1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvmtifiles/jvmtiEnv.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logConfiguration.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/metaspaceShared.hpp"
  50 #include "memory/oopFactory.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "memory/universe.hpp"
  53 #include "oops/access.inline.hpp"
  54 #include "oops/instanceKlass.hpp"
  55 #include "oops/objArrayOop.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/symbol.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvm_misc.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/fieldDescriptor.inline.hpp"
  67 #include "runtime/flags/jvmFlagConstraintList.hpp"
  68 #include "runtime/flags/jvmFlagRangeList.hpp"
  69 #include "runtime/flags/jvmFlagWriteableList.hpp"
  70 #include "runtime/deoptimization.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/handshake.hpp"
  74 #include "runtime/init.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/javaCalls.hpp"
  78 #include "runtime/jniHandles.inline.hpp"
  79 #include "runtime/jniPeriodicChecker.hpp"
  80 #include "runtime/memprofiler.hpp"
  81 #include "runtime/mutexLocker.hpp"
  82 #include "runtime/objectMonitor.hpp"
  83 #include "runtime/orderAccess.hpp"
  84 #include "runtime/osThread.hpp"
  85 #include "runtime/prefetch.inline.hpp"
  86 #include "runtime/safepoint.hpp"
  87 #include "runtime/safepointMechanism.inline.hpp"
  88 #include "runtime/safepointVerifiers.hpp"
  89 #include "runtime/sharedRuntime.hpp"
  90 #include "runtime/statSampler.hpp"
  91 #include "runtime/stubRoutines.hpp"
  92 #include "runtime/sweeper.hpp"
  93 #include "runtime/task.hpp"
  94 #include "runtime/thread.inline.hpp"
  95 #include "runtime/threadCritical.hpp"
  96 #include "runtime/threadSMR.inline.hpp"
  97 #include "runtime/threadStatisticalInfo.hpp"
  98 #include "runtime/timer.hpp"
  99 #include "runtime/timerTrace.hpp"
 100 #include "runtime/vframe.inline.hpp"
 101 #include "runtime/vframeArray.hpp"
 102 #include "runtime/vframe_hp.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "runtime/vmOperations.hpp"
 105 #include "runtime/vm_version.hpp"
 106 #include "services/attachListener.hpp"
 107 #include "services/management.hpp"
 108 #include "services/memTracker.hpp"
 109 #include "services/threadService.hpp"
 110 #include "utilities/align.hpp"
 111 #include "utilities/copy.hpp"
 112 #include "utilities/defaultStream.hpp"
 113 #include "utilities/dtrace.hpp"
 114 #include "utilities/events.hpp"
 115 #include "utilities/macros.hpp"
 116 #include "utilities/preserveException.hpp"
 117 #include "utilities/singleWriterSynchronizer.hpp"
 118 #include "utilities/vmError.hpp"
 119 #if INCLUDE_JVMCI
 120 #include "jvmci/jvmciCompiler.hpp"
 121 #include "jvmci/jvmciRuntime.hpp"
 122 #include "logging/logHandle.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const int alignment = markOopDesc::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_self_raw_id(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // This initial value ==> never claimed.
 242   _oops_do_parity = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   debug_only(_allow_allocation_count = 0;)
 254   NOT_PRODUCT(_allow_safepoint_count = 0;)
 255   NOT_PRODUCT(_skip_gcalot = false;)
 256   _jvmti_env_iteration_count = 0;
 257   set_allocated_bytes(0);
 258   _vm_operation_started_count = 0;
 259   _vm_operation_completed_count = 0;
 260   _current_pending_monitor = NULL;
 261   _current_pending_monitor_is_from_java = true;
 262   _current_waiting_monitor = NULL;
 263   _num_nested_signal = 0;
 264   omFreeList = NULL;
 265   omFreeCount = 0;
 266   omFreeProvision = 32;
 267   omInUseList = NULL;
 268   omInUseCount = 0;
 269 
 270 #ifdef ASSERT
 271   _visited_for_critical_count = false;
 272 #endif
 273 
 274   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 275                          Monitor::_safepoint_check_sometimes);
 276   _suspend_flags = 0;
 277 
 278   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 279   _hashStateX = os::random();
 280   _hashStateY = 842502087;
 281   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 282   _hashStateW = 273326509;
 283 
 284   _OnTrap   = 0;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _SleepEvent  = ParkEvent::Allocate(this);
 297   _MuxEvent    = ParkEvent::Allocate(this);
 298 
 299 #ifdef CHECK_UNHANDLED_OOPS
 300   if (CheckUnhandledOops) {
 301     _unhandled_oops = new UnhandledOops(this);
 302   }
 303 #endif // CHECK_UNHANDLED_OOPS
 304 #ifdef ASSERT
 305   if (UseBiasedLocking) {
 306     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 307     assert(this == _real_malloc_address ||
 308            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 309            "bug in forced alignment of thread objects");
 310   }
 311 #endif // ASSERT
 312 
 313   // Notify the barrier set that a thread is being created. The initial
 314   // thread is created before the barrier set is available.  The call to
 315   // BarrierSet::on_thread_create() for this thread is therefore deferred
 316   // to BarrierSet::set_barrier_set().
 317   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 318   if (barrier_set != NULL) {
 319     barrier_set->on_thread_create(this);
 320   } else {
 321     // Only the main thread should be created before the barrier set
 322     // and that happens just before Thread::current is set. No other thread
 323     // can attach as the VM is not created yet, so they can't execute this code.
 324     // If the main thread creates other threads before the barrier set that is an error.
 325     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 326   }
 327 }
 328 
 329 void Thread::initialize_thread_current() {
 330 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 331   assert(_thr_current == NULL, "Thread::current already initialized");
 332   _thr_current = this;
 333 #endif
 334   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 335   ThreadLocalStorage::set_thread(this);
 336   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 337 }
 338 
 339 void Thread::clear_thread_current() {
 340   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 341 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 342   _thr_current = NULL;
 343 #endif
 344   ThreadLocalStorage::set_thread(NULL);
 345 }
 346 
 347 void Thread::record_stack_base_and_size() {
 348   // Note: at this point, Thread object is not yet initialized. Do not rely on
 349   // any members being initialized. Do not rely on Thread::current() being set.
 350   // If possible, refrain from doing anything which may crash or assert since
 351   // quite probably those crash dumps will be useless.
 352   set_stack_base(os::current_stack_base());
 353   set_stack_size(os::current_stack_size());
 354 
 355 #ifdef SOLARIS
 356   if (os::is_primordial_thread()) {
 357     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 358   }
 359 #endif
 360 
 361   // Set stack limits after thread is initialized.
 362   if (is_Java_thread()) {
 363     ((JavaThread*) this)->set_stack_overflow_limit();
 364     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 365   }
 366 }
 367 
 368 #if INCLUDE_NMT
 369 void Thread::register_thread_stack_with_NMT() {
 370   MemTracker::record_thread_stack(stack_end(), stack_size());
 371 }
 372 #endif // INCLUDE_NMT
 373 
 374 void Thread::call_run() {
 375   DEBUG_ONLY(_run_state = CALL_RUN;)
 376 
 377   // At this point, Thread object should be fully initialized and
 378   // Thread::current() should be set.
 379 
 380   assert(Thread::current_or_null() != NULL, "current thread is unset");
 381   assert(Thread::current_or_null() == this, "current thread is wrong");
 382 
 383   // Perform common initialization actions
 384 
 385   register_thread_stack_with_NMT();
 386 
 387   JFR_ONLY(Jfr::on_thread_start(this);)
 388 
 389   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 390     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 391     os::current_thread_id(), p2i(stack_base() - stack_size()),
 392     p2i(stack_base()), stack_size()/1024);
 393 
 394   // Perform <ChildClass> initialization actions
 395   DEBUG_ONLY(_run_state = PRE_RUN;)
 396   this->pre_run();
 397 
 398   // Invoke <ChildClass>::run()
 399   DEBUG_ONLY(_run_state = RUN;)
 400   this->run();
 401   // Returned from <ChildClass>::run(). Thread finished.
 402 
 403   // Perform common tear-down actions
 404 
 405   assert(Thread::current_or_null() != NULL, "current thread is unset");
 406   assert(Thread::current_or_null() == this, "current thread is wrong");
 407 
 408   // Perform <ChildClass> tear-down actions
 409   DEBUG_ONLY(_run_state = POST_RUN;)
 410   this->post_run();
 411 
 412   // Note: at this point the thread object may already have deleted itself,
 413   // so from here on do not dereference *this*. Not all thread types currently
 414   // delete themselves when they terminate. But no thread should ever be deleted
 415   // asynchronously with respect to its termination - that is what _run_state can
 416   // be used to check.
 417 
 418   assert(Thread::current_or_null() == NULL, "current thread still present");
 419 }
 420 
 421 Thread::~Thread() {
 422 
 423   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 424   // get started due to errors etc. Any active thread should at least reach post_run
 425   // before it is deleted (usually in post_run()).
 426   assert(_run_state == PRE_CALL_RUN ||
 427          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 428          "_run_state=%d", (int)_run_state);
 429 
 430   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 431   // set might not be available if we encountered errors during bootstrapping.
 432   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 433   if (barrier_set != NULL) {
 434     barrier_set->on_thread_destroy(this);
 435   }
 436 
 437   // stack_base can be NULL if the thread is never started or exited before
 438   // record_stack_base_and_size called. Although, we would like to ensure
 439   // that all started threads do call record_stack_base_and_size(), there is
 440   // not proper way to enforce that.
 441 #if INCLUDE_NMT
 442   if (_stack_base != NULL) {
 443     MemTracker::release_thread_stack(stack_end(), stack_size());
 444 #ifdef ASSERT
 445     set_stack_base(NULL);
 446 #endif
 447   }
 448 #endif // INCLUDE_NMT
 449 
 450   // deallocate data structures
 451   delete resource_area();
 452   // since the handle marks are using the handle area, we have to deallocated the root
 453   // handle mark before deallocating the thread's handle area,
 454   assert(last_handle_mark() != NULL, "check we have an element");
 455   delete last_handle_mark();
 456   assert(last_handle_mark() == NULL, "check we have reached the end");
 457 
 458   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 459   // We NULL out the fields for good hygiene.
 460   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 461   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 462   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 463 
 464   delete handle_area();
 465   delete metadata_handles();
 466 
 467   // SR_handler uses this as a termination indicator -
 468   // needs to happen before os::free_thread()
 469   delete _SR_lock;
 470   _SR_lock = NULL;
 471 
 472   // osthread() can be NULL, if creation of thread failed.
 473   if (osthread() != NULL) os::free_thread(osthread());
 474 
 475   // Clear Thread::current if thread is deleting itself and it has not
 476   // already been done. This must be done before the memory is deallocated.
 477   // Needed to ensure JNI correctly detects non-attached threads.
 478   if (this == Thread::current_or_null()) {
 479     Thread::clear_thread_current();
 480   }
 481 
 482   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 483 }
 484 
 485 #ifdef ASSERT
 486 // A JavaThread is considered "dangling" if it is not the current
 487 // thread, has been added the Threads list, the system is not at a
 488 // safepoint and the Thread is not "protected".
 489 //
 490 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 491   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 492          !((JavaThread *) thread)->on_thread_list() ||
 493          SafepointSynchronize::is_at_safepoint() ||
 494          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 495          "possibility of dangling Thread pointer");
 496 }
 497 #endif
 498 
 499 ThreadPriority Thread::get_priority(const Thread* const thread) {
 500   ThreadPriority priority;
 501   // Can return an error!
 502   (void)os::get_priority(thread, priority);
 503   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 504   return priority;
 505 }
 506 
 507 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 508   debug_only(check_for_dangling_thread_pointer(thread);)
 509   // Can return an error!
 510   (void)os::set_priority(thread, priority);
 511 }
 512 
 513 
 514 void Thread::start(Thread* thread) {
 515   // Start is different from resume in that its safety is guaranteed by context or
 516   // being called from a Java method synchronized on the Thread object.
 517   if (!DisableStartThread) {
 518     if (thread->is_Java_thread()) {
 519       // Initialize the thread state to RUNNABLE before starting this thread.
 520       // Can not set it after the thread started because we do not know the
 521       // exact thread state at that time. It could be in MONITOR_WAIT or
 522       // in SLEEPING or some other state.
 523       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 524                                           java_lang_Thread::RUNNABLE);
 525     }
 526     os::start_thread(thread);
 527   }
 528 }
 529 
 530 // Enqueue a VM_Operation to do the job for us - sometime later
 531 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 532   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 533   VMThread::execute(vm_stop);
 534 }
 535 
 536 
 537 // Check if an external suspend request has completed (or has been
 538 // cancelled). Returns true if the thread is externally suspended and
 539 // false otherwise.
 540 //
 541 // The bits parameter returns information about the code path through
 542 // the routine. Useful for debugging:
 543 //
 544 // set in is_ext_suspend_completed():
 545 // 0x00000001 - routine was entered
 546 // 0x00000010 - routine return false at end
 547 // 0x00000100 - thread exited (return false)
 548 // 0x00000200 - suspend request cancelled (return false)
 549 // 0x00000400 - thread suspended (return true)
 550 // 0x00001000 - thread is in a suspend equivalent state (return true)
 551 // 0x00002000 - thread is native and walkable (return true)
 552 // 0x00004000 - thread is native_trans and walkable (needed retry)
 553 //
 554 // set in wait_for_ext_suspend_completion():
 555 // 0x00010000 - routine was entered
 556 // 0x00020000 - suspend request cancelled before loop (return false)
 557 // 0x00040000 - thread suspended before loop (return true)
 558 // 0x00080000 - suspend request cancelled in loop (return false)
 559 // 0x00100000 - thread suspended in loop (return true)
 560 // 0x00200000 - suspend not completed during retry loop (return false)
 561 
 562 // Helper class for tracing suspend wait debug bits.
 563 //
 564 // 0x00000100 indicates that the target thread exited before it could
 565 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 566 // 0x00080000 each indicate a cancelled suspend request so they don't
 567 // count as wait failures either.
 568 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 569 
 570 class TraceSuspendDebugBits : public StackObj {
 571  private:
 572   JavaThread * jt;
 573   bool         is_wait;
 574   bool         called_by_wait;  // meaningful when !is_wait
 575   uint32_t *   bits;
 576 
 577  public:
 578   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 579                         uint32_t *_bits) {
 580     jt             = _jt;
 581     is_wait        = _is_wait;
 582     called_by_wait = _called_by_wait;
 583     bits           = _bits;
 584   }
 585 
 586   ~TraceSuspendDebugBits() {
 587     if (!is_wait) {
 588 #if 1
 589       // By default, don't trace bits for is_ext_suspend_completed() calls.
 590       // That trace is very chatty.
 591       return;
 592 #else
 593       if (!called_by_wait) {
 594         // If tracing for is_ext_suspend_completed() is enabled, then only
 595         // trace calls to it from wait_for_ext_suspend_completion()
 596         return;
 597       }
 598 #endif
 599     }
 600 
 601     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 602       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 603         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 604         ResourceMark rm;
 605 
 606         tty->print_cr(
 607                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 608                       jt->get_thread_name(), *bits);
 609 
 610         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 611       }
 612     }
 613   }
 614 };
 615 #undef DEBUG_FALSE_BITS
 616 
 617 
 618 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 619                                           uint32_t *bits) {
 620   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 621 
 622   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 623   bool do_trans_retry;           // flag to force the retry
 624 
 625   *bits |= 0x00000001;
 626 
 627   do {
 628     do_trans_retry = false;
 629 
 630     if (is_exiting()) {
 631       // Thread is in the process of exiting. This is always checked
 632       // first to reduce the risk of dereferencing a freed JavaThread.
 633       *bits |= 0x00000100;
 634       return false;
 635     }
 636 
 637     if (!is_external_suspend()) {
 638       // Suspend request is cancelled. This is always checked before
 639       // is_ext_suspended() to reduce the risk of a rogue resume
 640       // confusing the thread that made the suspend request.
 641       *bits |= 0x00000200;
 642       return false;
 643     }
 644 
 645     if (is_ext_suspended()) {
 646       // thread is suspended
 647       *bits |= 0x00000400;
 648       return true;
 649     }
 650 
 651     // Now that we no longer do hard suspends of threads running
 652     // native code, the target thread can be changing thread state
 653     // while we are in this routine:
 654     //
 655     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 656     //
 657     // We save a copy of the thread state as observed at this moment
 658     // and make our decision about suspend completeness based on the
 659     // copy. This closes the race where the thread state is seen as
 660     // _thread_in_native_trans in the if-thread_blocked check, but is
 661     // seen as _thread_blocked in if-thread_in_native_trans check.
 662     JavaThreadState save_state = thread_state();
 663 
 664     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 665       // If the thread's state is _thread_blocked and this blocking
 666       // condition is known to be equivalent to a suspend, then we can
 667       // consider the thread to be externally suspended. This means that
 668       // the code that sets _thread_blocked has been modified to do
 669       // self-suspension if the blocking condition releases. We also
 670       // used to check for CONDVAR_WAIT here, but that is now covered by
 671       // the _thread_blocked with self-suspension check.
 672       //
 673       // Return true since we wouldn't be here unless there was still an
 674       // external suspend request.
 675       *bits |= 0x00001000;
 676       return true;
 677     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 678       // Threads running native code will self-suspend on native==>VM/Java
 679       // transitions. If its stack is walkable (should always be the case
 680       // unless this function is called before the actual java_suspend()
 681       // call), then the wait is done.
 682       *bits |= 0x00002000;
 683       return true;
 684     } else if (!called_by_wait && !did_trans_retry &&
 685                save_state == _thread_in_native_trans &&
 686                frame_anchor()->walkable()) {
 687       // The thread is transitioning from thread_in_native to another
 688       // thread state. check_safepoint_and_suspend_for_native_trans()
 689       // will force the thread to self-suspend. If it hasn't gotten
 690       // there yet we may have caught the thread in-between the native
 691       // code check above and the self-suspend. Lucky us. If we were
 692       // called by wait_for_ext_suspend_completion(), then it
 693       // will be doing the retries so we don't have to.
 694       //
 695       // Since we use the saved thread state in the if-statement above,
 696       // there is a chance that the thread has already transitioned to
 697       // _thread_blocked by the time we get here. In that case, we will
 698       // make a single unnecessary pass through the logic below. This
 699       // doesn't hurt anything since we still do the trans retry.
 700 
 701       *bits |= 0x00004000;
 702 
 703       // Once the thread leaves thread_in_native_trans for another
 704       // thread state, we break out of this retry loop. We shouldn't
 705       // need this flag to prevent us from getting back here, but
 706       // sometimes paranoia is good.
 707       did_trans_retry = true;
 708 
 709       // We wait for the thread to transition to a more usable state.
 710       for (int i = 1; i <= SuspendRetryCount; i++) {
 711         // We used to do an "os::yield_all(i)" call here with the intention
 712         // that yielding would increase on each retry. However, the parameter
 713         // is ignored on Linux which means the yield didn't scale up. Waiting
 714         // on the SR_lock below provides a much more predictable scale up for
 715         // the delay. It also provides a simple/direct point to check for any
 716         // safepoint requests from the VMThread
 717 
 718         // temporarily drops SR_lock while doing wait with safepoint check
 719         // (if we're a JavaThread - the WatcherThread can also call this)
 720         // and increase delay with each retry
 721         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 722 
 723         // check the actual thread state instead of what we saved above
 724         if (thread_state() != _thread_in_native_trans) {
 725           // the thread has transitioned to another thread state so
 726           // try all the checks (except this one) one more time.
 727           do_trans_retry = true;
 728           break;
 729         }
 730       } // end retry loop
 731 
 732 
 733     }
 734   } while (do_trans_retry);
 735 
 736   *bits |= 0x00000010;
 737   return false;
 738 }
 739 
 740 // Wait for an external suspend request to complete (or be cancelled).
 741 // Returns true if the thread is externally suspended and false otherwise.
 742 //
 743 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 744                                                  uint32_t *bits) {
 745   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 746                              false /* !called_by_wait */, bits);
 747 
 748   // local flag copies to minimize SR_lock hold time
 749   bool is_suspended;
 750   bool pending;
 751   uint32_t reset_bits;
 752 
 753   // set a marker so is_ext_suspend_completed() knows we are the caller
 754   *bits |= 0x00010000;
 755 
 756   // We use reset_bits to reinitialize the bits value at the top of
 757   // each retry loop. This allows the caller to make use of any
 758   // unused bits for their own marking purposes.
 759   reset_bits = *bits;
 760 
 761   {
 762     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 763     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 764                                             delay, bits);
 765     pending = is_external_suspend();
 766   }
 767   // must release SR_lock to allow suspension to complete
 768 
 769   if (!pending) {
 770     // A cancelled suspend request is the only false return from
 771     // is_ext_suspend_completed() that keeps us from entering the
 772     // retry loop.
 773     *bits |= 0x00020000;
 774     return false;
 775   }
 776 
 777   if (is_suspended) {
 778     *bits |= 0x00040000;
 779     return true;
 780   }
 781 
 782   for (int i = 1; i <= retries; i++) {
 783     *bits = reset_bits;  // reinit to only track last retry
 784 
 785     // We used to do an "os::yield_all(i)" call here with the intention
 786     // that yielding would increase on each retry. However, the parameter
 787     // is ignored on Linux which means the yield didn't scale up. Waiting
 788     // on the SR_lock below provides a much more predictable scale up for
 789     // the delay. It also provides a simple/direct point to check for any
 790     // safepoint requests from the VMThread
 791 
 792     {
 793       MutexLocker ml(SR_lock());
 794       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 795       // can also call this)  and increase delay with each retry
 796       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 797 
 798       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 799                                               delay, bits);
 800 
 801       // It is possible for the external suspend request to be cancelled
 802       // (by a resume) before the actual suspend operation is completed.
 803       // Refresh our local copy to see if we still need to wait.
 804       pending = is_external_suspend();
 805     }
 806 
 807     if (!pending) {
 808       // A cancelled suspend request is the only false return from
 809       // is_ext_suspend_completed() that keeps us from staying in the
 810       // retry loop.
 811       *bits |= 0x00080000;
 812       return false;
 813     }
 814 
 815     if (is_suspended) {
 816       *bits |= 0x00100000;
 817       return true;
 818     }
 819   } // end retry loop
 820 
 821   // thread did not suspend after all our retries
 822   *bits |= 0x00200000;
 823   return false;
 824 }
 825 
 826 // Called from API entry points which perform stack walking. If the
 827 // associated JavaThread is the current thread, then wait_for_suspend
 828 // is not used. Otherwise, it determines if we should wait for the
 829 // "other" thread to complete external suspension. (NOTE: in future
 830 // releases the suspension mechanism should be reimplemented so this
 831 // is not necessary.)
 832 //
 833 bool
 834 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 835   if (this != JavaThread::current()) {
 836     // "other" threads require special handling.
 837     if (wait_for_suspend) {
 838       // We are allowed to wait for the external suspend to complete
 839       // so give the other thread a chance to get suspended.
 840       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 841                                            SuspendRetryDelay, bits)) {
 842         // Didn't make it so let the caller know.
 843         return false;
 844       }
 845     }
 846     // We aren't allowed to wait for the external suspend to complete
 847     // so if the other thread isn't externally suspended we need to
 848     // let the caller know.
 849     else if (!is_ext_suspend_completed_with_lock(bits)) {
 850       return false;
 851     }
 852   }
 853 
 854   return true;
 855 }
 856 
 857 #ifndef PRODUCT
 858 void JavaThread::record_jump(address target, address instr, const char* file,
 859                              int line) {
 860 
 861   // This should not need to be atomic as the only way for simultaneous
 862   // updates is via interrupts. Even then this should be rare or non-existent
 863   // and we don't care that much anyway.
 864 
 865   int index = _jmp_ring_index;
 866   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 867   _jmp_ring[index]._target = (intptr_t) target;
 868   _jmp_ring[index]._instruction = (intptr_t) instr;
 869   _jmp_ring[index]._file = file;
 870   _jmp_ring[index]._line = line;
 871 }
 872 #endif // PRODUCT
 873 
 874 void Thread::interrupt(Thread* thread) {
 875   debug_only(check_for_dangling_thread_pointer(thread);)
 876   os::interrupt(thread);
 877 }
 878 
 879 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 880   debug_only(check_for_dangling_thread_pointer(thread);)
 881   // Note:  If clear_interrupted==false, this simply fetches and
 882   // returns the value of the field osthread()->interrupted().
 883   return os::is_interrupted(thread, clear_interrupted);
 884 }
 885 
 886 
 887 // GC Support
 888 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 889   int thread_parity = _oops_do_parity;
 890   if (thread_parity != strong_roots_parity) {
 891     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 892     if (res == thread_parity) {
 893       return true;
 894     } else {
 895       guarantee(res == strong_roots_parity, "Or else what?");
 896       return false;
 897     }
 898   }
 899   return false;
 900 }
 901 
 902 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 903   active_handles()->oops_do(f);
 904   // Do oop for ThreadShadow
 905   f->do_oop((oop*)&_pending_exception);
 906   handle_area()->oops_do(f);
 907 
 908   // We scan thread local monitor lists here, and the remaining global
 909   // monitors in ObjectSynchronizer::oops_do().
 910   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 911 }
 912 
 913 void Thread::metadata_handles_do(void f(Metadata*)) {
 914   // Only walk the Handles in Thread.
 915   if (metadata_handles() != NULL) {
 916     for (int i = 0; i< metadata_handles()->length(); i++) {
 917       f(metadata_handles()->at(i));
 918     }
 919   }
 920 }
 921 
 922 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 923   // get_priority assumes osthread initialized
 924   if (osthread() != NULL) {
 925     int os_prio;
 926     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 927       st->print("os_prio=%d ", os_prio);
 928     }
 929 
 930     st->print("cpu=%.2fms ",
 931               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 932               );
 933     st->print("elapsed=%.2fs ",
 934               _statistical_info.getElapsedTime() / 1000.0
 935               );
 936     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 937       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 938       st->print("allocated=" SIZE_FORMAT "%s ",
 939                 byte_size_in_proper_unit(allocated_bytes),
 940                 proper_unit_for_byte_size(allocated_bytes)
 941                 );
 942       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 943     }
 944 
 945     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 946     osthread()->print_on(st);
 947   }
 948   ThreadsSMRSupport::print_info_on(this, st);
 949   st->print(" ");
 950   debug_only(if (WizardMode) print_owned_locks_on(st);)
 951 }
 952 
 953 // Thread::print_on_error() is called by fatal error handler. Don't use
 954 // any lock or allocate memory.
 955 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 956   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 957 
 958   if (is_VM_thread())                 { st->print("VMThread"); }
 959   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 960   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 961   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 962   else                                { st->print("Thread"); }
 963 
 964   if (is_Named_thread()) {
 965     st->print(" \"%s\"", name());
 966   }
 967 
 968   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 969             p2i(stack_end()), p2i(stack_base()));
 970 
 971   if (osthread()) {
 972     st->print(" [id=%d]", osthread()->thread_id());
 973   }
 974 
 975   ThreadsSMRSupport::print_info_on(this, st);
 976 }
 977 
 978 void Thread::print_value_on(outputStream* st) const {
 979   if (is_Named_thread()) {
 980     st->print(" \"%s\" ", name());
 981   }
 982   st->print(INTPTR_FORMAT, p2i(this));   // print address
 983 }
 984 
 985 #ifdef ASSERT
 986 void Thread::print_owned_locks_on(outputStream* st) const {
 987   Monitor *cur = _owned_locks;
 988   if (cur == NULL) {
 989     st->print(" (no locks) ");
 990   } else {
 991     st->print_cr(" Locks owned:");
 992     while (cur) {
 993       cur->print_on(st);
 994       cur = cur->next();
 995     }
 996   }
 997 }
 998 
 999 static int ref_use_count  = 0;
1000 
1001 bool Thread::owns_locks_but_compiled_lock() const {
1002   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1003     if (cur != Compile_lock) return true;
1004   }
1005   return false;
1006 }
1007 
1008 
1009 #endif
1010 
1011 #ifndef PRODUCT
1012 
1013 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1014 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1015 // no locks which allow_vm_block's are held
1016 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1017   // Check if current thread is allowed to block at a safepoint
1018   if (!(_allow_safepoint_count == 0)) {
1019     fatal("Possible safepoint reached by thread that does not allow it");
1020   }
1021   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
1022     fatal("LEAF method calling lock?");
1023   }
1024 
1025 #ifdef ASSERT
1026   if (potential_vm_operation && is_Java_thread()
1027       && !Universe::is_bootstrapping()) {
1028     // Make sure we do not hold any locks that the VM thread also uses.
1029     // This could potentially lead to deadlocks
1030     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1031       // Threads_lock is special, since the safepoint synchronization will not start before this is
1032       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1033       // since it is used to transfer control between JavaThreads and the VMThread
1034       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1035       if ((cur->allow_vm_block() &&
1036            cur != Threads_lock &&
1037            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1038            cur != VMOperationRequest_lock &&
1039            cur != VMOperationQueue_lock) ||
1040            cur->rank() == Mutex::special) {
1041         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1042       }
1043     }
1044   }
1045 
1046   if (GCALotAtAllSafepoints) {
1047     // We could enter a safepoint here and thus have a gc
1048     InterfaceSupport::check_gc_alot();
1049   }
1050 #endif
1051 }
1052 #endif
1053 
1054 bool Thread::is_in_stack(address adr) const {
1055   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1056   address end = os::current_stack_pointer();
1057   // Allow non Java threads to call this without stack_base
1058   if (_stack_base == NULL) return true;
1059   if (stack_base() >= adr && adr >= end) return true;
1060 
1061   return false;
1062 }
1063 
1064 bool Thread::is_in_usable_stack(address adr) const {
1065   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1066   size_t usable_stack_size = _stack_size - stack_guard_size;
1067 
1068   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1069 }
1070 
1071 
1072 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1073 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1074 // used for compilation in the future. If that change is made, the need for these methods
1075 // should be revisited, and they should be removed if possible.
1076 
1077 bool Thread::is_lock_owned(address adr) const {
1078   return on_local_stack(adr);
1079 }
1080 
1081 bool Thread::set_as_starting_thread() {
1082   assert(_starting_thread == NULL, "already initialized: "
1083          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1084   // NOTE: this must be called inside the main thread.
1085   DEBUG_ONLY(_starting_thread = this;)
1086   return os::create_main_thread((JavaThread*)this);
1087 }
1088 
1089 static void initialize_class(Symbol* class_name, TRAPS) {
1090   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1091   InstanceKlass::cast(klass)->initialize(CHECK);
1092 }
1093 
1094 
1095 // Creates the initial ThreadGroup
1096 static Handle create_initial_thread_group(TRAPS) {
1097   Handle system_instance = JavaCalls::construct_new_instance(
1098                             SystemDictionary::ThreadGroup_klass(),
1099                             vmSymbols::void_method_signature(),
1100                             CHECK_NH);
1101   Universe::set_system_thread_group(system_instance());
1102 
1103   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1104   Handle main_instance = JavaCalls::construct_new_instance(
1105                             SystemDictionary::ThreadGroup_klass(),
1106                             vmSymbols::threadgroup_string_void_signature(),
1107                             system_instance,
1108                             string,
1109                             CHECK_NH);
1110   return main_instance;
1111 }
1112 
1113 // Creates the initial Thread
1114 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1115                                  TRAPS) {
1116   InstanceKlass* ik = SystemDictionary::Thread_klass();
1117   assert(ik->is_initialized(), "must be");
1118   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1119 
1120   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1121   // constructor calls Thread.current(), which must be set here for the
1122   // initial thread.
1123   java_lang_Thread::set_thread(thread_oop(), thread);
1124   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1125   thread->set_threadObj(thread_oop());
1126 
1127   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1128 
1129   JavaValue result(T_VOID);
1130   JavaCalls::call_special(&result, thread_oop,
1131                           ik,
1132                           vmSymbols::object_initializer_name(),
1133                           vmSymbols::threadgroup_string_void_signature(),
1134                           thread_group,
1135                           string,
1136                           CHECK_NULL);
1137   return thread_oop();
1138 }
1139 
1140 char java_runtime_name[128] = "";
1141 char java_runtime_version[128] = "";
1142 
1143 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1144 static const char* get_java_runtime_name(TRAPS) {
1145   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1146                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1147   fieldDescriptor fd;
1148   bool found = k != NULL &&
1149                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1150                                                         vmSymbols::string_signature(), &fd);
1151   if (found) {
1152     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1153     if (name_oop == NULL) {
1154       return NULL;
1155     }
1156     const char* name = java_lang_String::as_utf8_string(name_oop,
1157                                                         java_runtime_name,
1158                                                         sizeof(java_runtime_name));
1159     return name;
1160   } else {
1161     return NULL;
1162   }
1163 }
1164 
1165 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1166 static const char* get_java_runtime_version(TRAPS) {
1167   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1168                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1169   fieldDescriptor fd;
1170   bool found = k != NULL &&
1171                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1172                                                         vmSymbols::string_signature(), &fd);
1173   if (found) {
1174     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1175     if (name_oop == NULL) {
1176       return NULL;
1177     }
1178     const char* name = java_lang_String::as_utf8_string(name_oop,
1179                                                         java_runtime_version,
1180                                                         sizeof(java_runtime_version));
1181     return name;
1182   } else {
1183     return NULL;
1184   }
1185 }
1186 
1187 // General purpose hook into Java code, run once when the VM is initialized.
1188 // The Java library method itself may be changed independently from the VM.
1189 static void call_postVMInitHook(TRAPS) {
1190   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1191   if (klass != NULL) {
1192     JavaValue result(T_VOID);
1193     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1194                            vmSymbols::void_method_signature(),
1195                            CHECK);
1196   }
1197 }
1198 
1199 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1200                                     bool daemon, TRAPS) {
1201   assert(thread_group.not_null(), "thread group should be specified");
1202   assert(threadObj() == NULL, "should only create Java thread object once");
1203 
1204   InstanceKlass* ik = SystemDictionary::Thread_klass();
1205   assert(ik->is_initialized(), "must be");
1206   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1207 
1208   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1209   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1210   // constructor calls Thread.current(), which must be set here.
1211   java_lang_Thread::set_thread(thread_oop(), this);
1212   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1213   set_threadObj(thread_oop());
1214 
1215   JavaValue result(T_VOID);
1216   if (thread_name != NULL) {
1217     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1218     // Thread gets assigned specified name and null target
1219     JavaCalls::call_special(&result,
1220                             thread_oop,
1221                             ik,
1222                             vmSymbols::object_initializer_name(),
1223                             vmSymbols::threadgroup_string_void_signature(),
1224                             thread_group,
1225                             name,
1226                             THREAD);
1227   } else {
1228     // Thread gets assigned name "Thread-nnn" and null target
1229     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1230     JavaCalls::call_special(&result,
1231                             thread_oop,
1232                             ik,
1233                             vmSymbols::object_initializer_name(),
1234                             vmSymbols::threadgroup_runnable_void_signature(),
1235                             thread_group,
1236                             Handle(),
1237                             THREAD);
1238   }
1239 
1240 
1241   if (daemon) {
1242     java_lang_Thread::set_daemon(thread_oop());
1243   }
1244 
1245   if (HAS_PENDING_EXCEPTION) {
1246     return;
1247   }
1248 
1249   Klass* group =  SystemDictionary::ThreadGroup_klass();
1250   Handle threadObj(THREAD, this->threadObj());
1251 
1252   JavaCalls::call_special(&result,
1253                           thread_group,
1254                           group,
1255                           vmSymbols::add_method_name(),
1256                           vmSymbols::thread_void_signature(),
1257                           threadObj,          // Arg 1
1258                           THREAD);
1259 }
1260 
1261 // List of all NonJavaThreads and safe iteration over that list.
1262 
1263 class NonJavaThread::List {
1264 public:
1265   NonJavaThread* volatile _head;
1266   SingleWriterSynchronizer _protect;
1267 
1268   List() : _head(NULL), _protect() {}
1269 };
1270 
1271 NonJavaThread::List NonJavaThread::_the_list;
1272 
1273 NonJavaThread::Iterator::Iterator() :
1274   _protect_enter(_the_list._protect.enter()),
1275   _current(OrderAccess::load_acquire(&_the_list._head))
1276 {}
1277 
1278 NonJavaThread::Iterator::~Iterator() {
1279   _the_list._protect.exit(_protect_enter);
1280 }
1281 
1282 void NonJavaThread::Iterator::step() {
1283   assert(!end(), "precondition");
1284   _current = OrderAccess::load_acquire(&_current->_next);
1285 }
1286 
1287 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1288   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1289 }
1290 
1291 NonJavaThread::~NonJavaThread() { }
1292 
1293 void NonJavaThread::add_to_the_list() {
1294   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1295   _next = _the_list._head;
1296   OrderAccess::release_store(&_the_list._head, this);
1297 }
1298 
1299 void NonJavaThread::remove_from_the_list() {
1300   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1301   NonJavaThread* volatile* p = &_the_list._head;
1302   for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1303     if (t == this) {
1304       *p = this->_next;
1305       // Wait for any in-progress iterators.  Concurrent synchronize is
1306       // not allowed, so do it while holding the list lock.
1307       _the_list._protect.synchronize();
1308       break;
1309     }
1310   }
1311 }
1312 
1313 void NonJavaThread::pre_run() {
1314   {
1315     BarrierSet* bs = BarrierSet::barrier_set();
1316     assert(BarrierSet::barrier_set() != NULL, "invariant");
1317     SuspendibleThreadSetJoiner sts(bs->needs_sts_sync_on_attach_detach() &&
1318                                    !is_VM_thread() && !is_Worker_thread());
1319     add_to_the_list();
1320 
1321     // Initialize BarrierSet-related data after adding to list.
1322     bs->on_thread_attach(this);
1323   }
1324 
1325   // This is slightly odd in that NamedThread is a subclass, but
1326   // in fact name() is defined in Thread
1327   assert(this->name() != NULL, "thread name was not set before it was started");
1328   this->set_native_thread_name(this->name());
1329 }
1330 
1331 void NonJavaThread::post_run() {
1332   JFR_ONLY(Jfr::on_thread_exit(this);)
1333   {
1334     BarrierSet* bs = BarrierSet::barrier_set();
1335     SuspendibleThreadSetJoiner sts(bs->needs_sts_sync_on_attach_detach() &&
1336                                    !is_VM_thread() && !is_Worker_thread());
1337 
1338     // Clean up BarrierSet data before removing from list.
1339     bs->on_thread_detach(this);
1340 
1341     remove_from_the_list();
1342   }
1343   // Ensure thread-local-storage is cleared before termination.
1344   Thread::clear_thread_current();
1345 }
1346 
1347 // NamedThread --  non-JavaThread subclasses with multiple
1348 // uniquely named instances should derive from this.
1349 NamedThread::NamedThread() :
1350   NonJavaThread(),
1351   _name(NULL),
1352   _processed_thread(NULL),
1353   _gc_id(GCId::undefined())
1354 {}
1355 
1356 NamedThread::~NamedThread() {
1357   if (_name != NULL) {
1358     FREE_C_HEAP_ARRAY(char, _name);
1359     _name = NULL;
1360   }
1361 }
1362 
1363 void NamedThread::set_name(const char* format, ...) {
1364   guarantee(_name == NULL, "Only get to set name once.");
1365   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1366   guarantee(_name != NULL, "alloc failure");
1367   va_list ap;
1368   va_start(ap, format);
1369   jio_vsnprintf(_name, max_name_len, format, ap);
1370   va_end(ap);
1371 }
1372 
1373 void NamedThread::print_on(outputStream* st) const {
1374   st->print("\"%s\" ", name());
1375   Thread::print_on(st);
1376   st->cr();
1377 }
1378 
1379 
1380 // ======= WatcherThread ========
1381 
1382 // The watcher thread exists to simulate timer interrupts.  It should
1383 // be replaced by an abstraction over whatever native support for
1384 // timer interrupts exists on the platform.
1385 
1386 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1387 bool WatcherThread::_startable = false;
1388 volatile bool  WatcherThread::_should_terminate = false;
1389 
1390 WatcherThread::WatcherThread() : NonJavaThread() {
1391   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1392   if (os::create_thread(this, os::watcher_thread)) {
1393     _watcher_thread = this;
1394 
1395     // Set the watcher thread to the highest OS priority which should not be
1396     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1397     // is created. The only normal thread using this priority is the reference
1398     // handler thread, which runs for very short intervals only.
1399     // If the VMThread's priority is not lower than the WatcherThread profiling
1400     // will be inaccurate.
1401     os::set_priority(this, MaxPriority);
1402     if (!DisableStartThread) {
1403       os::start_thread(this);
1404     }
1405   }
1406 }
1407 
1408 int WatcherThread::sleep() const {
1409   // The WatcherThread does not participate in the safepoint protocol
1410   // for the PeriodicTask_lock because it is not a JavaThread.
1411   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1412 
1413   if (_should_terminate) {
1414     // check for termination before we do any housekeeping or wait
1415     return 0;  // we did not sleep.
1416   }
1417 
1418   // remaining will be zero if there are no tasks,
1419   // causing the WatcherThread to sleep until a task is
1420   // enrolled
1421   int remaining = PeriodicTask::time_to_wait();
1422   int time_slept = 0;
1423 
1424   // we expect this to timeout - we only ever get unparked when
1425   // we should terminate or when a new task has been enrolled
1426   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1427 
1428   jlong time_before_loop = os::javaTimeNanos();
1429 
1430   while (true) {
1431     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1432                                             remaining);
1433     jlong now = os::javaTimeNanos();
1434 
1435     if (remaining == 0) {
1436       // if we didn't have any tasks we could have waited for a long time
1437       // consider the time_slept zero and reset time_before_loop
1438       time_slept = 0;
1439       time_before_loop = now;
1440     } else {
1441       // need to recalculate since we might have new tasks in _tasks
1442       time_slept = (int) ((now - time_before_loop) / 1000000);
1443     }
1444 
1445     // Change to task list or spurious wakeup of some kind
1446     if (timedout || _should_terminate) {
1447       break;
1448     }
1449 
1450     remaining = PeriodicTask::time_to_wait();
1451     if (remaining == 0) {
1452       // Last task was just disenrolled so loop around and wait until
1453       // another task gets enrolled
1454       continue;
1455     }
1456 
1457     remaining -= time_slept;
1458     if (remaining <= 0) {
1459       break;
1460     }
1461   }
1462 
1463   return time_slept;
1464 }
1465 
1466 void WatcherThread::run() {
1467   assert(this == watcher_thread(), "just checking");
1468 
1469   this->set_active_handles(JNIHandleBlock::allocate_block());
1470   while (true) {
1471     assert(watcher_thread() == Thread::current(), "thread consistency check");
1472     assert(watcher_thread() == this, "thread consistency check");
1473 
1474     // Calculate how long it'll be until the next PeriodicTask work
1475     // should be done, and sleep that amount of time.
1476     int time_waited = sleep();
1477 
1478     if (VMError::is_error_reported()) {
1479       // A fatal error has happened, the error handler(VMError::report_and_die)
1480       // should abort JVM after creating an error log file. However in some
1481       // rare cases, the error handler itself might deadlock. Here periodically
1482       // check for error reporting timeouts, and if it happens, just proceed to
1483       // abort the VM.
1484 
1485       // This code is in WatcherThread because WatcherThread wakes up
1486       // periodically so the fatal error handler doesn't need to do anything;
1487       // also because the WatcherThread is less likely to crash than other
1488       // threads.
1489 
1490       for (;;) {
1491         // Note: we use naked sleep in this loop because we want to avoid using
1492         // any kind of VM infrastructure which may be broken at this point.
1493         if (VMError::check_timeout()) {
1494           // We hit error reporting timeout. Error reporting was interrupted and
1495           // will be wrapping things up now (closing files etc). Give it some more
1496           // time, then quit the VM.
1497           os::naked_short_sleep(200);
1498           // Print a message to stderr.
1499           fdStream err(defaultStream::output_fd());
1500           err.print_raw_cr("# [ timer expired, abort... ]");
1501           // skip atexit/vm_exit/vm_abort hooks
1502           os::die();
1503         }
1504 
1505         // Wait a second, then recheck for timeout.
1506         os::naked_short_sleep(999);
1507       }
1508     }
1509 
1510     if (_should_terminate) {
1511       // check for termination before posting the next tick
1512       break;
1513     }
1514 
1515     PeriodicTask::real_time_tick(time_waited);
1516   }
1517 
1518   // Signal that it is terminated
1519   {
1520     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1521     _watcher_thread = NULL;
1522     Terminator_lock->notify();
1523   }
1524 }
1525 
1526 void WatcherThread::start() {
1527   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1528 
1529   if (watcher_thread() == NULL && _startable) {
1530     _should_terminate = false;
1531     // Create the single instance of WatcherThread
1532     new WatcherThread();
1533   }
1534 }
1535 
1536 void WatcherThread::make_startable() {
1537   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1538   _startable = true;
1539 }
1540 
1541 void WatcherThread::stop() {
1542   {
1543     // Follow normal safepoint aware lock enter protocol since the
1544     // WatcherThread is stopped by another JavaThread.
1545     MutexLocker ml(PeriodicTask_lock);
1546     _should_terminate = true;
1547 
1548     WatcherThread* watcher = watcher_thread();
1549     if (watcher != NULL) {
1550       // unpark the WatcherThread so it can see that it should terminate
1551       watcher->unpark();
1552     }
1553   }
1554 
1555   MutexLocker mu(Terminator_lock);
1556 
1557   while (watcher_thread() != NULL) {
1558     // This wait should make safepoint checks, wait without a timeout,
1559     // and wait as a suspend-equivalent condition.
1560     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1561                           Mutex::_as_suspend_equivalent_flag);
1562   }
1563 }
1564 
1565 void WatcherThread::unpark() {
1566   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1567   PeriodicTask_lock->notify();
1568 }
1569 
1570 void WatcherThread::print_on(outputStream* st) const {
1571   st->print("\"%s\" ", name());
1572   Thread::print_on(st);
1573   st->cr();
1574 }
1575 
1576 // ======= JavaThread ========
1577 
1578 #if INCLUDE_JVMCI
1579 
1580 jlong* JavaThread::_jvmci_old_thread_counters;
1581 
1582 bool jvmci_counters_include(JavaThread* thread) {
1583   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1584 }
1585 
1586 void JavaThread::collect_counters(typeArrayOop array) {
1587   if (JVMCICounterSize > 0) {
1588     JavaThreadIteratorWithHandle jtiwh;
1589     for (int i = 0; i < array->length(); i++) {
1590       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1591     }
1592     for (; JavaThread *tp = jtiwh.next(); ) {
1593       if (jvmci_counters_include(tp)) {
1594         for (int i = 0; i < array->length(); i++) {
1595           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1596         }
1597       }
1598     }
1599   }
1600 }
1601 
1602 #endif // INCLUDE_JVMCI
1603 
1604 // A JavaThread is a normal Java thread
1605 
1606 void JavaThread::initialize() {
1607   // Initialize fields
1608 
1609   set_saved_exception_pc(NULL);
1610   set_threadObj(NULL);
1611   _anchor.clear();
1612   set_entry_point(NULL);
1613   set_jni_functions(jni_functions());
1614   set_callee_target(NULL);
1615   set_vm_result(NULL);
1616   set_vm_result_2(NULL);
1617   set_vframe_array_head(NULL);
1618   set_vframe_array_last(NULL);
1619   set_deferred_locals(NULL);
1620   set_deopt_mark(NULL);
1621   set_deopt_compiled_method(NULL);
1622   clear_must_deopt_id();
1623   set_monitor_chunks(NULL);
1624   set_next(NULL);
1625   _on_thread_list = false;
1626   set_thread_state(_thread_new);
1627   _terminated = _not_terminated;
1628   _array_for_gc = NULL;
1629   _suspend_equivalent = false;
1630   _in_deopt_handler = 0;
1631   _doing_unsafe_access = false;
1632   _stack_guard_state = stack_guard_unused;
1633 #if INCLUDE_JVMCI
1634   _pending_monitorenter = false;
1635   _pending_deoptimization = -1;
1636   _pending_failed_speculation = 0;
1637   _pending_transfer_to_interpreter = false;
1638   _adjusting_comp_level = false;
1639   _in_retryable_allocation = false;
1640   _jvmci._alternate_call_target = NULL;
1641   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1642   if (JVMCICounterSize > 0) {
1643     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1644     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1645   } else {
1646     _jvmci_counters = NULL;
1647   }
1648 #endif // INCLUDE_JVMCI
1649   _reserved_stack_activation = NULL;  // stack base not known yet
1650   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1651   _exception_pc  = 0;
1652   _exception_handler_pc = 0;
1653   _is_method_handle_return = 0;
1654   _jvmti_thread_state= NULL;
1655   _should_post_on_exceptions_flag = JNI_FALSE;
1656   _interp_only_mode    = 0;
1657   _special_runtime_exit_condition = _no_async_condition;
1658   _pending_async_exception = NULL;
1659   _thread_stat = NULL;
1660   _thread_stat = new ThreadStatistics();
1661   _blocked_on_compilation = false;
1662   _jni_active_critical = 0;
1663   _pending_jni_exception_check_fn = NULL;
1664   _do_not_unlock_if_synchronized = false;
1665   _cached_monitor_info = NULL;
1666   _parker = Parker::Allocate(this);
1667 
1668 #ifndef PRODUCT
1669   _jmp_ring_index = 0;
1670   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1671     record_jump(NULL, NULL, NULL, 0);
1672   }
1673 #endif // PRODUCT
1674 
1675   // Setup safepoint state info for this thread
1676   ThreadSafepointState::create(this);
1677 
1678   debug_only(_java_call_counter = 0);
1679 
1680   // JVMTI PopFrame support
1681   _popframe_condition = popframe_inactive;
1682   _popframe_preserved_args = NULL;
1683   _popframe_preserved_args_size = 0;
1684   _frames_to_pop_failed_realloc = 0;
1685 
1686   if (SafepointMechanism::uses_thread_local_poll()) {
1687     SafepointMechanism::initialize_header(this);
1688   }
1689 
1690   _class_to_be_initialized = NULL;
1691 
1692   pd_initialize();
1693 }
1694 
1695 JavaThread::JavaThread(bool is_attaching_via_jni) :
1696                        Thread() {
1697   initialize();
1698   if (is_attaching_via_jni) {
1699     _jni_attach_state = _attaching_via_jni;
1700   } else {
1701     _jni_attach_state = _not_attaching_via_jni;
1702   }
1703   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1704 }
1705 
1706 bool JavaThread::reguard_stack(address cur_sp) {
1707   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1708       && _stack_guard_state != stack_guard_reserved_disabled) {
1709     return true; // Stack already guarded or guard pages not needed.
1710   }
1711 
1712   if (register_stack_overflow()) {
1713     // For those architectures which have separate register and
1714     // memory stacks, we must check the register stack to see if
1715     // it has overflowed.
1716     return false;
1717   }
1718 
1719   // Java code never executes within the yellow zone: the latter is only
1720   // there to provoke an exception during stack banging.  If java code
1721   // is executing there, either StackShadowPages should be larger, or
1722   // some exception code in c1, c2 or the interpreter isn't unwinding
1723   // when it should.
1724   guarantee(cur_sp > stack_reserved_zone_base(),
1725             "not enough space to reguard - increase StackShadowPages");
1726   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1727     enable_stack_yellow_reserved_zone();
1728     if (reserved_stack_activation() != stack_base()) {
1729       set_reserved_stack_activation(stack_base());
1730     }
1731   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1732     set_reserved_stack_activation(stack_base());
1733     enable_stack_reserved_zone();
1734   }
1735   return true;
1736 }
1737 
1738 bool JavaThread::reguard_stack(void) {
1739   return reguard_stack(os::current_stack_pointer());
1740 }
1741 
1742 
1743 void JavaThread::block_if_vm_exited() {
1744   if (_terminated == _vm_exited) {
1745     // _vm_exited is set at safepoint, and Threads_lock is never released
1746     // we will block here forever
1747     Threads_lock->lock_without_safepoint_check();
1748     ShouldNotReachHere();
1749   }
1750 }
1751 
1752 
1753 // Remove this ifdef when C1 is ported to the compiler interface.
1754 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1755 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1756 
1757 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1758                        Thread() {
1759   initialize();
1760   _jni_attach_state = _not_attaching_via_jni;
1761   set_entry_point(entry_point);
1762   // Create the native thread itself.
1763   // %note runtime_23
1764   os::ThreadType thr_type = os::java_thread;
1765   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1766                                                      os::java_thread;
1767   os::create_thread(this, thr_type, stack_sz);
1768   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1769   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1770   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1771   // the exception consists of creating the exception object & initializing it, initialization
1772   // will leave the VM via a JavaCall and then all locks must be unlocked).
1773   //
1774   // The thread is still suspended when we reach here. Thread must be explicit started
1775   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1776   // by calling Threads:add. The reason why this is not done here, is because the thread
1777   // object must be fully initialized (take a look at JVM_Start)
1778 }
1779 
1780 JavaThread::~JavaThread() {
1781 
1782   // JSR166 -- return the parker to the free list
1783   Parker::Release(_parker);
1784   _parker = NULL;
1785 
1786   // Free any remaining  previous UnrollBlock
1787   vframeArray* old_array = vframe_array_last();
1788 
1789   if (old_array != NULL) {
1790     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1791     old_array->set_unroll_block(NULL);
1792     delete old_info;
1793     delete old_array;
1794   }
1795 
1796   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1797   if (deferred != NULL) {
1798     // This can only happen if thread is destroyed before deoptimization occurs.
1799     assert(deferred->length() != 0, "empty array!");
1800     do {
1801       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1802       deferred->remove_at(0);
1803       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1804       delete dlv;
1805     } while (deferred->length() != 0);
1806     delete deferred;
1807   }
1808 
1809   // All Java related clean up happens in exit
1810   ThreadSafepointState::destroy(this);
1811   if (_thread_stat != NULL) delete _thread_stat;
1812 
1813 #if INCLUDE_JVMCI
1814   if (JVMCICounterSize > 0) {
1815     if (jvmci_counters_include(this)) {
1816       for (int i = 0; i < JVMCICounterSize; i++) {
1817         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1818       }
1819     }
1820     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1821   }
1822 #endif // INCLUDE_JVMCI
1823 }
1824 
1825 
1826 // First JavaThread specific code executed by a new Java thread.
1827 void JavaThread::pre_run() {
1828   // empty - see comments in run()
1829 }
1830 
1831 // The main routine called by a new Java thread. This isn't overridden
1832 // by subclasses, instead different subclasses define a different "entry_point"
1833 // which defines the actual logic for that kind of thread.
1834 void JavaThread::run() {
1835   // initialize thread-local alloc buffer related fields
1836   this->initialize_tlab();
1837 
1838   // Used to test validity of stack trace backs.
1839   // This can't be moved into pre_run() else we invalidate
1840   // the requirement that thread_main_inner is lower on
1841   // the stack. Consequently all the initialization logic
1842   // stays here in run() rather than pre_run().
1843   this->record_base_of_stack_pointer();
1844 
1845   this->create_stack_guard_pages();
1846 
1847   this->cache_global_variables();
1848 
1849   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1850   // in the VM. Change thread state from _thread_new to _thread_in_vm
1851   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1852 
1853   assert(JavaThread::current() == this, "sanity check");
1854   assert(!Thread::current()->owns_locks(), "sanity check");
1855 
1856   DTRACE_THREAD_PROBE(start, this);
1857 
1858   // This operation might block. We call that after all safepoint checks for a new thread has
1859   // been completed.
1860   this->set_active_handles(JNIHandleBlock::allocate_block());
1861 
1862   if (JvmtiExport::should_post_thread_life()) {
1863     JvmtiExport::post_thread_start(this);
1864 
1865   }
1866 
1867   // We call another function to do the rest so we are sure that the stack addresses used
1868   // from there will be lower than the stack base just computed.
1869   thread_main_inner();
1870 }
1871 
1872 void JavaThread::thread_main_inner() {
1873   assert(JavaThread::current() == this, "sanity check");
1874   assert(this->threadObj() != NULL, "just checking");
1875 
1876   // Execute thread entry point unless this thread has a pending exception
1877   // or has been stopped before starting.
1878   // Note: Due to JVM_StopThread we can have pending exceptions already!
1879   if (!this->has_pending_exception() &&
1880       !java_lang_Thread::is_stillborn(this->threadObj())) {
1881     {
1882       ResourceMark rm(this);
1883       this->set_native_thread_name(this->get_thread_name());
1884     }
1885     HandleMark hm(this);
1886     this->entry_point()(this, this);
1887   }
1888 
1889   DTRACE_THREAD_PROBE(stop, this);
1890 
1891   // Cleanup is handled in post_run()
1892 }
1893 
1894 // Shared teardown for all JavaThreads
1895 void JavaThread::post_run() {
1896   this->exit(false);
1897   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1898   // for any shared tear-down.
1899   this->smr_delete();
1900 }
1901 
1902 static void ensure_join(JavaThread* thread) {
1903   // We do not need to grab the Threads_lock, since we are operating on ourself.
1904   Handle threadObj(thread, thread->threadObj());
1905   assert(threadObj.not_null(), "java thread object must exist");
1906   ObjectLocker lock(threadObj, thread);
1907   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1908   thread->clear_pending_exception();
1909   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1910   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1911   // Clear the native thread instance - this makes isAlive return false and allows the join()
1912   // to complete once we've done the notify_all below
1913   java_lang_Thread::set_thread(threadObj(), NULL);
1914   lock.notify_all(thread);
1915   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1916   thread->clear_pending_exception();
1917 }
1918 
1919 static bool is_daemon(oop threadObj) {
1920   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1921 }
1922 
1923 // For any new cleanup additions, please check to see if they need to be applied to
1924 // cleanup_failed_attach_current_thread as well.
1925 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1926   assert(this == JavaThread::current(), "thread consistency check");
1927 
1928   elapsedTimer _timer_exit_phase1;
1929   elapsedTimer _timer_exit_phase2;
1930   elapsedTimer _timer_exit_phase3;
1931   elapsedTimer _timer_exit_phase4;
1932 
1933   if (log_is_enabled(Debug, os, thread, timer)) {
1934     _timer_exit_phase1.start();
1935   }
1936 
1937   HandleMark hm(this);
1938   Handle uncaught_exception(this, this->pending_exception());
1939   this->clear_pending_exception();
1940   Handle threadObj(this, this->threadObj());
1941   assert(threadObj.not_null(), "Java thread object should be created");
1942 
1943   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1944   {
1945     EXCEPTION_MARK;
1946 
1947     CLEAR_PENDING_EXCEPTION;
1948   }
1949   if (!destroy_vm) {
1950     if (uncaught_exception.not_null()) {
1951       EXCEPTION_MARK;
1952       // Call method Thread.dispatchUncaughtException().
1953       Klass* thread_klass = SystemDictionary::Thread_klass();
1954       JavaValue result(T_VOID);
1955       JavaCalls::call_virtual(&result,
1956                               threadObj, thread_klass,
1957                               vmSymbols::dispatchUncaughtException_name(),
1958                               vmSymbols::throwable_void_signature(),
1959                               uncaught_exception,
1960                               THREAD);
1961       if (HAS_PENDING_EXCEPTION) {
1962         ResourceMark rm(this);
1963         jio_fprintf(defaultStream::error_stream(),
1964                     "\nException: %s thrown from the UncaughtExceptionHandler"
1965                     " in thread \"%s\"\n",
1966                     pending_exception()->klass()->external_name(),
1967                     get_thread_name());
1968         CLEAR_PENDING_EXCEPTION;
1969       }
1970     }
1971     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
1972 
1973     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1974     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1975     // is deprecated anyhow.
1976     if (!is_Compiler_thread()) {
1977       int count = 3;
1978       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1979         EXCEPTION_MARK;
1980         JavaValue result(T_VOID);
1981         Klass* thread_klass = SystemDictionary::Thread_klass();
1982         JavaCalls::call_virtual(&result,
1983                                 threadObj, thread_klass,
1984                                 vmSymbols::exit_method_name(),
1985                                 vmSymbols::void_method_signature(),
1986                                 THREAD);
1987         CLEAR_PENDING_EXCEPTION;
1988       }
1989     }
1990     // notify JVMTI
1991     if (JvmtiExport::should_post_thread_life()) {
1992       JvmtiExport::post_thread_end(this);
1993     }
1994 
1995     // We have notified the agents that we are exiting, before we go on,
1996     // we must check for a pending external suspend request and honor it
1997     // in order to not surprise the thread that made the suspend request.
1998     while (true) {
1999       {
2000         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2001         if (!is_external_suspend()) {
2002           set_terminated(_thread_exiting);
2003           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2004           break;
2005         }
2006         // Implied else:
2007         // Things get a little tricky here. We have a pending external
2008         // suspend request, but we are holding the SR_lock so we
2009         // can't just self-suspend. So we temporarily drop the lock
2010         // and then self-suspend.
2011       }
2012 
2013       ThreadBlockInVM tbivm(this);
2014       java_suspend_self();
2015 
2016       // We're done with this suspend request, but we have to loop around
2017       // and check again. Eventually we will get SR_lock without a pending
2018       // external suspend request and will be able to mark ourselves as
2019       // exiting.
2020     }
2021     // no more external suspends are allowed at this point
2022   } else {
2023     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2024     // before_exit() has already posted JVMTI THREAD_END events
2025   }
2026 
2027   if (log_is_enabled(Debug, os, thread, timer)) {
2028     _timer_exit_phase1.stop();
2029     _timer_exit_phase2.start();
2030   }
2031   // Notify waiters on thread object. This has to be done after exit() is called
2032   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2033   // group should have the destroyed bit set before waiters are notified).
2034   ensure_join(this);
2035   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2036 
2037   if (log_is_enabled(Debug, os, thread, timer)) {
2038     _timer_exit_phase2.stop();
2039     _timer_exit_phase3.start();
2040   }
2041   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2042   // held by this thread must be released. The spec does not distinguish
2043   // between JNI-acquired and regular Java monitors. We can only see
2044   // regular Java monitors here if monitor enter-exit matching is broken.
2045   //
2046   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2047   // ObjectSynchronizer::release_monitors_owned_by_thread().
2048   if (exit_type == jni_detach) {
2049     // Sanity check even though JNI DetachCurrentThread() would have
2050     // returned JNI_ERR if there was a Java frame. JavaThread exit
2051     // should be done executing Java code by the time we get here.
2052     assert(!this->has_last_Java_frame(),
2053            "should not have a Java frame when detaching or exiting");
2054     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2055     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2056   }
2057 
2058   // These things needs to be done while we are still a Java Thread. Make sure that thread
2059   // is in a consistent state, in case GC happens
2060   JFR_ONLY(Jfr::on_thread_exit(this);)
2061 
2062   if (active_handles() != NULL) {
2063     JNIHandleBlock* block = active_handles();
2064     set_active_handles(NULL);
2065     JNIHandleBlock::release_block(block);
2066   }
2067 
2068   if (free_handle_block() != NULL) {
2069     JNIHandleBlock* block = free_handle_block();
2070     set_free_handle_block(NULL);
2071     JNIHandleBlock::release_block(block);
2072   }
2073 
2074   // These have to be removed while this is still a valid thread.
2075   remove_stack_guard_pages();
2076 
2077   if (UseTLAB) {
2078     tlab().retire();
2079   }
2080 
2081   if (JvmtiEnv::environments_might_exist()) {
2082     JvmtiExport::cleanup_thread(this);
2083   }
2084 
2085   // We must flush any deferred card marks and other various GC barrier
2086   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2087   // before removing a thread from the list of active threads.
2088   BarrierSet::barrier_set()->on_thread_detach(this);
2089 
2090   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2091     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2092     os::current_thread_id());
2093 
2094   if (log_is_enabled(Debug, os, thread, timer)) {
2095     _timer_exit_phase3.stop();
2096     _timer_exit_phase4.start();
2097   }
2098   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2099   Threads::remove(this);
2100 
2101   if (log_is_enabled(Debug, os, thread, timer)) {
2102     _timer_exit_phase4.stop();
2103     ResourceMark rm(this);
2104     log_debug(os, thread, timer)("name='%s'"
2105                                  ", exit-phase1=" JLONG_FORMAT
2106                                  ", exit-phase2=" JLONG_FORMAT
2107                                  ", exit-phase3=" JLONG_FORMAT
2108                                  ", exit-phase4=" JLONG_FORMAT,
2109                                  get_thread_name(),
2110                                  _timer_exit_phase1.milliseconds(),
2111                                  _timer_exit_phase2.milliseconds(),
2112                                  _timer_exit_phase3.milliseconds(),
2113                                  _timer_exit_phase4.milliseconds());
2114   }
2115 }
2116 
2117 void JavaThread::cleanup_failed_attach_current_thread() {
2118   if (active_handles() != NULL) {
2119     JNIHandleBlock* block = active_handles();
2120     set_active_handles(NULL);
2121     JNIHandleBlock::release_block(block);
2122   }
2123 
2124   if (free_handle_block() != NULL) {
2125     JNIHandleBlock* block = free_handle_block();
2126     set_free_handle_block(NULL);
2127     JNIHandleBlock::release_block(block);
2128   }
2129 
2130   // These have to be removed while this is still a valid thread.
2131   remove_stack_guard_pages();
2132 
2133   if (UseTLAB) {
2134     tlab().retire();
2135   }
2136 
2137   BarrierSet::barrier_set()->on_thread_detach(this);
2138 
2139   Threads::remove(this);
2140   this->smr_delete();
2141 }
2142 
2143 JavaThread* JavaThread::active() {
2144   Thread* thread = Thread::current();
2145   if (thread->is_Java_thread()) {
2146     return (JavaThread*) thread;
2147   } else {
2148     assert(thread->is_VM_thread(), "this must be a vm thread");
2149     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2150     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2151     assert(ret->is_Java_thread(), "must be a Java thread");
2152     return ret;
2153   }
2154 }
2155 
2156 bool JavaThread::is_lock_owned(address adr) const {
2157   if (Thread::is_lock_owned(adr)) return true;
2158 
2159   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2160     if (chunk->contains(adr)) return true;
2161   }
2162 
2163   return false;
2164 }
2165 
2166 
2167 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2168   chunk->set_next(monitor_chunks());
2169   set_monitor_chunks(chunk);
2170 }
2171 
2172 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2173   guarantee(monitor_chunks() != NULL, "must be non empty");
2174   if (monitor_chunks() == chunk) {
2175     set_monitor_chunks(chunk->next());
2176   } else {
2177     MonitorChunk* prev = monitor_chunks();
2178     while (prev->next() != chunk) prev = prev->next();
2179     prev->set_next(chunk->next());
2180   }
2181 }
2182 
2183 // JVM support.
2184 
2185 // Note: this function shouldn't block if it's called in
2186 // _thread_in_native_trans state (such as from
2187 // check_special_condition_for_native_trans()).
2188 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2189 
2190   if (has_last_Java_frame() && has_async_condition()) {
2191     // If we are at a polling page safepoint (not a poll return)
2192     // then we must defer async exception because live registers
2193     // will be clobbered by the exception path. Poll return is
2194     // ok because the call we a returning from already collides
2195     // with exception handling registers and so there is no issue.
2196     // (The exception handling path kills call result registers but
2197     //  this is ok since the exception kills the result anyway).
2198 
2199     if (is_at_poll_safepoint()) {
2200       // if the code we are returning to has deoptimized we must defer
2201       // the exception otherwise live registers get clobbered on the
2202       // exception path before deoptimization is able to retrieve them.
2203       //
2204       RegisterMap map(this, false);
2205       frame caller_fr = last_frame().sender(&map);
2206       assert(caller_fr.is_compiled_frame(), "what?");
2207       if (caller_fr.is_deoptimized_frame()) {
2208         log_info(exceptions)("deferred async exception at compiled safepoint");
2209         return;
2210       }
2211     }
2212   }
2213 
2214   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2215   if (condition == _no_async_condition) {
2216     // Conditions have changed since has_special_runtime_exit_condition()
2217     // was called:
2218     // - if we were here only because of an external suspend request,
2219     //   then that was taken care of above (or cancelled) so we are done
2220     // - if we were here because of another async request, then it has
2221     //   been cleared between the has_special_runtime_exit_condition()
2222     //   and now so again we are done
2223     return;
2224   }
2225 
2226   // Check for pending async. exception
2227   if (_pending_async_exception != NULL) {
2228     // Only overwrite an already pending exception, if it is not a threadDeath.
2229     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2230 
2231       // We cannot call Exceptions::_throw(...) here because we cannot block
2232       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2233 
2234       LogTarget(Info, exceptions) lt;
2235       if (lt.is_enabled()) {
2236         ResourceMark rm;
2237         LogStream ls(lt);
2238         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2239           if (has_last_Java_frame()) {
2240             frame f = last_frame();
2241            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2242           }
2243         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2244       }
2245       _pending_async_exception = NULL;
2246       clear_has_async_exception();
2247     }
2248   }
2249 
2250   if (check_unsafe_error &&
2251       condition == _async_unsafe_access_error && !has_pending_exception()) {
2252     condition = _no_async_condition;  // done
2253     switch (thread_state()) {
2254     case _thread_in_vm: {
2255       JavaThread* THREAD = this;
2256       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2257     }
2258     case _thread_in_native: {
2259       ThreadInVMfromNative tiv(this);
2260       JavaThread* THREAD = this;
2261       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2262     }
2263     case _thread_in_Java: {
2264       ThreadInVMfromJava tiv(this);
2265       JavaThread* THREAD = this;
2266       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2267     }
2268     default:
2269       ShouldNotReachHere();
2270     }
2271   }
2272 
2273   assert(condition == _no_async_condition || has_pending_exception() ||
2274          (!check_unsafe_error && condition == _async_unsafe_access_error),
2275          "must have handled the async condition, if no exception");
2276 }
2277 
2278 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2279   //
2280   // Check for pending external suspend. Internal suspend requests do
2281   // not use handle_special_runtime_exit_condition().
2282   // If JNIEnv proxies are allowed, don't self-suspend if the target
2283   // thread is not the current thread. In older versions of jdbx, jdbx
2284   // threads could call into the VM with another thread's JNIEnv so we
2285   // can be here operating on behalf of a suspended thread (4432884).
2286   bool do_self_suspend = is_external_suspend_with_lock();
2287   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2288     //
2289     // Because thread is external suspended the safepoint code will count
2290     // thread as at a safepoint. This can be odd because we can be here
2291     // as _thread_in_Java which would normally transition to _thread_blocked
2292     // at a safepoint. We would like to mark the thread as _thread_blocked
2293     // before calling java_suspend_self like all other callers of it but
2294     // we must then observe proper safepoint protocol. (We can't leave
2295     // _thread_blocked with a safepoint in progress). However we can be
2296     // here as _thread_in_native_trans so we can't use a normal transition
2297     // constructor/destructor pair because they assert on that type of
2298     // transition. We could do something like:
2299     //
2300     // JavaThreadState state = thread_state();
2301     // set_thread_state(_thread_in_vm);
2302     // {
2303     //   ThreadBlockInVM tbivm(this);
2304     //   java_suspend_self()
2305     // }
2306     // set_thread_state(_thread_in_vm_trans);
2307     // if (safepoint) block;
2308     // set_thread_state(state);
2309     //
2310     // but that is pretty messy. Instead we just go with the way the
2311     // code has worked before and note that this is the only path to
2312     // java_suspend_self that doesn't put the thread in _thread_blocked
2313     // mode.
2314 
2315     frame_anchor()->make_walkable(this);
2316     java_suspend_self();
2317 
2318     // We might be here for reasons in addition to the self-suspend request
2319     // so check for other async requests.
2320   }
2321 
2322   if (check_asyncs) {
2323     check_and_handle_async_exceptions();
2324   }
2325 
2326   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2327 }
2328 
2329 void JavaThread::send_thread_stop(oop java_throwable)  {
2330   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2331   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2332   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2333 
2334   // Do not throw asynchronous exceptions against the compiler thread
2335   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2336   if (!can_call_java()) return;
2337 
2338   {
2339     // Actually throw the Throwable against the target Thread - however
2340     // only if there is no thread death exception installed already.
2341     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2342       // If the topmost frame is a runtime stub, then we are calling into
2343       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2344       // must deoptimize the caller before continuing, as the compiled  exception handler table
2345       // may not be valid
2346       if (has_last_Java_frame()) {
2347         frame f = last_frame();
2348         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2349           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2350           RegisterMap reg_map(this, UseBiasedLocking);
2351           frame compiled_frame = f.sender(&reg_map);
2352           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2353             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2354           }
2355         }
2356       }
2357 
2358       // Set async. pending exception in thread.
2359       set_pending_async_exception(java_throwable);
2360 
2361       if (log_is_enabled(Info, exceptions)) {
2362          ResourceMark rm;
2363         log_info(exceptions)("Pending Async. exception installed of type: %s",
2364                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2365       }
2366       // for AbortVMOnException flag
2367       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2368     }
2369   }
2370 
2371 
2372   // Interrupt thread so it will wake up from a potential wait()
2373   Thread::interrupt(this);
2374 }
2375 
2376 // External suspension mechanism.
2377 //
2378 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2379 // to any VM_locks and it is at a transition
2380 // Self-suspension will happen on the transition out of the vm.
2381 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2382 //
2383 // Guarantees on return:
2384 //   + Target thread will not execute any new bytecode (that's why we need to
2385 //     force a safepoint)
2386 //   + Target thread will not enter any new monitors
2387 //
2388 void JavaThread::java_suspend() {
2389   ThreadsListHandle tlh;
2390   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2391     return;
2392   }
2393 
2394   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2395     if (!is_external_suspend()) {
2396       // a racing resume has cancelled us; bail out now
2397       return;
2398     }
2399 
2400     // suspend is done
2401     uint32_t debug_bits = 0;
2402     // Warning: is_ext_suspend_completed() may temporarily drop the
2403     // SR_lock to allow the thread to reach a stable thread state if
2404     // it is currently in a transient thread state.
2405     if (is_ext_suspend_completed(false /* !called_by_wait */,
2406                                  SuspendRetryDelay, &debug_bits)) {
2407       return;
2408     }
2409   }
2410 
2411   if (Thread::current() == this) {
2412     // Safely self-suspend.
2413     // If we don't do this explicitly it will implicitly happen
2414     // before we transition back to Java, and on some other thread-state
2415     // transition paths, but not as we exit a JVM TI SuspendThread call.
2416     // As SuspendThread(current) must not return (until resumed) we must
2417     // self-suspend here.
2418     ThreadBlockInVM tbivm(this);
2419     java_suspend_self();
2420   } else {
2421     VM_ThreadSuspend vm_suspend;
2422     VMThread::execute(&vm_suspend);
2423   }
2424 }
2425 
2426 // Part II of external suspension.
2427 // A JavaThread self suspends when it detects a pending external suspend
2428 // request. This is usually on transitions. It is also done in places
2429 // where continuing to the next transition would surprise the caller,
2430 // e.g., monitor entry.
2431 //
2432 // Returns the number of times that the thread self-suspended.
2433 //
2434 // Note: DO NOT call java_suspend_self() when you just want to block current
2435 //       thread. java_suspend_self() is the second stage of cooperative
2436 //       suspension for external suspend requests and should only be used
2437 //       to complete an external suspend request.
2438 //
2439 int JavaThread::java_suspend_self() {
2440   int ret = 0;
2441 
2442   // we are in the process of exiting so don't suspend
2443   if (is_exiting()) {
2444     clear_external_suspend();
2445     return ret;
2446   }
2447 
2448   assert(_anchor.walkable() ||
2449          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2450          "must have walkable stack");
2451 
2452   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2453 
2454   assert(!this->is_ext_suspended(),
2455          "a thread trying to self-suspend should not already be suspended");
2456 
2457   if (this->is_suspend_equivalent()) {
2458     // If we are self-suspending as a result of the lifting of a
2459     // suspend equivalent condition, then the suspend_equivalent
2460     // flag is not cleared until we set the ext_suspended flag so
2461     // that wait_for_ext_suspend_completion() returns consistent
2462     // results.
2463     this->clear_suspend_equivalent();
2464   }
2465 
2466   // A racing resume may have cancelled us before we grabbed SR_lock
2467   // above. Or another external suspend request could be waiting for us
2468   // by the time we return from SR_lock()->wait(). The thread
2469   // that requested the suspension may already be trying to walk our
2470   // stack and if we return now, we can change the stack out from under
2471   // it. This would be a "bad thing (TM)" and cause the stack walker
2472   // to crash. We stay self-suspended until there are no more pending
2473   // external suspend requests.
2474   while (is_external_suspend()) {
2475     ret++;
2476     this->set_ext_suspended();
2477 
2478     // _ext_suspended flag is cleared by java_resume()
2479     while (is_ext_suspended()) {
2480       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2481     }
2482   }
2483 
2484   return ret;
2485 }
2486 
2487 #ifdef ASSERT
2488 // Verify the JavaThread has not yet been published in the Threads::list, and
2489 // hence doesn't need protection from concurrent access at this stage.
2490 void JavaThread::verify_not_published() {
2491   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2492   // since an unpublished JavaThread doesn't participate in the
2493   // Thread-SMR protocol for keeping a ThreadsList alive.
2494   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2495 }
2496 #endif
2497 
2498 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2499 // progress or when _suspend_flags is non-zero.
2500 // Current thread needs to self-suspend if there is a suspend request and/or
2501 // block if a safepoint is in progress.
2502 // Async exception ISN'T checked.
2503 // Note only the ThreadInVMfromNative transition can call this function
2504 // directly and when thread state is _thread_in_native_trans
2505 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2506   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2507 
2508   JavaThread *curJT = JavaThread::current();
2509   bool do_self_suspend = thread->is_external_suspend();
2510 
2511   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2512 
2513   // If JNIEnv proxies are allowed, don't self-suspend if the target
2514   // thread is not the current thread. In older versions of jdbx, jdbx
2515   // threads could call into the VM with another thread's JNIEnv so we
2516   // can be here operating on behalf of a suspended thread (4432884).
2517   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2518     JavaThreadState state = thread->thread_state();
2519 
2520     // We mark this thread_blocked state as a suspend-equivalent so
2521     // that a caller to is_ext_suspend_completed() won't be confused.
2522     // The suspend-equivalent state is cleared by java_suspend_self().
2523     thread->set_suspend_equivalent();
2524 
2525     // If the safepoint code sees the _thread_in_native_trans state, it will
2526     // wait until the thread changes to other thread state. There is no
2527     // guarantee on how soon we can obtain the SR_lock and complete the
2528     // self-suspend request. It would be a bad idea to let safepoint wait for
2529     // too long. Temporarily change the state to _thread_blocked to
2530     // let the VM thread know that this thread is ready for GC. The problem
2531     // of changing thread state is that safepoint could happen just after
2532     // java_suspend_self() returns after being resumed, and VM thread will
2533     // see the _thread_blocked state. We must check for safepoint
2534     // after restoring the state and make sure we won't leave while a safepoint
2535     // is in progress.
2536     thread->set_thread_state(_thread_blocked);
2537     thread->java_suspend_self();
2538     thread->set_thread_state(state);
2539 
2540     InterfaceSupport::serialize_thread_state_with_handler(thread);
2541   }
2542 
2543   SafepointMechanism::block_if_requested(curJT);
2544 
2545   if (thread->is_deopt_suspend()) {
2546     thread->clear_deopt_suspend();
2547     RegisterMap map(thread, false);
2548     frame f = thread->last_frame();
2549     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2550       f = f.sender(&map);
2551     }
2552     if (f.id() == thread->must_deopt_id()) {
2553       thread->clear_must_deopt_id();
2554       f.deoptimize(thread);
2555     } else {
2556       fatal("missed deoptimization!");
2557     }
2558   }
2559 
2560   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2561 }
2562 
2563 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2564 // progress or when _suspend_flags is non-zero.
2565 // Current thread needs to self-suspend if there is a suspend request and/or
2566 // block if a safepoint is in progress.
2567 // Also check for pending async exception (not including unsafe access error).
2568 // Note only the native==>VM/Java barriers can call this function and when
2569 // thread state is _thread_in_native_trans.
2570 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2571   check_safepoint_and_suspend_for_native_trans(thread);
2572 
2573   if (thread->has_async_exception()) {
2574     // We are in _thread_in_native_trans state, don't handle unsafe
2575     // access error since that may block.
2576     thread->check_and_handle_async_exceptions(false);
2577   }
2578 }
2579 
2580 // This is a variant of the normal
2581 // check_special_condition_for_native_trans with slightly different
2582 // semantics for use by critical native wrappers.  It does all the
2583 // normal checks but also performs the transition back into
2584 // thread_in_Java state.  This is required so that critical natives
2585 // can potentially block and perform a GC if they are the last thread
2586 // exiting the GCLocker.
2587 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2588   check_special_condition_for_native_trans(thread);
2589 
2590   // Finish the transition
2591   thread->set_thread_state(_thread_in_Java);
2592 
2593   if (thread->do_critical_native_unlock()) {
2594     ThreadInVMfromJavaNoAsyncException tiv(thread);
2595     GCLocker::unlock_critical(thread);
2596     thread->clear_critical_native_unlock();
2597   }
2598 }
2599 
2600 // We need to guarantee the Threads_lock here, since resumes are not
2601 // allowed during safepoint synchronization
2602 // Can only resume from an external suspension
2603 void JavaThread::java_resume() {
2604   assert_locked_or_safepoint(Threads_lock);
2605 
2606   // Sanity check: thread is gone, has started exiting or the thread
2607   // was not externally suspended.
2608   ThreadsListHandle tlh;
2609   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2610     return;
2611   }
2612 
2613   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2614 
2615   clear_external_suspend();
2616 
2617   if (is_ext_suspended()) {
2618     clear_ext_suspended();
2619     SR_lock()->notify_all();
2620   }
2621 }
2622 
2623 size_t JavaThread::_stack_red_zone_size = 0;
2624 size_t JavaThread::_stack_yellow_zone_size = 0;
2625 size_t JavaThread::_stack_reserved_zone_size = 0;
2626 size_t JavaThread::_stack_shadow_zone_size = 0;
2627 
2628 void JavaThread::create_stack_guard_pages() {
2629   if (!os::uses_stack_guard_pages() ||
2630       _stack_guard_state != stack_guard_unused ||
2631       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2632       log_info(os, thread)("Stack guard page creation for thread "
2633                            UINTX_FORMAT " disabled", os::current_thread_id());
2634     return;
2635   }
2636   address low_addr = stack_end();
2637   size_t len = stack_guard_zone_size();
2638 
2639   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2640   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2641 
2642   int must_commit = os::must_commit_stack_guard_pages();
2643   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2644 
2645   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2646     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2647     return;
2648   }
2649 
2650   if (os::guard_memory((char *) low_addr, len)) {
2651     _stack_guard_state = stack_guard_enabled;
2652   } else {
2653     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2654       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2655     if (os::uncommit_memory((char *) low_addr, len)) {
2656       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2657     }
2658     return;
2659   }
2660 
2661   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2662     PTR_FORMAT "-" PTR_FORMAT ".",
2663     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2664 }
2665 
2666 void JavaThread::remove_stack_guard_pages() {
2667   assert(Thread::current() == this, "from different thread");
2668   if (_stack_guard_state == stack_guard_unused) return;
2669   address low_addr = stack_end();
2670   size_t len = stack_guard_zone_size();
2671 
2672   if (os::must_commit_stack_guard_pages()) {
2673     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2674       _stack_guard_state = stack_guard_unused;
2675     } else {
2676       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2677         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2678       return;
2679     }
2680   } else {
2681     if (_stack_guard_state == stack_guard_unused) return;
2682     if (os::unguard_memory((char *) low_addr, len)) {
2683       _stack_guard_state = stack_guard_unused;
2684     } else {
2685       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2686         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2687       return;
2688     }
2689   }
2690 
2691   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2692     PTR_FORMAT "-" PTR_FORMAT ".",
2693     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2694 }
2695 
2696 void JavaThread::enable_stack_reserved_zone() {
2697   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2698 
2699   // The base notation is from the stack's point of view, growing downward.
2700   // We need to adjust it to work correctly with guard_memory()
2701   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2702 
2703   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2704   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2705 
2706   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2707     _stack_guard_state = stack_guard_enabled;
2708   } else {
2709     warning("Attempt to guard stack reserved zone failed.");
2710   }
2711   enable_register_stack_guard();
2712 }
2713 
2714 void JavaThread::disable_stack_reserved_zone() {
2715   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2716 
2717   // Simply return if called for a thread that does not use guard pages.
2718   if (_stack_guard_state != stack_guard_enabled) return;
2719 
2720   // The base notation is from the stack's point of view, growing downward.
2721   // We need to adjust it to work correctly with guard_memory()
2722   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2723 
2724   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2725     _stack_guard_state = stack_guard_reserved_disabled;
2726   } else {
2727     warning("Attempt to unguard stack reserved zone failed.");
2728   }
2729   disable_register_stack_guard();
2730 }
2731 
2732 void JavaThread::enable_stack_yellow_reserved_zone() {
2733   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2734   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2735 
2736   // The base notation is from the stacks point of view, growing downward.
2737   // We need to adjust it to work correctly with guard_memory()
2738   address base = stack_red_zone_base();
2739 
2740   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2741   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2742 
2743   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2744     _stack_guard_state = stack_guard_enabled;
2745   } else {
2746     warning("Attempt to guard stack yellow zone failed.");
2747   }
2748   enable_register_stack_guard();
2749 }
2750 
2751 void JavaThread::disable_stack_yellow_reserved_zone() {
2752   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2753   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2754 
2755   // Simply return if called for a thread that does not use guard pages.
2756   if (_stack_guard_state == stack_guard_unused) return;
2757 
2758   // The base notation is from the stacks point of view, growing downward.
2759   // We need to adjust it to work correctly with guard_memory()
2760   address base = stack_red_zone_base();
2761 
2762   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2763     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2764   } else {
2765     warning("Attempt to unguard stack yellow zone failed.");
2766   }
2767   disable_register_stack_guard();
2768 }
2769 
2770 void JavaThread::enable_stack_red_zone() {
2771   // The base notation is from the stacks point of view, growing downward.
2772   // We need to adjust it to work correctly with guard_memory()
2773   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2774   address base = stack_red_zone_base() - stack_red_zone_size();
2775 
2776   guarantee(base < stack_base(), "Error calculating stack red zone");
2777   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2778 
2779   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2780     warning("Attempt to guard stack red zone failed.");
2781   }
2782 }
2783 
2784 void JavaThread::disable_stack_red_zone() {
2785   // The base notation is from the stacks point of view, growing downward.
2786   // We need to adjust it to work correctly with guard_memory()
2787   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2788   address base = stack_red_zone_base() - stack_red_zone_size();
2789   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2790     warning("Attempt to unguard stack red zone failed.");
2791   }
2792 }
2793 
2794 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2795   // ignore is there is no stack
2796   if (!has_last_Java_frame()) return;
2797   // traverse the stack frames. Starts from top frame.
2798   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2799     frame* fr = fst.current();
2800     f(fr, fst.register_map());
2801   }
2802 }
2803 
2804 
2805 #ifndef PRODUCT
2806 // Deoptimization
2807 // Function for testing deoptimization
2808 void JavaThread::deoptimize() {
2809   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2810   StackFrameStream fst(this, UseBiasedLocking);
2811   bool deopt = false;           // Dump stack only if a deopt actually happens.
2812   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2813   // Iterate over all frames in the thread and deoptimize
2814   for (; !fst.is_done(); fst.next()) {
2815     if (fst.current()->can_be_deoptimized()) {
2816 
2817       if (only_at) {
2818         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2819         // consists of comma or carriage return separated numbers so
2820         // search for the current bci in that string.
2821         address pc = fst.current()->pc();
2822         nmethod* nm =  (nmethod*) fst.current()->cb();
2823         ScopeDesc* sd = nm->scope_desc_at(pc);
2824         char buffer[8];
2825         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2826         size_t len = strlen(buffer);
2827         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2828         while (found != NULL) {
2829           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2830               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2831             // Check that the bci found is bracketed by terminators.
2832             break;
2833           }
2834           found = strstr(found + 1, buffer);
2835         }
2836         if (!found) {
2837           continue;
2838         }
2839       }
2840 
2841       if (DebugDeoptimization && !deopt) {
2842         deopt = true; // One-time only print before deopt
2843         tty->print_cr("[BEFORE Deoptimization]");
2844         trace_frames();
2845         trace_stack();
2846       }
2847       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2848     }
2849   }
2850 
2851   if (DebugDeoptimization && deopt) {
2852     tty->print_cr("[AFTER Deoptimization]");
2853     trace_frames();
2854   }
2855 }
2856 
2857 
2858 // Make zombies
2859 void JavaThread::make_zombies() {
2860   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2861     if (fst.current()->can_be_deoptimized()) {
2862       // it is a Java nmethod
2863       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2864       nm->make_not_entrant();
2865     }
2866   }
2867 }
2868 #endif // PRODUCT
2869 
2870 
2871 void JavaThread::deoptimized_wrt_marked_nmethods() {
2872   if (!has_last_Java_frame()) return;
2873   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2874   StackFrameStream fst(this, UseBiasedLocking);
2875   for (; !fst.is_done(); fst.next()) {
2876     if (fst.current()->should_be_deoptimized()) {
2877       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2878     }
2879   }
2880 }
2881 
2882 
2883 // If the caller is a NamedThread, then remember, in the current scope,
2884 // the given JavaThread in its _processed_thread field.
2885 class RememberProcessedThread: public StackObj {
2886   NamedThread* _cur_thr;
2887  public:
2888   RememberProcessedThread(JavaThread* jthr) {
2889     Thread* thread = Thread::current();
2890     if (thread->is_Named_thread()) {
2891       _cur_thr = (NamedThread *)thread;
2892       _cur_thr->set_processed_thread(jthr);
2893     } else {
2894       _cur_thr = NULL;
2895     }
2896   }
2897 
2898   ~RememberProcessedThread() {
2899     if (_cur_thr) {
2900       _cur_thr->set_processed_thread(NULL);
2901     }
2902   }
2903 };
2904 
2905 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2906   // Verify that the deferred card marks have been flushed.
2907   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2908 
2909   // Traverse the GCHandles
2910   Thread::oops_do(f, cf);
2911 
2912   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2913          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2914 
2915   if (has_last_Java_frame()) {
2916     // Record JavaThread to GC thread
2917     RememberProcessedThread rpt(this);
2918 
2919     // traverse the registered growable array
2920     if (_array_for_gc != NULL) {
2921       for (int index = 0; index < _array_for_gc->length(); index++) {
2922         f->do_oop(_array_for_gc->adr_at(index));
2923       }
2924     }
2925 
2926     // Traverse the monitor chunks
2927     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2928       chunk->oops_do(f);
2929     }
2930 
2931     // Traverse the execution stack
2932     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2933       fst.current()->oops_do(f, cf, fst.register_map());
2934     }
2935   }
2936 
2937   // callee_target is never live across a gc point so NULL it here should
2938   // it still contain a methdOop.
2939 
2940   set_callee_target(NULL);
2941 
2942   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2943   // If we have deferred set_locals there might be oops waiting to be
2944   // written
2945   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2946   if (list != NULL) {
2947     for (int i = 0; i < list->length(); i++) {
2948       list->at(i)->oops_do(f);
2949     }
2950   }
2951 
2952   // Traverse instance variables at the end since the GC may be moving things
2953   // around using this function
2954   f->do_oop((oop*) &_threadObj);
2955   f->do_oop((oop*) &_vm_result);
2956   f->do_oop((oop*) &_exception_oop);
2957   f->do_oop((oop*) &_pending_async_exception);
2958 
2959   if (jvmti_thread_state() != NULL) {
2960     jvmti_thread_state()->oops_do(f);
2961   }
2962 }
2963 
2964 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2965   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2966          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2967 
2968   if (has_last_Java_frame()) {
2969     // Traverse the execution stack
2970     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2971       fst.current()->nmethods_do(cf);
2972     }
2973   }
2974 }
2975 
2976 void JavaThread::metadata_do(void f(Metadata*)) {
2977   if (has_last_Java_frame()) {
2978     // Traverse the execution stack to call f() on the methods in the stack
2979     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2980       fst.current()->metadata_do(f);
2981     }
2982   } else if (is_Compiler_thread()) {
2983     // need to walk ciMetadata in current compile tasks to keep alive.
2984     CompilerThread* ct = (CompilerThread*)this;
2985     if (ct->env() != NULL) {
2986       ct->env()->metadata_do(f);
2987     }
2988     CompileTask* task = ct->task();
2989     if (task != NULL) {
2990       task->metadata_do(f);
2991     }
2992   }
2993 }
2994 
2995 // Printing
2996 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2997   switch (_thread_state) {
2998   case _thread_uninitialized:     return "_thread_uninitialized";
2999   case _thread_new:               return "_thread_new";
3000   case _thread_new_trans:         return "_thread_new_trans";
3001   case _thread_in_native:         return "_thread_in_native";
3002   case _thread_in_native_trans:   return "_thread_in_native_trans";
3003   case _thread_in_vm:             return "_thread_in_vm";
3004   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3005   case _thread_in_Java:           return "_thread_in_Java";
3006   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3007   case _thread_blocked:           return "_thread_blocked";
3008   case _thread_blocked_trans:     return "_thread_blocked_trans";
3009   default:                        return "unknown thread state";
3010   }
3011 }
3012 
3013 #ifndef PRODUCT
3014 void JavaThread::print_thread_state_on(outputStream *st) const {
3015   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3016 };
3017 void JavaThread::print_thread_state() const {
3018   print_thread_state_on(tty);
3019 }
3020 #endif // PRODUCT
3021 
3022 // Called by Threads::print() for VM_PrintThreads operation
3023 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3024   st->print_raw("\"");
3025   st->print_raw(get_thread_name());
3026   st->print_raw("\" ");
3027   oop thread_oop = threadObj();
3028   if (thread_oop != NULL) {
3029     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3030     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3031     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3032   }
3033   Thread::print_on(st, print_extended_info);
3034   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3035   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3036   if (thread_oop != NULL) {
3037     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3038   }
3039 #ifndef PRODUCT
3040   _safepoint_state->print_on(st);
3041 #endif // PRODUCT
3042   if (is_Compiler_thread()) {
3043     CompileTask *task = ((CompilerThread*)this)->task();
3044     if (task != NULL) {
3045       st->print("   Compiling: ");
3046       task->print(st, NULL, true, false);
3047     } else {
3048       st->print("   No compile task");
3049     }
3050     st->cr();
3051   }
3052 }
3053 
3054 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3055   st->print("%s", get_thread_name_string(buf, buflen));
3056 }
3057 
3058 // Called by fatal error handler. The difference between this and
3059 // JavaThread::print() is that we can't grab lock or allocate memory.
3060 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3061   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3062   oop thread_obj = threadObj();
3063   if (thread_obj != NULL) {
3064     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3065   }
3066   st->print(" [");
3067   st->print("%s", _get_thread_state_name(_thread_state));
3068   if (osthread()) {
3069     st->print(", id=%d", osthread()->thread_id());
3070   }
3071   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3072             p2i(stack_end()), p2i(stack_base()));
3073   st->print("]");
3074 
3075   ThreadsSMRSupport::print_info_on(this, st);
3076   return;
3077 }
3078 
3079 // Verification
3080 
3081 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3082 
3083 void JavaThread::verify() {
3084   // Verify oops in the thread.
3085   oops_do(&VerifyOopClosure::verify_oop, NULL);
3086 
3087   // Verify the stack frames.
3088   frames_do(frame_verify);
3089 }
3090 
3091 // CR 6300358 (sub-CR 2137150)
3092 // Most callers of this method assume that it can't return NULL but a
3093 // thread may not have a name whilst it is in the process of attaching to
3094 // the VM - see CR 6412693, and there are places where a JavaThread can be
3095 // seen prior to having it's threadObj set (eg JNI attaching threads and
3096 // if vm exit occurs during initialization). These cases can all be accounted
3097 // for such that this method never returns NULL.
3098 const char* JavaThread::get_thread_name() const {
3099 #ifdef ASSERT
3100   // early safepoints can hit while current thread does not yet have TLS
3101   if (!SafepointSynchronize::is_at_safepoint()) {
3102     Thread *cur = Thread::current();
3103     if (!(cur->is_Java_thread() && cur == this)) {
3104       // Current JavaThreads are allowed to get their own name without
3105       // the Threads_lock.
3106       assert_locked_or_safepoint(Threads_lock);
3107     }
3108   }
3109 #endif // ASSERT
3110   return get_thread_name_string();
3111 }
3112 
3113 // Returns a non-NULL representation of this thread's name, or a suitable
3114 // descriptive string if there is no set name
3115 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3116   const char* name_str;
3117   oop thread_obj = threadObj();
3118   if (thread_obj != NULL) {
3119     oop name = java_lang_Thread::name(thread_obj);
3120     if (name != NULL) {
3121       if (buf == NULL) {
3122         name_str = java_lang_String::as_utf8_string(name);
3123       } else {
3124         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3125       }
3126     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3127       name_str = "<no-name - thread is attaching>";
3128     } else {
3129       name_str = Thread::name();
3130     }
3131   } else {
3132     name_str = Thread::name();
3133   }
3134   assert(name_str != NULL, "unexpected NULL thread name");
3135   return name_str;
3136 }
3137 
3138 
3139 const char* JavaThread::get_threadgroup_name() const {
3140   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3141   oop thread_obj = threadObj();
3142   if (thread_obj != NULL) {
3143     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3144     if (thread_group != NULL) {
3145       // ThreadGroup.name can be null
3146       return java_lang_ThreadGroup::name(thread_group);
3147     }
3148   }
3149   return NULL;
3150 }
3151 
3152 const char* JavaThread::get_parent_name() const {
3153   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3154   oop thread_obj = threadObj();
3155   if (thread_obj != NULL) {
3156     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3157     if (thread_group != NULL) {
3158       oop parent = java_lang_ThreadGroup::parent(thread_group);
3159       if (parent != NULL) {
3160         // ThreadGroup.name can be null
3161         return java_lang_ThreadGroup::name(parent);
3162       }
3163     }
3164   }
3165   return NULL;
3166 }
3167 
3168 ThreadPriority JavaThread::java_priority() const {
3169   oop thr_oop = threadObj();
3170   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3171   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3172   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3173   return priority;
3174 }
3175 
3176 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3177 
3178   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3179   // Link Java Thread object <-> C++ Thread
3180 
3181   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3182   // and put it into a new Handle.  The Handle "thread_oop" can then
3183   // be used to pass the C++ thread object to other methods.
3184 
3185   // Set the Java level thread object (jthread) field of the
3186   // new thread (a JavaThread *) to C++ thread object using the
3187   // "thread_oop" handle.
3188 
3189   // Set the thread field (a JavaThread *) of the
3190   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3191 
3192   Handle thread_oop(Thread::current(),
3193                     JNIHandles::resolve_non_null(jni_thread));
3194   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3195          "must be initialized");
3196   set_threadObj(thread_oop());
3197   java_lang_Thread::set_thread(thread_oop(), this);
3198 
3199   if (prio == NoPriority) {
3200     prio = java_lang_Thread::priority(thread_oop());
3201     assert(prio != NoPriority, "A valid priority should be present");
3202   }
3203 
3204   // Push the Java priority down to the native thread; needs Threads_lock
3205   Thread::set_priority(this, prio);
3206 
3207   // Add the new thread to the Threads list and set it in motion.
3208   // We must have threads lock in order to call Threads::add.
3209   // It is crucial that we do not block before the thread is
3210   // added to the Threads list for if a GC happens, then the java_thread oop
3211   // will not be visited by GC.
3212   Threads::add(this);
3213 }
3214 
3215 oop JavaThread::current_park_blocker() {
3216   // Support for JSR-166 locks
3217   oop thread_oop = threadObj();
3218   if (thread_oop != NULL &&
3219       JDK_Version::current().supports_thread_park_blocker()) {
3220     return java_lang_Thread::park_blocker(thread_oop);
3221   }
3222   return NULL;
3223 }
3224 
3225 
3226 void JavaThread::print_stack_on(outputStream* st) {
3227   if (!has_last_Java_frame()) return;
3228   ResourceMark rm;
3229   HandleMark   hm;
3230 
3231   RegisterMap reg_map(this);
3232   vframe* start_vf = last_java_vframe(&reg_map);
3233   int count = 0;
3234   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3235     if (f->is_java_frame()) {
3236       javaVFrame* jvf = javaVFrame::cast(f);
3237       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3238 
3239       // Print out lock information
3240       if (JavaMonitorsInStackTrace) {
3241         jvf->print_lock_info_on(st, count);
3242       }
3243     } else {
3244       // Ignore non-Java frames
3245     }
3246 
3247     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3248     count++;
3249     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3250   }
3251 }
3252 
3253 
3254 // JVMTI PopFrame support
3255 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3256   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3257   if (in_bytes(size_in_bytes) != 0) {
3258     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3259     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3260     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3261   }
3262 }
3263 
3264 void* JavaThread::popframe_preserved_args() {
3265   return _popframe_preserved_args;
3266 }
3267 
3268 ByteSize JavaThread::popframe_preserved_args_size() {
3269   return in_ByteSize(_popframe_preserved_args_size);
3270 }
3271 
3272 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3273   int sz = in_bytes(popframe_preserved_args_size());
3274   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3275   return in_WordSize(sz / wordSize);
3276 }
3277 
3278 void JavaThread::popframe_free_preserved_args() {
3279   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3280   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3281   _popframe_preserved_args = NULL;
3282   _popframe_preserved_args_size = 0;
3283 }
3284 
3285 #ifndef PRODUCT
3286 
3287 void JavaThread::trace_frames() {
3288   tty->print_cr("[Describe stack]");
3289   int frame_no = 1;
3290   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3291     tty->print("  %d. ", frame_no++);
3292     fst.current()->print_value_on(tty, this);
3293     tty->cr();
3294   }
3295 }
3296 
3297 class PrintAndVerifyOopClosure: public OopClosure {
3298  protected:
3299   template <class T> inline void do_oop_work(T* p) {
3300     oop obj = RawAccess<>::oop_load(p);
3301     if (obj == NULL) return;
3302     tty->print(INTPTR_FORMAT ": ", p2i(p));
3303     if (oopDesc::is_oop_or_null(obj)) {
3304       if (obj->is_objArray()) {
3305         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3306       } else {
3307         obj->print();
3308       }
3309     } else {
3310       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3311     }
3312     tty->cr();
3313   }
3314  public:
3315   virtual void do_oop(oop* p) { do_oop_work(p); }
3316   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3317 };
3318 
3319 
3320 static void oops_print(frame* f, const RegisterMap *map) {
3321   PrintAndVerifyOopClosure print;
3322   f->print_value();
3323   f->oops_do(&print, NULL, (RegisterMap*)map);
3324 }
3325 
3326 // Print our all the locations that contain oops and whether they are
3327 // valid or not.  This useful when trying to find the oldest frame
3328 // where an oop has gone bad since the frame walk is from youngest to
3329 // oldest.
3330 void JavaThread::trace_oops() {
3331   tty->print_cr("[Trace oops]");
3332   frames_do(oops_print);
3333 }
3334 
3335 
3336 #ifdef ASSERT
3337 // Print or validate the layout of stack frames
3338 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3339   ResourceMark rm;
3340   PRESERVE_EXCEPTION_MARK;
3341   FrameValues values;
3342   int frame_no = 0;
3343   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3344     fst.current()->describe(values, ++frame_no);
3345     if (depth == frame_no) break;
3346   }
3347   if (validate_only) {
3348     values.validate();
3349   } else {
3350     tty->print_cr("[Describe stack layout]");
3351     values.print(this);
3352   }
3353 }
3354 #endif
3355 
3356 void JavaThread::trace_stack_from(vframe* start_vf) {
3357   ResourceMark rm;
3358   int vframe_no = 1;
3359   for (vframe* f = start_vf; f; f = f->sender()) {
3360     if (f->is_java_frame()) {
3361       javaVFrame::cast(f)->print_activation(vframe_no++);
3362     } else {
3363       f->print();
3364     }
3365     if (vframe_no > StackPrintLimit) {
3366       tty->print_cr("...<more frames>...");
3367       return;
3368     }
3369   }
3370 }
3371 
3372 
3373 void JavaThread::trace_stack() {
3374   if (!has_last_Java_frame()) return;
3375   ResourceMark rm;
3376   HandleMark   hm;
3377   RegisterMap reg_map(this);
3378   trace_stack_from(last_java_vframe(&reg_map));
3379 }
3380 
3381 
3382 #endif // PRODUCT
3383 
3384 
3385 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3386   assert(reg_map != NULL, "a map must be given");
3387   frame f = last_frame();
3388   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3389     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3390   }
3391   return NULL;
3392 }
3393 
3394 
3395 Klass* JavaThread::security_get_caller_class(int depth) {
3396   vframeStream vfst(this);
3397   vfst.security_get_caller_frame(depth);
3398   if (!vfst.at_end()) {
3399     return vfst.method()->method_holder();
3400   }
3401   return NULL;
3402 }
3403 
3404 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3405   assert(thread->is_Compiler_thread(), "must be compiler thread");
3406   CompileBroker::compiler_thread_loop();
3407 }
3408 
3409 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3410   NMethodSweeper::sweeper_loop();
3411 }
3412 
3413 // Create a CompilerThread
3414 CompilerThread::CompilerThread(CompileQueue* queue,
3415                                CompilerCounters* counters)
3416                                : JavaThread(&compiler_thread_entry) {
3417   _env   = NULL;
3418   _log   = NULL;
3419   _task  = NULL;
3420   _queue = queue;
3421   _counters = counters;
3422   _buffer_blob = NULL;
3423   _compiler = NULL;
3424 
3425   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3426   resource_area()->bias_to(mtCompiler);
3427 
3428 #ifndef PRODUCT
3429   _ideal_graph_printer = NULL;
3430 #endif
3431 }
3432 
3433 CompilerThread::~CompilerThread() {
3434   // Delete objects which were allocated on heap.
3435   delete _counters;
3436 }
3437 
3438 bool CompilerThread::can_call_java() const {
3439   return _compiler != NULL && _compiler->is_jvmci();
3440 }
3441 
3442 // Create sweeper thread
3443 CodeCacheSweeperThread::CodeCacheSweeperThread()
3444 : JavaThread(&sweeper_thread_entry) {
3445   _scanned_compiled_method = NULL;
3446 }
3447 
3448 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3449   JavaThread::oops_do(f, cf);
3450   if (_scanned_compiled_method != NULL && cf != NULL) {
3451     // Safepoints can occur when the sweeper is scanning an nmethod so
3452     // process it here to make sure it isn't unloaded in the middle of
3453     // a scan.
3454     cf->do_code_blob(_scanned_compiled_method);
3455   }
3456 }
3457 
3458 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3459   JavaThread::nmethods_do(cf);
3460   if (_scanned_compiled_method != NULL && cf != NULL) {
3461     // Safepoints can occur when the sweeper is scanning an nmethod so
3462     // process it here to make sure it isn't unloaded in the middle of
3463     // a scan.
3464     cf->do_code_blob(_scanned_compiled_method);
3465   }
3466 }
3467 
3468 
3469 // ======= Threads ========
3470 
3471 // The Threads class links together all active threads, and provides
3472 // operations over all threads. It is protected by the Threads_lock,
3473 // which is also used in other global contexts like safepointing.
3474 // ThreadsListHandles are used to safely perform operations on one
3475 // or more threads without the risk of the thread exiting during the
3476 // operation.
3477 //
3478 // Note: The Threads_lock is currently more widely used than we
3479 // would like. We are actively migrating Threads_lock uses to other
3480 // mechanisms in order to reduce Threads_lock contention.
3481 
3482 JavaThread* Threads::_thread_list = NULL;
3483 int         Threads::_number_of_threads = 0;
3484 int         Threads::_number_of_non_daemon_threads = 0;
3485 int         Threads::_return_code = 0;
3486 int         Threads::_thread_claim_parity = 0;
3487 size_t      JavaThread::_stack_size_at_create = 0;
3488 
3489 #ifdef ASSERT
3490 bool        Threads::_vm_complete = false;
3491 #endif
3492 
3493 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3494   Prefetch::read((void*)addr, prefetch_interval);
3495   return *addr;
3496 }
3497 
3498 // Possibly the ugliest for loop the world has seen. C++ does not allow
3499 // multiple types in the declaration section of the for loop. In this case
3500 // we are only dealing with pointers and hence can cast them. It looks ugly
3501 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3502 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3503     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3504              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3505              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3506              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3507              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3508          MACRO_current_p != MACRO_end;                                                                                    \
3509          MACRO_current_p++,                                                                                               \
3510              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3511 
3512 // All JavaThreads
3513 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3514 
3515 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3516 void Threads::non_java_threads_do(ThreadClosure* tc) {
3517   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3518   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3519     tc->do_thread(njti.current());
3520   }
3521 }
3522 
3523 // All JavaThreads
3524 void Threads::java_threads_do(ThreadClosure* tc) {
3525   assert_locked_or_safepoint(Threads_lock);
3526   // ALL_JAVA_THREADS iterates through all JavaThreads.
3527   ALL_JAVA_THREADS(p) {
3528     tc->do_thread(p);
3529   }
3530 }
3531 
3532 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3533   assert_locked_or_safepoint(Threads_lock);
3534   java_threads_do(tc);
3535   tc->do_thread(VMThread::vm_thread());
3536 }
3537 
3538 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3539 void Threads::threads_do(ThreadClosure* tc) {
3540   assert_locked_or_safepoint(Threads_lock);
3541   java_threads_do(tc);
3542   non_java_threads_do(tc);
3543 }
3544 
3545 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3546   int cp = Threads::thread_claim_parity();
3547   ALL_JAVA_THREADS(p) {
3548     if (p->claim_oops_do(is_par, cp)) {
3549       tc->do_thread(p);
3550     }
3551   }
3552   VMThread* vmt = VMThread::vm_thread();
3553   if (vmt->claim_oops_do(is_par, cp)) {
3554     tc->do_thread(vmt);
3555   }
3556 }
3557 
3558 // The system initialization in the library has three phases.
3559 //
3560 // Phase 1: java.lang.System class initialization
3561 //     java.lang.System is a primordial class loaded and initialized
3562 //     by the VM early during startup.  java.lang.System.<clinit>
3563 //     only does registerNatives and keeps the rest of the class
3564 //     initialization work later until thread initialization completes.
3565 //
3566 //     System.initPhase1 initializes the system properties, the static
3567 //     fields in, out, and err. Set up java signal handlers, OS-specific
3568 //     system settings, and thread group of the main thread.
3569 static void call_initPhase1(TRAPS) {
3570   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3571   JavaValue result(T_VOID);
3572   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3573                                          vmSymbols::void_method_signature(), CHECK);
3574 }
3575 
3576 // Phase 2. Module system initialization
3577 //     This will initialize the module system.  Only java.base classes
3578 //     can be loaded until phase 2 completes.
3579 //
3580 //     Call System.initPhase2 after the compiler initialization and jsr292
3581 //     classes get initialized because module initialization runs a lot of java
3582 //     code, that for performance reasons, should be compiled.  Also, this will
3583 //     enable the startup code to use lambda and other language features in this
3584 //     phase and onward.
3585 //
3586 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3587 static void call_initPhase2(TRAPS) {
3588   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3589 
3590   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3591 
3592   JavaValue result(T_INT);
3593   JavaCallArguments args;
3594   args.push_int(DisplayVMOutputToStderr);
3595   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3596   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3597                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3598   if (result.get_jint() != JNI_OK) {
3599     vm_exit_during_initialization(); // no message or exception
3600   }
3601 
3602   universe_post_module_init();
3603 }
3604 
3605 // Phase 3. final setup - set security manager, system class loader and TCCL
3606 //
3607 //     This will instantiate and set the security manager, set the system class
3608 //     loader as well as the thread context class loader.  The security manager
3609 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3610 //     other modules or the application's classpath.
3611 static void call_initPhase3(TRAPS) {
3612   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3613   JavaValue result(T_VOID);
3614   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3615                                          vmSymbols::void_method_signature(), CHECK);
3616 }
3617 
3618 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3619   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3620 
3621   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3622     create_vm_init_libraries();
3623   }
3624 
3625   initialize_class(vmSymbols::java_lang_String(), CHECK);
3626 
3627   // Inject CompactStrings value after the static initializers for String ran.
3628   java_lang_String::set_compact_strings(CompactStrings);
3629 
3630   // Initialize java_lang.System (needed before creating the thread)
3631   initialize_class(vmSymbols::java_lang_System(), CHECK);
3632   // The VM creates & returns objects of this class. Make sure it's initialized.
3633   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3634   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3635   Handle thread_group = create_initial_thread_group(CHECK);
3636   Universe::set_main_thread_group(thread_group());
3637   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3638   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3639   main_thread->set_threadObj(thread_object);
3640   // Set thread status to running since main thread has
3641   // been started and running.
3642   java_lang_Thread::set_thread_status(thread_object,
3643                                       java_lang_Thread::RUNNABLE);
3644 
3645   // The VM creates objects of this class.
3646   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3647 
3648   // The VM preresolves methods to these classes. Make sure that they get initialized
3649   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3650   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3651 
3652   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3653   call_initPhase1(CHECK);
3654 
3655   // get the Java runtime name after java.lang.System is initialized
3656   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3657   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3658 
3659   // an instance of OutOfMemory exception has been allocated earlier
3660   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3661   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3662   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3663   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3664   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3665   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3666   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3667   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3668 }
3669 
3670 void Threads::initialize_jsr292_core_classes(TRAPS) {
3671   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3672 
3673   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3674   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3675   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3676   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3677 }
3678 
3679 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3680   extern void JDK_Version_init();
3681 
3682   // Preinitialize version info.
3683   VM_Version::early_initialize();
3684 
3685   // Check version
3686   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3687 
3688   // Initialize library-based TLS
3689   ThreadLocalStorage::init();
3690 
3691   // Initialize the output stream module
3692   ostream_init();
3693 
3694   // Process java launcher properties.
3695   Arguments::process_sun_java_launcher_properties(args);
3696 
3697   // Initialize the os module
3698   os::init();
3699 
3700   // Record VM creation timing statistics
3701   TraceVmCreationTime create_vm_timer;
3702   create_vm_timer.start();
3703 
3704   // Initialize system properties.
3705   Arguments::init_system_properties();
3706 
3707   // So that JDK version can be used as a discriminator when parsing arguments
3708   JDK_Version_init();
3709 
3710   // Update/Initialize System properties after JDK version number is known
3711   Arguments::init_version_specific_system_properties();
3712 
3713   // Make sure to initialize log configuration *before* parsing arguments
3714   LogConfiguration::initialize(create_vm_timer.begin_time());
3715 
3716   // Parse arguments
3717   // Note: this internally calls os::init_container_support()
3718   jint parse_result = Arguments::parse(args);
3719   if (parse_result != JNI_OK) return parse_result;
3720 
3721   os::init_before_ergo();
3722 
3723   jint ergo_result = Arguments::apply_ergo();
3724   if (ergo_result != JNI_OK) return ergo_result;
3725 
3726   // Final check of all ranges after ergonomics which may change values.
3727   if (!JVMFlagRangeList::check_ranges()) {
3728     return JNI_EINVAL;
3729   }
3730 
3731   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3732   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3733   if (!constraint_result) {
3734     return JNI_EINVAL;
3735   }
3736 
3737   JVMFlagWriteableList::mark_startup();
3738 
3739   if (PauseAtStartup) {
3740     os::pause();
3741   }
3742 
3743   HOTSPOT_VM_INIT_BEGIN();
3744 
3745   // Timing (must come after argument parsing)
3746   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3747 
3748   // Initialize the os module after parsing the args
3749   jint os_init_2_result = os::init_2();
3750   if (os_init_2_result != JNI_OK) return os_init_2_result;
3751 
3752 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3753   // Initialize assert poison page mechanism.
3754   if (ShowRegistersOnAssert) {
3755     initialize_assert_poison();
3756   }
3757 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3758 
3759   SafepointMechanism::initialize();
3760 
3761   jint adjust_after_os_result = Arguments::adjust_after_os();
3762   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3763 
3764   // Initialize output stream logging
3765   ostream_init_log();
3766 
3767   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3768   // Must be before create_vm_init_agents()
3769   if (Arguments::init_libraries_at_startup()) {
3770     convert_vm_init_libraries_to_agents();
3771   }
3772 
3773   // Launch -agentlib/-agentpath and converted -Xrun agents
3774   if (Arguments::init_agents_at_startup()) {
3775     create_vm_init_agents();
3776   }
3777 
3778   // Initialize Threads state
3779   _thread_list = NULL;
3780   _number_of_threads = 0;
3781   _number_of_non_daemon_threads = 0;
3782 
3783   // Initialize global data structures and create system classes in heap
3784   vm_init_globals();
3785 
3786 #if INCLUDE_JVMCI
3787   if (JVMCICounterSize > 0) {
3788     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3789     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3790   } else {
3791     JavaThread::_jvmci_old_thread_counters = NULL;
3792   }
3793 #endif // INCLUDE_JVMCI
3794 
3795   // Attach the main thread to this os thread
3796   JavaThread* main_thread = new JavaThread();
3797   main_thread->set_thread_state(_thread_in_vm);
3798   main_thread->initialize_thread_current();
3799   // must do this before set_active_handles
3800   main_thread->record_stack_base_and_size();
3801   main_thread->register_thread_stack_with_NMT();
3802   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3803 
3804   if (!main_thread->set_as_starting_thread()) {
3805     vm_shutdown_during_initialization(
3806                                       "Failed necessary internal allocation. Out of swap space");
3807     main_thread->smr_delete();
3808     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3809     return JNI_ENOMEM;
3810   }
3811 
3812   // Enable guard page *after* os::create_main_thread(), otherwise it would
3813   // crash Linux VM, see notes in os_linux.cpp.
3814   main_thread->create_stack_guard_pages();
3815 
3816   // Initialize Java-Level synchronization subsystem
3817   ObjectMonitor::Initialize();
3818 
3819   // Initialize global modules
3820   jint status = init_globals();
3821   if (status != JNI_OK) {
3822     main_thread->smr_delete();
3823     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3824     return status;
3825   }
3826 
3827   JFR_ONLY(Jfr::on_vm_init();)
3828 
3829   // Should be done after the heap is fully created
3830   main_thread->cache_global_variables();
3831 
3832   HandleMark hm;
3833 
3834   { MutexLocker mu(Threads_lock);
3835     Threads::add(main_thread);
3836   }
3837 
3838   // Any JVMTI raw monitors entered in onload will transition into
3839   // real raw monitor. VM is setup enough here for raw monitor enter.
3840   JvmtiExport::transition_pending_onload_raw_monitors();
3841 
3842   // Create the VMThread
3843   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3844 
3845   VMThread::create();
3846     Thread* vmthread = VMThread::vm_thread();
3847 
3848     if (!os::create_thread(vmthread, os::vm_thread)) {
3849       vm_exit_during_initialization("Cannot create VM thread. "
3850                                     "Out of system resources.");
3851     }
3852 
3853     // Wait for the VM thread to become ready, and VMThread::run to initialize
3854     // Monitors can have spurious returns, must always check another state flag
3855     {
3856       MutexLocker ml(Notify_lock);
3857       os::start_thread(vmthread);
3858       while (vmthread->active_handles() == NULL) {
3859         Notify_lock->wait();
3860       }
3861     }
3862   }
3863 
3864   assert(Universe::is_fully_initialized(), "not initialized");
3865   if (VerifyDuringStartup) {
3866     // Make sure we're starting with a clean slate.
3867     VM_Verify verify_op;
3868     VMThread::execute(&verify_op);
3869   }
3870 
3871   // We need this to update the java.vm.info property in case any flags used
3872   // to initially define it have been changed. This is needed for both CDS and
3873   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3874   // is initially computed. See Abstract_VM_Version::vm_info_string().
3875   // This update must happen before we initialize the java classes, but
3876   // after any initialization logic that might modify the flags.
3877   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3878 
3879   Thread* THREAD = Thread::current();
3880 
3881   // Always call even when there are not JVMTI environments yet, since environments
3882   // may be attached late and JVMTI must track phases of VM execution
3883   JvmtiExport::enter_early_start_phase();
3884 
3885   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3886   JvmtiExport::post_early_vm_start();
3887 
3888   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3889 
3890   quicken_jni_functions();
3891 
3892   // No more stub generation allowed after that point.
3893   StubCodeDesc::freeze();
3894 
3895   // Set flag that basic initialization has completed. Used by exceptions and various
3896   // debug stuff, that does not work until all basic classes have been initialized.
3897   set_init_completed();
3898 
3899   LogConfiguration::post_initialize();
3900   Metaspace::post_initialize();
3901 
3902   HOTSPOT_VM_INIT_END();
3903 
3904   // record VM initialization completion time
3905 #if INCLUDE_MANAGEMENT
3906   Management::record_vm_init_completed();
3907 #endif // INCLUDE_MANAGEMENT
3908 
3909   // Signal Dispatcher needs to be started before VMInit event is posted
3910   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3911 
3912   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3913   if (!DisableAttachMechanism) {
3914     AttachListener::vm_start();
3915     if (StartAttachListener || AttachListener::init_at_startup()) {
3916       AttachListener::init();
3917     }
3918   }
3919 
3920   // Launch -Xrun agents
3921   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3922   // back-end can launch with -Xdebug -Xrunjdwp.
3923   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3924     create_vm_init_libraries();
3925   }
3926 
3927   if (CleanChunkPoolAsync) {
3928     Chunk::start_chunk_pool_cleaner_task();
3929   }
3930 
3931   // initialize compiler(s)
3932 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3933 #if INCLUDE_JVMCI
3934   bool force_JVMCI_intialization = false;
3935   if (EnableJVMCI) {
3936     // Initialize JVMCI eagerly when it is explicitly requested.
3937     // Or when JVMCIPrintProperties is enabled.
3938     // The JVMCI Java initialization code will read this flag and
3939     // do the printing if it's set.
3940     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3941 
3942     if (!force_JVMCI_intialization) {
3943       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3944       // compilations via JVMCI will not actually block until JVMCI is initialized.
3945       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3946     }
3947   }
3948 #endif
3949   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3950   // Postpone completion of compiler initialization to after JVMCI
3951   // is initialized to avoid timeouts of blocking compilations.
3952   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3953     CompileBroker::compilation_init_phase2();
3954   }
3955 #endif
3956 
3957   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3958   // It is done after compilers are initialized, because otherwise compilations of
3959   // signature polymorphic MH intrinsics can be missed
3960   // (see SystemDictionary::find_method_handle_intrinsic).
3961   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3962 
3963   // This will initialize the module system.  Only java.base classes can be
3964   // loaded until phase 2 completes
3965   call_initPhase2(CHECK_JNI_ERR);
3966 
3967   // Always call even when there are not JVMTI environments yet, since environments
3968   // may be attached late and JVMTI must track phases of VM execution
3969   JvmtiExport::enter_start_phase();
3970 
3971   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3972   JvmtiExport::post_vm_start();
3973 
3974   // Final system initialization including security manager and system class loader
3975   call_initPhase3(CHECK_JNI_ERR);
3976 
3977   // cache the system and platform class loaders
3978   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3979 
3980 #if INCLUDE_CDS
3981   if (DumpSharedSpaces) {
3982     // capture the module path info from the ModuleEntryTable
3983     ClassLoader::initialize_module_path(THREAD);
3984   }
3985 #endif
3986 
3987 #if INCLUDE_JVMCI
3988   if (force_JVMCI_intialization) {
3989     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3990     CompileBroker::compilation_init_phase2();
3991   }
3992 #endif
3993 
3994   // Always call even when there are not JVMTI environments yet, since environments
3995   // may be attached late and JVMTI must track phases of VM execution
3996   JvmtiExport::enter_live_phase();
3997 
3998   // Make perfmemory accessible
3999   PerfMemory::set_accessible(true);
4000 
4001   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4002   JvmtiExport::post_vm_initialized();
4003 
4004   JFR_ONLY(Jfr::on_vm_start();)
4005 
4006 #if INCLUDE_MANAGEMENT
4007   Management::initialize(THREAD);
4008 
4009   if (HAS_PENDING_EXCEPTION) {
4010     // management agent fails to start possibly due to
4011     // configuration problem and is responsible for printing
4012     // stack trace if appropriate. Simply exit VM.
4013     vm_exit(1);
4014   }
4015 #endif // INCLUDE_MANAGEMENT
4016 
4017   if (MemProfiling)                   MemProfiler::engage();
4018   StatSampler::engage();
4019   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4020 
4021   BiasedLocking::init();
4022 
4023 #if INCLUDE_RTM_OPT
4024   RTMLockingCounters::init();
4025 #endif
4026 
4027   if (JDK_Version::current().post_vm_init_hook_enabled()) {
4028     call_postVMInitHook(THREAD);
4029     // The Java side of PostVMInitHook.run must deal with all
4030     // exceptions and provide means of diagnosis.
4031     if (HAS_PENDING_EXCEPTION) {
4032       CLEAR_PENDING_EXCEPTION;
4033     }
4034   }
4035 
4036   {
4037     MutexLocker ml(PeriodicTask_lock);
4038     // Make sure the WatcherThread can be started by WatcherThread::start()
4039     // or by dynamic enrollment.
4040     WatcherThread::make_startable();
4041     // Start up the WatcherThread if there are any periodic tasks
4042     // NOTE:  All PeriodicTasks should be registered by now. If they
4043     //   aren't, late joiners might appear to start slowly (we might
4044     //   take a while to process their first tick).
4045     if (PeriodicTask::num_tasks() > 0) {
4046       WatcherThread::start();
4047     }
4048   }
4049 
4050   create_vm_timer.end();
4051 #ifdef ASSERT
4052   _vm_complete = true;
4053 #endif
4054 
4055   if (DumpSharedSpaces) {
4056     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4057     ShouldNotReachHere();
4058   }
4059 
4060   return JNI_OK;
4061 }
4062 
4063 // type for the Agent_OnLoad and JVM_OnLoad entry points
4064 extern "C" {
4065   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4066 }
4067 // Find a command line agent library and return its entry point for
4068 //         -agentlib:  -agentpath:   -Xrun
4069 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4070 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4071                                     const char *on_load_symbols[],
4072                                     size_t num_symbol_entries) {
4073   OnLoadEntry_t on_load_entry = NULL;
4074   void *library = NULL;
4075 
4076   if (!agent->valid()) {
4077     char buffer[JVM_MAXPATHLEN];
4078     char ebuf[1024] = "";
4079     const char *name = agent->name();
4080     const char *msg = "Could not find agent library ";
4081 
4082     // First check to see if agent is statically linked into executable
4083     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4084       library = agent->os_lib();
4085     } else if (agent->is_absolute_path()) {
4086       library = os::dll_load(name, ebuf, sizeof ebuf);
4087       if (library == NULL) {
4088         const char *sub_msg = " in absolute path, with error: ";
4089         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4090         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4091         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4092         // If we can't find the agent, exit.
4093         vm_exit_during_initialization(buf, NULL);
4094         FREE_C_HEAP_ARRAY(char, buf);
4095       }
4096     } else {
4097       // Try to load the agent from the standard dll directory
4098       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4099                              name)) {
4100         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4101       }
4102       if (library == NULL) { // Try the library path directory.
4103         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4104           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4105         }
4106         if (library == NULL) {
4107           const char *sub_msg = " on the library path, with error: ";
4108           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4109 
4110           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4111                        strlen(ebuf) + strlen(sub_msg2) + 1;
4112           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4113           if (!agent->is_instrument_lib()) {
4114             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4115           } else {
4116             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4117           }
4118           // If we can't find the agent, exit.
4119           vm_exit_during_initialization(buf, NULL);
4120           FREE_C_HEAP_ARRAY(char, buf);
4121         }
4122       }
4123     }
4124     agent->set_os_lib(library);
4125     agent->set_valid();
4126   }
4127 
4128   // Find the OnLoad function.
4129   on_load_entry =
4130     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4131                                                           false,
4132                                                           on_load_symbols,
4133                                                           num_symbol_entries));
4134   return on_load_entry;
4135 }
4136 
4137 // Find the JVM_OnLoad entry point
4138 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4139   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4140   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4141 }
4142 
4143 // Find the Agent_OnLoad entry point
4144 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4145   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4146   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4147 }
4148 
4149 // For backwards compatibility with -Xrun
4150 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4151 // treated like -agentpath:
4152 // Must be called before agent libraries are created
4153 void Threads::convert_vm_init_libraries_to_agents() {
4154   AgentLibrary* agent;
4155   AgentLibrary* next;
4156 
4157   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4158     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4159     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4160 
4161     // If there is an JVM_OnLoad function it will get called later,
4162     // otherwise see if there is an Agent_OnLoad
4163     if (on_load_entry == NULL) {
4164       on_load_entry = lookup_agent_on_load(agent);
4165       if (on_load_entry != NULL) {
4166         // switch it to the agent list -- so that Agent_OnLoad will be called,
4167         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4168         Arguments::convert_library_to_agent(agent);
4169       } else {
4170         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4171       }
4172     }
4173   }
4174 }
4175 
4176 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4177 // Invokes Agent_OnLoad
4178 // Called very early -- before JavaThreads exist
4179 void Threads::create_vm_init_agents() {
4180   extern struct JavaVM_ main_vm;
4181   AgentLibrary* agent;
4182 
4183   JvmtiExport::enter_onload_phase();
4184 
4185   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4186     // CDS dumping does not support native JVMTI agent.
4187     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4188     if (DumpSharedSpaces) {
4189       if(!agent->is_instrument_lib()) {
4190         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4191       } else if (!AllowArchivingWithJavaAgent) {
4192         vm_exit_during_cds_dumping(
4193           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4194       }
4195     }
4196 
4197     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4198 
4199     if (on_load_entry != NULL) {
4200       // Invoke the Agent_OnLoad function
4201       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4202       if (err != JNI_OK) {
4203         vm_exit_during_initialization("agent library failed to init", agent->name());
4204       }
4205     } else {
4206       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4207     }
4208   }
4209 
4210   JvmtiExport::enter_primordial_phase();
4211 }
4212 
4213 extern "C" {
4214   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4215 }
4216 
4217 void Threads::shutdown_vm_agents() {
4218   // Send any Agent_OnUnload notifications
4219   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4220   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4221   extern struct JavaVM_ main_vm;
4222   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4223 
4224     // Find the Agent_OnUnload function.
4225     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4226                                                    os::find_agent_function(agent,
4227                                                    false,
4228                                                    on_unload_symbols,
4229                                                    num_symbol_entries));
4230 
4231     // Invoke the Agent_OnUnload function
4232     if (unload_entry != NULL) {
4233       JavaThread* thread = JavaThread::current();
4234       ThreadToNativeFromVM ttn(thread);
4235       HandleMark hm(thread);
4236       (*unload_entry)(&main_vm);
4237     }
4238   }
4239 }
4240 
4241 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4242 // Invokes JVM_OnLoad
4243 void Threads::create_vm_init_libraries() {
4244   extern struct JavaVM_ main_vm;
4245   AgentLibrary* agent;
4246 
4247   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4248     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4249 
4250     if (on_load_entry != NULL) {
4251       // Invoke the JVM_OnLoad function
4252       JavaThread* thread = JavaThread::current();
4253       ThreadToNativeFromVM ttn(thread);
4254       HandleMark hm(thread);
4255       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4256       if (err != JNI_OK) {
4257         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4258       }
4259     } else {
4260       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4261     }
4262   }
4263 }
4264 
4265 
4266 // Last thread running calls java.lang.Shutdown.shutdown()
4267 void JavaThread::invoke_shutdown_hooks() {
4268   HandleMark hm(this);
4269 
4270   // We could get here with a pending exception, if so clear it now.
4271   if (this->has_pending_exception()) {
4272     this->clear_pending_exception();
4273   }
4274 
4275   EXCEPTION_MARK;
4276   Klass* shutdown_klass =
4277     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4278                                       THREAD);
4279   if (shutdown_klass != NULL) {
4280     // SystemDictionary::resolve_or_null will return null if there was
4281     // an exception.  If we cannot load the Shutdown class, just don't
4282     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4283     // won't be run.  Note that if a shutdown hook was registered,
4284     // the Shutdown class would have already been loaded
4285     // (Runtime.addShutdownHook will load it).
4286     JavaValue result(T_VOID);
4287     JavaCalls::call_static(&result,
4288                            shutdown_klass,
4289                            vmSymbols::shutdown_method_name(),
4290                            vmSymbols::void_method_signature(),
4291                            THREAD);
4292   }
4293   CLEAR_PENDING_EXCEPTION;
4294 }
4295 
4296 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4297 // the program falls off the end of main(). Another VM exit path is through
4298 // vm_exit() when the program calls System.exit() to return a value or when
4299 // there is a serious error in VM. The two shutdown paths are not exactly
4300 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4301 // and VM_Exit op at VM level.
4302 //
4303 // Shutdown sequence:
4304 //   + Shutdown native memory tracking if it is on
4305 //   + Wait until we are the last non-daemon thread to execute
4306 //     <-- every thing is still working at this moment -->
4307 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4308 //        shutdown hooks
4309 //   + Call before_exit(), prepare for VM exit
4310 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4311 //        currently the only user of this mechanism is File.deleteOnExit())
4312 //      > stop StatSampler, watcher thread, CMS threads,
4313 //        post thread end and vm death events to JVMTI,
4314 //        stop signal thread
4315 //   + Call JavaThread::exit(), it will:
4316 //      > release JNI handle blocks, remove stack guard pages
4317 //      > remove this thread from Threads list
4318 //     <-- no more Java code from this thread after this point -->
4319 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4320 //     the compiler threads at safepoint
4321 //     <-- do not use anything that could get blocked by Safepoint -->
4322 //   + Disable tracing at JNI/JVM barriers
4323 //   + Set _vm_exited flag for threads that are still running native code
4324 //   + Call exit_globals()
4325 //      > deletes tty
4326 //      > deletes PerfMemory resources
4327 //   + Delete this thread
4328 //   + Return to caller
4329 
4330 bool Threads::destroy_vm() {
4331   JavaThread* thread = JavaThread::current();
4332 
4333 #ifdef ASSERT
4334   _vm_complete = false;
4335 #endif
4336   // Wait until we are the last non-daemon thread to execute
4337   { MutexLocker nu(Threads_lock);
4338     while (Threads::number_of_non_daemon_threads() > 1)
4339       // This wait should make safepoint checks, wait without a timeout,
4340       // and wait as a suspend-equivalent condition.
4341       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4342                          Mutex::_as_suspend_equivalent_flag);
4343   }
4344 
4345   EventShutdown e;
4346   if (e.should_commit()) {
4347     e.set_reason("No remaining non-daemon Java threads");
4348     e.commit();
4349   }
4350 
4351   // Hang forever on exit if we are reporting an error.
4352   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4353     os::infinite_sleep();
4354   }
4355   os::wait_for_keypress_at_exit();
4356 
4357   // run Java level shutdown hooks
4358   thread->invoke_shutdown_hooks();
4359 
4360   before_exit(thread);
4361 
4362   thread->exit(true);
4363 
4364   // Stop VM thread.
4365   {
4366     // 4945125 The vm thread comes to a safepoint during exit.
4367     // GC vm_operations can get caught at the safepoint, and the
4368     // heap is unparseable if they are caught. Grab the Heap_lock
4369     // to prevent this. The GC vm_operations will not be able to
4370     // queue until after the vm thread is dead. After this point,
4371     // we'll never emerge out of the safepoint before the VM exits.
4372 
4373     MutexLockerEx ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4374 
4375     VMThread::wait_for_vm_thread_exit();
4376     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4377     VMThread::destroy();
4378   }
4379 
4380   // Now, all Java threads are gone except daemon threads. Daemon threads
4381   // running Java code or in VM are stopped by the Safepoint. However,
4382   // daemon threads executing native code are still running.  But they
4383   // will be stopped at native=>Java/VM barriers. Note that we can't
4384   // simply kill or suspend them, as it is inherently deadlock-prone.
4385 
4386   VM_Exit::set_vm_exited();
4387 
4388   // Clean up ideal graph printers after the VMThread has started
4389   // the final safepoint which will block all the Compiler threads.
4390   // Note that this Thread has already logically exited so the
4391   // clean_up() function's use of a JavaThreadIteratorWithHandle
4392   // would be a problem except set_vm_exited() has remembered the
4393   // shutdown thread which is granted a policy exception.
4394 #if defined(COMPILER2) && !defined(PRODUCT)
4395   IdealGraphPrinter::clean_up();
4396 #endif
4397 
4398   notify_vm_shutdown();
4399 
4400   // exit_globals() will delete tty
4401   exit_globals();
4402 
4403   // We are after VM_Exit::set_vm_exited() so we can't call
4404   // thread->smr_delete() or we will block on the Threads_lock.
4405   // Deleting the shutdown thread here is safe because another
4406   // JavaThread cannot have an active ThreadsListHandle for
4407   // this JavaThread.
4408   delete thread;
4409 
4410 #if INCLUDE_JVMCI
4411   if (JVMCICounterSize > 0) {
4412     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4413   }
4414 #endif
4415 
4416   LogConfiguration::finalize();
4417 
4418   return true;
4419 }
4420 
4421 
4422 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4423   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4424   return is_supported_jni_version(version);
4425 }
4426 
4427 
4428 jboolean Threads::is_supported_jni_version(jint version) {
4429   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4430   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4431   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4432   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4433   if (version == JNI_VERSION_9) return JNI_TRUE;
4434   if (version == JNI_VERSION_10) return JNI_TRUE;
4435   return JNI_FALSE;
4436 }
4437 
4438 
4439 void Threads::add(JavaThread* p, bool force_daemon) {
4440   // The threads lock must be owned at this point
4441   assert(Threads_lock->owned_by_self(), "must have threads lock");
4442 
4443   BarrierSet::barrier_set()->on_thread_attach(p);
4444 
4445   p->set_next(_thread_list);
4446   _thread_list = p;
4447 
4448   // Once a JavaThread is added to the Threads list, smr_delete() has
4449   // to be used to delete it. Otherwise we can just delete it directly.
4450   p->set_on_thread_list();
4451 
4452   _number_of_threads++;
4453   oop threadObj = p->threadObj();
4454   bool daemon = true;
4455   // Bootstrapping problem: threadObj can be null for initial
4456   // JavaThread (or for threads attached via JNI)
4457   if ((!force_daemon) && !is_daemon((threadObj))) {
4458     _number_of_non_daemon_threads++;
4459     daemon = false;
4460   }
4461 
4462   ThreadService::add_thread(p, daemon);
4463 
4464   // Maintain fast thread list
4465   ThreadsSMRSupport::add_thread(p);
4466 
4467   // Possible GC point.
4468   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4469 }
4470 
4471 void Threads::remove(JavaThread* p) {
4472 
4473   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4474   ObjectSynchronizer::omFlush(p);
4475 
4476   // Extra scope needed for Thread_lock, so we can check
4477   // that we do not remove thread without safepoint code notice
4478   { MutexLocker ml(Threads_lock);
4479 
4480     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4481 
4482     // Maintain fast thread list
4483     ThreadsSMRSupport::remove_thread(p);
4484 
4485     JavaThread* current = _thread_list;
4486     JavaThread* prev    = NULL;
4487 
4488     while (current != p) {
4489       prev    = current;
4490       current = current->next();
4491     }
4492 
4493     if (prev) {
4494       prev->set_next(current->next());
4495     } else {
4496       _thread_list = p->next();
4497     }
4498 
4499     _number_of_threads--;
4500     oop threadObj = p->threadObj();
4501     bool daemon = true;
4502     if (!is_daemon(threadObj)) {
4503       _number_of_non_daemon_threads--;
4504       daemon = false;
4505 
4506       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4507       // on destroy_vm will wake up.
4508       if (number_of_non_daemon_threads() == 1) {
4509         Threads_lock->notify_all();
4510       }
4511     }
4512     ThreadService::remove_thread(p, daemon);
4513 
4514     // Make sure that safepoint code disregard this thread. This is needed since
4515     // the thread might mess around with locks after this point. This can cause it
4516     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4517     // of this thread since it is removed from the queue.
4518     p->set_terminated_value();
4519   } // unlock Threads_lock
4520 
4521   // Since Events::log uses a lock, we grab it outside the Threads_lock
4522   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4523 }
4524 
4525 // Operations on the Threads list for GC.  These are not explicitly locked,
4526 // but the garbage collector must provide a safe context for them to run.
4527 // In particular, these things should never be called when the Threads_lock
4528 // is held by some other thread. (Note: the Safepoint abstraction also
4529 // uses the Threads_lock to guarantee this property. It also makes sure that
4530 // all threads gets blocked when exiting or starting).
4531 
4532 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4533   ALL_JAVA_THREADS(p) {
4534     p->oops_do(f, cf);
4535   }
4536   VMThread::vm_thread()->oops_do(f, cf);
4537 }
4538 
4539 void Threads::change_thread_claim_parity() {
4540   // Set the new claim parity.
4541   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4542          "Not in range.");
4543   _thread_claim_parity++;
4544   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4545   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4546          "Not in range.");
4547 }
4548 
4549 #ifdef ASSERT
4550 void Threads::assert_all_threads_claimed() {
4551   ALL_JAVA_THREADS(p) {
4552     const int thread_parity = p->oops_do_parity();
4553     assert((thread_parity == _thread_claim_parity),
4554            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4555   }
4556   VMThread* vmt = VMThread::vm_thread();
4557   const int thread_parity = vmt->oops_do_parity();
4558   assert((thread_parity == _thread_claim_parity),
4559          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4560 }
4561 #endif // ASSERT
4562 
4563 class ParallelOopsDoThreadClosure : public ThreadClosure {
4564 private:
4565   OopClosure* _f;
4566   CodeBlobClosure* _cf;
4567 public:
4568   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4569   void do_thread(Thread* t) {
4570     t->oops_do(_f, _cf);
4571   }
4572 };
4573 
4574 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4575   ParallelOopsDoThreadClosure tc(f, cf);
4576   possibly_parallel_threads_do(is_par, &tc);
4577 }
4578 
4579 void Threads::nmethods_do(CodeBlobClosure* cf) {
4580   ALL_JAVA_THREADS(p) {
4581     // This is used by the code cache sweeper to mark nmethods that are active
4582     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4583     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4584     if(!p->is_Code_cache_sweeper_thread()) {
4585       p->nmethods_do(cf);
4586     }
4587   }
4588 }
4589 
4590 void Threads::metadata_do(void f(Metadata*)) {
4591   ALL_JAVA_THREADS(p) {
4592     p->metadata_do(f);
4593   }
4594 }
4595 
4596 class ThreadHandlesClosure : public ThreadClosure {
4597   void (*_f)(Metadata*);
4598  public:
4599   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4600   virtual void do_thread(Thread* thread) {
4601     thread->metadata_handles_do(_f);
4602   }
4603 };
4604 
4605 void Threads::metadata_handles_do(void f(Metadata*)) {
4606   // Only walk the Handles in Thread.
4607   ThreadHandlesClosure handles_closure(f);
4608   threads_do(&handles_closure);
4609 }
4610 
4611 void Threads::deoptimized_wrt_marked_nmethods() {
4612   ALL_JAVA_THREADS(p) {
4613     p->deoptimized_wrt_marked_nmethods();
4614   }
4615 }
4616 
4617 
4618 // Get count Java threads that are waiting to enter the specified monitor.
4619 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4620                                                          int count,
4621                                                          address monitor) {
4622   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4623 
4624   int i = 0;
4625   DO_JAVA_THREADS(t_list, p) {
4626     if (!p->can_call_java()) continue;
4627 
4628     address pending = (address)p->current_pending_monitor();
4629     if (pending == monitor) {             // found a match
4630       if (i < count) result->append(p);   // save the first count matches
4631       i++;
4632     }
4633   }
4634 
4635   return result;
4636 }
4637 
4638 
4639 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4640                                                       address owner) {
4641   // NULL owner means not locked so we can skip the search
4642   if (owner == NULL) return NULL;
4643 
4644   DO_JAVA_THREADS(t_list, p) {
4645     // first, see if owner is the address of a Java thread
4646     if (owner == (address)p) return p;
4647   }
4648 
4649   // Cannot assert on lack of success here since this function may be
4650   // used by code that is trying to report useful problem information
4651   // like deadlock detection.
4652   if (UseHeavyMonitors) return NULL;
4653 
4654   // If we didn't find a matching Java thread and we didn't force use of
4655   // heavyweight monitors, then the owner is the stack address of the
4656   // Lock Word in the owning Java thread's stack.
4657   //
4658   JavaThread* the_owner = NULL;
4659   DO_JAVA_THREADS(t_list, q) {
4660     if (q->is_lock_owned(owner)) {
4661       the_owner = q;
4662       break;
4663     }
4664   }
4665 
4666   // cannot assert on lack of success here; see above comment
4667   return the_owner;
4668 }
4669 
4670 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4671 void Threads::print_on(outputStream* st, bool print_stacks,
4672                        bool internal_format, bool print_concurrent_locks,
4673                        bool print_extended_info) {
4674   char buf[32];
4675   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4676 
4677   st->print_cr("Full thread dump %s (%s %s):",
4678                VM_Version::vm_name(),
4679                VM_Version::vm_release(),
4680                VM_Version::vm_info_string());
4681   st->cr();
4682 
4683 #if INCLUDE_SERVICES
4684   // Dump concurrent locks
4685   ConcurrentLocksDump concurrent_locks;
4686   if (print_concurrent_locks) {
4687     concurrent_locks.dump_at_safepoint();
4688   }
4689 #endif // INCLUDE_SERVICES
4690 
4691   ThreadsSMRSupport::print_info_on(st);
4692   st->cr();
4693 
4694   ALL_JAVA_THREADS(p) {
4695     ResourceMark rm;
4696     p->print_on(st, print_extended_info);
4697     if (print_stacks) {
4698       if (internal_format) {
4699         p->trace_stack();
4700       } else {
4701         p->print_stack_on(st);
4702       }
4703     }
4704     st->cr();
4705 #if INCLUDE_SERVICES
4706     if (print_concurrent_locks) {
4707       concurrent_locks.print_locks_on(p, st);
4708     }
4709 #endif // INCLUDE_SERVICES
4710   }
4711 
4712   VMThread::vm_thread()->print_on(st);
4713   st->cr();
4714   Universe::heap()->print_gc_threads_on(st);
4715   WatcherThread* wt = WatcherThread::watcher_thread();
4716   if (wt != NULL) {
4717     wt->print_on(st);
4718     st->cr();
4719   }
4720 
4721   st->flush();
4722 }
4723 
4724 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4725                              int buflen, bool* found_current) {
4726   if (this_thread != NULL) {
4727     bool is_current = (current == this_thread);
4728     *found_current = *found_current || is_current;
4729     st->print("%s", is_current ? "=>" : "  ");
4730 
4731     st->print(PTR_FORMAT, p2i(this_thread));
4732     st->print(" ");
4733     this_thread->print_on_error(st, buf, buflen);
4734     st->cr();
4735   }
4736 }
4737 
4738 class PrintOnErrorClosure : public ThreadClosure {
4739   outputStream* _st;
4740   Thread* _current;
4741   char* _buf;
4742   int _buflen;
4743   bool* _found_current;
4744  public:
4745   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4746                       int buflen, bool* found_current) :
4747    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4748 
4749   virtual void do_thread(Thread* thread) {
4750     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4751   }
4752 };
4753 
4754 // Threads::print_on_error() is called by fatal error handler. It's possible
4755 // that VM is not at safepoint and/or current thread is inside signal handler.
4756 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4757 // memory (even in resource area), it might deadlock the error handler.
4758 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4759                              int buflen) {
4760   ThreadsSMRSupport::print_info_on(st);
4761   st->cr();
4762 
4763   bool found_current = false;
4764   st->print_cr("Java Threads: ( => current thread )");
4765   ALL_JAVA_THREADS(thread) {
4766     print_on_error(thread, st, current, buf, buflen, &found_current);
4767   }
4768   st->cr();
4769 
4770   st->print_cr("Other Threads:");
4771   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4772   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4773 
4774   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4775   Universe::heap()->gc_threads_do(&print_closure);
4776 
4777   if (!found_current) {
4778     st->cr();
4779     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4780     current->print_on_error(st, buf, buflen);
4781     st->cr();
4782   }
4783   st->cr();
4784 
4785   st->print_cr("Threads with active compile tasks:");
4786   print_threads_compiling(st, buf, buflen);
4787 }
4788 
4789 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4790   ALL_JAVA_THREADS(thread) {
4791     if (thread->is_Compiler_thread()) {
4792       CompilerThread* ct = (CompilerThread*) thread;
4793 
4794       // Keep task in local variable for NULL check.
4795       // ct->_task might be set to NULL by concurring compiler thread
4796       // because it completed the compilation. The task is never freed,
4797       // though, just returned to a free list.
4798       CompileTask* task = ct->task();
4799       if (task != NULL) {
4800         thread->print_name_on_error(st, buf, buflen);
4801         st->print("  ");
4802         task->print(st, NULL, short_form, true);
4803       }
4804     }
4805   }
4806 }
4807 
4808 
4809 // Internal SpinLock and Mutex
4810 // Based on ParkEvent
4811 
4812 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4813 //
4814 // We employ SpinLocks _only for low-contention, fixed-length
4815 // short-duration critical sections where we're concerned
4816 // about native mutex_t or HotSpot Mutex:: latency.
4817 // The mux construct provides a spin-then-block mutual exclusion
4818 // mechanism.
4819 //
4820 // Testing has shown that contention on the ListLock guarding gFreeList
4821 // is common.  If we implement ListLock as a simple SpinLock it's common
4822 // for the JVM to devolve to yielding with little progress.  This is true
4823 // despite the fact that the critical sections protected by ListLock are
4824 // extremely short.
4825 //
4826 // TODO-FIXME: ListLock should be of type SpinLock.
4827 // We should make this a 1st-class type, integrated into the lock
4828 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4829 // should have sufficient padding to avoid false-sharing and excessive
4830 // cache-coherency traffic.
4831 
4832 
4833 typedef volatile int SpinLockT;
4834 
4835 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4836   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4837     return;   // normal fast-path return
4838   }
4839 
4840   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4841   int ctr = 0;
4842   int Yields = 0;
4843   for (;;) {
4844     while (*adr != 0) {
4845       ++ctr;
4846       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4847         if (Yields > 5) {
4848           os::naked_short_sleep(1);
4849         } else {
4850           os::naked_yield();
4851           ++Yields;
4852         }
4853       } else {
4854         SpinPause();
4855       }
4856     }
4857     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4858   }
4859 }
4860 
4861 void Thread::SpinRelease(volatile int * adr) {
4862   assert(*adr != 0, "invariant");
4863   OrderAccess::fence();      // guarantee at least release consistency.
4864   // Roach-motel semantics.
4865   // It's safe if subsequent LDs and STs float "up" into the critical section,
4866   // but prior LDs and STs within the critical section can't be allowed
4867   // to reorder or float past the ST that releases the lock.
4868   // Loads and stores in the critical section - which appear in program
4869   // order before the store that releases the lock - must also appear
4870   // before the store that releases the lock in memory visibility order.
4871   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4872   // the ST of 0 into the lock-word which releases the lock, so fence
4873   // more than covers this on all platforms.
4874   *adr = 0;
4875 }
4876 
4877 // muxAcquire and muxRelease:
4878 //
4879 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4880 //    The LSB of the word is set IFF the lock is held.
4881 //    The remainder of the word points to the head of a singly-linked list
4882 //    of threads blocked on the lock.
4883 //
4884 // *  The current implementation of muxAcquire-muxRelease uses its own
4885 //    dedicated Thread._MuxEvent instance.  If we're interested in
4886 //    minimizing the peak number of extant ParkEvent instances then
4887 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4888 //    as certain invariants were satisfied.  Specifically, care would need
4889 //    to be taken with regards to consuming unpark() "permits".
4890 //    A safe rule of thumb is that a thread would never call muxAcquire()
4891 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4892 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4893 //    consume an unpark() permit intended for monitorenter, for instance.
4894 //    One way around this would be to widen the restricted-range semaphore
4895 //    implemented in park().  Another alternative would be to provide
4896 //    multiple instances of the PlatformEvent() for each thread.  One
4897 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4898 //
4899 // *  Usage:
4900 //    -- Only as leaf locks
4901 //    -- for short-term locking only as muxAcquire does not perform
4902 //       thread state transitions.
4903 //
4904 // Alternatives:
4905 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4906 //    but with parking or spin-then-park instead of pure spinning.
4907 // *  Use Taura-Oyama-Yonenzawa locks.
4908 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4909 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4910 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4911 //    acquiring threads use timers (ParkTimed) to detect and recover from
4912 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4913 //    boundaries by using placement-new.
4914 // *  Augment MCS with advisory back-link fields maintained with CAS().
4915 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4916 //    The validity of the backlinks must be ratified before we trust the value.
4917 //    If the backlinks are invalid the exiting thread must back-track through the
4918 //    the forward links, which are always trustworthy.
4919 // *  Add a successor indication.  The LockWord is currently encoded as
4920 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4921 //    to provide the usual futile-wakeup optimization.
4922 //    See RTStt for details.
4923 //
4924 
4925 
4926 const intptr_t LOCKBIT = 1;
4927 
4928 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4929   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4930   if (w == 0) return;
4931   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4932     return;
4933   }
4934 
4935   ParkEvent * const Self = Thread::current()->_MuxEvent;
4936   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4937   for (;;) {
4938     int its = (os::is_MP() ? 100 : 0) + 1;
4939 
4940     // Optional spin phase: spin-then-park strategy
4941     while (--its >= 0) {
4942       w = *Lock;
4943       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4944         return;
4945       }
4946     }
4947 
4948     Self->reset();
4949     Self->OnList = intptr_t(Lock);
4950     // The following fence() isn't _strictly necessary as the subsequent
4951     // CAS() both serializes execution and ratifies the fetched *Lock value.
4952     OrderAccess::fence();
4953     for (;;) {
4954       w = *Lock;
4955       if ((w & LOCKBIT) == 0) {
4956         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4957           Self->OnList = 0;   // hygiene - allows stronger asserts
4958           return;
4959         }
4960         continue;      // Interference -- *Lock changed -- Just retry
4961       }
4962       assert(w & LOCKBIT, "invariant");
4963       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4964       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4965     }
4966 
4967     while (Self->OnList != 0) {
4968       Self->park();
4969     }
4970   }
4971 }
4972 
4973 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4974   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4975   if (w == 0) return;
4976   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4977     return;
4978   }
4979 
4980   ParkEvent * ReleaseAfter = NULL;
4981   if (ev == NULL) {
4982     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4983   }
4984   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4985   for (;;) {
4986     guarantee(ev->OnList == 0, "invariant");
4987     int its = (os::is_MP() ? 100 : 0) + 1;
4988 
4989     // Optional spin phase: spin-then-park strategy
4990     while (--its >= 0) {
4991       w = *Lock;
4992       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4993         if (ReleaseAfter != NULL) {
4994           ParkEvent::Release(ReleaseAfter);
4995         }
4996         return;
4997       }
4998     }
4999 
5000     ev->reset();
5001     ev->OnList = intptr_t(Lock);
5002     // The following fence() isn't _strictly necessary as the subsequent
5003     // CAS() both serializes execution and ratifies the fetched *Lock value.
5004     OrderAccess::fence();
5005     for (;;) {
5006       w = *Lock;
5007       if ((w & LOCKBIT) == 0) {
5008         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5009           ev->OnList = 0;
5010           // We call ::Release while holding the outer lock, thus
5011           // artificially lengthening the critical section.
5012           // Consider deferring the ::Release() until the subsequent unlock(),
5013           // after we've dropped the outer lock.
5014           if (ReleaseAfter != NULL) {
5015             ParkEvent::Release(ReleaseAfter);
5016           }
5017           return;
5018         }
5019         continue;      // Interference -- *Lock changed -- Just retry
5020       }
5021       assert(w & LOCKBIT, "invariant");
5022       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5023       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
5024     }
5025 
5026     while (ev->OnList != 0) {
5027       ev->park();
5028     }
5029   }
5030 }
5031 
5032 // Release() must extract a successor from the list and then wake that thread.
5033 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5034 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5035 // Release() would :
5036 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5037 // (B) Extract a successor from the private list "in-hand"
5038 // (C) attempt to CAS() the residual back into *Lock over null.
5039 //     If there were any newly arrived threads and the CAS() would fail.
5040 //     In that case Release() would detach the RATs, re-merge the list in-hand
5041 //     with the RATs and repeat as needed.  Alternately, Release() might
5042 //     detach and extract a successor, but then pass the residual list to the wakee.
5043 //     The wakee would be responsible for reattaching and remerging before it
5044 //     competed for the lock.
5045 //
5046 // Both "pop" and DMR are immune from ABA corruption -- there can be
5047 // multiple concurrent pushers, but only one popper or detacher.
5048 // This implementation pops from the head of the list.  This is unfair,
5049 // but tends to provide excellent throughput as hot threads remain hot.
5050 // (We wake recently run threads first).
5051 //
5052 // All paths through muxRelease() will execute a CAS.
5053 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5054 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5055 // executed within the critical section are complete and globally visible before the
5056 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5057 void Thread::muxRelease(volatile intptr_t * Lock)  {
5058   for (;;) {
5059     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5060     assert(w & LOCKBIT, "invariant");
5061     if (w == LOCKBIT) return;
5062     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5063     assert(List != NULL, "invariant");
5064     assert(List->OnList == intptr_t(Lock), "invariant");
5065     ParkEvent * const nxt = List->ListNext;
5066     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5067 
5068     // The following CAS() releases the lock and pops the head element.
5069     // The CAS() also ratifies the previously fetched lock-word value.
5070     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5071       continue;
5072     }
5073     List->OnList = 0;
5074     OrderAccess::fence();
5075     List->unpark();
5076     return;
5077   }
5078 }
5079 
5080 
5081 void Threads::verify() {
5082   ALL_JAVA_THREADS(p) {
5083     p->verify();
5084   }
5085   VMThread* thread = VMThread::vm_thread();
5086   if (thread != NULL) thread->verify();
5087 }