1 /*
   2  * Copyright (c) 2018, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 
  26 #include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp"
  27 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  28 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  29 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  30 #include "logging/log.hpp"
  31 #include "logging/logTag.hpp"
  32 #include "utilities/quickSort.hpp"
  33 
  34 ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() :
  35   ShenandoahHeuristics(),
  36   _cycle_gap_history(new TruncatedSeq(5)),
  37   _conc_mark_duration_history(new TruncatedSeq(5)),
  38   _conc_uprefs_duration_history(new TruncatedSeq(5)) {}
  39 
  40 ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {}
  41 
  42 void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
  43                                                                          RegionData* data, size_t size,
  44                                                                          size_t actual_free) {
  45   size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100;
  46 
  47   // The logic for cset selection in adaptive is as follows:
  48   //
  49   //   1. We cannot get cset larger than available free space. Otherwise we guarantee OOME
  50   //      during evacuation, and thus guarantee full GC. In practice, we also want to let
  51   //      application to allocate something. This is why we limit CSet to some fraction of
  52   //      available space. In non-overloaded heap, max_cset would contain all plausible candidates
  53   //      over garbage threshold.
  54   //
  55   //   2. We should not get cset too low so that free threshold would not be met right
  56   //      after the cycle. Otherwise we get back-to-back cycles for no reason if heap is
  57   //      too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero.
  58   //
  59   // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
  60   // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
  61   // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
  62   // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
  63 
  64   size_t capacity    = ShenandoahHeap::heap()->max_capacity();
  65   size_t free_target = capacity / 100 * ShenandoahMinFreeThreshold;
  66   size_t min_garbage = free_target > actual_free ? (free_target - actual_free) : 0;
  67   size_t max_cset    = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste);
  68 
  69   log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "M, Actual Free: "
  70                      SIZE_FORMAT "M, Max CSet: " SIZE_FORMAT "M, Min Garbage: " SIZE_FORMAT "M",
  71                      free_target / M, actual_free / M, max_cset / M, min_garbage / M);
  72 
  73   // Better select garbage-first regions
  74   QuickSort::sort<RegionData>(data, (int)size, compare_by_garbage, false);
  75 
  76   size_t cur_cset = 0;
  77   size_t cur_garbage = 0;
  78   _bytes_in_cset = 0;
  79 
  80   for (size_t idx = 0; idx < size; idx++) {
  81     ShenandoahHeapRegion* r = data[idx]._region;
  82 
  83     size_t new_cset    = cur_cset + r->get_live_data_bytes();
  84     size_t new_garbage = cur_garbage + r->garbage();
  85 
  86     if (new_cset > max_cset) {
  87       break;
  88     }
  89 
  90     if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) {
  91       cset->add_region(r);
  92       _bytes_in_cset += r->used();
  93       cur_cset = new_cset;
  94       cur_garbage = new_garbage;
  95     }
  96   }
  97 }
  98 
  99 void ShenandoahAdaptiveHeuristics::record_cycle_start() {
 100   ShenandoahHeuristics::record_cycle_start();
 101   double last_cycle_gap = (_cycle_start - _last_cycle_end);
 102   _cycle_gap_history->add(last_cycle_gap);
 103 }
 104 
 105 void ShenandoahAdaptiveHeuristics::record_phase_time(ShenandoahPhaseTimings::Phase phase, double secs) {
 106   if (phase == ShenandoahPhaseTimings::conc_mark) {
 107     _conc_mark_duration_history->add(secs);
 108   } else if (phase == ShenandoahPhaseTimings::conc_update_refs) {
 109     _conc_uprefs_duration_history->add(secs);
 110   } // Else ignore
 111 }
 112 
 113 bool ShenandoahAdaptiveHeuristics::should_start_gc() const {
 114   ShenandoahHeap* heap = ShenandoahHeap::heap();
 115   size_t capacity = heap->max_capacity();
 116   size_t available = heap->free_set()->available();
 117 
 118   // Check if we are falling below the worst limit, time to trigger the GC, regardless of
 119   // anything else.
 120   size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold;
 121   if (available < min_threshold) {
 122     log_info(gc)("Trigger: Free (" SIZE_FORMAT "M) is below minimum threshold (" SIZE_FORMAT "M)",
 123                  available / M, min_threshold / M);
 124     return true;
 125   }
 126 
 127   // Check if are need to learn a bit about the application
 128   const size_t max_learn = ShenandoahLearningSteps;
 129   if (_gc_times_learned < max_learn) {
 130     size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold;
 131     if (available < init_threshold) {
 132       log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "M) is below initial threshold (" SIZE_FORMAT "M)",
 133                    _gc_times_learned + 1, max_learn, available / M, init_threshold / M);
 134       return true;
 135     }
 136   }
 137 
 138   // Check if allocation headroom is still okay. This also factors in:
 139   //   1. Some space to absorb allocation spikes
 140   //   2. Accumulated penalties from Degenerated and Full GC
 141 
 142   size_t allocation_headroom = available;
 143 
 144   size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor;
 145   size_t penalties      = capacity / 100 * _gc_time_penalties;
 146 
 147   allocation_headroom -= MIN2(allocation_headroom, spike_headroom);
 148   allocation_headroom -= MIN2(allocation_headroom, penalties);
 149 
 150   // TODO: Allocation rate is way too averaged to be useful during state changes
 151 
 152   double average_gc = _gc_time_history->avg();
 153   double time_since_last = time_since_last_gc();
 154   double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last;
 155 
 156   if (average_gc > allocation_headroom / allocation_rate) {
 157     log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.2f MB/s) to deplete free headroom (" SIZE_FORMAT "M)",
 158                  average_gc * 1000, allocation_rate / M, allocation_headroom / M);
 159     log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "M (free) - " SIZE_FORMAT "M (spike) - " SIZE_FORMAT "M (penalties) = " SIZE_FORMAT "M",
 160                        available / M, spike_headroom / M, penalties / M, allocation_headroom / M);
 161     return true;
 162   }
 163 
 164   return ShenandoahHeuristics::should_start_gc();
 165 }
 166 
 167 bool ShenandoahAdaptiveHeuristics::should_start_update_refs() {
 168   if (! _update_refs_adaptive) {
 169     return _update_refs_early;
 170   }
 171 
 172   double cycle_gap_avg = _cycle_gap_history->avg();
 173   double conc_mark_avg = _conc_mark_duration_history->avg();
 174   double conc_uprefs_avg = _conc_uprefs_duration_history->avg();
 175 
 176   if (_update_refs_early) {
 177     double threshold = ShenandoahMergeUpdateRefsMinGap / 100.0;
 178     if (conc_mark_avg + conc_uprefs_avg > cycle_gap_avg * threshold) {
 179       _update_refs_early = false;
 180     }
 181   } else {
 182     double threshold = ShenandoahMergeUpdateRefsMaxGap / 100.0;
 183     if (conc_mark_avg + conc_uprefs_avg < cycle_gap_avg * threshold) {
 184       _update_refs_early = true;
 185     }
 186   }
 187   return _update_refs_early;
 188 }
 189 
 190 const char* ShenandoahAdaptiveHeuristics::name() {
 191   return "adaptive";
 192 }
 193 
 194 bool ShenandoahAdaptiveHeuristics::is_diagnostic() {
 195   return false;
 196 }
 197 
 198 bool ShenandoahAdaptiveHeuristics::is_experimental() {
 199   return false;
 200 }