1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvmtifiles/jvmtiEnv.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logConfiguration.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/metaspaceShared.hpp"
  50 #include "memory/oopFactory.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "memory/universe.hpp"
  53 #include "oops/access.inline.hpp"
  54 #include "oops/instanceKlass.hpp"
  55 #include "oops/objArrayOop.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/symbol.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvm_misc.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/fieldDescriptor.inline.hpp"
  67 #include "runtime/flags/jvmFlagConstraintList.hpp"
  68 #include "runtime/flags/jvmFlagRangeList.hpp"
  69 #include "runtime/flags/jvmFlagWriteableList.hpp"
  70 #include "runtime/deoptimization.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/handshake.hpp"
  74 #include "runtime/init.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/javaCalls.hpp"
  78 #include "runtime/jniHandles.inline.hpp"
  79 #include "runtime/jniPeriodicChecker.hpp"
  80 #include "runtime/memprofiler.hpp"
  81 #include "runtime/mutexLocker.hpp"
  82 #include "runtime/objectMonitor.hpp"
  83 #include "runtime/orderAccess.hpp"
  84 #include "runtime/osThread.hpp"
  85 #include "runtime/prefetch.inline.hpp"
  86 #include "runtime/safepoint.hpp"
  87 #include "runtime/safepointMechanism.inline.hpp"
  88 #include "runtime/safepointVerifiers.hpp"
  89 #include "runtime/sharedRuntime.hpp"
  90 #include "runtime/statSampler.hpp"
  91 #include "runtime/stubRoutines.hpp"
  92 #include "runtime/sweeper.hpp"
  93 #include "runtime/task.hpp"
  94 #include "runtime/thread.inline.hpp"
  95 #include "runtime/threadCritical.hpp"
  96 #include "runtime/threadSMR.inline.hpp"
  97 #include "runtime/threadStatisticalInfo.hpp"
  98 #include "runtime/timer.hpp"
  99 #include "runtime/timerTrace.hpp"
 100 #include "runtime/vframe.inline.hpp"
 101 #include "runtime/vframeArray.hpp"
 102 #include "runtime/vframe_hp.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "runtime/vmOperations.hpp"
 105 #include "runtime/vm_version.hpp"
 106 #include "services/attachListener.hpp"
 107 #include "services/management.hpp"
 108 #include "services/memTracker.hpp"
 109 #include "services/threadService.hpp"
 110 #include "utilities/align.hpp"
 111 #include "utilities/copy.hpp"
 112 #include "utilities/defaultStream.hpp"
 113 #include "utilities/dtrace.hpp"
 114 #include "utilities/events.hpp"
 115 #include "utilities/macros.hpp"
 116 #include "utilities/preserveException.hpp"
 117 #include "utilities/singleWriterSynchronizer.hpp"
 118 #include "utilities/vmError.hpp"
 119 #if INCLUDE_JVMCI
 120 #include "jvmci/jvmciCompiler.hpp"
 121 #include "jvmci/jvmciRuntime.hpp"
 122 #include "logging/logHandle.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const int alignment = markOopDesc::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_self_raw_id(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // This initial value ==> never claimed.
 242   _oops_do_parity = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   debug_only(_allow_allocation_count = 0;)
 254   NOT_PRODUCT(_allow_safepoint_count = 0;)
 255   NOT_PRODUCT(_skip_gcalot = false;)
 256   _jvmti_env_iteration_count = 0;
 257   set_allocated_bytes(0);
 258   _vm_operation_started_count = 0;
 259   _vm_operation_completed_count = 0;
 260   _current_pending_monitor = NULL;
 261   _current_pending_monitor_is_from_java = true;
 262   _current_waiting_monitor = NULL;
 263   _num_nested_signal = 0;
 264   omFreeList = NULL;
 265   omFreeCount = 0;
 266   omFreeProvision = 32;
 267   omInUseList = NULL;
 268   omInUseCount = 0;
 269 
 270 #ifdef ASSERT
 271   _visited_for_critical_count = false;
 272 #endif
 273 
 274   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 275                          Monitor::_safepoint_check_sometimes);
 276   _suspend_flags = 0;
 277 
 278   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 279   _hashStateX = os::random();
 280   _hashStateY = 842502087;
 281   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 282   _hashStateW = 273326509;
 283 
 284   _OnTrap   = 0;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _SleepEvent  = ParkEvent::Allocate(this);
 297   _MuxEvent    = ParkEvent::Allocate(this);
 298 
 299 #ifdef CHECK_UNHANDLED_OOPS
 300   if (CheckUnhandledOops) {
 301     _unhandled_oops = new UnhandledOops(this);
 302   }
 303 #endif // CHECK_UNHANDLED_OOPS
 304 #ifdef ASSERT
 305   if (UseBiasedLocking) {
 306     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 307     assert(this == _real_malloc_address ||
 308            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 309            "bug in forced alignment of thread objects");
 310   }
 311 #endif // ASSERT
 312 
 313   // Notify the barrier set that a thread is being created. The initial
 314   // thread is created before the barrier set is available.  The call to
 315   // BarrierSet::on_thread_create() for this thread is therefore deferred
 316   // to BarrierSet::set_barrier_set().
 317   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 318   if (barrier_set != NULL) {
 319     barrier_set->on_thread_create(this);
 320   } else {
 321     // Only the main thread should be created before the barrier set
 322     // and that happens just before Thread::current is set. No other thread
 323     // can attach as the VM is not created yet, so they can't execute this code.
 324     // If the main thread creates other threads before the barrier set that is an error.
 325     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 326   }
 327 }
 328 
 329 void Thread::initialize_thread_current() {
 330 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 331   assert(_thr_current == NULL, "Thread::current already initialized");
 332   _thr_current = this;
 333 #endif
 334   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 335   ThreadLocalStorage::set_thread(this);
 336   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 337 }
 338 
 339 void Thread::clear_thread_current() {
 340   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 341 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 342   _thr_current = NULL;
 343 #endif
 344   ThreadLocalStorage::set_thread(NULL);
 345 }
 346 
 347 void Thread::record_stack_base_and_size() {
 348   // Note: at this point, Thread object is not yet initialized. Do not rely on
 349   // any members being initialized. Do not rely on Thread::current() being set.
 350   // If possible, refrain from doing anything which may crash or assert since
 351   // quite probably those crash dumps will be useless.
 352   set_stack_base(os::current_stack_base());
 353   set_stack_size(os::current_stack_size());
 354 
 355 #ifdef SOLARIS
 356   if (os::is_primordial_thread()) {
 357     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 358   }
 359 #endif
 360 
 361   // Set stack limits after thread is initialized.
 362   if (is_Java_thread()) {
 363     ((JavaThread*) this)->set_stack_overflow_limit();
 364     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 365   }
 366 }
 367 
 368 #if INCLUDE_NMT
 369 void Thread::register_thread_stack_with_NMT() {
 370   MemTracker::record_thread_stack(stack_end(), stack_size());
 371 }
 372 #endif // INCLUDE_NMT
 373 
 374 void Thread::call_run() {
 375   DEBUG_ONLY(_run_state = CALL_RUN;)
 376 
 377   // At this point, Thread object should be fully initialized and
 378   // Thread::current() should be set.
 379 
 380   assert(Thread::current_or_null() != NULL, "current thread is unset");
 381   assert(Thread::current_or_null() == this, "current thread is wrong");
 382 
 383   // Perform common initialization actions
 384 
 385   register_thread_stack_with_NMT();
 386 
 387   JFR_ONLY(Jfr::on_thread_start(this);)
 388 
 389   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 390     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 391     os::current_thread_id(), p2i(stack_base() - stack_size()),
 392     p2i(stack_base()), stack_size()/1024);
 393 
 394   // Perform <ChildClass> initialization actions
 395   DEBUG_ONLY(_run_state = PRE_RUN;)
 396   this->pre_run();
 397 
 398   // Invoke <ChildClass>::run()
 399   DEBUG_ONLY(_run_state = RUN;)
 400   this->run();
 401   // Returned from <ChildClass>::run(). Thread finished.
 402 
 403   // Perform common tear-down actions
 404 
 405   assert(Thread::current_or_null() != NULL, "current thread is unset");
 406   assert(Thread::current_or_null() == this, "current thread is wrong");
 407 
 408   // Perform <ChildClass> tear-down actions
 409   DEBUG_ONLY(_run_state = POST_RUN;)
 410   this->post_run();
 411 
 412   // Note: at this point the thread object may already have deleted itself,
 413   // so from here on do not dereference *this*. Not all thread types currently
 414   // delete themselves when they terminate. But no thread should ever be deleted
 415   // asynchronously with respect to its termination - that is what _run_state can
 416   // be used to check.
 417 
 418   assert(Thread::current_or_null() == NULL, "current thread still present");
 419 }
 420 
 421 Thread::~Thread() {
 422 
 423   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 424   // get started due to errors etc. Any active thread should at least reach post_run
 425   // before it is deleted (usually in post_run()).
 426   assert(_run_state == PRE_CALL_RUN ||
 427          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 428          "_run_state=%d", (int)_run_state);
 429 
 430   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 431   // set might not be available if we encountered errors during bootstrapping.
 432   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 433   if (barrier_set != NULL) {
 434     barrier_set->on_thread_destroy(this);
 435   }
 436 
 437   // stack_base can be NULL if the thread is never started or exited before
 438   // record_stack_base_and_size called. Although, we would like to ensure
 439   // that all started threads do call record_stack_base_and_size(), there is
 440   // not proper way to enforce that.
 441 #if INCLUDE_NMT
 442   if (_stack_base != NULL) {
 443     MemTracker::release_thread_stack(stack_end(), stack_size());
 444 #ifdef ASSERT
 445     set_stack_base(NULL);
 446 #endif
 447   }
 448 #endif // INCLUDE_NMT
 449 
 450   // deallocate data structures
 451   delete resource_area();
 452   // since the handle marks are using the handle area, we have to deallocated the root
 453   // handle mark before deallocating the thread's handle area,
 454   assert(last_handle_mark() != NULL, "check we have an element");
 455   delete last_handle_mark();
 456   assert(last_handle_mark() == NULL, "check we have reached the end");
 457 
 458   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 459   // We NULL out the fields for good hygiene.
 460   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 461   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 462   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 463 
 464   delete handle_area();
 465   delete metadata_handles();
 466 
 467   // SR_handler uses this as a termination indicator -
 468   // needs to happen before os::free_thread()
 469   delete _SR_lock;
 470   _SR_lock = NULL;
 471 
 472   // osthread() can be NULL, if creation of thread failed.
 473   if (osthread() != NULL) os::free_thread(osthread());
 474 
 475   // Clear Thread::current if thread is deleting itself and it has not
 476   // already been done. This must be done before the memory is deallocated.
 477   // Needed to ensure JNI correctly detects non-attached threads.
 478   if (this == Thread::current_or_null()) {
 479     Thread::clear_thread_current();
 480   }
 481 
 482   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 483 }
 484 
 485 #ifdef ASSERT
 486 // A JavaThread is considered "dangling" if it is not the current
 487 // thread, has been added the Threads list, the system is not at a
 488 // safepoint and the Thread is not "protected".
 489 //
 490 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 491   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 492          !((JavaThread *) thread)->on_thread_list() ||
 493          SafepointSynchronize::is_at_safepoint() ||
 494          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 495          "possibility of dangling Thread pointer");
 496 }
 497 #endif
 498 
 499 ThreadPriority Thread::get_priority(const Thread* const thread) {
 500   ThreadPriority priority;
 501   // Can return an error!
 502   (void)os::get_priority(thread, priority);
 503   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 504   return priority;
 505 }
 506 
 507 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 508   debug_only(check_for_dangling_thread_pointer(thread);)
 509   // Can return an error!
 510   (void)os::set_priority(thread, priority);
 511 }
 512 
 513 
 514 void Thread::start(Thread* thread) {
 515   // Start is different from resume in that its safety is guaranteed by context or
 516   // being called from a Java method synchronized on the Thread object.
 517   if (!DisableStartThread) {
 518     if (thread->is_Java_thread()) {
 519       // Initialize the thread state to RUNNABLE before starting this thread.
 520       // Can not set it after the thread started because we do not know the
 521       // exact thread state at that time. It could be in MONITOR_WAIT or
 522       // in SLEEPING or some other state.
 523       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 524                                           java_lang_Thread::RUNNABLE);
 525     }
 526     os::start_thread(thread);
 527   }
 528 }
 529 
 530 // Enqueue a VM_Operation to do the job for us - sometime later
 531 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 532   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 533   VMThread::execute(vm_stop);
 534 }
 535 
 536 
 537 // Check if an external suspend request has completed (or has been
 538 // cancelled). Returns true if the thread is externally suspended and
 539 // false otherwise.
 540 //
 541 // The bits parameter returns information about the code path through
 542 // the routine. Useful for debugging:
 543 //
 544 // set in is_ext_suspend_completed():
 545 // 0x00000001 - routine was entered
 546 // 0x00000010 - routine return false at end
 547 // 0x00000100 - thread exited (return false)
 548 // 0x00000200 - suspend request cancelled (return false)
 549 // 0x00000400 - thread suspended (return true)
 550 // 0x00001000 - thread is in a suspend equivalent state (return true)
 551 // 0x00002000 - thread is native and walkable (return true)
 552 // 0x00004000 - thread is native_trans and walkable (needed retry)
 553 //
 554 // set in wait_for_ext_suspend_completion():
 555 // 0x00010000 - routine was entered
 556 // 0x00020000 - suspend request cancelled before loop (return false)
 557 // 0x00040000 - thread suspended before loop (return true)
 558 // 0x00080000 - suspend request cancelled in loop (return false)
 559 // 0x00100000 - thread suspended in loop (return true)
 560 // 0x00200000 - suspend not completed during retry loop (return false)
 561 
 562 // Helper class for tracing suspend wait debug bits.
 563 //
 564 // 0x00000100 indicates that the target thread exited before it could
 565 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 566 // 0x00080000 each indicate a cancelled suspend request so they don't
 567 // count as wait failures either.
 568 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 569 
 570 class TraceSuspendDebugBits : public StackObj {
 571  private:
 572   JavaThread * jt;
 573   bool         is_wait;
 574   bool         called_by_wait;  // meaningful when !is_wait
 575   uint32_t *   bits;
 576 
 577  public:
 578   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 579                         uint32_t *_bits) {
 580     jt             = _jt;
 581     is_wait        = _is_wait;
 582     called_by_wait = _called_by_wait;
 583     bits           = _bits;
 584   }
 585 
 586   ~TraceSuspendDebugBits() {
 587     if (!is_wait) {
 588 #if 1
 589       // By default, don't trace bits for is_ext_suspend_completed() calls.
 590       // That trace is very chatty.
 591       return;
 592 #else
 593       if (!called_by_wait) {
 594         // If tracing for is_ext_suspend_completed() is enabled, then only
 595         // trace calls to it from wait_for_ext_suspend_completion()
 596         return;
 597       }
 598 #endif
 599     }
 600 
 601     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 602       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 603         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 604         ResourceMark rm;
 605 
 606         tty->print_cr(
 607                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 608                       jt->get_thread_name(), *bits);
 609 
 610         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 611       }
 612     }
 613   }
 614 };
 615 #undef DEBUG_FALSE_BITS
 616 
 617 
 618 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 619                                           uint32_t *bits) {
 620   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 621 
 622   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 623   bool do_trans_retry;           // flag to force the retry
 624 
 625   *bits |= 0x00000001;
 626 
 627   do {
 628     do_trans_retry = false;
 629 
 630     if (is_exiting()) {
 631       // Thread is in the process of exiting. This is always checked
 632       // first to reduce the risk of dereferencing a freed JavaThread.
 633       *bits |= 0x00000100;
 634       return false;
 635     }
 636 
 637     if (!is_external_suspend()) {
 638       // Suspend request is cancelled. This is always checked before
 639       // is_ext_suspended() to reduce the risk of a rogue resume
 640       // confusing the thread that made the suspend request.
 641       *bits |= 0x00000200;
 642       return false;
 643     }
 644 
 645     if (is_ext_suspended()) {
 646       // thread is suspended
 647       *bits |= 0x00000400;
 648       return true;
 649     }
 650 
 651     // Now that we no longer do hard suspends of threads running
 652     // native code, the target thread can be changing thread state
 653     // while we are in this routine:
 654     //
 655     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 656     //
 657     // We save a copy of the thread state as observed at this moment
 658     // and make our decision about suspend completeness based on the
 659     // copy. This closes the race where the thread state is seen as
 660     // _thread_in_native_trans in the if-thread_blocked check, but is
 661     // seen as _thread_blocked in if-thread_in_native_trans check.
 662     JavaThreadState save_state = thread_state();
 663 
 664     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 665       // If the thread's state is _thread_blocked and this blocking
 666       // condition is known to be equivalent to a suspend, then we can
 667       // consider the thread to be externally suspended. This means that
 668       // the code that sets _thread_blocked has been modified to do
 669       // self-suspension if the blocking condition releases. We also
 670       // used to check for CONDVAR_WAIT here, but that is now covered by
 671       // the _thread_blocked with self-suspension check.
 672       //
 673       // Return true since we wouldn't be here unless there was still an
 674       // external suspend request.
 675       *bits |= 0x00001000;
 676       return true;
 677     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 678       // Threads running native code will self-suspend on native==>VM/Java
 679       // transitions. If its stack is walkable (should always be the case
 680       // unless this function is called before the actual java_suspend()
 681       // call), then the wait is done.
 682       *bits |= 0x00002000;
 683       return true;
 684     } else if (!called_by_wait && !did_trans_retry &&
 685                save_state == _thread_in_native_trans &&
 686                frame_anchor()->walkable()) {
 687       // The thread is transitioning from thread_in_native to another
 688       // thread state. check_safepoint_and_suspend_for_native_trans()
 689       // will force the thread to self-suspend. If it hasn't gotten
 690       // there yet we may have caught the thread in-between the native
 691       // code check above and the self-suspend. Lucky us. If we were
 692       // called by wait_for_ext_suspend_completion(), then it
 693       // will be doing the retries so we don't have to.
 694       //
 695       // Since we use the saved thread state in the if-statement above,
 696       // there is a chance that the thread has already transitioned to
 697       // _thread_blocked by the time we get here. In that case, we will
 698       // make a single unnecessary pass through the logic below. This
 699       // doesn't hurt anything since we still do the trans retry.
 700 
 701       *bits |= 0x00004000;
 702 
 703       // Once the thread leaves thread_in_native_trans for another
 704       // thread state, we break out of this retry loop. We shouldn't
 705       // need this flag to prevent us from getting back here, but
 706       // sometimes paranoia is good.
 707       did_trans_retry = true;
 708 
 709       // We wait for the thread to transition to a more usable state.
 710       for (int i = 1; i <= SuspendRetryCount; i++) {
 711         // We used to do an "os::yield_all(i)" call here with the intention
 712         // that yielding would increase on each retry. However, the parameter
 713         // is ignored on Linux which means the yield didn't scale up. Waiting
 714         // on the SR_lock below provides a much more predictable scale up for
 715         // the delay. It also provides a simple/direct point to check for any
 716         // safepoint requests from the VMThread
 717 
 718         // temporarily drops SR_lock while doing wait with safepoint check
 719         // (if we're a JavaThread - the WatcherThread can also call this)
 720         // and increase delay with each retry
 721         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 722 
 723         // check the actual thread state instead of what we saved above
 724         if (thread_state() != _thread_in_native_trans) {
 725           // the thread has transitioned to another thread state so
 726           // try all the checks (except this one) one more time.
 727           do_trans_retry = true;
 728           break;
 729         }
 730       } // end retry loop
 731 
 732 
 733     }
 734   } while (do_trans_retry);
 735 
 736   *bits |= 0x00000010;
 737   return false;
 738 }
 739 
 740 // Wait for an external suspend request to complete (or be cancelled).
 741 // Returns true if the thread is externally suspended and false otherwise.
 742 //
 743 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 744                                                  uint32_t *bits) {
 745   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 746                              false /* !called_by_wait */, bits);
 747 
 748   // local flag copies to minimize SR_lock hold time
 749   bool is_suspended;
 750   bool pending;
 751   uint32_t reset_bits;
 752 
 753   // set a marker so is_ext_suspend_completed() knows we are the caller
 754   *bits |= 0x00010000;
 755 
 756   // We use reset_bits to reinitialize the bits value at the top of
 757   // each retry loop. This allows the caller to make use of any
 758   // unused bits for their own marking purposes.
 759   reset_bits = *bits;
 760 
 761   {
 762     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 763     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 764                                             delay, bits);
 765     pending = is_external_suspend();
 766   }
 767   // must release SR_lock to allow suspension to complete
 768 
 769   if (!pending) {
 770     // A cancelled suspend request is the only false return from
 771     // is_ext_suspend_completed() that keeps us from entering the
 772     // retry loop.
 773     *bits |= 0x00020000;
 774     return false;
 775   }
 776 
 777   if (is_suspended) {
 778     *bits |= 0x00040000;
 779     return true;
 780   }
 781 
 782   for (int i = 1; i <= retries; i++) {
 783     *bits = reset_bits;  // reinit to only track last retry
 784 
 785     // We used to do an "os::yield_all(i)" call here with the intention
 786     // that yielding would increase on each retry. However, the parameter
 787     // is ignored on Linux which means the yield didn't scale up. Waiting
 788     // on the SR_lock below provides a much more predictable scale up for
 789     // the delay. It also provides a simple/direct point to check for any
 790     // safepoint requests from the VMThread
 791 
 792     {
 793       MutexLocker ml(SR_lock());
 794       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 795       // can also call this)  and increase delay with each retry
 796       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 797 
 798       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 799                                               delay, bits);
 800 
 801       // It is possible for the external suspend request to be cancelled
 802       // (by a resume) before the actual suspend operation is completed.
 803       // Refresh our local copy to see if we still need to wait.
 804       pending = is_external_suspend();
 805     }
 806 
 807     if (!pending) {
 808       // A cancelled suspend request is the only false return from
 809       // is_ext_suspend_completed() that keeps us from staying in the
 810       // retry loop.
 811       *bits |= 0x00080000;
 812       return false;
 813     }
 814 
 815     if (is_suspended) {
 816       *bits |= 0x00100000;
 817       return true;
 818     }
 819   } // end retry loop
 820 
 821   // thread did not suspend after all our retries
 822   *bits |= 0x00200000;
 823   return false;
 824 }
 825 
 826 // Called from API entry points which perform stack walking. If the
 827 // associated JavaThread is the current thread, then wait_for_suspend
 828 // is not used. Otherwise, it determines if we should wait for the
 829 // "other" thread to complete external suspension. (NOTE: in future
 830 // releases the suspension mechanism should be reimplemented so this
 831 // is not necessary.)
 832 //
 833 bool
 834 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 835   if (this != JavaThread::current()) {
 836     // "other" threads require special handling.
 837     if (wait_for_suspend) {
 838       // We are allowed to wait for the external suspend to complete
 839       // so give the other thread a chance to get suspended.
 840       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 841                                            SuspendRetryDelay, bits)) {
 842         // Didn't make it so let the caller know.
 843         return false;
 844       }
 845     }
 846     // We aren't allowed to wait for the external suspend to complete
 847     // so if the other thread isn't externally suspended we need to
 848     // let the caller know.
 849     else if (!is_ext_suspend_completed_with_lock(bits)) {
 850       return false;
 851     }
 852   }
 853 
 854   return true;
 855 }
 856 
 857 #ifndef PRODUCT
 858 void JavaThread::record_jump(address target, address instr, const char* file,
 859                              int line) {
 860 
 861   // This should not need to be atomic as the only way for simultaneous
 862   // updates is via interrupts. Even then this should be rare or non-existent
 863   // and we don't care that much anyway.
 864 
 865   int index = _jmp_ring_index;
 866   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 867   _jmp_ring[index]._target = (intptr_t) target;
 868   _jmp_ring[index]._instruction = (intptr_t) instr;
 869   _jmp_ring[index]._file = file;
 870   _jmp_ring[index]._line = line;
 871 }
 872 #endif // PRODUCT
 873 
 874 void Thread::interrupt(Thread* thread) {
 875   debug_only(check_for_dangling_thread_pointer(thread);)
 876   os::interrupt(thread);
 877 }
 878 
 879 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 880   debug_only(check_for_dangling_thread_pointer(thread);)
 881   // Note:  If clear_interrupted==false, this simply fetches and
 882   // returns the value of the field osthread()->interrupted().
 883   return os::is_interrupted(thread, clear_interrupted);
 884 }
 885 
 886 
 887 // GC Support
 888 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 889   int thread_parity = _oops_do_parity;
 890   if (thread_parity != strong_roots_parity) {
 891     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 892     if (res == thread_parity) {
 893       return true;
 894     } else {
 895       guarantee(res == strong_roots_parity, "Or else what?");
 896       return false;
 897     }
 898   }
 899   return false;
 900 }
 901 
 902 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 903   active_handles()->oops_do(f);
 904   // Do oop for ThreadShadow
 905   f->do_oop((oop*)&_pending_exception);
 906   handle_area()->oops_do(f);
 907 
 908   // We scan thread local monitor lists here, and the remaining global
 909   // monitors in ObjectSynchronizer::oops_do().
 910   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 911 }
 912 
 913 void Thread::metadata_handles_do(void f(Metadata*)) {
 914   // Only walk the Handles in Thread.
 915   if (metadata_handles() != NULL) {
 916     for (int i = 0; i< metadata_handles()->length(); i++) {
 917       f(metadata_handles()->at(i));
 918     }
 919   }
 920 }
 921 
 922 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 923   // get_priority assumes osthread initialized
 924   if (osthread() != NULL) {
 925     int os_prio;
 926     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 927       st->print("os_prio=%d ", os_prio);
 928     }
 929 
 930     st->print("cpu=%.2fms ",
 931               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 932               );
 933     st->print("elapsed=%.2fs ",
 934               _statistical_info.getElapsedTime() / 1000.0
 935               );
 936     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 937       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 938       st->print("allocated=" SIZE_FORMAT "%s ",
 939                 byte_size_in_proper_unit(allocated_bytes),
 940                 proper_unit_for_byte_size(allocated_bytes)
 941                 );
 942       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 943     }
 944 
 945     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 946     osthread()->print_on(st);
 947   }
 948   ThreadsSMRSupport::print_info_on(this, st);
 949   st->print(" ");
 950   debug_only(if (WizardMode) print_owned_locks_on(st);)
 951 }
 952 
 953 // Thread::print_on_error() is called by fatal error handler. Don't use
 954 // any lock or allocate memory.
 955 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 956   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 957 
 958   if (is_VM_thread())                 { st->print("VMThread"); }
 959   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 960   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 961   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 962   else                                { st->print("Thread"); }
 963 
 964   if (is_Named_thread()) {
 965     st->print(" \"%s\"", name());
 966   }
 967 
 968   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 969             p2i(stack_end()), p2i(stack_base()));
 970 
 971   if (osthread()) {
 972     st->print(" [id=%d]", osthread()->thread_id());
 973   }
 974 
 975   ThreadsSMRSupport::print_info_on(this, st);
 976 }
 977 
 978 void Thread::print_value_on(outputStream* st) const {
 979   if (is_Named_thread()) {
 980     st->print(" \"%s\" ", name());
 981   }
 982   st->print(INTPTR_FORMAT, p2i(this));   // print address
 983 }
 984 
 985 #ifdef ASSERT
 986 void Thread::print_owned_locks_on(outputStream* st) const {
 987   Monitor *cur = _owned_locks;
 988   if (cur == NULL) {
 989     st->print(" (no locks) ");
 990   } else {
 991     st->print_cr(" Locks owned:");
 992     while (cur) {
 993       cur->print_on(st);
 994       cur = cur->next();
 995     }
 996   }
 997 }
 998 
 999 static int ref_use_count  = 0;
1000 
1001 bool Thread::owns_locks_but_compiled_lock() const {
1002   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1003     if (cur != Compile_lock) return true;
1004   }
1005   return false;
1006 }
1007 
1008 
1009 #endif
1010 
1011 #ifndef PRODUCT
1012 
1013 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1014 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1015 // no locks which allow_vm_block's are held
1016 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1017   // Check if current thread is allowed to block at a safepoint
1018   if (!(_allow_safepoint_count == 0)) {
1019     fatal("Possible safepoint reached by thread that does not allow it");
1020   }
1021   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
1022     fatal("LEAF method calling lock?");
1023   }
1024 
1025 #ifdef ASSERT
1026   if (potential_vm_operation && is_Java_thread()
1027       && !Universe::is_bootstrapping()) {
1028     // Make sure we do not hold any locks that the VM thread also uses.
1029     // This could potentially lead to deadlocks
1030     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1031       // Threads_lock is special, since the safepoint synchronization will not start before this is
1032       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1033       // since it is used to transfer control between JavaThreads and the VMThread
1034       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1035       if ((cur->allow_vm_block() &&
1036            cur != Threads_lock &&
1037            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1038            cur != VMOperationRequest_lock &&
1039            cur != VMOperationQueue_lock) ||
1040            cur->rank() == Mutex::special) {
1041         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1042       }
1043     }
1044   }
1045 
1046   if (GCALotAtAllSafepoints) {
1047     // We could enter a safepoint here and thus have a gc
1048     InterfaceSupport::check_gc_alot();
1049   }
1050 #endif
1051 }
1052 #endif
1053 
1054 bool Thread::is_in_stack(address adr) const {
1055   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1056   address end = os::current_stack_pointer();
1057   // Allow non Java threads to call this without stack_base
1058   if (_stack_base == NULL) return true;
1059   if (stack_base() >= adr && adr >= end) return true;
1060 
1061   return false;
1062 }
1063 
1064 bool Thread::is_in_usable_stack(address adr) const {
1065   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1066   size_t usable_stack_size = _stack_size - stack_guard_size;
1067 
1068   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1069 }
1070 
1071 
1072 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1073 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1074 // used for compilation in the future. If that change is made, the need for these methods
1075 // should be revisited, and they should be removed if possible.
1076 
1077 bool Thread::is_lock_owned(address adr) const {
1078   return on_local_stack(adr);
1079 }
1080 
1081 bool Thread::set_as_starting_thread() {
1082   assert(_starting_thread == NULL, "already initialized: "
1083          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1084   // NOTE: this must be called inside the main thread.
1085   DEBUG_ONLY(_starting_thread = this;)
1086   return os::create_main_thread((JavaThread*)this);
1087 }
1088 
1089 static void initialize_class(Symbol* class_name, TRAPS) {
1090   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1091   InstanceKlass::cast(klass)->initialize(CHECK);
1092 }
1093 
1094 
1095 // Creates the initial ThreadGroup
1096 static Handle create_initial_thread_group(TRAPS) {
1097   Handle system_instance = JavaCalls::construct_new_instance(
1098                             SystemDictionary::ThreadGroup_klass(),
1099                             vmSymbols::void_method_signature(),
1100                             CHECK_NH);
1101   Universe::set_system_thread_group(system_instance());
1102 
1103   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1104   Handle main_instance = JavaCalls::construct_new_instance(
1105                             SystemDictionary::ThreadGroup_klass(),
1106                             vmSymbols::threadgroup_string_void_signature(),
1107                             system_instance,
1108                             string,
1109                             CHECK_NH);
1110   return main_instance;
1111 }
1112 
1113 // Creates the initial Thread
1114 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1115                                  TRAPS) {
1116   InstanceKlass* ik = SystemDictionary::Thread_klass();
1117   assert(ik->is_initialized(), "must be");
1118   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1119 
1120   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1121   // constructor calls Thread.current(), which must be set here for the
1122   // initial thread.
1123   java_lang_Thread::set_thread(thread_oop(), thread);
1124   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1125   thread->set_threadObj(thread_oop());
1126 
1127   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1128 
1129   JavaValue result(T_VOID);
1130   JavaCalls::call_special(&result, thread_oop,
1131                           ik,
1132                           vmSymbols::object_initializer_name(),
1133                           vmSymbols::threadgroup_string_void_signature(),
1134                           thread_group,
1135                           string,
1136                           CHECK_NULL);
1137   return thread_oop();
1138 }
1139 
1140 char java_runtime_name[128] = "";
1141 char java_runtime_version[128] = "";
1142 
1143 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1144 static const char* get_java_runtime_name(TRAPS) {
1145   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1146                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1147   fieldDescriptor fd;
1148   bool found = k != NULL &&
1149                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1150                                                         vmSymbols::string_signature(), &fd);
1151   if (found) {
1152     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1153     if (name_oop == NULL) {
1154       return NULL;
1155     }
1156     const char* name = java_lang_String::as_utf8_string(name_oop,
1157                                                         java_runtime_name,
1158                                                         sizeof(java_runtime_name));
1159     return name;
1160   } else {
1161     return NULL;
1162   }
1163 }
1164 
1165 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1166 static const char* get_java_runtime_version(TRAPS) {
1167   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1168                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1169   fieldDescriptor fd;
1170   bool found = k != NULL &&
1171                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1172                                                         vmSymbols::string_signature(), &fd);
1173   if (found) {
1174     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1175     if (name_oop == NULL) {
1176       return NULL;
1177     }
1178     const char* name = java_lang_String::as_utf8_string(name_oop,
1179                                                         java_runtime_version,
1180                                                         sizeof(java_runtime_version));
1181     return name;
1182   } else {
1183     return NULL;
1184   }
1185 }
1186 
1187 // General purpose hook into Java code, run once when the VM is initialized.
1188 // The Java library method itself may be changed independently from the VM.
1189 static void call_postVMInitHook(TRAPS) {
1190   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1191   if (klass != NULL) {
1192     JavaValue result(T_VOID);
1193     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1194                            vmSymbols::void_method_signature(),
1195                            CHECK);
1196   }
1197 }
1198 
1199 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1200                                     bool daemon, TRAPS) {
1201   assert(thread_group.not_null(), "thread group should be specified");
1202   assert(threadObj() == NULL, "should only create Java thread object once");
1203 
1204   InstanceKlass* ik = SystemDictionary::Thread_klass();
1205   assert(ik->is_initialized(), "must be");
1206   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1207 
1208   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1209   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1210   // constructor calls Thread.current(), which must be set here.
1211   java_lang_Thread::set_thread(thread_oop(), this);
1212   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1213   set_threadObj(thread_oop());
1214 
1215   JavaValue result(T_VOID);
1216   if (thread_name != NULL) {
1217     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1218     // Thread gets assigned specified name and null target
1219     JavaCalls::call_special(&result,
1220                             thread_oop,
1221                             ik,
1222                             vmSymbols::object_initializer_name(),
1223                             vmSymbols::threadgroup_string_void_signature(),
1224                             thread_group,
1225                             name,
1226                             THREAD);
1227   } else {
1228     // Thread gets assigned name "Thread-nnn" and null target
1229     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1230     JavaCalls::call_special(&result,
1231                             thread_oop,
1232                             ik,
1233                             vmSymbols::object_initializer_name(),
1234                             vmSymbols::threadgroup_runnable_void_signature(),
1235                             thread_group,
1236                             Handle(),
1237                             THREAD);
1238   }
1239 
1240 
1241   if (daemon) {
1242     java_lang_Thread::set_daemon(thread_oop());
1243   }
1244 
1245   if (HAS_PENDING_EXCEPTION) {
1246     return;
1247   }
1248 
1249   Klass* group =  SystemDictionary::ThreadGroup_klass();
1250   Handle threadObj(THREAD, this->threadObj());
1251 
1252   JavaCalls::call_special(&result,
1253                           thread_group,
1254                           group,
1255                           vmSymbols::add_method_name(),
1256                           vmSymbols::thread_void_signature(),
1257                           threadObj,          // Arg 1
1258                           THREAD);
1259 }
1260 
1261 // List of all NonJavaThreads and safe iteration over that list.
1262 
1263 class NonJavaThread::List {
1264 public:
1265   NonJavaThread* volatile _head;
1266   SingleWriterSynchronizer _protect;
1267 
1268   List() : _head(NULL), _protect() {}
1269 };
1270 
1271 NonJavaThread::List NonJavaThread::_the_list;
1272 
1273 NonJavaThread::Iterator::Iterator() :
1274   _protect_enter(_the_list._protect.enter()),
1275   _current(OrderAccess::load_acquire(&_the_list._head))
1276 {}
1277 
1278 NonJavaThread::Iterator::~Iterator() {
1279   _the_list._protect.exit(_protect_enter);
1280 }
1281 
1282 void NonJavaThread::Iterator::step() {
1283   assert(!end(), "precondition");
1284   _current = OrderAccess::load_acquire(&_current->_next);
1285 }
1286 
1287 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1288   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1289 }
1290 
1291 NonJavaThread::~NonJavaThread() { }
1292 
1293 void NonJavaThread::add_to_the_list() {
1294   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1295   _next = _the_list._head;
1296   OrderAccess::release_store(&_the_list._head, this);
1297 }
1298 
1299 void NonJavaThread::remove_from_the_list() {
1300   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1301   NonJavaThread* volatile* p = &_the_list._head;
1302   for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1303     if (t == this) {
1304       *p = this->_next;
1305       // Wait for any in-progress iterators.  Concurrent synchronize is
1306       // not allowed, so do it while holding the list lock.
1307       _the_list._protect.synchronize();
1308       break;
1309     }
1310   }
1311 }
1312 
1313 void NonJavaThread::pre_run() {
1314   {
1315     SuspendibleThreadSetJoiner sts(!is_VM_thread() &&   // Drives the safepoint itself
1316                                    !is_Worker_thread());// Might block if used at SP, syncs otherwise
1317     // Initialize BarrierSet-related data before adding to list.
1318     assert(BarrierSet::barrier_set() != NULL, "invariant");
1319     BarrierSet::barrier_set()->on_thread_attach(this);
1320     add_to_the_list();
1321   }
1322   // This is slightly odd in that NamedThread is a subclass, but
1323   // in fact name() is defined in Thread
1324   assert(this->name() != NULL, "thread name was not set before it was started");
1325   this->set_native_thread_name(this->name());
1326 }
1327 
1328 void NonJavaThread::post_run() {
1329   JFR_ONLY(Jfr::on_thread_exit(this);)
1330   {
1331     SuspendibleThreadSetJoiner sts(!is_VM_thread() &&   // Drives the safepoint itself
1332                                    !is_Worker_thread());// Might block if used at SP, syncs otherwise
1333     // Clean up BarrierSet data before removing from list.
1334     BarrierSet::barrier_set()->on_thread_detach(this);
1335     remove_from_the_list();
1336   }
1337   // Ensure thread-local-storage is cleared before termination.
1338   Thread::clear_thread_current();
1339 }
1340 
1341 // NamedThread --  non-JavaThread subclasses with multiple
1342 // uniquely named instances should derive from this.
1343 NamedThread::NamedThread() :
1344   NonJavaThread(),
1345   _name(NULL),
1346   _processed_thread(NULL),
1347   _gc_id(GCId::undefined())
1348 {}
1349 
1350 NamedThread::~NamedThread() {
1351   if (_name != NULL) {
1352     FREE_C_HEAP_ARRAY(char, _name);
1353     _name = NULL;
1354   }
1355 }
1356 
1357 void NamedThread::set_name(const char* format, ...) {
1358   guarantee(_name == NULL, "Only get to set name once.");
1359   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1360   guarantee(_name != NULL, "alloc failure");
1361   va_list ap;
1362   va_start(ap, format);
1363   jio_vsnprintf(_name, max_name_len, format, ap);
1364   va_end(ap);
1365 }
1366 
1367 void NamedThread::print_on(outputStream* st) const {
1368   st->print("\"%s\" ", name());
1369   Thread::print_on(st);
1370   st->cr();
1371 }
1372 
1373 
1374 // ======= WatcherThread ========
1375 
1376 // The watcher thread exists to simulate timer interrupts.  It should
1377 // be replaced by an abstraction over whatever native support for
1378 // timer interrupts exists on the platform.
1379 
1380 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1381 bool WatcherThread::_startable = false;
1382 volatile bool  WatcherThread::_should_terminate = false;
1383 
1384 WatcherThread::WatcherThread() : NonJavaThread() {
1385   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1386   if (os::create_thread(this, os::watcher_thread)) {
1387     _watcher_thread = this;
1388 
1389     // Set the watcher thread to the highest OS priority which should not be
1390     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1391     // is created. The only normal thread using this priority is the reference
1392     // handler thread, which runs for very short intervals only.
1393     // If the VMThread's priority is not lower than the WatcherThread profiling
1394     // will be inaccurate.
1395     os::set_priority(this, MaxPriority);
1396     if (!DisableStartThread) {
1397       os::start_thread(this);
1398     }
1399   }
1400 }
1401 
1402 int WatcherThread::sleep() const {
1403   // The WatcherThread does not participate in the safepoint protocol
1404   // for the PeriodicTask_lock because it is not a JavaThread.
1405   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1406 
1407   if (_should_terminate) {
1408     // check for termination before we do any housekeeping or wait
1409     return 0;  // we did not sleep.
1410   }
1411 
1412   // remaining will be zero if there are no tasks,
1413   // causing the WatcherThread to sleep until a task is
1414   // enrolled
1415   int remaining = PeriodicTask::time_to_wait();
1416   int time_slept = 0;
1417 
1418   // we expect this to timeout - we only ever get unparked when
1419   // we should terminate or when a new task has been enrolled
1420   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1421 
1422   jlong time_before_loop = os::javaTimeNanos();
1423 
1424   while (true) {
1425     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1426                                             remaining);
1427     jlong now = os::javaTimeNanos();
1428 
1429     if (remaining == 0) {
1430       // if we didn't have any tasks we could have waited for a long time
1431       // consider the time_slept zero and reset time_before_loop
1432       time_slept = 0;
1433       time_before_loop = now;
1434     } else {
1435       // need to recalculate since we might have new tasks in _tasks
1436       time_slept = (int) ((now - time_before_loop) / 1000000);
1437     }
1438 
1439     // Change to task list or spurious wakeup of some kind
1440     if (timedout || _should_terminate) {
1441       break;
1442     }
1443 
1444     remaining = PeriodicTask::time_to_wait();
1445     if (remaining == 0) {
1446       // Last task was just disenrolled so loop around and wait until
1447       // another task gets enrolled
1448       continue;
1449     }
1450 
1451     remaining -= time_slept;
1452     if (remaining <= 0) {
1453       break;
1454     }
1455   }
1456 
1457   return time_slept;
1458 }
1459 
1460 void WatcherThread::run() {
1461   assert(this == watcher_thread(), "just checking");
1462 
1463   this->set_active_handles(JNIHandleBlock::allocate_block());
1464   while (true) {
1465     assert(watcher_thread() == Thread::current(), "thread consistency check");
1466     assert(watcher_thread() == this, "thread consistency check");
1467 
1468     // Calculate how long it'll be until the next PeriodicTask work
1469     // should be done, and sleep that amount of time.
1470     int time_waited = sleep();
1471 
1472     if (VMError::is_error_reported()) {
1473       // A fatal error has happened, the error handler(VMError::report_and_die)
1474       // should abort JVM after creating an error log file. However in some
1475       // rare cases, the error handler itself might deadlock. Here periodically
1476       // check for error reporting timeouts, and if it happens, just proceed to
1477       // abort the VM.
1478 
1479       // This code is in WatcherThread because WatcherThread wakes up
1480       // periodically so the fatal error handler doesn't need to do anything;
1481       // also because the WatcherThread is less likely to crash than other
1482       // threads.
1483 
1484       for (;;) {
1485         // Note: we use naked sleep in this loop because we want to avoid using
1486         // any kind of VM infrastructure which may be broken at this point.
1487         if (VMError::check_timeout()) {
1488           // We hit error reporting timeout. Error reporting was interrupted and
1489           // will be wrapping things up now (closing files etc). Give it some more
1490           // time, then quit the VM.
1491           os::naked_short_sleep(200);
1492           // Print a message to stderr.
1493           fdStream err(defaultStream::output_fd());
1494           err.print_raw_cr("# [ timer expired, abort... ]");
1495           // skip atexit/vm_exit/vm_abort hooks
1496           os::die();
1497         }
1498 
1499         // Wait a second, then recheck for timeout.
1500         os::naked_short_sleep(999);
1501       }
1502     }
1503 
1504     if (_should_terminate) {
1505       // check for termination before posting the next tick
1506       break;
1507     }
1508 
1509     PeriodicTask::real_time_tick(time_waited);
1510   }
1511 
1512   // Signal that it is terminated
1513   {
1514     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1515     _watcher_thread = NULL;
1516     Terminator_lock->notify();
1517   }
1518 }
1519 
1520 void WatcherThread::start() {
1521   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1522 
1523   if (watcher_thread() == NULL && _startable) {
1524     _should_terminate = false;
1525     // Create the single instance of WatcherThread
1526     new WatcherThread();
1527   }
1528 }
1529 
1530 void WatcherThread::make_startable() {
1531   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1532   _startable = true;
1533 }
1534 
1535 void WatcherThread::stop() {
1536   {
1537     // Follow normal safepoint aware lock enter protocol since the
1538     // WatcherThread is stopped by another JavaThread.
1539     MutexLocker ml(PeriodicTask_lock);
1540     _should_terminate = true;
1541 
1542     WatcherThread* watcher = watcher_thread();
1543     if (watcher != NULL) {
1544       // unpark the WatcherThread so it can see that it should terminate
1545       watcher->unpark();
1546     }
1547   }
1548 
1549   MutexLocker mu(Terminator_lock);
1550 
1551   while (watcher_thread() != NULL) {
1552     // This wait should make safepoint checks, wait without a timeout,
1553     // and wait as a suspend-equivalent condition.
1554     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1555                           Mutex::_as_suspend_equivalent_flag);
1556   }
1557 }
1558 
1559 void WatcherThread::unpark() {
1560   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1561   PeriodicTask_lock->notify();
1562 }
1563 
1564 void WatcherThread::print_on(outputStream* st) const {
1565   st->print("\"%s\" ", name());
1566   Thread::print_on(st);
1567   st->cr();
1568 }
1569 
1570 // ======= JavaThread ========
1571 
1572 #if INCLUDE_JVMCI
1573 
1574 jlong* JavaThread::_jvmci_old_thread_counters;
1575 
1576 bool jvmci_counters_include(JavaThread* thread) {
1577   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1578 }
1579 
1580 void JavaThread::collect_counters(typeArrayOop array) {
1581   if (JVMCICounterSize > 0) {
1582     JavaThreadIteratorWithHandle jtiwh;
1583     for (int i = 0; i < array->length(); i++) {
1584       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1585     }
1586     for (; JavaThread *tp = jtiwh.next(); ) {
1587       if (jvmci_counters_include(tp)) {
1588         for (int i = 0; i < array->length(); i++) {
1589           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1590         }
1591       }
1592     }
1593   }
1594 }
1595 
1596 #endif // INCLUDE_JVMCI
1597 
1598 // A JavaThread is a normal Java thread
1599 
1600 void JavaThread::initialize() {
1601   // Initialize fields
1602 
1603   set_saved_exception_pc(NULL);
1604   set_threadObj(NULL);
1605   _anchor.clear();
1606   set_entry_point(NULL);
1607   set_jni_functions(jni_functions());
1608   set_callee_target(NULL);
1609   set_vm_result(NULL);
1610   set_vm_result_2(NULL);
1611   set_vframe_array_head(NULL);
1612   set_vframe_array_last(NULL);
1613   set_deferred_locals(NULL);
1614   set_deopt_mark(NULL);
1615   set_deopt_compiled_method(NULL);
1616   clear_must_deopt_id();
1617   set_monitor_chunks(NULL);
1618   set_next(NULL);
1619   _on_thread_list = false;
1620   set_thread_state(_thread_new);
1621   _terminated = _not_terminated;
1622   _array_for_gc = NULL;
1623   _suspend_equivalent = false;
1624   _in_deopt_handler = 0;
1625   _doing_unsafe_access = false;
1626   _stack_guard_state = stack_guard_unused;
1627 #if INCLUDE_JVMCI
1628   _pending_monitorenter = false;
1629   _pending_deoptimization = -1;
1630   _pending_failed_speculation = 0;
1631   _pending_transfer_to_interpreter = false;
1632   _adjusting_comp_level = false;
1633   _in_retryable_allocation = false;
1634   _jvmci._alternate_call_target = NULL;
1635   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1636   if (JVMCICounterSize > 0) {
1637     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1638     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1639   } else {
1640     _jvmci_counters = NULL;
1641   }
1642 #endif // INCLUDE_JVMCI
1643   _reserved_stack_activation = NULL;  // stack base not known yet
1644   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1645   _exception_pc  = 0;
1646   _exception_handler_pc = 0;
1647   _is_method_handle_return = 0;
1648   _jvmti_thread_state= NULL;
1649   _should_post_on_exceptions_flag = JNI_FALSE;
1650   _interp_only_mode    = 0;
1651   _special_runtime_exit_condition = _no_async_condition;
1652   _pending_async_exception = NULL;
1653   _thread_stat = NULL;
1654   _thread_stat = new ThreadStatistics();
1655   _blocked_on_compilation = false;
1656   _jni_active_critical = 0;
1657   _pending_jni_exception_check_fn = NULL;
1658   _do_not_unlock_if_synchronized = false;
1659   _cached_monitor_info = NULL;
1660   _parker = Parker::Allocate(this);
1661 
1662 #ifndef PRODUCT
1663   _jmp_ring_index = 0;
1664   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1665     record_jump(NULL, NULL, NULL, 0);
1666   }
1667 #endif // PRODUCT
1668 
1669   // Setup safepoint state info for this thread
1670   ThreadSafepointState::create(this);
1671 
1672   debug_only(_java_call_counter = 0);
1673 
1674   // JVMTI PopFrame support
1675   _popframe_condition = popframe_inactive;
1676   _popframe_preserved_args = NULL;
1677   _popframe_preserved_args_size = 0;
1678   _frames_to_pop_failed_realloc = 0;
1679 
1680   if (SafepointMechanism::uses_thread_local_poll()) {
1681     SafepointMechanism::initialize_header(this);
1682   }
1683 
1684   _class_to_be_initialized = NULL;
1685 
1686   pd_initialize();
1687 }
1688 
1689 JavaThread::JavaThread(bool is_attaching_via_jni) :
1690                        Thread() {
1691   initialize();
1692   if (is_attaching_via_jni) {
1693     _jni_attach_state = _attaching_via_jni;
1694   } else {
1695     _jni_attach_state = _not_attaching_via_jni;
1696   }
1697   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1698 }
1699 
1700 bool JavaThread::reguard_stack(address cur_sp) {
1701   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1702       && _stack_guard_state != stack_guard_reserved_disabled) {
1703     return true; // Stack already guarded or guard pages not needed.
1704   }
1705 
1706   if (register_stack_overflow()) {
1707     // For those architectures which have separate register and
1708     // memory stacks, we must check the register stack to see if
1709     // it has overflowed.
1710     return false;
1711   }
1712 
1713   // Java code never executes within the yellow zone: the latter is only
1714   // there to provoke an exception during stack banging.  If java code
1715   // is executing there, either StackShadowPages should be larger, or
1716   // some exception code in c1, c2 or the interpreter isn't unwinding
1717   // when it should.
1718   guarantee(cur_sp > stack_reserved_zone_base(),
1719             "not enough space to reguard - increase StackShadowPages");
1720   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1721     enable_stack_yellow_reserved_zone();
1722     if (reserved_stack_activation() != stack_base()) {
1723       set_reserved_stack_activation(stack_base());
1724     }
1725   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1726     set_reserved_stack_activation(stack_base());
1727     enable_stack_reserved_zone();
1728   }
1729   return true;
1730 }
1731 
1732 bool JavaThread::reguard_stack(void) {
1733   return reguard_stack(os::current_stack_pointer());
1734 }
1735 
1736 
1737 void JavaThread::block_if_vm_exited() {
1738   if (_terminated == _vm_exited) {
1739     // _vm_exited is set at safepoint, and Threads_lock is never released
1740     // we will block here forever
1741     Threads_lock->lock_without_safepoint_check();
1742     ShouldNotReachHere();
1743   }
1744 }
1745 
1746 
1747 // Remove this ifdef when C1 is ported to the compiler interface.
1748 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1749 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1750 
1751 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1752                        Thread() {
1753   initialize();
1754   _jni_attach_state = _not_attaching_via_jni;
1755   set_entry_point(entry_point);
1756   // Create the native thread itself.
1757   // %note runtime_23
1758   os::ThreadType thr_type = os::java_thread;
1759   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1760                                                      os::java_thread;
1761   os::create_thread(this, thr_type, stack_sz);
1762   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1763   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1764   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1765   // the exception consists of creating the exception object & initializing it, initialization
1766   // will leave the VM via a JavaCall and then all locks must be unlocked).
1767   //
1768   // The thread is still suspended when we reach here. Thread must be explicit started
1769   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1770   // by calling Threads:add. The reason why this is not done here, is because the thread
1771   // object must be fully initialized (take a look at JVM_Start)
1772 }
1773 
1774 JavaThread::~JavaThread() {
1775 
1776   // JSR166 -- return the parker to the free list
1777   Parker::Release(_parker);
1778   _parker = NULL;
1779 
1780   // Free any remaining  previous UnrollBlock
1781   vframeArray* old_array = vframe_array_last();
1782 
1783   if (old_array != NULL) {
1784     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1785     old_array->set_unroll_block(NULL);
1786     delete old_info;
1787     delete old_array;
1788   }
1789 
1790   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1791   if (deferred != NULL) {
1792     // This can only happen if thread is destroyed before deoptimization occurs.
1793     assert(deferred->length() != 0, "empty array!");
1794     do {
1795       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1796       deferred->remove_at(0);
1797       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1798       delete dlv;
1799     } while (deferred->length() != 0);
1800     delete deferred;
1801   }
1802 
1803   // All Java related clean up happens in exit
1804   ThreadSafepointState::destroy(this);
1805   if (_thread_stat != NULL) delete _thread_stat;
1806 
1807 #if INCLUDE_JVMCI
1808   if (JVMCICounterSize > 0) {
1809     if (jvmci_counters_include(this)) {
1810       for (int i = 0; i < JVMCICounterSize; i++) {
1811         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1812       }
1813     }
1814     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1815   }
1816 #endif // INCLUDE_JVMCI
1817 }
1818 
1819 
1820 // First JavaThread specific code executed by a new Java thread.
1821 void JavaThread::pre_run() {
1822   // empty - see comments in run()
1823 }
1824 
1825 // The main routine called by a new Java thread. This isn't overridden
1826 // by subclasses, instead different subclasses define a different "entry_point"
1827 // which defines the actual logic for that kind of thread.
1828 void JavaThread::run() {
1829   // initialize thread-local alloc buffer related fields
1830   this->initialize_tlab();
1831 
1832   // Used to test validity of stack trace backs.
1833   // This can't be moved into pre_run() else we invalidate
1834   // the requirement that thread_main_inner is lower on
1835   // the stack. Consequently all the initialization logic
1836   // stays here in run() rather than pre_run().
1837   this->record_base_of_stack_pointer();
1838 
1839   this->create_stack_guard_pages();
1840 
1841   this->cache_global_variables();
1842 
1843   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1844   // in the VM. Change thread state from _thread_new to _thread_in_vm
1845   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1846 
1847   assert(JavaThread::current() == this, "sanity check");
1848   assert(!Thread::current()->owns_locks(), "sanity check");
1849 
1850   DTRACE_THREAD_PROBE(start, this);
1851 
1852   // This operation might block. We call that after all safepoint checks for a new thread has
1853   // been completed.
1854   this->set_active_handles(JNIHandleBlock::allocate_block());
1855 
1856   if (JvmtiExport::should_post_thread_life()) {
1857     JvmtiExport::post_thread_start(this);
1858 
1859   }
1860 
1861   // We call another function to do the rest so we are sure that the stack addresses used
1862   // from there will be lower than the stack base just computed.
1863   thread_main_inner();
1864 }
1865 
1866 void JavaThread::thread_main_inner() {
1867   assert(JavaThread::current() == this, "sanity check");
1868   assert(this->threadObj() != NULL, "just checking");
1869 
1870   // Execute thread entry point unless this thread has a pending exception
1871   // or has been stopped before starting.
1872   // Note: Due to JVM_StopThread we can have pending exceptions already!
1873   if (!this->has_pending_exception() &&
1874       !java_lang_Thread::is_stillborn(this->threadObj())) {
1875     {
1876       ResourceMark rm(this);
1877       this->set_native_thread_name(this->get_thread_name());
1878     }
1879     HandleMark hm(this);
1880     this->entry_point()(this, this);
1881   }
1882 
1883   DTRACE_THREAD_PROBE(stop, this);
1884 
1885   // Cleanup is handled in post_run()
1886 }
1887 
1888 // Shared teardown for all JavaThreads
1889 void JavaThread::post_run() {
1890   this->exit(false);
1891   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1892   // for any shared tear-down.
1893   this->smr_delete();
1894 }
1895 
1896 static void ensure_join(JavaThread* thread) {
1897   // We do not need to grab the Threads_lock, since we are operating on ourself.
1898   Handle threadObj(thread, thread->threadObj());
1899   assert(threadObj.not_null(), "java thread object must exist");
1900   ObjectLocker lock(threadObj, thread);
1901   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1902   thread->clear_pending_exception();
1903   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1904   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1905   // Clear the native thread instance - this makes isAlive return false and allows the join()
1906   // to complete once we've done the notify_all below
1907   java_lang_Thread::set_thread(threadObj(), NULL);
1908   lock.notify_all(thread);
1909   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1910   thread->clear_pending_exception();
1911 }
1912 
1913 static bool is_daemon(oop threadObj) {
1914   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1915 }
1916 
1917 // For any new cleanup additions, please check to see if they need to be applied to
1918 // cleanup_failed_attach_current_thread as well.
1919 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1920   assert(this == JavaThread::current(), "thread consistency check");
1921 
1922   elapsedTimer _timer_exit_phase1;
1923   elapsedTimer _timer_exit_phase2;
1924   elapsedTimer _timer_exit_phase3;
1925   elapsedTimer _timer_exit_phase4;
1926 
1927   if (log_is_enabled(Debug, os, thread, timer)) {
1928     _timer_exit_phase1.start();
1929   }
1930 
1931   HandleMark hm(this);
1932   Handle uncaught_exception(this, this->pending_exception());
1933   this->clear_pending_exception();
1934   Handle threadObj(this, this->threadObj());
1935   assert(threadObj.not_null(), "Java thread object should be created");
1936 
1937   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1938   {
1939     EXCEPTION_MARK;
1940 
1941     CLEAR_PENDING_EXCEPTION;
1942   }
1943   if (!destroy_vm) {
1944     if (uncaught_exception.not_null()) {
1945       EXCEPTION_MARK;
1946       // Call method Thread.dispatchUncaughtException().
1947       Klass* thread_klass = SystemDictionary::Thread_klass();
1948       JavaValue result(T_VOID);
1949       JavaCalls::call_virtual(&result,
1950                               threadObj, thread_klass,
1951                               vmSymbols::dispatchUncaughtException_name(),
1952                               vmSymbols::throwable_void_signature(),
1953                               uncaught_exception,
1954                               THREAD);
1955       if (HAS_PENDING_EXCEPTION) {
1956         ResourceMark rm(this);
1957         jio_fprintf(defaultStream::error_stream(),
1958                     "\nException: %s thrown from the UncaughtExceptionHandler"
1959                     " in thread \"%s\"\n",
1960                     pending_exception()->klass()->external_name(),
1961                     get_thread_name());
1962         CLEAR_PENDING_EXCEPTION;
1963       }
1964     }
1965     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
1966 
1967     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1968     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1969     // is deprecated anyhow.
1970     if (!is_Compiler_thread()) {
1971       int count = 3;
1972       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1973         EXCEPTION_MARK;
1974         JavaValue result(T_VOID);
1975         Klass* thread_klass = SystemDictionary::Thread_klass();
1976         JavaCalls::call_virtual(&result,
1977                                 threadObj, thread_klass,
1978                                 vmSymbols::exit_method_name(),
1979                                 vmSymbols::void_method_signature(),
1980                                 THREAD);
1981         CLEAR_PENDING_EXCEPTION;
1982       }
1983     }
1984     // notify JVMTI
1985     if (JvmtiExport::should_post_thread_life()) {
1986       JvmtiExport::post_thread_end(this);
1987     }
1988 
1989     // We have notified the agents that we are exiting, before we go on,
1990     // we must check for a pending external suspend request and honor it
1991     // in order to not surprise the thread that made the suspend request.
1992     while (true) {
1993       {
1994         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1995         if (!is_external_suspend()) {
1996           set_terminated(_thread_exiting);
1997           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
1998           break;
1999         }
2000         // Implied else:
2001         // Things get a little tricky here. We have a pending external
2002         // suspend request, but we are holding the SR_lock so we
2003         // can't just self-suspend. So we temporarily drop the lock
2004         // and then self-suspend.
2005       }
2006 
2007       ThreadBlockInVM tbivm(this);
2008       java_suspend_self();
2009 
2010       // We're done with this suspend request, but we have to loop around
2011       // and check again. Eventually we will get SR_lock without a pending
2012       // external suspend request and will be able to mark ourselves as
2013       // exiting.
2014     }
2015     // no more external suspends are allowed at this point
2016   } else {
2017     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2018     // before_exit() has already posted JVMTI THREAD_END events
2019   }
2020 
2021   if (log_is_enabled(Debug, os, thread, timer)) {
2022     _timer_exit_phase1.stop();
2023     _timer_exit_phase2.start();
2024   }
2025   // Notify waiters on thread object. This has to be done after exit() is called
2026   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2027   // group should have the destroyed bit set before waiters are notified).
2028   ensure_join(this);
2029   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2030 
2031   if (log_is_enabled(Debug, os, thread, timer)) {
2032     _timer_exit_phase2.stop();
2033     _timer_exit_phase3.start();
2034   }
2035   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2036   // held by this thread must be released. The spec does not distinguish
2037   // between JNI-acquired and regular Java monitors. We can only see
2038   // regular Java monitors here if monitor enter-exit matching is broken.
2039   //
2040   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2041   // ObjectSynchronizer::release_monitors_owned_by_thread().
2042   if (exit_type == jni_detach) {
2043     // Sanity check even though JNI DetachCurrentThread() would have
2044     // returned JNI_ERR if there was a Java frame. JavaThread exit
2045     // should be done executing Java code by the time we get here.
2046     assert(!this->has_last_Java_frame(),
2047            "should not have a Java frame when detaching or exiting");
2048     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2049     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2050   }
2051 
2052   // These things needs to be done while we are still a Java Thread. Make sure that thread
2053   // is in a consistent state, in case GC happens
2054   JFR_ONLY(Jfr::on_thread_exit(this);)
2055 
2056   if (active_handles() != NULL) {
2057     JNIHandleBlock* block = active_handles();
2058     set_active_handles(NULL);
2059     JNIHandleBlock::release_block(block);
2060   }
2061 
2062   if (free_handle_block() != NULL) {
2063     JNIHandleBlock* block = free_handle_block();
2064     set_free_handle_block(NULL);
2065     JNIHandleBlock::release_block(block);
2066   }
2067 
2068   // These have to be removed while this is still a valid thread.
2069   remove_stack_guard_pages();
2070 
2071   if (UseTLAB) {
2072     tlab().retire();
2073   }
2074 
2075   if (JvmtiEnv::environments_might_exist()) {
2076     JvmtiExport::cleanup_thread(this);
2077   }
2078 
2079   // We must flush any deferred card marks and other various GC barrier
2080   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2081   // before removing a thread from the list of active threads.
2082   BarrierSet::barrier_set()->on_thread_detach(this);
2083 
2084   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2085     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2086     os::current_thread_id());
2087 
2088   if (log_is_enabled(Debug, os, thread, timer)) {
2089     _timer_exit_phase3.stop();
2090     _timer_exit_phase4.start();
2091   }
2092   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2093   Threads::remove(this);
2094 
2095   if (log_is_enabled(Debug, os, thread, timer)) {
2096     _timer_exit_phase4.stop();
2097     ResourceMark rm(this);
2098     log_debug(os, thread, timer)("name='%s'"
2099                                  ", exit-phase1=" JLONG_FORMAT
2100                                  ", exit-phase2=" JLONG_FORMAT
2101                                  ", exit-phase3=" JLONG_FORMAT
2102                                  ", exit-phase4=" JLONG_FORMAT,
2103                                  get_thread_name(),
2104                                  _timer_exit_phase1.milliseconds(),
2105                                  _timer_exit_phase2.milliseconds(),
2106                                  _timer_exit_phase3.milliseconds(),
2107                                  _timer_exit_phase4.milliseconds());
2108   }
2109 }
2110 
2111 void JavaThread::cleanup_failed_attach_current_thread() {
2112   if (active_handles() != NULL) {
2113     JNIHandleBlock* block = active_handles();
2114     set_active_handles(NULL);
2115     JNIHandleBlock::release_block(block);
2116   }
2117 
2118   if (free_handle_block() != NULL) {
2119     JNIHandleBlock* block = free_handle_block();
2120     set_free_handle_block(NULL);
2121     JNIHandleBlock::release_block(block);
2122   }
2123 
2124   // These have to be removed while this is still a valid thread.
2125   remove_stack_guard_pages();
2126 
2127   if (UseTLAB) {
2128     tlab().retire();
2129   }
2130 
2131   BarrierSet::barrier_set()->on_thread_detach(this);
2132 
2133   Threads::remove(this);
2134   this->smr_delete();
2135 }
2136 
2137 JavaThread* JavaThread::active() {
2138   Thread* thread = Thread::current();
2139   if (thread->is_Java_thread()) {
2140     return (JavaThread*) thread;
2141   } else {
2142     assert(thread->is_VM_thread(), "this must be a vm thread");
2143     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2144     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2145     assert(ret->is_Java_thread(), "must be a Java thread");
2146     return ret;
2147   }
2148 }
2149 
2150 bool JavaThread::is_lock_owned(address adr) const {
2151   if (Thread::is_lock_owned(adr)) return true;
2152 
2153   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2154     if (chunk->contains(adr)) return true;
2155   }
2156 
2157   return false;
2158 }
2159 
2160 
2161 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2162   chunk->set_next(monitor_chunks());
2163   set_monitor_chunks(chunk);
2164 }
2165 
2166 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2167   guarantee(monitor_chunks() != NULL, "must be non empty");
2168   if (monitor_chunks() == chunk) {
2169     set_monitor_chunks(chunk->next());
2170   } else {
2171     MonitorChunk* prev = monitor_chunks();
2172     while (prev->next() != chunk) prev = prev->next();
2173     prev->set_next(chunk->next());
2174   }
2175 }
2176 
2177 // JVM support.
2178 
2179 // Note: this function shouldn't block if it's called in
2180 // _thread_in_native_trans state (such as from
2181 // check_special_condition_for_native_trans()).
2182 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2183 
2184   if (has_last_Java_frame() && has_async_condition()) {
2185     // If we are at a polling page safepoint (not a poll return)
2186     // then we must defer async exception because live registers
2187     // will be clobbered by the exception path. Poll return is
2188     // ok because the call we a returning from already collides
2189     // with exception handling registers and so there is no issue.
2190     // (The exception handling path kills call result registers but
2191     //  this is ok since the exception kills the result anyway).
2192 
2193     if (is_at_poll_safepoint()) {
2194       // if the code we are returning to has deoptimized we must defer
2195       // the exception otherwise live registers get clobbered on the
2196       // exception path before deoptimization is able to retrieve them.
2197       //
2198       RegisterMap map(this, false);
2199       frame caller_fr = last_frame().sender(&map);
2200       assert(caller_fr.is_compiled_frame(), "what?");
2201       if (caller_fr.is_deoptimized_frame()) {
2202         log_info(exceptions)("deferred async exception at compiled safepoint");
2203         return;
2204       }
2205     }
2206   }
2207 
2208   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2209   if (condition == _no_async_condition) {
2210     // Conditions have changed since has_special_runtime_exit_condition()
2211     // was called:
2212     // - if we were here only because of an external suspend request,
2213     //   then that was taken care of above (or cancelled) so we are done
2214     // - if we were here because of another async request, then it has
2215     //   been cleared between the has_special_runtime_exit_condition()
2216     //   and now so again we are done
2217     return;
2218   }
2219 
2220   // Check for pending async. exception
2221   if (_pending_async_exception != NULL) {
2222     // Only overwrite an already pending exception, if it is not a threadDeath.
2223     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2224 
2225       // We cannot call Exceptions::_throw(...) here because we cannot block
2226       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2227 
2228       LogTarget(Info, exceptions) lt;
2229       if (lt.is_enabled()) {
2230         ResourceMark rm;
2231         LogStream ls(lt);
2232         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2233           if (has_last_Java_frame()) {
2234             frame f = last_frame();
2235            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2236           }
2237         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2238       }
2239       _pending_async_exception = NULL;
2240       clear_has_async_exception();
2241     }
2242   }
2243 
2244   if (check_unsafe_error &&
2245       condition == _async_unsafe_access_error && !has_pending_exception()) {
2246     condition = _no_async_condition;  // done
2247     switch (thread_state()) {
2248     case _thread_in_vm: {
2249       JavaThread* THREAD = this;
2250       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2251     }
2252     case _thread_in_native: {
2253       ThreadInVMfromNative tiv(this);
2254       JavaThread* THREAD = this;
2255       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2256     }
2257     case _thread_in_Java: {
2258       ThreadInVMfromJava tiv(this);
2259       JavaThread* THREAD = this;
2260       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2261     }
2262     default:
2263       ShouldNotReachHere();
2264     }
2265   }
2266 
2267   assert(condition == _no_async_condition || has_pending_exception() ||
2268          (!check_unsafe_error && condition == _async_unsafe_access_error),
2269          "must have handled the async condition, if no exception");
2270 }
2271 
2272 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2273   //
2274   // Check for pending external suspend. Internal suspend requests do
2275   // not use handle_special_runtime_exit_condition().
2276   // If JNIEnv proxies are allowed, don't self-suspend if the target
2277   // thread is not the current thread. In older versions of jdbx, jdbx
2278   // threads could call into the VM with another thread's JNIEnv so we
2279   // can be here operating on behalf of a suspended thread (4432884).
2280   bool do_self_suspend = is_external_suspend_with_lock();
2281   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2282     //
2283     // Because thread is external suspended the safepoint code will count
2284     // thread as at a safepoint. This can be odd because we can be here
2285     // as _thread_in_Java which would normally transition to _thread_blocked
2286     // at a safepoint. We would like to mark the thread as _thread_blocked
2287     // before calling java_suspend_self like all other callers of it but
2288     // we must then observe proper safepoint protocol. (We can't leave
2289     // _thread_blocked with a safepoint in progress). However we can be
2290     // here as _thread_in_native_trans so we can't use a normal transition
2291     // constructor/destructor pair because they assert on that type of
2292     // transition. We could do something like:
2293     //
2294     // JavaThreadState state = thread_state();
2295     // set_thread_state(_thread_in_vm);
2296     // {
2297     //   ThreadBlockInVM tbivm(this);
2298     //   java_suspend_self()
2299     // }
2300     // set_thread_state(_thread_in_vm_trans);
2301     // if (safepoint) block;
2302     // set_thread_state(state);
2303     //
2304     // but that is pretty messy. Instead we just go with the way the
2305     // code has worked before and note that this is the only path to
2306     // java_suspend_self that doesn't put the thread in _thread_blocked
2307     // mode.
2308 
2309     frame_anchor()->make_walkable(this);
2310     java_suspend_self();
2311 
2312     // We might be here for reasons in addition to the self-suspend request
2313     // so check for other async requests.
2314   }
2315 
2316   if (check_asyncs) {
2317     check_and_handle_async_exceptions();
2318   }
2319 
2320   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2321 }
2322 
2323 void JavaThread::send_thread_stop(oop java_throwable)  {
2324   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2325   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2326   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2327 
2328   // Do not throw asynchronous exceptions against the compiler thread
2329   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2330   if (!can_call_java()) return;
2331 
2332   {
2333     // Actually throw the Throwable against the target Thread - however
2334     // only if there is no thread death exception installed already.
2335     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2336       // If the topmost frame is a runtime stub, then we are calling into
2337       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2338       // must deoptimize the caller before continuing, as the compiled  exception handler table
2339       // may not be valid
2340       if (has_last_Java_frame()) {
2341         frame f = last_frame();
2342         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2343           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2344           RegisterMap reg_map(this, UseBiasedLocking);
2345           frame compiled_frame = f.sender(&reg_map);
2346           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2347             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2348           }
2349         }
2350       }
2351 
2352       // Set async. pending exception in thread.
2353       set_pending_async_exception(java_throwable);
2354 
2355       if (log_is_enabled(Info, exceptions)) {
2356          ResourceMark rm;
2357         log_info(exceptions)("Pending Async. exception installed of type: %s",
2358                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2359       }
2360       // for AbortVMOnException flag
2361       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2362     }
2363   }
2364 
2365 
2366   // Interrupt thread so it will wake up from a potential wait()
2367   Thread::interrupt(this);
2368 }
2369 
2370 // External suspension mechanism.
2371 //
2372 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2373 // to any VM_locks and it is at a transition
2374 // Self-suspension will happen on the transition out of the vm.
2375 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2376 //
2377 // Guarantees on return:
2378 //   + Target thread will not execute any new bytecode (that's why we need to
2379 //     force a safepoint)
2380 //   + Target thread will not enter any new monitors
2381 //
2382 void JavaThread::java_suspend() {
2383   ThreadsListHandle tlh;
2384   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2385     return;
2386   }
2387 
2388   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2389     if (!is_external_suspend()) {
2390       // a racing resume has cancelled us; bail out now
2391       return;
2392     }
2393 
2394     // suspend is done
2395     uint32_t debug_bits = 0;
2396     // Warning: is_ext_suspend_completed() may temporarily drop the
2397     // SR_lock to allow the thread to reach a stable thread state if
2398     // it is currently in a transient thread state.
2399     if (is_ext_suspend_completed(false /* !called_by_wait */,
2400                                  SuspendRetryDelay, &debug_bits)) {
2401       return;
2402     }
2403   }
2404 
2405   if (Thread::current() == this) {
2406     // Safely self-suspend.
2407     // If we don't do this explicitly it will implicitly happen
2408     // before we transition back to Java, and on some other thread-state
2409     // transition paths, but not as we exit a JVM TI SuspendThread call.
2410     // As SuspendThread(current) must not return (until resumed) we must
2411     // self-suspend here.
2412     ThreadBlockInVM tbivm(this);
2413     java_suspend_self();
2414   } else {
2415     VM_ThreadSuspend vm_suspend;
2416     VMThread::execute(&vm_suspend);
2417   }
2418 }
2419 
2420 // Part II of external suspension.
2421 // A JavaThread self suspends when it detects a pending external suspend
2422 // request. This is usually on transitions. It is also done in places
2423 // where continuing to the next transition would surprise the caller,
2424 // e.g., monitor entry.
2425 //
2426 // Returns the number of times that the thread self-suspended.
2427 //
2428 // Note: DO NOT call java_suspend_self() when you just want to block current
2429 //       thread. java_suspend_self() is the second stage of cooperative
2430 //       suspension for external suspend requests and should only be used
2431 //       to complete an external suspend request.
2432 //
2433 int JavaThread::java_suspend_self() {
2434   int ret = 0;
2435 
2436   // we are in the process of exiting so don't suspend
2437   if (is_exiting()) {
2438     clear_external_suspend();
2439     return ret;
2440   }
2441 
2442   assert(_anchor.walkable() ||
2443          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2444          "must have walkable stack");
2445 
2446   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2447 
2448   assert(!this->is_ext_suspended(),
2449          "a thread trying to self-suspend should not already be suspended");
2450 
2451   if (this->is_suspend_equivalent()) {
2452     // If we are self-suspending as a result of the lifting of a
2453     // suspend equivalent condition, then the suspend_equivalent
2454     // flag is not cleared until we set the ext_suspended flag so
2455     // that wait_for_ext_suspend_completion() returns consistent
2456     // results.
2457     this->clear_suspend_equivalent();
2458   }
2459 
2460   // A racing resume may have cancelled us before we grabbed SR_lock
2461   // above. Or another external suspend request could be waiting for us
2462   // by the time we return from SR_lock()->wait(). The thread
2463   // that requested the suspension may already be trying to walk our
2464   // stack and if we return now, we can change the stack out from under
2465   // it. This would be a "bad thing (TM)" and cause the stack walker
2466   // to crash. We stay self-suspended until there are no more pending
2467   // external suspend requests.
2468   while (is_external_suspend()) {
2469     ret++;
2470     this->set_ext_suspended();
2471 
2472     // _ext_suspended flag is cleared by java_resume()
2473     while (is_ext_suspended()) {
2474       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2475     }
2476   }
2477 
2478   return ret;
2479 }
2480 
2481 #ifdef ASSERT
2482 // Verify the JavaThread has not yet been published in the Threads::list, and
2483 // hence doesn't need protection from concurrent access at this stage.
2484 void JavaThread::verify_not_published() {
2485   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2486   // since an unpublished JavaThread doesn't participate in the
2487   // Thread-SMR protocol for keeping a ThreadsList alive.
2488   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2489 }
2490 #endif
2491 
2492 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2493 // progress or when _suspend_flags is non-zero.
2494 // Current thread needs to self-suspend if there is a suspend request and/or
2495 // block if a safepoint is in progress.
2496 // Async exception ISN'T checked.
2497 // Note only the ThreadInVMfromNative transition can call this function
2498 // directly and when thread state is _thread_in_native_trans
2499 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2500   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2501 
2502   JavaThread *curJT = JavaThread::current();
2503   bool do_self_suspend = thread->is_external_suspend();
2504 
2505   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2506 
2507   // If JNIEnv proxies are allowed, don't self-suspend if the target
2508   // thread is not the current thread. In older versions of jdbx, jdbx
2509   // threads could call into the VM with another thread's JNIEnv so we
2510   // can be here operating on behalf of a suspended thread (4432884).
2511   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2512     JavaThreadState state = thread->thread_state();
2513 
2514     // We mark this thread_blocked state as a suspend-equivalent so
2515     // that a caller to is_ext_suspend_completed() won't be confused.
2516     // The suspend-equivalent state is cleared by java_suspend_self().
2517     thread->set_suspend_equivalent();
2518 
2519     // If the safepoint code sees the _thread_in_native_trans state, it will
2520     // wait until the thread changes to other thread state. There is no
2521     // guarantee on how soon we can obtain the SR_lock and complete the
2522     // self-suspend request. It would be a bad idea to let safepoint wait for
2523     // too long. Temporarily change the state to _thread_blocked to
2524     // let the VM thread know that this thread is ready for GC. The problem
2525     // of changing thread state is that safepoint could happen just after
2526     // java_suspend_self() returns after being resumed, and VM thread will
2527     // see the _thread_blocked state. We must check for safepoint
2528     // after restoring the state and make sure we won't leave while a safepoint
2529     // is in progress.
2530     thread->set_thread_state(_thread_blocked);
2531     thread->java_suspend_self();
2532     thread->set_thread_state(state);
2533 
2534     InterfaceSupport::serialize_thread_state_with_handler(thread);
2535   }
2536 
2537   SafepointMechanism::block_if_requested(curJT);
2538 
2539   if (thread->is_deopt_suspend()) {
2540     thread->clear_deopt_suspend();
2541     RegisterMap map(thread, false);
2542     frame f = thread->last_frame();
2543     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2544       f = f.sender(&map);
2545     }
2546     if (f.id() == thread->must_deopt_id()) {
2547       thread->clear_must_deopt_id();
2548       f.deoptimize(thread);
2549     } else {
2550       fatal("missed deoptimization!");
2551     }
2552   }
2553 
2554   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2555 }
2556 
2557 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2558 // progress or when _suspend_flags is non-zero.
2559 // Current thread needs to self-suspend if there is a suspend request and/or
2560 // block if a safepoint is in progress.
2561 // Also check for pending async exception (not including unsafe access error).
2562 // Note only the native==>VM/Java barriers can call this function and when
2563 // thread state is _thread_in_native_trans.
2564 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2565   check_safepoint_and_suspend_for_native_trans(thread);
2566 
2567   if (thread->has_async_exception()) {
2568     // We are in _thread_in_native_trans state, don't handle unsafe
2569     // access error since that may block.
2570     thread->check_and_handle_async_exceptions(false);
2571   }
2572 }
2573 
2574 // This is a variant of the normal
2575 // check_special_condition_for_native_trans with slightly different
2576 // semantics for use by critical native wrappers.  It does all the
2577 // normal checks but also performs the transition back into
2578 // thread_in_Java state.  This is required so that critical natives
2579 // can potentially block and perform a GC if they are the last thread
2580 // exiting the GCLocker.
2581 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2582   check_special_condition_for_native_trans(thread);
2583 
2584   // Finish the transition
2585   thread->set_thread_state(_thread_in_Java);
2586 
2587   if (thread->do_critical_native_unlock()) {
2588     ThreadInVMfromJavaNoAsyncException tiv(thread);
2589     GCLocker::unlock_critical(thread);
2590     thread->clear_critical_native_unlock();
2591   }
2592 }
2593 
2594 // We need to guarantee the Threads_lock here, since resumes are not
2595 // allowed during safepoint synchronization
2596 // Can only resume from an external suspension
2597 void JavaThread::java_resume() {
2598   assert_locked_or_safepoint(Threads_lock);
2599 
2600   // Sanity check: thread is gone, has started exiting or the thread
2601   // was not externally suspended.
2602   ThreadsListHandle tlh;
2603   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2604     return;
2605   }
2606 
2607   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2608 
2609   clear_external_suspend();
2610 
2611   if (is_ext_suspended()) {
2612     clear_ext_suspended();
2613     SR_lock()->notify_all();
2614   }
2615 }
2616 
2617 size_t JavaThread::_stack_red_zone_size = 0;
2618 size_t JavaThread::_stack_yellow_zone_size = 0;
2619 size_t JavaThread::_stack_reserved_zone_size = 0;
2620 size_t JavaThread::_stack_shadow_zone_size = 0;
2621 
2622 void JavaThread::create_stack_guard_pages() {
2623   if (!os::uses_stack_guard_pages() ||
2624       _stack_guard_state != stack_guard_unused ||
2625       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2626       log_info(os, thread)("Stack guard page creation for thread "
2627                            UINTX_FORMAT " disabled", os::current_thread_id());
2628     return;
2629   }
2630   address low_addr = stack_end();
2631   size_t len = stack_guard_zone_size();
2632 
2633   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2634   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2635 
2636   int must_commit = os::must_commit_stack_guard_pages();
2637   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2638 
2639   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2640     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2641     return;
2642   }
2643 
2644   if (os::guard_memory((char *) low_addr, len)) {
2645     _stack_guard_state = stack_guard_enabled;
2646   } else {
2647     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2648       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2649     if (os::uncommit_memory((char *) low_addr, len)) {
2650       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2651     }
2652     return;
2653   }
2654 
2655   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2656     PTR_FORMAT "-" PTR_FORMAT ".",
2657     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2658 }
2659 
2660 void JavaThread::remove_stack_guard_pages() {
2661   assert(Thread::current() == this, "from different thread");
2662   if (_stack_guard_state == stack_guard_unused) return;
2663   address low_addr = stack_end();
2664   size_t len = stack_guard_zone_size();
2665 
2666   if (os::must_commit_stack_guard_pages()) {
2667     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2668       _stack_guard_state = stack_guard_unused;
2669     } else {
2670       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2671         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2672       return;
2673     }
2674   } else {
2675     if (_stack_guard_state == stack_guard_unused) return;
2676     if (os::unguard_memory((char *) low_addr, len)) {
2677       _stack_guard_state = stack_guard_unused;
2678     } else {
2679       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2680         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2681       return;
2682     }
2683   }
2684 
2685   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2686     PTR_FORMAT "-" PTR_FORMAT ".",
2687     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2688 }
2689 
2690 void JavaThread::enable_stack_reserved_zone() {
2691   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2692 
2693   // The base notation is from the stack's point of view, growing downward.
2694   // We need to adjust it to work correctly with guard_memory()
2695   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2696 
2697   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2698   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2699 
2700   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2701     _stack_guard_state = stack_guard_enabled;
2702   } else {
2703     warning("Attempt to guard stack reserved zone failed.");
2704   }
2705   enable_register_stack_guard();
2706 }
2707 
2708 void JavaThread::disable_stack_reserved_zone() {
2709   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2710 
2711   // Simply return if called for a thread that does not use guard pages.
2712   if (_stack_guard_state != stack_guard_enabled) return;
2713 
2714   // The base notation is from the stack's point of view, growing downward.
2715   // We need to adjust it to work correctly with guard_memory()
2716   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2717 
2718   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2719     _stack_guard_state = stack_guard_reserved_disabled;
2720   } else {
2721     warning("Attempt to unguard stack reserved zone failed.");
2722   }
2723   disable_register_stack_guard();
2724 }
2725 
2726 void JavaThread::enable_stack_yellow_reserved_zone() {
2727   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2728   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2729 
2730   // The base notation is from the stacks point of view, growing downward.
2731   // We need to adjust it to work correctly with guard_memory()
2732   address base = stack_red_zone_base();
2733 
2734   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2735   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2736 
2737   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2738     _stack_guard_state = stack_guard_enabled;
2739   } else {
2740     warning("Attempt to guard stack yellow zone failed.");
2741   }
2742   enable_register_stack_guard();
2743 }
2744 
2745 void JavaThread::disable_stack_yellow_reserved_zone() {
2746   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2747   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2748 
2749   // Simply return if called for a thread that does not use guard pages.
2750   if (_stack_guard_state == stack_guard_unused) return;
2751 
2752   // The base notation is from the stacks point of view, growing downward.
2753   // We need to adjust it to work correctly with guard_memory()
2754   address base = stack_red_zone_base();
2755 
2756   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2757     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2758   } else {
2759     warning("Attempt to unguard stack yellow zone failed.");
2760   }
2761   disable_register_stack_guard();
2762 }
2763 
2764 void JavaThread::enable_stack_red_zone() {
2765   // The base notation is from the stacks point of view, growing downward.
2766   // We need to adjust it to work correctly with guard_memory()
2767   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2768   address base = stack_red_zone_base() - stack_red_zone_size();
2769 
2770   guarantee(base < stack_base(), "Error calculating stack red zone");
2771   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2772 
2773   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2774     warning("Attempt to guard stack red zone failed.");
2775   }
2776 }
2777 
2778 void JavaThread::disable_stack_red_zone() {
2779   // The base notation is from the stacks point of view, growing downward.
2780   // We need to adjust it to work correctly with guard_memory()
2781   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2782   address base = stack_red_zone_base() - stack_red_zone_size();
2783   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2784     warning("Attempt to unguard stack red zone failed.");
2785   }
2786 }
2787 
2788 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2789   // ignore is there is no stack
2790   if (!has_last_Java_frame()) return;
2791   // traverse the stack frames. Starts from top frame.
2792   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2793     frame* fr = fst.current();
2794     f(fr, fst.register_map());
2795   }
2796 }
2797 
2798 
2799 #ifndef PRODUCT
2800 // Deoptimization
2801 // Function for testing deoptimization
2802 void JavaThread::deoptimize() {
2803   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2804   StackFrameStream fst(this, UseBiasedLocking);
2805   bool deopt = false;           // Dump stack only if a deopt actually happens.
2806   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2807   // Iterate over all frames in the thread and deoptimize
2808   for (; !fst.is_done(); fst.next()) {
2809     if (fst.current()->can_be_deoptimized()) {
2810 
2811       if (only_at) {
2812         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2813         // consists of comma or carriage return separated numbers so
2814         // search for the current bci in that string.
2815         address pc = fst.current()->pc();
2816         nmethod* nm =  (nmethod*) fst.current()->cb();
2817         ScopeDesc* sd = nm->scope_desc_at(pc);
2818         char buffer[8];
2819         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2820         size_t len = strlen(buffer);
2821         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2822         while (found != NULL) {
2823           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2824               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2825             // Check that the bci found is bracketed by terminators.
2826             break;
2827           }
2828           found = strstr(found + 1, buffer);
2829         }
2830         if (!found) {
2831           continue;
2832         }
2833       }
2834 
2835       if (DebugDeoptimization && !deopt) {
2836         deopt = true; // One-time only print before deopt
2837         tty->print_cr("[BEFORE Deoptimization]");
2838         trace_frames();
2839         trace_stack();
2840       }
2841       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2842     }
2843   }
2844 
2845   if (DebugDeoptimization && deopt) {
2846     tty->print_cr("[AFTER Deoptimization]");
2847     trace_frames();
2848   }
2849 }
2850 
2851 
2852 // Make zombies
2853 void JavaThread::make_zombies() {
2854   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2855     if (fst.current()->can_be_deoptimized()) {
2856       // it is a Java nmethod
2857       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2858       nm->make_not_entrant();
2859     }
2860   }
2861 }
2862 #endif // PRODUCT
2863 
2864 
2865 void JavaThread::deoptimized_wrt_marked_nmethods() {
2866   if (!has_last_Java_frame()) return;
2867   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2868   StackFrameStream fst(this, UseBiasedLocking);
2869   for (; !fst.is_done(); fst.next()) {
2870     if (fst.current()->should_be_deoptimized()) {
2871       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2872     }
2873   }
2874 }
2875 
2876 
2877 // If the caller is a NamedThread, then remember, in the current scope,
2878 // the given JavaThread in its _processed_thread field.
2879 class RememberProcessedThread: public StackObj {
2880   NamedThread* _cur_thr;
2881  public:
2882   RememberProcessedThread(JavaThread* jthr) {
2883     Thread* thread = Thread::current();
2884     if (thread->is_Named_thread()) {
2885       _cur_thr = (NamedThread *)thread;
2886       _cur_thr->set_processed_thread(jthr);
2887     } else {
2888       _cur_thr = NULL;
2889     }
2890   }
2891 
2892   ~RememberProcessedThread() {
2893     if (_cur_thr) {
2894       _cur_thr->set_processed_thread(NULL);
2895     }
2896   }
2897 };
2898 
2899 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2900   // Verify that the deferred card marks have been flushed.
2901   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2902 
2903   // Traverse the GCHandles
2904   Thread::oops_do(f, cf);
2905 
2906   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2907          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2908 
2909   if (has_last_Java_frame()) {
2910     // Record JavaThread to GC thread
2911     RememberProcessedThread rpt(this);
2912 
2913     // traverse the registered growable array
2914     if (_array_for_gc != NULL) {
2915       for (int index = 0; index < _array_for_gc->length(); index++) {
2916         f->do_oop(_array_for_gc->adr_at(index));
2917       }
2918     }
2919 
2920     // Traverse the monitor chunks
2921     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2922       chunk->oops_do(f);
2923     }
2924 
2925     // Traverse the execution stack
2926     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2927       fst.current()->oops_do(f, cf, fst.register_map());
2928     }
2929   }
2930 
2931   // callee_target is never live across a gc point so NULL it here should
2932   // it still contain a methdOop.
2933 
2934   set_callee_target(NULL);
2935 
2936   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2937   // If we have deferred set_locals there might be oops waiting to be
2938   // written
2939   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2940   if (list != NULL) {
2941     for (int i = 0; i < list->length(); i++) {
2942       list->at(i)->oops_do(f);
2943     }
2944   }
2945 
2946   // Traverse instance variables at the end since the GC may be moving things
2947   // around using this function
2948   f->do_oop((oop*) &_threadObj);
2949   f->do_oop((oop*) &_vm_result);
2950   f->do_oop((oop*) &_exception_oop);
2951   f->do_oop((oop*) &_pending_async_exception);
2952 
2953   if (jvmti_thread_state() != NULL) {
2954     jvmti_thread_state()->oops_do(f);
2955   }
2956 }
2957 
2958 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2959   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2960          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2961 
2962   if (has_last_Java_frame()) {
2963     // Traverse the execution stack
2964     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2965       fst.current()->nmethods_do(cf);
2966     }
2967   }
2968 }
2969 
2970 void JavaThread::metadata_do(MetadataClosure* f) {
2971   if (has_last_Java_frame()) {
2972     // Traverse the execution stack to call f() on the methods in the stack
2973     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2974       fst.current()->metadata_do(f);
2975     }
2976   } else if (is_Compiler_thread()) {
2977     // need to walk ciMetadata in current compile tasks to keep alive.
2978     CompilerThread* ct = (CompilerThread*)this;
2979     if (ct->env() != NULL) {
2980       ct->env()->metadata_do(f);
2981     }
2982     CompileTask* task = ct->task();
2983     if (task != NULL) {
2984       task->metadata_do(f);
2985     }
2986   }
2987 }
2988 
2989 // Printing
2990 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2991   switch (_thread_state) {
2992   case _thread_uninitialized:     return "_thread_uninitialized";
2993   case _thread_new:               return "_thread_new";
2994   case _thread_new_trans:         return "_thread_new_trans";
2995   case _thread_in_native:         return "_thread_in_native";
2996   case _thread_in_native_trans:   return "_thread_in_native_trans";
2997   case _thread_in_vm:             return "_thread_in_vm";
2998   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2999   case _thread_in_Java:           return "_thread_in_Java";
3000   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3001   case _thread_blocked:           return "_thread_blocked";
3002   case _thread_blocked_trans:     return "_thread_blocked_trans";
3003   default:                        return "unknown thread state";
3004   }
3005 }
3006 
3007 #ifndef PRODUCT
3008 void JavaThread::print_thread_state_on(outputStream *st) const {
3009   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3010 };
3011 void JavaThread::print_thread_state() const {
3012   print_thread_state_on(tty);
3013 }
3014 #endif // PRODUCT
3015 
3016 // Called by Threads::print() for VM_PrintThreads operation
3017 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3018   st->print_raw("\"");
3019   st->print_raw(get_thread_name());
3020   st->print_raw("\" ");
3021   oop thread_oop = threadObj();
3022   if (thread_oop != NULL) {
3023     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3024     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3025     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3026   }
3027   Thread::print_on(st, print_extended_info);
3028   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3029   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3030   if (thread_oop != NULL) {
3031     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3032   }
3033 #ifndef PRODUCT
3034   _safepoint_state->print_on(st);
3035 #endif // PRODUCT
3036   if (is_Compiler_thread()) {
3037     CompileTask *task = ((CompilerThread*)this)->task();
3038     if (task != NULL) {
3039       st->print("   Compiling: ");
3040       task->print(st, NULL, true, false);
3041     } else {
3042       st->print("   No compile task");
3043     }
3044     st->cr();
3045   }
3046 }
3047 
3048 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3049   st->print("%s", get_thread_name_string(buf, buflen));
3050 }
3051 
3052 // Called by fatal error handler. The difference between this and
3053 // JavaThread::print() is that we can't grab lock or allocate memory.
3054 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3055   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3056   oop thread_obj = threadObj();
3057   if (thread_obj != NULL) {
3058     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3059   }
3060   st->print(" [");
3061   st->print("%s", _get_thread_state_name(_thread_state));
3062   if (osthread()) {
3063     st->print(", id=%d", osthread()->thread_id());
3064   }
3065   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3066             p2i(stack_end()), p2i(stack_base()));
3067   st->print("]");
3068 
3069   ThreadsSMRSupport::print_info_on(this, st);
3070   return;
3071 }
3072 
3073 // Verification
3074 
3075 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3076 
3077 void JavaThread::verify() {
3078   // Verify oops in the thread.
3079   oops_do(&VerifyOopClosure::verify_oop, NULL);
3080 
3081   // Verify the stack frames.
3082   frames_do(frame_verify);
3083 }
3084 
3085 // CR 6300358 (sub-CR 2137150)
3086 // Most callers of this method assume that it can't return NULL but a
3087 // thread may not have a name whilst it is in the process of attaching to
3088 // the VM - see CR 6412693, and there are places where a JavaThread can be
3089 // seen prior to having it's threadObj set (eg JNI attaching threads and
3090 // if vm exit occurs during initialization). These cases can all be accounted
3091 // for such that this method never returns NULL.
3092 const char* JavaThread::get_thread_name() const {
3093 #ifdef ASSERT
3094   // early safepoints can hit while current thread does not yet have TLS
3095   if (!SafepointSynchronize::is_at_safepoint()) {
3096     Thread *cur = Thread::current();
3097     if (!(cur->is_Java_thread() && cur == this)) {
3098       // Current JavaThreads are allowed to get their own name without
3099       // the Threads_lock.
3100       assert_locked_or_safepoint(Threads_lock);
3101     }
3102   }
3103 #endif // ASSERT
3104   return get_thread_name_string();
3105 }
3106 
3107 // Returns a non-NULL representation of this thread's name, or a suitable
3108 // descriptive string if there is no set name
3109 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3110   const char* name_str;
3111   oop thread_obj = threadObj();
3112   if (thread_obj != NULL) {
3113     oop name = java_lang_Thread::name(thread_obj);
3114     if (name != NULL) {
3115       if (buf == NULL) {
3116         name_str = java_lang_String::as_utf8_string(name);
3117       } else {
3118         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3119       }
3120     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3121       name_str = "<no-name - thread is attaching>";
3122     } else {
3123       name_str = Thread::name();
3124     }
3125   } else {
3126     name_str = Thread::name();
3127   }
3128   assert(name_str != NULL, "unexpected NULL thread name");
3129   return name_str;
3130 }
3131 
3132 
3133 const char* JavaThread::get_threadgroup_name() const {
3134   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3135   oop thread_obj = threadObj();
3136   if (thread_obj != NULL) {
3137     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3138     if (thread_group != NULL) {
3139       // ThreadGroup.name can be null
3140       return java_lang_ThreadGroup::name(thread_group);
3141     }
3142   }
3143   return NULL;
3144 }
3145 
3146 const char* JavaThread::get_parent_name() const {
3147   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3148   oop thread_obj = threadObj();
3149   if (thread_obj != NULL) {
3150     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3151     if (thread_group != NULL) {
3152       oop parent = java_lang_ThreadGroup::parent(thread_group);
3153       if (parent != NULL) {
3154         // ThreadGroup.name can be null
3155         return java_lang_ThreadGroup::name(parent);
3156       }
3157     }
3158   }
3159   return NULL;
3160 }
3161 
3162 ThreadPriority JavaThread::java_priority() const {
3163   oop thr_oop = threadObj();
3164   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3165   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3166   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3167   return priority;
3168 }
3169 
3170 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3171 
3172   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3173   // Link Java Thread object <-> C++ Thread
3174 
3175   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3176   // and put it into a new Handle.  The Handle "thread_oop" can then
3177   // be used to pass the C++ thread object to other methods.
3178 
3179   // Set the Java level thread object (jthread) field of the
3180   // new thread (a JavaThread *) to C++ thread object using the
3181   // "thread_oop" handle.
3182 
3183   // Set the thread field (a JavaThread *) of the
3184   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3185 
3186   Handle thread_oop(Thread::current(),
3187                     JNIHandles::resolve_non_null(jni_thread));
3188   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3189          "must be initialized");
3190   set_threadObj(thread_oop());
3191   java_lang_Thread::set_thread(thread_oop(), this);
3192 
3193   if (prio == NoPriority) {
3194     prio = java_lang_Thread::priority(thread_oop());
3195     assert(prio != NoPriority, "A valid priority should be present");
3196   }
3197 
3198   // Push the Java priority down to the native thread; needs Threads_lock
3199   Thread::set_priority(this, prio);
3200 
3201   // Add the new thread to the Threads list and set it in motion.
3202   // We must have threads lock in order to call Threads::add.
3203   // It is crucial that we do not block before the thread is
3204   // added to the Threads list for if a GC happens, then the java_thread oop
3205   // will not be visited by GC.
3206   Threads::add(this);
3207 }
3208 
3209 oop JavaThread::current_park_blocker() {
3210   // Support for JSR-166 locks
3211   oop thread_oop = threadObj();
3212   if (thread_oop != NULL &&
3213       JDK_Version::current().supports_thread_park_blocker()) {
3214     return java_lang_Thread::park_blocker(thread_oop);
3215   }
3216   return NULL;
3217 }
3218 
3219 
3220 void JavaThread::print_stack_on(outputStream* st) {
3221   if (!has_last_Java_frame()) return;
3222   ResourceMark rm;
3223   HandleMark   hm;
3224 
3225   RegisterMap reg_map(this);
3226   vframe* start_vf = last_java_vframe(&reg_map);
3227   int count = 0;
3228   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3229     if (f->is_java_frame()) {
3230       javaVFrame* jvf = javaVFrame::cast(f);
3231       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3232 
3233       // Print out lock information
3234       if (JavaMonitorsInStackTrace) {
3235         jvf->print_lock_info_on(st, count);
3236       }
3237     } else {
3238       // Ignore non-Java frames
3239     }
3240 
3241     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3242     count++;
3243     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3244   }
3245 }
3246 
3247 
3248 // JVMTI PopFrame support
3249 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3250   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3251   if (in_bytes(size_in_bytes) != 0) {
3252     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3253     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3254     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3255   }
3256 }
3257 
3258 void* JavaThread::popframe_preserved_args() {
3259   return _popframe_preserved_args;
3260 }
3261 
3262 ByteSize JavaThread::popframe_preserved_args_size() {
3263   return in_ByteSize(_popframe_preserved_args_size);
3264 }
3265 
3266 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3267   int sz = in_bytes(popframe_preserved_args_size());
3268   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3269   return in_WordSize(sz / wordSize);
3270 }
3271 
3272 void JavaThread::popframe_free_preserved_args() {
3273   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3274   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3275   _popframe_preserved_args = NULL;
3276   _popframe_preserved_args_size = 0;
3277 }
3278 
3279 #ifndef PRODUCT
3280 
3281 void JavaThread::trace_frames() {
3282   tty->print_cr("[Describe stack]");
3283   int frame_no = 1;
3284   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3285     tty->print("  %d. ", frame_no++);
3286     fst.current()->print_value_on(tty, this);
3287     tty->cr();
3288   }
3289 }
3290 
3291 class PrintAndVerifyOopClosure: public OopClosure {
3292  protected:
3293   template <class T> inline void do_oop_work(T* p) {
3294     oop obj = RawAccess<>::oop_load(p);
3295     if (obj == NULL) return;
3296     tty->print(INTPTR_FORMAT ": ", p2i(p));
3297     if (oopDesc::is_oop_or_null(obj)) {
3298       if (obj->is_objArray()) {
3299         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3300       } else {
3301         obj->print();
3302       }
3303     } else {
3304       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3305     }
3306     tty->cr();
3307   }
3308  public:
3309   virtual void do_oop(oop* p) { do_oop_work(p); }
3310   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3311 };
3312 
3313 
3314 static void oops_print(frame* f, const RegisterMap *map) {
3315   PrintAndVerifyOopClosure print;
3316   f->print_value();
3317   f->oops_do(&print, NULL, (RegisterMap*)map);
3318 }
3319 
3320 // Print our all the locations that contain oops and whether they are
3321 // valid or not.  This useful when trying to find the oldest frame
3322 // where an oop has gone bad since the frame walk is from youngest to
3323 // oldest.
3324 void JavaThread::trace_oops() {
3325   tty->print_cr("[Trace oops]");
3326   frames_do(oops_print);
3327 }
3328 
3329 
3330 #ifdef ASSERT
3331 // Print or validate the layout of stack frames
3332 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3333   ResourceMark rm;
3334   PRESERVE_EXCEPTION_MARK;
3335   FrameValues values;
3336   int frame_no = 0;
3337   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3338     fst.current()->describe(values, ++frame_no);
3339     if (depth == frame_no) break;
3340   }
3341   if (validate_only) {
3342     values.validate();
3343   } else {
3344     tty->print_cr("[Describe stack layout]");
3345     values.print(this);
3346   }
3347 }
3348 #endif
3349 
3350 void JavaThread::trace_stack_from(vframe* start_vf) {
3351   ResourceMark rm;
3352   int vframe_no = 1;
3353   for (vframe* f = start_vf; f; f = f->sender()) {
3354     if (f->is_java_frame()) {
3355       javaVFrame::cast(f)->print_activation(vframe_no++);
3356     } else {
3357       f->print();
3358     }
3359     if (vframe_no > StackPrintLimit) {
3360       tty->print_cr("...<more frames>...");
3361       return;
3362     }
3363   }
3364 }
3365 
3366 
3367 void JavaThread::trace_stack() {
3368   if (!has_last_Java_frame()) return;
3369   ResourceMark rm;
3370   HandleMark   hm;
3371   RegisterMap reg_map(this);
3372   trace_stack_from(last_java_vframe(&reg_map));
3373 }
3374 
3375 
3376 #endif // PRODUCT
3377 
3378 
3379 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3380   assert(reg_map != NULL, "a map must be given");
3381   frame f = last_frame();
3382   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3383     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3384   }
3385   return NULL;
3386 }
3387 
3388 
3389 Klass* JavaThread::security_get_caller_class(int depth) {
3390   vframeStream vfst(this);
3391   vfst.security_get_caller_frame(depth);
3392   if (!vfst.at_end()) {
3393     return vfst.method()->method_holder();
3394   }
3395   return NULL;
3396 }
3397 
3398 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3399   assert(thread->is_Compiler_thread(), "must be compiler thread");
3400   CompileBroker::compiler_thread_loop();
3401 }
3402 
3403 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3404   NMethodSweeper::sweeper_loop();
3405 }
3406 
3407 // Create a CompilerThread
3408 CompilerThread::CompilerThread(CompileQueue* queue,
3409                                CompilerCounters* counters)
3410                                : JavaThread(&compiler_thread_entry) {
3411   _env   = NULL;
3412   _log   = NULL;
3413   _task  = NULL;
3414   _queue = queue;
3415   _counters = counters;
3416   _buffer_blob = NULL;
3417   _compiler = NULL;
3418 
3419   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3420   resource_area()->bias_to(mtCompiler);
3421 
3422 #ifndef PRODUCT
3423   _ideal_graph_printer = NULL;
3424 #endif
3425 }
3426 
3427 CompilerThread::~CompilerThread() {
3428   // Delete objects which were allocated on heap.
3429   delete _counters;
3430 }
3431 
3432 bool CompilerThread::can_call_java() const {
3433   return _compiler != NULL && _compiler->is_jvmci();
3434 }
3435 
3436 // Create sweeper thread
3437 CodeCacheSweeperThread::CodeCacheSweeperThread()
3438 : JavaThread(&sweeper_thread_entry) {
3439   _scanned_compiled_method = NULL;
3440 }
3441 
3442 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3443   JavaThread::oops_do(f, cf);
3444   if (_scanned_compiled_method != NULL && cf != NULL) {
3445     // Safepoints can occur when the sweeper is scanning an nmethod so
3446     // process it here to make sure it isn't unloaded in the middle of
3447     // a scan.
3448     cf->do_code_blob(_scanned_compiled_method);
3449   }
3450 }
3451 
3452 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3453   JavaThread::nmethods_do(cf);
3454   if (_scanned_compiled_method != NULL && cf != NULL) {
3455     // Safepoints can occur when the sweeper is scanning an nmethod so
3456     // process it here to make sure it isn't unloaded in the middle of
3457     // a scan.
3458     cf->do_code_blob(_scanned_compiled_method);
3459   }
3460 }
3461 
3462 
3463 // ======= Threads ========
3464 
3465 // The Threads class links together all active threads, and provides
3466 // operations over all threads. It is protected by the Threads_lock,
3467 // which is also used in other global contexts like safepointing.
3468 // ThreadsListHandles are used to safely perform operations on one
3469 // or more threads without the risk of the thread exiting during the
3470 // operation.
3471 //
3472 // Note: The Threads_lock is currently more widely used than we
3473 // would like. We are actively migrating Threads_lock uses to other
3474 // mechanisms in order to reduce Threads_lock contention.
3475 
3476 JavaThread* Threads::_thread_list = NULL;
3477 int         Threads::_number_of_threads = 0;
3478 int         Threads::_number_of_non_daemon_threads = 0;
3479 int         Threads::_return_code = 0;
3480 int         Threads::_thread_claim_parity = 0;
3481 size_t      JavaThread::_stack_size_at_create = 0;
3482 
3483 #ifdef ASSERT
3484 bool        Threads::_vm_complete = false;
3485 #endif
3486 
3487 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3488   Prefetch::read((void*)addr, prefetch_interval);
3489   return *addr;
3490 }
3491 
3492 // Possibly the ugliest for loop the world has seen. C++ does not allow
3493 // multiple types in the declaration section of the for loop. In this case
3494 // we are only dealing with pointers and hence can cast them. It looks ugly
3495 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3496 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3497     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3498              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3499              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3500              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3501              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3502          MACRO_current_p != MACRO_end;                                                                                    \
3503          MACRO_current_p++,                                                                                               \
3504              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3505 
3506 // All JavaThreads
3507 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3508 
3509 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3510 void Threads::non_java_threads_do(ThreadClosure* tc) {
3511   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3512   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3513     tc->do_thread(njti.current());
3514   }
3515 }
3516 
3517 // All JavaThreads
3518 void Threads::java_threads_do(ThreadClosure* tc) {
3519   assert_locked_or_safepoint(Threads_lock);
3520   // ALL_JAVA_THREADS iterates through all JavaThreads.
3521   ALL_JAVA_THREADS(p) {
3522     tc->do_thread(p);
3523   }
3524 }
3525 
3526 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3527   assert_locked_or_safepoint(Threads_lock);
3528   java_threads_do(tc);
3529   tc->do_thread(VMThread::vm_thread());
3530 }
3531 
3532 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3533 void Threads::threads_do(ThreadClosure* tc) {
3534   assert_locked_or_safepoint(Threads_lock);
3535   java_threads_do(tc);
3536   non_java_threads_do(tc);
3537 }
3538 
3539 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3540   int cp = Threads::thread_claim_parity();
3541   ALL_JAVA_THREADS(p) {
3542     if (p->claim_oops_do(is_par, cp)) {
3543       tc->do_thread(p);
3544     }
3545   }
3546   VMThread* vmt = VMThread::vm_thread();
3547   if (vmt->claim_oops_do(is_par, cp)) {
3548     tc->do_thread(vmt);
3549   }
3550 }
3551 
3552 // The system initialization in the library has three phases.
3553 //
3554 // Phase 1: java.lang.System class initialization
3555 //     java.lang.System is a primordial class loaded and initialized
3556 //     by the VM early during startup.  java.lang.System.<clinit>
3557 //     only does registerNatives and keeps the rest of the class
3558 //     initialization work later until thread initialization completes.
3559 //
3560 //     System.initPhase1 initializes the system properties, the static
3561 //     fields in, out, and err. Set up java signal handlers, OS-specific
3562 //     system settings, and thread group of the main thread.
3563 static void call_initPhase1(TRAPS) {
3564   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3565   JavaValue result(T_VOID);
3566   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3567                                          vmSymbols::void_method_signature(), CHECK);
3568 }
3569 
3570 // Phase 2. Module system initialization
3571 //     This will initialize the module system.  Only java.base classes
3572 //     can be loaded until phase 2 completes.
3573 //
3574 //     Call System.initPhase2 after the compiler initialization and jsr292
3575 //     classes get initialized because module initialization runs a lot of java
3576 //     code, that for performance reasons, should be compiled.  Also, this will
3577 //     enable the startup code to use lambda and other language features in this
3578 //     phase and onward.
3579 //
3580 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3581 static void call_initPhase2(TRAPS) {
3582   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3583 
3584   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3585 
3586   JavaValue result(T_INT);
3587   JavaCallArguments args;
3588   args.push_int(DisplayVMOutputToStderr);
3589   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3590   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3591                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3592   if (result.get_jint() != JNI_OK) {
3593     vm_exit_during_initialization(); // no message or exception
3594   }
3595 
3596   universe_post_module_init();
3597 }
3598 
3599 // Phase 3. final setup - set security manager, system class loader and TCCL
3600 //
3601 //     This will instantiate and set the security manager, set the system class
3602 //     loader as well as the thread context class loader.  The security manager
3603 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3604 //     other modules or the application's classpath.
3605 static void call_initPhase3(TRAPS) {
3606   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3607   JavaValue result(T_VOID);
3608   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3609                                          vmSymbols::void_method_signature(), CHECK);
3610 }
3611 
3612 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3613   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3614 
3615   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3616     create_vm_init_libraries();
3617   }
3618 
3619   initialize_class(vmSymbols::java_lang_String(), CHECK);
3620 
3621   // Inject CompactStrings value after the static initializers for String ran.
3622   java_lang_String::set_compact_strings(CompactStrings);
3623 
3624   // Initialize java_lang.System (needed before creating the thread)
3625   initialize_class(vmSymbols::java_lang_System(), CHECK);
3626   // The VM creates & returns objects of this class. Make sure it's initialized.
3627   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3628   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3629   Handle thread_group = create_initial_thread_group(CHECK);
3630   Universe::set_main_thread_group(thread_group());
3631   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3632   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3633   main_thread->set_threadObj(thread_object);
3634   // Set thread status to running since main thread has
3635   // been started and running.
3636   java_lang_Thread::set_thread_status(thread_object,
3637                                       java_lang_Thread::RUNNABLE);
3638 
3639   // The VM creates objects of this class.
3640   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3641 
3642   // The VM preresolves methods to these classes. Make sure that they get initialized
3643   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3644   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3645 
3646   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3647   call_initPhase1(CHECK);
3648 
3649   // get the Java runtime name after java.lang.System is initialized
3650   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3651   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3652 
3653   // an instance of OutOfMemory exception has been allocated earlier
3654   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3655   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3656   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3657   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3658   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3659   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3660   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3661   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3662 }
3663 
3664 void Threads::initialize_jsr292_core_classes(TRAPS) {
3665   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3666 
3667   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3668   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3669   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3670   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3671 }
3672 
3673 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3674   extern void JDK_Version_init();
3675 
3676   // Preinitialize version info.
3677   VM_Version::early_initialize();
3678 
3679   // Check version
3680   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3681 
3682   // Initialize library-based TLS
3683   ThreadLocalStorage::init();
3684 
3685   // Initialize the output stream module
3686   ostream_init();
3687 
3688   // Process java launcher properties.
3689   Arguments::process_sun_java_launcher_properties(args);
3690 
3691   // Initialize the os module
3692   os::init();
3693 
3694   // Record VM creation timing statistics
3695   TraceVmCreationTime create_vm_timer;
3696   create_vm_timer.start();
3697 
3698   // Initialize system properties.
3699   Arguments::init_system_properties();
3700 
3701   // So that JDK version can be used as a discriminator when parsing arguments
3702   JDK_Version_init();
3703 
3704   // Update/Initialize System properties after JDK version number is known
3705   Arguments::init_version_specific_system_properties();
3706 
3707   // Make sure to initialize log configuration *before* parsing arguments
3708   LogConfiguration::initialize(create_vm_timer.begin_time());
3709 
3710   // Parse arguments
3711   // Note: this internally calls os::init_container_support()
3712   jint parse_result = Arguments::parse(args);
3713   if (parse_result != JNI_OK) return parse_result;
3714 
3715   os::init_before_ergo();
3716 
3717   jint ergo_result = Arguments::apply_ergo();
3718   if (ergo_result != JNI_OK) return ergo_result;
3719 
3720   // Final check of all ranges after ergonomics which may change values.
3721   if (!JVMFlagRangeList::check_ranges()) {
3722     return JNI_EINVAL;
3723   }
3724 
3725   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3726   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3727   if (!constraint_result) {
3728     return JNI_EINVAL;
3729   }
3730 
3731   JVMFlagWriteableList::mark_startup();
3732 
3733   if (PauseAtStartup) {
3734     os::pause();
3735   }
3736 
3737   HOTSPOT_VM_INIT_BEGIN();
3738 
3739   // Timing (must come after argument parsing)
3740   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3741 
3742   // Initialize the os module after parsing the args
3743   jint os_init_2_result = os::init_2();
3744   if (os_init_2_result != JNI_OK) return os_init_2_result;
3745 
3746 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3747   // Initialize assert poison page mechanism.
3748   if (ShowRegistersOnAssert) {
3749     initialize_assert_poison();
3750   }
3751 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3752 
3753   SafepointMechanism::initialize();
3754 
3755   jint adjust_after_os_result = Arguments::adjust_after_os();
3756   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3757 
3758   // Initialize output stream logging
3759   ostream_init_log();
3760 
3761   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3762   // Must be before create_vm_init_agents()
3763   if (Arguments::init_libraries_at_startup()) {
3764     convert_vm_init_libraries_to_agents();
3765   }
3766 
3767   // Launch -agentlib/-agentpath and converted -Xrun agents
3768   if (Arguments::init_agents_at_startup()) {
3769     create_vm_init_agents();
3770   }
3771 
3772   // Initialize Threads state
3773   _thread_list = NULL;
3774   _number_of_threads = 0;
3775   _number_of_non_daemon_threads = 0;
3776 
3777   // Initialize global data structures and create system classes in heap
3778   vm_init_globals();
3779 
3780 #if INCLUDE_JVMCI
3781   if (JVMCICounterSize > 0) {
3782     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3783     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3784   } else {
3785     JavaThread::_jvmci_old_thread_counters = NULL;
3786   }
3787 #endif // INCLUDE_JVMCI
3788 
3789   // Attach the main thread to this os thread
3790   JavaThread* main_thread = new JavaThread();
3791   main_thread->set_thread_state(_thread_in_vm);
3792   main_thread->initialize_thread_current();
3793   // must do this before set_active_handles
3794   main_thread->record_stack_base_and_size();
3795   main_thread->register_thread_stack_with_NMT();
3796   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3797 
3798   if (!main_thread->set_as_starting_thread()) {
3799     vm_shutdown_during_initialization(
3800                                       "Failed necessary internal allocation. Out of swap space");
3801     main_thread->smr_delete();
3802     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3803     return JNI_ENOMEM;
3804   }
3805 
3806   // Enable guard page *after* os::create_main_thread(), otherwise it would
3807   // crash Linux VM, see notes in os_linux.cpp.
3808   main_thread->create_stack_guard_pages();
3809 
3810   // Initialize Java-Level synchronization subsystem
3811   ObjectMonitor::Initialize();
3812 
3813   // Initialize global modules
3814   jint status = init_globals();
3815   if (status != JNI_OK) {
3816     main_thread->smr_delete();
3817     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3818     return status;
3819   }
3820 
3821   JFR_ONLY(Jfr::on_vm_init();)
3822 
3823   // Should be done after the heap is fully created
3824   main_thread->cache_global_variables();
3825 
3826   HandleMark hm;
3827 
3828   { MutexLocker mu(Threads_lock);
3829     Threads::add(main_thread);
3830   }
3831 
3832   // Any JVMTI raw monitors entered in onload will transition into
3833   // real raw monitor. VM is setup enough here for raw monitor enter.
3834   JvmtiExport::transition_pending_onload_raw_monitors();
3835 
3836   // Create the VMThread
3837   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3838 
3839   VMThread::create();
3840     Thread* vmthread = VMThread::vm_thread();
3841 
3842     if (!os::create_thread(vmthread, os::vm_thread)) {
3843       vm_exit_during_initialization("Cannot create VM thread. "
3844                                     "Out of system resources.");
3845     }
3846 
3847     // Wait for the VM thread to become ready, and VMThread::run to initialize
3848     // Monitors can have spurious returns, must always check another state flag
3849     {
3850       MutexLocker ml(Notify_lock);
3851       os::start_thread(vmthread);
3852       while (vmthread->active_handles() == NULL) {
3853         Notify_lock->wait();
3854       }
3855     }
3856   }
3857 
3858   assert(Universe::is_fully_initialized(), "not initialized");
3859   if (VerifyDuringStartup) {
3860     // Make sure we're starting with a clean slate.
3861     VM_Verify verify_op;
3862     VMThread::execute(&verify_op);
3863   }
3864 
3865   // We need this to update the java.vm.info property in case any flags used
3866   // to initially define it have been changed. This is needed for both CDS and
3867   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3868   // is initially computed. See Abstract_VM_Version::vm_info_string().
3869   // This update must happen before we initialize the java classes, but
3870   // after any initialization logic that might modify the flags.
3871   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3872 
3873   Thread* THREAD = Thread::current();
3874 
3875   // Always call even when there are not JVMTI environments yet, since environments
3876   // may be attached late and JVMTI must track phases of VM execution
3877   JvmtiExport::enter_early_start_phase();
3878 
3879   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3880   JvmtiExport::post_early_vm_start();
3881 
3882   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3883 
3884   quicken_jni_functions();
3885 
3886   // No more stub generation allowed after that point.
3887   StubCodeDesc::freeze();
3888 
3889   // Set flag that basic initialization has completed. Used by exceptions and various
3890   // debug stuff, that does not work until all basic classes have been initialized.
3891   set_init_completed();
3892 
3893   LogConfiguration::post_initialize();
3894   Metaspace::post_initialize();
3895 
3896   HOTSPOT_VM_INIT_END();
3897 
3898   // record VM initialization completion time
3899 #if INCLUDE_MANAGEMENT
3900   Management::record_vm_init_completed();
3901 #endif // INCLUDE_MANAGEMENT
3902 
3903   // Signal Dispatcher needs to be started before VMInit event is posted
3904   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3905 
3906   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3907   if (!DisableAttachMechanism) {
3908     AttachListener::vm_start();
3909     if (StartAttachListener || AttachListener::init_at_startup()) {
3910       AttachListener::init();
3911     }
3912   }
3913 
3914   // Launch -Xrun agents
3915   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3916   // back-end can launch with -Xdebug -Xrunjdwp.
3917   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3918     create_vm_init_libraries();
3919   }
3920 
3921   if (CleanChunkPoolAsync) {
3922     Chunk::start_chunk_pool_cleaner_task();
3923   }
3924 
3925   // initialize compiler(s)
3926 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3927 #if INCLUDE_JVMCI
3928   bool force_JVMCI_intialization = false;
3929   if (EnableJVMCI) {
3930     // Initialize JVMCI eagerly when it is explicitly requested.
3931     // Or when JVMCIPrintProperties is enabled.
3932     // The JVMCI Java initialization code will read this flag and
3933     // do the printing if it's set.
3934     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3935 
3936     if (!force_JVMCI_intialization) {
3937       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3938       // compilations via JVMCI will not actually block until JVMCI is initialized.
3939       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3940     }
3941   }
3942 #endif
3943   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3944   // Postpone completion of compiler initialization to after JVMCI
3945   // is initialized to avoid timeouts of blocking compilations.
3946   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3947     CompileBroker::compilation_init_phase2();
3948   }
3949 #endif
3950 
3951   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3952   // It is done after compilers are initialized, because otherwise compilations of
3953   // signature polymorphic MH intrinsics can be missed
3954   // (see SystemDictionary::find_method_handle_intrinsic).
3955   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3956 
3957   // This will initialize the module system.  Only java.base classes can be
3958   // loaded until phase 2 completes
3959   call_initPhase2(CHECK_JNI_ERR);
3960 
3961   // Always call even when there are not JVMTI environments yet, since environments
3962   // may be attached late and JVMTI must track phases of VM execution
3963   JvmtiExport::enter_start_phase();
3964 
3965   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3966   JvmtiExport::post_vm_start();
3967 
3968   // Final system initialization including security manager and system class loader
3969   call_initPhase3(CHECK_JNI_ERR);
3970 
3971   // cache the system and platform class loaders
3972   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3973 
3974 #if INCLUDE_CDS
3975   if (DumpSharedSpaces) {
3976     // capture the module path info from the ModuleEntryTable
3977     ClassLoader::initialize_module_path(THREAD);
3978   }
3979 #endif
3980 
3981 #if INCLUDE_JVMCI
3982   if (force_JVMCI_intialization) {
3983     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3984     CompileBroker::compilation_init_phase2();
3985   }
3986 #endif
3987 
3988   // Always call even when there are not JVMTI environments yet, since environments
3989   // may be attached late and JVMTI must track phases of VM execution
3990   JvmtiExport::enter_live_phase();
3991 
3992   // Make perfmemory accessible
3993   PerfMemory::set_accessible(true);
3994 
3995   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3996   JvmtiExport::post_vm_initialized();
3997 
3998   JFR_ONLY(Jfr::on_vm_start();)
3999 
4000 #if INCLUDE_MANAGEMENT
4001   Management::initialize(THREAD);
4002 
4003   if (HAS_PENDING_EXCEPTION) {
4004     // management agent fails to start possibly due to
4005     // configuration problem and is responsible for printing
4006     // stack trace if appropriate. Simply exit VM.
4007     vm_exit(1);
4008   }
4009 #endif // INCLUDE_MANAGEMENT
4010 
4011   if (MemProfiling)                   MemProfiler::engage();
4012   StatSampler::engage();
4013   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4014 
4015   BiasedLocking::init();
4016 
4017 #if INCLUDE_RTM_OPT
4018   RTMLockingCounters::init();
4019 #endif
4020 
4021   if (JDK_Version::current().post_vm_init_hook_enabled()) {
4022     call_postVMInitHook(THREAD);
4023     // The Java side of PostVMInitHook.run must deal with all
4024     // exceptions and provide means of diagnosis.
4025     if (HAS_PENDING_EXCEPTION) {
4026       CLEAR_PENDING_EXCEPTION;
4027     }
4028   }
4029 
4030   {
4031     MutexLocker ml(PeriodicTask_lock);
4032     // Make sure the WatcherThread can be started by WatcherThread::start()
4033     // or by dynamic enrollment.
4034     WatcherThread::make_startable();
4035     // Start up the WatcherThread if there are any periodic tasks
4036     // NOTE:  All PeriodicTasks should be registered by now. If they
4037     //   aren't, late joiners might appear to start slowly (we might
4038     //   take a while to process their first tick).
4039     if (PeriodicTask::num_tasks() > 0) {
4040       WatcherThread::start();
4041     }
4042   }
4043 
4044   create_vm_timer.end();
4045 #ifdef ASSERT
4046   _vm_complete = true;
4047 #endif
4048 
4049   if (DumpSharedSpaces) {
4050     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4051     ShouldNotReachHere();
4052   }
4053 
4054   return JNI_OK;
4055 }
4056 
4057 // type for the Agent_OnLoad and JVM_OnLoad entry points
4058 extern "C" {
4059   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4060 }
4061 // Find a command line agent library and return its entry point for
4062 //         -agentlib:  -agentpath:   -Xrun
4063 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4064 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4065                                     const char *on_load_symbols[],
4066                                     size_t num_symbol_entries) {
4067   OnLoadEntry_t on_load_entry = NULL;
4068   void *library = NULL;
4069 
4070   if (!agent->valid()) {
4071     char buffer[JVM_MAXPATHLEN];
4072     char ebuf[1024] = "";
4073     const char *name = agent->name();
4074     const char *msg = "Could not find agent library ";
4075 
4076     // First check to see if agent is statically linked into executable
4077     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4078       library = agent->os_lib();
4079     } else if (agent->is_absolute_path()) {
4080       library = os::dll_load(name, ebuf, sizeof ebuf);
4081       if (library == NULL) {
4082         const char *sub_msg = " in absolute path, with error: ";
4083         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4084         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4085         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4086         // If we can't find the agent, exit.
4087         vm_exit_during_initialization(buf, NULL);
4088         FREE_C_HEAP_ARRAY(char, buf);
4089       }
4090     } else {
4091       // Try to load the agent from the standard dll directory
4092       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4093                              name)) {
4094         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4095       }
4096       if (library == NULL) { // Try the library path directory.
4097         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4098           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4099         }
4100         if (library == NULL) {
4101           const char *sub_msg = " on the library path, with error: ";
4102           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4103 
4104           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4105                        strlen(ebuf) + strlen(sub_msg2) + 1;
4106           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4107           if (!agent->is_instrument_lib()) {
4108             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4109           } else {
4110             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4111           }
4112           // If we can't find the agent, exit.
4113           vm_exit_during_initialization(buf, NULL);
4114           FREE_C_HEAP_ARRAY(char, buf);
4115         }
4116       }
4117     }
4118     agent->set_os_lib(library);
4119     agent->set_valid();
4120   }
4121 
4122   // Find the OnLoad function.
4123   on_load_entry =
4124     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4125                                                           false,
4126                                                           on_load_symbols,
4127                                                           num_symbol_entries));
4128   return on_load_entry;
4129 }
4130 
4131 // Find the JVM_OnLoad entry point
4132 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4133   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4134   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4135 }
4136 
4137 // Find the Agent_OnLoad entry point
4138 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4139   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4140   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4141 }
4142 
4143 // For backwards compatibility with -Xrun
4144 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4145 // treated like -agentpath:
4146 // Must be called before agent libraries are created
4147 void Threads::convert_vm_init_libraries_to_agents() {
4148   AgentLibrary* agent;
4149   AgentLibrary* next;
4150 
4151   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4152     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4153     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4154 
4155     // If there is an JVM_OnLoad function it will get called later,
4156     // otherwise see if there is an Agent_OnLoad
4157     if (on_load_entry == NULL) {
4158       on_load_entry = lookup_agent_on_load(agent);
4159       if (on_load_entry != NULL) {
4160         // switch it to the agent list -- so that Agent_OnLoad will be called,
4161         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4162         Arguments::convert_library_to_agent(agent);
4163       } else {
4164         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4165       }
4166     }
4167   }
4168 }
4169 
4170 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4171 // Invokes Agent_OnLoad
4172 // Called very early -- before JavaThreads exist
4173 void Threads::create_vm_init_agents() {
4174   extern struct JavaVM_ main_vm;
4175   AgentLibrary* agent;
4176 
4177   JvmtiExport::enter_onload_phase();
4178 
4179   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4180     // CDS dumping does not support native JVMTI agent.
4181     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4182     if (DumpSharedSpaces) {
4183       if(!agent->is_instrument_lib()) {
4184         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4185       } else if (!AllowArchivingWithJavaAgent) {
4186         vm_exit_during_cds_dumping(
4187           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4188       }
4189     }
4190 
4191     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4192 
4193     if (on_load_entry != NULL) {
4194       // Invoke the Agent_OnLoad function
4195       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4196       if (err != JNI_OK) {
4197         vm_exit_during_initialization("agent library failed to init", agent->name());
4198       }
4199     } else {
4200       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4201     }
4202   }
4203 
4204   JvmtiExport::enter_primordial_phase();
4205 }
4206 
4207 extern "C" {
4208   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4209 }
4210 
4211 void Threads::shutdown_vm_agents() {
4212   // Send any Agent_OnUnload notifications
4213   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4214   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4215   extern struct JavaVM_ main_vm;
4216   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4217 
4218     // Find the Agent_OnUnload function.
4219     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4220                                                    os::find_agent_function(agent,
4221                                                    false,
4222                                                    on_unload_symbols,
4223                                                    num_symbol_entries));
4224 
4225     // Invoke the Agent_OnUnload function
4226     if (unload_entry != NULL) {
4227       JavaThread* thread = JavaThread::current();
4228       ThreadToNativeFromVM ttn(thread);
4229       HandleMark hm(thread);
4230       (*unload_entry)(&main_vm);
4231     }
4232   }
4233 }
4234 
4235 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4236 // Invokes JVM_OnLoad
4237 void Threads::create_vm_init_libraries() {
4238   extern struct JavaVM_ main_vm;
4239   AgentLibrary* agent;
4240 
4241   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4242     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4243 
4244     if (on_load_entry != NULL) {
4245       // Invoke the JVM_OnLoad function
4246       JavaThread* thread = JavaThread::current();
4247       ThreadToNativeFromVM ttn(thread);
4248       HandleMark hm(thread);
4249       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4250       if (err != JNI_OK) {
4251         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4252       }
4253     } else {
4254       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4255     }
4256   }
4257 }
4258 
4259 
4260 // Last thread running calls java.lang.Shutdown.shutdown()
4261 void JavaThread::invoke_shutdown_hooks() {
4262   HandleMark hm(this);
4263 
4264   // We could get here with a pending exception, if so clear it now.
4265   if (this->has_pending_exception()) {
4266     this->clear_pending_exception();
4267   }
4268 
4269   EXCEPTION_MARK;
4270   Klass* shutdown_klass =
4271     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4272                                       THREAD);
4273   if (shutdown_klass != NULL) {
4274     // SystemDictionary::resolve_or_null will return null if there was
4275     // an exception.  If we cannot load the Shutdown class, just don't
4276     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4277     // won't be run.  Note that if a shutdown hook was registered,
4278     // the Shutdown class would have already been loaded
4279     // (Runtime.addShutdownHook will load it).
4280     JavaValue result(T_VOID);
4281     JavaCalls::call_static(&result,
4282                            shutdown_klass,
4283                            vmSymbols::shutdown_method_name(),
4284                            vmSymbols::void_method_signature(),
4285                            THREAD);
4286   }
4287   CLEAR_PENDING_EXCEPTION;
4288 }
4289 
4290 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4291 // the program falls off the end of main(). Another VM exit path is through
4292 // vm_exit() when the program calls System.exit() to return a value or when
4293 // there is a serious error in VM. The two shutdown paths are not exactly
4294 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4295 // and VM_Exit op at VM level.
4296 //
4297 // Shutdown sequence:
4298 //   + Shutdown native memory tracking if it is on
4299 //   + Wait until we are the last non-daemon thread to execute
4300 //     <-- every thing is still working at this moment -->
4301 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4302 //        shutdown hooks
4303 //   + Call before_exit(), prepare for VM exit
4304 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4305 //        currently the only user of this mechanism is File.deleteOnExit())
4306 //      > stop StatSampler, watcher thread, CMS threads,
4307 //        post thread end and vm death events to JVMTI,
4308 //        stop signal thread
4309 //   + Call JavaThread::exit(), it will:
4310 //      > release JNI handle blocks, remove stack guard pages
4311 //      > remove this thread from Threads list
4312 //     <-- no more Java code from this thread after this point -->
4313 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4314 //     the compiler threads at safepoint
4315 //     <-- do not use anything that could get blocked by Safepoint -->
4316 //   + Disable tracing at JNI/JVM barriers
4317 //   + Set _vm_exited flag for threads that are still running native code
4318 //   + Call exit_globals()
4319 //      > deletes tty
4320 //      > deletes PerfMemory resources
4321 //   + Delete this thread
4322 //   + Return to caller
4323 
4324 bool Threads::destroy_vm() {
4325   JavaThread* thread = JavaThread::current();
4326 
4327 #ifdef ASSERT
4328   _vm_complete = false;
4329 #endif
4330   // Wait until we are the last non-daemon thread to execute
4331   { MutexLocker nu(Threads_lock);
4332     while (Threads::number_of_non_daemon_threads() > 1)
4333       // This wait should make safepoint checks, wait without a timeout,
4334       // and wait as a suspend-equivalent condition.
4335       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4336                          Mutex::_as_suspend_equivalent_flag);
4337   }
4338 
4339   EventShutdown e;
4340   if (e.should_commit()) {
4341     e.set_reason("No remaining non-daemon Java threads");
4342     e.commit();
4343   }
4344 
4345   // Hang forever on exit if we are reporting an error.
4346   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4347     os::infinite_sleep();
4348   }
4349   os::wait_for_keypress_at_exit();
4350 
4351   // run Java level shutdown hooks
4352   thread->invoke_shutdown_hooks();
4353 
4354   before_exit(thread);
4355 
4356   thread->exit(true);
4357 
4358   // Stop VM thread.
4359   {
4360     // 4945125 The vm thread comes to a safepoint during exit.
4361     // GC vm_operations can get caught at the safepoint, and the
4362     // heap is unparseable if they are caught. Grab the Heap_lock
4363     // to prevent this. The GC vm_operations will not be able to
4364     // queue until after the vm thread is dead. After this point,
4365     // we'll never emerge out of the safepoint before the VM exits.
4366 
4367     MutexLockerEx ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4368 
4369     VMThread::wait_for_vm_thread_exit();
4370     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4371     VMThread::destroy();
4372   }
4373 
4374   // Now, all Java threads are gone except daemon threads. Daemon threads
4375   // running Java code or in VM are stopped by the Safepoint. However,
4376   // daemon threads executing native code are still running.  But they
4377   // will be stopped at native=>Java/VM barriers. Note that we can't
4378   // simply kill or suspend them, as it is inherently deadlock-prone.
4379 
4380   VM_Exit::set_vm_exited();
4381 
4382   // Clean up ideal graph printers after the VMThread has started
4383   // the final safepoint which will block all the Compiler threads.
4384   // Note that this Thread has already logically exited so the
4385   // clean_up() function's use of a JavaThreadIteratorWithHandle
4386   // would be a problem except set_vm_exited() has remembered the
4387   // shutdown thread which is granted a policy exception.
4388 #if defined(COMPILER2) && !defined(PRODUCT)
4389   IdealGraphPrinter::clean_up();
4390 #endif
4391 
4392   notify_vm_shutdown();
4393 
4394   // exit_globals() will delete tty
4395   exit_globals();
4396 
4397   // We are after VM_Exit::set_vm_exited() so we can't call
4398   // thread->smr_delete() or we will block on the Threads_lock.
4399   // Deleting the shutdown thread here is safe because another
4400   // JavaThread cannot have an active ThreadsListHandle for
4401   // this JavaThread.
4402   delete thread;
4403 
4404 #if INCLUDE_JVMCI
4405   if (JVMCICounterSize > 0) {
4406     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4407   }
4408 #endif
4409 
4410   LogConfiguration::finalize();
4411 
4412   return true;
4413 }
4414 
4415 
4416 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4417   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4418   return is_supported_jni_version(version);
4419 }
4420 
4421 
4422 jboolean Threads::is_supported_jni_version(jint version) {
4423   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4424   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4425   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4426   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4427   if (version == JNI_VERSION_9) return JNI_TRUE;
4428   if (version == JNI_VERSION_10) return JNI_TRUE;
4429   return JNI_FALSE;
4430 }
4431 
4432 
4433 void Threads::add(JavaThread* p, bool force_daemon) {
4434   // The threads lock must be owned at this point
4435   assert(Threads_lock->owned_by_self(), "must have threads lock");
4436 
4437   BarrierSet::barrier_set()->on_thread_attach(p);
4438 
4439   p->set_next(_thread_list);
4440   _thread_list = p;
4441 
4442   // Once a JavaThread is added to the Threads list, smr_delete() has
4443   // to be used to delete it. Otherwise we can just delete it directly.
4444   p->set_on_thread_list();
4445 
4446   _number_of_threads++;
4447   oop threadObj = p->threadObj();
4448   bool daemon = true;
4449   // Bootstrapping problem: threadObj can be null for initial
4450   // JavaThread (or for threads attached via JNI)
4451   if ((!force_daemon) && !is_daemon((threadObj))) {
4452     _number_of_non_daemon_threads++;
4453     daemon = false;
4454   }
4455 
4456   ThreadService::add_thread(p, daemon);
4457 
4458   // Maintain fast thread list
4459   ThreadsSMRSupport::add_thread(p);
4460 
4461   // Possible GC point.
4462   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4463 }
4464 
4465 void Threads::remove(JavaThread* p) {
4466 
4467   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4468   ObjectSynchronizer::omFlush(p);
4469 
4470   // Extra scope needed for Thread_lock, so we can check
4471   // that we do not remove thread without safepoint code notice
4472   { MutexLocker ml(Threads_lock);
4473 
4474     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4475 
4476     // Maintain fast thread list
4477     ThreadsSMRSupport::remove_thread(p);
4478 
4479     JavaThread* current = _thread_list;
4480     JavaThread* prev    = NULL;
4481 
4482     while (current != p) {
4483       prev    = current;
4484       current = current->next();
4485     }
4486 
4487     if (prev) {
4488       prev->set_next(current->next());
4489     } else {
4490       _thread_list = p->next();
4491     }
4492 
4493     _number_of_threads--;
4494     oop threadObj = p->threadObj();
4495     bool daemon = true;
4496     if (!is_daemon(threadObj)) {
4497       _number_of_non_daemon_threads--;
4498       daemon = false;
4499 
4500       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4501       // on destroy_vm will wake up.
4502       if (number_of_non_daemon_threads() == 1) {
4503         Threads_lock->notify_all();
4504       }
4505     }
4506     ThreadService::remove_thread(p, daemon);
4507 
4508     // Make sure that safepoint code disregard this thread. This is needed since
4509     // the thread might mess around with locks after this point. This can cause it
4510     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4511     // of this thread since it is removed from the queue.
4512     p->set_terminated_value();
4513   } // unlock Threads_lock
4514 
4515   // Since Events::log uses a lock, we grab it outside the Threads_lock
4516   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4517 }
4518 
4519 // Operations on the Threads list for GC.  These are not explicitly locked,
4520 // but the garbage collector must provide a safe context for them to run.
4521 // In particular, these things should never be called when the Threads_lock
4522 // is held by some other thread. (Note: the Safepoint abstraction also
4523 // uses the Threads_lock to guarantee this property. It also makes sure that
4524 // all threads gets blocked when exiting or starting).
4525 
4526 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4527   ALL_JAVA_THREADS(p) {
4528     p->oops_do(f, cf);
4529   }
4530   VMThread::vm_thread()->oops_do(f, cf);
4531 }
4532 
4533 void Threads::change_thread_claim_parity() {
4534   // Set the new claim parity.
4535   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4536          "Not in range.");
4537   _thread_claim_parity++;
4538   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4539   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4540          "Not in range.");
4541 }
4542 
4543 #ifdef ASSERT
4544 void Threads::assert_all_threads_claimed() {
4545   ALL_JAVA_THREADS(p) {
4546     const int thread_parity = p->oops_do_parity();
4547     assert((thread_parity == _thread_claim_parity),
4548            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4549   }
4550   VMThread* vmt = VMThread::vm_thread();
4551   const int thread_parity = vmt->oops_do_parity();
4552   assert((thread_parity == _thread_claim_parity),
4553          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4554 }
4555 #endif // ASSERT
4556 
4557 class ParallelOopsDoThreadClosure : public ThreadClosure {
4558 private:
4559   OopClosure* _f;
4560   CodeBlobClosure* _cf;
4561 public:
4562   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4563   void do_thread(Thread* t) {
4564     t->oops_do(_f, _cf);
4565   }
4566 };
4567 
4568 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4569   ParallelOopsDoThreadClosure tc(f, cf);
4570   possibly_parallel_threads_do(is_par, &tc);
4571 }
4572 
4573 void Threads::nmethods_do(CodeBlobClosure* cf) {
4574   ALL_JAVA_THREADS(p) {
4575     // This is used by the code cache sweeper to mark nmethods that are active
4576     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4577     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4578     if(!p->is_Code_cache_sweeper_thread()) {
4579       p->nmethods_do(cf);
4580     }
4581   }
4582 }
4583 
4584 void Threads::metadata_do(MetadataClosure* f) {
4585   ALL_JAVA_THREADS(p) {
4586     p->metadata_do(f);
4587   }
4588 }
4589 
4590 class ThreadHandlesClosure : public ThreadClosure {
4591   void (*_f)(Metadata*);
4592  public:
4593   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4594   virtual void do_thread(Thread* thread) {
4595     thread->metadata_handles_do(_f);
4596   }
4597 };
4598 
4599 void Threads::metadata_handles_do(void f(Metadata*)) {
4600   // Only walk the Handles in Thread.
4601   ThreadHandlesClosure handles_closure(f);
4602   threads_do(&handles_closure);
4603 }
4604 
4605 void Threads::deoptimized_wrt_marked_nmethods() {
4606   ALL_JAVA_THREADS(p) {
4607     p->deoptimized_wrt_marked_nmethods();
4608   }
4609 }
4610 
4611 
4612 // Get count Java threads that are waiting to enter the specified monitor.
4613 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4614                                                          int count,
4615                                                          address monitor) {
4616   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4617 
4618   int i = 0;
4619   DO_JAVA_THREADS(t_list, p) {
4620     if (!p->can_call_java()) continue;
4621 
4622     address pending = (address)p->current_pending_monitor();
4623     if (pending == monitor) {             // found a match
4624       if (i < count) result->append(p);   // save the first count matches
4625       i++;
4626     }
4627   }
4628 
4629   return result;
4630 }
4631 
4632 
4633 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4634                                                       address owner) {
4635   // NULL owner means not locked so we can skip the search
4636   if (owner == NULL) return NULL;
4637 
4638   DO_JAVA_THREADS(t_list, p) {
4639     // first, see if owner is the address of a Java thread
4640     if (owner == (address)p) return p;
4641   }
4642 
4643   // Cannot assert on lack of success here since this function may be
4644   // used by code that is trying to report useful problem information
4645   // like deadlock detection.
4646   if (UseHeavyMonitors) return NULL;
4647 
4648   // If we didn't find a matching Java thread and we didn't force use of
4649   // heavyweight monitors, then the owner is the stack address of the
4650   // Lock Word in the owning Java thread's stack.
4651   //
4652   JavaThread* the_owner = NULL;
4653   DO_JAVA_THREADS(t_list, q) {
4654     if (q->is_lock_owned(owner)) {
4655       the_owner = q;
4656       break;
4657     }
4658   }
4659 
4660   // cannot assert on lack of success here; see above comment
4661   return the_owner;
4662 }
4663 
4664 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4665 void Threads::print_on(outputStream* st, bool print_stacks,
4666                        bool internal_format, bool print_concurrent_locks,
4667                        bool print_extended_info) {
4668   char buf[32];
4669   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4670 
4671   st->print_cr("Full thread dump %s (%s %s):",
4672                VM_Version::vm_name(),
4673                VM_Version::vm_release(),
4674                VM_Version::vm_info_string());
4675   st->cr();
4676 
4677 #if INCLUDE_SERVICES
4678   // Dump concurrent locks
4679   ConcurrentLocksDump concurrent_locks;
4680   if (print_concurrent_locks) {
4681     concurrent_locks.dump_at_safepoint();
4682   }
4683 #endif // INCLUDE_SERVICES
4684 
4685   ThreadsSMRSupport::print_info_on(st);
4686   st->cr();
4687 
4688   ALL_JAVA_THREADS(p) {
4689     ResourceMark rm;
4690     p->print_on(st, print_extended_info);
4691     if (print_stacks) {
4692       if (internal_format) {
4693         p->trace_stack();
4694       } else {
4695         p->print_stack_on(st);
4696       }
4697     }
4698     st->cr();
4699 #if INCLUDE_SERVICES
4700     if (print_concurrent_locks) {
4701       concurrent_locks.print_locks_on(p, st);
4702     }
4703 #endif // INCLUDE_SERVICES
4704   }
4705 
4706   VMThread::vm_thread()->print_on(st);
4707   st->cr();
4708   Universe::heap()->print_gc_threads_on(st);
4709   WatcherThread* wt = WatcherThread::watcher_thread();
4710   if (wt != NULL) {
4711     wt->print_on(st);
4712     st->cr();
4713   }
4714 
4715   st->flush();
4716 }
4717 
4718 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4719                              int buflen, bool* found_current) {
4720   if (this_thread != NULL) {
4721     bool is_current = (current == this_thread);
4722     *found_current = *found_current || is_current;
4723     st->print("%s", is_current ? "=>" : "  ");
4724 
4725     st->print(PTR_FORMAT, p2i(this_thread));
4726     st->print(" ");
4727     this_thread->print_on_error(st, buf, buflen);
4728     st->cr();
4729   }
4730 }
4731 
4732 class PrintOnErrorClosure : public ThreadClosure {
4733   outputStream* _st;
4734   Thread* _current;
4735   char* _buf;
4736   int _buflen;
4737   bool* _found_current;
4738  public:
4739   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4740                       int buflen, bool* found_current) :
4741    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4742 
4743   virtual void do_thread(Thread* thread) {
4744     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4745   }
4746 };
4747 
4748 // Threads::print_on_error() is called by fatal error handler. It's possible
4749 // that VM is not at safepoint and/or current thread is inside signal handler.
4750 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4751 // memory (even in resource area), it might deadlock the error handler.
4752 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4753                              int buflen) {
4754   ThreadsSMRSupport::print_info_on(st);
4755   st->cr();
4756 
4757   bool found_current = false;
4758   st->print_cr("Java Threads: ( => current thread )");
4759   ALL_JAVA_THREADS(thread) {
4760     print_on_error(thread, st, current, buf, buflen, &found_current);
4761   }
4762   st->cr();
4763 
4764   st->print_cr("Other Threads:");
4765   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4766   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4767 
4768   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4769   Universe::heap()->gc_threads_do(&print_closure);
4770 
4771   if (!found_current) {
4772     st->cr();
4773     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4774     current->print_on_error(st, buf, buflen);
4775     st->cr();
4776   }
4777   st->cr();
4778 
4779   st->print_cr("Threads with active compile tasks:");
4780   print_threads_compiling(st, buf, buflen);
4781 }
4782 
4783 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4784   ALL_JAVA_THREADS(thread) {
4785     if (thread->is_Compiler_thread()) {
4786       CompilerThread* ct = (CompilerThread*) thread;
4787 
4788       // Keep task in local variable for NULL check.
4789       // ct->_task might be set to NULL by concurring compiler thread
4790       // because it completed the compilation. The task is never freed,
4791       // though, just returned to a free list.
4792       CompileTask* task = ct->task();
4793       if (task != NULL) {
4794         thread->print_name_on_error(st, buf, buflen);
4795         st->print("  ");
4796         task->print(st, NULL, short_form, true);
4797       }
4798     }
4799   }
4800 }
4801 
4802 
4803 // Internal SpinLock and Mutex
4804 // Based on ParkEvent
4805 
4806 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4807 //
4808 // We employ SpinLocks _only for low-contention, fixed-length
4809 // short-duration critical sections where we're concerned
4810 // about native mutex_t or HotSpot Mutex:: latency.
4811 // The mux construct provides a spin-then-block mutual exclusion
4812 // mechanism.
4813 //
4814 // Testing has shown that contention on the ListLock guarding gFreeList
4815 // is common.  If we implement ListLock as a simple SpinLock it's common
4816 // for the JVM to devolve to yielding with little progress.  This is true
4817 // despite the fact that the critical sections protected by ListLock are
4818 // extremely short.
4819 //
4820 // TODO-FIXME: ListLock should be of type SpinLock.
4821 // We should make this a 1st-class type, integrated into the lock
4822 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4823 // should have sufficient padding to avoid false-sharing and excessive
4824 // cache-coherency traffic.
4825 
4826 
4827 typedef volatile int SpinLockT;
4828 
4829 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4830   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4831     return;   // normal fast-path return
4832   }
4833 
4834   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4835   int ctr = 0;
4836   int Yields = 0;
4837   for (;;) {
4838     while (*adr != 0) {
4839       ++ctr;
4840       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4841         if (Yields > 5) {
4842           os::naked_short_sleep(1);
4843         } else {
4844           os::naked_yield();
4845           ++Yields;
4846         }
4847       } else {
4848         SpinPause();
4849       }
4850     }
4851     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4852   }
4853 }
4854 
4855 void Thread::SpinRelease(volatile int * adr) {
4856   assert(*adr != 0, "invariant");
4857   OrderAccess::fence();      // guarantee at least release consistency.
4858   // Roach-motel semantics.
4859   // It's safe if subsequent LDs and STs float "up" into the critical section,
4860   // but prior LDs and STs within the critical section can't be allowed
4861   // to reorder or float past the ST that releases the lock.
4862   // Loads and stores in the critical section - which appear in program
4863   // order before the store that releases the lock - must also appear
4864   // before the store that releases the lock in memory visibility order.
4865   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4866   // the ST of 0 into the lock-word which releases the lock, so fence
4867   // more than covers this on all platforms.
4868   *adr = 0;
4869 }
4870 
4871 // muxAcquire and muxRelease:
4872 //
4873 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4874 //    The LSB of the word is set IFF the lock is held.
4875 //    The remainder of the word points to the head of a singly-linked list
4876 //    of threads blocked on the lock.
4877 //
4878 // *  The current implementation of muxAcquire-muxRelease uses its own
4879 //    dedicated Thread._MuxEvent instance.  If we're interested in
4880 //    minimizing the peak number of extant ParkEvent instances then
4881 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4882 //    as certain invariants were satisfied.  Specifically, care would need
4883 //    to be taken with regards to consuming unpark() "permits".
4884 //    A safe rule of thumb is that a thread would never call muxAcquire()
4885 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4886 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4887 //    consume an unpark() permit intended for monitorenter, for instance.
4888 //    One way around this would be to widen the restricted-range semaphore
4889 //    implemented in park().  Another alternative would be to provide
4890 //    multiple instances of the PlatformEvent() for each thread.  One
4891 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4892 //
4893 // *  Usage:
4894 //    -- Only as leaf locks
4895 //    -- for short-term locking only as muxAcquire does not perform
4896 //       thread state transitions.
4897 //
4898 // Alternatives:
4899 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4900 //    but with parking or spin-then-park instead of pure spinning.
4901 // *  Use Taura-Oyama-Yonenzawa locks.
4902 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4903 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4904 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4905 //    acquiring threads use timers (ParkTimed) to detect and recover from
4906 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4907 //    boundaries by using placement-new.
4908 // *  Augment MCS with advisory back-link fields maintained with CAS().
4909 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4910 //    The validity of the backlinks must be ratified before we trust the value.
4911 //    If the backlinks are invalid the exiting thread must back-track through the
4912 //    the forward links, which are always trustworthy.
4913 // *  Add a successor indication.  The LockWord is currently encoded as
4914 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4915 //    to provide the usual futile-wakeup optimization.
4916 //    See RTStt for details.
4917 //
4918 
4919 
4920 const intptr_t LOCKBIT = 1;
4921 
4922 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4923   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4924   if (w == 0) return;
4925   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4926     return;
4927   }
4928 
4929   ParkEvent * const Self = Thread::current()->_MuxEvent;
4930   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4931   for (;;) {
4932     int its = (os::is_MP() ? 100 : 0) + 1;
4933 
4934     // Optional spin phase: spin-then-park strategy
4935     while (--its >= 0) {
4936       w = *Lock;
4937       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4938         return;
4939       }
4940     }
4941 
4942     Self->reset();
4943     Self->OnList = intptr_t(Lock);
4944     // The following fence() isn't _strictly necessary as the subsequent
4945     // CAS() both serializes execution and ratifies the fetched *Lock value.
4946     OrderAccess::fence();
4947     for (;;) {
4948       w = *Lock;
4949       if ((w & LOCKBIT) == 0) {
4950         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4951           Self->OnList = 0;   // hygiene - allows stronger asserts
4952           return;
4953         }
4954         continue;      // Interference -- *Lock changed -- Just retry
4955       }
4956       assert(w & LOCKBIT, "invariant");
4957       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4958       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4959     }
4960 
4961     while (Self->OnList != 0) {
4962       Self->park();
4963     }
4964   }
4965 }
4966 
4967 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4968   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4969   if (w == 0) return;
4970   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4971     return;
4972   }
4973 
4974   ParkEvent * ReleaseAfter = NULL;
4975   if (ev == NULL) {
4976     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4977   }
4978   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4979   for (;;) {
4980     guarantee(ev->OnList == 0, "invariant");
4981     int its = (os::is_MP() ? 100 : 0) + 1;
4982 
4983     // Optional spin phase: spin-then-park strategy
4984     while (--its >= 0) {
4985       w = *Lock;
4986       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4987         if (ReleaseAfter != NULL) {
4988           ParkEvent::Release(ReleaseAfter);
4989         }
4990         return;
4991       }
4992     }
4993 
4994     ev->reset();
4995     ev->OnList = intptr_t(Lock);
4996     // The following fence() isn't _strictly necessary as the subsequent
4997     // CAS() both serializes execution and ratifies the fetched *Lock value.
4998     OrderAccess::fence();
4999     for (;;) {
5000       w = *Lock;
5001       if ((w & LOCKBIT) == 0) {
5002         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5003           ev->OnList = 0;
5004           // We call ::Release while holding the outer lock, thus
5005           // artificially lengthening the critical section.
5006           // Consider deferring the ::Release() until the subsequent unlock(),
5007           // after we've dropped the outer lock.
5008           if (ReleaseAfter != NULL) {
5009             ParkEvent::Release(ReleaseAfter);
5010           }
5011           return;
5012         }
5013         continue;      // Interference -- *Lock changed -- Just retry
5014       }
5015       assert(w & LOCKBIT, "invariant");
5016       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5017       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
5018     }
5019 
5020     while (ev->OnList != 0) {
5021       ev->park();
5022     }
5023   }
5024 }
5025 
5026 // Release() must extract a successor from the list and then wake that thread.
5027 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5028 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5029 // Release() would :
5030 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5031 // (B) Extract a successor from the private list "in-hand"
5032 // (C) attempt to CAS() the residual back into *Lock over null.
5033 //     If there were any newly arrived threads and the CAS() would fail.
5034 //     In that case Release() would detach the RATs, re-merge the list in-hand
5035 //     with the RATs and repeat as needed.  Alternately, Release() might
5036 //     detach and extract a successor, but then pass the residual list to the wakee.
5037 //     The wakee would be responsible for reattaching and remerging before it
5038 //     competed for the lock.
5039 //
5040 // Both "pop" and DMR are immune from ABA corruption -- there can be
5041 // multiple concurrent pushers, but only one popper or detacher.
5042 // This implementation pops from the head of the list.  This is unfair,
5043 // but tends to provide excellent throughput as hot threads remain hot.
5044 // (We wake recently run threads first).
5045 //
5046 // All paths through muxRelease() will execute a CAS.
5047 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5048 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5049 // executed within the critical section are complete and globally visible before the
5050 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5051 void Thread::muxRelease(volatile intptr_t * Lock)  {
5052   for (;;) {
5053     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5054     assert(w & LOCKBIT, "invariant");
5055     if (w == LOCKBIT) return;
5056     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5057     assert(List != NULL, "invariant");
5058     assert(List->OnList == intptr_t(Lock), "invariant");
5059     ParkEvent * const nxt = List->ListNext;
5060     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5061 
5062     // The following CAS() releases the lock and pops the head element.
5063     // The CAS() also ratifies the previously fetched lock-word value.
5064     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5065       continue;
5066     }
5067     List->OnList = 0;
5068     OrderAccess::fence();
5069     List->unpark();
5070     return;
5071   }
5072 }
5073 
5074 
5075 void Threads::verify() {
5076   ALL_JAVA_THREADS(p) {
5077     p->verify();
5078   }
5079   VMThread* thread = VMThread::vm_thread();
5080   if (thread != NULL) thread->verify();
5081 }