1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/regalloc.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "utilities/macros.hpp"
  42 
  43 //=============================================================================
  44 #define NODE_HASH_MINIMUM_SIZE    255
  45 //------------------------------NodeHash---------------------------------------
  46 NodeHash::NodeHash(uint est_max_size) :
  47   _a(Thread::current()->resource_area()),
  48   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  49   _inserts(0), _insert_limit( insert_limit() ),
  50   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ) // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
  51 #ifndef PRODUCT
  52   , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  53   _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0),
  54    _total_inserts(0), _total_insert_probes(0)
  55 #endif
  56 {
  57   // _sentinel must be in the current node space
  58   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  59   memset(_table,0,sizeof(Node*)*_max);
  60 }
  61 
  62 //------------------------------NodeHash---------------------------------------
  63 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  64   _a(arena),
  65   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  66   _inserts(0), _insert_limit( insert_limit() ),
  67   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) )
  68 #ifndef PRODUCT
  69   , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  70   _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0),
  71    _total_inserts(0), _total_insert_probes(0)
  72 #endif
  73 {
  74   // _sentinel must be in the current node space
  75   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  76   memset(_table,0,sizeof(Node*)*_max);
  77 }
  78 
  79 //------------------------------NodeHash---------------------------------------
  80 NodeHash::NodeHash(NodeHash *nh) {
  81   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  82   // just copy in all the fields
  83   *this = *nh;
  84   // nh->_sentinel must be in the current node space
  85 }
  86 
  87 void NodeHash::replace_with(NodeHash *nh) {
  88   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  89   // just copy in all the fields
  90   *this = *nh;
  91   // nh->_sentinel must be in the current node space
  92 }
  93 
  94 //------------------------------hash_find--------------------------------------
  95 // Find in hash table
  96 Node *NodeHash::hash_find( const Node *n ) {
  97   // ((Node*)n)->set_hash( n->hash() );
  98   uint hash = n->hash();
  99   if (hash == Node::NO_HASH) {
 100     NOT_PRODUCT( _lookup_misses++ );
 101     return NULL;
 102   }
 103   uint key = hash & (_max-1);
 104   uint stride = key | 0x01;
 105   NOT_PRODUCT( _look_probes++ );
 106   Node *k = _table[key];        // Get hashed value
 107   if( !k ) {                    // ?Miss?
 108     NOT_PRODUCT( _lookup_misses++ );
 109     return NULL;                // Miss!
 110   }
 111 
 112   int op = n->Opcode();
 113   uint req = n->req();
 114   while( 1 ) {                  // While probing hash table
 115     if( k->req() == req &&      // Same count of inputs
 116         k->Opcode() == op ) {   // Same Opcode
 117       for( uint i=0; i<req; i++ )
 118         if( n->in(i)!=k->in(i)) // Different inputs?
 119           goto collision;       // "goto" is a speed hack...
 120       if( n->cmp(*k) ) {        // Check for any special bits
 121         NOT_PRODUCT( _lookup_hits++ );
 122         return k;               // Hit!
 123       }
 124     }
 125   collision:
 126     NOT_PRODUCT( _look_probes++ );
 127     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
 128     k = _table[key];            // Get hashed value
 129     if( !k ) {                  // ?Miss?
 130       NOT_PRODUCT( _lookup_misses++ );
 131       return NULL;              // Miss!
 132     }
 133   }
 134   ShouldNotReachHere();
 135   return NULL;
 136 }
 137 
 138 //------------------------------hash_find_insert-------------------------------
 139 // Find in hash table, insert if not already present
 140 // Used to preserve unique entries in hash table
 141 Node *NodeHash::hash_find_insert( Node *n ) {
 142   // n->set_hash( );
 143   uint hash = n->hash();
 144   if (hash == Node::NO_HASH) {
 145     NOT_PRODUCT( _lookup_misses++ );
 146     return NULL;
 147   }
 148   uint key = hash & (_max-1);
 149   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 150   uint first_sentinel = 0;      // replace a sentinel if seen.
 151   NOT_PRODUCT( _look_probes++ );
 152   Node *k = _table[key];        // Get hashed value
 153   if( !k ) {                    // ?Miss?
 154     NOT_PRODUCT( _lookup_misses++ );
 155     _table[key] = n;            // Insert into table!
 156     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 157     check_grow();               // Grow table if insert hit limit
 158     return NULL;                // Miss!
 159   }
 160   else if( k == _sentinel ) {
 161     first_sentinel = key;      // Can insert here
 162   }
 163 
 164   int op = n->Opcode();
 165   uint req = n->req();
 166   while( 1 ) {                  // While probing hash table
 167     if( k->req() == req &&      // Same count of inputs
 168         k->Opcode() == op ) {   // Same Opcode
 169       for( uint i=0; i<req; i++ )
 170         if( n->in(i)!=k->in(i)) // Different inputs?
 171           goto collision;       // "goto" is a speed hack...
 172       if( n->cmp(*k) ) {        // Check for any special bits
 173         NOT_PRODUCT( _lookup_hits++ );
 174         return k;               // Hit!
 175       }
 176     }
 177   collision:
 178     NOT_PRODUCT( _look_probes++ );
 179     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 180     k = _table[key];            // Get hashed value
 181     if( !k ) {                  // ?Miss?
 182       NOT_PRODUCT( _lookup_misses++ );
 183       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 184       _table[key] = n;          // Insert into table!
 185       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 186       check_grow();             // Grow table if insert hit limit
 187       return NULL;              // Miss!
 188     }
 189     else if( first_sentinel == 0 && k == _sentinel ) {
 190       first_sentinel = key;    // Can insert here
 191     }
 192 
 193   }
 194   ShouldNotReachHere();
 195   return NULL;
 196 }
 197 
 198 //------------------------------hash_insert------------------------------------
 199 // Insert into hash table
 200 void NodeHash::hash_insert( Node *n ) {
 201   // // "conflict" comments -- print nodes that conflict
 202   // bool conflict = false;
 203   // n->set_hash();
 204   uint hash = n->hash();
 205   if (hash == Node::NO_HASH) {
 206     return;
 207   }
 208   check_grow();
 209   uint key = hash & (_max-1);
 210   uint stride = key | 0x01;
 211 
 212   while( 1 ) {                  // While probing hash table
 213     NOT_PRODUCT( _insert_probes++ );
 214     Node *k = _table[key];      // Get hashed value
 215     if( !k || (k == _sentinel) ) break;       // Found a slot
 216     assert( k != n, "already inserted" );
 217     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 218     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 219   }
 220   _table[key] = n;              // Insert into table!
 221   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 222   // if( conflict ) { n->dump(); }
 223 }
 224 
 225 //------------------------------hash_delete------------------------------------
 226 // Replace in hash table with sentinel
 227 bool NodeHash::hash_delete( const Node *n ) {
 228   Node *k;
 229   uint hash = n->hash();
 230   if (hash == Node::NO_HASH) {
 231     NOT_PRODUCT( _delete_misses++ );
 232     return false;
 233   }
 234   uint key = hash & (_max-1);
 235   uint stride = key | 0x01;
 236   debug_only( uint counter = 0; );
 237   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
 238     debug_only( counter++ );
 239     NOT_PRODUCT( _delete_probes++ );
 240     k = _table[key];            // Get hashed value
 241     if( !k ) {                  // Miss?
 242       NOT_PRODUCT( _delete_misses++ );
 243 #ifdef ASSERT
 244       if( VerifyOpto ) {
 245         for( uint i=0; i < _max; i++ )
 246           assert( _table[i] != n, "changed edges with rehashing" );
 247       }
 248 #endif
 249       return false;             // Miss! Not in chain
 250     }
 251     else if( n == k ) {
 252       NOT_PRODUCT( _delete_hits++ );
 253       _table[key] = _sentinel;  // Hit! Label as deleted entry
 254       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 255       return true;
 256     }
 257     else {
 258       // collision: move through table with prime offset
 259       key = (key + stride/*7*/) & (_max-1);
 260       assert( counter <= _insert_limit, "Cycle in hash-table");
 261     }
 262   }
 263   ShouldNotReachHere();
 264   return false;
 265 }
 266 
 267 //------------------------------round_up---------------------------------------
 268 // Round up to nearest power of 2
 269 uint NodeHash::round_up( uint x ) {
 270   x += (x>>2);                  // Add 25% slop
 271   if( x <16 ) return 16;        // Small stuff
 272   uint i=16;
 273   while( i < x ) i <<= 1;       // Double to fit
 274   return i;                     // Return hash table size
 275 }
 276 
 277 //------------------------------grow-------------------------------------------
 278 // Grow _table to next power of 2 and insert old entries
 279 void  NodeHash::grow() {
 280   // Record old state
 281   uint   old_max   = _max;
 282   Node **old_table = _table;
 283   // Construct new table with twice the space
 284 #ifndef PRODUCT
 285   _grows++;
 286   _total_inserts       += _inserts;
 287   _total_insert_probes += _insert_probes;
 288   _insert_probes   = 0;
 289 #endif
 290   _inserts         = 0;
 291   _max     = _max << 1;
 292   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 293   memset(_table,0,sizeof(Node*)*_max);
 294   _insert_limit = insert_limit();
 295   // Insert old entries into the new table
 296   for( uint i = 0; i < old_max; i++ ) {
 297     Node *m = *old_table++;
 298     if( !m || m == _sentinel ) continue;
 299     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 300     hash_insert(m);
 301   }
 302 }
 303 
 304 //------------------------------clear------------------------------------------
 305 // Clear all entries in _table to NULL but keep storage
 306 void  NodeHash::clear() {
 307 #ifdef ASSERT
 308   // Unlock all nodes upon removal from table.
 309   for (uint i = 0; i < _max; i++) {
 310     Node* n = _table[i];
 311     if (!n || n == _sentinel)  continue;
 312     n->exit_hash_lock();
 313   }
 314 #endif
 315 
 316   memset( _table, 0, _max * sizeof(Node*) );
 317 }
 318 
 319 //-----------------------remove_useless_nodes----------------------------------
 320 // Remove useless nodes from value table,
 321 // implementation does not depend on hash function
 322 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 323 
 324   // Dead nodes in the hash table inherited from GVN should not replace
 325   // existing nodes, remove dead nodes.
 326   uint max = size();
 327   Node *sentinel_node = sentinel();
 328   for( uint i = 0; i < max; ++i ) {
 329     Node *n = at(i);
 330     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
 331       debug_only(n->exit_hash_lock()); // Unlock the node when removed
 332       _table[i] = sentinel_node;       // Replace with placeholder
 333     }
 334   }
 335 }
 336 
 337 
 338 void NodeHash::check_no_speculative_types() {
 339 #ifdef ASSERT
 340   uint max = size();
 341   Node *sentinel_node = sentinel();
 342   for (uint i = 0; i < max; ++i) {
 343     Node *n = at(i);
 344     if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) {
 345       TypeNode* tn = n->as_Type();
 346       const Type* t = tn->type();
 347       const Type* t_no_spec = t->remove_speculative();
 348       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
 349     }
 350   }
 351 #endif
 352 }
 353 
 354 #ifndef PRODUCT
 355 //------------------------------dump-------------------------------------------
 356 // Dump statistics for the hash table
 357 void NodeHash::dump() {
 358   _total_inserts       += _inserts;
 359   _total_insert_probes += _insert_probes;
 360   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
 361     if (WizardMode) {
 362       for (uint i=0; i<_max; i++) {
 363         if (_table[i])
 364           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 365       }
 366     }
 367     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 368     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 369     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 370     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 371     // sentinels increase lookup cost, but not insert cost
 372     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 373     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 374     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 375   }
 376 }
 377 
 378 Node *NodeHash::find_index(uint idx) { // For debugging
 379   // Find an entry by its index value
 380   for( uint i = 0; i < _max; i++ ) {
 381     Node *m = _table[i];
 382     if( !m || m == _sentinel ) continue;
 383     if( m->_idx == (uint)idx ) return m;
 384   }
 385   return NULL;
 386 }
 387 #endif
 388 
 389 #ifdef ASSERT
 390 NodeHash::~NodeHash() {
 391   // Unlock all nodes upon destruction of table.
 392   if (_table != (Node**)badAddress)  clear();
 393 }
 394 
 395 void NodeHash::operator=(const NodeHash& nh) {
 396   // Unlock all nodes upon replacement of table.
 397   if (&nh == this)  return;
 398   if (_table != (Node**)badAddress)  clear();
 399   memcpy((void*)this, (void*)&nh, sizeof(*this));
 400   // Do not increment hash_lock counts again.
 401   // Instead, be sure we never again use the source table.
 402   ((NodeHash*)&nh)->_table = (Node**)badAddress;
 403 }
 404 
 405 
 406 #endif
 407 
 408 
 409 //=============================================================================
 410 //------------------------------PhaseRemoveUseless-----------------------------
 411 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 412 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num),
 413   _useful(Thread::current()->resource_area()) {
 414 
 415   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
 416   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
 417   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
 418 
 419   // Identify nodes that are reachable from below, useful.
 420   C->identify_useful_nodes(_useful);
 421   // Update dead node list
 422   C->update_dead_node_list(_useful);
 423 
 424   // Remove all useless nodes from PhaseValues' recorded types
 425   // Must be done before disconnecting nodes to preserve hash-table-invariant
 426   gvn->remove_useless_nodes(_useful.member_set());
 427 
 428   // Remove all useless nodes from future worklist
 429   worklist->remove_useless_nodes(_useful.member_set());
 430 
 431   // Disconnect 'useless' nodes that are adjacent to useful nodes
 432   C->remove_useless_nodes(_useful);
 433 
 434   // Remove edges from "root" to each SafePoint at a backward branch.
 435   // They were inserted during parsing (see add_safepoint()) to make infinite
 436   // loops without calls or exceptions visible to root, i.e., useful.
 437   Node *root = C->root();
 438   if( root != NULL ) {
 439     for( uint i = root->req(); i < root->len(); ++i ) {
 440       Node *n = root->in(i);
 441       if( n != NULL && n->is_SafePoint() ) {
 442         root->rm_prec(i);
 443         --i;
 444       }
 445     }
 446   }
 447 }
 448 
 449 //=============================================================================
 450 //------------------------------PhaseRenumberLive------------------------------
 451 // First, remove useless nodes (equivalent to identifying live nodes).
 452 // Then, renumber live nodes.
 453 //
 454 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
 455 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
 456 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
 457 // value in the range [0, x).
 458 //
 459 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
 460 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
 461 //
 462 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
 463 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be
 464 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'.
 465 // (2) Type information (the field PhaseGVN::_types) maps type information to each
 466 // node ID. The mapping is updated to use the new node IDs as well. Updated type
 467 // information is returned in PhaseGVN::_types.
 468 //
 469 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist.
 470 //
 471 // Other data structures used by the compiler are not updated. The hash table for value
 472 // numbering (the field PhaseGVN::_table) is not updated because computing the hash
 473 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either
 474 // because it is empty wherever PhaseRenumberLive is used.
 475 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
 476                                      Unique_Node_List* worklist, Unique_Node_List* new_worklist,
 477                                      PhaseNumber phase_num) :
 478   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live) {
 479 
 480   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
 481   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
 482   assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point");
 483 
 484   uint old_unique_count = C->unique();
 485   uint live_node_count = C->live_nodes();
 486   uint worklist_size = worklist->size();
 487 
 488   // Storage for the updated type information.
 489   Type_Array new_type_array(C->comp_arena());
 490 
 491   // Iterate over the set of live nodes.
 492   uint current_idx = 0; // The current new node ID. Incremented after every assignment.
 493   for (uint i = 0; i < _useful.size(); i++) {
 494     Node* n = _useful.at(i);
 495     // Sanity check that fails if we ever decide to execute this phase after EA
 496     assert(!n->is_Phi() || n->as_Phi()->inst_mem_id() == -1, "should not be linked to data Phi");
 497     const Type* type = gvn->type_or_null(n);
 498     new_type_array.map(current_idx, type);
 499 
 500     bool in_worklist = false;
 501     if (worklist->member(n)) {
 502       in_worklist = true;
 503     }
 504 
 505     n->set_idx(current_idx); // Update node ID.
 506 
 507     if (in_worklist) {
 508       new_worklist->push(n);
 509     }
 510 
 511     current_idx++;
 512   }
 513 
 514   assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist");
 515   assert(live_node_count == current_idx, "all live nodes must be processed");
 516 
 517   // Replace the compiler's type information with the updated type information.
 518   gvn->replace_types(new_type_array);
 519 
 520   // Update the unique node count of the compilation to the number of currently live nodes.
 521   C->set_unique(live_node_count);
 522 
 523   // Set the dead node count to 0 and reset dead node list.
 524   C->reset_dead_node_list();
 525 }
 526 
 527 
 528 //=============================================================================
 529 //------------------------------PhaseTransform---------------------------------
 530 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
 531   _arena(Thread::current()->resource_area()),
 532   _nodes(_arena),
 533   _types(_arena)
 534 {
 535   init_con_caches();
 536 #ifndef PRODUCT
 537   clear_progress();
 538   clear_transforms();
 539   set_allow_progress(true);
 540 #endif
 541   // Force allocation for currently existing nodes
 542   _types.map(C->unique(), NULL);
 543 }
 544 
 545 //------------------------------PhaseTransform---------------------------------
 546 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
 547   _arena(arena),
 548   _nodes(arena),
 549   _types(arena)
 550 {
 551   init_con_caches();
 552 #ifndef PRODUCT
 553   clear_progress();
 554   clear_transforms();
 555   set_allow_progress(true);
 556 #endif
 557   // Force allocation for currently existing nodes
 558   _types.map(C->unique(), NULL);
 559 }
 560 
 561 //------------------------------PhaseTransform---------------------------------
 562 // Initialize with previously generated type information
 563 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
 564   _arena(pt->_arena),
 565   _nodes(pt->_nodes),
 566   _types(pt->_types)
 567 {
 568   init_con_caches();
 569 #ifndef PRODUCT
 570   clear_progress();
 571   clear_transforms();
 572   set_allow_progress(true);
 573 #endif
 574 }
 575 
 576 void PhaseTransform::init_con_caches() {
 577   memset(_icons,0,sizeof(_icons));
 578   memset(_lcons,0,sizeof(_lcons));
 579   memset(_zcons,0,sizeof(_zcons));
 580 }
 581 
 582 
 583 //--------------------------------find_int_type--------------------------------
 584 const TypeInt* PhaseTransform::find_int_type(Node* n) {
 585   if (n == NULL)  return NULL;
 586   // Call type_or_null(n) to determine node's type since we might be in
 587   // parse phase and call n->Value() may return wrong type.
 588   // (For example, a phi node at the beginning of loop parsing is not ready.)
 589   const Type* t = type_or_null(n);
 590   if (t == NULL)  return NULL;
 591   return t->isa_int();
 592 }
 593 
 594 
 595 //-------------------------------find_long_type--------------------------------
 596 const TypeLong* PhaseTransform::find_long_type(Node* n) {
 597   if (n == NULL)  return NULL;
 598   // (See comment above on type_or_null.)
 599   const Type* t = type_or_null(n);
 600   if (t == NULL)  return NULL;
 601   return t->isa_long();
 602 }
 603 
 604 
 605 #ifndef PRODUCT
 606 void PhaseTransform::dump_old2new_map() const {
 607   _nodes.dump();
 608 }
 609 
 610 void PhaseTransform::dump_new( uint nidx ) const {
 611   for( uint i=0; i<_nodes.Size(); i++ )
 612     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
 613       _nodes[i]->dump();
 614       tty->cr();
 615       tty->print_cr("Old index= %d",i);
 616       return;
 617     }
 618   tty->print_cr("Node %d not found in the new indices", nidx);
 619 }
 620 
 621 //------------------------------dump_types-------------------------------------
 622 void PhaseTransform::dump_types( ) const {
 623   _types.dump();
 624 }
 625 
 626 //------------------------------dump_nodes_and_types---------------------------
 627 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
 628   VectorSet visited(Thread::current()->resource_area());
 629   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
 630 }
 631 
 632 //------------------------------dump_nodes_and_types_recur---------------------
 633 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
 634   if( !n ) return;
 635   if( depth == 0 ) return;
 636   if( visited.test_set(n->_idx) ) return;
 637   for( uint i=0; i<n->len(); i++ ) {
 638     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
 639     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
 640   }
 641   n->dump();
 642   if (type_or_null(n) != NULL) {
 643     tty->print("      "); type(n)->dump(); tty->cr();
 644   }
 645 }
 646 
 647 #endif
 648 
 649 
 650 //=============================================================================
 651 //------------------------------PhaseValues------------------------------------
 652 // Set minimum table size to "255"
 653 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
 654   NOT_PRODUCT( clear_new_values(); )
 655 }
 656 
 657 //------------------------------PhaseValues------------------------------------
 658 // Set minimum table size to "255"
 659 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
 660   _table(&ptv->_table) {
 661   NOT_PRODUCT( clear_new_values(); )
 662 }
 663 
 664 //------------------------------PhaseValues------------------------------------
 665 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
 666 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
 667   _table(ptv->arena(),ptv->_table.size()) {
 668   NOT_PRODUCT( clear_new_values(); )
 669 }
 670 
 671 //------------------------------~PhaseValues-----------------------------------
 672 #ifndef PRODUCT
 673 PhaseValues::~PhaseValues() {
 674   _table.dump();
 675 
 676   // Statistics for value progress and efficiency
 677   if( PrintCompilation && Verbose && WizardMode ) {
 678     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 679       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 680     if( made_transforms() != 0 ) {
 681       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 682     } else {
 683       tty->cr();
 684     }
 685   }
 686 }
 687 #endif
 688 
 689 //------------------------------makecon----------------------------------------
 690 ConNode* PhaseTransform::makecon(const Type *t) {
 691   assert(t->singleton(), "must be a constant");
 692   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 693   switch (t->base()) {  // fast paths
 694   case Type::Half:
 695   case Type::Top:  return (ConNode*) C->top();
 696   case Type::Int:  return intcon( t->is_int()->get_con() );
 697   case Type::Long: return longcon( t->is_long()->get_con() );
 698   default:         break;
 699   }
 700   if (t->is_zero_type())
 701     return zerocon(t->basic_type());
 702   return uncached_makecon(t);
 703 }
 704 
 705 //--------------------------uncached_makecon-----------------------------------
 706 // Make an idealized constant - one of ConINode, ConPNode, etc.
 707 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 708   assert(t->singleton(), "must be a constant");
 709   ConNode* x = ConNode::make(t);
 710   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 711   if (k == NULL) {
 712     set_type(x, t);             // Missed, provide type mapping
 713     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 714     if (nna != NULL) {
 715       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 716       loc->clear(); // do not put debug info on constants
 717     }
 718   } else {
 719     x->destruct();              // Hit, destroy duplicate constant
 720     x = k;                      // use existing constant
 721   }
 722   return x;
 723 }
 724 
 725 //------------------------------intcon-----------------------------------------
 726 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 727 ConINode* PhaseTransform::intcon(jint i) {
 728   // Small integer?  Check cache! Check that cached node is not dead
 729   if (i >= _icon_min && i <= _icon_max) {
 730     ConINode* icon = _icons[i-_icon_min];
 731     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
 732       return icon;
 733   }
 734   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 735   assert(icon->is_Con(), "");
 736   if (i >= _icon_min && i <= _icon_max)
 737     _icons[i-_icon_min] = icon;   // Cache small integers
 738   return icon;
 739 }
 740 
 741 //------------------------------longcon----------------------------------------
 742 // Fast long constant.
 743 ConLNode* PhaseTransform::longcon(jlong l) {
 744   // Small integer?  Check cache! Check that cached node is not dead
 745   if (l >= _lcon_min && l <= _lcon_max) {
 746     ConLNode* lcon = _lcons[l-_lcon_min];
 747     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
 748       return lcon;
 749   }
 750   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 751   assert(lcon->is_Con(), "");
 752   if (l >= _lcon_min && l <= _lcon_max)
 753     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 754   return lcon;
 755 }
 756 
 757 //------------------------------zerocon-----------------------------------------
 758 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 759 ConNode* PhaseTransform::zerocon(BasicType bt) {
 760   assert((uint)bt <= _zcon_max, "domain check");
 761   ConNode* zcon = _zcons[bt];
 762   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
 763     return zcon;
 764   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 765   _zcons[bt] = zcon;
 766   return zcon;
 767 }
 768 
 769 
 770 
 771 //=============================================================================
 772 Node* PhaseGVN::apply_ideal(Node* k, bool can_reshape) {
 773   Node* i = BarrierSet::barrier_set()->barrier_set_c2()->ideal_node(this, k, can_reshape);
 774   if (i == NULL) {
 775     i = k->Ideal(this, can_reshape);
 776   }
 777   return i;
 778 }
 779 
 780 Node* PhaseGVN::apply_identity(Node* k) {
 781   Node* i = BarrierSet::barrier_set()->barrier_set_c2()->identity_node(this, k);
 782   if (i == k) {
 783     i = k->Identity(this);
 784   }
 785   return i;
 786 }
 787 
 788 //------------------------------transform--------------------------------------
 789 // Return a node which computes the same function as this node, but in a
 790 // faster or cheaper fashion.
 791 Node *PhaseGVN::transform( Node *n ) {
 792   return transform_no_reclaim(n);
 793 }
 794 
 795 //------------------------------transform--------------------------------------
 796 // Return a node which computes the same function as this node, but
 797 // in a faster or cheaper fashion.
 798 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
 799   NOT_PRODUCT( set_transforms(); )
 800 
 801   // Apply the Ideal call in a loop until it no longer applies
 802   Node *k = n;
 803   NOT_PRODUCT( uint loop_count = 0; )
 804   while( 1 ) {
 805     Node *i = apply_ideal(k, /*can_reshape=*/false);
 806     if( !i ) break;
 807     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 808     k = i;
 809     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
 810   }
 811   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
 812 
 813 
 814   // If brand new node, make space in type array.
 815   ensure_type_or_null(k);
 816 
 817   // Since I just called 'Value' to compute the set of run-time values
 818   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 819   // cache Value.  Later requests for the local phase->type of this Node can
 820   // use the cached Value instead of suffering with 'bottom_type'.
 821   const Type *t = k->Value(this); // Get runtime Value set
 822   assert(t != NULL, "value sanity");
 823   if (type_or_null(k) != t) {
 824 #ifndef PRODUCT
 825     // Do not count initial visit to node as a transformation
 826     if (type_or_null(k) == NULL) {
 827       inc_new_values();
 828       set_progress();
 829     }
 830 #endif
 831     set_type(k, t);
 832     // If k is a TypeNode, capture any more-precise type permanently into Node
 833     k->raise_bottom_type(t);
 834   }
 835 
 836   if( t->singleton() && !k->is_Con() ) {
 837     NOT_PRODUCT( set_progress(); )
 838     return makecon(t);          // Turn into a constant
 839   }
 840 
 841   // Now check for Identities
 842   Node *i = apply_identity(k);  // Look for a nearby replacement
 843   if( i != k ) {                // Found? Return replacement!
 844     NOT_PRODUCT( set_progress(); )
 845     return i;
 846   }
 847 
 848   // Global Value Numbering
 849   i = hash_find_insert(k);      // Insert if new
 850   if( i && (i != k) ) {
 851     // Return the pre-existing node
 852     NOT_PRODUCT( set_progress(); )
 853     return i;
 854   }
 855 
 856   // Return Idealized original
 857   return k;
 858 }
 859 
 860 bool PhaseGVN::is_dominator_helper(Node *d, Node *n, bool linear_only) {
 861   if (d->is_top() || n->is_top()) {
 862     return false;
 863   }
 864   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
 865   int i = 0;
 866   while (d != n) {
 867     n = IfNode::up_one_dom(n, linear_only);
 868     i++;
 869     if (n == NULL || i >= 10) {
 870       return false;
 871     }
 872   }
 873   return true;
 874 }
 875 
 876 #ifdef ASSERT
 877 //------------------------------dead_loop_check--------------------------------
 878 // Check for a simple dead loop when a data node references itself directly
 879 // or through an other data node excluding cons and phis.
 880 void PhaseGVN::dead_loop_check( Node *n ) {
 881   // Phi may reference itself in a loop
 882   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
 883     // Do 2 levels check and only data inputs.
 884     bool no_dead_loop = true;
 885     uint cnt = n->req();
 886     for (uint i = 1; i < cnt && no_dead_loop; i++) {
 887       Node *in = n->in(i);
 888       if (in == n) {
 889         no_dead_loop = false;
 890       } else if (in != NULL && !in->is_dead_loop_safe()) {
 891         uint icnt = in->req();
 892         for (uint j = 1; j < icnt && no_dead_loop; j++) {
 893           if (in->in(j) == n || in->in(j) == in)
 894             no_dead_loop = false;
 895         }
 896       }
 897     }
 898     if (!no_dead_loop) n->dump(3);
 899     assert(no_dead_loop, "dead loop detected");
 900   }
 901 }
 902 #endif
 903 
 904 //=============================================================================
 905 //------------------------------PhaseIterGVN-----------------------------------
 906 // Initialize hash table to fresh and clean for +VerifyOpto
 907 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy),
 908                                                                       _delay_transform(false),
 909                                                                       _stack(C->live_nodes() >> 1),
 910                                                                       _worklist( ) {
 911 }
 912 
 913 //------------------------------PhaseIterGVN-----------------------------------
 914 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 915 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
 916                                                    _delay_transform(igvn->_delay_transform),
 917                                                    _stack( igvn->_stack ),
 918                                                    _worklist( igvn->_worklist )
 919 {
 920 }
 921 
 922 //------------------------------PhaseIterGVN-----------------------------------
 923 // Initialize with previous PhaseGVN info from Parser
 924 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
 925                                               _delay_transform(false),
 926 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
 927 //       the constructor is used in incremental inlining, this consumes too much memory:
 928 //                                            _stack(C->live_nodes() >> 1),
 929 //       So, as a band-aid, we replace this by:
 930                                               _stack(C->comp_arena(), 32),
 931                                               _worklist(*C->for_igvn())
 932 {
 933   uint max;
 934 
 935   // Dead nodes in the hash table inherited from GVN were not treated as
 936   // roots during def-use info creation; hence they represent an invisible
 937   // use.  Clear them out.
 938   max = _table.size();
 939   for( uint i = 0; i < max; ++i ) {
 940     Node *n = _table.at(i);
 941     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
 942       if( n->is_top() ) continue;
 943       assert( false, "Parse::remove_useless_nodes missed this node");
 944       hash_delete(n);
 945     }
 946   }
 947 
 948   // Any Phis or Regions on the worklist probably had uses that could not
 949   // make more progress because the uses were made while the Phis and Regions
 950   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 951   max = _worklist.size();
 952   for( uint j = 0; j < max; j++ ) {
 953     Node *n = _worklist.at(j);
 954     uint uop = n->Opcode();
 955     if( uop == Op_Phi || uop == Op_Region ||
 956         n->is_Type() ||
 957         n->is_Mem() )
 958       add_users_to_worklist(n);
 959   }
 960 
 961   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 962   bs->add_users_to_worklist(&_worklist);
 963 }
 964 
 965 /**
 966  * Initialize worklist for each node.
 967  */
 968 void PhaseIterGVN::init_worklist(Node* first) {
 969   Unique_Node_List to_process;
 970   to_process.push(first);
 971 
 972   while (to_process.size() > 0) {
 973     Node* n = to_process.pop();
 974     if (!_worklist.member(n)) {
 975       _worklist.push(n);
 976 
 977       uint cnt = n->req();
 978       for(uint i = 0; i < cnt; i++) {
 979         Node* m = n->in(i);
 980         if (m != NULL) {
 981           to_process.push(m);
 982         }
 983       }
 984     }
 985   }
 986 }
 987 
 988 #ifndef PRODUCT
 989 void PhaseIterGVN::verify_step(Node* n) {
 990   if (VerifyIterativeGVN) {
 991     _verify_window[_verify_counter % _verify_window_size] = n;
 992     ++_verify_counter;
 993     ResourceMark rm;
 994     ResourceArea* area = Thread::current()->resource_area();
 995     VectorSet old_space(area), new_space(area);
 996     if (C->unique() < 1000 ||
 997         0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
 998       ++_verify_full_passes;
 999       Node::verify_recur(C->root(), -1, old_space, new_space);
1000     }
1001     const int verify_depth = 4;
1002     for ( int i = 0; i < _verify_window_size; i++ ) {
1003       Node* n = _verify_window[i];
1004       if ( n == NULL )  continue;
1005       if( n->in(0) == NodeSentinel ) {  // xform_idom
1006         _verify_window[i] = n->in(1);
1007         --i; continue;
1008       }
1009       // Typical fanout is 1-2, so this call visits about 6 nodes.
1010       Node::verify_recur(n, verify_depth, old_space, new_space);
1011     }
1012   }
1013 }
1014 
1015 void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) {
1016   if (TraceIterativeGVN) {
1017     uint wlsize = _worklist.size();
1018     const Type* newtype = type_or_null(n);
1019     if (nn != n) {
1020       // print old node
1021       tty->print("< ");
1022       if (oldtype != newtype && oldtype != NULL) {
1023         oldtype->dump();
1024       }
1025       do { tty->print("\t"); } while (tty->position() < 16);
1026       tty->print("<");
1027       n->dump();
1028     }
1029     if (oldtype != newtype || nn != n) {
1030       // print new node and/or new type
1031       if (oldtype == NULL) {
1032         tty->print("* ");
1033       } else if (nn != n) {
1034         tty->print("> ");
1035       } else {
1036         tty->print("= ");
1037       }
1038       if (newtype == NULL) {
1039         tty->print("null");
1040       } else {
1041         newtype->dump();
1042       }
1043       do { tty->print("\t"); } while (tty->position() < 16);
1044       nn->dump();
1045     }
1046     if (Verbose && wlsize < _worklist.size()) {
1047       tty->print("  Push {");
1048       while (wlsize != _worklist.size()) {
1049         Node* pushed = _worklist.at(wlsize++);
1050         tty->print(" %d", pushed->_idx);
1051       }
1052       tty->print_cr(" }");
1053     }
1054     if (nn != n) {
1055       // ignore n, it might be subsumed
1056       verify_step((Node*) NULL);
1057     }
1058   }
1059 }
1060 
1061 void PhaseIterGVN::init_verifyPhaseIterGVN() {
1062   _verify_counter = 0;
1063   _verify_full_passes = 0;
1064   for (int i = 0; i < _verify_window_size; i++) {
1065     _verify_window[i] = NULL;
1066   }
1067 #ifdef ASSERT
1068   // Verify that all modified nodes are on _worklist
1069   Unique_Node_List* modified_list = C->modified_nodes();
1070   while (modified_list != NULL && modified_list->size()) {
1071     Node* n = modified_list->pop();
1072     if (n->outcnt() != 0 && !n->is_Con() && !_worklist.member(n)) {
1073       n->dump();
1074       assert(false, "modified node is not on IGVN._worklist");
1075     }
1076   }
1077 #endif
1078 }
1079 
1080 void PhaseIterGVN::verify_PhaseIterGVN() {
1081 #ifdef ASSERT
1082   // Verify nodes with changed inputs.
1083   Unique_Node_List* modified_list = C->modified_nodes();
1084   while (modified_list != NULL && modified_list->size()) {
1085     Node* n = modified_list->pop();
1086     if (n->outcnt() != 0 && !n->is_Con()) { // skip dead and Con nodes
1087       n->dump();
1088       assert(false, "modified node was not processed by IGVN.transform_old()");
1089     }
1090   }
1091 #endif
1092 
1093   C->verify_graph_edges();
1094   if( VerifyOpto && allow_progress() ) {
1095     // Must turn off allow_progress to enable assert and break recursion
1096     C->root()->verify();
1097     { // Check if any progress was missed using IterGVN
1098       // Def-Use info enables transformations not attempted in wash-pass
1099       // e.g. Region/Phi cleanup, ...
1100       // Null-check elision -- may not have reached fixpoint
1101       //                       do not propagate to dominated nodes
1102       ResourceMark rm;
1103       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
1104       // Fill worklist completely
1105       igvn2.init_worklist(C->root());
1106 
1107       igvn2.set_allow_progress(false);
1108       igvn2.optimize();
1109       igvn2.set_allow_progress(true);
1110     }
1111   }
1112   if (VerifyIterativeGVN && PrintOpto) {
1113     if (_verify_counter == _verify_full_passes) {
1114       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
1115                     (int) _verify_full_passes);
1116     } else {
1117       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
1118                   (int) _verify_counter, (int) _verify_full_passes);
1119     }
1120   }
1121 
1122 #ifdef ASSERT
1123   while (modified_list->size()) {
1124     Node* n = modified_list->pop();
1125     n->dump();
1126     assert(false, "VerifyIterativeGVN: new modified node was added");
1127   }
1128 #endif
1129 }
1130 #endif /* PRODUCT */
1131 
1132 #ifdef ASSERT
1133 /**
1134  * Dumps information that can help to debug the problem. A debug
1135  * build fails with an assert.
1136  */
1137 void PhaseIterGVN::dump_infinite_loop_info(Node* n) {
1138   n->dump(4);
1139   _worklist.dump();
1140   assert(false, "infinite loop in PhaseIterGVN::optimize");
1141 }
1142 
1143 /**
1144  * Prints out information about IGVN if the 'verbose' option is used.
1145  */
1146 void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) {
1147   if (TraceIterativeGVN && Verbose) {
1148     tty->print("  Pop ");
1149     n->dump();
1150     if ((num_processed % 100) == 0) {
1151       _worklist.print_set();
1152     }
1153   }
1154 }
1155 #endif /* ASSERT */
1156 
1157 void PhaseIterGVN::optimize() {
1158   DEBUG_ONLY(uint num_processed  = 0;)
1159   NOT_PRODUCT(init_verifyPhaseIterGVN();)
1160 
1161   uint loop_count = 0;
1162   // Pull from worklist and transform the node. If the node has changed,
1163   // update edge info and put uses on worklist.
1164   while(_worklist.size()) {
1165     if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes")) {
1166       return;
1167     }
1168     Node* n  = _worklist.pop();
1169     if (++loop_count >= K * C->live_nodes()) {
1170       DEBUG_ONLY(dump_infinite_loop_info(n);)
1171       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
1172       return;
1173     }
1174     DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);)
1175     if (n->outcnt() != 0) {
1176       NOT_PRODUCT(const Type* oldtype = type_or_null(n));
1177       // Do the transformation
1178       Node* nn = transform_old(n);
1179       NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);)
1180     } else if (!n->is_top()) {
1181       remove_dead_node(n);
1182     }
1183   }
1184   NOT_PRODUCT(verify_PhaseIterGVN();)
1185 }
1186 
1187 
1188 /**
1189  * Register a new node with the optimizer.  Update the types array, the def-use
1190  * info.  Put on worklist.
1191  */
1192 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
1193   set_type_bottom(n);
1194   _worklist.push(n);
1195   if (orig != NULL)  C->copy_node_notes_to(n, orig);
1196   return n;
1197 }
1198 
1199 //------------------------------transform--------------------------------------
1200 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
1201 Node *PhaseIterGVN::transform( Node *n ) {
1202   if (_delay_transform) {
1203     // Register the node but don't optimize for now
1204     register_new_node_with_optimizer(n);
1205     return n;
1206   }
1207 
1208   // If brand new node, make space in type array, and give it a type.
1209   ensure_type_or_null(n);
1210   if (type_or_null(n) == NULL) {
1211     set_type_bottom(n);
1212   }
1213 
1214   return transform_old(n);
1215 }
1216 
1217 Node *PhaseIterGVN::transform_old(Node* n) {
1218   DEBUG_ONLY(uint loop_count = 0;);
1219   NOT_PRODUCT(set_transforms());
1220 
1221   // Remove 'n' from hash table in case it gets modified
1222   _table.hash_delete(n);
1223   if (VerifyIterativeGVN) {
1224    assert(!_table.find_index(n->_idx), "found duplicate entry in table");
1225   }
1226 
1227   // Apply the Ideal call in a loop until it no longer applies
1228   Node* k = n;
1229   DEBUG_ONLY(dead_loop_check(k);)
1230   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1231   C->remove_modified_node(k);
1232   Node* i = apply_ideal(k, /*can_reshape=*/true);
1233   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1234 #ifndef PRODUCT
1235   verify_step(k);
1236   if (i && VerifyOpto ) {
1237     if (!allow_progress()) {
1238       if (i->is_Add() && (i->outcnt() == 1)) {
1239         // Switched input to left side because this is the only use
1240       } else if (i->is_If() && (i->in(0) == NULL)) {
1241         // This IF is dead because it is dominated by an equivalent IF When
1242         // dominating if changed, info is not propagated sparsely to 'this'
1243         // Propagating this info further will spuriously identify other
1244         // progress.
1245         return i;
1246       } else
1247         set_progress();
1248     } else {
1249       set_progress();
1250     }
1251   }
1252 #endif
1253 
1254   while (i != NULL) {
1255 #ifdef ASSERT
1256     if (loop_count >= K) {
1257       dump_infinite_loop_info(i);
1258     }
1259     loop_count++;
1260 #endif
1261     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1262     // Made a change; put users of original Node on worklist
1263     add_users_to_worklist(k);
1264     // Replacing root of transform tree?
1265     if (k != i) {
1266       // Make users of old Node now use new.
1267       subsume_node(k, i);
1268       k = i;
1269     }
1270     DEBUG_ONLY(dead_loop_check(k);)
1271     // Try idealizing again
1272     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1273     C->remove_modified_node(k);
1274     i = apply_ideal(k, /*can_reshape=*/true);
1275     assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes");
1276 #ifndef PRODUCT
1277     verify_step(k);
1278     if (i && VerifyOpto) {
1279       set_progress();
1280     }
1281 #endif
1282   }
1283 
1284   // If brand new node, make space in type array.
1285   ensure_type_or_null(k);
1286 
1287   // See what kind of values 'k' takes on at runtime
1288   const Type* t = k->Value(this);
1289   assert(t != NULL, "value sanity");
1290 
1291   // Since I just called 'Value' to compute the set of run-time values
1292   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1293   // cache Value.  Later requests for the local phase->type of this Node can
1294   // use the cached Value instead of suffering with 'bottom_type'.
1295   if (type_or_null(k) != t) {
1296 #ifndef PRODUCT
1297     inc_new_values();
1298     set_progress();
1299 #endif
1300     set_type(k, t);
1301     // If k is a TypeNode, capture any more-precise type permanently into Node
1302     k->raise_bottom_type(t);
1303     // Move users of node to worklist
1304     add_users_to_worklist(k);
1305   }
1306   // If 'k' computes a constant, replace it with a constant
1307   if (t->singleton() && !k->is_Con()) {
1308     NOT_PRODUCT(set_progress();)
1309     Node* con = makecon(t);     // Make a constant
1310     add_users_to_worklist(k);
1311     subsume_node(k, con);       // Everybody using k now uses con
1312     return con;
1313   }
1314 
1315   // Now check for Identities
1316   i = apply_identity(k);      // Look for a nearby replacement
1317   if (i != k) {                // Found? Return replacement!
1318     NOT_PRODUCT(set_progress();)
1319     add_users_to_worklist(k);
1320     subsume_node(k, i);       // Everybody using k now uses i
1321     return i;
1322   }
1323 
1324   // Global Value Numbering
1325   i = hash_find_insert(k);      // Check for pre-existing node
1326   if (i && (i != k)) {
1327     // Return the pre-existing node if it isn't dead
1328     NOT_PRODUCT(set_progress();)
1329     add_users_to_worklist(k);
1330     subsume_node(k, i);       // Everybody using k now uses i
1331     return i;
1332   }
1333 
1334   // Return Idealized original
1335   return k;
1336 }
1337 
1338 //---------------------------------saturate------------------------------------
1339 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1340                                    const Type* limit_type) const {
1341   return new_type->narrow(old_type);
1342 }
1343 
1344 //------------------------------remove_globally_dead_node----------------------
1345 // Kill a globally dead Node.  All uses are also globally dead and are
1346 // aggressively trimmed.
1347 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1348   enum DeleteProgress {
1349     PROCESS_INPUTS,
1350     PROCESS_OUTPUTS
1351   };
1352   assert(_stack.is_empty(), "not empty");
1353   _stack.push(dead, PROCESS_INPUTS);
1354 
1355   while (_stack.is_nonempty()) {
1356     dead = _stack.node();
1357     uint progress_state = _stack.index();
1358     assert(dead != C->root(), "killing root, eh?");
1359     assert(!dead->is_top(), "add check for top when pushing");
1360     NOT_PRODUCT( set_progress(); )
1361     if (progress_state == PROCESS_INPUTS) {
1362       // After following inputs, continue to outputs
1363       _stack.set_index(PROCESS_OUTPUTS);
1364       if (!dead->is_Con()) { // Don't kill cons but uses
1365         bool recurse = false;
1366         // Remove from hash table
1367         _table.hash_delete( dead );
1368         // Smash all inputs to 'dead', isolating him completely
1369         for (uint i = 0; i < dead->req(); i++) {
1370           Node *in = dead->in(i);
1371           if (in != NULL && in != C->top()) {  // Points to something?
1372             int nrep = dead->replace_edge(in, NULL);  // Kill edges
1373             assert((nrep > 0), "sanity");
1374             if (in->outcnt() == 0) { // Made input go dead?
1375               _stack.push(in, PROCESS_INPUTS); // Recursively remove
1376               recurse = true;
1377             } else if (in->outcnt() == 1 &&
1378                        in->has_special_unique_user()) {
1379               _worklist.push(in->unique_out());
1380             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1381               if (in->Opcode() == Op_Region) {
1382                 _worklist.push(in);
1383               } else if (in->is_Store()) {
1384                 DUIterator_Fast imax, i = in->fast_outs(imax);
1385                 _worklist.push(in->fast_out(i));
1386                 i++;
1387                 if (in->outcnt() == 2) {
1388                   _worklist.push(in->fast_out(i));
1389                   i++;
1390                 }
1391                 assert(!(i < imax), "sanity");
1392               }
1393             } else {
1394               BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(this, in);
1395             }
1396             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
1397                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
1398               // A Load that directly follows an InitializeNode is
1399               // going away. The Stores that follow are candidates
1400               // again to be captured by the InitializeNode.
1401               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
1402                 Node *n = in->fast_out(j);
1403                 if (n->is_Store()) {
1404                   _worklist.push(n);
1405                 }
1406               }
1407             }
1408           } // if (in != NULL && in != C->top())
1409         } // for (uint i = 0; i < dead->req(); i++)
1410         if (recurse) {
1411           continue;
1412         }
1413       } // if (!dead->is_Con())
1414     } // if (progress_state == PROCESS_INPUTS)
1415 
1416     // Aggressively kill globally dead uses
1417     // (Rather than pushing all the outs at once, we push one at a time,
1418     // plus the parent to resume later, because of the indefinite number
1419     // of edge deletions per loop trip.)
1420     if (dead->outcnt() > 0) {
1421       // Recursively remove output edges
1422       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
1423     } else {
1424       // Finished disconnecting all input and output edges.
1425       _stack.pop();
1426       // Remove dead node from iterative worklist
1427       _worklist.remove(dead);
1428       C->remove_modified_node(dead);
1429       // Constant node that has no out-edges and has only one in-edge from
1430       // root is usually dead. However, sometimes reshaping walk makes
1431       // it reachable by adding use edges. So, we will NOT count Con nodes
1432       // as dead to be conservative about the dead node count at any
1433       // given time.
1434       if (!dead->is_Con()) {
1435         C->record_dead_node(dead->_idx);
1436       }
1437       if (dead->is_macro()) {
1438         C->remove_macro_node(dead);
1439       }
1440       if (dead->is_expensive()) {
1441         C->remove_expensive_node(dead);
1442       }
1443       CastIINode* cast = dead->isa_CastII();
1444       if (cast != NULL && cast->has_range_check()) {
1445         C->remove_range_check_cast(cast);
1446       }
1447       if (dead->Opcode() == Op_Opaque4) {
1448         C->remove_opaque4_node(dead);
1449       }
1450       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1451       bs->unregister_potential_barrier_node(dead);
1452     }
1453   } // while (_stack.is_nonempty())
1454 }
1455 
1456 //------------------------------subsume_node-----------------------------------
1457 // Remove users from node 'old' and add them to node 'nn'.
1458 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1459   assert( old != hash_find(old), "should already been removed" );
1460   assert( old != C->top(), "cannot subsume top node");
1461   // Copy debug or profile information to the new version:
1462   C->copy_node_notes_to(nn, old);
1463   // Move users of node 'old' to node 'nn'
1464   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1465     Node* use = old->last_out(i);  // for each use...
1466     // use might need re-hashing (but it won't if it's a new node)
1467     rehash_node_delayed(use);
1468     // Update use-def info as well
1469     // We remove all occurrences of old within use->in,
1470     // so as to avoid rehashing any node more than once.
1471     // The hash table probe swamps any outer loop overhead.
1472     uint num_edges = 0;
1473     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1474       if (use->in(j) == old) {
1475         use->set_req(j, nn);
1476         ++num_edges;
1477       }
1478     }
1479     i -= num_edges;    // we deleted 1 or more copies of this edge
1480   }
1481 
1482   // Search for instance field data PhiNodes in the same region pointing to the old
1483   // memory PhiNode and update their instance memory ids to point to the new node.
1484   if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) {
1485     Node* region = old->in(0);
1486     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1487       PhiNode* phi = region->fast_out(i)->isa_Phi();
1488       if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) {
1489         phi->set_inst_mem_id((int)nn->_idx);
1490       }
1491     }
1492   }
1493 
1494   // Smash all inputs to 'old', isolating him completely
1495   Node *temp = new Node(1);
1496   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1497   remove_dead_node( old );
1498   temp->del_req(0);         // Yank bogus edge
1499 #ifndef PRODUCT
1500   if( VerifyIterativeGVN ) {
1501     for ( int i = 0; i < _verify_window_size; i++ ) {
1502       if ( _verify_window[i] == old )
1503         _verify_window[i] = nn;
1504     }
1505   }
1506 #endif
1507   _worklist.remove(temp);   // this can be necessary
1508   temp->destruct();         // reuse the _idx of this little guy
1509 }
1510 
1511 //------------------------------add_users_to_worklist--------------------------
1512 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1513   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1514     _worklist.push(n->fast_out(i));  // Push on worklist
1515   }
1516 }
1517 
1518 // Return counted loop Phi if as a counted loop exit condition, cmp
1519 // compares the the induction variable with n
1520 static PhiNode* countedloop_phi_from_cmp(CmpINode* cmp, Node* n) {
1521   for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
1522     Node* bol = cmp->fast_out(i);
1523     for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) {
1524       Node* iff = bol->fast_out(i2);
1525       if (iff->is_CountedLoopEnd()) {
1526         CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
1527         if (cle->limit() == n) {
1528           PhiNode* phi = cle->phi();
1529           if (phi != NULL) {
1530             return phi;
1531           }
1532         }
1533       }
1534     }
1535   }
1536   return NULL;
1537 }
1538 
1539 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1540   add_users_to_worklist0(n);
1541 
1542   // Move users of node to worklist
1543   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1544     Node* use = n->fast_out(i); // Get use
1545 
1546     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1547         use->is_Store() )       // Enable store/load same address
1548       add_users_to_worklist0(use);
1549 
1550     // If we changed the receiver type to a call, we need to revisit
1551     // the Catch following the call.  It's looking for a non-NULL
1552     // receiver to know when to enable the regular fall-through path
1553     // in addition to the NullPtrException path.
1554     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1555       Node* p = use->as_CallDynamicJava()->proj_out_or_null(TypeFunc::Control);
1556       if (p != NULL) {
1557         add_users_to_worklist0(p);
1558       }
1559     }
1560 
1561     uint use_op = use->Opcode();
1562     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
1563       add_users_to_worklist(use); // Put Bool on worklist
1564       if (use->outcnt() > 0) {
1565         Node* bol = use->raw_out(0);
1566         if (bol->outcnt() > 0) {
1567           Node* iff = bol->raw_out(0);
1568           if (iff->outcnt() == 2) {
1569             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1570             // phi merging either 0 or 1 onto the worklist
1571             Node* ifproj0 = iff->raw_out(0);
1572             Node* ifproj1 = iff->raw_out(1);
1573             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1574               Node* region0 = ifproj0->raw_out(0);
1575               Node* region1 = ifproj1->raw_out(0);
1576               if( region0 == region1 )
1577                 add_users_to_worklist0(region0);
1578             }
1579           }
1580         }
1581       }
1582       if (use_op == Op_CmpI) {
1583         Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n);
1584         if (phi != NULL) {
1585           // If an opaque node feeds into the limit condition of a
1586           // CountedLoop, we need to process the Phi node for the
1587           // induction variable when the opaque node is removed:
1588           // the range of values taken by the Phi is now known and
1589           // so its type is also known.
1590           _worklist.push(phi);
1591         }
1592         Node* in1 = use->in(1);
1593         for (uint i = 0; i < in1->outcnt(); i++) {
1594           if (in1->raw_out(i)->Opcode() == Op_CastII) {
1595             Node* castii = in1->raw_out(i);
1596             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
1597               Node* ifnode = castii->in(0)->in(0);
1598               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
1599                 // Reprocess a CastII node that may depend on an
1600                 // opaque node value when the opaque node is
1601                 // removed. In case it carries a dependency we can do
1602                 // a better job of computing its type.
1603                 _worklist.push(castii);
1604               }
1605             }
1606           }
1607         }
1608       }
1609     }
1610 
1611     // If changed Cast input, check Phi users for simple cycles
1612     if (use->is_ConstraintCast()) {
1613       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1614         Node* u = use->fast_out(i2);
1615         if (u->is_Phi())
1616           _worklist.push(u);
1617       }
1618     }
1619     // If changed LShift inputs, check RShift users for useless sign-ext
1620     if( use_op == Op_LShiftI ) {
1621       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1622         Node* u = use->fast_out(i2);
1623         if (u->Opcode() == Op_RShiftI)
1624           _worklist.push(u);
1625       }
1626     }
1627     // If changed AddI/SubI inputs, check CmpU for range check optimization.
1628     if (use_op == Op_AddI || use_op == Op_SubI) {
1629       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1630         Node* u = use->fast_out(i2);
1631         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
1632           _worklist.push(u);
1633         }
1634       }
1635     }
1636     // If changed AddP inputs, check Stores for loop invariant
1637     if( use_op == Op_AddP ) {
1638       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1639         Node* u = use->fast_out(i2);
1640         if (u->is_Mem())
1641           _worklist.push(u);
1642       }
1643     }
1644     // If changed initialization activity, check dependent Stores
1645     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1646       InitializeNode* init = use->as_Allocate()->initialization();
1647       if (init != NULL) {
1648         Node* imem = init->proj_out_or_null(TypeFunc::Memory);
1649         if (imem != NULL)  add_users_to_worklist0(imem);
1650       }
1651     }
1652     if (use_op == Op_Initialize) {
1653       Node* imem = use->as_Initialize()->proj_out_or_null(TypeFunc::Memory);
1654       if (imem != NULL)  add_users_to_worklist0(imem);
1655     }
1656     // Loading the java mirror from a Klass requires two loads and the type
1657     // of the mirror load depends on the type of 'n'. See LoadNode::Value().
1658     if (use_op == Op_LoadP && use->bottom_type()->isa_rawptr()) {
1659       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1660         Node* u = use->fast_out(i2);
1661         const Type* ut = u->bottom_type();
1662         if (u->Opcode() == Op_LoadP && ut->isa_instptr()) {
1663           _worklist.push(u);
1664         }
1665       }
1666     }
1667 
1668     BarrierSet::barrier_set()->barrier_set_c2()->igvn_add_users_to_worklist(this, use);
1669   }
1670 }
1671 
1672 /**
1673  * Remove the speculative part of all types that we know of
1674  */
1675 void PhaseIterGVN::remove_speculative_types()  {
1676   assert(UseTypeSpeculation, "speculation is off");
1677   for (uint i = 0; i < _types.Size(); i++)  {
1678     const Type* t = _types.fast_lookup(i);
1679     if (t != NULL) {
1680       _types.map(i, t->remove_speculative());
1681     }
1682   }
1683   _table.check_no_speculative_types();
1684 }
1685 
1686 //=============================================================================
1687 #ifndef PRODUCT
1688 uint PhaseCCP::_total_invokes   = 0;
1689 uint PhaseCCP::_total_constants = 0;
1690 #endif
1691 //------------------------------PhaseCCP---------------------------------------
1692 // Conditional Constant Propagation, ala Wegman & Zadeck
1693 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1694   NOT_PRODUCT( clear_constants(); )
1695   assert( _worklist.size() == 0, "" );
1696   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1697   _nodes.clear();               // Clear out from IterGVN
1698   analyze();
1699 }
1700 
1701 #ifndef PRODUCT
1702 //------------------------------~PhaseCCP--------------------------------------
1703 PhaseCCP::~PhaseCCP() {
1704   inc_invokes();
1705   _total_constants += count_constants();
1706 }
1707 #endif
1708 
1709 
1710 #ifdef ASSERT
1711 static bool ccp_type_widens(const Type* t, const Type* t0) {
1712   assert(t->meet(t0) == t, "Not monotonic");
1713   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1714   case Type::Int:
1715     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1716     break;
1717   case Type::Long:
1718     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1719     break;
1720   default:
1721     break;
1722   }
1723   return true;
1724 }
1725 #endif //ASSERT
1726 
1727 //------------------------------analyze----------------------------------------
1728 void PhaseCCP::analyze() {
1729   // Initialize all types to TOP, optimistic analysis
1730   for (int i = C->unique() - 1; i >= 0; i--)  {
1731     _types.map(i,Type::TOP);
1732   }
1733 
1734   // Push root onto worklist
1735   Unique_Node_List worklist;
1736   worklist.push(C->root());
1737 
1738   // Pull from worklist; compute new value; push changes out.
1739   // This loop is the meat of CCP.
1740   while( worklist.size() ) {
1741     Node *n = worklist.pop();
1742     const Type *t = n->Value(this);
1743     if (t != type(n)) {
1744       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1745 #ifndef PRODUCT
1746       if( TracePhaseCCP ) {
1747         t->dump();
1748         do { tty->print("\t"); } while (tty->position() < 16);
1749         n->dump();
1750       }
1751 #endif
1752       set_type(n, t);
1753       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1754         Node* m = n->fast_out(i);   // Get user
1755         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
1756           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1757             Node* p = m->fast_out(i2); // Propagate changes to uses
1758             if (p->bottom_type() != type(p)) { // If not already bottomed out
1759               worklist.push(p); // Propagate change to user
1760             }
1761           }
1762         }
1763         // If we changed the receiver type to a call, we need to revisit
1764         // the Catch following the call.  It's looking for a non-NULL
1765         // receiver to know when to enable the regular fall-through path
1766         // in addition to the NullPtrException path
1767         if (m->is_Call()) {
1768           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1769             Node* p = m->fast_out(i2);  // Propagate changes to uses
1770             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1) {
1771               worklist.push(p->unique_out());
1772             }
1773           }
1774         }
1775         if (m->bottom_type() != type(m)) { // If not already bottomed out
1776           worklist.push(m);     // Propagate change to user
1777         }
1778 
1779         // CmpU nodes can get their type information from two nodes up in the
1780         // graph (instead of from the nodes immediately above). Make sure they
1781         // are added to the worklist if nodes they depend on are updated, since
1782         // they could be missed and get wrong types otherwise.
1783         uint m_op = m->Opcode();
1784         if (m_op == Op_AddI || m_op == Op_SubI) {
1785           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1786             Node* p = m->fast_out(i2); // Propagate changes to uses
1787             if (p->Opcode() == Op_CmpU) {
1788               // Got a CmpU which might need the new type information from node n.
1789               if(p->bottom_type() != type(p)) { // If not already bottomed out
1790                 worklist.push(p); // Propagate change to user
1791               }
1792             }
1793           }
1794         }
1795         // If n is used in a counted loop exit condition then the type
1796         // of the counted loop's Phi depends on the type of n. See
1797         // PhiNode::Value().
1798         if (m_op == Op_CmpI) {
1799           PhiNode* phi = countedloop_phi_from_cmp((CmpINode*)m, n);
1800           if (phi != NULL) {
1801             worklist.push(phi);
1802           }
1803         }
1804         // Loading the java mirror from a Klass requires two loads and the type
1805         // of the mirror load depends on the type of 'n'. See LoadNode::Value().
1806         if (m_op == Op_LoadP && m->bottom_type()->isa_rawptr()) {
1807           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1808             Node* u = m->fast_out(i2);
1809             const Type* ut = u->bottom_type();
1810             if (u->Opcode() == Op_LoadP && ut->isa_instptr() && ut != type(u)) {
1811               worklist.push(u);
1812             }
1813           }
1814         }
1815 
1816         BarrierSet::barrier_set()->barrier_set_c2()->ccp_analyze(this, worklist, m);
1817       }
1818     }
1819   }
1820 }
1821 
1822 //------------------------------do_transform-----------------------------------
1823 // Top level driver for the recursive transformer
1824 void PhaseCCP::do_transform() {
1825   // Correct leaves of new-space Nodes; they point to old-space.
1826   C->set_root( transform(C->root())->as_Root() );
1827   assert( C->top(),  "missing TOP node" );
1828   assert( C->root(), "missing root" );
1829 }
1830 
1831 //------------------------------transform--------------------------------------
1832 // Given a Node in old-space, clone him into new-space.
1833 // Convert any of his old-space children into new-space children.
1834 Node *PhaseCCP::transform( Node *n ) {
1835   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1836   if( new_node != NULL )
1837     return new_node;                // Been there, done that, return old answer
1838   new_node = transform_once(n);     // Check for constant
1839   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1840 
1841   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1842   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
1843 
1844   trstack.push(new_node);           // Process children of cloned node
1845   while ( trstack.is_nonempty() ) {
1846     Node *clone = trstack.pop();
1847     uint cnt = clone->req();
1848     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1849       Node *input = clone->in(i);
1850       if( input != NULL ) {                    // Ignore NULLs
1851         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1852         if( new_input == NULL ) {
1853           new_input = transform_once(input);   // Check for constant
1854           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1855           trstack.push(new_input);
1856         }
1857         assert( new_input == clone->in(i), "insanity check");
1858       }
1859     }
1860   }
1861   return new_node;
1862 }
1863 
1864 
1865 //------------------------------transform_once---------------------------------
1866 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1867 Node *PhaseCCP::transform_once( Node *n ) {
1868   const Type *t = type(n);
1869   // Constant?  Use constant Node instead
1870   if( t->singleton() ) {
1871     Node *nn = n;               // Default is to return the original constant
1872     if( t == Type::TOP ) {
1873       // cache my top node on the Compile instance
1874       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1875         C->set_cached_top_node(ConNode::make(Type::TOP));
1876         set_type(C->top(), Type::TOP);
1877       }
1878       nn = C->top();
1879     }
1880     if( !n->is_Con() ) {
1881       if( t != Type::TOP ) {
1882         nn = makecon(t);        // ConNode::make(t);
1883         NOT_PRODUCT( inc_constants(); )
1884       } else if( n->is_Region() ) { // Unreachable region
1885         // Note: nn == C->top()
1886         n->set_req(0, NULL);        // Cut selfreference
1887         bool progress = true;
1888         uint max = n->outcnt();
1889         DUIterator i;
1890         while (progress) {
1891           progress = false;
1892           // Eagerly remove dead phis to avoid phis copies creation.
1893           for (i = n->outs(); n->has_out(i); i++) {
1894             Node* m = n->out(i);
1895             if (m->is_Phi()) {
1896               assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1897               replace_node(m, nn);
1898               if (max != n->outcnt()) {
1899                 progress = true;
1900                 i = n->refresh_out_pos(i);
1901                 max = n->outcnt();
1902               }
1903             }
1904           }
1905         }
1906       }
1907       replace_node(n,nn);       // Update DefUse edges for new constant
1908     }
1909     return nn;
1910   }
1911 
1912   // If x is a TypeNode, capture any more-precise type permanently into Node
1913   if (t != n->bottom_type()) {
1914     hash_delete(n);             // changing bottom type may force a rehash
1915     n->raise_bottom_type(t);
1916     _worklist.push(n);          // n re-enters the hash table via the worklist
1917   }
1918 
1919   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1920   switch( n->Opcode() ) {
1921   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1922   case Op_If:
1923   case Op_CountedLoopEnd:
1924   case Op_Region:
1925   case Op_Loop:
1926   case Op_CountedLoop:
1927   case Op_Conv2B:
1928   case Op_Opaque1:
1929   case Op_Opaque2:
1930     _worklist.push(n);
1931     break;
1932   default:
1933     break;
1934   }
1935 
1936   return  n;
1937 }
1938 
1939 //---------------------------------saturate------------------------------------
1940 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1941                                const Type* limit_type) const {
1942   const Type* wide_type = new_type->widen(old_type, limit_type);
1943   if (wide_type != new_type) {          // did we widen?
1944     // If so, we may have widened beyond the limit type.  Clip it back down.
1945     new_type = wide_type->filter(limit_type);
1946   }
1947   return new_type;
1948 }
1949 
1950 //------------------------------print_statistics-------------------------------
1951 #ifndef PRODUCT
1952 void PhaseCCP::print_statistics() {
1953   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1954 }
1955 #endif
1956 
1957 
1958 //=============================================================================
1959 #ifndef PRODUCT
1960 uint PhasePeephole::_total_peepholes = 0;
1961 #endif
1962 //------------------------------PhasePeephole----------------------------------
1963 // Conditional Constant Propagation, ala Wegman & Zadeck
1964 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1965   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1966   NOT_PRODUCT( clear_peepholes(); )
1967 }
1968 
1969 #ifndef PRODUCT
1970 //------------------------------~PhasePeephole---------------------------------
1971 PhasePeephole::~PhasePeephole() {
1972   _total_peepholes += count_peepholes();
1973 }
1974 #endif
1975 
1976 //------------------------------transform--------------------------------------
1977 Node *PhasePeephole::transform( Node *n ) {
1978   ShouldNotCallThis();
1979   return NULL;
1980 }
1981 
1982 //------------------------------do_transform-----------------------------------
1983 void PhasePeephole::do_transform() {
1984   bool method_name_not_printed = true;
1985 
1986   // Examine each basic block
1987   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
1988     Block* block = _cfg.get_block(block_number);
1989     bool block_not_printed = true;
1990 
1991     // and each instruction within a block
1992     uint end_index = block->number_of_nodes();
1993     // block->end_idx() not valid after PhaseRegAlloc
1994     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
1995       Node     *n = block->get_node(instruction_index);
1996       if( n->is_Mach() ) {
1997         MachNode *m = n->as_Mach();
1998         int deleted_count = 0;
1999         // check for peephole opportunities
2000         MachNode *m2 = m->peephole(block, instruction_index, _regalloc, deleted_count);
2001         if( m2 != NULL ) {
2002 #ifndef PRODUCT
2003           if( PrintOptoPeephole ) {
2004             // Print method, first time only
2005             if( C->method() && method_name_not_printed ) {
2006               C->method()->print_short_name(); tty->cr();
2007               method_name_not_printed = false;
2008             }
2009             // Print this block
2010             if( Verbose && block_not_printed) {
2011               tty->print_cr("in block");
2012               block->dump();
2013               block_not_printed = false;
2014             }
2015             // Print instructions being deleted
2016             for( int i = (deleted_count - 1); i >= 0; --i ) {
2017               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
2018             }
2019             tty->print_cr("replaced with");
2020             // Print new instruction
2021             m2->format(_regalloc);
2022             tty->print("\n\n");
2023           }
2024 #endif
2025           // Remove old nodes from basic block and update instruction_index
2026           // (old nodes still exist and may have edges pointing to them
2027           //  as register allocation info is stored in the allocator using
2028           //  the node index to live range mappings.)
2029           uint safe_instruction_index = (instruction_index - deleted_count);
2030           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
2031             block->remove_node( instruction_index );
2032           }
2033           // install new node after safe_instruction_index
2034           block->insert_node(m2, safe_instruction_index + 1);
2035           end_index = block->number_of_nodes() - 1; // Recompute new block size
2036           NOT_PRODUCT( inc_peepholes(); )
2037         }
2038       }
2039     }
2040   }
2041 }
2042 
2043 //------------------------------print_statistics-------------------------------
2044 #ifndef PRODUCT
2045 void PhasePeephole::print_statistics() {
2046   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
2047 }
2048 #endif
2049 
2050 
2051 //=============================================================================
2052 //------------------------------set_req_X--------------------------------------
2053 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
2054   assert( is_not_dead(n), "can not use dead node");
2055   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
2056   Node *old = in(i);
2057   set_req(i, n);
2058 
2059   // old goes dead?
2060   if( old ) {
2061     switch (old->outcnt()) {
2062     case 0:
2063       // Put into the worklist to kill later. We do not kill it now because the
2064       // recursive kill will delete the current node (this) if dead-loop exists
2065       if (!old->is_top())
2066         igvn->_worklist.push( old );
2067       break;
2068     case 1:
2069       if( old->is_Store() || old->has_special_unique_user() )
2070         igvn->add_users_to_worklist( old );
2071       break;
2072     case 2:
2073       if( old->is_Store() )
2074         igvn->add_users_to_worklist( old );
2075       if( old->Opcode() == Op_Region )
2076         igvn->_worklist.push(old);
2077       break;
2078     case 3:
2079       if( old->Opcode() == Op_Region ) {
2080         igvn->_worklist.push(old);
2081         igvn->add_users_to_worklist( old );
2082       }
2083       break;
2084     default:
2085       break;
2086     }
2087 
2088     BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, old);
2089   }
2090 
2091 }
2092 
2093 //-------------------------------replace_by-----------------------------------
2094 // Using def-use info, replace one node for another.  Follow the def-use info
2095 // to all users of the OLD node.  Then make all uses point to the NEW node.
2096 void Node::replace_by(Node *new_node) {
2097   assert(!is_top(), "top node has no DU info");
2098   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
2099     Node* use = last_out(i);
2100     uint uses_found = 0;
2101     for (uint j = 0; j < use->len(); j++) {
2102       if (use->in(j) == this) {
2103         if (j < use->req())
2104               use->set_req(j, new_node);
2105         else  use->set_prec(j, new_node);
2106         uses_found++;
2107       }
2108     }
2109     i -= uses_found;    // we deleted 1 or more copies of this edge
2110   }
2111 }
2112 
2113 //=============================================================================
2114 //-----------------------------------------------------------------------------
2115 void Type_Array::grow( uint i ) {
2116   if( !_max ) {
2117     _max = 1;
2118     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
2119     _types[0] = NULL;
2120   }
2121   uint old = _max;
2122   while( i >= _max ) _max <<= 1;        // Double to fit
2123   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
2124   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
2125 }
2126 
2127 //------------------------------dump-------------------------------------------
2128 #ifndef PRODUCT
2129 void Type_Array::dump() const {
2130   uint max = Size();
2131   for( uint i = 0; i < max; i++ ) {
2132     if( _types[i] != NULL ) {
2133       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
2134     }
2135   }
2136 }
2137 #endif