1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  45   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  46   _in_worklist(C->comp_arena()),
  47   _next_pidx(0),
  48   _collecting(true),
  49   _verify(false),
  50   _compile(C),
  51   _igvn(igvn),
  52   _node_map(C->comp_arena()) {
  53   // Add unknown java object.
  54   add_java_object(C->top(), PointsToNode::GlobalEscape);
  55   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  56   // Add ConP(#NULL) and ConN(#NULL) nodes.
  57   Node* oop_null = igvn->zerocon(T_OBJECT);
  58   assert(oop_null->_idx < nodes_size(), "should be created already");
  59   add_java_object(oop_null, PointsToNode::NoEscape);
  60   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  61   if (UseCompressedOops) {
  62     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  63     assert(noop_null->_idx < nodes_size(), "should be created already");
  64     map_ideal_node(noop_null, null_obj);
  65   }
  66   _pcmp_neq = NULL; // Should be initialized
  67   _pcmp_eq  = NULL;
  68 }
  69 
  70 bool ConnectionGraph::has_candidates(Compile *C) {
  71   // EA brings benefits only when the code has allocations and/or locks which
  72   // are represented by ideal Macro nodes.
  73   int cnt = C->macro_count();
  74   for (int i = 0; i < cnt; i++) {
  75     Node *n = C->macro_node(i);
  76     if (n->is_Allocate())
  77       return true;
  78     if (n->is_Lock()) {
  79       Node* obj = n->as_Lock()->obj_node()->uncast();
  80       if (!(obj->is_Parm() || obj->is_Con()))
  81         return true;
  82     }
  83     if (n->is_CallStaticJava() &&
  84         n->as_CallStaticJava()->is_boxing_method()) {
  85       return true;
  86     }
  87   }
  88   return false;
  89 }
  90 
  91 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  92   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  93   ResourceMark rm;
  94 
  95   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  96   // to create space for them in ConnectionGraph::_nodes[].
  97   Node* oop_null = igvn->zerocon(T_OBJECT);
  98   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  99   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
 100   // Perform escape analysis
 101   if (congraph->compute_escape()) {
 102     // There are non escaping objects.
 103     C->set_congraph(congraph);
 104   }
 105   // Cleanup.
 106   if (oop_null->outcnt() == 0)
 107     igvn->hash_delete(oop_null);
 108   if (noop_null->outcnt() == 0)
 109     igvn->hash_delete(noop_null);
 110 }
 111 
 112 bool ConnectionGraph::compute_escape() {
 113   Compile* C = _compile;
 114   PhaseGVN* igvn = _igvn;
 115 
 116   // Worklists used by EA.
 117   Unique_Node_List delayed_worklist;
 118   GrowableArray<Node*> alloc_worklist;
 119   GrowableArray<Node*> ptr_cmp_worklist;
 120   GrowableArray<Node*> storestore_worklist;
 121   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 122   GrowableArray<PointsToNode*>   ptnodes_worklist;
 123   GrowableArray<JavaObjectNode*> java_objects_worklist;
 124   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 125   GrowableArray<FieldNode*>      oop_fields_worklist;
 126   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 127 
 128   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 129 
 130   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 131   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 132   // Initialize worklist
 133   if (C->root() != NULL) {
 134     ideal_nodes.push(C->root());
 135   }
 136   // Processed ideal nodes are unique on ideal_nodes list
 137   // but several ideal nodes are mapped to the phantom_obj.
 138   // To avoid duplicated entries on the following worklists
 139   // add the phantom_obj only once to them.
 140   ptnodes_worklist.append(phantom_obj);
 141   java_objects_worklist.append(phantom_obj);
 142   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 143     Node* n = ideal_nodes.at(next);
 144     // Create PointsTo nodes and add them to Connection Graph. Called
 145     // only once per ideal node since ideal_nodes is Unique_Node list.
 146     add_node_to_connection_graph(n, &delayed_worklist);
 147     PointsToNode* ptn = ptnode_adr(n->_idx);
 148     if (ptn != NULL && ptn != phantom_obj) {
 149       ptnodes_worklist.append(ptn);
 150       if (ptn->is_JavaObject()) {
 151         java_objects_worklist.append(ptn->as_JavaObject());
 152         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 153             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 154           // Only allocations and java static calls results are interesting.
 155           non_escaped_worklist.append(ptn->as_JavaObject());
 156         }
 157       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 158         oop_fields_worklist.append(ptn->as_Field());
 159       }
 160     }
 161     if (n->is_MergeMem()) {
 162       // Collect all MergeMem nodes to add memory slices for
 163       // scalar replaceable objects in split_unique_types().
 164       _mergemem_worklist.append(n->as_MergeMem());
 165     } else if (OptimizePtrCompare && n->is_Cmp() &&
 166                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 167       // Collect compare pointers nodes.
 168       ptr_cmp_worklist.append(n);
 169     } else if (n->is_MemBarStoreStore()) {
 170       // Collect all MemBarStoreStore nodes so that depending on the
 171       // escape status of the associated Allocate node some of them
 172       // may be eliminated.
 173       storestore_worklist.append(n);
 174     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 175                (n->req() > MemBarNode::Precedent)) {
 176       record_for_optimizer(n);
 177 #ifdef ASSERT
 178     } else if (n->is_AddP()) {
 179       // Collect address nodes for graph verification.
 180       addp_worklist.append(n);
 181 #endif
 182     } else if (n->is_ArrayCopy()) {
 183       // Keep a list of ArrayCopy nodes so if one of its input is non
 184       // escaping, we can record a unique type
 185       arraycopy_worklist.append(n->as_ArrayCopy());
 186     }
 187     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 188       Node* m = n->fast_out(i);   // Get user
 189       ideal_nodes.push(m);
 190     }
 191   }
 192   if (non_escaped_worklist.length() == 0) {
 193     _collecting = false;
 194     return false; // Nothing to do.
 195   }
 196   // Add final simple edges to graph.
 197   while(delayed_worklist.size() > 0) {
 198     Node* n = delayed_worklist.pop();
 199     add_final_edges(n);
 200   }
 201   int ptnodes_length = ptnodes_worklist.length();
 202 
 203 #ifdef ASSERT
 204   if (VerifyConnectionGraph) {
 205     // Verify that no new simple edges could be created and all
 206     // local vars has edges.
 207     _verify = true;
 208     for (int next = 0; next < ptnodes_length; ++next) {
 209       PointsToNode* ptn = ptnodes_worklist.at(next);
 210       add_final_edges(ptn->ideal_node());
 211       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 212         ptn->dump();
 213         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 214       }
 215     }
 216     _verify = false;
 217   }
 218 #endif
 219   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 220   // processing, calls to CI to resolve symbols (types, fields, methods)
 221   // referenced in bytecode. During symbol resolution VM may throw
 222   // an exception which CI cleans and converts to compilation failure.
 223   if (C->failing())  return false;
 224 
 225   // 2. Finish Graph construction by propagating references to all
 226   //    java objects through graph.
 227   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 228                                  java_objects_worklist, oop_fields_worklist)) {
 229     // All objects escaped or hit time or iterations limits.
 230     _collecting = false;
 231     return false;
 232   }
 233 
 234   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 235   //    scalar replaceable allocations on alloc_worklist for processing
 236   //    in split_unique_types().
 237   int non_escaped_length = non_escaped_worklist.length();
 238   for (int next = 0; next < non_escaped_length; next++) {
 239     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 240     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 241     Node* n = ptn->ideal_node();
 242     if (n->is_Allocate()) {
 243       n->as_Allocate()->_is_non_escaping = noescape;
 244     }
 245     if (n->is_CallStaticJava()) {
 246       n->as_CallStaticJava()->_is_non_escaping = noescape;
 247     }
 248     if (noescape && ptn->scalar_replaceable()) {
 249       adjust_scalar_replaceable_state(ptn);
 250       if (ptn->scalar_replaceable()) {
 251         alloc_worklist.append(ptn->ideal_node());
 252       }
 253     }
 254   }
 255 
 256 #ifdef ASSERT
 257   if (VerifyConnectionGraph) {
 258     // Verify that graph is complete - no new edges could be added or needed.
 259     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 260                             java_objects_worklist, addp_worklist);
 261   }
 262   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 263   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 264          null_obj->edge_count() == 0 &&
 265          !null_obj->arraycopy_src() &&
 266          !null_obj->arraycopy_dst(), "sanity");
 267 #endif
 268 
 269   _collecting = false;
 270 
 271   } // TracePhase t3("connectionGraph")
 272 
 273   // 4. Optimize ideal graph based on EA information.
 274   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 275   if (has_non_escaping_obj) {
 276     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 277   }
 278 
 279 #ifndef PRODUCT
 280   if (PrintEscapeAnalysis) {
 281     dump(ptnodes_worklist); // Dump ConnectionGraph
 282   }
 283 #endif
 284 
 285   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 286 #ifdef ASSERT
 287   if (VerifyConnectionGraph) {
 288     int alloc_length = alloc_worklist.length();
 289     for (int next = 0; next < alloc_length; ++next) {
 290       Node* n = alloc_worklist.at(next);
 291       PointsToNode* ptn = ptnode_adr(n->_idx);
 292       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 293     }
 294   }
 295 #endif
 296 
 297   // 5. Separate memory graph for scalar replaceable allcations.
 298   if (has_scalar_replaceable_candidates &&
 299       C->AliasLevel() >= 3 && EliminateAllocations) {
 300     // Now use the escape information to create unique types for
 301     // scalar replaceable objects.
 302     split_unique_types(alloc_worklist, arraycopy_worklist);
 303     if (C->failing())  return false;
 304     C->print_method(PHASE_AFTER_EA, 2);
 305 
 306 #ifdef ASSERT
 307   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 308     tty->print("=== No allocations eliminated for ");
 309     C->method()->print_short_name();
 310     if(!EliminateAllocations) {
 311       tty->print(" since EliminateAllocations is off ===");
 312     } else if(!has_scalar_replaceable_candidates) {
 313       tty->print(" since there are no scalar replaceable candidates ===");
 314     } else if(C->AliasLevel() < 3) {
 315       tty->print(" since AliasLevel < 3 ===");
 316     }
 317     tty->cr();
 318 #endif
 319   }
 320   return has_non_escaping_obj;
 321 }
 322 
 323 // Utility function for nodes that load an object
 324 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 325   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 326   // ThreadLocal has RawPtr type.
 327   const Type* t = _igvn->type(n);
 328   if (t->make_ptr() != NULL) {
 329     Node* adr = n->in(MemNode::Address);
 330 #ifdef ASSERT
 331     if (!adr->is_AddP()) {
 332       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 333     } else {
 334       assert((ptnode_adr(adr->_idx) == NULL ||
 335               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 336     }
 337 #endif
 338     add_local_var_and_edge(n, PointsToNode::NoEscape,
 339                            adr, delayed_worklist);
 340   }
 341 }
 342 
 343 // Populate Connection Graph with PointsTo nodes and create simple
 344 // connection graph edges.
 345 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 346   assert(!_verify, "this method should not be called for verification");
 347   PhaseGVN* igvn = _igvn;
 348   uint n_idx = n->_idx;
 349   PointsToNode* n_ptn = ptnode_adr(n_idx);
 350   if (n_ptn != NULL)
 351     return; // No need to redefine PointsTo node during first iteration.
 352 
 353   if (n->is_Call()) {
 354     // Arguments to allocation and locking don't escape.
 355     if (n->is_AbstractLock()) {
 356       // Put Lock and Unlock nodes on IGVN worklist to process them during
 357       // first IGVN optimization when escape information is still available.
 358       record_for_optimizer(n);
 359     } else if (n->is_Allocate()) {
 360       add_call_node(n->as_Call());
 361       record_for_optimizer(n);
 362     } else {
 363       if (n->is_CallStaticJava()) {
 364         const char* name = n->as_CallStaticJava()->_name;
 365         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 366           return; // Skip uncommon traps
 367       }
 368       // Don't mark as processed since call's arguments have to be processed.
 369       delayed_worklist->push(n);
 370       // Check if a call returns an object.
 371       if ((n->as_Call()->returns_pointer() &&
 372            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
 373           (n->is_CallStaticJava() &&
 374            n->as_CallStaticJava()->is_boxing_method())) {
 375         add_call_node(n->as_Call());
 376       }
 377     }
 378     return;
 379   }
 380   // Put this check here to process call arguments since some call nodes
 381   // point to phantom_obj.
 382   if (n_ptn == phantom_obj || n_ptn == null_obj)
 383     return; // Skip predefined nodes.
 384 
 385   int opcode = n->Opcode();
 386   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
 387   if (gc_handled) {
 388     return; // Ignore node if already handled by GC.
 389   }
 390   switch (opcode) {
 391     case Op_AddP: {
 392       Node* base = get_addp_base(n);
 393       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 394       // Field nodes are created for all field types. They are used in
 395       // adjust_scalar_replaceable_state() and split_unique_types().
 396       // Note, non-oop fields will have only base edges in Connection
 397       // Graph because such fields are not used for oop loads and stores.
 398       int offset = address_offset(n, igvn);
 399       add_field(n, PointsToNode::NoEscape, offset);
 400       if (ptn_base == NULL) {
 401         delayed_worklist->push(n); // Process it later.
 402       } else {
 403         n_ptn = ptnode_adr(n_idx);
 404         add_base(n_ptn->as_Field(), ptn_base);
 405       }
 406       break;
 407     }
 408     case Op_CastX2P: {
 409       map_ideal_node(n, phantom_obj);
 410       break;
 411     }
 412     case Op_CastPP:
 413     case Op_CheckCastPP:
 414     case Op_EncodeP:
 415     case Op_DecodeN:
 416     case Op_EncodePKlass:
 417     case Op_DecodeNKlass: {
 418       add_local_var_and_edge(n, PointsToNode::NoEscape,
 419                              n->in(1), delayed_worklist);
 420       break;
 421     }
 422     case Op_CMoveP: {
 423       add_local_var(n, PointsToNode::NoEscape);
 424       // Do not add edges during first iteration because some could be
 425       // not defined yet.
 426       delayed_worklist->push(n);
 427       break;
 428     }
 429     case Op_ConP:
 430     case Op_ConN:
 431     case Op_ConNKlass: {
 432       // assume all oop constants globally escape except for null
 433       PointsToNode::EscapeState es;
 434       const Type* t = igvn->type(n);
 435       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 436         es = PointsToNode::NoEscape;
 437       } else {
 438         es = PointsToNode::GlobalEscape;
 439       }
 440       add_java_object(n, es);
 441       break;
 442     }
 443     case Op_CreateEx: {
 444       // assume that all exception objects globally escape
 445       map_ideal_node(n, phantom_obj);
 446       break;
 447     }
 448     case Op_LoadKlass:
 449     case Op_LoadNKlass: {
 450       // Unknown class is loaded
 451       map_ideal_node(n, phantom_obj);
 452       break;
 453     }
 454     case Op_LoadP:
 455     case Op_LoadN:
 456     case Op_LoadPLocked: {
 457       add_objload_to_connection_graph(n, delayed_worklist);
 458       break;
 459     }
 460     case Op_Parm: {
 461       map_ideal_node(n, phantom_obj);
 462       break;
 463     }
 464     case Op_PartialSubtypeCheck: {
 465       // Produces Null or notNull and is used in only in CmpP so
 466       // phantom_obj could be used.
 467       map_ideal_node(n, phantom_obj); // Result is unknown
 468       break;
 469     }
 470     case Op_Phi: {
 471       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 472       // ThreadLocal has RawPtr type.
 473       const Type* t = n->as_Phi()->type();
 474       if (t->make_ptr() != NULL) {
 475         add_local_var(n, PointsToNode::NoEscape);
 476         // Do not add edges during first iteration because some could be
 477         // not defined yet.
 478         delayed_worklist->push(n);
 479       }
 480       break;
 481     }
 482     case Op_Proj: {
 483       // we are only interested in the oop result projection from a call
 484       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 485           n->in(0)->as_Call()->returns_pointer()) {
 486         add_local_var_and_edge(n, PointsToNode::NoEscape,
 487                                n->in(0), delayed_worklist);
 488       }
 489       break;
 490     }
 491     case Op_Rethrow: // Exception object escapes
 492     case Op_Return: {
 493       if (n->req() > TypeFunc::Parms &&
 494           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 495         // Treat Return value as LocalVar with GlobalEscape escape state.
 496         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 497                                n->in(TypeFunc::Parms), delayed_worklist);
 498       }
 499       break;
 500     }
 501     case Op_CompareAndExchangeP:
 502     case Op_CompareAndExchangeN:
 503     case Op_GetAndSetP:
 504     case Op_GetAndSetN: {
 505       add_objload_to_connection_graph(n, delayed_worklist);
 506       // fallthrough
 507     }
 508     case Op_StoreP:
 509     case Op_StoreN:
 510     case Op_StoreNKlass:
 511     case Op_StorePConditional:
 512     case Op_WeakCompareAndSwapP:
 513     case Op_WeakCompareAndSwapN:
 514     case Op_CompareAndSwapP:
 515     case Op_CompareAndSwapN: {
 516       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
 517       break;
 518     }
 519     case Op_AryEq:
 520     case Op_HasNegatives:
 521     case Op_StrComp:
 522     case Op_StrEquals:
 523     case Op_StrIndexOf:
 524     case Op_StrIndexOfChar:
 525     case Op_StrInflatedCopy:
 526     case Op_StrCompressedCopy:
 527     case Op_EncodeISOArray: {
 528       add_local_var(n, PointsToNode::ArgEscape);
 529       delayed_worklist->push(n); // Process it later.
 530       break;
 531     }
 532     case Op_ThreadLocal: {
 533       add_java_object(n, PointsToNode::ArgEscape);
 534       break;
 535     }
 536     default:
 537       ; // Do nothing for nodes not related to EA.
 538   }
 539   return;
 540 }
 541 
 542 #ifdef ASSERT
 543 #define ELSE_FAIL(name)                               \
 544       /* Should not be called for not pointer type. */  \
 545       n->dump(1);                                       \
 546       assert(false, name);                              \
 547       break;
 548 #else
 549 #define ELSE_FAIL(name) \
 550       break;
 551 #endif
 552 
 553 // Add final simple edges to graph.
 554 void ConnectionGraph::add_final_edges(Node *n) {
 555   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 556 #ifdef ASSERT
 557   if (_verify && n_ptn->is_JavaObject())
 558     return; // This method does not change graph for JavaObject.
 559 #endif
 560 
 561   if (n->is_Call()) {
 562     process_call_arguments(n->as_Call());
 563     return;
 564   }
 565   assert(n->is_Store() || n->is_LoadStore() ||
 566          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 567          "node should be registered already");
 568   int opcode = n->Opcode();
 569   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
 570   if (gc_handled) {
 571     return; // Ignore node if already handled by GC.
 572   }
 573   switch (opcode) {
 574     case Op_AddP: {
 575       Node* base = get_addp_base(n);
 576       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 577       assert(ptn_base != NULL, "field's base should be registered");
 578       add_base(n_ptn->as_Field(), ptn_base);
 579       break;
 580     }
 581     case Op_CastPP:
 582     case Op_CheckCastPP:
 583     case Op_EncodeP:
 584     case Op_DecodeN:
 585     case Op_EncodePKlass:
 586     case Op_DecodeNKlass: {
 587       add_local_var_and_edge(n, PointsToNode::NoEscape,
 588                              n->in(1), NULL);
 589       break;
 590     }
 591     case Op_CMoveP: {
 592       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 593         Node* in = n->in(i);
 594         if (in == NULL)
 595           continue;  // ignore NULL
 596         Node* uncast_in = in->uncast();
 597         if (uncast_in->is_top() || uncast_in == n)
 598           continue;  // ignore top or inputs which go back this node
 599         PointsToNode* ptn = ptnode_adr(in->_idx);
 600         assert(ptn != NULL, "node should be registered");
 601         add_edge(n_ptn, ptn);
 602       }
 603       break;
 604     }
 605     case Op_LoadP:
 606     case Op_LoadN:
 607     case Op_LoadPLocked: {
 608       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 609       // ThreadLocal has RawPtr type.
 610       const Type* t = _igvn->type(n);
 611       if (t->make_ptr() != NULL) {
 612         Node* adr = n->in(MemNode::Address);
 613         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 614         break;
 615       }
 616       ELSE_FAIL("Op_LoadP");
 617     }
 618     case Op_Phi: {
 619       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 620       // ThreadLocal has RawPtr type.
 621       const Type* t = n->as_Phi()->type();
 622       if (t->make_ptr() != NULL) {
 623         for (uint i = 1; i < n->req(); i++) {
 624           Node* in = n->in(i);
 625           if (in == NULL)
 626             continue;  // ignore NULL
 627           Node* uncast_in = in->uncast();
 628           if (uncast_in->is_top() || uncast_in == n)
 629             continue;  // ignore top or inputs which go back this node
 630           PointsToNode* ptn = ptnode_adr(in->_idx);
 631           assert(ptn != NULL, "node should be registered");
 632           add_edge(n_ptn, ptn);
 633         }
 634         break;
 635       }
 636       ELSE_FAIL("Op_Phi");
 637     }
 638     case Op_Proj: {
 639       // we are only interested in the oop result projection from a call
 640       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 641           n->in(0)->as_Call()->returns_pointer()) {
 642         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 643         break;
 644       }
 645       ELSE_FAIL("Op_Proj");
 646     }
 647     case Op_Rethrow: // Exception object escapes
 648     case Op_Return: {
 649       if (n->req() > TypeFunc::Parms &&
 650           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 651         // Treat Return value as LocalVar with GlobalEscape escape state.
 652         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 653                                n->in(TypeFunc::Parms), NULL);
 654         break;
 655       }
 656       ELSE_FAIL("Op_Return");
 657     }
 658     case Op_StoreP:
 659     case Op_StoreN:
 660     case Op_StoreNKlass:
 661     case Op_StorePConditional:
 662     case Op_CompareAndExchangeP:
 663     case Op_CompareAndExchangeN:
 664     case Op_CompareAndSwapP:
 665     case Op_CompareAndSwapN:
 666     case Op_WeakCompareAndSwapP:
 667     case Op_WeakCompareAndSwapN:
 668     case Op_GetAndSetP:
 669     case Op_GetAndSetN: {
 670       Node* adr = n->in(MemNode::Address);
 671       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 672           opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 673         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 674       }
 675       if (!add_final_edges_unsafe_access(n, opcode)) {
 676         ELSE_FAIL("Op_StoreP");
 677       }
 678       break;
 679     }
 680     case Op_AryEq:
 681     case Op_HasNegatives:
 682     case Op_StrComp:
 683     case Op_StrEquals:
 684     case Op_StrIndexOf:
 685     case Op_StrIndexOfChar:
 686     case Op_StrInflatedCopy:
 687     case Op_StrCompressedCopy:
 688     case Op_EncodeISOArray: {
 689       // char[]/byte[] arrays passed to string intrinsic do not escape but
 690       // they are not scalar replaceable. Adjust escape state for them.
 691       // Start from in(2) edge since in(1) is memory edge.
 692       for (uint i = 2; i < n->req(); i++) {
 693         Node* adr = n->in(i);
 694         const Type* at = _igvn->type(adr);
 695         if (!adr->is_top() && at->isa_ptr()) {
 696           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 697                  at->isa_ptr() != NULL, "expecting a pointer");
 698           if (adr->is_AddP()) {
 699             adr = get_addp_base(adr);
 700           }
 701           PointsToNode* ptn = ptnode_adr(adr->_idx);
 702           assert(ptn != NULL, "node should be registered");
 703           add_edge(n_ptn, ptn);
 704         }
 705       }
 706       break;
 707     }
 708     default: {
 709       // This method should be called only for EA specific nodes which may
 710       // miss some edges when they were created.
 711 #ifdef ASSERT
 712       n->dump(1);
 713 #endif
 714       guarantee(false, "unknown node");
 715     }
 716   }
 717   return;
 718 }
 719 
 720 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
 721   Node* adr = n->in(MemNode::Address);
 722   const Type* adr_type = _igvn->type(adr);
 723   adr_type = adr_type->make_ptr();
 724   if (adr_type == NULL) {
 725     return; // skip dead nodes
 726   }
 727   if (adr_type->isa_oopptr()
 728       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 729           && adr_type == TypeRawPtr::NOTNULL
 730           && adr->in(AddPNode::Address)->is_Proj()
 731           && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 732     delayed_worklist->push(n); // Process it later.
 733 #ifdef ASSERT
 734     assert (adr->is_AddP(), "expecting an AddP");
 735     if (adr_type == TypeRawPtr::NOTNULL) {
 736       // Verify a raw address for a store captured by Initialize node.
 737       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 738       assert(offs != Type::OffsetBot, "offset must be a constant");
 739     }
 740 #endif
 741   } else {
 742     // Ignore copy the displaced header to the BoxNode (OSR compilation).
 743     if (adr->is_BoxLock()) {
 744       return;
 745     }
 746     // Stored value escapes in unsafe access.
 747     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 748       delayed_worklist->push(n); // Process unsafe access later.
 749       return;
 750     }
 751 #ifdef ASSERT
 752     n->dump(1);
 753     assert(false, "not unsafe");
 754 #endif
 755   }
 756 }
 757 
 758 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
 759   Node* adr = n->in(MemNode::Address);
 760   const Type* adr_type = _igvn->type(adr);
 761   adr_type = adr_type->make_ptr();
 762 #ifdef ASSERT
 763   if (adr_type == NULL) {
 764     n->dump(1);
 765     assert(adr_type != NULL, "dead node should not be on list");
 766     return true;
 767   }
 768 #endif
 769 
 770   if (adr_type->isa_oopptr()
 771       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 772            && adr_type == TypeRawPtr::NOTNULL
 773            && adr->in(AddPNode::Address)->is_Proj()
 774            && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 775     // Point Address to Value
 776     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 777     assert(adr_ptn != NULL &&
 778            adr_ptn->as_Field()->is_oop(), "node should be registered");
 779     Node* val = n->in(MemNode::ValueIn);
 780     PointsToNode* ptn = ptnode_adr(val->_idx);
 781     assert(ptn != NULL, "node should be registered");
 782     add_edge(adr_ptn, ptn);
 783     return true;
 784   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 785     // Stored value escapes in unsafe access.
 786     Node* val = n->in(MemNode::ValueIn);
 787     PointsToNode* ptn = ptnode_adr(val->_idx);
 788     assert(ptn != NULL, "node should be registered");
 789     set_escape_state(ptn, PointsToNode::GlobalEscape);
 790     // Add edge to object for unsafe access with offset.
 791     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 792     assert(adr_ptn != NULL, "node should be registered");
 793     if (adr_ptn->is_Field()) {
 794       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 795       add_edge(adr_ptn, ptn);
 796     }
 797     return true;
 798   }
 799   return false;
 800 }
 801 
 802 void ConnectionGraph::add_call_node(CallNode* call) {
 803   assert(call->returns_pointer(), "only for call which returns pointer");
 804   uint call_idx = call->_idx;
 805   if (call->is_Allocate()) {
 806     Node* k = call->in(AllocateNode::KlassNode);
 807     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 808     assert(kt != NULL, "TypeKlassPtr  required.");
 809     ciKlass* cik = kt->klass();
 810     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 811     bool scalar_replaceable = true;
 812     if (call->is_AllocateArray()) {
 813       if (!cik->is_array_klass()) { // StressReflectiveCode
 814         es = PointsToNode::GlobalEscape;
 815       } else {
 816         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 817         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 818           // Not scalar replaceable if the length is not constant or too big.
 819           scalar_replaceable = false;
 820         }
 821       }
 822     } else {  // Allocate instance
 823       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 824           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 825          !cik->is_instance_klass() || // StressReflectiveCode
 826          !cik->as_instance_klass()->can_be_instantiated() ||
 827           cik->as_instance_klass()->has_finalizer()) {
 828         es = PointsToNode::GlobalEscape;
 829       }
 830     }
 831     add_java_object(call, es);
 832     PointsToNode* ptn = ptnode_adr(call_idx);
 833     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 834       ptn->set_scalar_replaceable(false);
 835     }
 836   } else if (call->is_CallStaticJava()) {
 837     // Call nodes could be different types:
 838     //
 839     // 1. CallDynamicJavaNode (what happened during call is unknown):
 840     //
 841     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 842     //
 843     //    - all oop arguments are escaping globally;
 844     //
 845     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 846     //
 847     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 848     //
 849     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 850     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 851     //      during call is returned;
 852     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 853     //      which are returned and does not escape during call;
 854     //
 855     //    - oop arguments escaping status is defined by bytecode analysis;
 856     //
 857     // For a static call, we know exactly what method is being called.
 858     // Use bytecode estimator to record whether the call's return value escapes.
 859     ciMethod* meth = call->as_CallJava()->method();
 860     if (meth == NULL) {
 861       const char* name = call->as_CallStaticJava()->_name;
 862       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 863       // Returns a newly allocated unescaped object.
 864       add_java_object(call, PointsToNode::NoEscape);
 865       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 866     } else if (meth->is_boxing_method()) {
 867       // Returns boxing object
 868       PointsToNode::EscapeState es;
 869       vmIntrinsics::ID intr = meth->intrinsic_id();
 870       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 871         // It does not escape if object is always allocated.
 872         es = PointsToNode::NoEscape;
 873       } else {
 874         // It escapes globally if object could be loaded from cache.
 875         es = PointsToNode::GlobalEscape;
 876       }
 877       add_java_object(call, es);
 878     } else {
 879       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 880       call_analyzer->copy_dependencies(_compile->dependencies());
 881       if (call_analyzer->is_return_allocated()) {
 882         // Returns a newly allocated unescaped object, simply
 883         // update dependency information.
 884         // Mark it as NoEscape so that objects referenced by
 885         // it's fields will be marked as NoEscape at least.
 886         add_java_object(call, PointsToNode::NoEscape);
 887         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 888       } else {
 889         // Determine whether any arguments are returned.
 890         const TypeTuple* d = call->tf()->domain();
 891         bool ret_arg = false;
 892         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 893           if (d->field_at(i)->isa_ptr() != NULL &&
 894               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 895             ret_arg = true;
 896             break;
 897           }
 898         }
 899         if (ret_arg) {
 900           add_local_var(call, PointsToNode::ArgEscape);
 901         } else {
 902           // Returns unknown object.
 903           map_ideal_node(call, phantom_obj);
 904         }
 905       }
 906     }
 907   } else {
 908     // An other type of call, assume the worst case:
 909     // returned value is unknown and globally escapes.
 910     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 911     map_ideal_node(call, phantom_obj);
 912   }
 913 }
 914 
 915 void ConnectionGraph::process_call_arguments(CallNode *call) {
 916     bool is_arraycopy = false;
 917     switch (call->Opcode()) {
 918 #ifdef ASSERT
 919     case Op_Allocate:
 920     case Op_AllocateArray:
 921     case Op_Lock:
 922     case Op_Unlock:
 923       assert(false, "should be done already");
 924       break;
 925 #endif
 926     case Op_ArrayCopy:
 927     case Op_CallLeafNoFP:
 928       // Most array copies are ArrayCopy nodes at this point but there
 929       // are still a few direct calls to the copy subroutines (See
 930       // PhaseStringOpts::copy_string())
 931       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 932         call->as_CallLeaf()->is_call_to_arraycopystub();
 933       // fall through
 934     case Op_CallLeaf: {
 935       // Stub calls, objects do not escape but they are not scale replaceable.
 936       // Adjust escape state for outgoing arguments.
 937       const TypeTuple * d = call->tf()->domain();
 938       bool src_has_oops = false;
 939       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 940         const Type* at = d->field_at(i);
 941         Node *arg = call->in(i);
 942         if (arg == NULL) {
 943           continue;
 944         }
 945         const Type *aat = _igvn->type(arg);
 946         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 947           continue;
 948         if (arg->is_AddP()) {
 949           //
 950           // The inline_native_clone() case when the arraycopy stub is called
 951           // after the allocation before Initialize and CheckCastPP nodes.
 952           // Or normal arraycopy for object arrays case.
 953           //
 954           // Set AddP's base (Allocate) as not scalar replaceable since
 955           // pointer to the base (with offset) is passed as argument.
 956           //
 957           arg = get_addp_base(arg);
 958         }
 959         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 960         assert(arg_ptn != NULL, "should be registered");
 961         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 962         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 963           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 964                  aat->isa_ptr() != NULL, "expecting an Ptr");
 965           bool arg_has_oops = aat->isa_oopptr() &&
 966                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 967                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 968           if (i == TypeFunc::Parms) {
 969             src_has_oops = arg_has_oops;
 970           }
 971           //
 972           // src or dst could be j.l.Object when other is basic type array:
 973           //
 974           //   arraycopy(char[],0,Object*,0,size);
 975           //   arraycopy(Object*,0,char[],0,size);
 976           //
 977           // Don't add edges in such cases.
 978           //
 979           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 980                                        arg_has_oops && (i > TypeFunc::Parms);
 981 #ifdef ASSERT
 982           if (!(is_arraycopy ||
 983                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
 984                 (call->as_CallLeaf()->_name != NULL &&
 985                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 986                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 987                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 988                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 989                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 990                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 991                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 992                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
 993                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 994                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
 995                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 996                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 997                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 998                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 999                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1000                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1001                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1002                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1003                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1004                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1005                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1006                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1007                  ))) {
1008             call->dump();
1009             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1010           }
1011 #endif
1012           // Always process arraycopy's destination object since
1013           // we need to add all possible edges to references in
1014           // source object.
1015           if (arg_esc >= PointsToNode::ArgEscape &&
1016               !arg_is_arraycopy_dest) {
1017             continue;
1018           }
1019           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1020           if (call->is_ArrayCopy()) {
1021             ArrayCopyNode* ac = call->as_ArrayCopy();
1022             if (ac->is_clonebasic() ||
1023                 ac->is_arraycopy_validated() ||
1024                 ac->is_copyof_validated() ||
1025                 ac->is_copyofrange_validated()) {
1026               es = PointsToNode::NoEscape;
1027             }
1028           }
1029           set_escape_state(arg_ptn, es);
1030           if (arg_is_arraycopy_dest) {
1031             Node* src = call->in(TypeFunc::Parms);
1032             if (src->is_AddP()) {
1033               src = get_addp_base(src);
1034             }
1035             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1036             assert(src_ptn != NULL, "should be registered");
1037             if (arg_ptn != src_ptn) {
1038               // Special arraycopy edge:
1039               // A destination object's field can't have the source object
1040               // as base since objects escape states are not related.
1041               // Only escape state of destination object's fields affects
1042               // escape state of fields in source object.
1043               add_arraycopy(call, es, src_ptn, arg_ptn);
1044             }
1045           }
1046         }
1047       }
1048       break;
1049     }
1050     case Op_CallStaticJava: {
1051       // For a static call, we know exactly what method is being called.
1052       // Use bytecode estimator to record the call's escape affects
1053 #ifdef ASSERT
1054       const char* name = call->as_CallStaticJava()->_name;
1055       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1056 #endif
1057       ciMethod* meth = call->as_CallJava()->method();
1058       if ((meth != NULL) && meth->is_boxing_method()) {
1059         break; // Boxing methods do not modify any oops.
1060       }
1061       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1062       // fall-through if not a Java method or no analyzer information
1063       if (call_analyzer != NULL) {
1064         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1065         const TypeTuple* d = call->tf()->domain();
1066         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1067           const Type* at = d->field_at(i);
1068           int k = i - TypeFunc::Parms;
1069           Node* arg = call->in(i);
1070           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1071           if (at->isa_ptr() != NULL &&
1072               call_analyzer->is_arg_returned(k)) {
1073             // The call returns arguments.
1074             if (call_ptn != NULL) { // Is call's result used?
1075               assert(call_ptn->is_LocalVar(), "node should be registered");
1076               assert(arg_ptn != NULL, "node should be registered");
1077               add_edge(call_ptn, arg_ptn);
1078             }
1079           }
1080           if (at->isa_oopptr() != NULL &&
1081               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1082             if (!call_analyzer->is_arg_stack(k)) {
1083               // The argument global escapes
1084               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1085             } else {
1086               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1087               if (!call_analyzer->is_arg_local(k)) {
1088                 // The argument itself doesn't escape, but any fields might
1089                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1090               }
1091             }
1092           }
1093         }
1094         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1095           // The call returns arguments.
1096           assert(call_ptn->edge_count() > 0, "sanity");
1097           if (!call_analyzer->is_return_local()) {
1098             // Returns also unknown object.
1099             add_edge(call_ptn, phantom_obj);
1100           }
1101         }
1102         break;
1103       }
1104     }
1105     default: {
1106       // Fall-through here if not a Java method or no analyzer information
1107       // or some other type of call, assume the worst case: all arguments
1108       // globally escape.
1109       const TypeTuple* d = call->tf()->domain();
1110       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1111         const Type* at = d->field_at(i);
1112         if (at->isa_oopptr() != NULL) {
1113           Node* arg = call->in(i);
1114           if (arg->is_AddP()) {
1115             arg = get_addp_base(arg);
1116           }
1117           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1118           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1119         }
1120       }
1121     }
1122   }
1123 }
1124 
1125 
1126 // Finish Graph construction.
1127 bool ConnectionGraph::complete_connection_graph(
1128                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1129                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1130                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1131                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1132   // Normally only 1-3 passes needed to build Connection Graph depending
1133   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1134   // Set limit to 20 to catch situation when something did go wrong and
1135   // bailout Escape Analysis.
1136   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1137 #define CG_BUILD_ITER_LIMIT 20
1138 
1139   // Propagate GlobalEscape and ArgEscape escape states and check that
1140   // we still have non-escaping objects. The method pushs on _worklist
1141   // Field nodes which reference phantom_object.
1142   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1143     return false; // Nothing to do.
1144   }
1145   // Now propagate references to all JavaObject nodes.
1146   int java_objects_length = java_objects_worklist.length();
1147   elapsedTimer time;
1148   bool timeout = false;
1149   int new_edges = 1;
1150   int iterations = 0;
1151   do {
1152     while ((new_edges > 0) &&
1153            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1154       double start_time = time.seconds();
1155       time.start();
1156       new_edges = 0;
1157       // Propagate references to phantom_object for nodes pushed on _worklist
1158       // by find_non_escaped_objects() and find_field_value().
1159       new_edges += add_java_object_edges(phantom_obj, false);
1160       for (int next = 0; next < java_objects_length; ++next) {
1161         JavaObjectNode* ptn = java_objects_worklist.at(next);
1162         new_edges += add_java_object_edges(ptn, true);
1163 
1164 #define SAMPLE_SIZE 4
1165         if ((next % SAMPLE_SIZE) == 0) {
1166           // Each 4 iterations calculate how much time it will take
1167           // to complete graph construction.
1168           time.stop();
1169           // Poll for requests from shutdown mechanism to quiesce compiler
1170           // because Connection graph construction may take long time.
1171           CompileBroker::maybe_block();
1172           double stop_time = time.seconds();
1173           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1174           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1175           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1176             timeout = true;
1177             break; // Timeout
1178           }
1179           start_time = stop_time;
1180           time.start();
1181         }
1182 #undef SAMPLE_SIZE
1183 
1184       }
1185       if (timeout) break;
1186       if (new_edges > 0) {
1187         // Update escape states on each iteration if graph was updated.
1188         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1189           return false; // Nothing to do.
1190         }
1191       }
1192       time.stop();
1193       if (time.seconds() >= EscapeAnalysisTimeout) {
1194         timeout = true;
1195         break;
1196       }
1197     }
1198     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1199       time.start();
1200       // Find fields which have unknown value.
1201       int fields_length = oop_fields_worklist.length();
1202       for (int next = 0; next < fields_length; next++) {
1203         FieldNode* field = oop_fields_worklist.at(next);
1204         if (field->edge_count() == 0) {
1205           new_edges += find_field_value(field);
1206           // This code may added new edges to phantom_object.
1207           // Need an other cycle to propagate references to phantom_object.
1208         }
1209       }
1210       time.stop();
1211       if (time.seconds() >= EscapeAnalysisTimeout) {
1212         timeout = true;
1213         break;
1214       }
1215     } else {
1216       new_edges = 0; // Bailout
1217     }
1218   } while (new_edges > 0);
1219 
1220   // Bailout if passed limits.
1221   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1222     Compile* C = _compile;
1223     if (C->log() != NULL) {
1224       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1225       C->log()->text("%s", timeout ? "time" : "iterations");
1226       C->log()->end_elem(" limit'");
1227     }
1228     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1229            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1230     // Possible infinite build_connection_graph loop,
1231     // bailout (no changes to ideal graph were made).
1232     return false;
1233   }
1234 #ifdef ASSERT
1235   if (Verbose && PrintEscapeAnalysis) {
1236     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1237                   iterations, nodes_size(), ptnodes_worklist.length());
1238   }
1239 #endif
1240 
1241 #undef CG_BUILD_ITER_LIMIT
1242 
1243   // Find fields initialized by NULL for non-escaping Allocations.
1244   int non_escaped_length = non_escaped_worklist.length();
1245   for (int next = 0; next < non_escaped_length; next++) {
1246     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1247     PointsToNode::EscapeState es = ptn->escape_state();
1248     assert(es <= PointsToNode::ArgEscape, "sanity");
1249     if (es == PointsToNode::NoEscape) {
1250       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1251         // Adding references to NULL object does not change escape states
1252         // since it does not escape. Also no fields are added to NULL object.
1253         add_java_object_edges(null_obj, false);
1254       }
1255     }
1256     Node* n = ptn->ideal_node();
1257     if (n->is_Allocate()) {
1258       // The object allocated by this Allocate node will never be
1259       // seen by an other thread. Mark it so that when it is
1260       // expanded no MemBarStoreStore is added.
1261       InitializeNode* ini = n->as_Allocate()->initialization();
1262       if (ini != NULL)
1263         ini->set_does_not_escape();
1264     }
1265   }
1266   return true; // Finished graph construction.
1267 }
1268 
1269 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1270 // and check that we still have non-escaping java objects.
1271 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1272                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1273   GrowableArray<PointsToNode*> escape_worklist;
1274   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1275   int ptnodes_length = ptnodes_worklist.length();
1276   for (int next = 0; next < ptnodes_length; ++next) {
1277     PointsToNode* ptn = ptnodes_worklist.at(next);
1278     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1279         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1280       escape_worklist.push(ptn);
1281     }
1282   }
1283   // Set escape states to referenced nodes (edges list).
1284   while (escape_worklist.length() > 0) {
1285     PointsToNode* ptn = escape_worklist.pop();
1286     PointsToNode::EscapeState es  = ptn->escape_state();
1287     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1288     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1289         es >= PointsToNode::ArgEscape) {
1290       // GlobalEscape or ArgEscape state of field means it has unknown value.
1291       if (add_edge(ptn, phantom_obj)) {
1292         // New edge was added
1293         add_field_uses_to_worklist(ptn->as_Field());
1294       }
1295     }
1296     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1297       PointsToNode* e = i.get();
1298       if (e->is_Arraycopy()) {
1299         assert(ptn->arraycopy_dst(), "sanity");
1300         // Propagate only fields escape state through arraycopy edge.
1301         if (e->fields_escape_state() < field_es) {
1302           set_fields_escape_state(e, field_es);
1303           escape_worklist.push(e);
1304         }
1305       } else if (es >= field_es) {
1306         // fields_escape_state is also set to 'es' if it is less than 'es'.
1307         if (e->escape_state() < es) {
1308           set_escape_state(e, es);
1309           escape_worklist.push(e);
1310         }
1311       } else {
1312         // Propagate field escape state.
1313         bool es_changed = false;
1314         if (e->fields_escape_state() < field_es) {
1315           set_fields_escape_state(e, field_es);
1316           es_changed = true;
1317         }
1318         if ((e->escape_state() < field_es) &&
1319             e->is_Field() && ptn->is_JavaObject() &&
1320             e->as_Field()->is_oop()) {
1321           // Change escape state of referenced fields.
1322           set_escape_state(e, field_es);
1323           es_changed = true;
1324         } else if (e->escape_state() < es) {
1325           set_escape_state(e, es);
1326           es_changed = true;
1327         }
1328         if (es_changed) {
1329           escape_worklist.push(e);
1330         }
1331       }
1332     }
1333   }
1334   // Remove escaped objects from non_escaped list.
1335   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1336     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1337     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1338       non_escaped_worklist.delete_at(next);
1339     }
1340     if (ptn->escape_state() == PointsToNode::NoEscape) {
1341       // Find fields in non-escaped allocations which have unknown value.
1342       find_init_values(ptn, phantom_obj, NULL);
1343     }
1344   }
1345   return (non_escaped_worklist.length() > 0);
1346 }
1347 
1348 // Add all references to JavaObject node by walking over all uses.
1349 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1350   int new_edges = 0;
1351   if (populate_worklist) {
1352     // Populate _worklist by uses of jobj's uses.
1353     for (UseIterator i(jobj); i.has_next(); i.next()) {
1354       PointsToNode* use = i.get();
1355       if (use->is_Arraycopy())
1356         continue;
1357       add_uses_to_worklist(use);
1358       if (use->is_Field() && use->as_Field()->is_oop()) {
1359         // Put on worklist all field's uses (loads) and
1360         // related field nodes (same base and offset).
1361         add_field_uses_to_worklist(use->as_Field());
1362       }
1363     }
1364   }
1365   for (int l = 0; l < _worklist.length(); l++) {
1366     PointsToNode* use = _worklist.at(l);
1367     if (PointsToNode::is_base_use(use)) {
1368       // Add reference from jobj to field and from field to jobj (field's base).
1369       use = PointsToNode::get_use_node(use)->as_Field();
1370       if (add_base(use->as_Field(), jobj)) {
1371         new_edges++;
1372       }
1373       continue;
1374     }
1375     assert(!use->is_JavaObject(), "sanity");
1376     if (use->is_Arraycopy()) {
1377       if (jobj == null_obj) // NULL object does not have field edges
1378         continue;
1379       // Added edge from Arraycopy node to arraycopy's source java object
1380       if (add_edge(use, jobj)) {
1381         jobj->set_arraycopy_src();
1382         new_edges++;
1383       }
1384       // and stop here.
1385       continue;
1386     }
1387     if (!add_edge(use, jobj))
1388       continue; // No new edge added, there was such edge already.
1389     new_edges++;
1390     if (use->is_LocalVar()) {
1391       add_uses_to_worklist(use);
1392       if (use->arraycopy_dst()) {
1393         for (EdgeIterator i(use); i.has_next(); i.next()) {
1394           PointsToNode* e = i.get();
1395           if (e->is_Arraycopy()) {
1396             if (jobj == null_obj) // NULL object does not have field edges
1397               continue;
1398             // Add edge from arraycopy's destination java object to Arraycopy node.
1399             if (add_edge(jobj, e)) {
1400               new_edges++;
1401               jobj->set_arraycopy_dst();
1402             }
1403           }
1404         }
1405       }
1406     } else {
1407       // Added new edge to stored in field values.
1408       // Put on worklist all field's uses (loads) and
1409       // related field nodes (same base and offset).
1410       add_field_uses_to_worklist(use->as_Field());
1411     }
1412   }
1413   _worklist.clear();
1414   _in_worklist.Reset();
1415   return new_edges;
1416 }
1417 
1418 // Put on worklist all related field nodes.
1419 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1420   assert(field->is_oop(), "sanity");
1421   int offset = field->offset();
1422   add_uses_to_worklist(field);
1423   // Loop over all bases of this field and push on worklist Field nodes
1424   // with the same offset and base (since they may reference the same field).
1425   for (BaseIterator i(field); i.has_next(); i.next()) {
1426     PointsToNode* base = i.get();
1427     add_fields_to_worklist(field, base);
1428     // Check if the base was source object of arraycopy and go over arraycopy's
1429     // destination objects since values stored to a field of source object are
1430     // accessable by uses (loads) of fields of destination objects.
1431     if (base->arraycopy_src()) {
1432       for (UseIterator j(base); j.has_next(); j.next()) {
1433         PointsToNode* arycp = j.get();
1434         if (arycp->is_Arraycopy()) {
1435           for (UseIterator k(arycp); k.has_next(); k.next()) {
1436             PointsToNode* abase = k.get();
1437             if (abase->arraycopy_dst() && abase != base) {
1438               // Look for the same arraycopy reference.
1439               add_fields_to_worklist(field, abase);
1440             }
1441           }
1442         }
1443       }
1444     }
1445   }
1446 }
1447 
1448 // Put on worklist all related field nodes.
1449 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1450   int offset = field->offset();
1451   if (base->is_LocalVar()) {
1452     for (UseIterator j(base); j.has_next(); j.next()) {
1453       PointsToNode* f = j.get();
1454       if (PointsToNode::is_base_use(f)) { // Field
1455         f = PointsToNode::get_use_node(f);
1456         if (f == field || !f->as_Field()->is_oop())
1457           continue;
1458         int offs = f->as_Field()->offset();
1459         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1460           add_to_worklist(f);
1461         }
1462       }
1463     }
1464   } else {
1465     assert(base->is_JavaObject(), "sanity");
1466     if (// Skip phantom_object since it is only used to indicate that
1467         // this field's content globally escapes.
1468         (base != phantom_obj) &&
1469         // NULL object node does not have fields.
1470         (base != null_obj)) {
1471       for (EdgeIterator i(base); i.has_next(); i.next()) {
1472         PointsToNode* f = i.get();
1473         // Skip arraycopy edge since store to destination object field
1474         // does not update value in source object field.
1475         if (f->is_Arraycopy()) {
1476           assert(base->arraycopy_dst(), "sanity");
1477           continue;
1478         }
1479         if (f == field || !f->as_Field()->is_oop())
1480           continue;
1481         int offs = f->as_Field()->offset();
1482         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1483           add_to_worklist(f);
1484         }
1485       }
1486     }
1487   }
1488 }
1489 
1490 // Find fields which have unknown value.
1491 int ConnectionGraph::find_field_value(FieldNode* field) {
1492   // Escaped fields should have init value already.
1493   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1494   int new_edges = 0;
1495   for (BaseIterator i(field); i.has_next(); i.next()) {
1496     PointsToNode* base = i.get();
1497     if (base->is_JavaObject()) {
1498       // Skip Allocate's fields which will be processed later.
1499       if (base->ideal_node()->is_Allocate())
1500         return 0;
1501       assert(base == null_obj, "only NULL ptr base expected here");
1502     }
1503   }
1504   if (add_edge(field, phantom_obj)) {
1505     // New edge was added
1506     new_edges++;
1507     add_field_uses_to_worklist(field);
1508   }
1509   return new_edges;
1510 }
1511 
1512 // Find fields initializing values for allocations.
1513 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1514   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1515   int new_edges = 0;
1516   Node* alloc = pta->ideal_node();
1517   if (init_val == phantom_obj) {
1518     // Do nothing for Allocate nodes since its fields values are
1519     // "known" unless they are initialized by arraycopy/clone.
1520     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1521       return 0;
1522     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1523 #ifdef ASSERT
1524     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1525       const char* name = alloc->as_CallStaticJava()->_name;
1526       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1527     }
1528 #endif
1529     // Non-escaped allocation returned from Java or runtime call have
1530     // unknown values in fields.
1531     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1532       PointsToNode* field = i.get();
1533       if (field->is_Field() && field->as_Field()->is_oop()) {
1534         if (add_edge(field, phantom_obj)) {
1535           // New edge was added
1536           new_edges++;
1537           add_field_uses_to_worklist(field->as_Field());
1538         }
1539       }
1540     }
1541     return new_edges;
1542   }
1543   assert(init_val == null_obj, "sanity");
1544   // Do nothing for Call nodes since its fields values are unknown.
1545   if (!alloc->is_Allocate())
1546     return 0;
1547 
1548   InitializeNode* ini = alloc->as_Allocate()->initialization();
1549   bool visited_bottom_offset = false;
1550   GrowableArray<int> offsets_worklist;
1551 
1552   // Check if an oop field's initializing value is recorded and add
1553   // a corresponding NULL if field's value if it is not recorded.
1554   // Connection Graph does not record a default initialization by NULL
1555   // captured by Initialize node.
1556   //
1557   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1558     PointsToNode* field = i.get(); // Field (AddP)
1559     if (!field->is_Field() || !field->as_Field()->is_oop())
1560       continue; // Not oop field
1561     int offset = field->as_Field()->offset();
1562     if (offset == Type::OffsetBot) {
1563       if (!visited_bottom_offset) {
1564         // OffsetBot is used to reference array's element,
1565         // always add reference to NULL to all Field nodes since we don't
1566         // known which element is referenced.
1567         if (add_edge(field, null_obj)) {
1568           // New edge was added
1569           new_edges++;
1570           add_field_uses_to_worklist(field->as_Field());
1571           visited_bottom_offset = true;
1572         }
1573       }
1574     } else {
1575       // Check only oop fields.
1576       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1577       if (adr_type->isa_rawptr()) {
1578 #ifdef ASSERT
1579         // Raw pointers are used for initializing stores so skip it
1580         // since it should be recorded already
1581         Node* base = get_addp_base(field->ideal_node());
1582         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1583                (base->in(0) == alloc),"unexpected pointer type");
1584 #endif
1585         continue;
1586       }
1587       if (!offsets_worklist.contains(offset)) {
1588         offsets_worklist.append(offset);
1589         Node* value = NULL;
1590         if (ini != NULL) {
1591           // StoreP::memory_type() == T_ADDRESS
1592           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1593           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1594           // Make sure initializing store has the same type as this AddP.
1595           // This AddP may reference non existing field because it is on a
1596           // dead branch of bimorphic call which is not eliminated yet.
1597           if (store != NULL && store->is_Store() &&
1598               store->as_Store()->memory_type() == ft) {
1599             value = store->in(MemNode::ValueIn);
1600 #ifdef ASSERT
1601             if (VerifyConnectionGraph) {
1602               // Verify that AddP already points to all objects the value points to.
1603               PointsToNode* val = ptnode_adr(value->_idx);
1604               assert((val != NULL), "should be processed already");
1605               PointsToNode* missed_obj = NULL;
1606               if (val->is_JavaObject()) {
1607                 if (!field->points_to(val->as_JavaObject())) {
1608                   missed_obj = val;
1609                 }
1610               } else {
1611                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1612                   tty->print_cr("----------init store has invalid value -----");
1613                   store->dump();
1614                   val->dump();
1615                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1616                 }
1617                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1618                   PointsToNode* obj = j.get();
1619                   if (obj->is_JavaObject()) {
1620                     if (!field->points_to(obj->as_JavaObject())) {
1621                       missed_obj = obj;
1622                       break;
1623                     }
1624                   }
1625                 }
1626               }
1627               if (missed_obj != NULL) {
1628                 tty->print_cr("----------field---------------------------------");
1629                 field->dump();
1630                 tty->print_cr("----------missed referernce to object-----------");
1631                 missed_obj->dump();
1632                 tty->print_cr("----------object referernced by init store -----");
1633                 store->dump();
1634                 val->dump();
1635                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1636               }
1637             }
1638 #endif
1639           } else {
1640             // There could be initializing stores which follow allocation.
1641             // For example, a volatile field store is not collected
1642             // by Initialize node.
1643             //
1644             // Need to check for dependent loads to separate such stores from
1645             // stores which follow loads. For now, add initial value NULL so
1646             // that compare pointers optimization works correctly.
1647           }
1648         }
1649         if (value == NULL) {
1650           // A field's initializing value was not recorded. Add NULL.
1651           if (add_edge(field, null_obj)) {
1652             // New edge was added
1653             new_edges++;
1654             add_field_uses_to_worklist(field->as_Field());
1655           }
1656         }
1657       }
1658     }
1659   }
1660   return new_edges;
1661 }
1662 
1663 // Adjust scalar_replaceable state after Connection Graph is built.
1664 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1665   // Search for non-escaping objects which are not scalar replaceable
1666   // and mark them to propagate the state to referenced objects.
1667 
1668   // 1. An object is not scalar replaceable if the field into which it is
1669   // stored has unknown offset (stored into unknown element of an array).
1670   //
1671   for (UseIterator i(jobj); i.has_next(); i.next()) {
1672     PointsToNode* use = i.get();
1673     if (use->is_Arraycopy()) {
1674       continue;
1675     }
1676     if (use->is_Field()) {
1677       FieldNode* field = use->as_Field();
1678       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1679       if (field->offset() == Type::OffsetBot) {
1680         jobj->set_scalar_replaceable(false);
1681         return;
1682       }
1683       // 2. An object is not scalar replaceable if the field into which it is
1684       // stored has multiple bases one of which is null.
1685       if (field->base_count() > 1) {
1686         for (BaseIterator i(field); i.has_next(); i.next()) {
1687           PointsToNode* base = i.get();
1688           if (base == null_obj) {
1689             jobj->set_scalar_replaceable(false);
1690             return;
1691           }
1692         }
1693       }
1694     }
1695     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1696     // 3. An object is not scalar replaceable if it is merged with other objects.
1697     for (EdgeIterator j(use); j.has_next(); j.next()) {
1698       PointsToNode* ptn = j.get();
1699       if (ptn->is_JavaObject() && ptn != jobj) {
1700         // Mark all objects.
1701         jobj->set_scalar_replaceable(false);
1702          ptn->set_scalar_replaceable(false);
1703       }
1704     }
1705     if (!jobj->scalar_replaceable()) {
1706       return;
1707     }
1708   }
1709 
1710   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1711     if (j.get()->is_Arraycopy()) {
1712       continue;
1713     }
1714 
1715     // Non-escaping object node should point only to field nodes.
1716     FieldNode* field = j.get()->as_Field();
1717     int offset = field->as_Field()->offset();
1718 
1719     // 4. An object is not scalar replaceable if it has a field with unknown
1720     // offset (array's element is accessed in loop).
1721     if (offset == Type::OffsetBot) {
1722       jobj->set_scalar_replaceable(false);
1723       return;
1724     }
1725     // 5. Currently an object is not scalar replaceable if a LoadStore node
1726     // access its field since the field value is unknown after it.
1727     //
1728     Node* n = field->ideal_node();
1729     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1730       if (n->fast_out(i)->is_LoadStore()) {
1731         jobj->set_scalar_replaceable(false);
1732         return;
1733       }
1734     }
1735 
1736     // 6. Or the address may point to more then one object. This may produce
1737     // the false positive result (set not scalar replaceable)
1738     // since the flow-insensitive escape analysis can't separate
1739     // the case when stores overwrite the field's value from the case
1740     // when stores happened on different control branches.
1741     //
1742     // Note: it will disable scalar replacement in some cases:
1743     //
1744     //    Point p[] = new Point[1];
1745     //    p[0] = new Point(); // Will be not scalar replaced
1746     //
1747     // but it will save us from incorrect optimizations in next cases:
1748     //
1749     //    Point p[] = new Point[1];
1750     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1751     //
1752     if (field->base_count() > 1) {
1753       for (BaseIterator i(field); i.has_next(); i.next()) {
1754         PointsToNode* base = i.get();
1755         // Don't take into account LocalVar nodes which
1756         // may point to only one object which should be also
1757         // this field's base by now.
1758         if (base->is_JavaObject() && base != jobj) {
1759           // Mark all bases.
1760           jobj->set_scalar_replaceable(false);
1761           base->set_scalar_replaceable(false);
1762         }
1763       }
1764     }
1765   }
1766 }
1767 
1768 #ifdef ASSERT
1769 void ConnectionGraph::verify_connection_graph(
1770                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1771                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1772                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1773                          GrowableArray<Node*>& addp_worklist) {
1774   // Verify that graph is complete - no new edges could be added.
1775   int java_objects_length = java_objects_worklist.length();
1776   int non_escaped_length  = non_escaped_worklist.length();
1777   int new_edges = 0;
1778   for (int next = 0; next < java_objects_length; ++next) {
1779     JavaObjectNode* ptn = java_objects_worklist.at(next);
1780     new_edges += add_java_object_edges(ptn, true);
1781   }
1782   assert(new_edges == 0, "graph was not complete");
1783   // Verify that escape state is final.
1784   int length = non_escaped_worklist.length();
1785   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1786   assert((non_escaped_length == non_escaped_worklist.length()) &&
1787          (non_escaped_length == length) &&
1788          (_worklist.length() == 0), "escape state was not final");
1789 
1790   // Verify fields information.
1791   int addp_length = addp_worklist.length();
1792   for (int next = 0; next < addp_length; ++next ) {
1793     Node* n = addp_worklist.at(next);
1794     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1795     if (field->is_oop()) {
1796       // Verify that field has all bases
1797       Node* base = get_addp_base(n);
1798       PointsToNode* ptn = ptnode_adr(base->_idx);
1799       if (ptn->is_JavaObject()) {
1800         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1801       } else {
1802         assert(ptn->is_LocalVar(), "sanity");
1803         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1804           PointsToNode* e = i.get();
1805           if (e->is_JavaObject()) {
1806             assert(field->has_base(e->as_JavaObject()), "sanity");
1807           }
1808         }
1809       }
1810       // Verify that all fields have initializing values.
1811       if (field->edge_count() == 0) {
1812         tty->print_cr("----------field does not have references----------");
1813         field->dump();
1814         for (BaseIterator i(field); i.has_next(); i.next()) {
1815           PointsToNode* base = i.get();
1816           tty->print_cr("----------field has next base---------------------");
1817           base->dump();
1818           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1819             tty->print_cr("----------base has fields-------------------------");
1820             for (EdgeIterator j(base); j.has_next(); j.next()) {
1821               j.get()->dump();
1822             }
1823             tty->print_cr("----------base has references---------------------");
1824             for (UseIterator j(base); j.has_next(); j.next()) {
1825               j.get()->dump();
1826             }
1827           }
1828         }
1829         for (UseIterator i(field); i.has_next(); i.next()) {
1830           i.get()->dump();
1831         }
1832         assert(field->edge_count() > 0, "sanity");
1833       }
1834     }
1835   }
1836 }
1837 #endif
1838 
1839 // Optimize ideal graph.
1840 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1841                                            GrowableArray<Node*>& storestore_worklist) {
1842   Compile* C = _compile;
1843   PhaseIterGVN* igvn = _igvn;
1844   if (EliminateLocks) {
1845     // Mark locks before changing ideal graph.
1846     int cnt = C->macro_count();
1847     for( int i=0; i < cnt; i++ ) {
1848       Node *n = C->macro_node(i);
1849       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1850         AbstractLockNode* alock = n->as_AbstractLock();
1851         if (!alock->is_non_esc_obj()) {
1852           if (not_global_escape(alock->obj_node())) {
1853             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1854             // The lock could be marked eliminated by lock coarsening
1855             // code during first IGVN before EA. Replace coarsened flag
1856             // to eliminate all associated locks/unlocks.
1857 #ifdef ASSERT
1858             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1859 #endif
1860             alock->set_non_esc_obj();
1861           }
1862         }
1863       }
1864     }
1865   }
1866 
1867   if (OptimizePtrCompare) {
1868     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1869     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1870     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1871     // Optimize objects compare.
1872     while (ptr_cmp_worklist.length() != 0) {
1873       Node *n = ptr_cmp_worklist.pop();
1874       Node *res = optimize_ptr_compare(n);
1875       if (res != NULL) {
1876 #ifndef PRODUCT
1877         if (PrintOptimizePtrCompare) {
1878           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1879           if (Verbose) {
1880             n->dump(1);
1881           }
1882         }
1883 #endif
1884         igvn->replace_node(n, res);
1885       }
1886     }
1887     // cleanup
1888     if (_pcmp_neq->outcnt() == 0)
1889       igvn->hash_delete(_pcmp_neq);
1890     if (_pcmp_eq->outcnt()  == 0)
1891       igvn->hash_delete(_pcmp_eq);
1892   }
1893 
1894   // For MemBarStoreStore nodes added in library_call.cpp, check
1895   // escape status of associated AllocateNode and optimize out
1896   // MemBarStoreStore node if the allocated object never escapes.
1897   while (storestore_worklist.length() != 0) {
1898     Node *n = storestore_worklist.pop();
1899     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1900     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1901     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1902     if (not_global_escape(alloc)) {
1903       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1904       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1905       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1906       igvn->register_new_node_with_optimizer(mb);
1907       igvn->replace_node(storestore, mb);
1908     }
1909   }
1910 }
1911 
1912 // Optimize objects compare.
1913 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1914   assert(OptimizePtrCompare, "sanity");
1915   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1916   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1917   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1918   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1919   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1920   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1921 
1922   // Check simple cases first.
1923   if (jobj1 != NULL) {
1924     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1925       if (jobj1 == jobj2) {
1926         // Comparing the same not escaping object.
1927         return _pcmp_eq;
1928       }
1929       Node* obj = jobj1->ideal_node();
1930       // Comparing not escaping allocation.
1931       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1932           !ptn2->points_to(jobj1)) {
1933         return _pcmp_neq; // This includes nullness check.
1934       }
1935     }
1936   }
1937   if (jobj2 != NULL) {
1938     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1939       Node* obj = jobj2->ideal_node();
1940       // Comparing not escaping allocation.
1941       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1942           !ptn1->points_to(jobj2)) {
1943         return _pcmp_neq; // This includes nullness check.
1944       }
1945     }
1946   }
1947   if (jobj1 != NULL && jobj1 != phantom_obj &&
1948       jobj2 != NULL && jobj2 != phantom_obj &&
1949       jobj1->ideal_node()->is_Con() &&
1950       jobj2->ideal_node()->is_Con()) {
1951     // Klass or String constants compare. Need to be careful with
1952     // compressed pointers - compare types of ConN and ConP instead of nodes.
1953     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1954     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1955     if (t1->make_ptr() == t2->make_ptr()) {
1956       return _pcmp_eq;
1957     } else {
1958       return _pcmp_neq;
1959     }
1960   }
1961   if (ptn1->meet(ptn2)) {
1962     return NULL; // Sets are not disjoint
1963   }
1964 
1965   // Sets are disjoint.
1966   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1967   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1968   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1969   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1970   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
1971       (set2_has_unknown_ptr && set1_has_null_ptr)) {
1972     // Check nullness of unknown object.
1973     return NULL;
1974   }
1975 
1976   // Disjointness by itself is not sufficient since
1977   // alias analysis is not complete for escaped objects.
1978   // Disjoint sets are definitely unrelated only when
1979   // at least one set has only not escaping allocations.
1980   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1981     if (ptn1->non_escaping_allocation()) {
1982       return _pcmp_neq;
1983     }
1984   }
1985   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1986     if (ptn2->non_escaping_allocation()) {
1987       return _pcmp_neq;
1988     }
1989   }
1990   return NULL;
1991 }
1992 
1993 // Connection Graph constuction functions.
1994 
1995 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1996   PointsToNode* ptadr = _nodes.at(n->_idx);
1997   if (ptadr != NULL) {
1998     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1999     return;
2000   }
2001   Compile* C = _compile;
2002   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2003   _nodes.at_put(n->_idx, ptadr);
2004 }
2005 
2006 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2007   PointsToNode* ptadr = _nodes.at(n->_idx);
2008   if (ptadr != NULL) {
2009     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2010     return;
2011   }
2012   Compile* C = _compile;
2013   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2014   _nodes.at_put(n->_idx, ptadr);
2015 }
2016 
2017 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2018   PointsToNode* ptadr = _nodes.at(n->_idx);
2019   if (ptadr != NULL) {
2020     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2021     return;
2022   }
2023   bool unsafe = false;
2024   bool is_oop = is_oop_field(n, offset, &unsafe);
2025   if (unsafe) {
2026     es = PointsToNode::GlobalEscape;
2027   }
2028   Compile* C = _compile;
2029   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2030   _nodes.at_put(n->_idx, field);
2031 }
2032 
2033 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2034                                     PointsToNode* src, PointsToNode* dst) {
2035   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2036   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2037   PointsToNode* ptadr = _nodes.at(n->_idx);
2038   if (ptadr != NULL) {
2039     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2040     return;
2041   }
2042   Compile* C = _compile;
2043   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2044   _nodes.at_put(n->_idx, ptadr);
2045   // Add edge from arraycopy node to source object.
2046   (void)add_edge(ptadr, src);
2047   src->set_arraycopy_src();
2048   // Add edge from destination object to arraycopy node.
2049   (void)add_edge(dst, ptadr);
2050   dst->set_arraycopy_dst();
2051 }
2052 
2053 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2054   const Type* adr_type = n->as_AddP()->bottom_type();
2055   BasicType bt = T_INT;
2056   if (offset == Type::OffsetBot) {
2057     // Check only oop fields.
2058     if (!adr_type->isa_aryptr() ||
2059         (adr_type->isa_aryptr()->klass() == NULL) ||
2060          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2061       // OffsetBot is used to reference array's element. Ignore first AddP.
2062       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2063         bt = T_OBJECT;
2064       }
2065     }
2066   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2067     if (adr_type->isa_instptr()) {
2068       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2069       if (field != NULL) {
2070         bt = field->layout_type();
2071       } else {
2072         // Check for unsafe oop field access
2073         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2074             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2075             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2076             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2077           bt = T_OBJECT;
2078           (*unsafe) = true;
2079         }
2080       }
2081     } else if (adr_type->isa_aryptr()) {
2082       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2083         // Ignore array length load.
2084       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2085         // Ignore first AddP.
2086       } else {
2087         const Type* elemtype = adr_type->isa_aryptr()->elem();
2088         bt = elemtype->array_element_basic_type();
2089       }
2090     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2091       // Allocation initialization, ThreadLocal field access, unsafe access
2092       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2093           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2094           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2095           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2096         bt = T_OBJECT;
2097       }
2098     }
2099   }
2100   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2101 }
2102 
2103 // Returns unique pointed java object or NULL.
2104 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2105   assert(!_collecting, "should not call when contructed graph");
2106   // If the node was created after the escape computation we can't answer.
2107   uint idx = n->_idx;
2108   if (idx >= nodes_size()) {
2109     return NULL;
2110   }
2111   PointsToNode* ptn = ptnode_adr(idx);
2112   if (ptn->is_JavaObject()) {
2113     return ptn->as_JavaObject();
2114   }
2115   assert(ptn->is_LocalVar(), "sanity");
2116   // Check all java objects it points to.
2117   JavaObjectNode* jobj = NULL;
2118   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2119     PointsToNode* e = i.get();
2120     if (e->is_JavaObject()) {
2121       if (jobj == NULL) {
2122         jobj = e->as_JavaObject();
2123       } else if (jobj != e) {
2124         return NULL;
2125       }
2126     }
2127   }
2128   return jobj;
2129 }
2130 
2131 // Return true if this node points only to non-escaping allocations.
2132 bool PointsToNode::non_escaping_allocation() {
2133   if (is_JavaObject()) {
2134     Node* n = ideal_node();
2135     if (n->is_Allocate() || n->is_CallStaticJava()) {
2136       return (escape_state() == PointsToNode::NoEscape);
2137     } else {
2138       return false;
2139     }
2140   }
2141   assert(is_LocalVar(), "sanity");
2142   // Check all java objects it points to.
2143   for (EdgeIterator i(this); i.has_next(); i.next()) {
2144     PointsToNode* e = i.get();
2145     if (e->is_JavaObject()) {
2146       Node* n = e->ideal_node();
2147       if ((e->escape_state() != PointsToNode::NoEscape) ||
2148           !(n->is_Allocate() || n->is_CallStaticJava())) {
2149         return false;
2150       }
2151     }
2152   }
2153   return true;
2154 }
2155 
2156 // Return true if we know the node does not escape globally.
2157 bool ConnectionGraph::not_global_escape(Node *n) {
2158   assert(!_collecting, "should not call during graph construction");
2159   // If the node was created after the escape computation we can't answer.
2160   uint idx = n->_idx;
2161   if (idx >= nodes_size()) {
2162     return false;
2163   }
2164   PointsToNode* ptn = ptnode_adr(idx);
2165   PointsToNode::EscapeState es = ptn->escape_state();
2166   // If we have already computed a value, return it.
2167   if (es >= PointsToNode::GlobalEscape)
2168     return false;
2169   if (ptn->is_JavaObject()) {
2170     return true; // (es < PointsToNode::GlobalEscape);
2171   }
2172   assert(ptn->is_LocalVar(), "sanity");
2173   // Check all java objects it points to.
2174   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2175     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2176       return false;
2177   }
2178   return true;
2179 }
2180 
2181 
2182 // Helper functions
2183 
2184 // Return true if this node points to specified node or nodes it points to.
2185 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2186   if (is_JavaObject()) {
2187     return (this == ptn);
2188   }
2189   assert(is_LocalVar() || is_Field(), "sanity");
2190   for (EdgeIterator i(this); i.has_next(); i.next()) {
2191     if (i.get() == ptn)
2192       return true;
2193   }
2194   return false;
2195 }
2196 
2197 // Return true if one node points to an other.
2198 bool PointsToNode::meet(PointsToNode* ptn) {
2199   if (this == ptn) {
2200     return true;
2201   } else if (ptn->is_JavaObject()) {
2202     return this->points_to(ptn->as_JavaObject());
2203   } else if (this->is_JavaObject()) {
2204     return ptn->points_to(this->as_JavaObject());
2205   }
2206   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2207   int ptn_count =  ptn->edge_count();
2208   for (EdgeIterator i(this); i.has_next(); i.next()) {
2209     PointsToNode* this_e = i.get();
2210     for (int j = 0; j < ptn_count; j++) {
2211       if (this_e == ptn->edge(j))
2212         return true;
2213     }
2214   }
2215   return false;
2216 }
2217 
2218 #ifdef ASSERT
2219 // Return true if bases point to this java object.
2220 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2221   for (BaseIterator i(this); i.has_next(); i.next()) {
2222     if (i.get() == jobj)
2223       return true;
2224   }
2225   return false;
2226 }
2227 #endif
2228 
2229 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2230   const Type *adr_type = phase->type(adr);
2231   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2232       adr->in(AddPNode::Address)->is_Proj() &&
2233       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2234     // We are computing a raw address for a store captured by an Initialize
2235     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2236     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2237     assert(offs != Type::OffsetBot ||
2238            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2239            "offset must be a constant or it is initialization of array");
2240     return offs;
2241   }
2242   const TypePtr *t_ptr = adr_type->isa_ptr();
2243   assert(t_ptr != NULL, "must be a pointer type");
2244   return t_ptr->offset();
2245 }
2246 
2247 Node* ConnectionGraph::get_addp_base(Node *addp) {
2248   assert(addp->is_AddP(), "must be AddP");
2249   //
2250   // AddP cases for Base and Address inputs:
2251   // case #1. Direct object's field reference:
2252   //     Allocate
2253   //       |
2254   //     Proj #5 ( oop result )
2255   //       |
2256   //     CheckCastPP (cast to instance type)
2257   //      | |
2258   //     AddP  ( base == address )
2259   //
2260   // case #2. Indirect object's field reference:
2261   //      Phi
2262   //       |
2263   //     CastPP (cast to instance type)
2264   //      | |
2265   //     AddP  ( base == address )
2266   //
2267   // case #3. Raw object's field reference for Initialize node:
2268   //      Allocate
2269   //        |
2270   //      Proj #5 ( oop result )
2271   //  top   |
2272   //     \  |
2273   //     AddP  ( base == top )
2274   //
2275   // case #4. Array's element reference:
2276   //   {CheckCastPP | CastPP}
2277   //     |  | |
2278   //     |  AddP ( array's element offset )
2279   //     |  |
2280   //     AddP ( array's offset )
2281   //
2282   // case #5. Raw object's field reference for arraycopy stub call:
2283   //          The inline_native_clone() case when the arraycopy stub is called
2284   //          after the allocation before Initialize and CheckCastPP nodes.
2285   //      Allocate
2286   //        |
2287   //      Proj #5 ( oop result )
2288   //       | |
2289   //       AddP  ( base == address )
2290   //
2291   // case #6. Constant Pool, ThreadLocal, CastX2P or
2292   //          Raw object's field reference:
2293   //      {ConP, ThreadLocal, CastX2P, raw Load}
2294   //  top   |
2295   //     \  |
2296   //     AddP  ( base == top )
2297   //
2298   // case #7. Klass's field reference.
2299   //      LoadKlass
2300   //       | |
2301   //       AddP  ( base == address )
2302   //
2303   // case #8. narrow Klass's field reference.
2304   //      LoadNKlass
2305   //       |
2306   //      DecodeN
2307   //       | |
2308   //       AddP  ( base == address )
2309   //
2310   // case #9. Mixed unsafe access
2311   //    {instance}
2312   //        |
2313   //      CheckCastPP (raw)
2314   //  top   |
2315   //     \  |
2316   //     AddP  ( base == top )
2317   //
2318   Node *base = addp->in(AddPNode::Base);
2319   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2320     base = addp->in(AddPNode::Address);
2321     while (base->is_AddP()) {
2322       // Case #6 (unsafe access) may have several chained AddP nodes.
2323       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2324       base = base->in(AddPNode::Address);
2325     }
2326     if (base->Opcode() == Op_CheckCastPP &&
2327         base->bottom_type()->isa_rawptr() &&
2328         _igvn->type(base->in(1))->isa_oopptr()) {
2329       base = base->in(1); // Case #9
2330     } else {
2331       Node* uncast_base = base->uncast();
2332       int opcode = uncast_base->Opcode();
2333       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2334              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2335              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2336              (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()) ||
2337              BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(uncast_base), "sanity");
2338     }
2339   }
2340   return base;
2341 }
2342 
2343 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2344   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2345   Node* addp2 = addp->raw_out(0);
2346   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2347       addp2->in(AddPNode::Base) == n &&
2348       addp2->in(AddPNode::Address) == addp) {
2349     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2350     //
2351     // Find array's offset to push it on worklist first and
2352     // as result process an array's element offset first (pushed second)
2353     // to avoid CastPP for the array's offset.
2354     // Otherwise the inserted CastPP (LocalVar) will point to what
2355     // the AddP (Field) points to. Which would be wrong since
2356     // the algorithm expects the CastPP has the same point as
2357     // as AddP's base CheckCastPP (LocalVar).
2358     //
2359     //    ArrayAllocation
2360     //     |
2361     //    CheckCastPP
2362     //     |
2363     //    memProj (from ArrayAllocation CheckCastPP)
2364     //     |  ||
2365     //     |  ||   Int (element index)
2366     //     |  ||    |   ConI (log(element size))
2367     //     |  ||    |   /
2368     //     |  ||   LShift
2369     //     |  ||  /
2370     //     |  AddP (array's element offset)
2371     //     |  |
2372     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2373     //     | / /
2374     //     AddP (array's offset)
2375     //      |
2376     //     Load/Store (memory operation on array's element)
2377     //
2378     return addp2;
2379   }
2380   return NULL;
2381 }
2382 
2383 //
2384 // Adjust the type and inputs of an AddP which computes the
2385 // address of a field of an instance
2386 //
2387 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2388   PhaseGVN* igvn = _igvn;
2389   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2390   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2391   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2392   if (t == NULL) {
2393     // We are computing a raw address for a store captured by an Initialize
2394     // compute an appropriate address type (cases #3 and #5).
2395     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2396     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2397     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2398     assert(offs != Type::OffsetBot, "offset must be a constant");
2399     t = base_t->add_offset(offs)->is_oopptr();
2400   }
2401   int inst_id =  base_t->instance_id();
2402   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2403                              "old type must be non-instance or match new type");
2404 
2405   // The type 't' could be subclass of 'base_t'.
2406   // As result t->offset() could be large then base_t's size and it will
2407   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2408   // constructor verifies correctness of the offset.
2409   //
2410   // It could happened on subclass's branch (from the type profiling
2411   // inlining) which was not eliminated during parsing since the exactness
2412   // of the allocation type was not propagated to the subclass type check.
2413   //
2414   // Or the type 't' could be not related to 'base_t' at all.
2415   // It could happened when CHA type is different from MDO type on a dead path
2416   // (for example, from instanceof check) which is not collapsed during parsing.
2417   //
2418   // Do nothing for such AddP node and don't process its users since
2419   // this code branch will go away.
2420   //
2421   if (!t->is_known_instance() &&
2422       !base_t->klass()->is_subtype_of(t->klass())) {
2423      return false; // bail out
2424   }
2425   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2426   // Do NOT remove the next line: ensure a new alias index is allocated
2427   // for the instance type. Note: C++ will not remove it since the call
2428   // has side effect.
2429   int alias_idx = _compile->get_alias_index(tinst);
2430   igvn->set_type(addp, tinst);
2431   // record the allocation in the node map
2432   set_map(addp, get_map(base->_idx));
2433   // Set addp's Base and Address to 'base'.
2434   Node *abase = addp->in(AddPNode::Base);
2435   Node *adr   = addp->in(AddPNode::Address);
2436   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2437       adr->in(0)->_idx == (uint)inst_id) {
2438     // Skip AddP cases #3 and #5.
2439   } else {
2440     assert(!abase->is_top(), "sanity"); // AddP case #3
2441     if (abase != base) {
2442       igvn->hash_delete(addp);
2443       addp->set_req(AddPNode::Base, base);
2444       if (abase == adr) {
2445         addp->set_req(AddPNode::Address, base);
2446       } else {
2447         // AddP case #4 (adr is array's element offset AddP node)
2448 #ifdef ASSERT
2449         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2450         assert(adr->is_AddP() && atype != NULL &&
2451                atype->instance_id() == inst_id, "array's element offset should be processed first");
2452 #endif
2453       }
2454       igvn->hash_insert(addp);
2455     }
2456   }
2457   // Put on IGVN worklist since at least addp's type was changed above.
2458   record_for_optimizer(addp);
2459   return true;
2460 }
2461 
2462 //
2463 // Create a new version of orig_phi if necessary. Returns either the newly
2464 // created phi or an existing phi.  Sets create_new to indicate whether a new
2465 // phi was created.  Cache the last newly created phi in the node map.
2466 //
2467 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2468   Compile *C = _compile;
2469   PhaseGVN* igvn = _igvn;
2470   new_created = false;
2471   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2472   // nothing to do if orig_phi is bottom memory or matches alias_idx
2473   if (phi_alias_idx == alias_idx) {
2474     return orig_phi;
2475   }
2476   // Have we recently created a Phi for this alias index?
2477   PhiNode *result = get_map_phi(orig_phi->_idx);
2478   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2479     return result;
2480   }
2481   // Previous check may fail when the same wide memory Phi was split into Phis
2482   // for different memory slices. Search all Phis for this region.
2483   if (result != NULL) {
2484     Node* region = orig_phi->in(0);
2485     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2486       Node* phi = region->fast_out(i);
2487       if (phi->is_Phi() &&
2488           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2489         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2490         return phi->as_Phi();
2491       }
2492     }
2493   }
2494   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2495     if (C->do_escape_analysis() == true && !C->failing()) {
2496       // Retry compilation without escape analysis.
2497       // If this is the first failure, the sentinel string will "stick"
2498       // to the Compile object, and the C2Compiler will see it and retry.
2499       C->record_failure(C2Compiler::retry_no_escape_analysis());
2500     }
2501     return NULL;
2502   }
2503   orig_phi_worklist.append_if_missing(orig_phi);
2504   const TypePtr *atype = C->get_adr_type(alias_idx);
2505   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2506   C->copy_node_notes_to(result, orig_phi);
2507   igvn->set_type(result, result->bottom_type());
2508   record_for_optimizer(result);
2509   set_map(orig_phi, result);
2510   new_created = true;
2511   return result;
2512 }
2513 
2514 //
2515 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2516 // specified alias index.
2517 //
2518 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2519   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2520   Compile *C = _compile;
2521   PhaseGVN* igvn = _igvn;
2522   bool new_phi_created;
2523   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2524   if (!new_phi_created) {
2525     return result;
2526   }
2527   GrowableArray<PhiNode *>  phi_list;
2528   GrowableArray<uint>  cur_input;
2529   PhiNode *phi = orig_phi;
2530   uint idx = 1;
2531   bool finished = false;
2532   while(!finished) {
2533     while (idx < phi->req()) {
2534       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2535       if (mem != NULL && mem->is_Phi()) {
2536         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2537         if (new_phi_created) {
2538           // found an phi for which we created a new split, push current one on worklist and begin
2539           // processing new one
2540           phi_list.push(phi);
2541           cur_input.push(idx);
2542           phi = mem->as_Phi();
2543           result = newphi;
2544           idx = 1;
2545           continue;
2546         } else {
2547           mem = newphi;
2548         }
2549       }
2550       if (C->failing()) {
2551         return NULL;
2552       }
2553       result->set_req(idx++, mem);
2554     }
2555 #ifdef ASSERT
2556     // verify that the new Phi has an input for each input of the original
2557     assert( phi->req() == result->req(), "must have same number of inputs.");
2558     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2559 #endif
2560     // Check if all new phi's inputs have specified alias index.
2561     // Otherwise use old phi.
2562     for (uint i = 1; i < phi->req(); i++) {
2563       Node* in = result->in(i);
2564       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2565     }
2566     // we have finished processing a Phi, see if there are any more to do
2567     finished = (phi_list.length() == 0 );
2568     if (!finished) {
2569       phi = phi_list.pop();
2570       idx = cur_input.pop();
2571       PhiNode *prev_result = get_map_phi(phi->_idx);
2572       prev_result->set_req(idx++, result);
2573       result = prev_result;
2574     }
2575   }
2576   return result;
2577 }
2578 
2579 //
2580 // The next methods are derived from methods in MemNode.
2581 //
2582 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2583   Node *mem = mmem;
2584   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2585   // means an array I have not precisely typed yet.  Do not do any
2586   // alias stuff with it any time soon.
2587   if (toop->base() != Type::AnyPtr &&
2588       !(toop->klass() != NULL &&
2589         toop->klass()->is_java_lang_Object() &&
2590         toop->offset() == Type::OffsetBot)) {
2591     mem = mmem->memory_at(alias_idx);
2592     // Update input if it is progress over what we have now
2593   }
2594   return mem;
2595 }
2596 
2597 //
2598 // Move memory users to their memory slices.
2599 //
2600 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2601   Compile* C = _compile;
2602   PhaseGVN* igvn = _igvn;
2603   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2604   assert(tp != NULL, "ptr type");
2605   int alias_idx = C->get_alias_index(tp);
2606   int general_idx = C->get_general_index(alias_idx);
2607 
2608   // Move users first
2609   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2610     Node* use = n->fast_out(i);
2611     if (use->is_MergeMem()) {
2612       MergeMemNode* mmem = use->as_MergeMem();
2613       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2614       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2615         continue; // Nothing to do
2616       }
2617       // Replace previous general reference to mem node.
2618       uint orig_uniq = C->unique();
2619       Node* m = find_inst_mem(n, general_idx, orig_phis);
2620       assert(orig_uniq == C->unique(), "no new nodes");
2621       mmem->set_memory_at(general_idx, m);
2622       --imax;
2623       --i;
2624     } else if (use->is_MemBar()) {
2625       assert(!use->is_Initialize(), "initializing stores should not be moved");
2626       if (use->req() > MemBarNode::Precedent &&
2627           use->in(MemBarNode::Precedent) == n) {
2628         // Don't move related membars.
2629         record_for_optimizer(use);
2630         continue;
2631       }
2632       tp = use->as_MemBar()->adr_type()->isa_ptr();
2633       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2634           alias_idx == general_idx) {
2635         continue; // Nothing to do
2636       }
2637       // Move to general memory slice.
2638       uint orig_uniq = C->unique();
2639       Node* m = find_inst_mem(n, general_idx, orig_phis);
2640       assert(orig_uniq == C->unique(), "no new nodes");
2641       igvn->hash_delete(use);
2642       imax -= use->replace_edge(n, m);
2643       igvn->hash_insert(use);
2644       record_for_optimizer(use);
2645       --i;
2646 #ifdef ASSERT
2647     } else if (use->is_Mem()) {
2648       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2649         // Don't move related cardmark.
2650         continue;
2651       }
2652       // Memory nodes should have new memory input.
2653       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2654       assert(tp != NULL, "ptr type");
2655       int idx = C->get_alias_index(tp);
2656       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2657              "Following memory nodes should have new memory input or be on the same memory slice");
2658     } else if (use->is_Phi()) {
2659       // Phi nodes should be split and moved already.
2660       tp = use->as_Phi()->adr_type()->isa_ptr();
2661       assert(tp != NULL, "ptr type");
2662       int idx = C->get_alias_index(tp);
2663       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2664     } else {
2665       use->dump();
2666       assert(false, "should not be here");
2667 #endif
2668     }
2669   }
2670 }
2671 
2672 //
2673 // Search memory chain of "mem" to find a MemNode whose address
2674 // is the specified alias index.
2675 //
2676 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2677   if (orig_mem == NULL)
2678     return orig_mem;
2679   Compile* C = _compile;
2680   PhaseGVN* igvn = _igvn;
2681   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2682   bool is_instance = (toop != NULL) && toop->is_known_instance();
2683   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2684   Node *prev = NULL;
2685   Node *result = orig_mem;
2686   while (prev != result) {
2687     prev = result;
2688     if (result == start_mem)
2689       break;  // hit one of our sentinels
2690     if (result->is_Mem()) {
2691       const Type *at = igvn->type(result->in(MemNode::Address));
2692       if (at == Type::TOP)
2693         break; // Dead
2694       assert (at->isa_ptr() != NULL, "pointer type required.");
2695       int idx = C->get_alias_index(at->is_ptr());
2696       if (idx == alias_idx)
2697         break; // Found
2698       if (!is_instance && (at->isa_oopptr() == NULL ||
2699                            !at->is_oopptr()->is_known_instance())) {
2700         break; // Do not skip store to general memory slice.
2701       }
2702       result = result->in(MemNode::Memory);
2703     }
2704     if (!is_instance)
2705       continue;  // don't search further for non-instance types
2706     // skip over a call which does not affect this memory slice
2707     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2708       Node *proj_in = result->in(0);
2709       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2710         break;  // hit one of our sentinels
2711       } else if (proj_in->is_Call()) {
2712         // ArrayCopy node processed here as well
2713         CallNode *call = proj_in->as_Call();
2714         if (!call->may_modify(toop, igvn)) {
2715           result = call->in(TypeFunc::Memory);
2716         }
2717       } else if (proj_in->is_Initialize()) {
2718         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2719         // Stop if this is the initialization for the object instance which
2720         // which contains this memory slice, otherwise skip over it.
2721         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2722           result = proj_in->in(TypeFunc::Memory);
2723         }
2724       } else if (proj_in->is_MemBar()) {
2725         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2726             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2727             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2728           // clone
2729           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2730           if (ac->may_modify(toop, igvn)) {
2731             break;
2732           }
2733         }
2734         result = proj_in->in(TypeFunc::Memory);
2735       }
2736     } else if (result->is_MergeMem()) {
2737       MergeMemNode *mmem = result->as_MergeMem();
2738       result = step_through_mergemem(mmem, alias_idx, toop);
2739       if (result == mmem->base_memory()) {
2740         // Didn't find instance memory, search through general slice recursively.
2741         result = mmem->memory_at(C->get_general_index(alias_idx));
2742         result = find_inst_mem(result, alias_idx, orig_phis);
2743         if (C->failing()) {
2744           return NULL;
2745         }
2746         mmem->set_memory_at(alias_idx, result);
2747       }
2748     } else if (result->is_Phi() &&
2749                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2750       Node *un = result->as_Phi()->unique_input(igvn);
2751       if (un != NULL) {
2752         orig_phis.append_if_missing(result->as_Phi());
2753         result = un;
2754       } else {
2755         break;
2756       }
2757     } else if (result->is_ClearArray()) {
2758       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2759         // Can not bypass initialization of the instance
2760         // we are looking for.
2761         break;
2762       }
2763       // Otherwise skip it (the call updated 'result' value).
2764     } else if (result->Opcode() == Op_SCMemProj) {
2765       Node* mem = result->in(0);
2766       Node* adr = NULL;
2767       if (mem->is_LoadStore()) {
2768         adr = mem->in(MemNode::Address);
2769       } else {
2770         assert(mem->Opcode() == Op_EncodeISOArray ||
2771                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2772         adr = mem->in(3); // Memory edge corresponds to destination array
2773       }
2774       const Type *at = igvn->type(adr);
2775       if (at != Type::TOP) {
2776         assert(at->isa_ptr() != NULL, "pointer type required.");
2777         int idx = C->get_alias_index(at->is_ptr());
2778         if (idx == alias_idx) {
2779           // Assert in debug mode
2780           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2781           break; // In product mode return SCMemProj node
2782         }
2783       }
2784       result = mem->in(MemNode::Memory);
2785     } else if (result->Opcode() == Op_StrInflatedCopy) {
2786       Node* adr = result->in(3); // Memory edge corresponds to destination array
2787       const Type *at = igvn->type(adr);
2788       if (at != Type::TOP) {
2789         assert(at->isa_ptr() != NULL, "pointer type required.");
2790         int idx = C->get_alias_index(at->is_ptr());
2791         if (idx == alias_idx) {
2792           // Assert in debug mode
2793           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2794           break; // In product mode return SCMemProj node
2795         }
2796       }
2797       result = result->in(MemNode::Memory);
2798     }
2799   }
2800   if (result->is_Phi()) {
2801     PhiNode *mphi = result->as_Phi();
2802     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2803     const TypePtr *t = mphi->adr_type();
2804     if (!is_instance) {
2805       // Push all non-instance Phis on the orig_phis worklist to update inputs
2806       // during Phase 4 if needed.
2807       orig_phis.append_if_missing(mphi);
2808     } else if (C->get_alias_index(t) != alias_idx) {
2809       // Create a new Phi with the specified alias index type.
2810       result = split_memory_phi(mphi, alias_idx, orig_phis);
2811     }
2812   }
2813   // the result is either MemNode, PhiNode, InitializeNode.
2814   return result;
2815 }
2816 
2817 //
2818 //  Convert the types of unescaped object to instance types where possible,
2819 //  propagate the new type information through the graph, and update memory
2820 //  edges and MergeMem inputs to reflect the new type.
2821 //
2822 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2823 //  The processing is done in 4 phases:
2824 //
2825 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2826 //            types for the CheckCastPP for allocations where possible.
2827 //            Propagate the new types through users as follows:
2828 //               casts and Phi:  push users on alloc_worklist
2829 //               AddP:  cast Base and Address inputs to the instance type
2830 //                      push any AddP users on alloc_worklist and push any memnode
2831 //                      users onto memnode_worklist.
2832 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2833 //            search the Memory chain for a store with the appropriate type
2834 //            address type.  If a Phi is found, create a new version with
2835 //            the appropriate memory slices from each of the Phi inputs.
2836 //            For stores, process the users as follows:
2837 //               MemNode:  push on memnode_worklist
2838 //               MergeMem: push on mergemem_worklist
2839 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2840 //            moving the first node encountered of each  instance type to the
2841 //            the input corresponding to its alias index.
2842 //            appropriate memory slice.
2843 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2844 //
2845 // In the following example, the CheckCastPP nodes are the cast of allocation
2846 // results and the allocation of node 29 is unescaped and eligible to be an
2847 // instance type.
2848 //
2849 // We start with:
2850 //
2851 //     7 Parm #memory
2852 //    10  ConI  "12"
2853 //    19  CheckCastPP   "Foo"
2854 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2855 //    29  CheckCastPP   "Foo"
2856 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2857 //
2858 //    40  StoreP  25   7  20   ... alias_index=4
2859 //    50  StoreP  35  40  30   ... alias_index=4
2860 //    60  StoreP  45  50  20   ... alias_index=4
2861 //    70  LoadP    _  60  30   ... alias_index=4
2862 //    80  Phi     75  50  60   Memory alias_index=4
2863 //    90  LoadP    _  80  30   ... alias_index=4
2864 //   100  LoadP    _  80  20   ... alias_index=4
2865 //
2866 //
2867 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2868 // and creating a new alias index for node 30.  This gives:
2869 //
2870 //     7 Parm #memory
2871 //    10  ConI  "12"
2872 //    19  CheckCastPP   "Foo"
2873 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2874 //    29  CheckCastPP   "Foo"  iid=24
2875 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2876 //
2877 //    40  StoreP  25   7  20   ... alias_index=4
2878 //    50  StoreP  35  40  30   ... alias_index=6
2879 //    60  StoreP  45  50  20   ... alias_index=4
2880 //    70  LoadP    _  60  30   ... alias_index=6
2881 //    80  Phi     75  50  60   Memory alias_index=4
2882 //    90  LoadP    _  80  30   ... alias_index=6
2883 //   100  LoadP    _  80  20   ... alias_index=4
2884 //
2885 // In phase 2, new memory inputs are computed for the loads and stores,
2886 // And a new version of the phi is created.  In phase 4, the inputs to
2887 // node 80 are updated and then the memory nodes are updated with the
2888 // values computed in phase 2.  This results in:
2889 //
2890 //     7 Parm #memory
2891 //    10  ConI  "12"
2892 //    19  CheckCastPP   "Foo"
2893 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2894 //    29  CheckCastPP   "Foo"  iid=24
2895 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2896 //
2897 //    40  StoreP  25  7   20   ... alias_index=4
2898 //    50  StoreP  35  7   30   ... alias_index=6
2899 //    60  StoreP  45  40  20   ... alias_index=4
2900 //    70  LoadP    _  50  30   ... alias_index=6
2901 //    80  Phi     75  40  60   Memory alias_index=4
2902 //   120  Phi     75  50  50   Memory alias_index=6
2903 //    90  LoadP    _ 120  30   ... alias_index=6
2904 //   100  LoadP    _  80  20   ... alias_index=4
2905 //
2906 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2907   GrowableArray<Node *>  memnode_worklist;
2908   GrowableArray<PhiNode *>  orig_phis;
2909   PhaseIterGVN  *igvn = _igvn;
2910   uint new_index_start = (uint) _compile->num_alias_types();
2911   Arena* arena = Thread::current()->resource_area();
2912   VectorSet visited(arena);
2913   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2914   uint unique_old = _compile->unique();
2915 
2916   //  Phase 1:  Process possible allocations from alloc_worklist.
2917   //  Create instance types for the CheckCastPP for allocations where possible.
2918   //
2919   // (Note: don't forget to change the order of the second AddP node on
2920   //  the alloc_worklist if the order of the worklist processing is changed,
2921   //  see the comment in find_second_addp().)
2922   //
2923   while (alloc_worklist.length() != 0) {
2924     Node *n = alloc_worklist.pop();
2925     uint ni = n->_idx;
2926     if (n->is_Call()) {
2927       CallNode *alloc = n->as_Call();
2928       // copy escape information to call node
2929       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2930       PointsToNode::EscapeState es = ptn->escape_state();
2931       // We have an allocation or call which returns a Java object,
2932       // see if it is unescaped.
2933       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2934         continue;
2935       // Find CheckCastPP for the allocate or for the return value of a call
2936       n = alloc->result_cast();
2937       if (n == NULL) {            // No uses except Initialize node
2938         if (alloc->is_Allocate()) {
2939           // Set the scalar_replaceable flag for allocation
2940           // so it could be eliminated if it has no uses.
2941           alloc->as_Allocate()->_is_scalar_replaceable = true;
2942         }
2943         if (alloc->is_CallStaticJava()) {
2944           // Set the scalar_replaceable flag for boxing method
2945           // so it could be eliminated if it has no uses.
2946           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2947         }
2948         continue;
2949       }
2950       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2951         assert(!alloc->is_Allocate(), "allocation should have unique type");
2952         continue;
2953       }
2954 
2955       // The inline code for Object.clone() casts the allocation result to
2956       // java.lang.Object and then to the actual type of the allocated
2957       // object. Detect this case and use the second cast.
2958       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2959       // the allocation result is cast to java.lang.Object and then
2960       // to the actual Array type.
2961       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2962           && (alloc->is_AllocateArray() ||
2963               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2964         Node *cast2 = NULL;
2965         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2966           Node *use = n->fast_out(i);
2967           if (use->is_CheckCastPP()) {
2968             cast2 = use;
2969             break;
2970           }
2971         }
2972         if (cast2 != NULL) {
2973           n = cast2;
2974         } else {
2975           // Non-scalar replaceable if the allocation type is unknown statically
2976           // (reflection allocation), the object can't be restored during
2977           // deoptimization without precise type.
2978           continue;
2979         }
2980       }
2981 
2982       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2983       if (t == NULL)
2984         continue;  // not a TypeOopPtr
2985       if (!t->klass_is_exact())
2986         continue; // not an unique type
2987 
2988       if (alloc->is_Allocate()) {
2989         // Set the scalar_replaceable flag for allocation
2990         // so it could be eliminated.
2991         alloc->as_Allocate()->_is_scalar_replaceable = true;
2992       }
2993       if (alloc->is_CallStaticJava()) {
2994         // Set the scalar_replaceable flag for boxing method
2995         // so it could be eliminated.
2996         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2997       }
2998       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2999       // in order for an object to be scalar-replaceable, it must be:
3000       //   - a direct allocation (not a call returning an object)
3001       //   - non-escaping
3002       //   - eligible to be a unique type
3003       //   - not determined to be ineligible by escape analysis
3004       set_map(alloc, n);
3005       set_map(n, alloc);
3006       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3007       igvn->hash_delete(n);
3008       igvn->set_type(n,  tinst);
3009       n->raise_bottom_type(tinst);
3010       igvn->hash_insert(n);
3011       record_for_optimizer(n);
3012       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3013 
3014         // First, put on the worklist all Field edges from Connection Graph
3015         // which is more accurate than putting immediate users from Ideal Graph.
3016         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3017           PointsToNode* tgt = e.get();
3018           if (tgt->is_Arraycopy()) {
3019             continue;
3020           }
3021           Node* use = tgt->ideal_node();
3022           assert(tgt->is_Field() && use->is_AddP(),
3023                  "only AddP nodes are Field edges in CG");
3024           if (use->outcnt() > 0) { // Don't process dead nodes
3025             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3026             if (addp2 != NULL) {
3027               assert(alloc->is_AllocateArray(),"array allocation was expected");
3028               alloc_worklist.append_if_missing(addp2);
3029             }
3030             alloc_worklist.append_if_missing(use);
3031           }
3032         }
3033 
3034         // An allocation may have an Initialize which has raw stores. Scan
3035         // the users of the raw allocation result and push AddP users
3036         // on alloc_worklist.
3037         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3038         assert (raw_result != NULL, "must have an allocation result");
3039         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3040           Node *use = raw_result->fast_out(i);
3041           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3042             Node* addp2 = find_second_addp(use, raw_result);
3043             if (addp2 != NULL) {
3044               assert(alloc->is_AllocateArray(),"array allocation was expected");
3045               alloc_worklist.append_if_missing(addp2);
3046             }
3047             alloc_worklist.append_if_missing(use);
3048           } else if (use->is_MemBar()) {
3049             memnode_worklist.append_if_missing(use);
3050           }
3051         }
3052       }
3053     } else if (n->is_AddP()) {
3054       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3055       if (jobj == NULL || jobj == phantom_obj) {
3056 #ifdef ASSERT
3057         ptnode_adr(get_addp_base(n)->_idx)->dump();
3058         ptnode_adr(n->_idx)->dump();
3059         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3060 #endif
3061         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3062         return;
3063       }
3064       Node *base = get_map(jobj->idx());  // CheckCastPP node
3065       if (!split_AddP(n, base)) continue; // wrong type from dead path
3066     } else if (n->is_Phi() ||
3067                n->is_CheckCastPP() ||
3068                n->is_EncodeP() ||
3069                n->is_DecodeN() ||
3070                BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(n) ||
3071                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3072       if (visited.test_set(n->_idx)) {
3073         assert(n->is_Phi(), "loops only through Phi's");
3074         continue;  // already processed
3075       }
3076       JavaObjectNode* jobj = unique_java_object(n);
3077       if (jobj == NULL || jobj == phantom_obj) {
3078 #ifdef ASSERT
3079         ptnode_adr(n->_idx)->dump();
3080         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3081 #endif
3082         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3083         return;
3084       } else {
3085         Node *val = get_map(jobj->idx());   // CheckCastPP node
3086         TypeNode *tn = n->as_Type();
3087         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3088         assert(tinst != NULL && tinst->is_known_instance() &&
3089                tinst->instance_id() == jobj->idx() , "instance type expected.");
3090 
3091         const Type *tn_type = igvn->type(tn);
3092         const TypeOopPtr *tn_t;
3093         if (tn_type->isa_narrowoop()) {
3094           tn_t = tn_type->make_ptr()->isa_oopptr();
3095         } else {
3096           tn_t = tn_type->isa_oopptr();
3097         }
3098         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3099           if (tn_type->isa_narrowoop()) {
3100             tn_type = tinst->make_narrowoop();
3101           } else {
3102             tn_type = tinst;
3103           }
3104           igvn->hash_delete(tn);
3105           igvn->set_type(tn, tn_type);
3106           tn->set_type(tn_type);
3107           igvn->hash_insert(tn);
3108           record_for_optimizer(n);
3109         } else {
3110           assert(tn_type == TypePtr::NULL_PTR ||
3111                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3112                  "unexpected type");
3113           continue; // Skip dead path with different type
3114         }
3115       }
3116     } else {
3117       debug_only(n->dump();)
3118       assert(false, "EA: unexpected node");
3119       continue;
3120     }
3121     // push allocation's users on appropriate worklist
3122     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3123       Node *use = n->fast_out(i);
3124       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3125         // Load/store to instance's field
3126         memnode_worklist.append_if_missing(use);
3127       } else if (use->is_MemBar()) {
3128         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3129           memnode_worklist.append_if_missing(use);
3130         }
3131       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3132         Node* addp2 = find_second_addp(use, n);
3133         if (addp2 != NULL) {
3134           alloc_worklist.append_if_missing(addp2);
3135         }
3136         alloc_worklist.append_if_missing(use);
3137       } else if (use->is_Phi() ||
3138                  use->is_CheckCastPP() ||
3139                  use->is_EncodeNarrowPtr() ||
3140                  use->is_DecodeNarrowPtr() ||
3141                  BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(use) ||
3142                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3143         alloc_worklist.append_if_missing(use);
3144 #ifdef ASSERT
3145       } else if (use->is_Mem()) {
3146         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3147       } else if (use->is_MergeMem()) {
3148         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3149       } else if (use->is_SafePoint()) {
3150         // Look for MergeMem nodes for calls which reference unique allocation
3151         // (through CheckCastPP nodes) even for debug info.
3152         Node* m = use->in(TypeFunc::Memory);
3153         if (m->is_MergeMem()) {
3154           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3155         }
3156       } else if (use->Opcode() == Op_EncodeISOArray) {
3157         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3158           // EncodeISOArray overwrites destination array
3159           memnode_worklist.append_if_missing(use);
3160         }
3161       } else {
3162         uint op = use->Opcode();
3163         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3164             (use->in(MemNode::Memory) == n)) {
3165           // They overwrite memory edge corresponding to destination array,
3166           memnode_worklist.append_if_missing(use);
3167         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3168               op == Op_CastP2X || op == Op_StoreCM ||
3169               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3170               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3171               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3172               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
3173           n->dump();
3174           use->dump();
3175           assert(false, "EA: missing allocation reference path");
3176         }
3177 #endif
3178       }
3179     }
3180 
3181   }
3182 
3183   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3184   // type, record it in the ArrayCopy node so we know what memory this
3185   // node uses/modified.
3186   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3187     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3188     Node* dest = ac->in(ArrayCopyNode::Dest);
3189     if (dest->is_AddP()) {
3190       dest = get_addp_base(dest);
3191     }
3192     JavaObjectNode* jobj = unique_java_object(dest);
3193     if (jobj != NULL) {
3194       Node *base = get_map(jobj->idx());
3195       if (base != NULL) {
3196         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3197         ac->_dest_type = base_t;
3198       }
3199     }
3200     Node* src = ac->in(ArrayCopyNode::Src);
3201     if (src->is_AddP()) {
3202       src = get_addp_base(src);
3203     }
3204     jobj = unique_java_object(src);
3205     if (jobj != NULL) {
3206       Node* base = get_map(jobj->idx());
3207       if (base != NULL) {
3208         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3209         ac->_src_type = base_t;
3210       }
3211     }
3212   }
3213 
3214   // New alias types were created in split_AddP().
3215   uint new_index_end = (uint) _compile->num_alias_types();
3216   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3217 
3218   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3219   //            compute new values for Memory inputs  (the Memory inputs are not
3220   //            actually updated until phase 4.)
3221   if (memnode_worklist.length() == 0)
3222     return;  // nothing to do
3223   while (memnode_worklist.length() != 0) {
3224     Node *n = memnode_worklist.pop();
3225     if (visited.test_set(n->_idx))
3226       continue;
3227     if (n->is_Phi() || n->is_ClearArray()) {
3228       // we don't need to do anything, but the users must be pushed
3229     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3230       // we don't need to do anything, but the users must be pushed
3231       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3232       if (n == NULL)
3233         continue;
3234     } else if (n->Opcode() == Op_StrCompressedCopy ||
3235                n->Opcode() == Op_EncodeISOArray) {
3236       // get the memory projection
3237       n = n->find_out_with(Op_SCMemProj);
3238       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3239     } else {
3240       assert(n->is_Mem(), "memory node required.");
3241       Node *addr = n->in(MemNode::Address);
3242       const Type *addr_t = igvn->type(addr);
3243       if (addr_t == Type::TOP)
3244         continue;
3245       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3246       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3247       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3248       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3249       if (_compile->failing()) {
3250         return;
3251       }
3252       if (mem != n->in(MemNode::Memory)) {
3253         // We delay the memory edge update since we need old one in
3254         // MergeMem code below when instances memory slices are separated.
3255         set_map(n, mem);
3256       }
3257       if (n->is_Load()) {
3258         continue;  // don't push users
3259       } else if (n->is_LoadStore()) {
3260         // get the memory projection
3261         n = n->find_out_with(Op_SCMemProj);
3262         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3263       }
3264     }
3265     // push user on appropriate worklist
3266     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3267       Node *use = n->fast_out(i);
3268       if (use->is_Phi() || use->is_ClearArray()) {
3269         memnode_worklist.append_if_missing(use);
3270       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3271         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3272           continue;
3273         memnode_worklist.append_if_missing(use);
3274       } else if (use->is_MemBar()) {
3275         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3276           memnode_worklist.append_if_missing(use);
3277         }
3278 #ifdef ASSERT
3279       } else if(use->is_Mem()) {
3280         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3281       } else if (use->is_MergeMem()) {
3282         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3283       } else if (use->Opcode() == Op_EncodeISOArray) {
3284         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3285           // EncodeISOArray overwrites destination array
3286           memnode_worklist.append_if_missing(use);
3287         }
3288       } else {
3289         uint op = use->Opcode();
3290         if ((use->in(MemNode::Memory) == n) &&
3291             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3292           // They overwrite memory edge corresponding to destination array,
3293           memnode_worklist.append_if_missing(use);
3294         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3295               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3296               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3297               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3298           n->dump();
3299           use->dump();
3300           assert(false, "EA: missing memory path");
3301         }
3302 #endif
3303       }
3304     }
3305   }
3306 
3307   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3308   //            Walk each memory slice moving the first node encountered of each
3309   //            instance type to the the input corresponding to its alias index.
3310   uint length = _mergemem_worklist.length();
3311   for( uint next = 0; next < length; ++next ) {
3312     MergeMemNode* nmm = _mergemem_worklist.at(next);
3313     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3314     // Note: we don't want to use MergeMemStream here because we only want to
3315     // scan inputs which exist at the start, not ones we add during processing.
3316     // Note 2: MergeMem may already contains instance memory slices added
3317     // during find_inst_mem() call when memory nodes were processed above.
3318     igvn->hash_delete(nmm);
3319     uint nslices = MIN2(nmm->req(), new_index_start);
3320     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3321       Node* mem = nmm->in(i);
3322       Node* cur = NULL;
3323       if (mem == NULL || mem->is_top())
3324         continue;
3325       // First, update mergemem by moving memory nodes to corresponding slices
3326       // if their type became more precise since this mergemem was created.
3327       while (mem->is_Mem()) {
3328         const Type *at = igvn->type(mem->in(MemNode::Address));
3329         if (at != Type::TOP) {
3330           assert (at->isa_ptr() != NULL, "pointer type required.");
3331           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3332           if (idx == i) {
3333             if (cur == NULL)
3334               cur = mem;
3335           } else {
3336             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3337               nmm->set_memory_at(idx, mem);
3338             }
3339           }
3340         }
3341         mem = mem->in(MemNode::Memory);
3342       }
3343       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3344       // Find any instance of the current type if we haven't encountered
3345       // already a memory slice of the instance along the memory chain.
3346       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3347         if((uint)_compile->get_general_index(ni) == i) {
3348           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3349           if (nmm->is_empty_memory(m)) {
3350             Node* result = find_inst_mem(mem, ni, orig_phis);
3351             if (_compile->failing()) {
3352               return;
3353             }
3354             nmm->set_memory_at(ni, result);
3355           }
3356         }
3357       }
3358     }
3359     // Find the rest of instances values
3360     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3361       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3362       Node* result = step_through_mergemem(nmm, ni, tinst);
3363       if (result == nmm->base_memory()) {
3364         // Didn't find instance memory, search through general slice recursively.
3365         result = nmm->memory_at(_compile->get_general_index(ni));
3366         result = find_inst_mem(result, ni, orig_phis);
3367         if (_compile->failing()) {
3368           return;
3369         }
3370         nmm->set_memory_at(ni, result);
3371       }
3372     }
3373     igvn->hash_insert(nmm);
3374     record_for_optimizer(nmm);
3375   }
3376 
3377   //  Phase 4:  Update the inputs of non-instance memory Phis and
3378   //            the Memory input of memnodes
3379   // First update the inputs of any non-instance Phi's from
3380   // which we split out an instance Phi.  Note we don't have
3381   // to recursively process Phi's encounted on the input memory
3382   // chains as is done in split_memory_phi() since they  will
3383   // also be processed here.
3384   for (int j = 0; j < orig_phis.length(); j++) {
3385     PhiNode *phi = orig_phis.at(j);
3386     int alias_idx = _compile->get_alias_index(phi->adr_type());
3387     igvn->hash_delete(phi);
3388     for (uint i = 1; i < phi->req(); i++) {
3389       Node *mem = phi->in(i);
3390       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3391       if (_compile->failing()) {
3392         return;
3393       }
3394       if (mem != new_mem) {
3395         phi->set_req(i, new_mem);
3396       }
3397     }
3398     igvn->hash_insert(phi);
3399     record_for_optimizer(phi);
3400   }
3401 
3402   // Update the memory inputs of MemNodes with the value we computed
3403   // in Phase 2 and move stores memory users to corresponding memory slices.
3404   // Disable memory split verification code until the fix for 6984348.
3405   // Currently it produces false negative results since it does not cover all cases.
3406 #if 0 // ifdef ASSERT
3407   visited.Reset();
3408   Node_Stack old_mems(arena, _compile->unique() >> 2);
3409 #endif
3410   for (uint i = 0; i < ideal_nodes.size(); i++) {
3411     Node*    n = ideal_nodes.at(i);
3412     Node* nmem = get_map(n->_idx);
3413     assert(nmem != NULL, "sanity");
3414     if (n->is_Mem()) {
3415 #if 0 // ifdef ASSERT
3416       Node* old_mem = n->in(MemNode::Memory);
3417       if (!visited.test_set(old_mem->_idx)) {
3418         old_mems.push(old_mem, old_mem->outcnt());
3419       }
3420 #endif
3421       assert(n->in(MemNode::Memory) != nmem, "sanity");
3422       if (!n->is_Load()) {
3423         // Move memory users of a store first.
3424         move_inst_mem(n, orig_phis);
3425       }
3426       // Now update memory input
3427       igvn->hash_delete(n);
3428       n->set_req(MemNode::Memory, nmem);
3429       igvn->hash_insert(n);
3430       record_for_optimizer(n);
3431     } else {
3432       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3433              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3434     }
3435   }
3436 #if 0 // ifdef ASSERT
3437   // Verify that memory was split correctly
3438   while (old_mems.is_nonempty()) {
3439     Node* old_mem = old_mems.node();
3440     uint  old_cnt = old_mems.index();
3441     old_mems.pop();
3442     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3443   }
3444 #endif
3445 }
3446 
3447 #ifndef PRODUCT
3448 static const char *node_type_names[] = {
3449   "UnknownType",
3450   "JavaObject",
3451   "LocalVar",
3452   "Field",
3453   "Arraycopy"
3454 };
3455 
3456 static const char *esc_names[] = {
3457   "UnknownEscape",
3458   "NoEscape",
3459   "ArgEscape",
3460   "GlobalEscape"
3461 };
3462 
3463 void PointsToNode::dump(bool print_state) const {
3464   NodeType nt = node_type();
3465   tty->print("%s ", node_type_names[(int) nt]);
3466   if (print_state) {
3467     EscapeState es = escape_state();
3468     EscapeState fields_es = fields_escape_state();
3469     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3470     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3471       tty->print("NSR ");
3472   }
3473   if (is_Field()) {
3474     FieldNode* f = (FieldNode*)this;
3475     if (f->is_oop())
3476       tty->print("oop ");
3477     if (f->offset() > 0)
3478       tty->print("+%d ", f->offset());
3479     tty->print("(");
3480     for (BaseIterator i(f); i.has_next(); i.next()) {
3481       PointsToNode* b = i.get();
3482       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3483     }
3484     tty->print(" )");
3485   }
3486   tty->print("[");
3487   for (EdgeIterator i(this); i.has_next(); i.next()) {
3488     PointsToNode* e = i.get();
3489     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3490   }
3491   tty->print(" [");
3492   for (UseIterator i(this); i.has_next(); i.next()) {
3493     PointsToNode* u = i.get();
3494     bool is_base = false;
3495     if (PointsToNode::is_base_use(u)) {
3496       is_base = true;
3497       u = PointsToNode::get_use_node(u)->as_Field();
3498     }
3499     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3500   }
3501   tty->print(" ]]  ");
3502   if (_node == NULL)
3503     tty->print_cr("<null>");
3504   else
3505     _node->dump();
3506 }
3507 
3508 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3509   bool first = true;
3510   int ptnodes_length = ptnodes_worklist.length();
3511   for (int i = 0; i < ptnodes_length; i++) {
3512     PointsToNode *ptn = ptnodes_worklist.at(i);
3513     if (ptn == NULL || !ptn->is_JavaObject())
3514       continue;
3515     PointsToNode::EscapeState es = ptn->escape_state();
3516     if ((es != PointsToNode::NoEscape) && !Verbose) {
3517       continue;
3518     }
3519     Node* n = ptn->ideal_node();
3520     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3521                              n->as_CallStaticJava()->is_boxing_method())) {
3522       if (first) {
3523         tty->cr();
3524         tty->print("======== Connection graph for ");
3525         _compile->method()->print_short_name();
3526         tty->cr();
3527         first = false;
3528       }
3529       ptn->dump();
3530       // Print all locals and fields which reference this allocation
3531       for (UseIterator j(ptn); j.has_next(); j.next()) {
3532         PointsToNode* use = j.get();
3533         if (use->is_LocalVar()) {
3534           use->dump(Verbose);
3535         } else if (Verbose) {
3536           use->dump();
3537         }
3538       }
3539       tty->cr();
3540     }
3541   }
3542 }
3543 #endif
3544 
3545 void ConnectionGraph::record_for_optimizer(Node *n) {
3546   _igvn->_worklist.push(n);
3547   _igvn->add_users_to_worklist(n);
3548 }