/* * Copyright (c) 2018, Red Hat, Inc. All rights reserved. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp" #include "gc/shenandoah/shenandoahHeap.hpp" #include "gc/shenandoah/shenandoahHeapRegion.hpp" #include "gc/shenandoah/shenandoahHeuristics.hpp" #include "gc/shenandoah/shenandoahRuntime.hpp" #include "gc/shenandoah/shenandoahThreadLocalData.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interp_masm.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/thread.hpp" #include "utilities/macros.hpp" #ifdef COMPILER1 #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "gc/shenandoah/c1/shenandoahBarrierSetC1.hpp" #endif #define __ masm-> address ShenandoahBarrierSetAssembler::_shenandoah_lrb = NULL; void ShenandoahBarrierSetAssembler::arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, BasicType type, Register src, Register dst, Register count) { bool checkcast = (decorators & ARRAYCOPY_CHECKCAST) != 0; bool disjoint = (decorators & ARRAYCOPY_DISJOINT) != 0; bool obj_int = type == T_OBJECT LP64_ONLY(&& UseCompressedOops); bool dest_uninitialized = (decorators & IS_DEST_UNINITIALIZED) != 0; if (type == T_OBJECT || type == T_ARRAY) { #ifdef _LP64 if (!checkcast && !obj_int) { // Save count for barrier __ movptr(r11, count); } else if (disjoint && obj_int) { // Save dst in r11 in the disjoint case __ movq(r11, dst); } #else if (disjoint) { __ mov(rdx, dst); // save 'to' } #endif if (ShenandoahSATBBarrier && !dest_uninitialized && !ShenandoahHeap::heap()->heuristics()->can_do_traversal_gc()) { Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread); #ifndef _LP64 __ push(thread); __ get_thread(thread); #endif Label done; // Short-circuit if count == 0. __ testptr(count, count); __ jcc(Assembler::zero, done); // Avoid runtime call when not marking. Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::MARKING); __ jcc(Assembler::zero, done); __ pusha(); // push registers #ifdef _LP64 if (count == c_rarg0) { if (dst == c_rarg1) { // exactly backwards!! __ xchgptr(c_rarg1, c_rarg0); } else { __ movptr(c_rarg1, count); __ movptr(c_rarg0, dst); } } else { __ movptr(c_rarg0, dst); __ movptr(c_rarg1, count); } if (UseCompressedOops) { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_narrow_oop_entry), 2); } else { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_oop_entry), 2); } #else __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_oop_entry), dst, count); #endif __ popa(); __ bind(done); NOT_LP64(__ pop(thread);) } } } void ShenandoahBarrierSetAssembler::arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, BasicType type, Register src, Register dst, Register count) { bool checkcast = (decorators & ARRAYCOPY_CHECKCAST) != 0; bool disjoint = (decorators & ARRAYCOPY_DISJOINT) != 0; bool obj_int = type == T_OBJECT LP64_ONLY(&& UseCompressedOops); Register tmp = rax; if (type == T_OBJECT || type == T_ARRAY) { #ifdef _LP64 if (!checkcast && !obj_int) { // Save count for barrier count = r11; } else if (disjoint && obj_int) { // Use the saved dst in the disjoint case dst = r11; } else if (checkcast) { tmp = rscratch1; } #else if (disjoint) { __ mov(dst, rdx); // restore 'to' } #endif __ pusha(); // push registers (overkill) #ifdef _LP64 if (c_rarg0 == count) { // On win64 c_rarg0 == rcx assert_different_registers(c_rarg1, dst); __ mov(c_rarg1, count); __ mov(c_rarg0, dst); } else { assert_different_registers(c_rarg0, count); __ mov(c_rarg0, dst); __ mov(c_rarg1, count); } __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_post_entry), 2); #else __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_post_entry), dst, count); #endif __ popa(); } } void ShenandoahBarrierSetAssembler::shenandoah_write_barrier_pre(MacroAssembler* masm, Register obj, Register pre_val, Register thread, Register tmp, bool tosca_live, bool expand_call) { if (ShenandoahSATBBarrier) { satb_write_barrier_pre(masm, obj, pre_val, thread, tmp, tosca_live, expand_call); } } void ShenandoahBarrierSetAssembler::satb_write_barrier_pre(MacroAssembler* masm, Register obj, Register pre_val, Register thread, Register tmp, bool tosca_live, bool expand_call) { // If expand_call is true then we expand the call_VM_leaf macro // directly to skip generating the check by // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp. #ifdef _LP64 assert(thread == r15_thread, "must be"); #endif // _LP64 Label done; Label runtime; assert(pre_val != noreg, "check this code"); if (obj != noreg) { assert_different_registers(obj, pre_val, tmp); assert(pre_val != rax, "check this code"); } Address in_progress(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset())); Address index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset())); Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset())); Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::MARKING | ShenandoahHeap::TRAVERSAL); __ jcc(Assembler::zero, done); // Do we need to load the previous value? if (obj != noreg) { __ load_heap_oop(pre_val, Address(obj, 0), noreg, noreg, AS_RAW); } // Is the previous value null? __ cmpptr(pre_val, (int32_t) NULL_WORD); __ jcc(Assembler::equal, done); // Can we store original value in the thread's buffer? // Is index == 0? // (The index field is typed as size_t.) __ movptr(tmp, index); // tmp := *index_adr __ cmpptr(tmp, 0); // tmp == 0? __ jcc(Assembler::equal, runtime); // If yes, goto runtime __ subptr(tmp, wordSize); // tmp := tmp - wordSize __ movptr(index, tmp); // *index_adr := tmp __ addptr(tmp, buffer); // tmp := tmp + *buffer_adr // Record the previous value __ movptr(Address(tmp, 0), pre_val); __ jmp(done); __ bind(runtime); // save the live input values if(tosca_live) __ push(rax); if (obj != noreg && obj != rax) __ push(obj); if (pre_val != rax) __ push(pre_val); // Calling the runtime using the regular call_VM_leaf mechanism generates // code (generated by InterpreterMacroAssember::call_VM_leaf_base) // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL. // // If we care generating the pre-barrier without a frame (e.g. in the // intrinsified Reference.get() routine) then ebp might be pointing to // the caller frame and so this check will most likely fail at runtime. // // Expanding the call directly bypasses the generation of the check. // So when we do not have have a full interpreter frame on the stack // expand_call should be passed true. NOT_LP64( __ push(thread); ) #ifdef _LP64 // We move pre_val into c_rarg0 early, in order to avoid smashing it, should // pre_val be c_rarg1 (where the call prologue would copy thread argument). // Note: this should not accidentally smash thread, because thread is always r15. assert(thread != c_rarg0, "smashed arg"); if (c_rarg0 != pre_val) { __ mov(c_rarg0, pre_val); } #endif if (expand_call) { LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); ) #ifdef _LP64 if (c_rarg1 != thread) { __ mov(c_rarg1, thread); } // Already moved pre_val into c_rarg0 above #else __ push(thread); __ push(pre_val); #endif __ MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), 2); } else { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), LP64_ONLY(c_rarg0) NOT_LP64(pre_val), thread); } NOT_LP64( __ pop(thread); ) // save the live input values if (pre_val != rax) __ pop(pre_val); if (obj != noreg && obj != rax) __ pop(obj); if(tosca_live) __ pop(rax); __ bind(done); } void ShenandoahBarrierSetAssembler::resolve_forward_pointer(MacroAssembler* masm, Register dst) { assert(ShenandoahCASBarrier, "should be enabled"); Label is_null; __ testptr(dst, dst); __ jcc(Assembler::zero, is_null); resolve_forward_pointer_not_null(masm, dst); __ bind(is_null); } void ShenandoahBarrierSetAssembler::resolve_forward_pointer_not_null(MacroAssembler* masm, Register dst) { assert(ShenandoahCASBarrier || ShenandoahLoadRefBarrier, "should be enabled"); __ movptr(dst, Address(dst, ShenandoahBrooksPointer::byte_offset())); } void ShenandoahBarrierSetAssembler::load_reference_barrier_not_null(MacroAssembler* masm, Register dst) { assert(ShenandoahLoadRefBarrier, "Should be enabled"); #ifdef _LP64 Label done; Address gc_state(r15_thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::HAS_FORWARDED | ShenandoahHeap::EVACUATION | ShenandoahHeap::TRAVERSAL); __ jccb(Assembler::zero, done); // Heap is unstable, need to perform the resolve even if LRB is inactive resolve_forward_pointer_not_null(masm, dst); __ testb(gc_state, ShenandoahHeap::EVACUATION | ShenandoahHeap::TRAVERSAL); __ jccb(Assembler::zero, done); if (dst != rax) { __ xchgptr(dst, rax); // Move obj into rax and save rax into obj. } __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, ShenandoahBarrierSetAssembler::shenandoah_lrb()))); if (dst != rax) { __ xchgptr(rax, dst); // Swap back obj with rax. } __ bind(done); #else Unimplemented(); #endif } void ShenandoahBarrierSetAssembler::storeval_barrier(MacroAssembler* masm, Register dst, Register tmp) { if (ShenandoahStoreValEnqueueBarrier) { storeval_barrier_impl(masm, dst, tmp); } } void ShenandoahBarrierSetAssembler::storeval_barrier_impl(MacroAssembler* masm, Register dst, Register tmp) { assert(ShenandoahStoreValEnqueueBarrier, "should be enabled"); if (dst == noreg) return; #ifdef _LP64 if (ShenandoahStoreValEnqueueBarrier) { // The set of registers to be saved+restored is the same as in the write-barrier above. // Those are the commonly used registers in the interpreter. __ pusha(); // __ push_callee_saved_registers(); __ subptr(rsp, 2 * Interpreter::stackElementSize); __ movdbl(Address(rsp, 0), xmm0); satb_write_barrier_pre(masm, noreg, dst, r15_thread, tmp, true, false); __ movdbl(xmm0, Address(rsp, 0)); __ addptr(rsp, 2 * Interpreter::stackElementSize); //__ pop_callee_saved_registers(); __ popa(); } #else Unimplemented(); #endif } void ShenandoahBarrierSetAssembler::load_reference_barrier(MacroAssembler* masm, Register dst) { if (ShenandoahLoadRefBarrier) { Label done; __ testptr(dst, dst); __ jcc(Assembler::zero, done); load_reference_barrier_not_null(masm, dst); __ bind(done); } } void ShenandoahBarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type, Register dst, Address src, Register tmp1, Register tmp_thread) { bool on_oop = type == T_OBJECT || type == T_ARRAY; bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0; bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0; bool on_reference = on_weak || on_phantom; BarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread); if (on_oop) { load_reference_barrier(masm, dst); if (ShenandoahKeepAliveBarrier && on_reference) { const Register thread = NOT_LP64(tmp_thread) LP64_ONLY(r15_thread); NOT_LP64(__ get_thread(thread)); // Generate the SATB pre-barrier code to log the value of // the referent field in an SATB buffer. shenandoah_write_barrier_pre(masm /* masm */, noreg /* obj */, dst /* pre_val */, thread /* thread */, tmp1 /* tmp */, true /* tosca_live */, true /* expand_call */); } } } void ShenandoahBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type, Address dst, Register val, Register tmp1, Register tmp2) { bool on_oop = type == T_OBJECT || type == T_ARRAY; bool in_heap = (decorators & IN_HEAP) != 0; bool as_normal = (decorators & AS_NORMAL) != 0; if (on_oop && in_heap) { bool needs_pre_barrier = as_normal; Register tmp3 = LP64_ONLY(r8) NOT_LP64(rsi); Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); // flatten object address if needed // We do it regardless of precise because we need the registers if (dst.index() == noreg && dst.disp() == 0) { if (dst.base() != tmp1) { __ movptr(tmp1, dst.base()); } } else { __ lea(tmp1, dst); } #ifndef _LP64 InterpreterMacroAssembler *imasm = static_cast(masm); #endif NOT_LP64(__ get_thread(rcx)); NOT_LP64(imasm->save_bcp()); if (needs_pre_barrier) { shenandoah_write_barrier_pre(masm /*masm*/, tmp1 /* obj */, tmp2 /* pre_val */, rthread /* thread */, tmp3 /* tmp */, val != noreg /* tosca_live */, false /* expand_call */); } if (val == noreg) { BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp1, 0), val, noreg, noreg); } else { storeval_barrier(masm, val, tmp3); BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp1, 0), val, noreg, noreg); } NOT_LP64(imasm->restore_bcp()); } else { BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2); } } void ShenandoahBarrierSetAssembler::tlab_allocate(MacroAssembler* masm, Register thread, Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) { assert_different_registers(obj, t1, t2); assert_different_registers(obj, var_size_in_bytes, t1); Register end = t2; if (!thread->is_valid()) { #ifdef _LP64 thread = r15_thread; #else assert(t1->is_valid(), "need temp reg"); thread = t1; __ get_thread(thread); #endif } __ verify_tlab(); __ movptr(obj, Address(thread, JavaThread::tlab_top_offset())); if (var_size_in_bytes == noreg) { __ lea(end, Address(obj, con_size_in_bytes + ShenandoahBrooksPointer::byte_size())); } else { __ addptr(var_size_in_bytes, ShenandoahBrooksPointer::byte_size()); __ lea(end, Address(obj, var_size_in_bytes, Address::times_1)); } __ cmpptr(end, Address(thread, JavaThread::tlab_end_offset())); __ jcc(Assembler::above, slow_case); // update the tlab top pointer __ movptr(Address(thread, JavaThread::tlab_top_offset()), end); // Initialize brooks pointer #ifdef _LP64 __ incrementq(obj, ShenandoahBrooksPointer::byte_size()); #else __ incrementl(obj, ShenandoahBrooksPointer::byte_size()); #endif __ movptr(Address(obj, ShenandoahBrooksPointer::byte_offset()), obj); // recover var_size_in_bytes if necessary if (var_size_in_bytes == end) { __ subptr(var_size_in_bytes, obj); } __ verify_tlab(); } // Special Shenandoah CAS implementation that handles false negatives // due to concurrent evacuation. #ifndef _LP64 void ShenandoahBarrierSetAssembler::cmpxchg_oop(MacroAssembler* masm, Register res, Address addr, Register oldval, Register newval, bool exchange, Register tmp1, Register tmp2) { // Shenandoah has no 32-bit version for this. Unimplemented(); } #else void ShenandoahBarrierSetAssembler::cmpxchg_oop(MacroAssembler* masm, Register res, Address addr, Register oldval, Register newval, bool exchange, Register tmp1, Register tmp2) { assert(ShenandoahCASBarrier, "Should only be used when CAS barrier is enabled"); assert(oldval == rax, "must be in rax for implicit use in cmpxchg"); Label retry, done; // Remember oldval for retry logic below if (UseCompressedOops) { __ movl(tmp1, oldval); } else { __ movptr(tmp1, oldval); } // Step 1. Try to CAS with given arguments. If successful, then we are done, // and can safely return. if (os::is_MP()) __ lock(); if (UseCompressedOops) { __ cmpxchgl(newval, addr); } else { __ cmpxchgptr(newval, addr); } __ jcc(Assembler::equal, done, true); // Step 2. CAS had failed. This may be a false negative. // // The trouble comes when we compare the to-space pointer with the from-space // pointer to the same object. To resolve this, it will suffice to resolve both // oldval and the value from memory -- this will give both to-space pointers. // If they mismatch, then it was a legitimate failure. // if (UseCompressedOops) { __ decode_heap_oop(tmp1); } resolve_forward_pointer(masm, tmp1); if (UseCompressedOops) { __ movl(tmp2, oldval); __ decode_heap_oop(tmp2); } else { __ movptr(tmp2, oldval); } resolve_forward_pointer(masm, tmp2); __ cmpptr(tmp1, tmp2); __ jcc(Assembler::notEqual, done, true); // Step 3. Try to CAS again with resolved to-space pointers. // // Corner case: it may happen that somebody stored the from-space pointer // to memory while we were preparing for retry. Therefore, we can fail again // on retry, and so need to do this in loop, always resolving the failure // witness. __ bind(retry); if (os::is_MP()) __ lock(); if (UseCompressedOops) { __ cmpxchgl(newval, addr); } else { __ cmpxchgptr(newval, addr); } __ jcc(Assembler::equal, done, true); if (UseCompressedOops) { __ movl(tmp2, oldval); __ decode_heap_oop(tmp2); } else { __ movptr(tmp2, oldval); } resolve_forward_pointer(masm, tmp2); __ cmpptr(tmp1, tmp2); __ jcc(Assembler::equal, retry, true); // Step 4. If we need a boolean result out of CAS, check the flag again, // and promote the result. Note that we handle the flag from both the CAS // itself and from the retry loop. __ bind(done); if (!exchange) { assert(res != NULL, "need result register"); __ setb(Assembler::equal, res); __ movzbl(res, res); } } #endif // LP64 void ShenandoahBarrierSetAssembler::save_vector_registers(MacroAssembler* masm) { int num_xmm_regs = LP64_ONLY(16) NOT_LP64(8); if (UseAVX > 2) { num_xmm_regs = LP64_ONLY(32) NOT_LP64(8); } if (UseSSE == 1) { __ subptr(rsp, sizeof(jdouble)*8); for (int n = 0; n < 8; n++) { __ movflt(Address(rsp, n*sizeof(jdouble)), as_XMMRegister(n)); } } else if (UseSSE >= 2) { if (UseAVX > 2) { __ push(rbx); __ movl(rbx, 0xffff); __ kmovwl(k1, rbx); __ pop(rbx); } #ifdef COMPILER2 if (MaxVectorSize > 16) { if(UseAVX > 2) { // Save upper half of ZMM registers __ subptr(rsp, 32*num_xmm_regs); for (int n = 0; n < num_xmm_regs; n++) { __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n)); } } assert(UseAVX > 0, "256 bit vectors are supported only with AVX"); // Save upper half of YMM registers __ subptr(rsp, 16*num_xmm_regs); for (int n = 0; n < num_xmm_regs; n++) { __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n)); } } #endif // Save whole 128bit (16 bytes) XMM registers __ subptr(rsp, 16*num_xmm_regs); #ifdef _LP64 if (VM_Version::supports_evex()) { for (int n = 0; n < num_xmm_regs; n++) { __ vextractf32x4(Address(rsp, n*16), as_XMMRegister(n), 0); } } else { for (int n = 0; n < num_xmm_regs; n++) { __ movdqu(Address(rsp, n*16), as_XMMRegister(n)); } } #else for (int n = 0; n < num_xmm_regs; n++) { __ movdqu(Address(rsp, n*16), as_XMMRegister(n)); } #endif } } void ShenandoahBarrierSetAssembler::restore_vector_registers(MacroAssembler* masm) { int num_xmm_regs = LP64_ONLY(16) NOT_LP64(8); if (UseAVX > 2) { num_xmm_regs = LP64_ONLY(32) NOT_LP64(8); } if (UseSSE == 1) { for (int n = 0; n < 8; n++) { __ movflt(as_XMMRegister(n), Address(rsp, n*sizeof(jdouble))); } __ addptr(rsp, sizeof(jdouble)*8); } else if (UseSSE >= 2) { // Restore whole 128bit (16 bytes) XMM registers #ifdef _LP64 if (VM_Version::supports_evex()) { for (int n = 0; n < num_xmm_regs; n++) { __ vinsertf32x4(as_XMMRegister(n), as_XMMRegister(n), Address(rsp, n*16), 0); } } else { for (int n = 0; n < num_xmm_regs; n++) { __ movdqu(as_XMMRegister(n), Address(rsp, n*16)); } } #else for (int n = 0; n < num_xmm_regs; n++) { __ movdqu(as_XMMRegister(n), Address(rsp, n*16)); } #endif __ addptr(rsp, 16*num_xmm_regs); #ifdef COMPILER2 if (MaxVectorSize > 16) { // Restore upper half of YMM registers. for (int n = 0; n < num_xmm_regs; n++) { __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16)); } __ addptr(rsp, 16*num_xmm_regs); if (UseAVX > 2) { for (int n = 0; n < num_xmm_regs; n++) { __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32)); } __ addptr(rsp, 32*num_xmm_regs); } } #endif } } #ifdef COMPILER1 #undef __ #define __ ce->masm()-> void ShenandoahBarrierSetAssembler::gen_pre_barrier_stub(LIR_Assembler* ce, ShenandoahPreBarrierStub* stub) { ShenandoahBarrierSetC1* bs = (ShenandoahBarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1(); // At this point we know that marking is in progress. // If do_load() is true then we have to emit the // load of the previous value; otherwise it has already // been loaded into _pre_val. __ bind(*stub->entry()); assert(stub->pre_val()->is_register(), "Precondition."); Register pre_val_reg = stub->pre_val()->as_register(); if (stub->do_load()) { ce->mem2reg(stub->addr(), stub->pre_val(), T_OBJECT, stub->patch_code(), stub->info(), false /*wide*/, false /*unaligned*/); } __ cmpptr(pre_val_reg, (int32_t)NULL_WORD); __ jcc(Assembler::equal, *stub->continuation()); ce->store_parameter(stub->pre_val()->as_register(), 0); __ call(RuntimeAddress(bs->pre_barrier_c1_runtime_code_blob()->code_begin())); __ jmp(*stub->continuation()); } void ShenandoahBarrierSetAssembler::gen_load_reference_barrier_stub(LIR_Assembler* ce, ShenandoahLoadReferenceBarrierStub* stub) { __ bind(*stub->entry()); Label done; Register obj = stub->obj()->as_register(); Register res = stub->result()->as_register(); if (res != obj) { __ mov(res, obj); } // Check for null. if (stub->needs_null_check()) { __ testptr(res, res); __ jcc(Assembler::zero, done); } load_reference_barrier_not_null(ce->masm(), res); __ bind(done); __ jmp(*stub->continuation()); } #undef __ #define __ sasm-> void ShenandoahBarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm) { __ prologue("shenandoah_pre_barrier", false); // arg0 : previous value of memory __ push(rax); __ push(rdx); const Register pre_val = rax; const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread); const Register tmp = rdx; NOT_LP64(__ get_thread(thread);) Address queue_index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset())); Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset())); Label done; Label runtime; // Is SATB still active? Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::MARKING | ShenandoahHeap::TRAVERSAL); __ jcc(Assembler::zero, done); // Can we store original value in the thread's buffer? __ movptr(tmp, queue_index); __ testptr(tmp, tmp); __ jcc(Assembler::zero, runtime); __ subptr(tmp, wordSize); __ movptr(queue_index, tmp); __ addptr(tmp, buffer); // prev_val (rax) __ load_parameter(0, pre_val); __ movptr(Address(tmp, 0), pre_val); __ jmp(done); __ bind(runtime); __ save_live_registers_no_oop_map(true); // load the pre-value __ load_parameter(0, rcx); __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), rcx, thread); __ restore_live_registers(true); __ bind(done); __ pop(rdx); __ pop(rax); __ epilogue(); } #undef __ #endif // COMPILER1 address ShenandoahBarrierSetAssembler::shenandoah_lrb() { assert(_shenandoah_lrb != NULL, "need load reference barrier stub"); return _shenandoah_lrb; } #define __ cgen->assembler()-> address ShenandoahBarrierSetAssembler::generate_shenandoah_lrb(StubCodeGenerator* cgen) { __ align(CodeEntryAlignment); StubCodeMark mark(cgen, "StubRoutines", "shenandoah_lrb"); address start = __ pc(); #ifdef _LP64 Label not_done; // We use RDI, which also serves as argument register for slow call. // RAX always holds the src object ptr, except after the slow call and // the cmpxchg, then it holds the result. // R8 and RCX are used as temporary registers. __ push(rdi); __ push(r8); // Check for object beeing in the collection set. // TODO: Can we use only 1 register here? // The source object arrives here in rax. // live: rax // live: rdi __ mov(rdi, rax); __ shrptr(rdi, ShenandoahHeapRegion::region_size_bytes_shift_jint()); // live: r8 __ movptr(r8, (intptr_t) ShenandoahHeap::in_cset_fast_test_addr()); __ movbool(r8, Address(r8, rdi, Address::times_1)); // unlive: rdi __ testbool(r8); // unlive: r8 __ jccb(Assembler::notZero, not_done); __ pop(r8); __ pop(rdi); __ ret(0); __ bind(not_done); __ push(rcx); __ push(rdx); __ push(rdi); __ push(rsi); __ push(r8); __ push(r9); __ push(r10); __ push(r11); __ push(r12); __ push(r13); __ push(r14); __ push(r15); save_vector_registers(cgen->assembler()); __ movptr(rdi, rax); __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_JRT), rdi); restore_vector_registers(cgen->assembler()); __ pop(r15); __ pop(r14); __ pop(r13); __ pop(r12); __ pop(r11); __ pop(r10); __ pop(r9); __ pop(r8); __ pop(rsi); __ pop(rdi); __ pop(rdx); __ pop(rcx); __ pop(r8); __ pop(rdi); __ ret(0); #else ShouldNotReachHere(); #endif return start; } #undef __ void ShenandoahBarrierSetAssembler::barrier_stubs_init() { if (ShenandoahLoadRefBarrier) { int stub_code_size = 4096; ResourceMark rm; BufferBlob* bb = BufferBlob::create("shenandoah_barrier_stubs", stub_code_size); CodeBuffer buf(bb); StubCodeGenerator cgen(&buf); _shenandoah_lrb = generate_shenandoah_lrb(&cgen); } }