     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3110     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3111       Node* in1 = n->in(1);
3112       Node* in2 = n->in(2);
3113       if (!in1->is_DecodeNarrowPtr()) {
3114         in2 = in1;
3115         in1 = n->in(2);
3116       }
3117       assert(in1->is_DecodeNarrowPtr(), "sanity");
3118 
3119       Node* new_in2 = NULL;
3120       if (in2->is_DecodeNarrowPtr()) {
3121         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3122         new_in2 = in2->in(1);
3123       } else if (in2->Opcode() == Op_ConP) {
3124         const Type* t = in2->bottom_type();
3125         if (t == TypePtr::NULL_PTR) {
3126           assert(in1->is_DecodeN(), "compare klass to null?");
3127           // Don't convert CmpP null check into CmpN if compressed
3128           // oops implicit null check is not generated.
3129           // This will allow to generate normal oop implicit null check.
3130           if (Matcher::gen_narrow_oop_implicit_null_checks())
3131             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3132           //
3133           // This transformation together with CastPP transformation above
3134           // will generated code for implicit NULL checks for compressed oops.
3135           //
3136           // The original code after Optimize()
3137           //
3138           //    LoadN memory, narrow_oop_reg
3139           //    decode narrow_oop_reg, base_reg
3140           //    CmpP base_reg, NULL
3141           //    CastPP base_reg // NotNull
3142           //    Load [base_reg + offset], val_reg
3143           //
3144           // after these transformations will be
3145           //
3146           //    LoadN memory, narrow_oop_reg
3147           //    CmpN narrow_oop_reg, NULL
3148           //    decode_not_null narrow_oop_reg, base_reg
3149           //    Load [base_reg + offset], val_reg
3150           //
3151           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3152           // since narrow oops can be used in debug info now (see the code in
3153           // final_graph_reshaping_walk()).
3154           //
3155           // At the end the code will be matched to
3156           // on x86:
3157           //
3158           //    Load_narrow_oop memory, narrow_oop_reg
3159           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3160           //    NullCheck narrow_oop_reg
3161           //
3162           // and on sparc:
3163           //
3164           //    Load_narrow_oop memory, narrow_oop_reg
3165           //    decode_not_null narrow_oop_reg, base_reg
3166           //    Load [base_reg + offset], val_reg
3167           //    NullCheck base_reg
3168           //
3169         } else if (t->isa_oopptr()) {
3170           new_in2 = ConNode::make(t->make_narrowoop());
3171         } else if (t->isa_klassptr()) {
3172           new_in2 = ConNode::make(t->make_narrowklass());
3173         }
3174       }
3175       if (new_in2 != NULL) {
3176         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3177         n->subsume_by(cmpN, this);
3178         if (in1->outcnt() == 0) {
3179           in1->disconnect_inputs(NULL, this);
3180         }
3181         if (in2->outcnt() == 0) {
3182           in2->disconnect_inputs(NULL, this);
3183         }
3184       }
3185     }
3186     break;
3187 
3188   case Op_DecodeN:
3189   case Op_DecodeNKlass:
3190     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3191     // DecodeN could be pinned when it can't be fold into
3192     // an address expression, see the code for Op_CastPP above.
3193     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3194     break;
3195 
3196   case Op_EncodeP:
3197   case Op_EncodePKlass: {
3198     Node* in1 = n->in(1);
3199     if (in1->is_DecodeNarrowPtr()) {
3200       n->subsume_by(in1->in(1), this);
3201     } else if (in1->Opcode() == Op_ConP) {
3202       const Type* t = in1->bottom_type();
3203       if (t == TypePtr::NULL_PTR) {
3204         assert(t->isa_oopptr(), "null klass?");
3205         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3206       } else if (t->isa_oopptr()) {
3207         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3208       } else if (t->isa_klassptr()) {
3209         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3210       }
3211     }
3212     if (in1->outcnt() == 0) {
3213       in1->disconnect_inputs(NULL, this);
3214     }
3215     break;
3216   }
3217 
3218   case Op_Proj: {
3219     if (OptimizeStringConcat) {
3220       ProjNode* p = n->as_Proj();
3221       if (p->_is_io_use) {
3222         // Separate projections were used for the exception path which
3223         // are normally removed by a late inline.  If it wasn't inlined
3224         // then they will hang around and should just be replaced with
3225         // the original one.
3226         Node* proj = NULL;
3227         // Replace with just one
3228         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3229           Node *use = i.get();
3230           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3231             proj = use;
3232             break;
3233           }
3234         }
3235         assert(proj != NULL, "must be found");
3236         p->subsume_by(proj, this);
3237       }
3238     }
3239     break;
3240   }
3241 
3242   case Op_Phi:
3243     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3244       // The EncodeP optimization may create Phi with the same edges
3245       // for all paths. It is not handled well by Register Allocator.
3246       Node* unique_in = n->in(1);
3247       assert(unique_in != NULL, "");
3248       uint cnt = n->req();
3249       for (uint i = 2; i < cnt; i++) {
3250         Node* m = n->in(i);
3251         assert(m != NULL, "");
3252         if (unique_in != m)
3253           unique_in = NULL;
3254       }
3255       if (unique_in != NULL) {
3256         n->subsume_by(unique_in, this);
3257       }
3258     }
3259     break;
3260 
3261 #endif
3262 
3263 #ifdef ASSERT
3264   case Op_CastII:
3265     // Verify that all range check dependent CastII nodes were removed.
3266     if (n->isa_CastII()->has_range_check()) {
3267       n->dump(3);
3268       assert(false, "Range check dependent CastII node was not removed");
3269     }
3270     break;
3271 #endif
3272 
3273   case Op_ModI:
3274     if (UseDivMod) {
3275       // Check if a%b and a/b both exist
3276       Node* d = n->find_similar(Op_DivI);
3277       if (d) {
3278         // Replace them with a fused divmod if supported
3279         if (Matcher::has_match_rule(Op_DivModI)) {
3280           DivModINode* divmod = DivModINode::make(n);
3281           d->subsume_by(divmod->div_proj(), this);
3282           n->subsume_by(divmod->mod_proj(), this);
3283         } else {
3284           // replace a%b with a-((a/b)*b)
3285           Node* mult = new MulINode(d, d->in(2));
3286           Node* sub  = new SubINode(d->in(1), mult);
3287           n->subsume_by(sub, this);
3288         }
3289       }
3290     }
3291     break;
3292 
3293   case Op_ModL:
3294     if (UseDivMod) {
3295       // Check if a%b and a/b both exist
3296       Node* d = n->find_similar(Op_DivL);
3297       if (d) {
3298         // Replace them with a fused divmod if supported
3299         if (Matcher::has_match_rule(Op_DivModL)) {
3300           DivModLNode* divmod = DivModLNode::make(n);
3301           d->subsume_by(divmod->div_proj(), this);
3302           n->subsume_by(divmod->mod_proj(), this);
3303         } else {
3304           // replace a%b with a-((a/b)*b)
3305           Node* mult = new MulLNode(d, d->in(2));
3306           Node* sub  = new SubLNode(d->in(1), mult);
3307           n->subsume_by(sub, this);
3308         }
3309       }
3310     }
3311     break;
3312 
3313   case Op_LoadVector:
3314   case Op_StoreVector:
3315     break;
3316 
3317   case Op_AddReductionVI:
3318   case Op_AddReductionVL:
3319   case Op_AddReductionVF:
3320   case Op_AddReductionVD:
3321   case Op_MulReductionVI:
3322   case Op_MulReductionVL:
3323   case Op_MulReductionVF:
3324   case Op_MulReductionVD:
3325     break;
3326 
3327   case Op_PackB:
3328   case Op_PackS:
3329   case Op_PackI:
3330   case Op_PackF:
3331   case Op_PackL:
3332   case Op_PackD:
3333     if (n->req()-1 > 2) {
3334       // Replace many operand PackNodes with a binary tree for matching
3335       PackNode* p = (PackNode*) n;
3336       Node* btp = p->binary_tree_pack(1, n->req());
3337       n->subsume_by(btp, this);
3338     }
3339     break;
3340   case Op_Loop:
3341   case Op_CountedLoop:
3342   case Op_OuterStripMinedLoop:
3343     if (n->as_Loop()->is_inner_loop()) {
3344       frc.inc_inner_loop_count();
3345     }
3346     n->as_Loop()->verify_strip_mined(0);
3347     break;
3348   case Op_LShiftI:
3349   case Op_RShiftI:
3350   case Op_URShiftI:
3351   case Op_LShiftL:
3352   case Op_RShiftL:
3353   case Op_URShiftL:
3354     if (Matcher::need_masked_shift_count) {
3355       // The cpu's shift instructions don't restrict the count to the
3356       // lower 5/6 bits. We need to do the masking ourselves.
3357       Node* in2 = n->in(2);
3358       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3359       const TypeInt* t = in2->find_int_type();
3360       if (t != NULL && t->is_con()) {
3361         juint shift = t->get_con();
3362         if (shift > mask) { // Unsigned cmp
3363           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3364         }
3365       } else {
3366         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3367           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3368           n->set_req(2, shift);
3369         }
3370       }
3371       if (in2->outcnt() == 0) { // Remove dead node
3372         in2->disconnect_inputs(NULL, this);
3373       }
3374     }
3375     break;
3376   case Op_MemBarStoreStore:
3377   case Op_MemBarRelease:
3378     // Break the link with AllocateNode: it is no longer useful and
3379     // confuses register allocation.
3380     if (n->req() > MemBarNode::Precedent) {
3381       n->set_req(MemBarNode::Precedent, top());
3382     }
3383     break;
3384   case Op_MemBarAcquire: {
3385     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3386       // At parse time, the trailing MemBarAcquire for a volatile load
3387       // is created with an edge to the load. After optimizations,
3388       // that input may be a chain of Phis. If those phis have no
3389       // other use, then the MemBarAcquire keeps them alive and
3390       // register allocation can be confused.
3391       ResourceMark rm;
3392       Unique_Node_List wq;
3393       wq.push(n->in(MemBarNode::Precedent));
3394       n->set_req(MemBarNode::Precedent, top());
3395       while (wq.size() > 0) {
3396         Node* m = wq.pop();
3397         if (m->outcnt() == 0) {
3398           for (uint j = 0; j < m->req(); j++) {
3399             Node* in = m->in(j);
3400             if (in != NULL) {
3401               wq.push(in);
3402             }
3403           }
3404           m->disconnect_inputs(NULL, this);
3405         }
3406       }
3407     }
3408     break;
3409   }
3410   case Op_RangeCheck: {
3411     RangeCheckNode* rc = n->as_RangeCheck();
3412     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3413     n->subsume_by(iff, this);
3414     frc._tests.push(iff);
3415     break;
3416   }
3417   case Op_ConvI2L: {
3418     if (!Matcher::convi2l_type_required) {
3419       // Code generation on some platforms doesn't need accurate
3420       // ConvI2L types. Widening the type can help remove redundant
3421       // address computations.
3422       n->as_Type()->set_type(TypeLong::INT);
3423       ResourceMark rm;
3424       Node_List wq;
3425       wq.push(n);
3426       for (uint next = 0; next < wq.size(); next++) {
3427         Node *m = wq.at(next);
3428 
3429         for(;;) {
3430           // Loop over all nodes with identical inputs edges as m
3431           Node* k = m->find_similar(m->Opcode());
3432           if (k == NULL) {
3433             break;
3434           }
3435           // Push their uses so we get a chance to remove node made
3436           // redundant
3437           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3438             Node* u = k->fast_out(i);
3439             assert(!wq.contains(u), "shouldn't process one node several times");
3440             if (u->Opcode() == Op_LShiftL ||
3441                 u->Opcode() == Op_AddL ||
3442                 u->Opcode() == Op_SubL ||
3443                 u->Opcode() == Op_AddP) {
3444               wq.push(u);
3445             }
3446           }
3447           // Replace all nodes with identical edges as m with m
3448           k->subsume_by(m, this);
3449         }
3450       }
3451     }
3452     break;
3453   }
3454   case Op_CmpUL: {
3455     if (!Matcher::has_match_rule(Op_CmpUL)) {
3456       // We don't support unsigned long comparisons. Set 'max_idx_expr'
3457       // to max_julong if < 0 to make the signed comparison fail.
3458       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3459       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3460       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3461       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3462       Node* andl = new AndLNode(orl, remove_sign_mask);
3463       Node* cmp = new CmpLNode(andl, n->in(2));
3464       n->subsume_by(cmp, this);
3465     }
3466     break;
3467   }
3468   default:
3469     if (!gc_handled) {
3470       assert(!n->is_Call(), "");
3471       assert(!n->is_Mem(), "");
3472       assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3473     }
3474     break;
3475   }
3476 
3477   // Collect CFG split points
3478   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3479     frc._tests.push(n);
3480   }
3481 }
3482 
3483 //------------------------------final_graph_reshaping_walk---------------------
3484 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3485 // requires that the walk visits a node's inputs before visiting the node.
3486 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3487   ResourceArea *area = Thread::current()->resource_area();
3488   Unique_Node_List sfpt(area);
3489 
3490   frc._visited.set(root->_idx); // first, mark node as visited
3491   uint cnt = root->req();
3492   Node *n = root;
3493   uint  i = 0;
3494   while (true) {
3495     if (i < cnt) {
3496       // Place all non-visited non-null inputs onto stack
3497       Node* m = n->in(i);
3498       ++i;
3499       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3500         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3501           // compute worst case interpreter size in case of a deoptimization
3502           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3503 
3504           sfpt.push(m);
3505         }
3506         cnt = m->req();
3507         nstack.push(n, i); // put on stack parent and next input's index
3508         n = m;
3509         i = 0;
3510       }
3511     } else {
3512       // Now do post-visit work
3513       final_graph_reshaping_impl( n, frc );
3514       if (nstack.is_empty())
3515         break;             // finished
3516       n = nstack.node();   // Get node from stack
3517       cnt = n->req();
3518       i = nstack.index();
3519       nstack.pop();        // Shift to the next node on stack
3520     }
3521   }
3522 
3523   // Skip next transformation if compressed oops are not used.
3524   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3525       (!UseCompressedOops && !UseCompressedClassPointers))
3526     return;
3527 
3528   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3529   // It could be done for an uncommon traps or any safepoints/calls
3530   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3531   while (sfpt.size() > 0) {
3532     n = sfpt.pop();
3533     JVMState *jvms = n->as_SafePoint()->jvms();
3534     assert(jvms != NULL, "sanity");
3535     int start = jvms->debug_start();
3536     int end   = n->req();
3537     bool is_uncommon = (n->is_CallStaticJava() &&
3538                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3539     for (int j = start; j < end; j++) {
3540       Node* in = n->in(j);
3541       if (in->is_DecodeNarrowPtr()) {
3542         bool safe_to_skip = true;
3543         if (!is_uncommon ) {
3544           // Is it safe to skip?
3545           for (uint i = 0; i < in->outcnt(); i++) {
3546             Node* u = in->raw_out(i);
3547             if (!u->is_SafePoint() ||
3548                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3549               safe_to_skip = false;
3550             }
3551           }
3552         }
3553         if (safe_to_skip) {
3554           n->set_req(j, in->in(1));
3555         }
3556         if (in->outcnt() == 0) {
3557           in->disconnect_inputs(NULL, this);
3558         }
3559       }
3560     }
3561   }
3562 }
3563 
3564 //------------------------------final_graph_reshaping--------------------------
3565 // Final Graph Reshaping.
3566 //
3567 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3568 //     and not commoned up and forced early.  Must come after regular
3569 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3570 //     inputs to Loop Phis; these will be split by the allocator anyways.
3571 //     Remove Opaque nodes.
3572 // (2) Move last-uses by commutative operations to the left input to encourage
3573 //     Intel update-in-place two-address operations and better register usage
3574 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3575 //     calls canonicalizing them back.
3576 // (3) Count the number of double-precision FP ops, single-precision FP ops
3577 //     and call sites.  On Intel, we can get correct rounding either by
3578 //     forcing singles to memory (requires extra stores and loads after each
3579 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3580 //     clearing the mode bit around call sites).  The mode bit is only used
3581 //     if the relative frequency of single FP ops to calls is low enough.
3582 //     This is a key transform for SPEC mpeg_audio.
3583 // (4) Detect infinite loops; blobs of code reachable from above but not
3584 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3585 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3586 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3587 //     Detection is by looking for IfNodes where only 1 projection is
3588 //     reachable from below or CatchNodes missing some targets.
3589 // (5) Assert for insane oop offsets in debug mode.
3590 
3591 bool Compile::final_graph_reshaping() {
3592   // an infinite loop may have been eliminated by the optimizer,
3593   // in which case the graph will be empty.
3594   if (root()->req() == 1) {
3595     record_method_not_compilable("trivial infinite loop");
3596     return true;
3597   }
3598 
3599   // Expensive nodes have their control input set to prevent the GVN
3600   // from freely commoning them. There's no GVN beyond this point so
3601   // no need to keep the control input. We want the expensive nodes to
3602   // be freely moved to the least frequent code path by gcm.
3603   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3604   for (int i = 0; i < expensive_count(); i++) {
3605     _expensive_nodes->at(i)->set_req(0, NULL);
3606   }
3607 
3608   Final_Reshape_Counts frc;
3609 
3610   // Visit everybody reachable!
3611   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3612   Node_Stack nstack(live_nodes() >> 1);
3613   final_graph_reshaping_walk(nstack, root(), frc);
3614 
3615   // Check for unreachable (from below) code (i.e., infinite loops).
3616   for( uint i = 0; i < frc._tests.size(); i++ ) {
3617     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3618     // Get number of CFG targets.
3619     // Note that PCTables include exception targets after calls.
3620     uint required_outcnt = n->required_outcnt();
3621     if (n->outcnt() != required_outcnt) {
3622       // Check for a few special cases.  Rethrow Nodes never take the
3623       // 'fall-thru' path, so expected kids is 1 less.
3624       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3625         if (n->in(0)->in(0)->is_Call()) {
3626           CallNode *call = n->in(0)->in(0)->as_Call();
3627           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3628             required_outcnt--;      // Rethrow always has 1 less kid
3629           } else if (call->req() > TypeFunc::Parms &&
3630                      call->is_CallDynamicJava()) {
3631             // Check for null receiver. In such case, the optimizer has
3632             // detected that the virtual call will always result in a null
3633             // pointer exception. The fall-through projection of this CatchNode
3634             // will not be populated.
3635             Node *arg0 = call->in(TypeFunc::Parms);
3636             if (arg0->is_Type() &&
3637                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3638               required_outcnt--;
3639             }
3640           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3641                      call->req() > TypeFunc::Parms+1 &&
3642                      call->is_CallStaticJava()) {
3643             // Check for negative array length. In such case, the optimizer has
3644             // detected that the allocation attempt will always result in an
3645             // exception. There is no fall-through projection of this CatchNode .
3646             Node *arg1 = call->in(TypeFunc::Parms+1);
3647             if (arg1->is_Type() &&
3648                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3649               required_outcnt--;
3650             }
3651           }
3652         }
3653       }
3654       // Recheck with a better notion of 'required_outcnt'
3655       if (n->outcnt() != required_outcnt) {
3656         record_method_not_compilable("malformed control flow");
3657         return true;            // Not all targets reachable!
3658       }
3659     }
3660     // Check that I actually visited all kids.  Unreached kids
3661     // must be infinite loops.
3662     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3663       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3664         record_method_not_compilable("infinite loop");
3665         return true;            // Found unvisited kid; must be unreach
3666       }
3667 
3668     // Here so verification code in final_graph_reshaping_walk()
3669     // always see an OuterStripMinedLoopEnd
3670     if (n->is_OuterStripMinedLoopEnd()) {
3671       IfNode* init_iff = n->as_If();
3672       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3673       n->subsume_by(iff, this);
3674     }
3675   }
3676 
3677   // If original bytecodes contained a mixture of floats and doubles
3678   // check if the optimizer has made it homogenous, item (3).
3679   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3680       frc.get_float_count() > 32 &&
3681       frc.get_double_count() == 0 &&
3682       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3683     set_24_bit_selection_and_mode( false,  true );
3684   }
3685 
3686   set_java_calls(frc.get_java_call_count());
3687   set_inner_loops(frc.get_inner_loop_count());
3688 
3689   // No infinite loops, no reason to bail out.
3690   return false;
3691 }
3692 
3693 //-----------------------------too_many_traps----------------------------------
3694 // Report if there are too many traps at the current method and bci.
3695 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3696 bool Compile::too_many_traps(ciMethod* method,
3697                              int bci,
3698                              Deoptimization::DeoptReason reason) {
3699   ciMethodData* md = method->method_data();
3700   if (md->is_empty()) {
3701     // Assume the trap has not occurred, or that it occurred only
3702     // because of a transient condition during start-up in the interpreter.
3703     return false;
3704   }
3705   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3706   if (md->has_trap_at(bci, m, reason) != 0) {
3707     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3708     // Also, if there are multiple reasons, or if there is no per-BCI record,
3709     // assume the worst.
3710     if (log())
3711       log()->elem("observe trap='%s' count='%d'",
3712                   Deoptimization::trap_reason_name(reason),
3713                   md->trap_count(reason));
3714     return true;
3715   } else {
3716     // Ignore method/bci and see if there have been too many globally.
3717     return too_many_traps(reason, md);
3718   }
3719 }
3720 
3721 // Less-accurate variant which does not require a method and bci.
3722 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3723                              ciMethodData* logmd) {
3724   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3725     // Too many traps globally.
3726     // Note that we use cumulative trap_count, not just md->trap_count.
3727     if (log()) {
3728       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3729       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3730                   Deoptimization::trap_reason_name(reason),
3731                   mcount, trap_count(reason));
3732     }
3733     return true;
3734   } else {
3735     // The coast is clear.
3736     return false;
3737   }
3738 }
3739 
3740 //--------------------------too_many_recompiles--------------------------------
3741 // Report if there are too many recompiles at the current method and bci.
3742 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3743 // Is not eager to return true, since this will cause the compiler to use
3744 // Action_none for a trap point, to avoid too many recompilations.
3745 bool Compile::too_many_recompiles(ciMethod* method,
3746                                   int bci,
3747                                   Deoptimization::DeoptReason reason) {
3748   ciMethodData* md = method->method_data();
3749   if (md->is_empty()) {
3750     // Assume the trap has not occurred, or that it occurred only
3751     // because of a transient condition during start-up in the interpreter.
3752     return false;
3753   }
3754   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3755   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3756   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3757   Deoptimization::DeoptReason per_bc_reason
3758     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3759   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3760   if ((per_bc_reason == Deoptimization::Reason_none
3761        || md->has_trap_at(bci, m, reason) != 0)
3762       // The trap frequency measure we care about is the recompile count:
3763       && md->trap_recompiled_at(bci, m)
3764       && md->overflow_recompile_count() >= bc_cutoff) {
3765     // Do not emit a trap here if it has already caused recompilations.
3766     // Also, if there are multiple reasons, or if there is no per-BCI record,
3767     // assume the worst.
3768     if (log())
3769       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3770                   Deoptimization::trap_reason_name(reason),
3771                   md->trap_count(reason),
3772                   md->overflow_recompile_count());
3773     return true;
3774   } else if (trap_count(reason) != 0
3775              && decompile_count() >= m_cutoff) {
3776     // Too many recompiles globally, and we have seen this sort of trap.
3777     // Use cumulative decompile_count, not just md->decompile_count.
3778     if (log())
3779       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3780                   Deoptimization::trap_reason_name(reason),
3781                   md->trap_count(reason), trap_count(reason),
3782                   md->decompile_count(), decompile_count());
3783     return true;
3784   } else {
3785     // The coast is clear.
3786     return false;
3787   }
3788 }
3789 
3790 // Compute when not to trap. Used by matching trap based nodes and
3791 // NullCheck optimization.
3792 void Compile::set_allowed_deopt_reasons() {
3793   _allowed_reasons = 0;
3794   if (is_method_compilation()) {
3795     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3796       assert(rs < BitsPerInt, "recode bit map");
3797       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3798         _allowed_reasons |= nth_bit(rs);
3799       }
3800     }
3801   }
3802 }
3803 
3804 #ifndef PRODUCT
3805 //------------------------------verify_graph_edges---------------------------
3806 // Walk the Graph and verify that there is a one-to-one correspondence
3807 // between Use-Def edges and Def-Use edges in the graph.
3808 void Compile::verify_graph_edges(bool no_dead_code) {
3809   if (VerifyGraphEdges) {
3810     ResourceArea *area = Thread::current()->resource_area();
3811     Unique_Node_List visited(area);
3812     // Call recursive graph walk to check edges
3813     _root->verify_edges(visited);
3814     if (no_dead_code) {
3815       // Now make sure that no visited node is used by an unvisited node.
3816       bool dead_nodes = false;
3817       Unique_Node_List checked(area);
3818       while (visited.size() > 0) {
3819         Node* n = visited.pop();
3820         checked.push(n);
3821         for (uint i = 0; i < n->outcnt(); i++) {
3822           Node* use = n->raw_out(i);
3823           if (checked.member(use))  continue;  // already checked
3824           if (visited.member(use))  continue;  // already in the graph
3825           if (use->is_Con())        continue;  // a dead ConNode is OK
3826           // At this point, we have found a dead node which is DU-reachable.
3827           if (!dead_nodes) {
3828             tty->print_cr("*** Dead nodes reachable via DU edges:");
3829             dead_nodes = true;
3830           }
3831           use->dump(2);
3832           tty->print_cr("---");
3833           checked.push(use);  // No repeats; pretend it is now checked.
3834         }
3835       }
3836       assert(!dead_nodes, "using nodes must be reachable from root");
3837     }
3838   }
3839 }
3840 #endif
3841 
3842 // The Compile object keeps track of failure reasons separately from the ciEnv.
3843 // This is required because there is not quite a 1-1 relation between the
3844 // ciEnv and its compilation task and the Compile object.  Note that one
3845 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3846 // to backtrack and retry without subsuming loads.  Other than this backtracking
3847 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3848 // by the logic in C2Compiler.
3849 void Compile::record_failure(const char* reason) {
3850   if (log() != NULL) {
3851     log()->elem("failure reason='%s' phase='compile'", reason);
3852   }
3853   if (_failure_reason == NULL) {
3854     // Record the first failure reason.
3855     _failure_reason = reason;
3856   }
3857 
3858   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3859     C->print_method(PHASE_FAILURE);
3860   }
3861   _root = NULL;  // flush the graph, too
3862 }
3863 
3864 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3865   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3866     _phase_name(name), _dolog(CITimeVerbose)
3867 {
3868   if (_dolog) {
3869     C = Compile::current();
3870     _log = C->log();
3871   } else {
3872     C = NULL;
3873     _log = NULL;
3874   }
3875   if (_log != NULL) {
3876     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3877     _log->stamp();
3878     _log->end_head();
3879   }
3880 }
3881 
3882 Compile::TracePhase::~TracePhase() {
3883 
3884   C = Compile::current();
3885   if (_dolog) {
3886     _log = C->log();
3887   } else {
3888     _log = NULL;
3889   }
3890 
3891 #ifdef ASSERT
3892   if (PrintIdealNodeCount) {
3893     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3894                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3895   }
3896 
3897   if (VerifyIdealNodeCount) {
3898     Compile::current()->print_missing_nodes();
3899   }
3900 #endif
3901 
3902   if (_log != NULL) {
3903     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3904   }
3905 }
3906 
3907 //=============================================================================
3908 // Two Constant's are equal when the type and the value are equal.
3909 bool Compile::Constant::operator==(const Constant& other) {
3910   if (type()          != other.type()         )  return false;
3911   if (can_be_reused() != other.can_be_reused())  return false;
3912   // For floating point values we compare the bit pattern.
3913   switch (type()) {
3914   case T_INT:
3915   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3916   case T_LONG:
3917   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3918   case T_OBJECT:
3919   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3920   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3921   case T_METADATA: return (_v._metadata == other._v._metadata);
3922   default: ShouldNotReachHere(); return false;
3923   }
3924 }
3925 
3926 static int type_to_size_in_bytes(BasicType t) {
3927   switch (t) {
3928   case T_INT:     return sizeof(jint   );
3929   case T_LONG:    return sizeof(jlong  );
3930   case T_FLOAT:   return sizeof(jfloat );
3931   case T_DOUBLE:  return sizeof(jdouble);
3932   case T_METADATA: return sizeof(Metadata*);
3933     // We use T_VOID as marker for jump-table entries (labels) which
3934     // need an internal word relocation.
3935   case T_VOID:
3936   case T_ADDRESS:
3937   case T_OBJECT:  return sizeof(jobject);
3938   default:
3939     ShouldNotReachHere();
3940     return -1;
3941   }
3942 }
3943 
3944 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3945   // sort descending
3946   if (a->freq() > b->freq())  return -1;
3947   if (a->freq() < b->freq())  return  1;
3948   return 0;
3949 }
3950 
3951 void Compile::ConstantTable::calculate_offsets_and_size() {
3952   // First, sort the array by frequencies.
3953   _constants.sort(qsort_comparator);
3954 
3955 #ifdef ASSERT
3956   // Make sure all jump-table entries were sorted to the end of the
3957   // array (they have a negative frequency).
3958   bool found_void = false;
3959   for (int i = 0; i < _constants.length(); i++) {
3960     Constant con = _constants.at(i);
3961     if (con.type() == T_VOID)
3962       found_void = true;  // jump-tables
3963     else
3964       assert(!found_void, "wrong sorting");
3965   }
3966 #endif
3967 
3968   int offset = 0;
3969   for (int i = 0; i < _constants.length(); i++) {
3970     Constant* con = _constants.adr_at(i);
3971 
3972     // Align offset for type.
3973     int typesize = type_to_size_in_bytes(con->type());
3974     offset = align_up(offset, typesize);
3975     con->set_offset(offset);   // set constant's offset
3976 
3977     if (con->type() == T_VOID) {
3978       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3979       offset = offset + typesize * n->outcnt();  // expand jump-table
3980     } else {
3981       offset = offset + typesize;
3982     }
3983   }
3984 
3985   // Align size up to the next section start (which is insts; see
3986   // CodeBuffer::align_at_start).
3987   assert(_size == -1, "already set?");
3988   _size = align_up(offset, (int)CodeEntryAlignment);
3989 }
3990 
3991 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3992   MacroAssembler _masm(&cb);
3993   for (int i = 0; i < _constants.length(); i++) {
3994     Constant con = _constants.at(i);
3995     address constant_addr = NULL;
3996     switch (con.type()) {
3997     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
3998     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3999     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4000     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4001     case T_OBJECT: {
4002       jobject obj = con.get_jobject();
4003       int oop_index = _masm.oop_recorder()->find_index(obj);
4004       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4005       break;
4006     }
4007     case T_ADDRESS: {
4008       address addr = (address) con.get_jobject();
4009       constant_addr = _masm.address_constant(addr);
4010       break;
4011     }
4012     // We use T_VOID as marker for jump-table entries (labels) which
4013     // need an internal word relocation.
4014     case T_VOID: {
4015       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4016       // Fill the jump-table with a dummy word.  The real value is
4017       // filled in later in fill_jump_table.
4018       address dummy = (address) n;
4019       constant_addr = _masm.address_constant(dummy);
4020       // Expand jump-table
4021       for (uint i = 1; i < n->outcnt(); i++) {
4022         address temp_addr = _masm.address_constant(dummy + i);
4023         assert(temp_addr, "consts section too small");
4024       }
4025       break;
4026     }
4027     case T_METADATA: {
4028       Metadata* obj = con.get_metadata();
4029       int metadata_index = _masm.oop_recorder()->find_index(obj);
4030       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4031       break;
4032     }
4033     default: ShouldNotReachHere();
4034     }
4035     assert(constant_addr, "consts section too small");
4036     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4037             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4038   }
4039 }
4040 
4041 int Compile::ConstantTable::find_offset(Constant& con) const {
4042   int idx = _constants.find(con);
4043   guarantee(idx != -1, "constant must be in constant table");
4044   int offset = _constants.at(idx).offset();
4045   guarantee(offset != -1, "constant table not emitted yet?");
4046   return offset;
4047 }
4048 
4049 void Compile::ConstantTable::add(Constant& con) {
4050   if (con.can_be_reused()) {
4051     int idx = _constants.find(con);
4052     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4053       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4054       return;
4055     }
4056   }
4057   (void) _constants.append(con);
4058 }
4059 
4060 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4061   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4062   Constant con(type, value, b->_freq);
4063   add(con);
4064   return con;
4065 }
4066 
4067 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4068   Constant con(metadata);
4069   add(con);
4070   return con;
4071 }
4072 
4073 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4074   jvalue value;
4075   BasicType type = oper->type()->basic_type();
4076   switch (type) {
4077   case T_LONG:    value.j = oper->constantL(); break;
4078   case T_FLOAT:   value.f = oper->constantF(); break;
4079   case T_DOUBLE:  value.d = oper->constantD(); break;
4080   case T_OBJECT:
4081   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4082   case T_METADATA: return add((Metadata*)oper->constant()); break;
4083   default: guarantee(false, "unhandled type: %s", type2name(type));
4084   }
4085   return add(n, type, value);
4086 }
4087 
4088 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4089   jvalue value;
4090   // We can use the node pointer here to identify the right jump-table
4091   // as this method is called from Compile::Fill_buffer right before
4092   // the MachNodes are emitted and the jump-table is filled (means the
4093   // MachNode pointers do not change anymore).
4094   value.l = (jobject) n;
4095   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4096   add(con);
4097   return con;
4098 }
4099 
4100 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4101   // If called from Compile::scratch_emit_size do nothing.
4102   if (Compile::current()->in_scratch_emit_size())  return;
4103 
4104   assert(labels.is_nonempty(), "must be");
4105   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4106 
4107   // Since MachConstantNode::constant_offset() also contains
4108   // table_base_offset() we need to subtract the table_base_offset()
4109   // to get the plain offset into the constant table.
4110   int offset = n->constant_offset() - table_base_offset();
4111 
4112   MacroAssembler _masm(&cb);
4113   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4114 
4115   for (uint i = 0; i < n->outcnt(); i++) {
4116     address* constant_addr = &jump_table_base[i];
4117     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4118     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4119     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4120   }
4121 }
4122 
4123 //----------------------------static_subtype_check-----------------------------
4124 // Shortcut important common cases when superklass is exact:
4125 // (0) superklass is java.lang.Object (can occur in reflective code)
4126 // (1) subklass is already limited to a subtype of superklass => always ok
4127 // (2) subklass does not overlap with superklass => always fail
4128 // (3) superklass has NO subtypes and we can check with a simple compare.
4129 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4130   if (StressReflectiveCode) {
4131     return SSC_full_test;       // Let caller generate the general case.
4132   }
4133 
4134   if (superk == env()->Object_klass()) {
4135     return SSC_always_true;     // (0) this test cannot fail
4136   }
4137 
4138   ciType* superelem = superk;
4139   if (superelem->is_array_klass())
4140     superelem = superelem->as_array_klass()->base_element_type();
4141 
4142   if (!subk->is_interface()) {  // cannot trust static interface types yet
4143     if (subk->is_subtype_of(superk)) {
4144       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4145     }
4146     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4147         !superk->is_subtype_of(subk)) {
4148       return SSC_always_false;
4149     }
4150   }
4151 
4152   // If casting to an instance klass, it must have no subtypes
4153   if (superk->is_interface()) {
4154     // Cannot trust interfaces yet.
4155     // %%% S.B. superk->nof_implementors() == 1
4156   } else if (superelem->is_instance_klass()) {
4157     ciInstanceKlass* ik = superelem->as_instance_klass();
4158     if (!ik->has_subklass() && !ik->is_interface()) {
4159       if (!ik->is_final()) {
4160         // Add a dependency if there is a chance of a later subclass.
4161         dependencies()->assert_leaf_type(ik);
4162       }
4163       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4164     }
4165   } else {
4166     // A primitive array type has no subtypes.
4167     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4168   }
4169 
4170   return SSC_full_test;
4171 }
4172 
4173 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4174 #ifdef _LP64
4175   // The scaled index operand to AddP must be a clean 64-bit value.
4176   // Java allows a 32-bit int to be incremented to a negative
4177   // value, which appears in a 64-bit register as a large
4178   // positive number.  Using that large positive number as an
4179   // operand in pointer arithmetic has bad consequences.
4180   // On the other hand, 32-bit overflow is rare, and the possibility
4181   // can often be excluded, if we annotate the ConvI2L node with
4182   // a type assertion that its value is known to be a small positive
4183   // number.  (The prior range check has ensured this.)
4184   // This assertion is used by ConvI2LNode::Ideal.
4185   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4186   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4187   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4188   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4189 #endif
4190   return idx;
4191 }
4192 
4193 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4194 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4195   if (ctrl != NULL) {
4196     // Express control dependency by a CastII node with a narrow type.
4197     value = new CastIINode(value, itype, false, true /* range check dependency */);
4198     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4199     // node from floating above the range check during loop optimizations. Otherwise, the
4200     // ConvI2L node may be eliminated independently of the range check, causing the data path
4201     // to become TOP while the control path is still there (although it's unreachable).
4202     value->set_req(0, ctrl);
4203     // Save CastII node to remove it after loop optimizations.
4204     phase->C->add_range_check_cast(value);
4205     value = phase->transform(value);
4206   }
4207   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4208   return phase->transform(new ConvI2LNode(value, ltype));
4209 }
4210 
4211 // The message about the current inlining is accumulated in
4212 // _print_inlining_stream and transfered into the _print_inlining_list
4213 // once we know whether inlining succeeds or not. For regular
4214 // inlining, messages are appended to the buffer pointed by
4215 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4216 // a new buffer is added after _print_inlining_idx in the list. This
4217 // way we can update the inlining message for late inlining call site
4218 // when the inlining is attempted again.
4219 void Compile::print_inlining_init() {
4220   if (print_inlining() || print_intrinsics()) {
4221     _print_inlining_stream = new stringStream();
4222     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4223   }
4224 }
4225 
4226 void Compile::print_inlining_reinit() {
4227   if (print_inlining() || print_intrinsics()) {
4228     // Re allocate buffer when we change ResourceMark
4229     _print_inlining_stream = new stringStream();
4230   }
4231 }
4232 
4233 void Compile::print_inlining_reset() {
4234   _print_inlining_stream->reset();
4235 }
4236 
4237 void Compile::print_inlining_commit() {
4238   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4239   // Transfer the message from _print_inlining_stream to the current
4240   // _print_inlining_list buffer and clear _print_inlining_stream.
4241   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4242   print_inlining_reset();
4243 }
4244 
4245 void Compile::print_inlining_push() {
4246   // Add new buffer to the _print_inlining_list at current position
4247   _print_inlining_idx++;
4248   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4249 }
4250 
4251 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4252   return _print_inlining_list->at(_print_inlining_idx);
4253 }
4254 
4255 void Compile::print_inlining_update(CallGenerator* cg) {
4256   if (print_inlining() || print_intrinsics()) {
4257     if (!cg->is_late_inline()) {
4258       if (print_inlining_current().cg() != NULL) {
4259         print_inlining_push();
4260       }
4261       print_inlining_commit();
4262     } else {
4263       if (print_inlining_current().cg() != cg &&
4264           (print_inlining_current().cg() != NULL ||
4265            print_inlining_current().ss()->size() != 0)) {
4266         print_inlining_push();
4267       }
4268       print_inlining_commit();
4269       print_inlining_current().set_cg(cg);
4270     }
4271   }
4272 }
4273 
4274 void Compile::print_inlining_move_to(CallGenerator* cg) {
4275   // We resume inlining at a late inlining call site. Locate the
4276   // corresponding inlining buffer so that we can update it.
4277   if (print_inlining()) {
4278     for (int i = 0; i < _print_inlining_list->length(); i++) {
4279       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4280         _print_inlining_idx = i;
4281         return;
4282       }
4283     }
4284     ShouldNotReachHere();
4285   }
4286 }
4287 
4288 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4289   if (print_inlining()) {
4290     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4291     assert(print_inlining_current().cg() == cg, "wrong entry");
4292     // replace message with new message
4293     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4294     print_inlining_commit();
4295     print_inlining_current().set_cg(cg);
4296   }
4297 }
4298 
4299 void Compile::print_inlining_assert_ready() {
4300   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4301 }
4302 
4303 void Compile::process_print_inlining() {
4304   bool do_print_inlining = print_inlining() || print_intrinsics();
4305   if (do_print_inlining || log() != NULL) {
4306     // Print inlining message for candidates that we couldn't inline
4307     // for lack of space
4308     for (int i = 0; i < _late_inlines.length(); i++) {
4309       CallGenerator* cg = _late_inlines.at(i);
4310       if (!cg->is_mh_late_inline()) {
4311         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4312         if (do_print_inlining) {
4313           cg->print_inlining_late(msg);
4314         }
4315         log_late_inline_failure(cg, msg);
4316       }
4317     }
4318   }
4319   if (do_print_inlining) {
4320     ResourceMark rm;
4321     stringStream ss;
4322     for (int i = 0; i < _print_inlining_list->length(); i++) {
4323       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4324     }
4325     size_t end = ss.size();
4326     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4327     strncpy(_print_inlining_output, ss.base(), end+1);
4328     _print_inlining_output[end] = 0;
4329   }
4330 }
4331 
4332 void Compile::dump_print_inlining() {
4333   if (_print_inlining_output != NULL) {
4334     tty->print_raw(_print_inlining_output);
4335   }
4336 }
4337 
4338 void Compile::log_late_inline(CallGenerator* cg) {
4339   if (log() != NULL) {
4340     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4341                 cg->unique_id());
4342     JVMState* p = cg->call_node()->jvms();
4343     while (p != NULL) {
4344       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4345       p = p->caller();
4346     }
4347     log()->tail("late_inline");
4348   }
4349 }
4350 
4351 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4352   log_late_inline(cg);
4353   if (log() != NULL) {
4354     log()->inline_fail(msg);
4355   }
4356 }
4357 
4358 void Compile::log_inline_id(CallGenerator* cg) {
4359   if (log() != NULL) {
4360     // The LogCompilation tool needs a unique way to identify late
4361     // inline call sites. This id must be unique for this call site in
4362     // this compilation. Try to have it unique across compilations as
4363     // well because it can be convenient when grepping through the log
4364     // file.
4365     // Distinguish OSR compilations from others in case CICountOSR is
4366     // on.
4367     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4368     cg->set_unique_id(id);
4369     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4370   }
4371 }
4372 
4373 void Compile::log_inline_failure(const char* msg) {
4374   if (C->log() != NULL) {
4375     C->log()->inline_fail(msg);
4376   }
4377 }
4378 
4379 
4380 // Dump inlining replay data to the stream.
4381 // Don't change thread state and acquire any locks.
4382 void Compile::dump_inline_data(outputStream* out) {
4383   InlineTree* inl_tree = ilt();
4384   if (inl_tree != NULL) {
4385     out->print(" inline %d", inl_tree->count());
4386     inl_tree->dump_replay_data(out);
4387   }
4388 }
4389 
4390 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4391   if (n1->Opcode() < n2->Opcode())      return -1;
4392   else if (n1->Opcode() > n2->Opcode()) return 1;
4393 
4394   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4395   for (uint i = 1; i < n1->req(); i++) {
4396     if (n1->in(i) < n2->in(i))      return -1;
4397     else if (n1->in(i) > n2->in(i)) return 1;
4398   }
4399 
4400   return 0;
4401 }
4402 
4403 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4404   Node* n1 = *n1p;
4405   Node* n2 = *n2p;
4406 
4407   return cmp_expensive_nodes(n1, n2);
4408 }
4409 
4410 void Compile::sort_expensive_nodes() {
4411   if (!expensive_nodes_sorted()) {
4412     _expensive_nodes->sort(cmp_expensive_nodes);
4413   }
4414 }
4415 
4416 bool Compile::expensive_nodes_sorted() const {
4417   for (int i = 1; i < _expensive_nodes->length(); i++) {
4418     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4419       return false;
4420     }
4421   }
4422   return true;
4423 }
4424 
4425 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4426   if (_expensive_nodes->length() == 0) {
4427     return false;
4428   }
4429 
4430   assert(OptimizeExpensiveOps, "optimization off?");
4431 
4432   // Take this opportunity to remove dead nodes from the list
4433   int j = 0;
4434   for (int i = 0; i < _expensive_nodes->length(); i++) {
4435     Node* n = _expensive_nodes->at(i);
4436     if (!n->is_unreachable(igvn)) {
4437       assert(n->is_expensive(), "should be expensive");
4438       _expensive_nodes->at_put(j, n);
4439       j++;
4440     }
4441   }
4442   _expensive_nodes->trunc_to(j);
4443 
4444   // Then sort the list so that similar nodes are next to each other
4445   // and check for at least two nodes of identical kind with same data
4446   // inputs.
4447   sort_expensive_nodes();
4448 
4449   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4450     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4451       return true;
4452     }
4453   }
4454 
4455   return false;
4456 }
4457 
4458 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4459   if (_expensive_nodes->length() == 0) {
4460     return;
4461   }
4462 
4463   assert(OptimizeExpensiveOps, "optimization off?");
4464 
4465   // Sort to bring similar nodes next to each other and clear the
4466   // control input of nodes for which there's only a single copy.
4467   sort_expensive_nodes();
4468 
4469   int j = 0;
4470   int identical = 0;
4471   int i = 0;
4472   bool modified = false;
4473   for (; i < _expensive_nodes->length()-1; i++) {
4474     assert(j <= i, "can't write beyond current index");
4475     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4476       identical++;
4477       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4478       continue;
4479     }
4480     if (identical > 0) {
4481       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4482       identical = 0;
4483     } else {
4484       Node* n = _expensive_nodes->at(i);
4485       igvn.replace_input_of(n, 0, NULL);
4486       igvn.hash_insert(n);
4487       modified = true;
4488     }
4489   }
4490   if (identical > 0) {
4491     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4492   } else if (_expensive_nodes->length() >= 1) {
4493     Node* n = _expensive_nodes->at(i);
4494     igvn.replace_input_of(n, 0, NULL);
4495     igvn.hash_insert(n);
4496     modified = true;
4497   }
4498   _expensive_nodes->trunc_to(j);
4499   if (modified) {
4500     igvn.optimize();
4501   }
4502 }
4503 
4504 void Compile::add_expensive_node(Node * n) {
4505   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4506   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4507   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4508   if (OptimizeExpensiveOps) {
4509     _expensive_nodes->append(n);
4510   } else {
4511     // Clear control input and let IGVN optimize expensive nodes if
4512     // OptimizeExpensiveOps is off.
4513     n->set_req(0, NULL);
4514   }
4515 }
4516 
4517 /**
4518  * Remove the speculative part of types and clean up the graph
4519  */
4520 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4521   if (UseTypeSpeculation) {
4522     Unique_Node_List worklist;
4523     worklist.push(root());
4524     int modified = 0;
4525     // Go over all type nodes that carry a speculative type, drop the
4526     // speculative part of the type and enqueue the node for an igvn
4527     // which may optimize it out.
4528     for (uint next = 0; next < worklist.size(); ++next) {
4529       Node *n  = worklist.at(next);
4530       if (n->is_Type()) {
4531         TypeNode* tn = n->as_Type();
4532         const Type* t = tn->type();
4533         const Type* t_no_spec = t->remove_speculative();
4534         if (t_no_spec != t) {
4535           bool in_hash = igvn.hash_delete(n);
4536           assert(in_hash, "node should be in igvn hash table");
4537           tn->set_type(t_no_spec);
4538           igvn.hash_insert(n);
4539           igvn._worklist.push(n); // give it a chance to go away
4540           modified++;
4541         }
4542       }
4543       uint max = n->len();
4544       for( uint i = 0; i < max; ++i ) {
4545         Node *m = n->in(i);
4546         if (not_a_node(m))  continue;
4547         worklist.push(m);
4548       }
4549     }
4550     // Drop the speculative part of all types in the igvn's type table
4551     igvn.remove_speculative_types();
4552     if (modified > 0) {
4553       igvn.optimize();
4554     }
4555 #ifdef ASSERT
4556     // Verify that after the IGVN is over no speculative type has resurfaced
4557     worklist.clear();
4558     worklist.push(root());
4559     for (uint next = 0; next < worklist.size(); ++next) {
4560       Node *n  = worklist.at(next);
4561       const Type* t = igvn.type_or_null(n);
4562       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4563       if (n->is_Type()) {
4564         t = n->as_Type()->type();
4565         assert(t == t->remove_speculative(), "no more speculative types");
4566       }
4567       uint max = n->len();
4568       for( uint i = 0; i < max; ++i ) {
4569         Node *m = n->in(i);
4570         if (not_a_node(m))  continue;
4571         worklist.push(m);
4572       }
4573     }
4574     igvn.check_no_speculative_types();
4575 #endif
4576   }
4577 }
4578 
4579 // Auxiliary method to support randomized stressing/fuzzing.
4580 //
4581 // This method can be called the arbitrary number of times, with current count
4582 // as the argument. The logic allows selecting a single candidate from the
4583 // running list of candidates as follows:
4584 //    int count = 0;
4585 //    Cand* selected = null;
4586 //    while(cand = cand->next()) {
4587 //      if (randomized_select(++count)) {
4588 //        selected = cand;
4589 //      }
4590 //    }
4591 //
4592 // Including count equalizes the chances any candidate is "selected".
4593 // This is useful when we don't have the complete list of candidates to choose
4594 // from uniformly. In this case, we need to adjust the randomicity of the
4595 // selection, or else we will end up biasing the selection towards the latter
4596 // candidates.
4597 //
4598 // Quick back-envelope calculation shows that for the list of n candidates
4599 // the equal probability for the candidate to persist as "best" can be
4600 // achieved by replacing it with "next" k-th candidate with the probability
4601 // of 1/k. It can be easily shown that by the end of the run, the
4602 // probability for any candidate is converged to 1/n, thus giving the
4603 // uniform distribution among all the candidates.
4604 //
4605 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4606 #define RANDOMIZED_DOMAIN_POW 29
4607 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4608 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4609 bool Compile::randomized_select(int count) {
4610   assert(count > 0, "only positive");
4611   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4612 }
4613 
4614 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4615 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4616 
4617 void NodeCloneInfo::dump() const {
4618   tty->print(" {%d:%d} ", idx(), gen());
4619 }
4620 
4621 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4622   uint64_t val = value(old->_idx);
4623   NodeCloneInfo cio(val);
4624   assert(val != 0, "old node should be in the map");
4625   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4626   insert(nnn->_idx, cin.get());
4627 #ifndef PRODUCT
4628   if (is_debug()) {
4629     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4630   }
4631 #endif
4632 }
4633 
4634 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4635   NodeCloneInfo cio(value(old->_idx));
4636   if (cio.get() == 0) {
4637     cio.set(old->_idx, 0);
4638     insert(old->_idx, cio.get());
4639 #ifndef PRODUCT
4640     if (is_debug()) {
4641       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4642     }
4643 #endif
4644   }
4645   clone(old, nnn, gen);
4646 }
4647 
4648 int CloneMap::max_gen() const {
4649   int g = 0;
4650   DictI di(_dict);
4651   for(; di.test(); ++di) {
4652     int t = gen(di._key);
4653     if (g < t) {
4654       g = t;
4655 #ifndef PRODUCT
4656       if (is_debug()) {
4657         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4658       }
4659 #endif
4660     }
4661   }
4662   return g;
4663 }
4664 
4665 void CloneMap::dump(node_idx_t key) const {
4666   uint64_t val = value(key);
4667   if (val != 0) {
4668     NodeCloneInfo ni(val);
4669     ni.dump();
4670   }
4671 }