1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  45   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  46   _in_worklist(C->comp_arena()),
  47   _next_pidx(0),
  48   _collecting(true),
  49   _verify(false),
  50   _compile(C),
  51   _igvn(igvn),
  52   _node_map(C->comp_arena()) {
  53   // Add unknown java object.
  54   add_java_object(C->top(), PointsToNode::GlobalEscape);
  55   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  56   // Add ConP(#NULL) and ConN(#NULL) nodes.
  57   Node* oop_null = igvn->zerocon(T_OBJECT);
  58   assert(oop_null->_idx < nodes_size(), "should be created already");
  59   add_java_object(oop_null, PointsToNode::NoEscape);
  60   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  61   if (UseCompressedOops) {
  62     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  63     assert(noop_null->_idx < nodes_size(), "should be created already");
  64     map_ideal_node(noop_null, null_obj);
  65   }
  66   _pcmp_neq = NULL; // Should be initialized
  67   _pcmp_eq  = NULL;
  68 }
  69 
  70 bool ConnectionGraph::has_candidates(Compile *C) {
  71   // EA brings benefits only when the code has allocations and/or locks which
  72   // are represented by ideal Macro nodes.
  73   int cnt = C->macro_count();
  74   for (int i = 0; i < cnt; i++) {
  75     Node *n = C->macro_node(i);
  76     if (n->is_Allocate())
  77       return true;
  78     if (n->is_Lock()) {
  79       Node* obj = n->as_Lock()->obj_node()->uncast();
  80       if (!(obj->is_Parm() || obj->is_Con()))
  81         return true;
  82     }
  83     if (n->is_CallStaticJava() &&
  84         n->as_CallStaticJava()->is_boxing_method()) {
  85       return true;
  86     }
  87   }
  88   return false;
  89 }
  90 
  91 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  92   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  93   ResourceMark rm;
  94 
  95   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  96   // to create space for them in ConnectionGraph::_nodes[].
  97   Node* oop_null = igvn->zerocon(T_OBJECT);
  98   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  99   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
 100   // Perform escape analysis
 101   if (congraph->compute_escape()) {
 102     // There are non escaping objects.
 103     C->set_congraph(congraph);
 104   }
 105   // Cleanup.
 106   if (oop_null->outcnt() == 0)
 107     igvn->hash_delete(oop_null);
 108   if (noop_null->outcnt() == 0)
 109     igvn->hash_delete(noop_null);
 110 }
 111 
 112 bool ConnectionGraph::compute_escape() {
 113   Compile* C = _compile;
 114   PhaseGVN* igvn = _igvn;
 115 
 116   // Worklists used by EA.
 117   Unique_Node_List delayed_worklist;
 118   GrowableArray<Node*> alloc_worklist;
 119   GrowableArray<Node*> ptr_cmp_worklist;
 120   GrowableArray<Node*> storestore_worklist;
 121   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 122   GrowableArray<PointsToNode*>   ptnodes_worklist;
 123   GrowableArray<JavaObjectNode*> java_objects_worklist;
 124   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 125   GrowableArray<FieldNode*>      oop_fields_worklist;
 126   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 127 
 128   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 129 
 130   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 131   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 132   // Initialize worklist
 133   if (C->root() != NULL) {
 134     ideal_nodes.push(C->root());
 135   }
 136   // Processed ideal nodes are unique on ideal_nodes list
 137   // but several ideal nodes are mapped to the phantom_obj.
 138   // To avoid duplicated entries on the following worklists
 139   // add the phantom_obj only once to them.
 140   ptnodes_worklist.append(phantom_obj);
 141   java_objects_worklist.append(phantom_obj);
 142   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 143     Node* n = ideal_nodes.at(next);
 144     // Create PointsTo nodes and add them to Connection Graph. Called
 145     // only once per ideal node since ideal_nodes is Unique_Node list.
 146     add_node_to_connection_graph(n, &delayed_worklist);
 147     PointsToNode* ptn = ptnode_adr(n->_idx);
 148     if (ptn != NULL && ptn != phantom_obj) {
 149       ptnodes_worklist.append(ptn);
 150       if (ptn->is_JavaObject()) {
 151         java_objects_worklist.append(ptn->as_JavaObject());
 152         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 153             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 154           // Only allocations and java static calls results are interesting.
 155           non_escaped_worklist.append(ptn->as_JavaObject());
 156         }
 157       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 158         oop_fields_worklist.append(ptn->as_Field());
 159       }
 160     }
 161     if (n->is_MergeMem()) {
 162       // Collect all MergeMem nodes to add memory slices for
 163       // scalar replaceable objects in split_unique_types().
 164       _mergemem_worklist.append(n->as_MergeMem());
 165     } else if (OptimizePtrCompare && n->is_Cmp() &&
 166                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 167       // Collect compare pointers nodes.
 168       ptr_cmp_worklist.append(n);
 169     } else if (n->is_MemBarStoreStore()) {
 170       // Collect all MemBarStoreStore nodes so that depending on the
 171       // escape status of the associated Allocate node some of them
 172       // may be eliminated.
 173       storestore_worklist.append(n);
 174     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 175                (n->req() > MemBarNode::Precedent)) {
 176       record_for_optimizer(n);
 177 #ifdef ASSERT
 178     } else if (n->is_AddP()) {
 179       // Collect address nodes for graph verification.
 180       addp_worklist.append(n);
 181 #endif
 182     } else if (n->is_ArrayCopy()) {
 183       // Keep a list of ArrayCopy nodes so if one of its input is non
 184       // escaping, we can record a unique type
 185       arraycopy_worklist.append(n->as_ArrayCopy());
 186     }
 187     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 188       Node* m = n->fast_out(i);   // Get user
 189       ideal_nodes.push(m);
 190     }
 191   }
 192   if (non_escaped_worklist.length() == 0) {
 193     _collecting = false;
 194     return false; // Nothing to do.
 195   }
 196   // Add final simple edges to graph.
 197   while(delayed_worklist.size() > 0) {
 198     Node* n = delayed_worklist.pop();
 199     add_final_edges(n);
 200   }
 201   int ptnodes_length = ptnodes_worklist.length();
 202 
 203 #ifdef ASSERT
 204   if (VerifyConnectionGraph) {
 205     // Verify that no new simple edges could be created and all
 206     // local vars has edges.
 207     _verify = true;
 208     for (int next = 0; next < ptnodes_length; ++next) {
 209       PointsToNode* ptn = ptnodes_worklist.at(next);
 210       add_final_edges(ptn->ideal_node());
 211       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 212         ptn->dump();
 213         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 214       }
 215     }
 216     _verify = false;
 217   }
 218 #endif
 219   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 220   // processing, calls to CI to resolve symbols (types, fields, methods)
 221   // referenced in bytecode. During symbol resolution VM may throw
 222   // an exception which CI cleans and converts to compilation failure.
 223   if (C->failing())  return false;
 224 
 225   // 2. Finish Graph construction by propagating references to all
 226   //    java objects through graph.
 227   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 228                                  java_objects_worklist, oop_fields_worklist)) {
 229     // All objects escaped or hit time or iterations limits.
 230     _collecting = false;
 231     return false;
 232   }
 233 
 234   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 235   //    scalar replaceable allocations on alloc_worklist for processing
 236   //    in split_unique_types().
 237   int non_escaped_length = non_escaped_worklist.length();
 238   for (int next = 0; next < non_escaped_length; next++) {
 239     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 240     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 241     Node* n = ptn->ideal_node();
 242     if (n->is_Allocate()) {
 243       n->as_Allocate()->_is_non_escaping = noescape;
 244     }
 245     if (n->is_CallStaticJava()) {
 246       n->as_CallStaticJava()->_is_non_escaping = noescape;
 247     }
 248     if (noescape && ptn->scalar_replaceable()) {
 249       adjust_scalar_replaceable_state(ptn);
 250       if (ptn->scalar_replaceable()) {
 251         alloc_worklist.append(ptn->ideal_node());
 252       }
 253     }
 254   }
 255 
 256 #ifdef ASSERT
 257   if (VerifyConnectionGraph) {
 258     // Verify that graph is complete - no new edges could be added or needed.
 259     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 260                             java_objects_worklist, addp_worklist);
 261   }
 262   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 263   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 264          null_obj->edge_count() == 0 &&
 265          !null_obj->arraycopy_src() &&
 266          !null_obj->arraycopy_dst(), "sanity");
 267 #endif
 268 
 269   _collecting = false;
 270 
 271   } // TracePhase t3("connectionGraph")
 272 
 273   // 4. Optimize ideal graph based on EA information.
 274   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 275   if (has_non_escaping_obj) {
 276     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 277   }
 278 
 279 #ifndef PRODUCT
 280   if (PrintEscapeAnalysis) {
 281     dump(ptnodes_worklist); // Dump ConnectionGraph
 282   }
 283 #endif
 284 
 285   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 286 #ifdef ASSERT
 287   if (VerifyConnectionGraph) {
 288     int alloc_length = alloc_worklist.length();
 289     for (int next = 0; next < alloc_length; ++next) {
 290       Node* n = alloc_worklist.at(next);
 291       PointsToNode* ptn = ptnode_adr(n->_idx);
 292       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 293     }
 294   }
 295 #endif
 296 
 297   // 5. Separate memory graph for scalar replaceable allcations.
 298   if (has_scalar_replaceable_candidates &&
 299       C->AliasLevel() >= 3 && EliminateAllocations) {
 300     // Now use the escape information to create unique types for
 301     // scalar replaceable objects.
 302     split_unique_types(alloc_worklist, arraycopy_worklist);
 303     if (C->failing())  return false;
 304     C->print_method(PHASE_AFTER_EA, 2);
 305 
 306 #ifdef ASSERT
 307   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 308     tty->print("=== No allocations eliminated for ");
 309     C->method()->print_short_name();
 310     if(!EliminateAllocations) {
 311       tty->print(" since EliminateAllocations is off ===");
 312     } else if(!has_scalar_replaceable_candidates) {
 313       tty->print(" since there are no scalar replaceable candidates ===");
 314     } else if(C->AliasLevel() < 3) {
 315       tty->print(" since AliasLevel < 3 ===");
 316     }
 317     tty->cr();
 318 #endif
 319   }
 320   return has_non_escaping_obj;
 321 }
 322 
 323 // Utility function for nodes that load an object
 324 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 325   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 326   // ThreadLocal has RawPtr type.
 327   const Type* t = _igvn->type(n);
 328   if (t->make_ptr() != NULL) {
 329     Node* adr = n->in(MemNode::Address);
 330 #ifdef ASSERT
 331     if (!adr->is_AddP()) {
 332       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 333     } else {
 334       assert((ptnode_adr(adr->_idx) == NULL ||
 335               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 336     }
 337 #endif
 338     add_local_var_and_edge(n, PointsToNode::NoEscape,
 339                            adr, delayed_worklist);
 340   }
 341 }
 342 
 343 // Populate Connection Graph with PointsTo nodes and create simple
 344 // connection graph edges.
 345 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 346   assert(!_verify, "this method should not be called for verification");
 347   PhaseGVN* igvn = _igvn;
 348   uint n_idx = n->_idx;
 349   PointsToNode* n_ptn = ptnode_adr(n_idx);
 350   if (n_ptn != NULL)
 351     return; // No need to redefine PointsTo node during first iteration.
 352 
 353   if (n->is_Call()) {
 354     // Arguments to allocation and locking don't escape.
 355     if (n->is_AbstractLock()) {
 356       // Put Lock and Unlock nodes on IGVN worklist to process them during
 357       // first IGVN optimization when escape information is still available.
 358       record_for_optimizer(n);
 359     } else if (n->is_Allocate()) {
 360       add_call_node(n->as_Call());
 361       record_for_optimizer(n);
 362     } else {
 363       if (n->is_CallStaticJava()) {
 364         const char* name = n->as_CallStaticJava()->_name;
 365         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 366           return; // Skip uncommon traps
 367       }
 368       // Don't mark as processed since call's arguments have to be processed.
 369       delayed_worklist->push(n);
 370       // Check if a call returns an object.
 371       if ((n->as_Call()->returns_pointer() &&
 372            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
 373           (n->is_CallStaticJava() &&
 374            n->as_CallStaticJava()->is_boxing_method())) {
 375         add_call_node(n->as_Call());
 376       }
 377     }
 378     return;
 379   }
 380   // Put this check here to process call arguments since some call nodes
 381   // point to phantom_obj.
 382   if (n_ptn == phantom_obj || n_ptn == null_obj)
 383     return; // Skip predefined nodes.
 384 
 385   int opcode = n->Opcode();
 386   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
 387   if (gc_handled) {
 388     return; // Ignore node if already handled by GC.
 389   }
 390   switch (opcode) {
 391     case Op_AddP: {
 392       Node* base = get_addp_base(n);
 393       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 394       // Field nodes are created for all field types. They are used in
 395       // adjust_scalar_replaceable_state() and split_unique_types().
 396       // Note, non-oop fields will have only base edges in Connection
 397       // Graph because such fields are not used for oop loads and stores.
 398       int offset = address_offset(n, igvn);
 399       add_field(n, PointsToNode::NoEscape, offset);
 400       if (ptn_base == NULL) {
 401         delayed_worklist->push(n); // Process it later.
 402       } else {
 403         n_ptn = ptnode_adr(n_idx);
 404         add_base(n_ptn->as_Field(), ptn_base);
 405       }
 406       break;
 407     }
 408     case Op_CastX2P: {
 409       map_ideal_node(n, phantom_obj);
 410       break;
 411     }
 412     case Op_CastPP:
 413     case Op_CheckCastPP:
 414     case Op_EncodeP:
 415     case Op_DecodeN:
 416     case Op_EncodePKlass:
 417     case Op_DecodeNKlass: {
 418       add_local_var_and_edge(n, PointsToNode::NoEscape,
 419                              n->in(1), delayed_worklist);
 420       break;
 421     }
 422     case Op_CMoveP: {
 423       add_local_var(n, PointsToNode::NoEscape);
 424       // Do not add edges during first iteration because some could be
 425       // not defined yet.
 426       delayed_worklist->push(n);
 427       break;
 428     }
 429     case Op_ConP:
 430     case Op_ConN:
 431     case Op_ConNKlass: {
 432       // assume all oop constants globally escape except for null
 433       PointsToNode::EscapeState es;
 434       const Type* t = igvn->type(n);
 435       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 436         es = PointsToNode::NoEscape;
 437       } else {
 438         es = PointsToNode::GlobalEscape;
 439       }
 440       add_java_object(n, es);
 441       break;
 442     }
 443     case Op_CreateEx: {
 444       // assume that all exception objects globally escape
 445       map_ideal_node(n, phantom_obj);
 446       break;
 447     }
 448     case Op_LoadKlass:
 449     case Op_LoadNKlass: {
 450       // Unknown class is loaded
 451       map_ideal_node(n, phantom_obj);
 452       break;
 453     }
 454     case Op_LoadP:
 455     case Op_LoadN:
 456     case Op_LoadPLocked: {
 457       add_objload_to_connection_graph(n, delayed_worklist);
 458       break;
 459     }
 460     case Op_Parm: {
 461       map_ideal_node(n, phantom_obj);
 462       break;
 463     }
 464     case Op_PartialSubtypeCheck: {
 465       // Produces Null or notNull and is used in only in CmpP so
 466       // phantom_obj could be used.
 467       map_ideal_node(n, phantom_obj); // Result is unknown
 468       break;
 469     }
 470     case Op_Phi: {
 471       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 472       // ThreadLocal has RawPtr type.
 473       const Type* t = n->as_Phi()->type();
 474       if (t->make_ptr() != NULL) {
 475         add_local_var(n, PointsToNode::NoEscape);
 476         // Do not add edges during first iteration because some could be
 477         // not defined yet.
 478         delayed_worklist->push(n);
 479       }
 480       break;
 481     }
 482     case Op_Proj: {
 483       // we are only interested in the oop result projection from a call
 484       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 485           n->in(0)->as_Call()->returns_pointer()) {
 486         add_local_var_and_edge(n, PointsToNode::NoEscape,
 487                                n->in(0), delayed_worklist);
 488       }
 489       break;
 490     }
 491     case Op_Rethrow: // Exception object escapes
 492     case Op_Return: {
 493       if (n->req() > TypeFunc::Parms &&
 494           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 495         // Treat Return value as LocalVar with GlobalEscape escape state.
 496         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 497                                n->in(TypeFunc::Parms), delayed_worklist);
 498       }
 499       break;
 500     }
 501     case Op_CompareAndExchangeP:
 502     case Op_CompareAndExchangeN:
 503     case Op_GetAndSetP:
 504     case Op_GetAndSetN: {
 505       add_objload_to_connection_graph(n, delayed_worklist);
 506       // fallthrough
 507     }
 508     case Op_StoreP:
 509     case Op_StoreN:
 510     case Op_StoreNKlass:
 511     case Op_StorePConditional:
 512     case Op_WeakCompareAndSwapP:
 513     case Op_WeakCompareAndSwapN:
 514     case Op_CompareAndSwapP:
 515     case Op_CompareAndSwapN: {
 516       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
 517       break;
 518     }
 519     case Op_AryEq:
 520     case Op_HasNegatives:
 521     case Op_StrComp:
 522     case Op_StrEquals:
 523     case Op_StrIndexOf:
 524     case Op_StrIndexOfChar:
 525     case Op_StrInflatedCopy:
 526     case Op_StrCompressedCopy:
 527     case Op_EncodeISOArray: {
 528       add_local_var(n, PointsToNode::ArgEscape);
 529       delayed_worklist->push(n); // Process it later.
 530       break;
 531     }
 532     case Op_ThreadLocal: {
 533       add_java_object(n, PointsToNode::ArgEscape);
 534       break;
 535     }
 536     default:
 537       ; // Do nothing for nodes not related to EA.
 538   }
 539   return;
 540 }
 541 
 542 #ifdef ASSERT
 543 #define ELSE_FAIL(name)                               \
 544       /* Should not be called for not pointer type. */  \
 545       n->dump(1);                                       \
 546       assert(false, name);                              \
 547       break;
 548 #else
 549 #define ELSE_FAIL(name) \
 550       break;
 551 #endif
 552 
 553 // Add final simple edges to graph.
 554 void ConnectionGraph::add_final_edges(Node *n) {
 555   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 556 #ifdef ASSERT
 557   if (_verify && n_ptn->is_JavaObject())
 558     return; // This method does not change graph for JavaObject.
 559 #endif
 560 
 561   if (n->is_Call()) {
 562     process_call_arguments(n->as_Call());
 563     return;
 564   }
 565   assert(n->is_Store() || n->is_LoadStore() ||
 566          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 567          "node should be registered already");
 568   int opcode = n->Opcode();
 569   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
 570   if (gc_handled) {
 571     return; // Ignore node if already handled by GC.
 572   }
 573   switch (opcode) {
 574     case Op_AddP: {
 575       Node* base = get_addp_base(n);
 576       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 577       assert(ptn_base != NULL, "field's base should be registered");
 578       add_base(n_ptn->as_Field(), ptn_base);
 579       break;
 580     }
 581     case Op_CastPP:
 582     case Op_CheckCastPP:
 583     case Op_EncodeP:
 584     case Op_DecodeN:
 585     case Op_EncodePKlass:
 586     case Op_DecodeNKlass: {
 587       add_local_var_and_edge(n, PointsToNode::NoEscape,
 588                              n->in(1), NULL);
 589       break;
 590     }
 591     case Op_CMoveP: {
 592       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 593         Node* in = n->in(i);
 594         if (in == NULL)
 595           continue;  // ignore NULL
 596         Node* uncast_in = in->uncast();
 597         if (uncast_in->is_top() || uncast_in == n)
 598           continue;  // ignore top or inputs which go back this node
 599         PointsToNode* ptn = ptnode_adr(in->_idx);
 600         assert(ptn != NULL, "node should be registered");
 601         add_edge(n_ptn, ptn);
 602       }
 603       break;
 604     }
 605     case Op_LoadP:
 606     case Op_LoadN:
 607     case Op_LoadPLocked: {
 608       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 609       // ThreadLocal has RawPtr type.
 610       const Type* t = _igvn->type(n);
 611       if (t->make_ptr() != NULL) {
 612         Node* adr = n->in(MemNode::Address);
 613         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 614         break;
 615       }
 616       ELSE_FAIL("Op_LoadP");
 617     }
 618     case Op_Phi: {
 619       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 620       // ThreadLocal has RawPtr type.
 621       const Type* t = n->as_Phi()->type();
 622       if (t->make_ptr() != NULL) {
 623         for (uint i = 1; i < n->req(); i++) {
 624           Node* in = n->in(i);
 625           if (in == NULL)
 626             continue;  // ignore NULL
 627           Node* uncast_in = in->uncast();
 628           if (uncast_in->is_top() || uncast_in == n)
 629             continue;  // ignore top or inputs which go back this node
 630           PointsToNode* ptn = ptnode_adr(in->_idx);
 631           assert(ptn != NULL, "node should be registered");
 632           add_edge(n_ptn, ptn);
 633         }
 634         break;
 635       }
 636       ELSE_FAIL("Op_Phi");
 637     }
 638     case Op_Proj: {
 639       // we are only interested in the oop result projection from a call
 640       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 641           n->in(0)->as_Call()->returns_pointer()) {
 642         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 643         break;
 644       }
 645       ELSE_FAIL("Op_Proj");
 646     }
 647     case Op_Rethrow: // Exception object escapes
 648     case Op_Return: {
 649       if (n->req() > TypeFunc::Parms &&
 650           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 651         // Treat Return value as LocalVar with GlobalEscape escape state.
 652         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 653                                n->in(TypeFunc::Parms), NULL);
 654         break;
 655       }
 656       ELSE_FAIL("Op_Return");
 657     }
 658     case Op_StoreP:
 659     case Op_StoreN:
 660     case Op_StoreNKlass:
 661     case Op_StorePConditional:
 662     case Op_CompareAndExchangeP:
 663     case Op_CompareAndExchangeN:
 664     case Op_CompareAndSwapP:
 665     case Op_CompareAndSwapN:
 666     case Op_WeakCompareAndSwapP:
 667     case Op_WeakCompareAndSwapN:
 668     case Op_GetAndSetP:
 669     case Op_GetAndSetN: {
 670       Node* adr = n->in(MemNode::Address);
 671       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 672           opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 673         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 674       }
 675       if (add_final_edges_unsafe_access(n, opcode)) {
 676         break;
 677       }
 678       ELSE_FAIL("Op_StoreP");
 679     }
 680     case Op_AryEq:
 681     case Op_HasNegatives:
 682     case Op_StrComp:
 683     case Op_StrEquals:
 684     case Op_StrIndexOf:
 685     case Op_StrIndexOfChar:
 686     case Op_StrInflatedCopy:
 687     case Op_StrCompressedCopy:
 688     case Op_EncodeISOArray: {
 689       // char[]/byte[] arrays passed to string intrinsic do not escape but
 690       // they are not scalar replaceable. Adjust escape state for them.
 691       // Start from in(2) edge since in(1) is memory edge.
 692       for (uint i = 2; i < n->req(); i++) {
 693         Node* adr = n->in(i);
 694         const Type* at = _igvn->type(adr);
 695         if (!adr->is_top() && at->isa_ptr()) {
 696           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 697                  at->isa_ptr() != NULL, "expecting a pointer");
 698           if (adr->is_AddP()) {
 699             adr = get_addp_base(adr);
 700           }
 701           PointsToNode* ptn = ptnode_adr(adr->_idx);
 702           assert(ptn != NULL, "node should be registered");
 703           add_edge(n_ptn, ptn);
 704         }
 705       }
 706       break;
 707     }
 708     default: {
 709       // This method should be called only for EA specific nodes which may
 710       // miss some edges when they were created.
 711 #ifdef ASSERT
 712       n->dump(1);
 713 #endif
 714       guarantee(false, "unknown node");
 715     }
 716   }
 717   return;
 718 }
 719 
 720 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
 721   Node* adr = n->in(MemNode::Address);
 722   const Type* adr_type = _igvn->type(adr);
 723   adr_type = adr_type->make_ptr();
 724   if (adr_type == NULL) {
 725     return; // skip dead nodes
 726   }
 727   if (adr_type->isa_oopptr()
 728       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 729           && adr_type == TypeRawPtr::NOTNULL
 730           && adr->in(AddPNode::Address)->is_Proj()
 731           && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 732     delayed_worklist->push(n); // Process it later.
 733 #ifdef ASSERT
 734     assert (adr->is_AddP(), "expecting an AddP");
 735     if (adr_type == TypeRawPtr::NOTNULL) {
 736       // Verify a raw address for a store captured by Initialize node.
 737       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 738       assert(offs != Type::OffsetBot, "offset must be a constant");
 739     }
 740 #endif
 741   } else {
 742     // Ignore copy the displaced header to the BoxNode (OSR compilation).
 743     if (adr->is_BoxLock()) {
 744       return;
 745     }
 746     // Stored value escapes in unsafe access.
 747     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 748       delayed_worklist->push(n); // Process unsafe access later.
 749       return;
 750     }
 751 #ifdef ASSERT
 752     n->dump(1);
 753     assert(false, "not unsafe");
 754 #endif
 755   }
 756 }
 757 
 758 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
 759   Node* adr = n->in(MemNode::Address);
 760   const Type *adr_type = _igvn->type(adr);
 761   adr_type = adr_type->make_ptr();
 762 #ifdef ASSERT
 763   if (adr_type == NULL) {
 764     n->dump(1);
 765     assert(adr_type != NULL, "dead node should not be on list");
 766     return true;
 767   }
 768 #endif
 769 
 770   if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 771       opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 772     add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 773   }
 774 
 775   if (adr_type->isa_oopptr()
 776       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 777            && adr_type == TypeRawPtr::NOTNULL
 778            && adr->in(AddPNode::Address)->is_Proj()
 779            && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 780     // Point Address to Value
 781     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 782     assert(adr_ptn != NULL &&
 783            adr_ptn->as_Field()->is_oop(), "node should be registered");
 784     Node* val = n->in(MemNode::ValueIn);
 785     PointsToNode* ptn = ptnode_adr(val->_idx);
 786     assert(ptn != NULL, "node should be registered");
 787     add_edge(adr_ptn, ptn);
 788     return true;
 789   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 790     // Stored value escapes in unsafe access.
 791     Node* val = n->in(MemNode::ValueIn);
 792     PointsToNode* ptn = ptnode_adr(val->_idx);
 793     assert(ptn != NULL, "node should be registered");
 794     set_escape_state(ptn, PointsToNode::GlobalEscape);
 795     // Add edge to object for unsafe access with offset.
 796     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 797     assert(adr_ptn != NULL, "node should be registered");
 798     if (adr_ptn->is_Field()) {
 799       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 800       add_edge(adr_ptn, ptn);
 801     }
 802     return true;
 803   }
 804   return false;
 805 }
 806 
 807 void ConnectionGraph::add_call_node(CallNode* call) {
 808   assert(call->returns_pointer(), "only for call which returns pointer");
 809   uint call_idx = call->_idx;
 810   if (call->is_Allocate()) {
 811     Node* k = call->in(AllocateNode::KlassNode);
 812     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 813     assert(kt != NULL, "TypeKlassPtr  required.");
 814     ciKlass* cik = kt->klass();
 815     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 816     bool scalar_replaceable = true;
 817     if (call->is_AllocateArray()) {
 818       if (!cik->is_array_klass()) { // StressReflectiveCode
 819         es = PointsToNode::GlobalEscape;
 820       } else {
 821         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 822         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 823           // Not scalar replaceable if the length is not constant or too big.
 824           scalar_replaceable = false;
 825         }
 826       }
 827     } else {  // Allocate instance
 828       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 829           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 830          !cik->is_instance_klass() || // StressReflectiveCode
 831          !cik->as_instance_klass()->can_be_instantiated() ||
 832           cik->as_instance_klass()->has_finalizer()) {
 833         es = PointsToNode::GlobalEscape;
 834       }
 835     }
 836     add_java_object(call, es);
 837     PointsToNode* ptn = ptnode_adr(call_idx);
 838     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 839       ptn->set_scalar_replaceable(false);
 840     }
 841   } else if (call->is_CallStaticJava()) {
 842     // Call nodes could be different types:
 843     //
 844     // 1. CallDynamicJavaNode (what happened during call is unknown):
 845     //
 846     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 847     //
 848     //    - all oop arguments are escaping globally;
 849     //
 850     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 851     //
 852     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 853     //
 854     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 855     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 856     //      during call is returned;
 857     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 858     //      which are returned and does not escape during call;
 859     //
 860     //    - oop arguments escaping status is defined by bytecode analysis;
 861     //
 862     // For a static call, we know exactly what method is being called.
 863     // Use bytecode estimator to record whether the call's return value escapes.
 864     ciMethod* meth = call->as_CallJava()->method();
 865     if (meth == NULL) {
 866       const char* name = call->as_CallStaticJava()->_name;
 867       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 868       // Returns a newly allocated unescaped object.
 869       add_java_object(call, PointsToNode::NoEscape);
 870       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 871     } else if (meth->is_boxing_method()) {
 872       // Returns boxing object
 873       PointsToNode::EscapeState es;
 874       vmIntrinsics::ID intr = meth->intrinsic_id();
 875       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 876         // It does not escape if object is always allocated.
 877         es = PointsToNode::NoEscape;
 878       } else {
 879         // It escapes globally if object could be loaded from cache.
 880         es = PointsToNode::GlobalEscape;
 881       }
 882       add_java_object(call, es);
 883     } else {
 884       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 885       call_analyzer->copy_dependencies(_compile->dependencies());
 886       if (call_analyzer->is_return_allocated()) {
 887         // Returns a newly allocated unescaped object, simply
 888         // update dependency information.
 889         // Mark it as NoEscape so that objects referenced by
 890         // it's fields will be marked as NoEscape at least.
 891         add_java_object(call, PointsToNode::NoEscape);
 892         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 893       } else {
 894         // Determine whether any arguments are returned.
 895         const TypeTuple* d = call->tf()->domain();
 896         bool ret_arg = false;
 897         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 898           if (d->field_at(i)->isa_ptr() != NULL &&
 899               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 900             ret_arg = true;
 901             break;
 902           }
 903         }
 904         if (ret_arg) {
 905           add_local_var(call, PointsToNode::ArgEscape);
 906         } else {
 907           // Returns unknown object.
 908           map_ideal_node(call, phantom_obj);
 909         }
 910       }
 911     }
 912   } else {
 913     // An other type of call, assume the worst case:
 914     // returned value is unknown and globally escapes.
 915     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 916     map_ideal_node(call, phantom_obj);
 917   }
 918 }
 919 
 920 void ConnectionGraph::process_call_arguments(CallNode *call) {
 921     bool is_arraycopy = false;
 922     switch (call->Opcode()) {
 923 #ifdef ASSERT
 924     case Op_Allocate:
 925     case Op_AllocateArray:
 926     case Op_Lock:
 927     case Op_Unlock:
 928       assert(false, "should be done already");
 929       break;
 930 #endif
 931     case Op_ArrayCopy:
 932     case Op_CallLeafNoFP:
 933       // Most array copies are ArrayCopy nodes at this point but there
 934       // are still a few direct calls to the copy subroutines (See
 935       // PhaseStringOpts::copy_string())
 936       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 937         call->as_CallLeaf()->is_call_to_arraycopystub();
 938       // fall through
 939     case Op_CallLeaf: {
 940       // Stub calls, objects do not escape but they are not scale replaceable.
 941       // Adjust escape state for outgoing arguments.
 942       const TypeTuple * d = call->tf()->domain();
 943       bool src_has_oops = false;
 944       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 945         const Type* at = d->field_at(i);
 946         Node *arg = call->in(i);
 947         if (arg == NULL) {
 948           continue;
 949         }
 950         const Type *aat = _igvn->type(arg);
 951         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 952           continue;
 953         if (arg->is_AddP()) {
 954           //
 955           // The inline_native_clone() case when the arraycopy stub is called
 956           // after the allocation before Initialize and CheckCastPP nodes.
 957           // Or normal arraycopy for object arrays case.
 958           //
 959           // Set AddP's base (Allocate) as not scalar replaceable since
 960           // pointer to the base (with offset) is passed as argument.
 961           //
 962           arg = get_addp_base(arg);
 963         }
 964         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 965         assert(arg_ptn != NULL, "should be registered");
 966         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 967         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 968           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 969                  aat->isa_ptr() != NULL, "expecting an Ptr");
 970           bool arg_has_oops = aat->isa_oopptr() &&
 971                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 972                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 973           if (i == TypeFunc::Parms) {
 974             src_has_oops = arg_has_oops;
 975           }
 976           //
 977           // src or dst could be j.l.Object when other is basic type array:
 978           //
 979           //   arraycopy(char[],0,Object*,0,size);
 980           //   arraycopy(Object*,0,char[],0,size);
 981           //
 982           // Don't add edges in such cases.
 983           //
 984           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 985                                        arg_has_oops && (i > TypeFunc::Parms);
 986 #ifdef ASSERT
 987           if (!(is_arraycopy ||
 988                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
 989                 (call->as_CallLeaf()->_name != NULL &&
 990                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 991                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 992                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 993                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 994                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 995                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 996                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 997                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
 998                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 999                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
1000                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
1001                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
1002                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
1003                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
1004                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1005                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1006                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1007                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1008                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1009                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1010                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1011                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1012                  ))) {
1013             call->dump();
1014             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1015           }
1016 #endif
1017           // Always process arraycopy's destination object since
1018           // we need to add all possible edges to references in
1019           // source object.
1020           if (arg_esc >= PointsToNode::ArgEscape &&
1021               !arg_is_arraycopy_dest) {
1022             continue;
1023           }
1024           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1025           if (call->is_ArrayCopy()) {
1026             ArrayCopyNode* ac = call->as_ArrayCopy();
1027             if (ac->is_clonebasic() ||
1028                 ac->is_arraycopy_validated() ||
1029                 ac->is_copyof_validated() ||
1030                 ac->is_copyofrange_validated()) {
1031               es = PointsToNode::NoEscape;
1032             }
1033           }
1034           set_escape_state(arg_ptn, es);
1035           if (arg_is_arraycopy_dest) {
1036             Node* src = call->in(TypeFunc::Parms);
1037             if (src->is_AddP()) {
1038               src = get_addp_base(src);
1039             }
1040             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1041             assert(src_ptn != NULL, "should be registered");
1042             if (arg_ptn != src_ptn) {
1043               // Special arraycopy edge:
1044               // A destination object's field can't have the source object
1045               // as base since objects escape states are not related.
1046               // Only escape state of destination object's fields affects
1047               // escape state of fields in source object.
1048               add_arraycopy(call, es, src_ptn, arg_ptn);
1049             }
1050           }
1051         }
1052       }
1053       break;
1054     }
1055     case Op_CallStaticJava: {
1056       // For a static call, we know exactly what method is being called.
1057       // Use bytecode estimator to record the call's escape affects
1058 #ifdef ASSERT
1059       const char* name = call->as_CallStaticJava()->_name;
1060       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1061 #endif
1062       ciMethod* meth = call->as_CallJava()->method();
1063       if ((meth != NULL) && meth->is_boxing_method()) {
1064         break; // Boxing methods do not modify any oops.
1065       }
1066       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1067       // fall-through if not a Java method or no analyzer information
1068       if (call_analyzer != NULL) {
1069         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1070         const TypeTuple* d = call->tf()->domain();
1071         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1072           const Type* at = d->field_at(i);
1073           int k = i - TypeFunc::Parms;
1074           Node* arg = call->in(i);
1075           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1076           if (at->isa_ptr() != NULL &&
1077               call_analyzer->is_arg_returned(k)) {
1078             // The call returns arguments.
1079             if (call_ptn != NULL) { // Is call's result used?
1080               assert(call_ptn->is_LocalVar(), "node should be registered");
1081               assert(arg_ptn != NULL, "node should be registered");
1082               add_edge(call_ptn, arg_ptn);
1083             }
1084           }
1085           if (at->isa_oopptr() != NULL &&
1086               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1087             if (!call_analyzer->is_arg_stack(k)) {
1088               // The argument global escapes
1089               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1090             } else {
1091               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1092               if (!call_analyzer->is_arg_local(k)) {
1093                 // The argument itself doesn't escape, but any fields might
1094                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1095               }
1096             }
1097           }
1098         }
1099         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1100           // The call returns arguments.
1101           assert(call_ptn->edge_count() > 0, "sanity");
1102           if (!call_analyzer->is_return_local()) {
1103             // Returns also unknown object.
1104             add_edge(call_ptn, phantom_obj);
1105           }
1106         }
1107         break;
1108       }
1109     }
1110     default: {
1111       // Fall-through here if not a Java method or no analyzer information
1112       // or some other type of call, assume the worst case: all arguments
1113       // globally escape.
1114       const TypeTuple* d = call->tf()->domain();
1115       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1116         const Type* at = d->field_at(i);
1117         if (at->isa_oopptr() != NULL) {
1118           Node* arg = call->in(i);
1119           if (arg->is_AddP()) {
1120             arg = get_addp_base(arg);
1121           }
1122           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1123           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1124         }
1125       }
1126     }
1127   }
1128 }
1129 
1130 
1131 // Finish Graph construction.
1132 bool ConnectionGraph::complete_connection_graph(
1133                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1134                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1135                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1136                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1137   // Normally only 1-3 passes needed to build Connection Graph depending
1138   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1139   // Set limit to 20 to catch situation when something did go wrong and
1140   // bailout Escape Analysis.
1141   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1142 #define CG_BUILD_ITER_LIMIT 20
1143 
1144   // Propagate GlobalEscape and ArgEscape escape states and check that
1145   // we still have non-escaping objects. The method pushs on _worklist
1146   // Field nodes which reference phantom_object.
1147   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1148     return false; // Nothing to do.
1149   }
1150   // Now propagate references to all JavaObject nodes.
1151   int java_objects_length = java_objects_worklist.length();
1152   elapsedTimer time;
1153   bool timeout = false;
1154   int new_edges = 1;
1155   int iterations = 0;
1156   do {
1157     while ((new_edges > 0) &&
1158            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1159       double start_time = time.seconds();
1160       time.start();
1161       new_edges = 0;
1162       // Propagate references to phantom_object for nodes pushed on _worklist
1163       // by find_non_escaped_objects() and find_field_value().
1164       new_edges += add_java_object_edges(phantom_obj, false);
1165       for (int next = 0; next < java_objects_length; ++next) {
1166         JavaObjectNode* ptn = java_objects_worklist.at(next);
1167         new_edges += add_java_object_edges(ptn, true);
1168 
1169 #define SAMPLE_SIZE 4
1170         if ((next % SAMPLE_SIZE) == 0) {
1171           // Each 4 iterations calculate how much time it will take
1172           // to complete graph construction.
1173           time.stop();
1174           // Poll for requests from shutdown mechanism to quiesce compiler
1175           // because Connection graph construction may take long time.
1176           CompileBroker::maybe_block();
1177           double stop_time = time.seconds();
1178           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1179           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1180           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1181             timeout = true;
1182             break; // Timeout
1183           }
1184           start_time = stop_time;
1185           time.start();
1186         }
1187 #undef SAMPLE_SIZE
1188 
1189       }
1190       if (timeout) break;
1191       if (new_edges > 0) {
1192         // Update escape states on each iteration if graph was updated.
1193         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1194           return false; // Nothing to do.
1195         }
1196       }
1197       time.stop();
1198       if (time.seconds() >= EscapeAnalysisTimeout) {
1199         timeout = true;
1200         break;
1201       }
1202     }
1203     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1204       time.start();
1205       // Find fields which have unknown value.
1206       int fields_length = oop_fields_worklist.length();
1207       for (int next = 0; next < fields_length; next++) {
1208         FieldNode* field = oop_fields_worklist.at(next);
1209         if (field->edge_count() == 0) {
1210           new_edges += find_field_value(field);
1211           // This code may added new edges to phantom_object.
1212           // Need an other cycle to propagate references to phantom_object.
1213         }
1214       }
1215       time.stop();
1216       if (time.seconds() >= EscapeAnalysisTimeout) {
1217         timeout = true;
1218         break;
1219       }
1220     } else {
1221       new_edges = 0; // Bailout
1222     }
1223   } while (new_edges > 0);
1224 
1225   // Bailout if passed limits.
1226   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1227     Compile* C = _compile;
1228     if (C->log() != NULL) {
1229       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1230       C->log()->text("%s", timeout ? "time" : "iterations");
1231       C->log()->end_elem(" limit'");
1232     }
1233     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1234            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1235     // Possible infinite build_connection_graph loop,
1236     // bailout (no changes to ideal graph were made).
1237     return false;
1238   }
1239 #ifdef ASSERT
1240   if (Verbose && PrintEscapeAnalysis) {
1241     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1242                   iterations, nodes_size(), ptnodes_worklist.length());
1243   }
1244 #endif
1245 
1246 #undef CG_BUILD_ITER_LIMIT
1247 
1248   // Find fields initialized by NULL for non-escaping Allocations.
1249   int non_escaped_length = non_escaped_worklist.length();
1250   for (int next = 0; next < non_escaped_length; next++) {
1251     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1252     PointsToNode::EscapeState es = ptn->escape_state();
1253     assert(es <= PointsToNode::ArgEscape, "sanity");
1254     if (es == PointsToNode::NoEscape) {
1255       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1256         // Adding references to NULL object does not change escape states
1257         // since it does not escape. Also no fields are added to NULL object.
1258         add_java_object_edges(null_obj, false);
1259       }
1260     }
1261     Node* n = ptn->ideal_node();
1262     if (n->is_Allocate()) {
1263       // The object allocated by this Allocate node will never be
1264       // seen by an other thread. Mark it so that when it is
1265       // expanded no MemBarStoreStore is added.
1266       InitializeNode* ini = n->as_Allocate()->initialization();
1267       if (ini != NULL)
1268         ini->set_does_not_escape();
1269     }
1270   }
1271   return true; // Finished graph construction.
1272 }
1273 
1274 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1275 // and check that we still have non-escaping java objects.
1276 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1277                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1278   GrowableArray<PointsToNode*> escape_worklist;
1279   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1280   int ptnodes_length = ptnodes_worklist.length();
1281   for (int next = 0; next < ptnodes_length; ++next) {
1282     PointsToNode* ptn = ptnodes_worklist.at(next);
1283     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1284         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1285       escape_worklist.push(ptn);
1286     }
1287   }
1288   // Set escape states to referenced nodes (edges list).
1289   while (escape_worklist.length() > 0) {
1290     PointsToNode* ptn = escape_worklist.pop();
1291     PointsToNode::EscapeState es  = ptn->escape_state();
1292     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1293     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1294         es >= PointsToNode::ArgEscape) {
1295       // GlobalEscape or ArgEscape state of field means it has unknown value.
1296       if (add_edge(ptn, phantom_obj)) {
1297         // New edge was added
1298         add_field_uses_to_worklist(ptn->as_Field());
1299       }
1300     }
1301     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1302       PointsToNode* e = i.get();
1303       if (e->is_Arraycopy()) {
1304         assert(ptn->arraycopy_dst(), "sanity");
1305         // Propagate only fields escape state through arraycopy edge.
1306         if (e->fields_escape_state() < field_es) {
1307           set_fields_escape_state(e, field_es);
1308           escape_worklist.push(e);
1309         }
1310       } else if (es >= field_es) {
1311         // fields_escape_state is also set to 'es' if it is less than 'es'.
1312         if (e->escape_state() < es) {
1313           set_escape_state(e, es);
1314           escape_worklist.push(e);
1315         }
1316       } else {
1317         // Propagate field escape state.
1318         bool es_changed = false;
1319         if (e->fields_escape_state() < field_es) {
1320           set_fields_escape_state(e, field_es);
1321           es_changed = true;
1322         }
1323         if ((e->escape_state() < field_es) &&
1324             e->is_Field() && ptn->is_JavaObject() &&
1325             e->as_Field()->is_oop()) {
1326           // Change escape state of referenced fields.
1327           set_escape_state(e, field_es);
1328           es_changed = true;
1329         } else if (e->escape_state() < es) {
1330           set_escape_state(e, es);
1331           es_changed = true;
1332         }
1333         if (es_changed) {
1334           escape_worklist.push(e);
1335         }
1336       }
1337     }
1338   }
1339   // Remove escaped objects from non_escaped list.
1340   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1341     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1342     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1343       non_escaped_worklist.delete_at(next);
1344     }
1345     if (ptn->escape_state() == PointsToNode::NoEscape) {
1346       // Find fields in non-escaped allocations which have unknown value.
1347       find_init_values(ptn, phantom_obj, NULL);
1348     }
1349   }
1350   return (non_escaped_worklist.length() > 0);
1351 }
1352 
1353 // Add all references to JavaObject node by walking over all uses.
1354 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1355   int new_edges = 0;
1356   if (populate_worklist) {
1357     // Populate _worklist by uses of jobj's uses.
1358     for (UseIterator i(jobj); i.has_next(); i.next()) {
1359       PointsToNode* use = i.get();
1360       if (use->is_Arraycopy())
1361         continue;
1362       add_uses_to_worklist(use);
1363       if (use->is_Field() && use->as_Field()->is_oop()) {
1364         // Put on worklist all field's uses (loads) and
1365         // related field nodes (same base and offset).
1366         add_field_uses_to_worklist(use->as_Field());
1367       }
1368     }
1369   }
1370   for (int l = 0; l < _worklist.length(); l++) {
1371     PointsToNode* use = _worklist.at(l);
1372     if (PointsToNode::is_base_use(use)) {
1373       // Add reference from jobj to field and from field to jobj (field's base).
1374       use = PointsToNode::get_use_node(use)->as_Field();
1375       if (add_base(use->as_Field(), jobj)) {
1376         new_edges++;
1377       }
1378       continue;
1379     }
1380     assert(!use->is_JavaObject(), "sanity");
1381     if (use->is_Arraycopy()) {
1382       if (jobj == null_obj) // NULL object does not have field edges
1383         continue;
1384       // Added edge from Arraycopy node to arraycopy's source java object
1385       if (add_edge(use, jobj)) {
1386         jobj->set_arraycopy_src();
1387         new_edges++;
1388       }
1389       // and stop here.
1390       continue;
1391     }
1392     if (!add_edge(use, jobj))
1393       continue; // No new edge added, there was such edge already.
1394     new_edges++;
1395     if (use->is_LocalVar()) {
1396       add_uses_to_worklist(use);
1397       if (use->arraycopy_dst()) {
1398         for (EdgeIterator i(use); i.has_next(); i.next()) {
1399           PointsToNode* e = i.get();
1400           if (e->is_Arraycopy()) {
1401             if (jobj == null_obj) // NULL object does not have field edges
1402               continue;
1403             // Add edge from arraycopy's destination java object to Arraycopy node.
1404             if (add_edge(jobj, e)) {
1405               new_edges++;
1406               jobj->set_arraycopy_dst();
1407             }
1408           }
1409         }
1410       }
1411     } else {
1412       // Added new edge to stored in field values.
1413       // Put on worklist all field's uses (loads) and
1414       // related field nodes (same base and offset).
1415       add_field_uses_to_worklist(use->as_Field());
1416     }
1417   }
1418   _worklist.clear();
1419   _in_worklist.Reset();
1420   return new_edges;
1421 }
1422 
1423 // Put on worklist all related field nodes.
1424 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1425   assert(field->is_oop(), "sanity");
1426   int offset = field->offset();
1427   add_uses_to_worklist(field);
1428   // Loop over all bases of this field and push on worklist Field nodes
1429   // with the same offset and base (since they may reference the same field).
1430   for (BaseIterator i(field); i.has_next(); i.next()) {
1431     PointsToNode* base = i.get();
1432     add_fields_to_worklist(field, base);
1433     // Check if the base was source object of arraycopy and go over arraycopy's
1434     // destination objects since values stored to a field of source object are
1435     // accessable by uses (loads) of fields of destination objects.
1436     if (base->arraycopy_src()) {
1437       for (UseIterator j(base); j.has_next(); j.next()) {
1438         PointsToNode* arycp = j.get();
1439         if (arycp->is_Arraycopy()) {
1440           for (UseIterator k(arycp); k.has_next(); k.next()) {
1441             PointsToNode* abase = k.get();
1442             if (abase->arraycopy_dst() && abase != base) {
1443               // Look for the same arraycopy reference.
1444               add_fields_to_worklist(field, abase);
1445             }
1446           }
1447         }
1448       }
1449     }
1450   }
1451 }
1452 
1453 // Put on worklist all related field nodes.
1454 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1455   int offset = field->offset();
1456   if (base->is_LocalVar()) {
1457     for (UseIterator j(base); j.has_next(); j.next()) {
1458       PointsToNode* f = j.get();
1459       if (PointsToNode::is_base_use(f)) { // Field
1460         f = PointsToNode::get_use_node(f);
1461         if (f == field || !f->as_Field()->is_oop())
1462           continue;
1463         int offs = f->as_Field()->offset();
1464         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1465           add_to_worklist(f);
1466         }
1467       }
1468     }
1469   } else {
1470     assert(base->is_JavaObject(), "sanity");
1471     if (// Skip phantom_object since it is only used to indicate that
1472         // this field's content globally escapes.
1473         (base != phantom_obj) &&
1474         // NULL object node does not have fields.
1475         (base != null_obj)) {
1476       for (EdgeIterator i(base); i.has_next(); i.next()) {
1477         PointsToNode* f = i.get();
1478         // Skip arraycopy edge since store to destination object field
1479         // does not update value in source object field.
1480         if (f->is_Arraycopy()) {
1481           assert(base->arraycopy_dst(), "sanity");
1482           continue;
1483         }
1484         if (f == field || !f->as_Field()->is_oop())
1485           continue;
1486         int offs = f->as_Field()->offset();
1487         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1488           add_to_worklist(f);
1489         }
1490       }
1491     }
1492   }
1493 }
1494 
1495 // Find fields which have unknown value.
1496 int ConnectionGraph::find_field_value(FieldNode* field) {
1497   // Escaped fields should have init value already.
1498   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1499   int new_edges = 0;
1500   for (BaseIterator i(field); i.has_next(); i.next()) {
1501     PointsToNode* base = i.get();
1502     if (base->is_JavaObject()) {
1503       // Skip Allocate's fields which will be processed later.
1504       if (base->ideal_node()->is_Allocate())
1505         return 0;
1506       assert(base == null_obj, "only NULL ptr base expected here");
1507     }
1508   }
1509   if (add_edge(field, phantom_obj)) {
1510     // New edge was added
1511     new_edges++;
1512     add_field_uses_to_worklist(field);
1513   }
1514   return new_edges;
1515 }
1516 
1517 // Find fields initializing values for allocations.
1518 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1519   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1520   int new_edges = 0;
1521   Node* alloc = pta->ideal_node();
1522   if (init_val == phantom_obj) {
1523     // Do nothing for Allocate nodes since its fields values are
1524     // "known" unless they are initialized by arraycopy/clone.
1525     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1526       return 0;
1527     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1528 #ifdef ASSERT
1529     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1530       const char* name = alloc->as_CallStaticJava()->_name;
1531       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1532     }
1533 #endif
1534     // Non-escaped allocation returned from Java or runtime call have
1535     // unknown values in fields.
1536     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1537       PointsToNode* field = i.get();
1538       if (field->is_Field() && field->as_Field()->is_oop()) {
1539         if (add_edge(field, phantom_obj)) {
1540           // New edge was added
1541           new_edges++;
1542           add_field_uses_to_worklist(field->as_Field());
1543         }
1544       }
1545     }
1546     return new_edges;
1547   }
1548   assert(init_val == null_obj, "sanity");
1549   // Do nothing for Call nodes since its fields values are unknown.
1550   if (!alloc->is_Allocate())
1551     return 0;
1552 
1553   InitializeNode* ini = alloc->as_Allocate()->initialization();
1554   bool visited_bottom_offset = false;
1555   GrowableArray<int> offsets_worklist;
1556 
1557   // Check if an oop field's initializing value is recorded and add
1558   // a corresponding NULL if field's value if it is not recorded.
1559   // Connection Graph does not record a default initialization by NULL
1560   // captured by Initialize node.
1561   //
1562   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1563     PointsToNode* field = i.get(); // Field (AddP)
1564     if (!field->is_Field() || !field->as_Field()->is_oop())
1565       continue; // Not oop field
1566     int offset = field->as_Field()->offset();
1567     if (offset == Type::OffsetBot) {
1568       if (!visited_bottom_offset) {
1569         // OffsetBot is used to reference array's element,
1570         // always add reference to NULL to all Field nodes since we don't
1571         // known which element is referenced.
1572         if (add_edge(field, null_obj)) {
1573           // New edge was added
1574           new_edges++;
1575           add_field_uses_to_worklist(field->as_Field());
1576           visited_bottom_offset = true;
1577         }
1578       }
1579     } else {
1580       // Check only oop fields.
1581       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1582       if (adr_type->isa_rawptr()) {
1583 #ifdef ASSERT
1584         // Raw pointers are used for initializing stores so skip it
1585         // since it should be recorded already
1586         Node* base = get_addp_base(field->ideal_node());
1587         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1588                (base->in(0) == alloc),"unexpected pointer type");
1589 #endif
1590         continue;
1591       }
1592       if (!offsets_worklist.contains(offset)) {
1593         offsets_worklist.append(offset);
1594         Node* value = NULL;
1595         if (ini != NULL) {
1596           // StoreP::memory_type() == T_ADDRESS
1597           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1598           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1599           // Make sure initializing store has the same type as this AddP.
1600           // This AddP may reference non existing field because it is on a
1601           // dead branch of bimorphic call which is not eliminated yet.
1602           if (store != NULL && store->is_Store() &&
1603               store->as_Store()->memory_type() == ft) {
1604             value = store->in(MemNode::ValueIn);
1605 #ifdef ASSERT
1606             if (VerifyConnectionGraph) {
1607               // Verify that AddP already points to all objects the value points to.
1608               PointsToNode* val = ptnode_adr(value->_idx);
1609               assert((val != NULL), "should be processed already");
1610               PointsToNode* missed_obj = NULL;
1611               if (val->is_JavaObject()) {
1612                 if (!field->points_to(val->as_JavaObject())) {
1613                   missed_obj = val;
1614                 }
1615               } else {
1616                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1617                   tty->print_cr("----------init store has invalid value -----");
1618                   store->dump();
1619                   val->dump();
1620                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1621                 }
1622                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1623                   PointsToNode* obj = j.get();
1624                   if (obj->is_JavaObject()) {
1625                     if (!field->points_to(obj->as_JavaObject())) {
1626                       missed_obj = obj;
1627                       break;
1628                     }
1629                   }
1630                 }
1631               }
1632               if (missed_obj != NULL) {
1633                 tty->print_cr("----------field---------------------------------");
1634                 field->dump();
1635                 tty->print_cr("----------missed referernce to object-----------");
1636                 missed_obj->dump();
1637                 tty->print_cr("----------object referernced by init store -----");
1638                 store->dump();
1639                 val->dump();
1640                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1641               }
1642             }
1643 #endif
1644           } else {
1645             // There could be initializing stores which follow allocation.
1646             // For example, a volatile field store is not collected
1647             // by Initialize node.
1648             //
1649             // Need to check for dependent loads to separate such stores from
1650             // stores which follow loads. For now, add initial value NULL so
1651             // that compare pointers optimization works correctly.
1652           }
1653         }
1654         if (value == NULL) {
1655           // A field's initializing value was not recorded. Add NULL.
1656           if (add_edge(field, null_obj)) {
1657             // New edge was added
1658             new_edges++;
1659             add_field_uses_to_worklist(field->as_Field());
1660           }
1661         }
1662       }
1663     }
1664   }
1665   return new_edges;
1666 }
1667 
1668 // Adjust scalar_replaceable state after Connection Graph is built.
1669 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1670   // Search for non-escaping objects which are not scalar replaceable
1671   // and mark them to propagate the state to referenced objects.
1672 
1673   // 1. An object is not scalar replaceable if the field into which it is
1674   // stored has unknown offset (stored into unknown element of an array).
1675   //
1676   for (UseIterator i(jobj); i.has_next(); i.next()) {
1677     PointsToNode* use = i.get();
1678     if (use->is_Arraycopy()) {
1679       continue;
1680     }
1681     if (use->is_Field()) {
1682       FieldNode* field = use->as_Field();
1683       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1684       if (field->offset() == Type::OffsetBot) {
1685         jobj->set_scalar_replaceable(false);
1686         return;
1687       }
1688       // 2. An object is not scalar replaceable if the field into which it is
1689       // stored has multiple bases one of which is null.
1690       if (field->base_count() > 1) {
1691         for (BaseIterator i(field); i.has_next(); i.next()) {
1692           PointsToNode* base = i.get();
1693           if (base == null_obj) {
1694             jobj->set_scalar_replaceable(false);
1695             return;
1696           }
1697         }
1698       }
1699     }
1700     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1701     // 3. An object is not scalar replaceable if it is merged with other objects.
1702     for (EdgeIterator j(use); j.has_next(); j.next()) {
1703       PointsToNode* ptn = j.get();
1704       if (ptn->is_JavaObject() && ptn != jobj) {
1705         // Mark all objects.
1706         jobj->set_scalar_replaceable(false);
1707          ptn->set_scalar_replaceable(false);
1708       }
1709     }
1710     if (!jobj->scalar_replaceable()) {
1711       return;
1712     }
1713   }
1714 
1715   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1716     if (j.get()->is_Arraycopy()) {
1717       continue;
1718     }
1719 
1720     // Non-escaping object node should point only to field nodes.
1721     FieldNode* field = j.get()->as_Field();
1722     int offset = field->as_Field()->offset();
1723 
1724     // 4. An object is not scalar replaceable if it has a field with unknown
1725     // offset (array's element is accessed in loop).
1726     if (offset == Type::OffsetBot) {
1727       jobj->set_scalar_replaceable(false);
1728       return;
1729     }
1730     // 5. Currently an object is not scalar replaceable if a LoadStore node
1731     // access its field since the field value is unknown after it.
1732     //
1733     Node* n = field->ideal_node();
1734     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1735       if (n->fast_out(i)->is_LoadStore()) {
1736         jobj->set_scalar_replaceable(false);
1737         return;
1738       }
1739     }
1740 
1741     // 6. Or the address may point to more then one object. This may produce
1742     // the false positive result (set not scalar replaceable)
1743     // since the flow-insensitive escape analysis can't separate
1744     // the case when stores overwrite the field's value from the case
1745     // when stores happened on different control branches.
1746     //
1747     // Note: it will disable scalar replacement in some cases:
1748     //
1749     //    Point p[] = new Point[1];
1750     //    p[0] = new Point(); // Will be not scalar replaced
1751     //
1752     // but it will save us from incorrect optimizations in next cases:
1753     //
1754     //    Point p[] = new Point[1];
1755     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1756     //
1757     if (field->base_count() > 1) {
1758       for (BaseIterator i(field); i.has_next(); i.next()) {
1759         PointsToNode* base = i.get();
1760         // Don't take into account LocalVar nodes which
1761         // may point to only one object which should be also
1762         // this field's base by now.
1763         if (base->is_JavaObject() && base != jobj) {
1764           // Mark all bases.
1765           jobj->set_scalar_replaceable(false);
1766           base->set_scalar_replaceable(false);
1767         }
1768       }
1769     }
1770   }
1771 }
1772 
1773 #ifdef ASSERT
1774 void ConnectionGraph::verify_connection_graph(
1775                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1776                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1777                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1778                          GrowableArray<Node*>& addp_worklist) {
1779   // Verify that graph is complete - no new edges could be added.
1780   int java_objects_length = java_objects_worklist.length();
1781   int non_escaped_length  = non_escaped_worklist.length();
1782   int new_edges = 0;
1783   for (int next = 0; next < java_objects_length; ++next) {
1784     JavaObjectNode* ptn = java_objects_worklist.at(next);
1785     new_edges += add_java_object_edges(ptn, true);
1786   }
1787   assert(new_edges == 0, "graph was not complete");
1788   // Verify that escape state is final.
1789   int length = non_escaped_worklist.length();
1790   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1791   assert((non_escaped_length == non_escaped_worklist.length()) &&
1792          (non_escaped_length == length) &&
1793          (_worklist.length() == 0), "escape state was not final");
1794 
1795   // Verify fields information.
1796   int addp_length = addp_worklist.length();
1797   for (int next = 0; next < addp_length; ++next ) {
1798     Node* n = addp_worklist.at(next);
1799     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1800     if (field->is_oop()) {
1801       // Verify that field has all bases
1802       Node* base = get_addp_base(n);
1803       PointsToNode* ptn = ptnode_adr(base->_idx);
1804       if (ptn->is_JavaObject()) {
1805         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1806       } else {
1807         assert(ptn->is_LocalVar(), "sanity");
1808         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1809           PointsToNode* e = i.get();
1810           if (e->is_JavaObject()) {
1811             assert(field->has_base(e->as_JavaObject()), "sanity");
1812           }
1813         }
1814       }
1815       // Verify that all fields have initializing values.
1816       if (field->edge_count() == 0) {
1817         tty->print_cr("----------field does not have references----------");
1818         field->dump();
1819         for (BaseIterator i(field); i.has_next(); i.next()) {
1820           PointsToNode* base = i.get();
1821           tty->print_cr("----------field has next base---------------------");
1822           base->dump();
1823           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1824             tty->print_cr("----------base has fields-------------------------");
1825             for (EdgeIterator j(base); j.has_next(); j.next()) {
1826               j.get()->dump();
1827             }
1828             tty->print_cr("----------base has references---------------------");
1829             for (UseIterator j(base); j.has_next(); j.next()) {
1830               j.get()->dump();
1831             }
1832           }
1833         }
1834         for (UseIterator i(field); i.has_next(); i.next()) {
1835           i.get()->dump();
1836         }
1837         assert(field->edge_count() > 0, "sanity");
1838       }
1839     }
1840   }
1841 }
1842 #endif
1843 
1844 // Optimize ideal graph.
1845 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1846                                            GrowableArray<Node*>& storestore_worklist) {
1847   Compile* C = _compile;
1848   PhaseIterGVN* igvn = _igvn;
1849   if (EliminateLocks) {
1850     // Mark locks before changing ideal graph.
1851     int cnt = C->macro_count();
1852     for( int i=0; i < cnt; i++ ) {
1853       Node *n = C->macro_node(i);
1854       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1855         AbstractLockNode* alock = n->as_AbstractLock();
1856         if (!alock->is_non_esc_obj()) {
1857           if (not_global_escape(alock->obj_node())) {
1858             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1859             // The lock could be marked eliminated by lock coarsening
1860             // code during first IGVN before EA. Replace coarsened flag
1861             // to eliminate all associated locks/unlocks.
1862 #ifdef ASSERT
1863             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1864 #endif
1865             alock->set_non_esc_obj();
1866           }
1867         }
1868       }
1869     }
1870   }
1871 
1872   if (OptimizePtrCompare) {
1873     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1874     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1875     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1876     // Optimize objects compare.
1877     while (ptr_cmp_worklist.length() != 0) {
1878       Node *n = ptr_cmp_worklist.pop();
1879       Node *res = optimize_ptr_compare(n);
1880       if (res != NULL) {
1881 #ifndef PRODUCT
1882         if (PrintOptimizePtrCompare) {
1883           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1884           if (Verbose) {
1885             n->dump(1);
1886           }
1887         }
1888 #endif
1889         igvn->replace_node(n, res);
1890       }
1891     }
1892     // cleanup
1893     if (_pcmp_neq->outcnt() == 0)
1894       igvn->hash_delete(_pcmp_neq);
1895     if (_pcmp_eq->outcnt()  == 0)
1896       igvn->hash_delete(_pcmp_eq);
1897   }
1898 
1899   // For MemBarStoreStore nodes added in library_call.cpp, check
1900   // escape status of associated AllocateNode and optimize out
1901   // MemBarStoreStore node if the allocated object never escapes.
1902   while (storestore_worklist.length() != 0) {
1903     Node *n = storestore_worklist.pop();
1904     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1905     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1906     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1907     if (not_global_escape(alloc)) {
1908       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1909       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1910       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1911       igvn->register_new_node_with_optimizer(mb);
1912       igvn->replace_node(storestore, mb);
1913     }
1914   }
1915 }
1916 
1917 // Optimize objects compare.
1918 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1919   assert(OptimizePtrCompare, "sanity");
1920   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1921   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1922   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1923   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1924   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1925   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1926 
1927   // Check simple cases first.
1928   if (jobj1 != NULL) {
1929     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1930       if (jobj1 == jobj2) {
1931         // Comparing the same not escaping object.
1932         return _pcmp_eq;
1933       }
1934       Node* obj = jobj1->ideal_node();
1935       // Comparing not escaping allocation.
1936       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1937           !ptn2->points_to(jobj1)) {
1938         return _pcmp_neq; // This includes nullness check.
1939       }
1940     }
1941   }
1942   if (jobj2 != NULL) {
1943     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1944       Node* obj = jobj2->ideal_node();
1945       // Comparing not escaping allocation.
1946       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1947           !ptn1->points_to(jobj2)) {
1948         return _pcmp_neq; // This includes nullness check.
1949       }
1950     }
1951   }
1952   if (jobj1 != NULL && jobj1 != phantom_obj &&
1953       jobj2 != NULL && jobj2 != phantom_obj &&
1954       jobj1->ideal_node()->is_Con() &&
1955       jobj2->ideal_node()->is_Con()) {
1956     // Klass or String constants compare. Need to be careful with
1957     // compressed pointers - compare types of ConN and ConP instead of nodes.
1958     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1959     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1960     if (t1->make_ptr() == t2->make_ptr()) {
1961       return _pcmp_eq;
1962     } else {
1963       return _pcmp_neq;
1964     }
1965   }
1966   if (ptn1->meet(ptn2)) {
1967     return NULL; // Sets are not disjoint
1968   }
1969 
1970   // Sets are disjoint.
1971   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1972   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1973   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1974   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1975   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
1976       (set2_has_unknown_ptr && set1_has_null_ptr)) {
1977     // Check nullness of unknown object.
1978     return NULL;
1979   }
1980 
1981   // Disjointness by itself is not sufficient since
1982   // alias analysis is not complete for escaped objects.
1983   // Disjoint sets are definitely unrelated only when
1984   // at least one set has only not escaping allocations.
1985   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1986     if (ptn1->non_escaping_allocation()) {
1987       return _pcmp_neq;
1988     }
1989   }
1990   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1991     if (ptn2->non_escaping_allocation()) {
1992       return _pcmp_neq;
1993     }
1994   }
1995   return NULL;
1996 }
1997 
1998 // Connection Graph constuction functions.
1999 
2000 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
2001   PointsToNode* ptadr = _nodes.at(n->_idx);
2002   if (ptadr != NULL) {
2003     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
2004     return;
2005   }
2006   Compile* C = _compile;
2007   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2008   _nodes.at_put(n->_idx, ptadr);
2009 }
2010 
2011 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2012   PointsToNode* ptadr = _nodes.at(n->_idx);
2013   if (ptadr != NULL) {
2014     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2015     return;
2016   }
2017   Compile* C = _compile;
2018   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2019   _nodes.at_put(n->_idx, ptadr);
2020 }
2021 
2022 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2023   PointsToNode* ptadr = _nodes.at(n->_idx);
2024   if (ptadr != NULL) {
2025     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2026     return;
2027   }
2028   bool unsafe = false;
2029   bool is_oop = is_oop_field(n, offset, &unsafe);
2030   if (unsafe) {
2031     es = PointsToNode::GlobalEscape;
2032   }
2033   Compile* C = _compile;
2034   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2035   _nodes.at_put(n->_idx, field);
2036 }
2037 
2038 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2039                                     PointsToNode* src, PointsToNode* dst) {
2040   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2041   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2042   PointsToNode* ptadr = _nodes.at(n->_idx);
2043   if (ptadr != NULL) {
2044     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2045     return;
2046   }
2047   Compile* C = _compile;
2048   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2049   _nodes.at_put(n->_idx, ptadr);
2050   // Add edge from arraycopy node to source object.
2051   (void)add_edge(ptadr, src);
2052   src->set_arraycopy_src();
2053   // Add edge from destination object to arraycopy node.
2054   (void)add_edge(dst, ptadr);
2055   dst->set_arraycopy_dst();
2056 }
2057 
2058 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2059   const Type* adr_type = n->as_AddP()->bottom_type();
2060   BasicType bt = T_INT;
2061   if (offset == Type::OffsetBot) {
2062     // Check only oop fields.
2063     if (!adr_type->isa_aryptr() ||
2064         (adr_type->isa_aryptr()->klass() == NULL) ||
2065          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2066       // OffsetBot is used to reference array's element. Ignore first AddP.
2067       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2068         bt = T_OBJECT;
2069       }
2070     }
2071   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2072     if (adr_type->isa_instptr()) {
2073       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2074       if (field != NULL) {
2075         bt = field->layout_type();
2076       } else {
2077         // Check for unsafe oop field access
2078         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2079             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2080             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2081             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2082           bt = T_OBJECT;
2083           (*unsafe) = true;
2084         }
2085       }
2086     } else if (adr_type->isa_aryptr()) {
2087       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2088         // Ignore array length load.
2089       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2090         // Ignore first AddP.
2091       } else {
2092         const Type* elemtype = adr_type->isa_aryptr()->elem();
2093         bt = elemtype->array_element_basic_type();
2094       }
2095     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2096       // Allocation initialization, ThreadLocal field access, unsafe access
2097       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2098           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2099           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2100           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2101         bt = T_OBJECT;
2102       }
2103     }
2104   }
2105   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2106 }
2107 
2108 // Returns unique pointed java object or NULL.
2109 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2110   assert(!_collecting, "should not call when contructed graph");
2111   // If the node was created after the escape computation we can't answer.
2112   uint idx = n->_idx;
2113   if (idx >= nodes_size()) {
2114     return NULL;
2115   }
2116   PointsToNode* ptn = ptnode_adr(idx);
2117   if (ptn->is_JavaObject()) {
2118     return ptn->as_JavaObject();
2119   }
2120   assert(ptn->is_LocalVar(), "sanity");
2121   // Check all java objects it points to.
2122   JavaObjectNode* jobj = NULL;
2123   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2124     PointsToNode* e = i.get();
2125     if (e->is_JavaObject()) {
2126       if (jobj == NULL) {
2127         jobj = e->as_JavaObject();
2128       } else if (jobj != e) {
2129         return NULL;
2130       }
2131     }
2132   }
2133   return jobj;
2134 }
2135 
2136 // Return true if this node points only to non-escaping allocations.
2137 bool PointsToNode::non_escaping_allocation() {
2138   if (is_JavaObject()) {
2139     Node* n = ideal_node();
2140     if (n->is_Allocate() || n->is_CallStaticJava()) {
2141       return (escape_state() == PointsToNode::NoEscape);
2142     } else {
2143       return false;
2144     }
2145   }
2146   assert(is_LocalVar(), "sanity");
2147   // Check all java objects it points to.
2148   for (EdgeIterator i(this); i.has_next(); i.next()) {
2149     PointsToNode* e = i.get();
2150     if (e->is_JavaObject()) {
2151       Node* n = e->ideal_node();
2152       if ((e->escape_state() != PointsToNode::NoEscape) ||
2153           !(n->is_Allocate() || n->is_CallStaticJava())) {
2154         return false;
2155       }
2156     }
2157   }
2158   return true;
2159 }
2160 
2161 // Return true if we know the node does not escape globally.
2162 bool ConnectionGraph::not_global_escape(Node *n) {
2163   assert(!_collecting, "should not call during graph construction");
2164   // If the node was created after the escape computation we can't answer.
2165   uint idx = n->_idx;
2166   if (idx >= nodes_size()) {
2167     return false;
2168   }
2169   PointsToNode* ptn = ptnode_adr(idx);
2170   PointsToNode::EscapeState es = ptn->escape_state();
2171   // If we have already computed a value, return it.
2172   if (es >= PointsToNode::GlobalEscape)
2173     return false;
2174   if (ptn->is_JavaObject()) {
2175     return true; // (es < PointsToNode::GlobalEscape);
2176   }
2177   assert(ptn->is_LocalVar(), "sanity");
2178   // Check all java objects it points to.
2179   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2180     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2181       return false;
2182   }
2183   return true;
2184 }
2185 
2186 
2187 // Helper functions
2188 
2189 // Return true if this node points to specified node or nodes it points to.
2190 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2191   if (is_JavaObject()) {
2192     return (this == ptn);
2193   }
2194   assert(is_LocalVar() || is_Field(), "sanity");
2195   for (EdgeIterator i(this); i.has_next(); i.next()) {
2196     if (i.get() == ptn)
2197       return true;
2198   }
2199   return false;
2200 }
2201 
2202 // Return true if one node points to an other.
2203 bool PointsToNode::meet(PointsToNode* ptn) {
2204   if (this == ptn) {
2205     return true;
2206   } else if (ptn->is_JavaObject()) {
2207     return this->points_to(ptn->as_JavaObject());
2208   } else if (this->is_JavaObject()) {
2209     return ptn->points_to(this->as_JavaObject());
2210   }
2211   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2212   int ptn_count =  ptn->edge_count();
2213   for (EdgeIterator i(this); i.has_next(); i.next()) {
2214     PointsToNode* this_e = i.get();
2215     for (int j = 0; j < ptn_count; j++) {
2216       if (this_e == ptn->edge(j))
2217         return true;
2218     }
2219   }
2220   return false;
2221 }
2222 
2223 #ifdef ASSERT
2224 // Return true if bases point to this java object.
2225 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2226   for (BaseIterator i(this); i.has_next(); i.next()) {
2227     if (i.get() == jobj)
2228       return true;
2229   }
2230   return false;
2231 }
2232 #endif
2233 
2234 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2235   const Type *adr_type = phase->type(adr);
2236   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2237       adr->in(AddPNode::Address)->is_Proj() &&
2238       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2239     // We are computing a raw address for a store captured by an Initialize
2240     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2241     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2242     assert(offs != Type::OffsetBot ||
2243            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2244            "offset must be a constant or it is initialization of array");
2245     return offs;
2246   }
2247   const TypePtr *t_ptr = adr_type->isa_ptr();
2248   assert(t_ptr != NULL, "must be a pointer type");
2249   return t_ptr->offset();
2250 }
2251 
2252 Node* ConnectionGraph::get_addp_base(Node *addp) {
2253   assert(addp->is_AddP(), "must be AddP");
2254   //
2255   // AddP cases for Base and Address inputs:
2256   // case #1. Direct object's field reference:
2257   //     Allocate
2258   //       |
2259   //     Proj #5 ( oop result )
2260   //       |
2261   //     CheckCastPP (cast to instance type)
2262   //      | |
2263   //     AddP  ( base == address )
2264   //
2265   // case #2. Indirect object's field reference:
2266   //      Phi
2267   //       |
2268   //     CastPP (cast to instance type)
2269   //      | |
2270   //     AddP  ( base == address )
2271   //
2272   // case #3. Raw object's field reference for Initialize node:
2273   //      Allocate
2274   //        |
2275   //      Proj #5 ( oop result )
2276   //  top   |
2277   //     \  |
2278   //     AddP  ( base == top )
2279   //
2280   // case #4. Array's element reference:
2281   //   {CheckCastPP | CastPP}
2282   //     |  | |
2283   //     |  AddP ( array's element offset )
2284   //     |  |
2285   //     AddP ( array's offset )
2286   //
2287   // case #5. Raw object's field reference for arraycopy stub call:
2288   //          The inline_native_clone() case when the arraycopy stub is called
2289   //          after the allocation before Initialize and CheckCastPP nodes.
2290   //      Allocate
2291   //        |
2292   //      Proj #5 ( oop result )
2293   //       | |
2294   //       AddP  ( base == address )
2295   //
2296   // case #6. Constant Pool, ThreadLocal, CastX2P or
2297   //          Raw object's field reference:
2298   //      {ConP, ThreadLocal, CastX2P, raw Load}
2299   //  top   |
2300   //     \  |
2301   //     AddP  ( base == top )
2302   //
2303   // case #7. Klass's field reference.
2304   //      LoadKlass
2305   //       | |
2306   //       AddP  ( base == address )
2307   //
2308   // case #8. narrow Klass's field reference.
2309   //      LoadNKlass
2310   //       |
2311   //      DecodeN
2312   //       | |
2313   //       AddP  ( base == address )
2314   //
2315   // case #9. Mixed unsafe access
2316   //    {instance}
2317   //        |
2318   //      CheckCastPP (raw)
2319   //  top   |
2320   //     \  |
2321   //     AddP  ( base == top )
2322   //
2323   Node *base = addp->in(AddPNode::Base);
2324   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2325     base = addp->in(AddPNode::Address);
2326     while (base->is_AddP()) {
2327       // Case #6 (unsafe access) may have several chained AddP nodes.
2328       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2329       base = base->in(AddPNode::Address);
2330     }
2331     if (base->Opcode() == Op_CheckCastPP &&
2332         base->bottom_type()->isa_rawptr() &&
2333         _igvn->type(base->in(1))->isa_oopptr()) {
2334       base = base->in(1); // Case #9
2335     } else {
2336       Node* uncast_base = base->uncast();
2337       int opcode = uncast_base->Opcode();
2338       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2339              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2340              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2341              (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()) ||
2342              BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(uncast_base), "sanity");
2343     }
2344   }
2345   return base;
2346 }
2347 
2348 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2349   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2350   Node* addp2 = addp->raw_out(0);
2351   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2352       addp2->in(AddPNode::Base) == n &&
2353       addp2->in(AddPNode::Address) == addp) {
2354     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2355     //
2356     // Find array's offset to push it on worklist first and
2357     // as result process an array's element offset first (pushed second)
2358     // to avoid CastPP for the array's offset.
2359     // Otherwise the inserted CastPP (LocalVar) will point to what
2360     // the AddP (Field) points to. Which would be wrong since
2361     // the algorithm expects the CastPP has the same point as
2362     // as AddP's base CheckCastPP (LocalVar).
2363     //
2364     //    ArrayAllocation
2365     //     |
2366     //    CheckCastPP
2367     //     |
2368     //    memProj (from ArrayAllocation CheckCastPP)
2369     //     |  ||
2370     //     |  ||   Int (element index)
2371     //     |  ||    |   ConI (log(element size))
2372     //     |  ||    |   /
2373     //     |  ||   LShift
2374     //     |  ||  /
2375     //     |  AddP (array's element offset)
2376     //     |  |
2377     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2378     //     | / /
2379     //     AddP (array's offset)
2380     //      |
2381     //     Load/Store (memory operation on array's element)
2382     //
2383     return addp2;
2384   }
2385   return NULL;
2386 }
2387 
2388 //
2389 // Adjust the type and inputs of an AddP which computes the
2390 // address of a field of an instance
2391 //
2392 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2393   PhaseGVN* igvn = _igvn;
2394   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2395   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2396   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2397   if (t == NULL) {
2398     // We are computing a raw address for a store captured by an Initialize
2399     // compute an appropriate address type (cases #3 and #5).
2400     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2401     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2402     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2403     assert(offs != Type::OffsetBot, "offset must be a constant");
2404     t = base_t->add_offset(offs)->is_oopptr();
2405   }
2406   int inst_id =  base_t->instance_id();
2407   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2408                              "old type must be non-instance or match new type");
2409 
2410   // The type 't' could be subclass of 'base_t'.
2411   // As result t->offset() could be large then base_t's size and it will
2412   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2413   // constructor verifies correctness of the offset.
2414   //
2415   // It could happened on subclass's branch (from the type profiling
2416   // inlining) which was not eliminated during parsing since the exactness
2417   // of the allocation type was not propagated to the subclass type check.
2418   //
2419   // Or the type 't' could be not related to 'base_t' at all.
2420   // It could happened when CHA type is different from MDO type on a dead path
2421   // (for example, from instanceof check) which is not collapsed during parsing.
2422   //
2423   // Do nothing for such AddP node and don't process its users since
2424   // this code branch will go away.
2425   //
2426   if (!t->is_known_instance() &&
2427       !base_t->klass()->is_subtype_of(t->klass())) {
2428      return false; // bail out
2429   }
2430   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2431   // Do NOT remove the next line: ensure a new alias index is allocated
2432   // for the instance type. Note: C++ will not remove it since the call
2433   // has side effect.
2434   int alias_idx = _compile->get_alias_index(tinst);
2435   igvn->set_type(addp, tinst);
2436   // record the allocation in the node map
2437   set_map(addp, get_map(base->_idx));
2438   // Set addp's Base and Address to 'base'.
2439   Node *abase = addp->in(AddPNode::Base);
2440   Node *adr   = addp->in(AddPNode::Address);
2441   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2442       adr->in(0)->_idx == (uint)inst_id) {
2443     // Skip AddP cases #3 and #5.
2444   } else {
2445     assert(!abase->is_top(), "sanity"); // AddP case #3
2446     if (abase != base) {
2447       igvn->hash_delete(addp);
2448       addp->set_req(AddPNode::Base, base);
2449       if (abase == adr) {
2450         addp->set_req(AddPNode::Address, base);
2451       } else {
2452         // AddP case #4 (adr is array's element offset AddP node)
2453 #ifdef ASSERT
2454         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2455         assert(adr->is_AddP() && atype != NULL &&
2456                atype->instance_id() == inst_id, "array's element offset should be processed first");
2457 #endif
2458       }
2459       igvn->hash_insert(addp);
2460     }
2461   }
2462   // Put on IGVN worklist since at least addp's type was changed above.
2463   record_for_optimizer(addp);
2464   return true;
2465 }
2466 
2467 //
2468 // Create a new version of orig_phi if necessary. Returns either the newly
2469 // created phi or an existing phi.  Sets create_new to indicate whether a new
2470 // phi was created.  Cache the last newly created phi in the node map.
2471 //
2472 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2473   Compile *C = _compile;
2474   PhaseGVN* igvn = _igvn;
2475   new_created = false;
2476   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2477   // nothing to do if orig_phi is bottom memory or matches alias_idx
2478   if (phi_alias_idx == alias_idx) {
2479     return orig_phi;
2480   }
2481   // Have we recently created a Phi for this alias index?
2482   PhiNode *result = get_map_phi(orig_phi->_idx);
2483   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2484     return result;
2485   }
2486   // Previous check may fail when the same wide memory Phi was split into Phis
2487   // for different memory slices. Search all Phis for this region.
2488   if (result != NULL) {
2489     Node* region = orig_phi->in(0);
2490     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2491       Node* phi = region->fast_out(i);
2492       if (phi->is_Phi() &&
2493           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2494         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2495         return phi->as_Phi();
2496       }
2497     }
2498   }
2499   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2500     if (C->do_escape_analysis() == true && !C->failing()) {
2501       // Retry compilation without escape analysis.
2502       // If this is the first failure, the sentinel string will "stick"
2503       // to the Compile object, and the C2Compiler will see it and retry.
2504       C->record_failure(C2Compiler::retry_no_escape_analysis());
2505     }
2506     return NULL;
2507   }
2508   orig_phi_worklist.append_if_missing(orig_phi);
2509   const TypePtr *atype = C->get_adr_type(alias_idx);
2510   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2511   C->copy_node_notes_to(result, orig_phi);
2512   igvn->set_type(result, result->bottom_type());
2513   record_for_optimizer(result);
2514   set_map(orig_phi, result);
2515   new_created = true;
2516   return result;
2517 }
2518 
2519 //
2520 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2521 // specified alias index.
2522 //
2523 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2524   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2525   Compile *C = _compile;
2526   PhaseGVN* igvn = _igvn;
2527   bool new_phi_created;
2528   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2529   if (!new_phi_created) {
2530     return result;
2531   }
2532   GrowableArray<PhiNode *>  phi_list;
2533   GrowableArray<uint>  cur_input;
2534   PhiNode *phi = orig_phi;
2535   uint idx = 1;
2536   bool finished = false;
2537   while(!finished) {
2538     while (idx < phi->req()) {
2539       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2540       if (mem != NULL && mem->is_Phi()) {
2541         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2542         if (new_phi_created) {
2543           // found an phi for which we created a new split, push current one on worklist and begin
2544           // processing new one
2545           phi_list.push(phi);
2546           cur_input.push(idx);
2547           phi = mem->as_Phi();
2548           result = newphi;
2549           idx = 1;
2550           continue;
2551         } else {
2552           mem = newphi;
2553         }
2554       }
2555       if (C->failing()) {
2556         return NULL;
2557       }
2558       result->set_req(idx++, mem);
2559     }
2560 #ifdef ASSERT
2561     // verify that the new Phi has an input for each input of the original
2562     assert( phi->req() == result->req(), "must have same number of inputs.");
2563     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2564 #endif
2565     // Check if all new phi's inputs have specified alias index.
2566     // Otherwise use old phi.
2567     for (uint i = 1; i < phi->req(); i++) {
2568       Node* in = result->in(i);
2569       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2570     }
2571     // we have finished processing a Phi, see if there are any more to do
2572     finished = (phi_list.length() == 0 );
2573     if (!finished) {
2574       phi = phi_list.pop();
2575       idx = cur_input.pop();
2576       PhiNode *prev_result = get_map_phi(phi->_idx);
2577       prev_result->set_req(idx++, result);
2578       result = prev_result;
2579     }
2580   }
2581   return result;
2582 }
2583 
2584 //
2585 // The next methods are derived from methods in MemNode.
2586 //
2587 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2588   Node *mem = mmem;
2589   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2590   // means an array I have not precisely typed yet.  Do not do any
2591   // alias stuff with it any time soon.
2592   if (toop->base() != Type::AnyPtr &&
2593       !(toop->klass() != NULL &&
2594         toop->klass()->is_java_lang_Object() &&
2595         toop->offset() == Type::OffsetBot)) {
2596     mem = mmem->memory_at(alias_idx);
2597     // Update input if it is progress over what we have now
2598   }
2599   return mem;
2600 }
2601 
2602 //
2603 // Move memory users to their memory slices.
2604 //
2605 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2606   Compile* C = _compile;
2607   PhaseGVN* igvn = _igvn;
2608   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2609   assert(tp != NULL, "ptr type");
2610   int alias_idx = C->get_alias_index(tp);
2611   int general_idx = C->get_general_index(alias_idx);
2612 
2613   // Move users first
2614   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2615     Node* use = n->fast_out(i);
2616     if (use->is_MergeMem()) {
2617       MergeMemNode* mmem = use->as_MergeMem();
2618       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2619       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2620         continue; // Nothing to do
2621       }
2622       // Replace previous general reference to mem node.
2623       uint orig_uniq = C->unique();
2624       Node* m = find_inst_mem(n, general_idx, orig_phis);
2625       assert(orig_uniq == C->unique(), "no new nodes");
2626       mmem->set_memory_at(general_idx, m);
2627       --imax;
2628       --i;
2629     } else if (use->is_MemBar()) {
2630       assert(!use->is_Initialize(), "initializing stores should not be moved");
2631       if (use->req() > MemBarNode::Precedent &&
2632           use->in(MemBarNode::Precedent) == n) {
2633         // Don't move related membars.
2634         record_for_optimizer(use);
2635         continue;
2636       }
2637       tp = use->as_MemBar()->adr_type()->isa_ptr();
2638       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2639           alias_idx == general_idx) {
2640         continue; // Nothing to do
2641       }
2642       // Move to general memory slice.
2643       uint orig_uniq = C->unique();
2644       Node* m = find_inst_mem(n, general_idx, orig_phis);
2645       assert(orig_uniq == C->unique(), "no new nodes");
2646       igvn->hash_delete(use);
2647       imax -= use->replace_edge(n, m);
2648       igvn->hash_insert(use);
2649       record_for_optimizer(use);
2650       --i;
2651 #ifdef ASSERT
2652     } else if (use->is_Mem()) {
2653       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2654         // Don't move related cardmark.
2655         continue;
2656       }
2657       // Memory nodes should have new memory input.
2658       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2659       assert(tp != NULL, "ptr type");
2660       int idx = C->get_alias_index(tp);
2661       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2662              "Following memory nodes should have new memory input or be on the same memory slice");
2663     } else if (use->is_Phi()) {
2664       // Phi nodes should be split and moved already.
2665       tp = use->as_Phi()->adr_type()->isa_ptr();
2666       assert(tp != NULL, "ptr type");
2667       int idx = C->get_alias_index(tp);
2668       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2669     } else {
2670       use->dump();
2671       assert(false, "should not be here");
2672 #endif
2673     }
2674   }
2675 }
2676 
2677 //
2678 // Search memory chain of "mem" to find a MemNode whose address
2679 // is the specified alias index.
2680 //
2681 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2682   if (orig_mem == NULL)
2683     return orig_mem;
2684   Compile* C = _compile;
2685   PhaseGVN* igvn = _igvn;
2686   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2687   bool is_instance = (toop != NULL) && toop->is_known_instance();
2688   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2689   Node *prev = NULL;
2690   Node *result = orig_mem;
2691   while (prev != result) {
2692     prev = result;
2693     if (result == start_mem)
2694       break;  // hit one of our sentinels
2695     if (result->is_Mem()) {
2696       const Type *at = igvn->type(result->in(MemNode::Address));
2697       if (at == Type::TOP)
2698         break; // Dead
2699       assert (at->isa_ptr() != NULL, "pointer type required.");
2700       int idx = C->get_alias_index(at->is_ptr());
2701       if (idx == alias_idx)
2702         break; // Found
2703       if (!is_instance && (at->isa_oopptr() == NULL ||
2704                            !at->is_oopptr()->is_known_instance())) {
2705         break; // Do not skip store to general memory slice.
2706       }
2707       result = result->in(MemNode::Memory);
2708     }
2709     if (!is_instance)
2710       continue;  // don't search further for non-instance types
2711     // skip over a call which does not affect this memory slice
2712     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2713       Node *proj_in = result->in(0);
2714       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2715         break;  // hit one of our sentinels
2716       } else if (proj_in->is_Call()) {
2717         // ArrayCopy node processed here as well
2718         CallNode *call = proj_in->as_Call();
2719         if (!call->may_modify(toop, igvn)) {
2720           result = call->in(TypeFunc::Memory);
2721         }
2722       } else if (proj_in->is_Initialize()) {
2723         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2724         // Stop if this is the initialization for the object instance which
2725         // which contains this memory slice, otherwise skip over it.
2726         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2727           result = proj_in->in(TypeFunc::Memory);
2728         }
2729       } else if (proj_in->is_MemBar()) {
2730         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2731             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2732             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2733           // clone
2734           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2735           if (ac->may_modify(toop, igvn)) {
2736             break;
2737           }
2738         }
2739         result = proj_in->in(TypeFunc::Memory);
2740       }
2741     } else if (result->is_MergeMem()) {
2742       MergeMemNode *mmem = result->as_MergeMem();
2743       result = step_through_mergemem(mmem, alias_idx, toop);
2744       if (result == mmem->base_memory()) {
2745         // Didn't find instance memory, search through general slice recursively.
2746         result = mmem->memory_at(C->get_general_index(alias_idx));
2747         result = find_inst_mem(result, alias_idx, orig_phis);
2748         if (C->failing()) {
2749           return NULL;
2750         }
2751         mmem->set_memory_at(alias_idx, result);
2752       }
2753     } else if (result->is_Phi() &&
2754                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2755       Node *un = result->as_Phi()->unique_input(igvn);
2756       if (un != NULL) {
2757         orig_phis.append_if_missing(result->as_Phi());
2758         result = un;
2759       } else {
2760         break;
2761       }
2762     } else if (result->is_ClearArray()) {
2763       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2764         // Can not bypass initialization of the instance
2765         // we are looking for.
2766         break;
2767       }
2768       // Otherwise skip it (the call updated 'result' value).
2769     } else if (result->Opcode() == Op_SCMemProj) {
2770       Node* mem = result->in(0);
2771       Node* adr = NULL;
2772       if (mem->is_LoadStore()) {
2773         adr = mem->in(MemNode::Address);
2774       } else {
2775         assert(mem->Opcode() == Op_EncodeISOArray ||
2776                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2777         adr = mem->in(3); // Memory edge corresponds to destination array
2778       }
2779       const Type *at = igvn->type(adr);
2780       if (at != Type::TOP) {
2781         assert(at->isa_ptr() != NULL, "pointer type required.");
2782         int idx = C->get_alias_index(at->is_ptr());
2783         if (idx == alias_idx) {
2784           // Assert in debug mode
2785           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2786           break; // In product mode return SCMemProj node
2787         }
2788       }
2789       result = mem->in(MemNode::Memory);
2790     } else if (result->Opcode() == Op_StrInflatedCopy) {
2791       Node* adr = result->in(3); // Memory edge corresponds to destination array
2792       const Type *at = igvn->type(adr);
2793       if (at != Type::TOP) {
2794         assert(at->isa_ptr() != NULL, "pointer type required.");
2795         int idx = C->get_alias_index(at->is_ptr());
2796         if (idx == alias_idx) {
2797           // Assert in debug mode
2798           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2799           break; // In product mode return SCMemProj node
2800         }
2801       }
2802       result = result->in(MemNode::Memory);
2803     }
2804   }
2805   if (result->is_Phi()) {
2806     PhiNode *mphi = result->as_Phi();
2807     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2808     const TypePtr *t = mphi->adr_type();
2809     if (!is_instance) {
2810       // Push all non-instance Phis on the orig_phis worklist to update inputs
2811       // during Phase 4 if needed.
2812       orig_phis.append_if_missing(mphi);
2813     } else if (C->get_alias_index(t) != alias_idx) {
2814       // Create a new Phi with the specified alias index type.
2815       result = split_memory_phi(mphi, alias_idx, orig_phis);
2816     }
2817   }
2818   // the result is either MemNode, PhiNode, InitializeNode.
2819   return result;
2820 }
2821 
2822 //
2823 //  Convert the types of unescaped object to instance types where possible,
2824 //  propagate the new type information through the graph, and update memory
2825 //  edges and MergeMem inputs to reflect the new type.
2826 //
2827 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2828 //  The processing is done in 4 phases:
2829 //
2830 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2831 //            types for the CheckCastPP for allocations where possible.
2832 //            Propagate the new types through users as follows:
2833 //               casts and Phi:  push users on alloc_worklist
2834 //               AddP:  cast Base and Address inputs to the instance type
2835 //                      push any AddP users on alloc_worklist and push any memnode
2836 //                      users onto memnode_worklist.
2837 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2838 //            search the Memory chain for a store with the appropriate type
2839 //            address type.  If a Phi is found, create a new version with
2840 //            the appropriate memory slices from each of the Phi inputs.
2841 //            For stores, process the users as follows:
2842 //               MemNode:  push on memnode_worklist
2843 //               MergeMem: push on mergemem_worklist
2844 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2845 //            moving the first node encountered of each  instance type to the
2846 //            the input corresponding to its alias index.
2847 //            appropriate memory slice.
2848 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2849 //
2850 // In the following example, the CheckCastPP nodes are the cast of allocation
2851 // results and the allocation of node 29 is unescaped and eligible to be an
2852 // instance type.
2853 //
2854 // We start with:
2855 //
2856 //     7 Parm #memory
2857 //    10  ConI  "12"
2858 //    19  CheckCastPP   "Foo"
2859 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2860 //    29  CheckCastPP   "Foo"
2861 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2862 //
2863 //    40  StoreP  25   7  20   ... alias_index=4
2864 //    50  StoreP  35  40  30   ... alias_index=4
2865 //    60  StoreP  45  50  20   ... alias_index=4
2866 //    70  LoadP    _  60  30   ... alias_index=4
2867 //    80  Phi     75  50  60   Memory alias_index=4
2868 //    90  LoadP    _  80  30   ... alias_index=4
2869 //   100  LoadP    _  80  20   ... alias_index=4
2870 //
2871 //
2872 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2873 // and creating a new alias index for node 30.  This gives:
2874 //
2875 //     7 Parm #memory
2876 //    10  ConI  "12"
2877 //    19  CheckCastPP   "Foo"
2878 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2879 //    29  CheckCastPP   "Foo"  iid=24
2880 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2881 //
2882 //    40  StoreP  25   7  20   ... alias_index=4
2883 //    50  StoreP  35  40  30   ... alias_index=6
2884 //    60  StoreP  45  50  20   ... alias_index=4
2885 //    70  LoadP    _  60  30   ... alias_index=6
2886 //    80  Phi     75  50  60   Memory alias_index=4
2887 //    90  LoadP    _  80  30   ... alias_index=6
2888 //   100  LoadP    _  80  20   ... alias_index=4
2889 //
2890 // In phase 2, new memory inputs are computed for the loads and stores,
2891 // And a new version of the phi is created.  In phase 4, the inputs to
2892 // node 80 are updated and then the memory nodes are updated with the
2893 // values computed in phase 2.  This results in:
2894 //
2895 //     7 Parm #memory
2896 //    10  ConI  "12"
2897 //    19  CheckCastPP   "Foo"
2898 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2899 //    29  CheckCastPP   "Foo"  iid=24
2900 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2901 //
2902 //    40  StoreP  25  7   20   ... alias_index=4
2903 //    50  StoreP  35  7   30   ... alias_index=6
2904 //    60  StoreP  45  40  20   ... alias_index=4
2905 //    70  LoadP    _  50  30   ... alias_index=6
2906 //    80  Phi     75  40  60   Memory alias_index=4
2907 //   120  Phi     75  50  50   Memory alias_index=6
2908 //    90  LoadP    _ 120  30   ... alias_index=6
2909 //   100  LoadP    _  80  20   ... alias_index=4
2910 //
2911 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2912   GrowableArray<Node *>  memnode_worklist;
2913   GrowableArray<PhiNode *>  orig_phis;
2914   PhaseIterGVN  *igvn = _igvn;
2915   uint new_index_start = (uint) _compile->num_alias_types();
2916   Arena* arena = Thread::current()->resource_area();
2917   VectorSet visited(arena);
2918   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2919   uint unique_old = _compile->unique();
2920 
2921   //  Phase 1:  Process possible allocations from alloc_worklist.
2922   //  Create instance types for the CheckCastPP for allocations where possible.
2923   //
2924   // (Note: don't forget to change the order of the second AddP node on
2925   //  the alloc_worklist if the order of the worklist processing is changed,
2926   //  see the comment in find_second_addp().)
2927   //
2928   while (alloc_worklist.length() != 0) {
2929     Node *n = alloc_worklist.pop();
2930     uint ni = n->_idx;
2931     if (n->is_Call()) {
2932       CallNode *alloc = n->as_Call();
2933       // copy escape information to call node
2934       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2935       PointsToNode::EscapeState es = ptn->escape_state();
2936       // We have an allocation or call which returns a Java object,
2937       // see if it is unescaped.
2938       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2939         continue;
2940       // Find CheckCastPP for the allocate or for the return value of a call
2941       n = alloc->result_cast();
2942       if (n == NULL) {            // No uses except Initialize node
2943         if (alloc->is_Allocate()) {
2944           // Set the scalar_replaceable flag for allocation
2945           // so it could be eliminated if it has no uses.
2946           alloc->as_Allocate()->_is_scalar_replaceable = true;
2947         }
2948         if (alloc->is_CallStaticJava()) {
2949           // Set the scalar_replaceable flag for boxing method
2950           // so it could be eliminated if it has no uses.
2951           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2952         }
2953         continue;
2954       }
2955       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2956         assert(!alloc->is_Allocate(), "allocation should have unique type");
2957         continue;
2958       }
2959 
2960       // The inline code for Object.clone() casts the allocation result to
2961       // java.lang.Object and then to the actual type of the allocated
2962       // object. Detect this case and use the second cast.
2963       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2964       // the allocation result is cast to java.lang.Object and then
2965       // to the actual Array type.
2966       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2967           && (alloc->is_AllocateArray() ||
2968               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2969         Node *cast2 = NULL;
2970         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2971           Node *use = n->fast_out(i);
2972           if (use->is_CheckCastPP()) {
2973             cast2 = use;
2974             break;
2975           }
2976         }
2977         if (cast2 != NULL) {
2978           n = cast2;
2979         } else {
2980           // Non-scalar replaceable if the allocation type is unknown statically
2981           // (reflection allocation), the object can't be restored during
2982           // deoptimization without precise type.
2983           continue;
2984         }
2985       }
2986 
2987       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2988       if (t == NULL)
2989         continue;  // not a TypeOopPtr
2990       if (!t->klass_is_exact())
2991         continue; // not an unique type
2992 
2993       if (alloc->is_Allocate()) {
2994         // Set the scalar_replaceable flag for allocation
2995         // so it could be eliminated.
2996         alloc->as_Allocate()->_is_scalar_replaceable = true;
2997       }
2998       if (alloc->is_CallStaticJava()) {
2999         // Set the scalar_replaceable flag for boxing method
3000         // so it could be eliminated.
3001         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
3002       }
3003       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
3004       // in order for an object to be scalar-replaceable, it must be:
3005       //   - a direct allocation (not a call returning an object)
3006       //   - non-escaping
3007       //   - eligible to be a unique type
3008       //   - not determined to be ineligible by escape analysis
3009       set_map(alloc, n);
3010       set_map(n, alloc);
3011       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3012       igvn->hash_delete(n);
3013       igvn->set_type(n,  tinst);
3014       n->raise_bottom_type(tinst);
3015       igvn->hash_insert(n);
3016       record_for_optimizer(n);
3017       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3018 
3019         // First, put on the worklist all Field edges from Connection Graph
3020         // which is more accurate than putting immediate users from Ideal Graph.
3021         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3022           PointsToNode* tgt = e.get();
3023           if (tgt->is_Arraycopy()) {
3024             continue;
3025           }
3026           Node* use = tgt->ideal_node();
3027           assert(tgt->is_Field() && use->is_AddP(),
3028                  "only AddP nodes are Field edges in CG");
3029           if (use->outcnt() > 0) { // Don't process dead nodes
3030             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3031             if (addp2 != NULL) {
3032               assert(alloc->is_AllocateArray(),"array allocation was expected");
3033               alloc_worklist.append_if_missing(addp2);
3034             }
3035             alloc_worklist.append_if_missing(use);
3036           }
3037         }
3038 
3039         // An allocation may have an Initialize which has raw stores. Scan
3040         // the users of the raw allocation result and push AddP users
3041         // on alloc_worklist.
3042         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3043         assert (raw_result != NULL, "must have an allocation result");
3044         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3045           Node *use = raw_result->fast_out(i);
3046           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3047             Node* addp2 = find_second_addp(use, raw_result);
3048             if (addp2 != NULL) {
3049               assert(alloc->is_AllocateArray(),"array allocation was expected");
3050               alloc_worklist.append_if_missing(addp2);
3051             }
3052             alloc_worklist.append_if_missing(use);
3053           } else if (use->is_MemBar()) {
3054             memnode_worklist.append_if_missing(use);
3055           }
3056         }
3057       }
3058     } else if (n->is_AddP()) {
3059       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3060       if (jobj == NULL || jobj == phantom_obj) {
3061 #ifdef ASSERT
3062         ptnode_adr(get_addp_base(n)->_idx)->dump();
3063         ptnode_adr(n->_idx)->dump();
3064         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3065 #endif
3066         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3067         return;
3068       }
3069       Node *base = get_map(jobj->idx());  // CheckCastPP node
3070       if (!split_AddP(n, base)) continue; // wrong type from dead path
3071     } else if (n->is_Phi() ||
3072                n->is_CheckCastPP() ||
3073                n->is_EncodeP() ||
3074                n->is_DecodeN() ||
3075                BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(n) ||
3076                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3077       if (visited.test_set(n->_idx)) {
3078         assert(n->is_Phi(), "loops only through Phi's");
3079         continue;  // already processed
3080       }
3081       JavaObjectNode* jobj = unique_java_object(n);
3082       if (jobj == NULL || jobj == phantom_obj) {
3083 #ifdef ASSERT
3084         ptnode_adr(n->_idx)->dump();
3085         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3086 #endif
3087         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3088         return;
3089       } else {
3090         Node *val = get_map(jobj->idx());   // CheckCastPP node
3091         TypeNode *tn = n->as_Type();
3092         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3093         assert(tinst != NULL && tinst->is_known_instance() &&
3094                tinst->instance_id() == jobj->idx() , "instance type expected.");
3095 
3096         const Type *tn_type = igvn->type(tn);
3097         const TypeOopPtr *tn_t;
3098         if (tn_type->isa_narrowoop()) {
3099           tn_t = tn_type->make_ptr()->isa_oopptr();
3100         } else {
3101           tn_t = tn_type->isa_oopptr();
3102         }
3103         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3104           if (tn_type->isa_narrowoop()) {
3105             tn_type = tinst->make_narrowoop();
3106           } else {
3107             tn_type = tinst;
3108           }
3109           igvn->hash_delete(tn);
3110           igvn->set_type(tn, tn_type);
3111           tn->set_type(tn_type);
3112           igvn->hash_insert(tn);
3113           record_for_optimizer(n);
3114         } else {
3115           assert(tn_type == TypePtr::NULL_PTR ||
3116                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3117                  "unexpected type");
3118           continue; // Skip dead path with different type
3119         }
3120       }
3121     } else {
3122       debug_only(n->dump();)
3123       assert(false, "EA: unexpected node");
3124       continue;
3125     }
3126     // push allocation's users on appropriate worklist
3127     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3128       Node *use = n->fast_out(i);
3129       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3130         // Load/store to instance's field
3131         memnode_worklist.append_if_missing(use);
3132       } else if (use->is_MemBar()) {
3133         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3134           memnode_worklist.append_if_missing(use);
3135         }
3136       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3137         Node* addp2 = find_second_addp(use, n);
3138         if (addp2 != NULL) {
3139           alloc_worklist.append_if_missing(addp2);
3140         }
3141         alloc_worklist.append_if_missing(use);
3142       } else if (use->is_Phi() ||
3143                  use->is_CheckCastPP() ||
3144                  use->is_EncodeNarrowPtr() ||
3145                  use->is_DecodeNarrowPtr() ||
3146                  BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(use) ||
3147                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3148         alloc_worklist.append_if_missing(use);
3149 #ifdef ASSERT
3150       } else if (use->is_Mem()) {
3151         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3152       } else if (use->is_MergeMem()) {
3153         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3154       } else if (use->is_SafePoint()) {
3155         // Look for MergeMem nodes for calls which reference unique allocation
3156         // (through CheckCastPP nodes) even for debug info.
3157         Node* m = use->in(TypeFunc::Memory);
3158         if (m->is_MergeMem()) {
3159           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3160         }
3161       } else if (use->Opcode() == Op_EncodeISOArray) {
3162         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3163           // EncodeISOArray overwrites destination array
3164           memnode_worklist.append_if_missing(use);
3165         }
3166       } else {
3167         uint op = use->Opcode();
3168         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3169             (use->in(MemNode::Memory) == n)) {
3170           // They overwrite memory edge corresponding to destination array,
3171           memnode_worklist.append_if_missing(use);
3172         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3173               op == Op_CastP2X || op == Op_StoreCM ||
3174               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3175               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3176               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3177               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
3178           n->dump();
3179           use->dump();
3180           assert(false, "EA: missing allocation reference path");
3181         }
3182 #endif
3183       }
3184     }
3185 
3186   }
3187 
3188   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3189   // type, record it in the ArrayCopy node so we know what memory this
3190   // node uses/modified.
3191   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3192     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3193     Node* dest = ac->in(ArrayCopyNode::Dest);
3194     if (dest->is_AddP()) {
3195       dest = get_addp_base(dest);
3196     }
3197     JavaObjectNode* jobj = unique_java_object(dest);
3198     if (jobj != NULL) {
3199       Node *base = get_map(jobj->idx());
3200       if (base != NULL) {
3201         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3202         ac->_dest_type = base_t;
3203       }
3204     }
3205     Node* src = ac->in(ArrayCopyNode::Src);
3206     if (src->is_AddP()) {
3207       src = get_addp_base(src);
3208     }
3209     jobj = unique_java_object(src);
3210     if (jobj != NULL) {
3211       Node* base = get_map(jobj->idx());
3212       if (base != NULL) {
3213         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3214         ac->_src_type = base_t;
3215       }
3216     }
3217   }
3218 
3219   // New alias types were created in split_AddP().
3220   uint new_index_end = (uint) _compile->num_alias_types();
3221   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3222 
3223   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3224   //            compute new values for Memory inputs  (the Memory inputs are not
3225   //            actually updated until phase 4.)
3226   if (memnode_worklist.length() == 0)
3227     return;  // nothing to do
3228   while (memnode_worklist.length() != 0) {
3229     Node *n = memnode_worklist.pop();
3230     if (visited.test_set(n->_idx))
3231       continue;
3232     if (n->is_Phi() || n->is_ClearArray()) {
3233       // we don't need to do anything, but the users must be pushed
3234     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3235       // we don't need to do anything, but the users must be pushed
3236       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3237       if (n == NULL)
3238         continue;
3239     } else if (n->Opcode() == Op_StrCompressedCopy ||
3240                n->Opcode() == Op_EncodeISOArray) {
3241       // get the memory projection
3242       n = n->find_out_with(Op_SCMemProj);
3243       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3244     } else {
3245       assert(n->is_Mem(), "memory node required.");
3246       Node *addr = n->in(MemNode::Address);
3247       const Type *addr_t = igvn->type(addr);
3248       if (addr_t == Type::TOP)
3249         continue;
3250       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3251       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3252       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3253       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3254       if (_compile->failing()) {
3255         return;
3256       }
3257       if (mem != n->in(MemNode::Memory)) {
3258         // We delay the memory edge update since we need old one in
3259         // MergeMem code below when instances memory slices are separated.
3260         set_map(n, mem);
3261       }
3262       if (n->is_Load()) {
3263         continue;  // don't push users
3264       } else if (n->is_LoadStore()) {
3265         // get the memory projection
3266         n = n->find_out_with(Op_SCMemProj);
3267         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3268       }
3269     }
3270     // push user on appropriate worklist
3271     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3272       Node *use = n->fast_out(i);
3273       if (use->is_Phi() || use->is_ClearArray()) {
3274         memnode_worklist.append_if_missing(use);
3275       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3276         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3277           continue;
3278         memnode_worklist.append_if_missing(use);
3279       } else if (use->is_MemBar()) {
3280         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3281           memnode_worklist.append_if_missing(use);
3282         }
3283 #ifdef ASSERT
3284       } else if(use->is_Mem()) {
3285         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3286       } else if (use->is_MergeMem()) {
3287         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3288       } else if (use->Opcode() == Op_EncodeISOArray) {
3289         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3290           // EncodeISOArray overwrites destination array
3291           memnode_worklist.append_if_missing(use);
3292         }
3293       } else {
3294         uint op = use->Opcode();
3295         if ((use->in(MemNode::Memory) == n) &&
3296             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3297           // They overwrite memory edge corresponding to destination array,
3298           memnode_worklist.append_if_missing(use);
3299         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3300               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3301               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3302               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3303           n->dump();
3304           use->dump();
3305           assert(false, "EA: missing memory path");
3306         }
3307 #endif
3308       }
3309     }
3310   }
3311 
3312   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3313   //            Walk each memory slice moving the first node encountered of each
3314   //            instance type to the the input corresponding to its alias index.
3315   uint length = _mergemem_worklist.length();
3316   for( uint next = 0; next < length; ++next ) {
3317     MergeMemNode* nmm = _mergemem_worklist.at(next);
3318     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3319     // Note: we don't want to use MergeMemStream here because we only want to
3320     // scan inputs which exist at the start, not ones we add during processing.
3321     // Note 2: MergeMem may already contains instance memory slices added
3322     // during find_inst_mem() call when memory nodes were processed above.
3323     igvn->hash_delete(nmm);
3324     uint nslices = MIN2(nmm->req(), new_index_start);
3325     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3326       Node* mem = nmm->in(i);
3327       Node* cur = NULL;
3328       if (mem == NULL || mem->is_top())
3329         continue;
3330       // First, update mergemem by moving memory nodes to corresponding slices
3331       // if their type became more precise since this mergemem was created.
3332       while (mem->is_Mem()) {
3333         const Type *at = igvn->type(mem->in(MemNode::Address));
3334         if (at != Type::TOP) {
3335           assert (at->isa_ptr() != NULL, "pointer type required.");
3336           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3337           if (idx == i) {
3338             if (cur == NULL)
3339               cur = mem;
3340           } else {
3341             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3342               nmm->set_memory_at(idx, mem);
3343             }
3344           }
3345         }
3346         mem = mem->in(MemNode::Memory);
3347       }
3348       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3349       // Find any instance of the current type if we haven't encountered
3350       // already a memory slice of the instance along the memory chain.
3351       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3352         if((uint)_compile->get_general_index(ni) == i) {
3353           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3354           if (nmm->is_empty_memory(m)) {
3355             Node* result = find_inst_mem(mem, ni, orig_phis);
3356             if (_compile->failing()) {
3357               return;
3358             }
3359             nmm->set_memory_at(ni, result);
3360           }
3361         }
3362       }
3363     }
3364     // Find the rest of instances values
3365     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3366       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3367       Node* result = step_through_mergemem(nmm, ni, tinst);
3368       if (result == nmm->base_memory()) {
3369         // Didn't find instance memory, search through general slice recursively.
3370         result = nmm->memory_at(_compile->get_general_index(ni));
3371         result = find_inst_mem(result, ni, orig_phis);
3372         if (_compile->failing()) {
3373           return;
3374         }
3375         nmm->set_memory_at(ni, result);
3376       }
3377     }
3378     igvn->hash_insert(nmm);
3379     record_for_optimizer(nmm);
3380   }
3381 
3382   //  Phase 4:  Update the inputs of non-instance memory Phis and
3383   //            the Memory input of memnodes
3384   // First update the inputs of any non-instance Phi's from
3385   // which we split out an instance Phi.  Note we don't have
3386   // to recursively process Phi's encounted on the input memory
3387   // chains as is done in split_memory_phi() since they  will
3388   // also be processed here.
3389   for (int j = 0; j < orig_phis.length(); j++) {
3390     PhiNode *phi = orig_phis.at(j);
3391     int alias_idx = _compile->get_alias_index(phi->adr_type());
3392     igvn->hash_delete(phi);
3393     for (uint i = 1; i < phi->req(); i++) {
3394       Node *mem = phi->in(i);
3395       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3396       if (_compile->failing()) {
3397         return;
3398       }
3399       if (mem != new_mem) {
3400         phi->set_req(i, new_mem);
3401       }
3402     }
3403     igvn->hash_insert(phi);
3404     record_for_optimizer(phi);
3405   }
3406 
3407   // Update the memory inputs of MemNodes with the value we computed
3408   // in Phase 2 and move stores memory users to corresponding memory slices.
3409   // Disable memory split verification code until the fix for 6984348.
3410   // Currently it produces false negative results since it does not cover all cases.
3411 #if 0 // ifdef ASSERT
3412   visited.Reset();
3413   Node_Stack old_mems(arena, _compile->unique() >> 2);
3414 #endif
3415   for (uint i = 0; i < ideal_nodes.size(); i++) {
3416     Node*    n = ideal_nodes.at(i);
3417     Node* nmem = get_map(n->_idx);
3418     assert(nmem != NULL, "sanity");
3419     if (n->is_Mem()) {
3420 #if 0 // ifdef ASSERT
3421       Node* old_mem = n->in(MemNode::Memory);
3422       if (!visited.test_set(old_mem->_idx)) {
3423         old_mems.push(old_mem, old_mem->outcnt());
3424       }
3425 #endif
3426       assert(n->in(MemNode::Memory) != nmem, "sanity");
3427       if (!n->is_Load()) {
3428         // Move memory users of a store first.
3429         move_inst_mem(n, orig_phis);
3430       }
3431       // Now update memory input
3432       igvn->hash_delete(n);
3433       n->set_req(MemNode::Memory, nmem);
3434       igvn->hash_insert(n);
3435       record_for_optimizer(n);
3436     } else {
3437       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3438              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3439     }
3440   }
3441 #if 0 // ifdef ASSERT
3442   // Verify that memory was split correctly
3443   while (old_mems.is_nonempty()) {
3444     Node* old_mem = old_mems.node();
3445     uint  old_cnt = old_mems.index();
3446     old_mems.pop();
3447     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3448   }
3449 #endif
3450 }
3451 
3452 #ifndef PRODUCT
3453 static const char *node_type_names[] = {
3454   "UnknownType",
3455   "JavaObject",
3456   "LocalVar",
3457   "Field",
3458   "Arraycopy"
3459 };
3460 
3461 static const char *esc_names[] = {
3462   "UnknownEscape",
3463   "NoEscape",
3464   "ArgEscape",
3465   "GlobalEscape"
3466 };
3467 
3468 void PointsToNode::dump(bool print_state) const {
3469   NodeType nt = node_type();
3470   tty->print("%s ", node_type_names[(int) nt]);
3471   if (print_state) {
3472     EscapeState es = escape_state();
3473     EscapeState fields_es = fields_escape_state();
3474     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3475     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3476       tty->print("NSR ");
3477   }
3478   if (is_Field()) {
3479     FieldNode* f = (FieldNode*)this;
3480     if (f->is_oop())
3481       tty->print("oop ");
3482     if (f->offset() > 0)
3483       tty->print("+%d ", f->offset());
3484     tty->print("(");
3485     for (BaseIterator i(f); i.has_next(); i.next()) {
3486       PointsToNode* b = i.get();
3487       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3488     }
3489     tty->print(" )");
3490   }
3491   tty->print("[");
3492   for (EdgeIterator i(this); i.has_next(); i.next()) {
3493     PointsToNode* e = i.get();
3494     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3495   }
3496   tty->print(" [");
3497   for (UseIterator i(this); i.has_next(); i.next()) {
3498     PointsToNode* u = i.get();
3499     bool is_base = false;
3500     if (PointsToNode::is_base_use(u)) {
3501       is_base = true;
3502       u = PointsToNode::get_use_node(u)->as_Field();
3503     }
3504     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3505   }
3506   tty->print(" ]]  ");
3507   if (_node == NULL)
3508     tty->print_cr("<null>");
3509   else
3510     _node->dump();
3511 }
3512 
3513 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3514   bool first = true;
3515   int ptnodes_length = ptnodes_worklist.length();
3516   for (int i = 0; i < ptnodes_length; i++) {
3517     PointsToNode *ptn = ptnodes_worklist.at(i);
3518     if (ptn == NULL || !ptn->is_JavaObject())
3519       continue;
3520     PointsToNode::EscapeState es = ptn->escape_state();
3521     if ((es != PointsToNode::NoEscape) && !Verbose) {
3522       continue;
3523     }
3524     Node* n = ptn->ideal_node();
3525     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3526                              n->as_CallStaticJava()->is_boxing_method())) {
3527       if (first) {
3528         tty->cr();
3529         tty->print("======== Connection graph for ");
3530         _compile->method()->print_short_name();
3531         tty->cr();
3532         first = false;
3533       }
3534       ptn->dump();
3535       // Print all locals and fields which reference this allocation
3536       for (UseIterator j(ptn); j.has_next(); j.next()) {
3537         PointsToNode* use = j.get();
3538         if (use->is_LocalVar()) {
3539           use->dump(Verbose);
3540         } else if (Verbose) {
3541           use->dump();
3542         }
3543       }
3544       tty->cr();
3545     }
3546   }
3547 }
3548 #endif
3549 
3550 void ConnectionGraph::record_for_optimizer(Node *n) {
3551   _igvn->_worklist.push(n);
3552   _igvn->add_users_to_worklist(n);
3553 }