/* * Copyright (c) 2013, 2019, Red Hat, Inc. All rights reserved. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shenandoah/shenandoahAsserts.hpp" #include "gc/shenandoah/shenandoahBarrierSet.hpp" #include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp" #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" #include "gc/shenandoah/shenandoahHeap.inline.hpp" #include "gc/shenandoah/shenandoahHeuristics.hpp" #include "gc/shenandoah/shenandoahTraversalGC.hpp" #include "memory/iterator.inline.hpp" #include "runtime/interfaceSupport.inline.hpp" #ifdef COMPILER1 #include "gc/shenandoah/c1/shenandoahBarrierSetC1.hpp" #endif #ifdef COMPILER2 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" #endif class ShenandoahBarrierSetC1; class ShenandoahBarrierSetC2; template class ShenandoahUpdateRefsForOopClosure: public BasicOopIterateClosure { private: ShenandoahHeap* _heap; ShenandoahBarrierSet* _bs; template inline void do_oop_work(T* p) { oop o; if (STOREVAL_WRITE_BARRIER) { o = _heap->evac_update_with_forwarded(p); if (!CompressedOops::is_null(o)) { _bs->enqueue(o); } } else { _heap->maybe_update_with_forwarded(p); } } public: ShenandoahUpdateRefsForOopClosure() : _heap(ShenandoahHeap::heap()), _bs(ShenandoahBarrierSet::barrier_set()) { assert(UseShenandoahGC && ShenandoahCloneBarrier, "should be enabled"); } virtual void do_oop(oop* p) { do_oop_work(p); } virtual void do_oop(narrowOop* p) { do_oop_work(p); } }; ShenandoahBarrierSet::ShenandoahBarrierSet(ShenandoahHeap* heap) : BarrierSet(make_barrier_set_assembler(), make_barrier_set_c1(), make_barrier_set_c2(), NULL /* barrier_set_nmethod */, BarrierSet::FakeRtti(BarrierSet::ShenandoahBarrierSet)), _heap(heap), _satb_mark_queue_set() { } ShenandoahBarrierSetAssembler* ShenandoahBarrierSet::assembler() { BarrierSetAssembler* const bsa = BarrierSet::barrier_set()->barrier_set_assembler(); return reinterpret_cast(bsa); } void ShenandoahBarrierSet::print_on(outputStream* st) const { st->print("ShenandoahBarrierSet"); } bool ShenandoahBarrierSet::is_a(BarrierSet::Name bsn) { return bsn == BarrierSet::ShenandoahBarrierSet; } bool ShenandoahBarrierSet::is_aligned(HeapWord* hw) { return true; } template void ShenandoahBarrierSet::write_ref_array_loop(HeapWord* start, size_t count) { assert(UseShenandoahGC && ShenandoahCloneBarrier, "should be enabled"); ShenandoahUpdateRefsForOopClosure cl; T* dst = (T*) start; for (size_t i = 0; i < count; i++) { cl.do_oop(dst++); } } void ShenandoahBarrierSet::write_ref_array(HeapWord* start, size_t count) { assert(UseShenandoahGC, "should be enabled"); if (count == 0) return; if (!ShenandoahCloneBarrier) return; if (!need_update_refs_barrier()) return; if (_heap->is_concurrent_traversal_in_progress()) { ShenandoahEvacOOMScope oom_evac_scope; if (UseCompressedOops) { write_ref_array_loop(start, count); } else { write_ref_array_loop(start, count); } } else { if (UseCompressedOops) { write_ref_array_loop(start, count); } else { write_ref_array_loop(start, count); } } } template void ShenandoahBarrierSet::write_ref_array_pre_work(T* dst, size_t count) { shenandoah_assert_not_in_cset_loc_except(dst, _heap->cancelled_gc()); if (ShenandoahSATBBarrier && _heap->is_concurrent_mark_in_progress()) { T* elem_ptr = dst; for (size_t i = 0; i < count; i++, elem_ptr++) { T heap_oop = RawAccess<>::oop_load(elem_ptr); if (!CompressedOops::is_null(heap_oop)) { enqueue(CompressedOops::decode_not_null(heap_oop)); } } } } void ShenandoahBarrierSet::write_ref_array_pre(oop* dst, size_t count, bool dest_uninitialized) { if (! dest_uninitialized) { write_ref_array_pre_work(dst, count); } } void ShenandoahBarrierSet::write_ref_array_pre(narrowOop* dst, size_t count, bool dest_uninitialized) { if (! dest_uninitialized) { write_ref_array_pre_work(dst, count); } } template inline void ShenandoahBarrierSet::inline_write_ref_field_pre(T* field, oop new_val) { shenandoah_assert_not_in_cset_loc_except(field, _heap->cancelled_gc()); if (_heap->is_concurrent_mark_in_progress()) { T heap_oop = RawAccess<>::oop_load(field); if (!CompressedOops::is_null(heap_oop)) { enqueue(CompressedOops::decode(heap_oop)); } } } // These are the more general virtual versions. void ShenandoahBarrierSet::write_ref_field_pre_work(oop* field, oop new_val) { inline_write_ref_field_pre(field, new_val); } void ShenandoahBarrierSet::write_ref_field_pre_work(narrowOop* field, oop new_val) { inline_write_ref_field_pre(field, new_val); } void ShenandoahBarrierSet::write_ref_field_pre_work(void* field, oop new_val) { guarantee(false, "Not needed"); } void ShenandoahBarrierSet::write_ref_field_work(void* v, oop o, bool release) { shenandoah_assert_not_in_cset_loc_except(v, _heap->cancelled_gc()); shenandoah_assert_not_forwarded_except (v, o, o == NULL || _heap->cancelled_gc() || !_heap->is_concurrent_mark_in_progress()); shenandoah_assert_not_in_cset_except (v, o, o == NULL || _heap->cancelled_gc() || !_heap->is_concurrent_mark_in_progress()); } void ShenandoahBarrierSet::write_region(MemRegion mr) { assert(UseShenandoahGC, "should be enabled"); if (!ShenandoahCloneBarrier) return; if (! need_update_refs_barrier()) return; // This is called for cloning an object (see jvm.cpp) after the clone // has been made. We are not interested in any 'previous value' because // it would be NULL in any case. But we *are* interested in any oop* // that potentially need to be updated. oop obj = oop(mr.start()); shenandoah_assert_correct(NULL, obj); if (_heap->is_concurrent_traversal_in_progress()) { ShenandoahEvacOOMScope oom_evac_scope; ShenandoahUpdateRefsForOopClosure cl; obj->oop_iterate(&cl); } else { ShenandoahUpdateRefsForOopClosure cl; obj->oop_iterate(&cl); } } oop ShenandoahBarrierSet::read_barrier(oop src) { // Check for forwarded objects, because on Full GC path we might deal with // non-trivial fwdptrs that contain Full GC specific metadata. We could check // for is_full_gc_in_progress(), but this also covers the case of stable heap, // which provides a bit of performance improvement. if (ShenandoahReadBarrier && _heap->has_forwarded_objects()) { return ShenandoahBarrierSet::resolve_forwarded(src); } else { return src; } } bool ShenandoahBarrierSet::obj_equals(oop obj1, oop obj2) { bool eq = oopDesc::equals_raw(obj1, obj2); if (! eq && ShenandoahAcmpBarrier) { OrderAccess::loadload(); obj1 = resolve_forwarded(obj1); obj2 = resolve_forwarded(obj2); eq = oopDesc::equals_raw(obj1, obj2); } return eq; } oop ShenandoahBarrierSet::write_barrier_mutator(oop obj) { assert(UseShenandoahGC && ShenandoahWriteBarrier, "should be enabled"); assert(_heap->is_gc_in_progress_mask(ShenandoahHeap::EVACUATION | ShenandoahHeap::TRAVERSAL), "evac should be in progress"); shenandoah_assert_in_cset(NULL, obj); oop fwd = resolve_forwarded_not_null(obj); if (oopDesc::equals_raw(obj, fwd)) { ShenandoahEvacOOMScope oom_evac_scope; Thread* thread = Thread::current(); oop res_oop = _heap->evacuate_object(obj, thread); // Since we are already here and paid the price of getting through runtime call adapters // and acquiring oom-scope, it makes sense to try and evacuate more adjacent objects, // thus amortizing the overhead. For sparsely live heaps, scan costs easily dominate // total assist costs, and can introduce a lot of evacuation latency. This is why we // only scan for _nearest_ N objects, regardless if they are eligible for evac or not. // The scan itself should also avoid touching the non-marked objects below TAMS, because // their metadata (notably, klasses) may be incorrect already. size_t max = ShenandoahEvacAssist; if (max > 0) { // Traversal is special: it uses incomplete marking context, because it coalesces evac with mark. // Other code uses complete marking context, because evac happens after the mark. ShenandoahMarkingContext* ctx = _heap->is_concurrent_traversal_in_progress() ? _heap->marking_context() : _heap->complete_marking_context(); ShenandoahHeapRegion* r = _heap->heap_region_containing(obj); assert(r->is_cset(), "sanity"); HeapWord* cur = (HeapWord*)obj + obj->size() + ShenandoahBrooksPointer::word_size(); size_t count = 0; while ((cur < r->top()) && ctx->is_marked(oop(cur)) && (count++ < max)) { oop cur_oop = oop(cur); if (oopDesc::equals_raw(cur_oop, resolve_forwarded_not_null(cur_oop))) { _heap->evacuate_object(cur_oop, thread); } cur = cur + cur_oop->size() + ShenandoahBrooksPointer::word_size(); } } return res_oop; } return fwd; } oop ShenandoahBarrierSet::write_barrier_impl(oop obj) { assert(UseShenandoahGC && ShenandoahWriteBarrier, "should be enabled"); if (!CompressedOops::is_null(obj)) { bool evac_in_progress = _heap->is_gc_in_progress_mask(ShenandoahHeap::EVACUATION | ShenandoahHeap::TRAVERSAL); oop fwd = resolve_forwarded_not_null(obj); if (evac_in_progress && _heap->in_collection_set(obj) && oopDesc::equals_raw(obj, fwd)) { Thread *t = Thread::current(); if (t->is_GC_task_thread()) { return _heap->evacuate_object(obj, t); } else { ShenandoahEvacOOMScope oom_evac_scope; return _heap->evacuate_object(obj, t); } } else { return fwd; } } else { return obj; } } oop ShenandoahBarrierSet::write_barrier(oop obj) { if (ShenandoahWriteBarrier && _heap->has_forwarded_objects()) { return write_barrier_impl(obj); } else { return obj; } } oop ShenandoahBarrierSet::storeval_barrier(oop obj) { if (ShenandoahStoreValEnqueueBarrier) { if (!CompressedOops::is_null(obj)) { obj = write_barrier(obj); enqueue(obj); } } if (ShenandoahStoreValReadBarrier) { obj = resolve_forwarded(obj); } return obj; } void ShenandoahBarrierSet::keep_alive_barrier(oop obj) { if (ShenandoahKeepAliveBarrier && _heap->is_concurrent_mark_in_progress()) { enqueue(obj); } } void ShenandoahBarrierSet::enqueue(oop obj) { shenandoah_assert_not_forwarded_if(NULL, obj, _heap->is_concurrent_traversal_in_progress()); if (!_satb_mark_queue_set.is_active()) return; // Filter marked objects before hitting the SATB queues. The same predicate would // be used by SATBMQ::filter to eliminate already marked objects downstream, but // filtering here helps to avoid wasteful SATB queueing work to begin with. if (!_heap->requires_marking(obj)) return; ShenandoahThreadLocalData::satb_mark_queue(Thread::current()).enqueue(obj); } void ShenandoahBarrierSet::on_thread_create(Thread* thread) { // Create thread local data ShenandoahThreadLocalData::create(thread); } void ShenandoahBarrierSet::on_thread_destroy(Thread* thread) { // Destroy thread local data ShenandoahThreadLocalData::destroy(thread); } void ShenandoahBarrierSet::on_thread_attach(Thread *thread) { assert(!thread->is_Java_thread() || !SafepointSynchronize::is_at_safepoint(), "We should not be at a safepoint"); SATBMarkQueue& queue = ShenandoahThreadLocalData::satb_mark_queue(thread); assert(!queue.is_active(), "SATB queue should not be active"); assert( queue.is_empty(), "SATB queue should be empty"); if (thread->is_Java_thread()) { ShenandoahThreadLocalData::set_gc_state(thread, _heap->gc_state()); ShenandoahThreadLocalData::initialize_gclab(thread); } SuspendibleThreadSetJoiner sts_join(thread->is_StringDedup_thread()); queue.set_active(_satb_mark_queue_set.is_active()); } void ShenandoahBarrierSet::on_thread_detach(Thread *thread) { SATBMarkQueue& queue = ShenandoahThreadLocalData::satb_mark_queue(thread); queue.flush(); if (thread->is_Java_thread()) { PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); if (gclab != NULL) { gclab->retire(); } } }