1 //
   2 // Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
   3 // Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 //
   6 // This code is free software; you can redistribute it and/or modify it
   7 // under the terms of the GNU General Public License version 2 only, as
   8 // published by the Free Software Foundation.
   9 //
  10 // This code is distributed in the hope that it will be useful, but WITHOUT
  11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 // version 2 for more details (a copy is included in the LICENSE file that
  14 // accompanied this code).
  15 //
  16 // You should have received a copy of the GNU General Public License version
  17 // 2 along with this work; if not, write to the Free Software Foundation,
  18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19 //
  20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21 // or visit www.oracle.com if you need additional information or have any
  22 // questions.
  23 //
  24 //
  25 
  26 // AArch64 Architecture Description File
  27 
  28 //----------REGISTER DEFINITION BLOCK------------------------------------------
  29 // This information is used by the matcher and the register allocator to
  30 // describe individual registers and classes of registers within the target
  31 // archtecture.
  32 
  33 register %{
  34 //----------Architecture Description Register Definitions----------------------
  35 // General Registers
  36 // "reg_def"  name ( register save type, C convention save type,
  37 //                   ideal register type, encoding );
  38 // Register Save Types:
  39 //
  40 // NS  = No-Save:       The register allocator assumes that these registers
  41 //                      can be used without saving upon entry to the method, &
  42 //                      that they do not need to be saved at call sites.
  43 //
  44 // SOC = Save-On-Call:  The register allocator assumes that these registers
  45 //                      can be used without saving upon entry to the method,
  46 //                      but that they must be saved at call sites.
  47 //
  48 // SOE = Save-On-Entry: The register allocator assumes that these registers
  49 //                      must be saved before using them upon entry to the
  50 //                      method, but they do not need to be saved at call
  51 //                      sites.
  52 //
  53 // AS  = Always-Save:   The register allocator assumes that these registers
  54 //                      must be saved before using them upon entry to the
  55 //                      method, & that they must be saved at call sites.
  56 //
  57 // Ideal Register Type is used to determine how to save & restore a
  58 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  59 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  60 //
  61 // The encoding number is the actual bit-pattern placed into the opcodes.
  62 
  63 // We must define the 64 bit int registers in two 32 bit halves, the
  64 // real lower register and a virtual upper half register. upper halves
  65 // are used by the register allocator but are not actually supplied as
  66 // operands to memory ops.
  67 //
  68 // follow the C1 compiler in making registers
  69 //
  70 //   r0-r7,r10-r26 volatile (caller save)
  71 //   r27-r32 system (no save, no allocate)
  72 //   r8-r9 invisible to the allocator (so we can use them as scratch regs)
  73 //
  74 // as regards Java usage. we don't use any callee save registers
  75 // because this makes it difficult to de-optimise a frame (see comment
  76 // in x86 implementation of Deoptimization::unwind_callee_save_values)
  77 //
  78 
  79 // General Registers
  80 
  81 reg_def R0      ( SOC, SOC, Op_RegI,  0, r0->as_VMReg()         );
  82 reg_def R0_H    ( SOC, SOC, Op_RegI,  0, r0->as_VMReg()->next() );
  83 reg_def R1      ( SOC, SOC, Op_RegI,  1, r1->as_VMReg()         );
  84 reg_def R1_H    ( SOC, SOC, Op_RegI,  1, r1->as_VMReg()->next() );
  85 reg_def R2      ( SOC, SOC, Op_RegI,  2, r2->as_VMReg()         );
  86 reg_def R2_H    ( SOC, SOC, Op_RegI,  2, r2->as_VMReg()->next() );
  87 reg_def R3      ( SOC, SOC, Op_RegI,  3, r3->as_VMReg()         );
  88 reg_def R3_H    ( SOC, SOC, Op_RegI,  3, r3->as_VMReg()->next() );
  89 reg_def R4      ( SOC, SOC, Op_RegI,  4, r4->as_VMReg()         );
  90 reg_def R4_H    ( SOC, SOC, Op_RegI,  4, r4->as_VMReg()->next() );
  91 reg_def R5      ( SOC, SOC, Op_RegI,  5, r5->as_VMReg()         );
  92 reg_def R5_H    ( SOC, SOC, Op_RegI,  5, r5->as_VMReg()->next() );
  93 reg_def R6      ( SOC, SOC, Op_RegI,  6, r6->as_VMReg()         );
  94 reg_def R6_H    ( SOC, SOC, Op_RegI,  6, r6->as_VMReg()->next() );
  95 reg_def R7      ( SOC, SOC, Op_RegI,  7, r7->as_VMReg()         );
  96 reg_def R7_H    ( SOC, SOC, Op_RegI,  7, r7->as_VMReg()->next() );
  97 reg_def R10     ( SOC, SOC, Op_RegI, 10, r10->as_VMReg()        );
  98 reg_def R10_H   ( SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
  99 reg_def R11     ( SOC, SOC, Op_RegI, 11, r11->as_VMReg()        );
 100 reg_def R11_H   ( SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
 101 reg_def R12     ( SOC, SOC, Op_RegI, 12, r12->as_VMReg()        );
 102 reg_def R12_H   ( SOC, SOC, Op_RegI, 12, r12->as_VMReg()->next());
 103 reg_def R13     ( SOC, SOC, Op_RegI, 13, r13->as_VMReg()        );
 104 reg_def R13_H   ( SOC, SOC, Op_RegI, 13, r13->as_VMReg()->next());
 105 reg_def R14     ( SOC, SOC, Op_RegI, 14, r14->as_VMReg()        );
 106 reg_def R14_H   ( SOC, SOC, Op_RegI, 14, r14->as_VMReg()->next());
 107 reg_def R15     ( SOC, SOC, Op_RegI, 15, r15->as_VMReg()        );
 108 reg_def R15_H   ( SOC, SOC, Op_RegI, 15, r15->as_VMReg()->next());
 109 reg_def R16     ( SOC, SOC, Op_RegI, 16, r16->as_VMReg()        );
 110 reg_def R16_H   ( SOC, SOC, Op_RegI, 16, r16->as_VMReg()->next());
 111 reg_def R17     ( SOC, SOC, Op_RegI, 17, r17->as_VMReg()        );
 112 reg_def R17_H   ( SOC, SOC, Op_RegI, 17, r17->as_VMReg()->next());
 113 reg_def R18     ( SOC, SOC, Op_RegI, 18, r18->as_VMReg()        );
 114 reg_def R18_H   ( SOC, SOC, Op_RegI, 18, r18->as_VMReg()->next());
 115 reg_def R19     ( SOC, SOE, Op_RegI, 19, r19->as_VMReg()        );
 116 reg_def R19_H   ( SOC, SOE, Op_RegI, 19, r19->as_VMReg()->next());
 117 reg_def R20     ( SOC, SOE, Op_RegI, 20, r20->as_VMReg()        ); // caller esp
 118 reg_def R20_H   ( SOC, SOE, Op_RegI, 20, r20->as_VMReg()->next());
 119 reg_def R21     ( SOC, SOE, Op_RegI, 21, r21->as_VMReg()        );
 120 reg_def R21_H   ( SOC, SOE, Op_RegI, 21, r21->as_VMReg()->next());
 121 reg_def R22     ( SOC, SOE, Op_RegI, 22, r22->as_VMReg()        );
 122 reg_def R22_H   ( SOC, SOE, Op_RegI, 22, r22->as_VMReg()->next());
 123 reg_def R23     ( SOC, SOE, Op_RegI, 23, r23->as_VMReg()        );
 124 reg_def R23_H   ( SOC, SOE, Op_RegI, 23, r23->as_VMReg()->next());
 125 reg_def R24     ( SOC, SOE, Op_RegI, 24, r24->as_VMReg()        );
 126 reg_def R24_H   ( SOC, SOE, Op_RegI, 24, r24->as_VMReg()->next());
 127 reg_def R25     ( SOC, SOE, Op_RegI, 25, r25->as_VMReg()        );
 128 reg_def R25_H   ( SOC, SOE, Op_RegI, 25, r25->as_VMReg()->next());
 129 reg_def R26     ( SOC, SOE, Op_RegI, 26, r26->as_VMReg()        );
 130 reg_def R26_H   ( SOC, SOE, Op_RegI, 26, r26->as_VMReg()->next());
 131 reg_def R27     (  NS, SOE, Op_RegI, 27, r27->as_VMReg()        ); // heapbase
 132 reg_def R27_H   (  NS, SOE, Op_RegI, 27, r27->as_VMReg()->next());
 133 reg_def R28     (  NS, SOE, Op_RegI, 28, r28->as_VMReg()        ); // thread
 134 reg_def R28_H   (  NS, SOE, Op_RegI, 28, r28->as_VMReg()->next());
 135 reg_def R29     (  NS,  NS, Op_RegI, 29, r29->as_VMReg()        ); // fp
 136 reg_def R29_H   (  NS,  NS, Op_RegI, 29, r29->as_VMReg()->next());
 137 reg_def R30     (  NS,  NS, Op_RegI, 30, r30->as_VMReg()        ); // lr
 138 reg_def R30_H   (  NS,  NS, Op_RegI, 30, r30->as_VMReg()->next());
 139 reg_def R31     (  NS,  NS, Op_RegI, 31, r31_sp->as_VMReg()     ); // sp
 140 reg_def R31_H   (  NS,  NS, Op_RegI, 31, r31_sp->as_VMReg()->next());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Double Registers
 147 
 148 // The rules of ADL require that double registers be defined in pairs.
 149 // Each pair must be two 32-bit values, but not necessarily a pair of
 150 // single float registers. In each pair, ADLC-assigned register numbers
 151 // must be adjacent, with the lower number even. Finally, when the
 152 // CPU stores such a register pair to memory, the word associated with
 153 // the lower ADLC-assigned number must be stored to the lower address.
 154 
 155 // AArch64 has 32 floating-point registers. Each can store a vector of
 156 // single or double precision floating-point values up to 8 * 32
 157 // floats, 4 * 64 bit floats or 2 * 128 bit floats.  We currently only
 158 // use the first float or double element of the vector.
 159 
 160 // for Java use float registers v0-v15 are always save on call whereas
 161 // the platform ABI treats v8-v15 as callee save). float registers
 162 // v16-v31 are SOC as per the platform spec
 163 
 164   reg_def V0   ( SOC, SOC, Op_RegF,  0, v0->as_VMReg()          );
 165   reg_def V0_H ( SOC, SOC, Op_RegF,  0, v0->as_VMReg()->next()  );
 166   reg_def V0_J ( SOC, SOC, Op_RegF,  0, v0->as_VMReg()->next(2) );
 167   reg_def V0_K ( SOC, SOC, Op_RegF,  0, v0->as_VMReg()->next(3) );
 168 
 169   reg_def V1   ( SOC, SOC, Op_RegF,  1, v1->as_VMReg()          );
 170   reg_def V1_H ( SOC, SOC, Op_RegF,  1, v1->as_VMReg()->next()  );
 171   reg_def V1_J ( SOC, SOC, Op_RegF,  1, v1->as_VMReg()->next(2) );
 172   reg_def V1_K ( SOC, SOC, Op_RegF,  1, v1->as_VMReg()->next(3) );
 173 
 174   reg_def V2   ( SOC, SOC, Op_RegF,  2, v2->as_VMReg()          );
 175   reg_def V2_H ( SOC, SOC, Op_RegF,  2, v2->as_VMReg()->next()  );
 176   reg_def V2_J ( SOC, SOC, Op_RegF,  2, v2->as_VMReg()->next(2) );
 177   reg_def V2_K ( SOC, SOC, Op_RegF,  2, v2->as_VMReg()->next(3) );
 178 
 179   reg_def V3   ( SOC, SOC, Op_RegF,  3, v3->as_VMReg()          );
 180   reg_def V3_H ( SOC, SOC, Op_RegF,  3, v3->as_VMReg()->next()  );
 181   reg_def V3_J ( SOC, SOC, Op_RegF,  3, v3->as_VMReg()->next(2) );
 182   reg_def V3_K ( SOC, SOC, Op_RegF,  3, v3->as_VMReg()->next(3) );
 183 
 184   reg_def V4   ( SOC, SOC, Op_RegF,  4, v4->as_VMReg()          );
 185   reg_def V4_H ( SOC, SOC, Op_RegF,  4, v4->as_VMReg()->next()  );
 186   reg_def V4_J ( SOC, SOC, Op_RegF,  4, v4->as_VMReg()->next(2) );
 187   reg_def V4_K ( SOC, SOC, Op_RegF,  4, v4->as_VMReg()->next(3) );
 188 
 189   reg_def V5   ( SOC, SOC, Op_RegF,  5, v5->as_VMReg()          );
 190   reg_def V5_H ( SOC, SOC, Op_RegF,  5, v5->as_VMReg()->next()  );
 191   reg_def V5_J ( SOC, SOC, Op_RegF,  5, v5->as_VMReg()->next(2) );
 192   reg_def V5_K ( SOC, SOC, Op_RegF,  5, v5->as_VMReg()->next(3) );
 193 
 194   reg_def V6   ( SOC, SOC, Op_RegF,  6, v6->as_VMReg()          );
 195   reg_def V6_H ( SOC, SOC, Op_RegF,  6, v6->as_VMReg()->next()  );
 196   reg_def V6_J ( SOC, SOC, Op_RegF,  6, v6->as_VMReg()->next(2) );
 197   reg_def V6_K ( SOC, SOC, Op_RegF,  6, v6->as_VMReg()->next(3) );
 198 
 199   reg_def V7   ( SOC, SOC, Op_RegF,  7, v7->as_VMReg()          );
 200   reg_def V7_H ( SOC, SOC, Op_RegF,  7, v7->as_VMReg()->next()  );
 201   reg_def V7_J ( SOC, SOC, Op_RegF,  7, v7->as_VMReg()->next(2) );
 202   reg_def V7_K ( SOC, SOC, Op_RegF,  7, v7->as_VMReg()->next(3) );
 203 
 204   reg_def V8   ( SOC, SOC, Op_RegF,  8, v8->as_VMReg()          );
 205   reg_def V8_H ( SOC, SOC, Op_RegF,  8, v8->as_VMReg()->next()  );
 206   reg_def V8_J ( SOC, SOC, Op_RegF,  8, v8->as_VMReg()->next(2) );
 207   reg_def V8_K ( SOC, SOC, Op_RegF,  8, v8->as_VMReg()->next(3) );
 208 
 209   reg_def V9   ( SOC, SOC, Op_RegF,  9, v9->as_VMReg()          );
 210   reg_def V9_H ( SOC, SOC, Op_RegF,  9, v9->as_VMReg()->next()  );
 211   reg_def V9_J ( SOC, SOC, Op_RegF,  9, v9->as_VMReg()->next(2) );
 212   reg_def V9_K ( SOC, SOC, Op_RegF,  9, v9->as_VMReg()->next(3) );
 213 
 214   reg_def V10  ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()         );
 215   reg_def V10_H( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next() );
 216   reg_def V10_J( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(2));
 217   reg_def V10_K( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(3));
 218 
 219   reg_def V11  ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()         );
 220   reg_def V11_H( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next() );
 221   reg_def V11_J( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(2));
 222   reg_def V11_K( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(3));
 223 
 224   reg_def V12  ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()         );
 225   reg_def V12_H( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next() );
 226   reg_def V12_J( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(2));
 227   reg_def V12_K( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(3));
 228 
 229   reg_def V13  ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()         );
 230   reg_def V13_H( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next() );
 231   reg_def V13_J( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(2));
 232   reg_def V13_K( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(3));
 233 
 234   reg_def V14  ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()         );
 235   reg_def V14_H( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next() );
 236   reg_def V14_J( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(2));
 237   reg_def V14_K( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(3));
 238 
 239   reg_def V15  ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()         );
 240   reg_def V15_H( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next() );
 241   reg_def V15_J( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(2));
 242   reg_def V15_K( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(3));
 243 
 244   reg_def V16  ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()         );
 245   reg_def V16_H( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next() );
 246   reg_def V16_J( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(2));
 247   reg_def V16_K( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(3));
 248 
 249   reg_def V17  ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()         );
 250   reg_def V17_H( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next() );
 251   reg_def V17_J( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(2));
 252   reg_def V17_K( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(3));
 253 
 254   reg_def V18  ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()         );
 255   reg_def V18_H( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next() );
 256   reg_def V18_J( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(2));
 257   reg_def V18_K( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(3));
 258 
 259   reg_def V19  ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()         );
 260   reg_def V19_H( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next() );
 261   reg_def V19_J( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(2));
 262   reg_def V19_K( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(3));
 263 
 264   reg_def V20  ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()         );
 265   reg_def V20_H( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next() );
 266   reg_def V20_J( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(2));
 267   reg_def V20_K( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(3));
 268 
 269   reg_def V21  ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()         );
 270   reg_def V21_H( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next() );
 271   reg_def V21_J( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(2));
 272   reg_def V21_K( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(3));
 273 
 274   reg_def V22  ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()         );
 275   reg_def V22_H( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next() );
 276   reg_def V22_J( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(2));
 277   reg_def V22_K( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(3));
 278 
 279   reg_def V23  ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()         );
 280   reg_def V23_H( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next() );
 281   reg_def V23_J( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(2));
 282   reg_def V23_K( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(3));
 283 
 284   reg_def V24  ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()         );
 285   reg_def V24_H( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next() );
 286   reg_def V24_J( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(2));
 287   reg_def V24_K( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(3));
 288 
 289   reg_def V25  ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()         );
 290   reg_def V25_H( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next() );
 291   reg_def V25_J( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(2));
 292   reg_def V25_K( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(3));
 293 
 294   reg_def V26  ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()         );
 295   reg_def V26_H( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next() );
 296   reg_def V26_J( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(2));
 297   reg_def V26_K( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(3));
 298 
 299   reg_def V27  ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()         );
 300   reg_def V27_H( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next() );
 301   reg_def V27_J( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(2));
 302   reg_def V27_K( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(3));
 303 
 304   reg_def V28  ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()         );
 305   reg_def V28_H( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next() );
 306   reg_def V28_J( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(2));
 307   reg_def V28_K( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(3));
 308 
 309   reg_def V29  ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()         );
 310   reg_def V29_H( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next() );
 311   reg_def V29_J( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(2));
 312   reg_def V29_K( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(3));
 313 
 314   reg_def V30  ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()         );
 315   reg_def V30_H( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next() );
 316   reg_def V30_J( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(2));
 317   reg_def V30_K( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(3));
 318 
 319   reg_def V31  ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()         );
 320   reg_def V31_H( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next() );
 321   reg_def V31_J( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(2));
 322   reg_def V31_K( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(3));
 323 
 324 // ----------------------------
 325 // Special Registers
 326 // ----------------------------
 327 
 328 // the AArch64 CSPR status flag register is not directly acessible as
 329 // instruction operand. the FPSR status flag register is a system
 330 // register which can be written/read using MSR/MRS but again does not
 331 // appear as an operand (a code identifying the FSPR occurs as an
 332 // immediate value in the instruction).
 333 
 334 reg_def RFLAGS(SOC, SOC, 0, 32, VMRegImpl::Bad());
 335 
 336 
 337 // Specify priority of register selection within phases of register
 338 // allocation.  Highest priority is first.  A useful heuristic is to
 339 // give registers a low priority when they are required by machine
 340 // instructions, like EAX and EDX on I486, and choose no-save registers
 341 // before save-on-call, & save-on-call before save-on-entry.  Registers
 342 // which participate in fixed calling sequences should come last.
 343 // Registers which are used as pairs must fall on an even boundary.
 344 
 345 alloc_class chunk0(
 346     // volatiles
 347     R10, R10_H,
 348     R11, R11_H,
 349     R12, R12_H,
 350     R13, R13_H,
 351     R14, R14_H,
 352     R15, R15_H,
 353     R16, R16_H,
 354     R17, R17_H,
 355     R18, R18_H,
 356 
 357     // arg registers
 358     R0, R0_H,
 359     R1, R1_H,
 360     R2, R2_H,
 361     R3, R3_H,
 362     R4, R4_H,
 363     R5, R5_H,
 364     R6, R6_H,
 365     R7, R7_H,
 366 
 367     // non-volatiles
 368     R19, R19_H,
 369     R20, R20_H,
 370     R21, R21_H,
 371     R22, R22_H,
 372     R23, R23_H,
 373     R24, R24_H,
 374     R25, R25_H,
 375     R26, R26_H,
 376 
 377     // non-allocatable registers
 378 
 379     R27, R27_H, // heapbase
 380     R28, R28_H, // thread
 381     R29, R29_H, // fp
 382     R30, R30_H, // lr
 383     R31, R31_H, // sp
 384 );
 385 
 386 alloc_class chunk1(
 387 
 388     // no save
 389     V16, V16_H, V16_J, V16_K,
 390     V17, V17_H, V17_J, V17_K,
 391     V18, V18_H, V18_J, V18_K,
 392     V19, V19_H, V19_J, V19_K,
 393     V20, V20_H, V20_J, V20_K,
 394     V21, V21_H, V21_J, V21_K,
 395     V22, V22_H, V22_J, V22_K,
 396     V23, V23_H, V23_J, V23_K,
 397     V24, V24_H, V24_J, V24_K,
 398     V25, V25_H, V25_J, V25_K,
 399     V26, V26_H, V26_J, V26_K,
 400     V27, V27_H, V27_J, V27_K,
 401     V28, V28_H, V28_J, V28_K,
 402     V29, V29_H, V29_J, V29_K,
 403     V30, V30_H, V30_J, V30_K,
 404     V31, V31_H, V31_J, V31_K,
 405 
 406     // arg registers
 407     V0, V0_H, V0_J, V0_K,
 408     V1, V1_H, V1_J, V1_K,
 409     V2, V2_H, V2_J, V2_K,
 410     V3, V3_H, V3_J, V3_K,
 411     V4, V4_H, V4_J, V4_K,
 412     V5, V5_H, V5_J, V5_K,
 413     V6, V6_H, V6_J, V6_K,
 414     V7, V7_H, V7_J, V7_K,
 415 
 416     // non-volatiles
 417     V8, V8_H, V8_J, V8_K,
 418     V9, V9_H, V9_J, V9_K,
 419     V10, V10_H, V10_J, V10_K,
 420     V11, V11_H, V11_J, V11_K,
 421     V12, V12_H, V12_J, V12_K,
 422     V13, V13_H, V13_J, V13_K,
 423     V14, V14_H, V14_J, V14_K,
 424     V15, V15_H, V15_J, V15_K,
 425 );
 426 
 427 alloc_class chunk2(RFLAGS);
 428 
 429 //----------Architecture Description Register Classes--------------------------
 430 // Several register classes are automatically defined based upon information in
 431 // this architecture description.
 432 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 433 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 434 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 435 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 436 //
 437 
 438 // Class for all 32 bit integer registers -- excludes SP which will
 439 // never be used as an integer register
 440 reg_class any_reg32(
 441     R0,
 442     R1,
 443     R2,
 444     R3,
 445     R4,
 446     R5,
 447     R6,
 448     R7,
 449     R10,
 450     R11,
 451     R12,
 452     R13,
 453     R14,
 454     R15,
 455     R16,
 456     R17,
 457     R18,
 458     R19,
 459     R20,
 460     R21,
 461     R22,
 462     R23,
 463     R24,
 464     R25,
 465     R26,
 466     R27,
 467     R28,
 468     R29,
 469     R30
 470 );
 471 
 472 // Singleton class for R0 int register
 473 reg_class int_r0_reg(R0);
 474 
 475 // Singleton class for R2 int register
 476 reg_class int_r2_reg(R2);
 477 
 478 // Singleton class for R3 int register
 479 reg_class int_r3_reg(R3);
 480 
 481 // Singleton class for R4 int register
 482 reg_class int_r4_reg(R4);
 483 
 484 // Class for all long integer registers (including RSP)
 485 reg_class any_reg(
 486     R0, R0_H,
 487     R1, R1_H,
 488     R2, R2_H,
 489     R3, R3_H,
 490     R4, R4_H,
 491     R5, R5_H,
 492     R6, R6_H,
 493     R7, R7_H,
 494     R10, R10_H,
 495     R11, R11_H,
 496     R12, R12_H,
 497     R13, R13_H,
 498     R14, R14_H,
 499     R15, R15_H,
 500     R16, R16_H,
 501     R17, R17_H,
 502     R18, R18_H,
 503     R19, R19_H,
 504     R20, R20_H,
 505     R21, R21_H,
 506     R22, R22_H,
 507     R23, R23_H,
 508     R24, R24_H,
 509     R25, R25_H,
 510     R26, R26_H,
 511     R27, R27_H,
 512     R28, R28_H,
 513     R29, R29_H,
 514     R30, R30_H,
 515     R31, R31_H
 516 );
 517 
 518 // Class for all non-special integer registers
 519 reg_class no_special_reg32_no_fp(
 520     R0,
 521     R1,
 522     R2,
 523     R3,
 524     R4,
 525     R5,
 526     R6,
 527     R7,
 528     R10,
 529     R11,
 530     R12,                        // rmethod
 531     R13,
 532     R14,
 533     R15,
 534     R16,
 535     R17,
 536     R18,
 537     R19,
 538     R20,
 539     R21,
 540     R22,
 541     R23,
 542     R24,
 543     R25,
 544     R26
 545  /* R27, */                     // heapbase
 546  /* R28, */                     // thread
 547  /* R29, */                     // fp
 548  /* R30, */                     // lr
 549  /* R31 */                      // sp
 550 );
 551 
 552 reg_class no_special_reg32_with_fp(
 553     R0,
 554     R1,
 555     R2,
 556     R3,
 557     R4,
 558     R5,
 559     R6,
 560     R7,
 561     R10,
 562     R11,
 563     R12,                        // rmethod
 564     R13,
 565     R14,
 566     R15,
 567     R16,
 568     R17,
 569     R18,
 570     R19,
 571     R20,
 572     R21,
 573     R22,
 574     R23,
 575     R24,
 576     R25,
 577     R26
 578  /* R27, */                     // heapbase
 579  /* R28, */                     // thread
 580  /* R29, */                     // fp
 581  /* R30, */                     // lr
 582  /* R31 */                      // sp
 583 );
 584 
 585 reg_class_dynamic no_special_reg32(no_special_reg32_no_fp, no_special_reg32_with_fp, %{ PreserveFramePointer %});
 586 
 587 // Class for all non-special long integer registers
 588 reg_class no_special_reg_no_fp(
 589     R0, R0_H,
 590     R1, R1_H,
 591     R2, R2_H,
 592     R3, R3_H,
 593     R4, R4_H,
 594     R5, R5_H,
 595     R6, R6_H,
 596     R7, R7_H,
 597     R10, R10_H,
 598     R11, R11_H,
 599     R12, R12_H,                 // rmethod
 600     R13, R13_H,
 601     R14, R14_H,
 602     R15, R15_H,
 603     R16, R16_H,
 604     R17, R17_H,
 605     R18, R18_H,
 606     R19, R19_H,
 607     R20, R20_H,
 608     R21, R21_H,
 609     R22, R22_H,
 610     R23, R23_H,
 611     R24, R24_H,
 612     R25, R25_H,
 613     R26, R26_H,
 614  /* R27, R27_H, */              // heapbase
 615  /* R28, R28_H, */              // thread
 616  /* R29, R29_H, */              // fp
 617  /* R30, R30_H, */              // lr
 618  /* R31, R31_H */               // sp
 619 );
 620 
 621 reg_class no_special_reg_with_fp(
 622     R0, R0_H,
 623     R1, R1_H,
 624     R2, R2_H,
 625     R3, R3_H,
 626     R4, R4_H,
 627     R5, R5_H,
 628     R6, R6_H,
 629     R7, R7_H,
 630     R10, R10_H,
 631     R11, R11_H,
 632     R12, R12_H,                 // rmethod
 633     R13, R13_H,
 634     R14, R14_H,
 635     R15, R15_H,
 636     R16, R16_H,
 637     R17, R17_H,
 638     R18, R18_H,
 639     R19, R19_H,
 640     R20, R20_H,
 641     R21, R21_H,
 642     R22, R22_H,
 643     R23, R23_H,
 644     R24, R24_H,
 645     R25, R25_H,
 646     R26, R26_H,
 647  /* R27, R27_H, */              // heapbase
 648  /* R28, R28_H, */              // thread
 649  /* R29, R29_H, */              // fp
 650  /* R30, R30_H, */              // lr
 651  /* R31, R31_H */               // sp
 652 );
 653 
 654 reg_class_dynamic no_special_reg(no_special_reg_no_fp, no_special_reg_with_fp, %{ PreserveFramePointer %});
 655 
 656 // Class for 64 bit register r0
 657 reg_class r0_reg(
 658     R0, R0_H
 659 );
 660 
 661 // Class for 64 bit register r1
 662 reg_class r1_reg(
 663     R1, R1_H
 664 );
 665 
 666 // Class for 64 bit register r2
 667 reg_class r2_reg(
 668     R2, R2_H
 669 );
 670 
 671 // Class for 64 bit register r3
 672 reg_class r3_reg(
 673     R3, R3_H
 674 );
 675 
 676 // Class for 64 bit register r4
 677 reg_class r4_reg(
 678     R4, R4_H
 679 );
 680 
 681 // Class for 64 bit register r5
 682 reg_class r5_reg(
 683     R5, R5_H
 684 );
 685 
 686 // Class for 64 bit register r10
 687 reg_class r10_reg(
 688     R10, R10_H
 689 );
 690 
 691 // Class for 64 bit register r11
 692 reg_class r11_reg(
 693     R11, R11_H
 694 );
 695 
 696 // Class for method register
 697 reg_class method_reg(
 698     R12, R12_H
 699 );
 700 
 701 // Class for heapbase register
 702 reg_class heapbase_reg(
 703     R27, R27_H
 704 );
 705 
 706 // Class for thread register
 707 reg_class thread_reg(
 708     R28, R28_H
 709 );
 710 
 711 // Class for frame pointer register
 712 reg_class fp_reg(
 713     R29, R29_H
 714 );
 715 
 716 // Class for link register
 717 reg_class lr_reg(
 718     R30, R30_H
 719 );
 720 
 721 // Class for long sp register
 722 reg_class sp_reg(
 723   R31, R31_H
 724 );
 725 
 726 // Class for all pointer registers
 727 reg_class ptr_reg(
 728     R0, R0_H,
 729     R1, R1_H,
 730     R2, R2_H,
 731     R3, R3_H,
 732     R4, R4_H,
 733     R5, R5_H,
 734     R6, R6_H,
 735     R7, R7_H,
 736     R10, R10_H,
 737     R11, R11_H,
 738     R12, R12_H,
 739     R13, R13_H,
 740     R14, R14_H,
 741     R15, R15_H,
 742     R16, R16_H,
 743     R17, R17_H,
 744     R18, R18_H,
 745     R19, R19_H,
 746     R20, R20_H,
 747     R21, R21_H,
 748     R22, R22_H,
 749     R23, R23_H,
 750     R24, R24_H,
 751     R25, R25_H,
 752     R26, R26_H,
 753     R27, R27_H,
 754     R28, R28_H,
 755     R29, R29_H,
 756     R30, R30_H,
 757     R31, R31_H
 758 );
 759 
 760 // Class for all non_special pointer registers
 761 reg_class no_special_ptr_reg(
 762     R0, R0_H,
 763     R1, R1_H,
 764     R2, R2_H,
 765     R3, R3_H,
 766     R4, R4_H,
 767     R5, R5_H,
 768     R6, R6_H,
 769     R7, R7_H,
 770     R10, R10_H,
 771     R11, R11_H,
 772     R12, R12_H,
 773     R13, R13_H,
 774     R14, R14_H,
 775     R15, R15_H,
 776     R16, R16_H,
 777     R17, R17_H,
 778     R18, R18_H,
 779     R19, R19_H,
 780     R20, R20_H,
 781     R21, R21_H,
 782     R22, R22_H,
 783     R23, R23_H,
 784     R24, R24_H,
 785     R25, R25_H,
 786     R26, R26_H,
 787  /* R27, R27_H, */              // heapbase
 788  /* R28, R28_H, */              // thread
 789  /* R29, R29_H, */              // fp
 790  /* R30, R30_H, */              // lr
 791  /* R31, R31_H */               // sp
 792 );
 793 
 794 // Class for all float registers
 795 reg_class float_reg(
 796     V0,
 797     V1,
 798     V2,
 799     V3,
 800     V4,
 801     V5,
 802     V6,
 803     V7,
 804     V8,
 805     V9,
 806     V10,
 807     V11,
 808     V12,
 809     V13,
 810     V14,
 811     V15,
 812     V16,
 813     V17,
 814     V18,
 815     V19,
 816     V20,
 817     V21,
 818     V22,
 819     V23,
 820     V24,
 821     V25,
 822     V26,
 823     V27,
 824     V28,
 825     V29,
 826     V30,
 827     V31
 828 );
 829 
 830 // Double precision float registers have virtual `high halves' that
 831 // are needed by the allocator.
 832 // Class for all double registers
 833 reg_class double_reg(
 834     V0, V0_H,
 835     V1, V1_H,
 836     V2, V2_H,
 837     V3, V3_H,
 838     V4, V4_H,
 839     V5, V5_H,
 840     V6, V6_H,
 841     V7, V7_H,
 842     V8, V8_H,
 843     V9, V9_H,
 844     V10, V10_H,
 845     V11, V11_H,
 846     V12, V12_H,
 847     V13, V13_H,
 848     V14, V14_H,
 849     V15, V15_H,
 850     V16, V16_H,
 851     V17, V17_H,
 852     V18, V18_H,
 853     V19, V19_H,
 854     V20, V20_H,
 855     V21, V21_H,
 856     V22, V22_H,
 857     V23, V23_H,
 858     V24, V24_H,
 859     V25, V25_H,
 860     V26, V26_H,
 861     V27, V27_H,
 862     V28, V28_H,
 863     V29, V29_H,
 864     V30, V30_H,
 865     V31, V31_H
 866 );
 867 
 868 // Class for all 64bit vector registers
 869 reg_class vectord_reg(
 870     V0, V0_H,
 871     V1, V1_H,
 872     V2, V2_H,
 873     V3, V3_H,
 874     V4, V4_H,
 875     V5, V5_H,
 876     V6, V6_H,
 877     V7, V7_H,
 878     V8, V8_H,
 879     V9, V9_H,
 880     V10, V10_H,
 881     V11, V11_H,
 882     V12, V12_H,
 883     V13, V13_H,
 884     V14, V14_H,
 885     V15, V15_H,
 886     V16, V16_H,
 887     V17, V17_H,
 888     V18, V18_H,
 889     V19, V19_H,
 890     V20, V20_H,
 891     V21, V21_H,
 892     V22, V22_H,
 893     V23, V23_H,
 894     V24, V24_H,
 895     V25, V25_H,
 896     V26, V26_H,
 897     V27, V27_H,
 898     V28, V28_H,
 899     V29, V29_H,
 900     V30, V30_H,
 901     V31, V31_H
 902 );
 903 
 904 // Class for all 128bit vector registers
 905 reg_class vectorx_reg(
 906     V0, V0_H, V0_J, V0_K,
 907     V1, V1_H, V1_J, V1_K,
 908     V2, V2_H, V2_J, V2_K,
 909     V3, V3_H, V3_J, V3_K,
 910     V4, V4_H, V4_J, V4_K,
 911     V5, V5_H, V5_J, V5_K,
 912     V6, V6_H, V6_J, V6_K,
 913     V7, V7_H, V7_J, V7_K,
 914     V8, V8_H, V8_J, V8_K,
 915     V9, V9_H, V9_J, V9_K,
 916     V10, V10_H, V10_J, V10_K,
 917     V11, V11_H, V11_J, V11_K,
 918     V12, V12_H, V12_J, V12_K,
 919     V13, V13_H, V13_J, V13_K,
 920     V14, V14_H, V14_J, V14_K,
 921     V15, V15_H, V15_J, V15_K,
 922     V16, V16_H, V16_J, V16_K,
 923     V17, V17_H, V17_J, V17_K,
 924     V18, V18_H, V18_J, V18_K,
 925     V19, V19_H, V19_J, V19_K,
 926     V20, V20_H, V20_J, V20_K,
 927     V21, V21_H, V21_J, V21_K,
 928     V22, V22_H, V22_J, V22_K,
 929     V23, V23_H, V23_J, V23_K,
 930     V24, V24_H, V24_J, V24_K,
 931     V25, V25_H, V25_J, V25_K,
 932     V26, V26_H, V26_J, V26_K,
 933     V27, V27_H, V27_J, V27_K,
 934     V28, V28_H, V28_J, V28_K,
 935     V29, V29_H, V29_J, V29_K,
 936     V30, V30_H, V30_J, V30_K,
 937     V31, V31_H, V31_J, V31_K
 938 );
 939 
 940 // Class for 128 bit register v0
 941 reg_class v0_reg(
 942     V0, V0_H
 943 );
 944 
 945 // Class for 128 bit register v1
 946 reg_class v1_reg(
 947     V1, V1_H
 948 );
 949 
 950 // Class for 128 bit register v2
 951 reg_class v2_reg(
 952     V2, V2_H
 953 );
 954 
 955 // Class for 128 bit register v3
 956 reg_class v3_reg(
 957     V3, V3_H
 958 );
 959 
 960 // Singleton class for condition codes
 961 reg_class int_flags(RFLAGS);
 962 
 963 %}
 964 
 965 //----------DEFINITION BLOCK---------------------------------------------------
 966 // Define name --> value mappings to inform the ADLC of an integer valued name
 967 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 968 // Format:
 969 //        int_def  <name>         ( <int_value>, <expression>);
 970 // Generated Code in ad_<arch>.hpp
 971 //        #define  <name>   (<expression>)
 972 //        // value == <int_value>
 973 // Generated code in ad_<arch>.cpp adlc_verification()
 974 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 975 //
 976 
 977 // we follow the ppc-aix port in using a simple cost model which ranks
 978 // register operations as cheap, memory ops as more expensive and
 979 // branches as most expensive. the first two have a low as well as a
 980 // normal cost. huge cost appears to be a way of saying don't do
 981 // something
 982 
 983 definitions %{
 984   // The default cost (of a register move instruction).
 985   int_def INSN_COST            (    100,     100);
 986   int_def BRANCH_COST          (    200,     2 * INSN_COST);
 987   int_def CALL_COST            (    200,     2 * INSN_COST);
 988   int_def VOLATILE_REF_COST    (   1000,     10 * INSN_COST);
 989 %}
 990 
 991 
 992 //----------SOURCE BLOCK-------------------------------------------------------
 993 // This is a block of C++ code which provides values, functions, and
 994 // definitions necessary in the rest of the architecture description
 995 
 996 source_hpp %{
 997 
 998 #include "gc/shared/cardTableModRefBS.hpp"
 999 #include "opto/addnode.hpp"
1000 
1001 class CallStubImpl {
1002 
1003   //--------------------------------------------------------------
1004   //---<  Used for optimization in Compile::shorten_branches  >---
1005   //--------------------------------------------------------------
1006 
1007  public:
1008   // Size of call trampoline stub.
1009   static uint size_call_trampoline() {
1010     return 0; // no call trampolines on this platform
1011   }
1012 
1013   // number of relocations needed by a call trampoline stub
1014   static uint reloc_call_trampoline() {
1015     return 0; // no call trampolines on this platform
1016   }
1017 };
1018 
1019 class HandlerImpl {
1020 
1021  public:
1022 
1023   static int emit_exception_handler(CodeBuffer &cbuf);
1024   static int emit_deopt_handler(CodeBuffer& cbuf);
1025 
1026   static uint size_exception_handler() {
1027     return MacroAssembler::far_branch_size();
1028   }
1029 
1030   static uint size_deopt_handler() {
1031     // count one adr and one far branch instruction
1032     return 4 * NativeInstruction::instruction_size;
1033   }
1034 };
1035 
1036   // graph traversal helpers
1037 
1038   MemBarNode *parent_membar(const Node *n);
1039   MemBarNode *child_membar(const MemBarNode *n);
1040   bool leading_membar(const MemBarNode *barrier);
1041 
1042   bool is_card_mark_membar(const MemBarNode *barrier);
1043   bool is_CAS(int opcode);
1044 
1045   MemBarNode *leading_to_trailing(MemBarNode *leading);
1046   MemBarNode *card_mark_to_leading(const MemBarNode *barrier);
1047   MemBarNode *trailing_to_leading(const MemBarNode *trailing);
1048 
1049   // predicates controlling emit of ldr<x>/ldar<x> and associated dmb
1050 
1051   bool unnecessary_acquire(const Node *barrier);
1052   bool needs_acquiring_load(const Node *load);
1053 
1054   // predicates controlling emit of str<x>/stlr<x> and associated dmbs
1055 
1056   bool unnecessary_release(const Node *barrier);
1057   bool unnecessary_volatile(const Node *barrier);
1058   bool needs_releasing_store(const Node *store);
1059 
1060   // predicate controlling translation of CompareAndSwapX
1061   bool needs_acquiring_load_exclusive(const Node *load);
1062 
1063   // predicate controlling translation of StoreCM
1064   bool unnecessary_storestore(const Node *storecm);
1065 
1066   // predicate controlling addressing modes
1067   bool size_fits_all_mem_uses(AddPNode* addp, int shift);
1068 %}
1069 
1070 source %{
1071 
1072   // Optimizaton of volatile gets and puts
1073   // -------------------------------------
1074   //
1075   // AArch64 has ldar<x> and stlr<x> instructions which we can safely
1076   // use to implement volatile reads and writes. For a volatile read
1077   // we simply need
1078   //
1079   //   ldar<x>
1080   //
1081   // and for a volatile write we need
1082   //
1083   //   stlr<x>
1084   //
1085   // Alternatively, we can implement them by pairing a normal
1086   // load/store with a memory barrier. For a volatile read we need
1087   //
1088   //   ldr<x>
1089   //   dmb ishld
1090   //
1091   // for a volatile write
1092   //
1093   //   dmb ish
1094   //   str<x>
1095   //   dmb ish
1096   //
1097   // We can also use ldaxr and stlxr to implement compare and swap CAS
1098   // sequences. These are normally translated to an instruction
1099   // sequence like the following
1100   //
1101   //   dmb      ish
1102   // retry:
1103   //   ldxr<x>   rval raddr
1104   //   cmp       rval rold
1105   //   b.ne done
1106   //   stlxr<x>  rval, rnew, rold
1107   //   cbnz      rval retry
1108   // done:
1109   //   cset      r0, eq
1110   //   dmb ishld
1111   //
1112   // Note that the exclusive store is already using an stlxr
1113   // instruction. That is required to ensure visibility to other
1114   // threads of the exclusive write (assuming it succeeds) before that
1115   // of any subsequent writes.
1116   //
1117   // The following instruction sequence is an improvement on the above
1118   //
1119   // retry:
1120   //   ldaxr<x>  rval raddr
1121   //   cmp       rval rold
1122   //   b.ne done
1123   //   stlxr<x>  rval, rnew, rold
1124   //   cbnz      rval retry
1125   // done:
1126   //   cset      r0, eq
1127   //
1128   // We don't need the leading dmb ish since the stlxr guarantees
1129   // visibility of prior writes in the case that the swap is
1130   // successful. Crucially we don't have to worry about the case where
1131   // the swap is not successful since no valid program should be
1132   // relying on visibility of prior changes by the attempting thread
1133   // in the case where the CAS fails.
1134   //
1135   // Similarly, we don't need the trailing dmb ishld if we substitute
1136   // an ldaxr instruction since that will provide all the guarantees we
1137   // require regarding observation of changes made by other threads
1138   // before any change to the CAS address observed by the load.
1139   //
1140   // In order to generate the desired instruction sequence we need to
1141   // be able to identify specific 'signature' ideal graph node
1142   // sequences which i) occur as a translation of a volatile reads or
1143   // writes or CAS operations and ii) do not occur through any other
1144   // translation or graph transformation. We can then provide
1145   // alternative aldc matching rules which translate these node
1146   // sequences to the desired machine code sequences. Selection of the
1147   // alternative rules can be implemented by predicates which identify
1148   // the relevant node sequences.
1149   //
1150   // The ideal graph generator translates a volatile read to the node
1151   // sequence
1152   //
1153   //   LoadX[mo_acquire]
1154   //   MemBarAcquire
1155   //
1156   // As a special case when using the compressed oops optimization we
1157   // may also see this variant
1158   //
1159   //   LoadN[mo_acquire]
1160   //   DecodeN
1161   //   MemBarAcquire
1162   //
1163   // A volatile write is translated to the node sequence
1164   //
1165   //   MemBarRelease
1166   //   StoreX[mo_release] {CardMark}-optional
1167   //   MemBarVolatile
1168   //
1169   // n.b. the above node patterns are generated with a strict
1170   // 'signature' configuration of input and output dependencies (see
1171   // the predicates below for exact details). The card mark may be as
1172   // simple as a few extra nodes or, in a few GC configurations, may
1173   // include more complex control flow between the leading and
1174   // trailing memory barriers. However, whatever the card mark
1175   // configuration these signatures are unique to translated volatile
1176   // reads/stores -- they will not appear as a result of any other
1177   // bytecode translation or inlining nor as a consequence of
1178   // optimizing transforms.
1179   //
1180   // We also want to catch inlined unsafe volatile gets and puts and
1181   // be able to implement them using either ldar<x>/stlr<x> or some
1182   // combination of ldr<x>/stlr<x> and dmb instructions.
1183   //
1184   // Inlined unsafe volatiles puts manifest as a minor variant of the
1185   // normal volatile put node sequence containing an extra cpuorder
1186   // membar
1187   //
1188   //   MemBarRelease
1189   //   MemBarCPUOrder
1190   //   StoreX[mo_release] {CardMark}-optional
1191   //   MemBarVolatile
1192   //
1193   // n.b. as an aside, the cpuorder membar is not itself subject to
1194   // matching and translation by adlc rules.  However, the rule
1195   // predicates need to detect its presence in order to correctly
1196   // select the desired adlc rules.
1197   //
1198   // Inlined unsafe volatile gets manifest as a somewhat different
1199   // node sequence to a normal volatile get
1200   //
1201   //   MemBarCPUOrder
1202   //        ||       \\
1203   //   MemBarAcquire LoadX[mo_acquire]
1204   //        ||
1205   //   MemBarCPUOrder
1206   //
1207   // In this case the acquire membar does not directly depend on the
1208   // load. However, we can be sure that the load is generated from an
1209   // inlined unsafe volatile get if we see it dependent on this unique
1210   // sequence of membar nodes. Similarly, given an acquire membar we
1211   // can know that it was added because of an inlined unsafe volatile
1212   // get if it is fed and feeds a cpuorder membar and if its feed
1213   // membar also feeds an acquiring load.
1214   //
1215   // Finally an inlined (Unsafe) CAS operation is translated to the
1216   // following ideal graph
1217   //
1218   //   MemBarRelease
1219   //   MemBarCPUOrder
1220   //   CompareAndSwapX {CardMark}-optional
1221   //   MemBarCPUOrder
1222   //   MemBarAcquire
1223   //
1224   // So, where we can identify these volatile read and write
1225   // signatures we can choose to plant either of the above two code
1226   // sequences. For a volatile read we can simply plant a normal
1227   // ldr<x> and translate the MemBarAcquire to a dmb. However, we can
1228   // also choose to inhibit translation of the MemBarAcquire and
1229   // inhibit planting of the ldr<x>, instead planting an ldar<x>.
1230   //
1231   // When we recognise a volatile store signature we can choose to
1232   // plant at a dmb ish as a translation for the MemBarRelease, a
1233   // normal str<x> and then a dmb ish for the MemBarVolatile.
1234   // Alternatively, we can inhibit translation of the MemBarRelease
1235   // and MemBarVolatile and instead plant a simple stlr<x>
1236   // instruction.
1237   //
1238   // when we recognise a CAS signature we can choose to plant a dmb
1239   // ish as a translation for the MemBarRelease, the conventional
1240   // macro-instruction sequence for the CompareAndSwap node (which
1241   // uses ldxr<x>) and then a dmb ishld for the MemBarAcquire.
1242   // Alternatively, we can elide generation of the dmb instructions
1243   // and plant the alternative CompareAndSwap macro-instruction
1244   // sequence (which uses ldaxr<x>).
1245   //
1246   // Of course, the above only applies when we see these signature
1247   // configurations. We still want to plant dmb instructions in any
1248   // other cases where we may see a MemBarAcquire, MemBarRelease or
1249   // MemBarVolatile. For example, at the end of a constructor which
1250   // writes final/volatile fields we will see a MemBarRelease
1251   // instruction and this needs a 'dmb ish' lest we risk the
1252   // constructed object being visible without making the
1253   // final/volatile field writes visible.
1254   //
1255   // n.b. the translation rules below which rely on detection of the
1256   // volatile signatures and insert ldar<x> or stlr<x> are failsafe.
1257   // If we see anything other than the signature configurations we
1258   // always just translate the loads and stores to ldr<x> and str<x>
1259   // and translate acquire, release and volatile membars to the
1260   // relevant dmb instructions.
1261   //
1262 
1263   // graph traversal helpers used for volatile put/get and CAS
1264   // optimization
1265 
1266   // 1) general purpose helpers
1267 
1268   // if node n is linked to a parent MemBarNode by an intervening
1269   // Control and Memory ProjNode return the MemBarNode otherwise return
1270   // NULL.
1271   //
1272   // n may only be a Load or a MemBar.
1273 
1274   MemBarNode *parent_membar(const Node *n)
1275   {
1276     Node *ctl = NULL;
1277     Node *mem = NULL;
1278     Node *membar = NULL;
1279 
1280     if (n->is_Load()) {
1281       ctl = n->lookup(LoadNode::Control);
1282       mem = n->lookup(LoadNode::Memory);
1283     } else if (n->is_MemBar()) {
1284       ctl = n->lookup(TypeFunc::Control);
1285       mem = n->lookup(TypeFunc::Memory);
1286     } else {
1287         return NULL;
1288     }
1289 
1290     if (!ctl || !mem || !ctl->is_Proj() || !mem->is_Proj()) {
1291       return NULL;
1292     }
1293 
1294     membar = ctl->lookup(0);
1295 
1296     if (!membar || !membar->is_MemBar()) {
1297       return NULL;
1298     }
1299 
1300     if (mem->lookup(0) != membar) {
1301       return NULL;
1302     }
1303 
1304     return membar->as_MemBar();
1305   }
1306 
1307   // if n is linked to a child MemBarNode by intervening Control and
1308   // Memory ProjNodes return the MemBarNode otherwise return NULL.
1309 
1310   MemBarNode *child_membar(const MemBarNode *n)
1311   {
1312     ProjNode *ctl = n->proj_out(TypeFunc::Control);
1313     ProjNode *mem = n->proj_out(TypeFunc::Memory);
1314 
1315     // MemBar needs to have both a Ctl and Mem projection
1316     if (! ctl || ! mem)
1317       return NULL;
1318 
1319     MemBarNode *child = NULL;
1320     Node *x;
1321 
1322     for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
1323       x = ctl->fast_out(i);
1324       // if we see a membar we keep hold of it. we may also see a new
1325       // arena copy of the original but it will appear later
1326       if (x->is_MemBar()) {
1327           child = x->as_MemBar();
1328           break;
1329       }
1330     }
1331 
1332     if (child == NULL) {
1333       return NULL;
1334     }
1335 
1336     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1337       x = mem->fast_out(i);
1338       // if we see a membar we keep hold of it. we may also see a new
1339       // arena copy of the original but it will appear later
1340       if (x == child) {
1341         return child;
1342       }
1343     }
1344     return NULL;
1345   }
1346 
1347   // helper predicate use to filter candidates for a leading memory
1348   // barrier
1349   //
1350   // returns true if barrier is a MemBarRelease or a MemBarCPUOrder
1351   // whose Ctl and Mem feeds come from a MemBarRelease otherwise false
1352 
1353   bool leading_membar(const MemBarNode *barrier)
1354   {
1355     int opcode = barrier->Opcode();
1356     // if this is a release membar we are ok
1357     if (opcode == Op_MemBarRelease) {
1358       return true;
1359     }
1360     // if its a cpuorder membar . . .
1361     if (opcode != Op_MemBarCPUOrder) {
1362       return false;
1363     }
1364     // then the parent has to be a release membar
1365     MemBarNode *parent = parent_membar(barrier);
1366     if (!parent) {
1367       return false;
1368     }
1369     opcode = parent->Opcode();
1370     return opcode == Op_MemBarRelease;
1371   }
1372 
1373   // 2) card mark detection helper
1374 
1375   // helper predicate which can be used to detect a volatile membar
1376   // introduced as part of a conditional card mark sequence either by
1377   // G1 or by CMS when UseCondCardMark is true.
1378   //
1379   // membar can be definitively determined to be part of a card mark
1380   // sequence if and only if all the following hold
1381   //
1382   // i) it is a MemBarVolatile
1383   //
1384   // ii) either UseG1GC or (UseConcMarkSweepGC && UseCondCardMark) is
1385   // true
1386   //
1387   // iii) the node's Mem projection feeds a StoreCM node.
1388 
1389   bool is_card_mark_membar(const MemBarNode *barrier)
1390   {
1391     if (!UseG1GC && !(UseConcMarkSweepGC && UseCondCardMark)) {
1392       return false;
1393     }
1394 
1395     if (barrier->Opcode() != Op_MemBarVolatile) {
1396       return false;
1397     }
1398 
1399     ProjNode *mem = barrier->proj_out(TypeFunc::Memory);
1400 
1401     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax ; i++) {
1402       Node *y = mem->fast_out(i);
1403       if (y->Opcode() == Op_StoreCM) {
1404         return true;
1405       }
1406     }
1407 
1408     return false;
1409   }
1410 
1411 
1412   // 3) helper predicates to traverse volatile put or CAS graphs which
1413   // may contain GC barrier subgraphs
1414 
1415   // Preamble
1416   // --------
1417   //
1418   // for volatile writes we can omit generating barriers and employ a
1419   // releasing store when we see a node sequence sequence with a
1420   // leading MemBarRelease and a trailing MemBarVolatile as follows
1421   //
1422   //   MemBarRelease
1423   //  {    ||        } -- optional
1424   //  {MemBarCPUOrder}
1425   //       ||       \\
1426   //       ||     StoreX[mo_release]
1427   //       | \ Bot    / ???
1428   //       | MergeMem
1429   //       | /
1430   //   MemBarVolatile
1431   //
1432   // where
1433   //  || and \\ represent Ctl and Mem feeds via Proj nodes
1434   //  | \ and / indicate further routing of the Ctl and Mem feeds
1435   //
1436   // Note that the memory feed from the CPUOrder membar to the
1437   // MergeMem node is an AliasIdxBot slice while the feed from the
1438   // StoreX is for a slice determined by the type of value being
1439   // written.
1440   //
1441   // the diagram above shows the graph we see for non-object stores.
1442   // for a volatile Object store (StoreN/P) we may see other nodes
1443   // below the leading membar because of the need for a GC pre- or
1444   // post-write barrier.
1445   //
1446   // with most GC configurations we with see this simple variant which
1447   // includes a post-write barrier card mark.
1448   //
1449   //   MemBarRelease______________________________
1450   //         ||    \\               Ctl \        \\
1451   //         ||    StoreN/P[mo_release] CastP2X  StoreB/CM
1452   //         | \ Bot  / oop                 . . .  /
1453   //         | MergeMem
1454   //         | /
1455   //         ||      /
1456   //   MemBarVolatile
1457   //
1458   // i.e. the leading membar feeds Ctl to a CastP2X (which converts
1459   // the object address to an int used to compute the card offset) and
1460   // Ctl+Mem to a StoreB node (which does the actual card mark).
1461   //
1462   // n.b. a StoreCM node is only ever used when CMS (with or without
1463   // CondCardMark) or G1 is configured. This abstract instruction
1464   // differs from a normal card mark write (StoreB) because it implies
1465   // a requirement to order visibility of the card mark (StoreCM)
1466   // after that of the object put (StoreP/N) using a StoreStore memory
1467   // barrier. Note that this is /not/ a requirement to order the
1468   // instructions in the generated code (that is already guaranteed by
1469   // the order of memory dependencies). Rather it is a requirement to
1470   // ensure visibility order which only applies on architectures like
1471   // AArch64 which do not implement TSO. This ordering is required for
1472   // both non-volatile and volatile puts.
1473   //
1474   // That implies that we need to translate a StoreCM using the
1475   // sequence
1476   //
1477   //   dmb ishst
1478   //   stlrb
1479   //
1480   // This dmb cannot be omitted even when the associated StoreX or
1481   // CompareAndSwapX is implemented using stlr. However, as described
1482   // below there are circumstances where a specific GC configuration
1483   // requires a stronger barrier in which case it can be omitted.
1484   // 
1485   // With the Serial or Parallel GC using +CondCardMark the card mark
1486   // is performed conditionally on it currently being unmarked in
1487   // which case the volatile put graph looks slightly different
1488   //
1489   //   MemBarRelease____________________________________________
1490   //         ||    \\               Ctl \     Ctl \     \\  Mem \
1491   //         ||    StoreN/P[mo_release] CastP2X   If   LoadB     |
1492   //         | \ Bot / oop                          \            |
1493   //         | MergeMem                            . . .      StoreB
1494   //         | /                                                /
1495   //         ||     /
1496   //   MemBarVolatile
1497   //
1498   // It is worth noting at this stage that all the above
1499   // configurations can be uniquely identified by checking that the
1500   // memory flow includes the following subgraph:
1501   //
1502   //   MemBarRelease
1503   //  {MemBarCPUOrder}
1504   //      |  \      . . .
1505   //      |  StoreX[mo_release]  . . .
1506   //  Bot |   / oop
1507   //     MergeMem
1508   //      |
1509   //   MemBarVolatile
1510   //
1511   // This is referred to as a *normal* volatile store subgraph. It can
1512   // easily be detected starting from any candidate MemBarRelease,
1513   // StoreX[mo_release] or MemBarVolatile node.
1514   //
1515   // A small variation on this normal case occurs for an unsafe CAS
1516   // operation. The basic memory flow subgraph for a non-object CAS is
1517   // as follows
1518   //
1519   //   MemBarRelease
1520   //         ||
1521   //   MemBarCPUOrder
1522   //          |     \\   . . .
1523   //          |     CompareAndSwapX
1524   //          |       |
1525   //      Bot |     SCMemProj
1526   //           \     / Bot
1527   //           MergeMem
1528   //           /
1529   //   MemBarCPUOrder
1530   //         ||
1531   //   MemBarAcquire
1532   //
1533   // The same basic variations on this arrangement (mutatis mutandis)
1534   // occur when a card mark is introduced. i.e. the CPUOrder MemBar
1535   // feeds the extra CastP2X, LoadB etc nodes but the above memory
1536   // flow subgraph is still present.
1537   // 
1538   // This is referred to as a *normal* CAS subgraph. It can easily be
1539   // detected starting from any candidate MemBarRelease,
1540   // StoreX[mo_release] or MemBarAcquire node.
1541   //
1542   // The code below uses two helper predicates, leading_to_trailing
1543   // and trailing_to_leading to identify these normal graphs, one
1544   // validating the layout starting from the top membar and searching
1545   // down and the other validating the layout starting from the lower
1546   // membar and searching up.
1547   //
1548   // There are two special case GC configurations when the simple
1549   // normal graphs above may not be generated: when using G1 (which
1550   // always employs a conditional card mark); and when using CMS with
1551   // conditional card marking (+CondCardMark) configured. These GCs
1552   // are both concurrent rather than stop-the world GCs. So they
1553   // introduce extra Ctl+Mem flow into the graph between the leading
1554   // and trailing membar nodes, in particular enforcing stronger
1555   // memory serialisation beween the object put and the corresponding
1556   // conditional card mark. CMS employs a post-write GC barrier while
1557   // G1 employs both a pre- and post-write GC barrier.
1558   //
1559   // The post-write barrier subgraph for these configurations includes
1560   // a MemBarVolatile node -- referred to as a card mark membar --
1561   // which is needed to order the card write (StoreCM) operation in
1562   // the barrier, the preceding StoreX (or CompareAndSwapX) and Store
1563   // operations performed by GC threads i.e. a card mark membar
1564   // constitutes a StoreLoad barrier hence must be translated to a dmb
1565   // ish (whether or not it sits inside a volatile store sequence).
1566   //
1567   // Of course, the use of the dmb ish for the card mark membar also
1568   // implies theat the StoreCM which follows can omit the dmb ishst
1569   // instruction. The necessary visibility ordering will already be
1570   // guaranteed by the dmb ish. In sum, the dmb ishst instruction only
1571   // needs to be generated for as part of the StoreCM sequence with GC
1572   // configuration +CMS -CondCardMark.
1573   // 
1574   // Of course all these extra barrier nodes may well be absent --
1575   // they are only inserted for object puts. Their potential presence
1576   // significantly complicates the task of identifying whether a
1577   // MemBarRelease, StoreX[mo_release], MemBarVolatile or
1578   // MemBarAcquire forms part of a volatile put or CAS when using
1579   // these GC configurations (see below) and also complicates the
1580   // decision as to how to translate a MemBarVolatile and StoreCM.
1581   //
1582   // So, thjis means that a card mark MemBarVolatile occurring in the
1583   // post-barrier graph it needs to be distinguished from a normal
1584   // trailing MemBarVolatile. Resolving this is straightforward: a
1585   // card mark MemBarVolatile always projects a Mem feed to a StoreCM
1586   // node and that is a unique marker
1587   //
1588   //      MemBarVolatile (card mark)
1589   //       C |    \     . . .
1590   //         |   StoreCM   . . .
1591   //       . . .
1592   //
1593   // Returning to the task of translating the object put and the
1594   // leading/trailing membar nodes: what do the node graphs look like
1595   // for these 2 special cases? and how can we determine the status of
1596   // a MemBarRelease, StoreX[mo_release] or MemBarVolatile in both
1597   // normal and non-normal cases?
1598   //
1599   // A CMS GC post-barrier wraps its card write (StoreCM) inside an If
1600   // which selects conditonal execution based on the value loaded
1601   // (LoadB) from the card. Ctl and Mem are fed to the If via an
1602   // intervening StoreLoad barrier (MemBarVolatile).
1603   //
1604   // So, with CMS we may see a node graph for a volatile object store
1605   // which looks like this
1606   //
1607   //   MemBarRelease
1608   //   MemBarCPUOrder_(leading)____________________
1609   //     C |  | M \       \\               M |   C \
1610   //       |  |    \    StoreN/P[mo_release] |  CastP2X
1611   //       |  | Bot \    / oop      \        |
1612   //       |  |    MergeMem          \      / 
1613   //       |  |      /                |    /
1614   //     MemBarVolatile (card mark)   |   /
1615   //     C |  ||    M |               |  /
1616   //       | LoadB    | Bot       oop | / Bot
1617   //       |   |      |              / /
1618   //       | Cmp      |\            / /
1619   //       | /        | \          / /
1620   //       If         |  \        / /
1621   //       | \        |   \      / /
1622   // IfFalse  IfTrue  |    \    / /
1623   //       \     / \  |    |   / /
1624   //        \   / StoreCM  |  / /
1625   //         \ /      \   /  / /
1626   //        Region     Phi  / /
1627   //          | \   Raw |  / /
1628   //          |  . . .  | / /
1629   //          |       MergeMem
1630   //          |           |
1631   //        MemBarVolatile (trailing)
1632   //
1633   // Notice that there are two MergeMem nodes below the leading
1634   // membar. The first MergeMem merges the AliasIdxBot Mem slice from
1635   // the leading membar and the oopptr Mem slice from the Store into
1636   // the card mark membar. The trailing MergeMem merges the
1637   // AliasIdxBot Mem slice from the leading membar, the AliasIdxRaw
1638   // slice from the StoreCM and an oop slice from the StoreN/P node
1639   // into the trailing membar (n.b. the raw slice proceeds via a Phi
1640   // associated with the If region).
1641   //
1642   // So, in the case of CMS + CondCardMark the volatile object store
1643   // graph still includes a normal volatile store subgraph from the
1644   // leading membar to the trailing membar. However, it also contains
1645   // the same shape memory flow to the card mark membar. The two flows
1646   // can be distinguished by testing whether or not the downstream
1647   // membar is a card mark membar.
1648   //
1649   // The graph for a CAS also varies with CMS + CondCardMark, in
1650   // particular employing a control feed from the CompareAndSwapX node
1651   // through a CmpI and If to the card mark membar and StoreCM which
1652   // updates the associated card. This avoids executing the card mark
1653   // if the CAS fails. However, it can be seen from the diagram below
1654   // that the presence of the barrier does not alter the normal CAS
1655   // memory subgraph where the leading membar feeds a CompareAndSwapX,
1656   // an SCMemProj, a MergeMem then a final trailing MemBarCPUOrder and
1657   // MemBarAcquire pair.
1658   //
1659   //   MemBarRelease
1660   //   MemBarCPUOrder__(leading)_______________________
1661   //   C /  M |                        \\            C \
1662   //  . . .   | Bot                CompareAndSwapN/P   CastP2X
1663   //          |                  C /  M |
1664   //          |                 CmpI    |
1665   //          |                  /      |
1666   //          |               . . .     |
1667   //          |              IfTrue     |
1668   //          |              /          |
1669   //       MemBarVolatile (card mark)   |
1670   //        C |  ||    M |              |
1671   //          | LoadB    | Bot   ______/|
1672   //          |   |      |      /       |
1673   //          | Cmp      |     /      SCMemProj
1674   //          | /        |    /         |
1675   //          If         |   /         /
1676   //          | \        |  /         / Bot
1677   //     IfFalse  IfTrue | /         /
1678   //          |   / \   / / prec    /
1679   //   . . .  |  /  StoreCM        /
1680   //        \ | /      | raw      /
1681   //        Region    . . .      /
1682   //           | \              /
1683   //           |   . . .   \    / Bot
1684   //           |        MergeMem
1685   //           |          /
1686   //         MemBarCPUOrder
1687   //         MemBarAcquire (trailing)
1688   //
1689   // This has a slightly different memory subgraph to the one seen
1690   // previously but the core of it has a similar memory flow to the
1691   // CAS normal subgraph:
1692   //
1693   //   MemBarRelease
1694   //   MemBarCPUOrder____
1695   //         |          \      . . .
1696   //         |       CompareAndSwapX  . . .
1697   //         |       C /  M |
1698   //         |      CmpI    |
1699   //         |       /      |
1700   //         |      . .    /
1701   //     Bot |   IfTrue   /
1702   //         |   /       /
1703   //    MemBarVolatile  /
1704   //         | ...     /
1705   //      StoreCM ... /
1706   //         |       / 
1707   //       . . .  SCMemProj
1708   //      Raw \    / Bot
1709   //        MergeMem
1710   //           |
1711   //   MemBarCPUOrder
1712   //   MemBarAcquire
1713   //
1714   // The G1 graph for a volatile object put is a lot more complicated.
1715   // Nodes inserted on behalf of G1 may comprise: a pre-write graph
1716   // which adds the old value to the SATB queue; the releasing store
1717   // itself; and, finally, a post-write graph which performs a card
1718   // mark.
1719   //
1720   // The pre-write graph may be omitted, but only when the put is
1721   // writing to a newly allocated (young gen) object and then only if
1722   // there is a direct memory chain to the Initialize node for the
1723   // object allocation. This will not happen for a volatile put since
1724   // any memory chain passes through the leading membar.
1725   //
1726   // The pre-write graph includes a series of 3 If tests. The outermost
1727   // If tests whether SATB is enabled (no else case). The next If tests
1728   // whether the old value is non-NULL (no else case). The third tests
1729   // whether the SATB queue index is > 0, if so updating the queue. The
1730   // else case for this third If calls out to the runtime to allocate a
1731   // new queue buffer.
1732   //
1733   // So with G1 the pre-write and releasing store subgraph looks like
1734   // this (the nested Ifs are omitted).
1735   //
1736   //  MemBarRelease (leading)____________
1737   //     C |  ||  M \   M \    M \  M \ . . .
1738   //       | LoadB   \  LoadL  LoadN   \
1739   //       | /        \                 \
1740   //       If         |\                 \
1741   //       | \        | \                 \
1742   //  IfFalse  IfTrue |  \                 \
1743   //       |     |    |   \                 |
1744   //       |     If   |   /\                |
1745   //       |     |          \               |
1746   //       |                 \              |
1747   //       |    . . .         \             |
1748   //       | /       | /       |            |
1749   //      Region  Phi[M]       |            |
1750   //       | \       |         |            |
1751   //       |  \_____ | ___     |            |
1752   //     C | C \     |   C \ M |            |
1753   //       | CastP2X | StoreN/P[mo_release] |
1754   //       |         |         |            |
1755   //     C |       M |       M |          M |
1756   //        \        | Raw     | oop       / Bot
1757   //                  . . .
1758   //          (post write subtree elided)
1759   //                    . . .
1760   //             C \         M /
1761   //         MemBarVolatile (trailing)
1762   //
1763   // Note that the three memory feeds into the post-write tree are an
1764   // AliasRawIdx slice associated with the writes in the pre-write
1765   // tree, an oop type slice from the StoreX specific to the type of
1766   // the volatile field and the AliasBotIdx slice emanating from the
1767   // leading membar.
1768   //
1769   // n.b. the LoadB in this subgraph is not the card read -- it's a
1770   // read of the SATB queue active flag.
1771   //
1772   // The CAS graph is once again a variant of the above with a
1773   // CompareAndSwapX node and SCMemProj in place of the StoreX.  The
1774   // value from the CompareAndSwapX node is fed into the post-write
1775   // graph aling with the AliasIdxRaw feed from the pre-barrier and
1776   // the AliasIdxBot feeds from the leading membar and the ScMemProj.
1777   //
1778   //  MemBarRelease (leading)____________
1779   //     C |  ||  M \   M \    M \  M \ . . .
1780   //       | LoadB   \  LoadL  LoadN   \
1781   //       | /        \                 \
1782   //       If         |\                 \
1783   //       | \        | \                 \
1784   //  IfFalse  IfTrue |  \                 \
1785   //       |     |    |   \                 \
1786   //       |     If   |    \                 |
1787   //       |     |          \                |
1788   //       |                 \               |
1789   //       |    . . .         \              |
1790   //       | /       | /       \             |
1791   //      Region  Phi[M]        \            |
1792   //       | \       |           \           |
1793   //       |  \_____ |            |          |
1794   //     C | C \     |            |          |
1795   //       | CastP2X |     CompareAndSwapX   |
1796   //       |         |   res |     |         |
1797   //     C |       M |       |  SCMemProj  M |
1798   //        \        | Raw   |     | Bot    / Bot
1799   //                  . . .
1800   //          (post write subtree elided)
1801   //                    . . .
1802   //             C \         M /
1803   //         MemBarVolatile (trailing)
1804   //
1805   // The G1 post-write subtree is also optional, this time when the
1806   // new value being written is either null or can be identified as a
1807   // newly allocated (young gen) object with no intervening control
1808   // flow. The latter cannot happen but the former may, in which case
1809   // the card mark membar is omitted and the memory feeds from the
1810   // leading membar and the SToreN/P are merged direct into the
1811   // trailing membar as per the normal subgraph. So, the only special
1812   // case which arises is when the post-write subgraph is generated.
1813   //
1814   // The kernel of the post-write G1 subgraph is the card mark itself
1815   // which includes a card mark memory barrier (MemBarVolatile), a
1816   // card test (LoadB), and a conditional update (If feeding a
1817   // StoreCM). These nodes are surrounded by a series of nested Ifs
1818   // which try to avoid doing the card mark. The top level If skips if
1819   // the object reference does not cross regions (i.e. it tests if
1820   // (adr ^ val) >> log2(regsize) != 0) -- intra-region references
1821   // need not be recorded. The next If, which skips on a NULL value,
1822   // may be absent (it is not generated if the type of value is >=
1823   // OopPtr::NotNull). The 3rd If skips writes to young regions (by
1824   // checking if card_val != young).  n.b. although this test requires
1825   // a pre-read of the card it can safely be done before the StoreLoad
1826   // barrier. However that does not bypass the need to reread the card
1827   // after the barrier.
1828   //
1829   //                (pre-write subtree elided)
1830   //        . . .                  . . .    . . .  . . .
1831   //        C |               M |    M |    M |
1832   //       Region            Phi[M] StoreN    |
1833   //          |            Raw  |  oop |  Bot |
1834   //         / \_______         |\     |\     |\
1835   //      C / C \      . . .    | \    | \    | \
1836   //       If   CastP2X . . .   |  \   |  \   |  \
1837   //       / \                  |   \  |   \  |   \
1838   //      /   \                 |    \ |    \ |    \
1839   // IfFalse IfTrue             |      |      |     \
1840   //   |       |                 \     |     /       |
1841   //   |       If                 \    | \  /   \    |
1842   //   |      / \                  \   |   /     \   |
1843   //   |     /   \                  \  |  / \     |  |
1844   //   | IfFalse IfTrue           MergeMem   \    |  |
1845   //   |  . . .    / \                 |      \   |  |
1846   //   |          /   \                |       |  |  |
1847   //   |     IfFalse IfTrue            |       |  |  |
1848   //   |      . . .    |               |       |  |  |
1849   //   |               If             /        |  |  |
1850   //   |               / \           /         |  |  |
1851   //   |              /   \         /          |  |  |
1852   //   |         IfFalse IfTrue    /           |  |  |
1853   //   |           . . .   |      /            |  |  |
1854   //   |                    \    /             |  |  |
1855   //   |                     \  /              |  |  |
1856   //   |         MemBarVolatile__(card mark  ) |  |  |
1857   //   |              ||   C |     \           |  |  |
1858   //   |             LoadB   If     |         /   |  |
1859   //   |                    / \ Raw |        /   /  /
1860   //   |                   . . .    |       /   /  /
1861   //   |                        \   |      /   /  /
1862   //   |                        StoreCM   /   /  /
1863   //   |                           |     /   /  /
1864   //   |                            . . .   /  /
1865   //   |                                   /  /
1866   //   |   . . .                          /  /
1867   //   |    |             | /            /  /
1868   //   |    |           Phi[M] /        /  /
1869   //   |    |             |   /        /  /
1870   //   |    |             |  /        /  /
1871   //   |  Region  . . .  Phi[M]      /  /
1872   //   |    |             |         /  /
1873   //    \   |             |        /  /
1874   //     \  | . . .       |       /  /
1875   //      \ |             |      /  /
1876   //      Region         Phi[M] /  /
1877   //        |               \  /  /
1878   //         \             MergeMem
1879   //          \            /
1880   //          MemBarVolatile
1881   //
1882   // As with CMS + CondCardMark the first MergeMem merges the
1883   // AliasIdxBot Mem slice from the leading membar and the oopptr Mem
1884   // slice from the Store into the card mark membar. However, in this
1885   // case it may also merge an AliasRawIdx mem slice from the pre
1886   // barrier write.
1887   //
1888   // The trailing MergeMem merges an AliasIdxBot Mem slice from the
1889   // leading membar with an oop slice from the StoreN and an
1890   // AliasRawIdx slice from the post barrier writes. In this case the
1891   // AliasIdxRaw Mem slice is merged through a series of Phi nodes
1892   // which combine feeds from the If regions in the post barrier
1893   // subgraph.
1894   //
1895   // So, for G1 the same characteristic subgraph arises as for CMS +
1896   // CondCardMark. There is a normal subgraph feeding the card mark
1897   // membar and a normal subgraph feeding the trailing membar.
1898   //
1899   // The CAS graph when using G1GC also includes an optional
1900   // post-write subgraph. It is very similar to the above graph except
1901   // for a few details.
1902   // 
1903   // - The control flow is gated by an additonal If which tests the
1904   // result from the CompareAndSwapX node
1905   // 
1906   //  - The MergeMem which feeds the card mark membar only merges the
1907   // AliasIdxBot slice from the leading membar and the AliasIdxRaw
1908   // slice from the pre-barrier. It does not merge the SCMemProj
1909   // AliasIdxBot slice. So, this subgraph does not look like the
1910   // normal CAS subgraph.
1911   //
1912   // - The MergeMem which feeds the trailing membar merges the
1913   // AliasIdxBot slice from the leading membar, the AliasIdxRaw slice
1914   // from the post-barrier and the SCMemProj AliasIdxBot slice i.e. it
1915   // has two AliasIdxBot input slices. However, this subgraph does
1916   // still look like the normal CAS subgraph.
1917   //
1918   // So, the upshot is:
1919   //
1920   // In all cases a volatile put graph will include a *normal*
1921   // volatile store subgraph betwen the leading membar and the
1922   // trailing membar. It may also include a normal volatile store
1923   // subgraph betwen the leading membar and the card mark membar.
1924   //
1925   // In all cases a CAS graph will contain a unique normal CAS graph
1926   // feeding the trailing membar.
1927   //
1928   // In all cases where there is a card mark membar (either as part of
1929   // a volatile object put or CAS) it will be fed by a MergeMem whose
1930   // AliasIdxBot slice feed will be a leading membar.
1931   //
1932   // The predicates controlling generation of instructions for store
1933   // and barrier nodes employ a few simple helper functions (described
1934   // below) which identify the presence or absence of all these
1935   // subgraph configurations and provide a means of traversing from
1936   // one node in the subgraph to another.
1937 
1938   // is_CAS(int opcode)
1939   //
1940   // return true if opcode is one of the possible CompareAndSwapX
1941   // values otherwise false.
1942 
1943   bool is_CAS(int opcode)
1944   {
1945     switch(opcode) {
1946       // We handle these
1947     case Op_CompareAndSwapI:
1948     case Op_CompareAndSwapL:
1949     case Op_CompareAndSwapP:
1950     case Op_CompareAndSwapN:
1951  // case Op_CompareAndSwapB:
1952  // case Op_CompareAndSwapS:
1953       return true;
1954       // These are TBD
1955     case Op_WeakCompareAndSwapB:
1956     case Op_WeakCompareAndSwapS:
1957     case Op_WeakCompareAndSwapI:
1958     case Op_WeakCompareAndSwapL:
1959     case Op_WeakCompareAndSwapP:
1960     case Op_WeakCompareAndSwapN:
1961     case Op_CompareAndExchangeB:
1962     case Op_CompareAndExchangeS:
1963     case Op_CompareAndExchangeI:
1964     case Op_CompareAndExchangeL:
1965     case Op_CompareAndExchangeP:
1966     case Op_CompareAndExchangeN:
1967       return false;
1968     default:
1969       return false;
1970     }
1971   }
1972 
1973 
1974   // leading_to_trailing
1975   //
1976   //graph traversal helper which detects the normal case Mem feed from
1977   // a release membar (or, optionally, its cpuorder child) to a
1978   // dependent volatile membar i.e. it ensures that one or other of
1979   // the following Mem flow subgraph is present.
1980   //
1981   //   MemBarRelease {leading}
1982   //   {MemBarCPUOrder} {optional}
1983   //     Bot |  \      . . .
1984   //         |  StoreN/P[mo_release]  . . .
1985   //         |   /
1986   //        MergeMem
1987   //         |
1988   //   MemBarVolatile {not card mark}
1989   //
1990   //   MemBarRelease {leading}
1991   //   {MemBarCPUOrder} {optional}
1992   //      |       \      . . .
1993   //      |     CompareAndSwapX  . . .
1994   //               |
1995   //     . . .    SCMemProj
1996   //           \   |
1997   //      |    MergeMem
1998   //      |       /
1999   //    MemBarCPUOrder
2000   //    MemBarAcquire {trailing}
2001   //
2002   // the predicate needs to be capable of distinguishing the following
2003   // volatile put graph which may arises when a GC post barrier
2004   // inserts a card mark membar
2005   //
2006   //   MemBarRelease {leading}
2007   //   {MemBarCPUOrder}__
2008   //     Bot |   \       \
2009   //         |   StoreN/P \
2010   //         |    / \     |
2011   //        MergeMem \    |
2012   //         |        \   |
2013   //   MemBarVolatile  \  |
2014   //    {card mark}     \ |
2015   //                  MergeMem
2016   //                      |
2017   // {not card mark} MemBarVolatile
2018   //
2019   // if the correct configuration is present returns the trailing
2020   // membar otherwise NULL.
2021   //
2022   // the input membar is expected to be either a cpuorder membar or a
2023   // release membar. in the latter case it should not have a cpu membar
2024   // child.
2025   //
2026   // the returned value may be a card mark or trailing membar
2027   //
2028 
2029   MemBarNode *leading_to_trailing(MemBarNode *leading)
2030   {
2031     assert((leading->Opcode() == Op_MemBarRelease ||
2032             leading->Opcode() == Op_MemBarCPUOrder),
2033            "expecting a volatile or cpuroder membar!");
2034 
2035     // check the mem flow
2036     ProjNode *mem = leading->proj_out(TypeFunc::Memory);
2037 
2038     if (!mem) {
2039       return NULL;
2040     }
2041 
2042     Node *x = NULL;
2043     StoreNode * st = NULL;
2044     LoadStoreNode *cas = NULL;
2045     MergeMemNode *mm = NULL;
2046     MergeMemNode *mm2 = NULL;
2047 
2048     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
2049       x = mem->fast_out(i);
2050       if (x->is_MergeMem()) {
2051         if (mm != NULL) {
2052           if (mm2 != NULL) {
2053           // should not see more than 2 merge mems
2054             return NULL;
2055           } else {
2056             mm2 = x->as_MergeMem();
2057           }
2058         } else {
2059           mm = x->as_MergeMem();
2060         }
2061       } else if (x->is_Store() && x->as_Store()->is_release() && x->Opcode() != Op_StoreCM) {
2062         // two releasing stores/CAS nodes is one too many
2063         if (st != NULL || cas != NULL) {
2064           return NULL;
2065         }
2066         st = x->as_Store();
2067       } else if (is_CAS(x->Opcode())) {
2068         if (st != NULL || cas != NULL) {
2069           return NULL;
2070         }
2071         cas = x->as_LoadStore();
2072       }
2073     }
2074 
2075     // must have a store or a cas
2076     if (!st && !cas) {
2077       return NULL;
2078     }
2079 
2080     // must have at least one merge if we also have st
2081     if (st && !mm) {
2082       return NULL;
2083     }
2084 
2085     if (cas) {
2086       Node *y = NULL;
2087       // look for an SCMemProj
2088       for (DUIterator_Fast imax, i = cas->fast_outs(imax); i < imax; i++) {
2089         x = cas->fast_out(i);
2090         if (x->is_Proj()) {
2091           y = x;
2092           break;
2093         }
2094       }
2095       if (y == NULL) {
2096         return NULL;
2097       }
2098       // the proj must feed a MergeMem
2099       for (DUIterator_Fast imax, i = y->fast_outs(imax); i < imax; i++) {
2100         x = y->fast_out(i);
2101         if (x->is_MergeMem()) {
2102           mm = x->as_MergeMem();
2103           break;
2104         }
2105       }
2106       if (mm == NULL) {
2107         return NULL;
2108       }
2109       MemBarNode *mbar = NULL;
2110       // ensure the merge feeds a trailing membar cpuorder + acquire pair
2111       for (DUIterator_Fast imax, i = mm->fast_outs(imax); i < imax; i++) {
2112         x = mm->fast_out(i);
2113         if (x->is_MemBar()) {
2114           int opcode = x->Opcode();
2115           if (opcode == Op_MemBarCPUOrder) {
2116             MemBarNode *z =  x->as_MemBar();
2117             z = child_membar(z);
2118             if (z != NULL && z->Opcode() == Op_MemBarAcquire) {
2119               mbar = z;
2120             }
2121           }
2122           break;
2123         }
2124       }
2125       return mbar;
2126     } else {
2127       Node *y = NULL;
2128       // ensure the store feeds the first mergemem;
2129       for (DUIterator_Fast imax, i = st->fast_outs(imax); i < imax; i++) {
2130         if (st->fast_out(i) == mm) {
2131           y = st;
2132           break;
2133         }
2134       }
2135       if (y == NULL) {
2136         return NULL;
2137       }
2138       if (mm2 != NULL) {
2139         // ensure the store feeds the second mergemem;
2140         y = NULL;
2141         for (DUIterator_Fast imax, i = st->fast_outs(imax); i < imax; i++) {
2142           if (st->fast_out(i) == mm2) {
2143             y = st;
2144           }
2145         }
2146         if (y == NULL) {
2147           return NULL;
2148         }
2149       }
2150 
2151       MemBarNode *mbar = NULL;
2152       // ensure the first mergemem feeds a volatile membar
2153       for (DUIterator_Fast imax, i = mm->fast_outs(imax); i < imax; i++) {
2154         x = mm->fast_out(i);
2155         if (x->is_MemBar()) {
2156           int opcode = x->Opcode();
2157           if (opcode == Op_MemBarVolatile) {
2158             mbar = x->as_MemBar();
2159           }
2160           break;
2161         }
2162       }
2163       if (mm2 == NULL) {
2164         // this is our only option for a trailing membar
2165         return mbar;
2166       }
2167       // ensure the second mergemem feeds a volatile membar
2168       MemBarNode *mbar2 = NULL;
2169       for (DUIterator_Fast imax, i = mm2->fast_outs(imax); i < imax; i++) {
2170         x = mm2->fast_out(i);
2171         if (x->is_MemBar()) {
2172           int opcode = x->Opcode();
2173           if (opcode == Op_MemBarVolatile) {
2174             mbar2 = x->as_MemBar();
2175           }
2176           break;
2177         }
2178       }
2179       // if we have two merge mems we must have two volatile membars
2180       if (mbar == NULL || mbar2 == NULL) {
2181         return NULL;
2182       }
2183       // return the trailing membar
2184       if (is_card_mark_membar(mbar2)) {
2185         return mbar;
2186       } else {
2187         if (is_card_mark_membar(mbar)) {
2188           return mbar2;
2189         } else {
2190           return NULL;
2191         }
2192       }
2193     }
2194   }
2195 
2196   // trailing_to_leading
2197   //
2198   // graph traversal helper which detects the normal case Mem feed
2199   // from a trailing membar to a preceding release membar (optionally
2200   // its cpuorder child) i.e. it ensures that one or other of the
2201   // following Mem flow subgraphs is present.
2202   //
2203   //   MemBarRelease {leading}
2204   //   MemBarCPUOrder {optional}
2205   //    | Bot |  \      . . .
2206   //    |     |  StoreN/P[mo_release]  . . .
2207   //    |     |   /
2208   //    |    MergeMem
2209   //    |     |
2210   //   MemBarVolatile {not card mark}
2211   //
2212   //   MemBarRelease {leading}
2213   //   MemBarCPUOrder {optional}
2214   //      |       \      . . .
2215   //      |     CompareAndSwapX  . . .
2216   //               |
2217   //     . . .    SCMemProj
2218   //           \   |
2219   //      |    MergeMem
2220   //      |       |
2221   //    MemBarCPUOrder
2222   //    MemBarAcquire {trailing}
2223   //
2224   // this predicate checks for the same flow as the previous predicate
2225   // but starting from the bottom rather than the top.
2226   //
2227   // if the configuration is present returns the cpuorder member for
2228   // preference or when absent the release membar otherwise NULL.
2229   //
2230   // n.b. the input membar is expected to be a MemBarVolatile or
2231   // MemBarAcquire. if it is a MemBarVolatile it must *not* be a card
2232   // mark membar.
2233 
2234   MemBarNode *trailing_to_leading(const MemBarNode *barrier)
2235   {
2236     // input must be a volatile membar
2237     assert((barrier->Opcode() == Op_MemBarVolatile ||
2238             barrier->Opcode() == Op_MemBarAcquire),
2239            "expecting a volatile or an acquire membar");
2240 
2241     assert((barrier->Opcode() != Op_MemBarVolatile) ||
2242            !is_card_mark_membar(barrier),
2243            "not expecting a card mark membar");
2244     Node *x;
2245     bool is_cas = barrier->Opcode() == Op_MemBarAcquire;
2246 
2247     // if we have an acquire membar then it must be fed via a CPUOrder
2248     // membar
2249 
2250     if (is_cas) {
2251       // skip to parent barrier which must be a cpuorder
2252       x = parent_membar(barrier);
2253       if (x->Opcode() != Op_MemBarCPUOrder)
2254         return NULL;
2255     } else {
2256       // start from the supplied barrier
2257       x = (Node *)barrier;
2258     }
2259 
2260     // the Mem feed to the membar should be a merge
2261     x = x ->in(TypeFunc::Memory);
2262     if (!x->is_MergeMem())
2263       return NULL;
2264 
2265     MergeMemNode *mm = x->as_MergeMem();
2266 
2267     if (is_cas) {
2268       // the merge should be fed from the CAS via an SCMemProj node
2269       x = NULL;
2270       for (uint idx = 1; idx < mm->req(); idx++) {
2271         if (mm->in(idx)->Opcode() == Op_SCMemProj) {
2272           x = mm->in(idx);
2273           break;
2274         }
2275       }
2276       if (x == NULL) {
2277         return NULL;
2278       }
2279       // check for a CAS feeding this proj
2280       x = x->in(0);
2281       int opcode = x->Opcode();
2282       if (!is_CAS(opcode)) {
2283         return NULL;
2284       }
2285       // the CAS should get its mem feed from the leading membar
2286       x = x->in(MemNode::Memory);
2287     } else {
2288       // the merge should get its Bottom mem feed from the leading membar
2289       x = mm->in(Compile::AliasIdxBot);
2290     }
2291 
2292     // ensure this is a non control projection
2293     if (!x->is_Proj() || x->is_CFG()) {
2294       return NULL;
2295     }
2296     // if it is fed by a membar that's the one we want
2297     x = x->in(0);
2298 
2299     if (!x->is_MemBar()) {
2300       return NULL;
2301     }
2302 
2303     MemBarNode *leading = x->as_MemBar();
2304     // reject invalid candidates
2305     if (!leading_membar(leading)) {
2306       return NULL;
2307     }
2308 
2309     // ok, we have a leading membar, now for the sanity clauses
2310 
2311     // the leading membar must feed Mem to a releasing store or CAS
2312     ProjNode *mem = leading->proj_out(TypeFunc::Memory);
2313     StoreNode *st = NULL;
2314     LoadStoreNode *cas = NULL;
2315     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
2316       x = mem->fast_out(i);
2317       if (x->is_Store() && x->as_Store()->is_release() && x->Opcode() != Op_StoreCM) {
2318         // two stores or CASes is one too many
2319         if (st != NULL || cas != NULL) {
2320           return NULL;
2321         }
2322         st = x->as_Store();
2323       } else if (is_CAS(x->Opcode())) {
2324         if (st != NULL || cas != NULL) {
2325           return NULL;
2326         }
2327         cas = x->as_LoadStore();
2328       }
2329     }
2330 
2331     // we should not have both a store and a cas
2332     if (st == NULL & cas == NULL) {
2333       return NULL;
2334     }
2335 
2336     if (st == NULL) {
2337       // nothing more to check
2338       return leading;
2339     } else {
2340       // we should not have a store if we started from an acquire
2341       if (is_cas) {
2342         return NULL;
2343       }
2344 
2345       // the store should feed the merge we used to get here
2346       for (DUIterator_Fast imax, i = st->fast_outs(imax); i < imax; i++) {
2347         if (st->fast_out(i) == mm) {
2348           return leading;
2349         }
2350       }
2351     }
2352 
2353     return NULL;
2354   }
2355 
2356   // card_mark_to_leading
2357   //
2358   // graph traversal helper which traverses from a card mark volatile
2359   // membar to a leading membar i.e. it ensures that the following Mem
2360   // flow subgraph is present.
2361   //
2362   //    MemBarRelease {leading}
2363   //   {MemBarCPUOrder} {optional}
2364   //         |   . . .
2365   //     Bot |   /
2366   //      MergeMem
2367   //         |
2368   //     MemBarVolatile (card mark)
2369   //        |     \
2370   //      . . .   StoreCM
2371   //
2372   // if the configuration is present returns the cpuorder member for
2373   // preference or when absent the release membar otherwise NULL.
2374   //
2375   // n.b. the input membar is expected to be a MemBarVolatile amd must
2376   // be a card mark membar.
2377 
2378   MemBarNode *card_mark_to_leading(const MemBarNode *barrier)
2379   {
2380     // input must be a card mark volatile membar
2381     assert(is_card_mark_membar(barrier), "expecting a card mark membar");
2382 
2383     // the Mem feed to the membar should be a merge
2384     Node *x = barrier->in(TypeFunc::Memory);
2385     if (!x->is_MergeMem()) {
2386       return NULL;
2387     }
2388 
2389     MergeMemNode *mm = x->as_MergeMem();
2390 
2391     x = mm->in(Compile::AliasIdxBot);
2392 
2393     if (!x->is_MemBar()) {
2394       return NULL;
2395     }
2396 
2397     MemBarNode *leading = x->as_MemBar();
2398 
2399     if (leading_membar(leading)) {
2400       return leading;
2401     }
2402 
2403     return NULL;
2404   }
2405 
2406 bool unnecessary_acquire(const Node *barrier)
2407 {
2408   assert(barrier->is_MemBar(), "expecting a membar");
2409 
2410   if (UseBarriersForVolatile) {
2411     // we need to plant a dmb
2412     return false;
2413   }
2414 
2415   // a volatile read derived from bytecode (or also from an inlined
2416   // SHA field read via LibraryCallKit::load_field_from_object)
2417   // manifests as a LoadX[mo_acquire] followed by an acquire membar
2418   // with a bogus read dependency on it's preceding load. so in those
2419   // cases we will find the load node at the PARMS offset of the
2420   // acquire membar.  n.b. there may be an intervening DecodeN node.
2421   //
2422   // a volatile load derived from an inlined unsafe field access
2423   // manifests as a cpuorder membar with Ctl and Mem projections
2424   // feeding both an acquire membar and a LoadX[mo_acquire]. The
2425   // acquire then feeds another cpuorder membar via Ctl and Mem
2426   // projections. The load has no output dependency on these trailing
2427   // membars because subsequent nodes inserted into the graph take
2428   // their control feed from the final membar cpuorder meaning they
2429   // are all ordered after the load.
2430 
2431   Node *x = barrier->lookup(TypeFunc::Parms);
2432   if (x) {
2433     // we are starting from an acquire and it has a fake dependency
2434     //
2435     // need to check for
2436     //
2437     //   LoadX[mo_acquire]
2438     //   {  |1   }
2439     //   {DecodeN}
2440     //      |Parms
2441     //   MemBarAcquire*
2442     //
2443     // where * tags node we were passed
2444     // and |k means input k
2445     if (x->is_DecodeNarrowPtr()) {
2446       x = x->in(1);
2447     }
2448 
2449     return (x->is_Load() && x->as_Load()->is_acquire());
2450   }
2451 
2452   // now check for an unsafe volatile get
2453 
2454   // need to check for
2455   //
2456   //   MemBarCPUOrder
2457   //        ||       \\
2458   //   MemBarAcquire* LoadX[mo_acquire]
2459   //        ||
2460   //   MemBarCPUOrder
2461   //
2462   // where * tags node we were passed
2463   // and || or \\ are Ctl+Mem feeds via intermediate Proj Nodes
2464 
2465   // check for a parent MemBarCPUOrder
2466   ProjNode *ctl;
2467   ProjNode *mem;
2468   MemBarNode *parent = parent_membar(barrier);
2469   if (!parent || parent->Opcode() != Op_MemBarCPUOrder)
2470     return false;
2471   ctl = parent->proj_out(TypeFunc::Control);
2472   mem = parent->proj_out(TypeFunc::Memory);
2473   if (!ctl || !mem) {
2474     return false;
2475   }
2476   // ensure the proj nodes both feed a LoadX[mo_acquire]
2477   LoadNode *ld = NULL;
2478   for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
2479     x = ctl->fast_out(i);
2480     // if we see a load we keep hold of it and stop searching
2481     if (x->is_Load()) {
2482       ld = x->as_Load();
2483       break;
2484     }
2485   }
2486   // it must be an acquiring load
2487   if (ld && ld->is_acquire()) {
2488 
2489     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
2490       x = mem->fast_out(i);
2491       // if we see the same load we drop it and stop searching
2492       if (x == ld) {
2493         ld = NULL;
2494         break;
2495       }
2496     }
2497     // we must have dropped the load
2498     if (ld == NULL) {
2499       // check for a child cpuorder membar
2500       MemBarNode *child  = child_membar(barrier->as_MemBar());
2501       if (child && child->Opcode() == Op_MemBarCPUOrder)
2502         return true;
2503     }
2504   }
2505 
2506   // final option for unnecessary mebar is that it is a trailing node
2507   // belonging to a CAS
2508 
2509   MemBarNode *leading = trailing_to_leading(barrier->as_MemBar());
2510 
2511   return leading != NULL;
2512 }
2513 
2514 bool needs_acquiring_load(const Node *n)
2515 {
2516   assert(n->is_Load(), "expecting a load");
2517   if (UseBarriersForVolatile) {
2518     // we use a normal load and a dmb
2519     return false;
2520   }
2521 
2522   LoadNode *ld = n->as_Load();
2523 
2524   if (!ld->is_acquire()) {
2525     return false;
2526   }
2527 
2528   // check if this load is feeding an acquire membar
2529   //
2530   //   LoadX[mo_acquire]
2531   //   {  |1   }
2532   //   {DecodeN}
2533   //      |Parms
2534   //   MemBarAcquire*
2535   //
2536   // where * tags node we were passed
2537   // and |k means input k
2538 
2539   Node *start = ld;
2540   Node *mbacq = NULL;
2541 
2542   // if we hit a DecodeNarrowPtr we reset the start node and restart
2543   // the search through the outputs
2544  restart:
2545 
2546   for (DUIterator_Fast imax, i = start->fast_outs(imax); i < imax; i++) {
2547     Node *x = start->fast_out(i);
2548     if (x->is_MemBar() && x->Opcode() == Op_MemBarAcquire) {
2549       mbacq = x;
2550     } else if (!mbacq &&
2551                (x->is_DecodeNarrowPtr() ||
2552                 (x->is_Mach() && x->Opcode() == Op_DecodeN))) {
2553       start = x;
2554       goto restart;
2555     }
2556   }
2557 
2558   if (mbacq) {
2559     return true;
2560   }
2561 
2562   // now check for an unsafe volatile get
2563 
2564   // check if Ctl and Proj feed comes from a MemBarCPUOrder
2565   //
2566   //     MemBarCPUOrder
2567   //        ||       \\
2568   //   MemBarAcquire* LoadX[mo_acquire]
2569   //        ||
2570   //   MemBarCPUOrder
2571 
2572   MemBarNode *membar;
2573 
2574   membar = parent_membar(ld);
2575 
2576   if (!membar || !membar->Opcode() == Op_MemBarCPUOrder) {
2577     return false;
2578   }
2579 
2580   // ensure that there is a CPUOrder->Acquire->CPUOrder membar chain
2581 
2582   membar = child_membar(membar);
2583 
2584   if (!membar || !membar->Opcode() == Op_MemBarAcquire) {
2585     return false;
2586   }
2587 
2588   membar = child_membar(membar);
2589 
2590   if (!membar || !membar->Opcode() == Op_MemBarCPUOrder) {
2591     return false;
2592   }
2593 
2594   return true;
2595 }
2596 
2597 bool unnecessary_release(const Node *n)
2598 {
2599   assert((n->is_MemBar() &&
2600           n->Opcode() == Op_MemBarRelease),
2601          "expecting a release membar");
2602 
2603   if (UseBarriersForVolatile) {
2604     // we need to plant a dmb
2605     return false;
2606   }
2607 
2608   // if there is a dependent CPUOrder barrier then use that as the
2609   // leading
2610 
2611   MemBarNode *barrier = n->as_MemBar();
2612   // check for an intervening cpuorder membar
2613   MemBarNode *b = child_membar(barrier);
2614   if (b && b->Opcode() == Op_MemBarCPUOrder) {
2615     // ok, so start the check from the dependent cpuorder barrier
2616     barrier = b;
2617   }
2618 
2619   // must start with a normal feed
2620   MemBarNode *trailing = leading_to_trailing(barrier);
2621 
2622   return (trailing != NULL);
2623 }
2624 
2625 bool unnecessary_volatile(const Node *n)
2626 {
2627   // assert n->is_MemBar();
2628   if (UseBarriersForVolatile) {
2629     // we need to plant a dmb
2630     return false;
2631   }
2632 
2633   MemBarNode *mbvol = n->as_MemBar();
2634 
2635   // first we check if this is part of a card mark. if so then we have
2636   // to generate a StoreLoad barrier
2637 
2638   if (is_card_mark_membar(mbvol)) {
2639       return false;
2640   }
2641 
2642   // ok, if it's not a card mark then we still need to check if it is
2643   // a trailing membar of a volatile put graph.
2644 
2645   return (trailing_to_leading(mbvol) != NULL);
2646 }
2647 
2648 // predicates controlling emit of str<x>/stlr<x> and associated dmbs
2649 
2650 bool needs_releasing_store(const Node *n)
2651 {
2652   // assert n->is_Store();
2653   if (UseBarriersForVolatile) {
2654     // we use a normal store and dmb combination
2655     return false;
2656   }
2657 
2658   StoreNode *st = n->as_Store();
2659 
2660   // the store must be marked as releasing
2661   if (!st->is_release()) {
2662     return false;
2663   }
2664 
2665   // the store must be fed by a membar
2666 
2667   Node *x = st->lookup(StoreNode::Memory);
2668 
2669   if (! x || !x->is_Proj()) {
2670     return false;
2671   }
2672 
2673   ProjNode *proj = x->as_Proj();
2674 
2675   x = proj->lookup(0);
2676 
2677   if (!x || !x->is_MemBar()) {
2678     return false;
2679   }
2680 
2681   MemBarNode *barrier = x->as_MemBar();
2682 
2683   // if the barrier is a release membar or a cpuorder mmebar fed by a
2684   // release membar then we need to check whether that forms part of a
2685   // volatile put graph.
2686 
2687   // reject invalid candidates
2688   if (!leading_membar(barrier)) {
2689     return false;
2690   }
2691 
2692   // does this lead a normal subgraph?
2693   MemBarNode *trailing = leading_to_trailing(barrier);
2694 
2695   return (trailing != NULL);
2696 }
2697 
2698 // predicate controlling translation of CAS
2699 //
2700 // returns true if CAS needs to use an acquiring load otherwise false
2701 
2702 bool needs_acquiring_load_exclusive(const Node *n)
2703 {
2704   assert(is_CAS(n->Opcode()), "expecting a compare and swap");
2705   if (UseBarriersForVolatile) {
2706     return false;
2707   }
2708 
2709   // CAS nodes only ought to turn up in inlined unsafe CAS operations
2710 #ifdef ASSERT
2711   LoadStoreNode *st = n->as_LoadStore();
2712 
2713   // the store must be fed by a membar
2714 
2715   Node *x = st->lookup(StoreNode::Memory);
2716 
2717   assert (x && x->is_Proj(), "CAS not fed by memory proj!");
2718 
2719   ProjNode *proj = x->as_Proj();
2720 
2721   x = proj->lookup(0);
2722 
2723   assert (x && x->is_MemBar(), "CAS not fed by membar!");
2724 
2725   MemBarNode *barrier = x->as_MemBar();
2726 
2727   // the barrier must be a cpuorder mmebar fed by a release membar
2728 
2729   assert(barrier->Opcode() == Op_MemBarCPUOrder,
2730          "CAS not fed by cpuorder membar!");
2731 
2732   MemBarNode *b = parent_membar(barrier);
2733   assert ((b != NULL && b->Opcode() == Op_MemBarRelease),
2734           "CAS not fed by cpuorder+release membar pair!");
2735 
2736   // does this lead a normal subgraph?
2737   MemBarNode *mbar = leading_to_trailing(barrier);
2738 
2739   assert(mbar != NULL, "CAS not embedded in normal graph!");
2740 
2741   assert(mbar->Opcode() == Op_MemBarAcquire, "trailing membar should be an acquire");
2742 #endif // ASSERT
2743   // so we can just return true here
2744   return true;
2745 }
2746 
2747 // predicate controlling translation of StoreCM
2748 //
2749 // returns true if a StoreStore must precede the card write otherwise
2750 // false
2751 
2752 bool unnecessary_storestore(const Node *storecm)
2753 {
2754   assert(storecm->Opcode()  == Op_StoreCM, "expecting a StoreCM");
2755 
2756   // we only ever need to generate a dmb ishst between an object put
2757   // and the associated card mark when we are using CMS without
2758   // conditional card marking. Any other occurence will happen when
2759   // performing a card mark using CMS with conditional card marking or
2760   // G1. In those cases the preceding MamBarVolatile will be
2761   // translated to a dmb ish which guarantes visibility of the
2762   // preceding StoreN/P before this StoreCM
2763 
2764   if (!UseConcMarkSweepGC || UseCondCardMark) {
2765     return true;
2766   }
2767 
2768   // if we are implementing volatile puts using barriers then we must
2769   // insert the dmb ishst
2770 
2771   if (UseBarriersForVolatile) {
2772     return false;
2773   }
2774 
2775   // we must be using CMS with conditional card marking so we ahve to
2776   // generate the StoreStore
2777 
2778   return false;
2779 }
2780 
2781 
2782 #define __ _masm.
2783 
2784 // advance declarations for helper functions to convert register
2785 // indices to register objects
2786 
2787 // the ad file has to provide implementations of certain methods
2788 // expected by the generic code
2789 //
2790 // REQUIRED FUNCTIONALITY
2791 
2792 //=============================================================================
2793 
2794 // !!!!! Special hack to get all types of calls to specify the byte offset
2795 //       from the start of the call to the point where the return address
2796 //       will point.
2797 
2798 int MachCallStaticJavaNode::ret_addr_offset()
2799 {
2800   // call should be a simple bl
2801   int off = 4;
2802   return off;
2803 }
2804 
2805 int MachCallDynamicJavaNode::ret_addr_offset()
2806 {
2807   return 16; // movz, movk, movk, bl
2808 }
2809 
2810 int MachCallRuntimeNode::ret_addr_offset() {
2811   // for generated stubs the call will be
2812   //   far_call(addr)
2813   // for real runtime callouts it will be six instructions
2814   // see aarch64_enc_java_to_runtime
2815   //   adr(rscratch2, retaddr)
2816   //   lea(rscratch1, RuntimeAddress(addr)
2817   //   stp(zr, rscratch2, Address(__ pre(sp, -2 * wordSize)))
2818   //   blrt rscratch1
2819   CodeBlob *cb = CodeCache::find_blob(_entry_point);
2820   if (cb) {
2821     return MacroAssembler::far_branch_size();
2822   } else {
2823     return 6 * NativeInstruction::instruction_size;
2824   }
2825 }
2826 
2827 // Indicate if the safepoint node needs the polling page as an input
2828 
2829 // the shared code plants the oop data at the start of the generated
2830 // code for the safepoint node and that needs ot be at the load
2831 // instruction itself. so we cannot plant a mov of the safepoint poll
2832 // address followed by a load. setting this to true means the mov is
2833 // scheduled as a prior instruction. that's better for scheduling
2834 // anyway.
2835 
2836 bool SafePointNode::needs_polling_address_input()
2837 {
2838   return true;
2839 }
2840 
2841 //=============================================================================
2842 
2843 #ifndef PRODUCT
2844 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
2845   st->print("BREAKPOINT");
2846 }
2847 #endif
2848 
2849 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
2850   MacroAssembler _masm(&cbuf);
2851   __ brk(0);
2852 }
2853 
2854 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
2855   return MachNode::size(ra_);
2856 }
2857 
2858 //=============================================================================
2859 
2860 #ifndef PRODUCT
2861   void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const {
2862     st->print("nop \t# %d bytes pad for loops and calls", _count);
2863   }
2864 #endif
2865 
2866   void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc*) const {
2867     MacroAssembler _masm(&cbuf);
2868     for (int i = 0; i < _count; i++) {
2869       __ nop();
2870     }
2871   }
2872 
2873   uint MachNopNode::size(PhaseRegAlloc*) const {
2874     return _count * NativeInstruction::instruction_size;
2875   }
2876 
2877 //=============================================================================
2878 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
2879 
2880 int Compile::ConstantTable::calculate_table_base_offset() const {
2881   return 0;  // absolute addressing, no offset
2882 }
2883 
2884 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
2885 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
2886   ShouldNotReachHere();
2887 }
2888 
2889 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
2890   // Empty encoding
2891 }
2892 
2893 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
2894   return 0;
2895 }
2896 
2897 #ifndef PRODUCT
2898 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
2899   st->print("-- \t// MachConstantBaseNode (empty encoding)");
2900 }
2901 #endif
2902 
2903 #ifndef PRODUCT
2904 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
2905   Compile* C = ra_->C;
2906 
2907   int framesize = C->frame_slots() << LogBytesPerInt;
2908 
2909   if (C->need_stack_bang(framesize))
2910     st->print("# stack bang size=%d\n\t", framesize);
2911 
2912   if (framesize < ((1 << 9) + 2 * wordSize)) {
2913     st->print("sub  sp, sp, #%d\n\t", framesize);
2914     st->print("stp  rfp, lr, [sp, #%d]", framesize - 2 * wordSize);
2915     if (PreserveFramePointer) st->print("\n\tadd  rfp, sp, #%d", framesize - 2 * wordSize);
2916   } else {
2917     st->print("stp  lr, rfp, [sp, #%d]!\n\t", -(2 * wordSize));
2918     if (PreserveFramePointer) st->print("mov  rfp, sp\n\t");
2919     st->print("mov  rscratch1, #%d\n\t", framesize - 2 * wordSize);
2920     st->print("sub  sp, sp, rscratch1");
2921   }
2922 }
2923 #endif
2924 
2925 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
2926   Compile* C = ra_->C;
2927   MacroAssembler _masm(&cbuf);
2928 
2929   // n.b. frame size includes space for return pc and rfp
2930   const long framesize = C->frame_size_in_bytes();
2931   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
2932 
2933   // insert a nop at the start of the prolog so we can patch in a
2934   // branch if we need to invalidate the method later
2935   __ nop();
2936 
2937   int bangsize = C->bang_size_in_bytes();
2938   if (C->need_stack_bang(bangsize) && UseStackBanging)
2939     __ generate_stack_overflow_check(bangsize);
2940 
2941   __ build_frame(framesize);
2942 
2943   if (NotifySimulator) {
2944     __ notify(Assembler::method_entry);
2945   }
2946 
2947   if (VerifyStackAtCalls) {
2948     Unimplemented();
2949   }
2950 
2951   C->set_frame_complete(cbuf.insts_size());
2952 
2953   if (C->has_mach_constant_base_node()) {
2954     // NOTE: We set the table base offset here because users might be
2955     // emitted before MachConstantBaseNode.
2956     Compile::ConstantTable& constant_table = C->constant_table();
2957     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
2958   }
2959 }
2960 
2961 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
2962 {
2963   return MachNode::size(ra_); // too many variables; just compute it
2964                               // the hard way
2965 }
2966 
2967 int MachPrologNode::reloc() const
2968 {
2969   return 0;
2970 }
2971 
2972 //=============================================================================
2973 
2974 #ifndef PRODUCT
2975 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
2976   Compile* C = ra_->C;
2977   int framesize = C->frame_slots() << LogBytesPerInt;
2978 
2979   st->print("# pop frame %d\n\t",framesize);
2980 
2981   if (framesize == 0) {
2982     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
2983   } else if (framesize < ((1 << 9) + 2 * wordSize)) {
2984     st->print("ldp  lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize);
2985     st->print("add  sp, sp, #%d\n\t", framesize);
2986   } else {
2987     st->print("mov  rscratch1, #%d\n\t", framesize - 2 * wordSize);
2988     st->print("add  sp, sp, rscratch1\n\t");
2989     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
2990   }
2991 
2992   if (do_polling() && C->is_method_compilation()) {
2993     st->print("# touch polling page\n\t");
2994     st->print("mov  rscratch1, #0x%lx\n\t", p2i(os::get_polling_page()));
2995     st->print("ldr zr, [rscratch1]");
2996   }
2997 }
2998 #endif
2999 
3000 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
3001   Compile* C = ra_->C;
3002   MacroAssembler _masm(&cbuf);
3003   int framesize = C->frame_slots() << LogBytesPerInt;
3004 
3005   __ remove_frame(framesize);
3006 
3007   if (NotifySimulator) {
3008     __ notify(Assembler::method_reentry);
3009   }
3010 
3011   if (do_polling() && C->is_method_compilation()) {
3012     __ read_polling_page(rscratch1, os::get_polling_page(), relocInfo::poll_return_type);
3013   }
3014 }
3015 
3016 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
3017   // Variable size. Determine dynamically.
3018   return MachNode::size(ra_);
3019 }
3020 
3021 int MachEpilogNode::reloc() const {
3022   // Return number of relocatable values contained in this instruction.
3023   return 1; // 1 for polling page.
3024 }
3025 
3026 const Pipeline * MachEpilogNode::pipeline() const {
3027   return MachNode::pipeline_class();
3028 }
3029 
3030 // This method seems to be obsolete. It is declared in machnode.hpp
3031 // and defined in all *.ad files, but it is never called. Should we
3032 // get rid of it?
3033 int MachEpilogNode::safepoint_offset() const {
3034   assert(do_polling(), "no return for this epilog node");
3035   return 4;
3036 }
3037 
3038 //=============================================================================
3039 
3040 // Figure out which register class each belongs in: rc_int, rc_float or
3041 // rc_stack.
3042 enum RC { rc_bad, rc_int, rc_float, rc_stack };
3043 
3044 static enum RC rc_class(OptoReg::Name reg) {
3045 
3046   if (reg == OptoReg::Bad) {
3047     return rc_bad;
3048   }
3049 
3050   // we have 30 int registers * 2 halves
3051   // (rscratch1 and rscratch2 are omitted)
3052 
3053   if (reg < 60) {
3054     return rc_int;
3055   }
3056 
3057   // we have 32 float register * 2 halves
3058   if (reg < 60 + 128) {
3059     return rc_float;
3060   }
3061 
3062   // Between float regs & stack is the flags regs.
3063   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
3064 
3065   return rc_stack;
3066 }
3067 
3068 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
3069   Compile* C = ra_->C;
3070 
3071   // Get registers to move.
3072   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
3073   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
3074   OptoReg::Name dst_hi = ra_->get_reg_second(this);
3075   OptoReg::Name dst_lo = ra_->get_reg_first(this);
3076 
3077   enum RC src_hi_rc = rc_class(src_hi);
3078   enum RC src_lo_rc = rc_class(src_lo);
3079   enum RC dst_hi_rc = rc_class(dst_hi);
3080   enum RC dst_lo_rc = rc_class(dst_lo);
3081 
3082   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
3083 
3084   if (src_hi != OptoReg::Bad) {
3085     assert((src_lo&1)==0 && src_lo+1==src_hi &&
3086            (dst_lo&1)==0 && dst_lo+1==dst_hi,
3087            "expected aligned-adjacent pairs");
3088   }
3089 
3090   if (src_lo == dst_lo && src_hi == dst_hi) {
3091     return 0;            // Self copy, no move.
3092   }
3093 
3094   bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi &&
3095               (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi;
3096   int src_offset = ra_->reg2offset(src_lo);
3097   int dst_offset = ra_->reg2offset(dst_lo);
3098 
3099   if (bottom_type()->isa_vect() != NULL) {
3100     uint ireg = ideal_reg();
3101     assert(ireg == Op_VecD || ireg == Op_VecX, "must be 64 bit or 128 bit vector");
3102     if (cbuf) {
3103       MacroAssembler _masm(cbuf);
3104       assert((src_lo_rc != rc_int && dst_lo_rc != rc_int), "sanity");
3105       if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
3106         // stack->stack
3107         assert((src_offset & 7) == 0 && (dst_offset & 7) == 0, "unaligned stack offset");
3108         if (ireg == Op_VecD) {
3109           __ unspill(rscratch1, true, src_offset);
3110           __ spill(rscratch1, true, dst_offset);
3111         } else {
3112           __ spill_copy128(src_offset, dst_offset);
3113         }
3114       } else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
3115         __ mov(as_FloatRegister(Matcher::_regEncode[dst_lo]),
3116                ireg == Op_VecD ? __ T8B : __ T16B,
3117                as_FloatRegister(Matcher::_regEncode[src_lo]));
3118       } else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
3119         __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
3120                        ireg == Op_VecD ? __ D : __ Q,
3121                        ra_->reg2offset(dst_lo));
3122       } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) {
3123         __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
3124                        ireg == Op_VecD ? __ D : __ Q,
3125                        ra_->reg2offset(src_lo));
3126       } else {
3127         ShouldNotReachHere();
3128       }
3129     }
3130   } else if (cbuf) {
3131     MacroAssembler _masm(cbuf);
3132     switch (src_lo_rc) {
3133     case rc_int:
3134       if (dst_lo_rc == rc_int) {  // gpr --> gpr copy
3135         if (is64) {
3136             __ mov(as_Register(Matcher::_regEncode[dst_lo]),
3137                    as_Register(Matcher::_regEncode[src_lo]));
3138         } else {
3139             MacroAssembler _masm(cbuf);
3140             __ movw(as_Register(Matcher::_regEncode[dst_lo]),
3141                     as_Register(Matcher::_regEncode[src_lo]));
3142         }
3143       } else if (dst_lo_rc == rc_float) { // gpr --> fpr copy
3144         if (is64) {
3145             __ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
3146                      as_Register(Matcher::_regEncode[src_lo]));
3147         } else {
3148             __ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
3149                      as_Register(Matcher::_regEncode[src_lo]));
3150         }
3151       } else {                    // gpr --> stack spill
3152         assert(dst_lo_rc == rc_stack, "spill to bad register class");
3153         __ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset);
3154       }
3155       break;
3156     case rc_float:
3157       if (dst_lo_rc == rc_int) {  // fpr --> gpr copy
3158         if (is64) {
3159             __ fmovd(as_Register(Matcher::_regEncode[dst_lo]),
3160                      as_FloatRegister(Matcher::_regEncode[src_lo]));
3161         } else {
3162             __ fmovs(as_Register(Matcher::_regEncode[dst_lo]),
3163                      as_FloatRegister(Matcher::_regEncode[src_lo]));
3164         }
3165       } else if (dst_lo_rc == rc_float) { // fpr --> fpr copy
3166           if (cbuf) {
3167             __ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
3168                      as_FloatRegister(Matcher::_regEncode[src_lo]));
3169         } else {
3170             __ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
3171                      as_FloatRegister(Matcher::_regEncode[src_lo]));
3172         }
3173       } else {                    // fpr --> stack spill
3174         assert(dst_lo_rc == rc_stack, "spill to bad register class");
3175         __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
3176                  is64 ? __ D : __ S, dst_offset);
3177       }
3178       break;
3179     case rc_stack:
3180       if (dst_lo_rc == rc_int) {  // stack --> gpr load
3181         __ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset);
3182       } else if (dst_lo_rc == rc_float) { // stack --> fpr load
3183         __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
3184                    is64 ? __ D : __ S, src_offset);
3185       } else {                    // stack --> stack copy
3186         assert(dst_lo_rc == rc_stack, "spill to bad register class");
3187         __ unspill(rscratch1, is64, src_offset);
3188         __ spill(rscratch1, is64, dst_offset);
3189       }
3190       break;
3191     default:
3192       assert(false, "bad rc_class for spill");
3193       ShouldNotReachHere();
3194     }
3195   }
3196 
3197   if (st) {
3198     st->print("spill ");
3199     if (src_lo_rc == rc_stack) {
3200       st->print("[sp, #%d] -> ", ra_->reg2offset(src_lo));
3201     } else {
3202       st->print("%s -> ", Matcher::regName[src_lo]);
3203     }
3204     if (dst_lo_rc == rc_stack) {
3205       st->print("[sp, #%d]", ra_->reg2offset(dst_lo));
3206     } else {
3207       st->print("%s", Matcher::regName[dst_lo]);
3208     }
3209     if (bottom_type()->isa_vect() != NULL) {
3210       st->print("\t# vector spill size = %d", ideal_reg()==Op_VecD ? 64:128);
3211     } else {
3212       st->print("\t# spill size = %d", is64 ? 64:32);
3213     }
3214   }
3215 
3216   return 0;
3217 
3218 }
3219 
3220 #ifndef PRODUCT
3221 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
3222   if (!ra_)
3223     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
3224   else
3225     implementation(NULL, ra_, false, st);
3226 }
3227 #endif
3228 
3229 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
3230   implementation(&cbuf, ra_, false, NULL);
3231 }
3232 
3233 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
3234   return MachNode::size(ra_);
3235 }
3236 
3237 //=============================================================================
3238 
3239 #ifndef PRODUCT
3240 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
3241   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
3242   int reg = ra_->get_reg_first(this);
3243   st->print("add %s, rsp, #%d]\t# box lock",
3244             Matcher::regName[reg], offset);
3245 }
3246 #endif
3247 
3248 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
3249   MacroAssembler _masm(&cbuf);
3250 
3251   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
3252   int reg    = ra_->get_encode(this);
3253 
3254   if (Assembler::operand_valid_for_add_sub_immediate(offset)) {
3255     __ add(as_Register(reg), sp, offset);
3256   } else {
3257     ShouldNotReachHere();
3258   }
3259 }
3260 
3261 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
3262   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
3263   return 4;
3264 }
3265 
3266 //=============================================================================
3267 
3268 #ifndef PRODUCT
3269 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
3270 {
3271   st->print_cr("# MachUEPNode");
3272   if (UseCompressedClassPointers) {
3273     st->print_cr("\tldrw rscratch1, j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
3274     if (Universe::narrow_klass_shift() != 0) {
3275       st->print_cr("\tdecode_klass_not_null rscratch1, rscratch1");
3276     }
3277   } else {
3278    st->print_cr("\tldr rscratch1, j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
3279   }
3280   st->print_cr("\tcmp r0, rscratch1\t # Inline cache check");
3281   st->print_cr("\tbne, SharedRuntime::_ic_miss_stub");
3282 }
3283 #endif
3284 
3285 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
3286 {
3287   // This is the unverified entry point.
3288   MacroAssembler _masm(&cbuf);
3289 
3290   __ cmp_klass(j_rarg0, rscratch2, rscratch1);
3291   Label skip;
3292   // TODO
3293   // can we avoid this skip and still use a reloc?
3294   __ br(Assembler::EQ, skip);
3295   __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
3296   __ bind(skip);
3297 }
3298 
3299 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
3300 {
3301   return MachNode::size(ra_);
3302 }
3303 
3304 // REQUIRED EMIT CODE
3305 
3306 //=============================================================================
3307 
3308 // Emit exception handler code.
3309 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf)
3310 {
3311   // mov rscratch1 #exception_blob_entry_point
3312   // br rscratch1
3313   // Note that the code buffer's insts_mark is always relative to insts.
3314   // That's why we must use the macroassembler to generate a handler.
3315   MacroAssembler _masm(&cbuf);
3316   address base = __ start_a_stub(size_exception_handler());
3317   if (base == NULL) {
3318     ciEnv::current()->record_failure("CodeCache is full");
3319     return 0;  // CodeBuffer::expand failed
3320   }
3321   int offset = __ offset();
3322   __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
3323   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
3324   __ end_a_stub();
3325   return offset;
3326 }
3327 
3328 // Emit deopt handler code.
3329 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf)
3330 {
3331   // Note that the code buffer's insts_mark is always relative to insts.
3332   // That's why we must use the macroassembler to generate a handler.
3333   MacroAssembler _masm(&cbuf);
3334   address base = __ start_a_stub(size_deopt_handler());
3335   if (base == NULL) {
3336     ciEnv::current()->record_failure("CodeCache is full");
3337     return 0;  // CodeBuffer::expand failed
3338   }
3339   int offset = __ offset();
3340 
3341   __ adr(lr, __ pc());
3342   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
3343 
3344   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
3345   __ end_a_stub();
3346   return offset;
3347 }
3348 
3349 // REQUIRED MATCHER CODE
3350 
3351 //=============================================================================
3352 
3353 const bool Matcher::match_rule_supported(int opcode) {
3354 
3355   switch (opcode) {
3356   default:
3357     break;
3358   }
3359 
3360   if (!has_match_rule(opcode)) {
3361     return false;
3362   }
3363 
3364   return true;  // Per default match rules are supported.
3365 }
3366 
3367 const bool Matcher::match_rule_supported_vector(int opcode, int vlen) {
3368 
3369   // TODO
3370   // identify extra cases that we might want to provide match rules for
3371   // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
3372   bool ret_value = match_rule_supported(opcode);
3373   // Add rules here.
3374 
3375   return ret_value;  // Per default match rules are supported.
3376 }
3377 
3378 const bool Matcher::has_predicated_vectors(void) {
3379   return false;
3380 }
3381 
3382 const int Matcher::float_pressure(int default_pressure_threshold) {
3383   return default_pressure_threshold;
3384 }
3385 
3386 int Matcher::regnum_to_fpu_offset(int regnum)
3387 {
3388   Unimplemented();
3389   return 0;
3390 }
3391 
3392 // Is this branch offset short enough that a short branch can be used?
3393 //
3394 // NOTE: If the platform does not provide any short branch variants, then
3395 //       this method should return false for offset 0.
3396 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
3397   // The passed offset is relative to address of the branch.
3398 
3399   return (-32768 <= offset && offset < 32768);
3400 }
3401 
3402 const bool Matcher::isSimpleConstant64(jlong value) {
3403   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
3404   // Probably always true, even if a temp register is required.
3405   return true;
3406 }
3407 
3408 // true just means we have fast l2f conversion
3409 const bool Matcher::convL2FSupported(void) {
3410   return true;
3411 }
3412 
3413 // Vector width in bytes.
3414 const int Matcher::vector_width_in_bytes(BasicType bt) {
3415   int size = MIN2(16,(int)MaxVectorSize);
3416   // Minimum 2 values in vector
3417   if (size < 2*type2aelembytes(bt)) size = 0;
3418   // But never < 4
3419   if (size < 4) size = 0;
3420   return size;
3421 }
3422 
3423 // Limits on vector size (number of elements) loaded into vector.
3424 const int Matcher::max_vector_size(const BasicType bt) {
3425   return vector_width_in_bytes(bt)/type2aelembytes(bt);
3426 }
3427 const int Matcher::min_vector_size(const BasicType bt) {
3428 //  For the moment limit the vector size to 8 bytes
3429     int size = 8 / type2aelembytes(bt);
3430     if (size < 2) size = 2;
3431     return size;
3432 }
3433 
3434 // Vector ideal reg.
3435 const int Matcher::vector_ideal_reg(int len) {
3436   switch(len) {
3437     case  8: return Op_VecD;
3438     case 16: return Op_VecX;
3439   }
3440   ShouldNotReachHere();
3441   return 0;
3442 }
3443 
3444 const int Matcher::vector_shift_count_ideal_reg(int size) {
3445   return Op_VecX;
3446 }
3447 
3448 // AES support not yet implemented
3449 const bool Matcher::pass_original_key_for_aes() {
3450   return false;
3451 }
3452 
3453 // x86 supports misaligned vectors store/load.
3454 const bool Matcher::misaligned_vectors_ok() {
3455   return !AlignVector; // can be changed by flag
3456 }
3457 
3458 // false => size gets scaled to BytesPerLong, ok.
3459 const bool Matcher::init_array_count_is_in_bytes = false;
3460 
3461 // Use conditional move (CMOVL)
3462 const int Matcher::long_cmove_cost() {
3463   // long cmoves are no more expensive than int cmoves
3464   return 0;
3465 }
3466 
3467 const int Matcher::float_cmove_cost() {
3468   // float cmoves are no more expensive than int cmoves
3469   return 0;
3470 }
3471 
3472 // Does the CPU require late expand (see block.cpp for description of late expand)?
3473 const bool Matcher::require_postalloc_expand = false;
3474 
3475 // Do we need to mask the count passed to shift instructions or does
3476 // the cpu only look at the lower 5/6 bits anyway?
3477 const bool Matcher::need_masked_shift_count = false;
3478 
3479 // This affects two different things:
3480 //  - how Decode nodes are matched
3481 //  - how ImplicitNullCheck opportunities are recognized
3482 // If true, the matcher will try to remove all Decodes and match them
3483 // (as operands) into nodes. NullChecks are not prepared to deal with
3484 // Decodes by final_graph_reshaping().
3485 // If false, final_graph_reshaping() forces the decode behind the Cmp
3486 // for a NullCheck. The matcher matches the Decode node into a register.
3487 // Implicit_null_check optimization moves the Decode along with the
3488 // memory operation back up before the NullCheck.
3489 bool Matcher::narrow_oop_use_complex_address() {
3490   return Universe::narrow_oop_shift() == 0;
3491 }
3492 
3493 bool Matcher::narrow_klass_use_complex_address() {
3494 // TODO
3495 // decide whether we need to set this to true
3496   return false;
3497 }
3498 
3499 bool Matcher::const_oop_prefer_decode() {
3500   // Prefer ConN+DecodeN over ConP in simple compressed oops mode.
3501   return Universe::narrow_oop_base() == NULL;
3502 }
3503 
3504 bool Matcher::const_klass_prefer_decode() {
3505   // Prefer ConNKlass+DecodeNKlass over ConP in simple compressed klass mode.
3506   return Universe::narrow_klass_base() == NULL;
3507 }
3508 
3509 // Is it better to copy float constants, or load them directly from
3510 // memory?  Intel can load a float constant from a direct address,
3511 // requiring no extra registers.  Most RISCs will have to materialize
3512 // an address into a register first, so they would do better to copy
3513 // the constant from stack.
3514 const bool Matcher::rematerialize_float_constants = false;
3515 
3516 // If CPU can load and store mis-aligned doubles directly then no
3517 // fixup is needed.  Else we split the double into 2 integer pieces
3518 // and move it piece-by-piece.  Only happens when passing doubles into
3519 // C code as the Java calling convention forces doubles to be aligned.
3520 const bool Matcher::misaligned_doubles_ok = true;
3521 
3522 // No-op on amd64
3523 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
3524   Unimplemented();
3525 }
3526 
3527 // Advertise here if the CPU requires explicit rounding operations to
3528 // implement the UseStrictFP mode.
3529 const bool Matcher::strict_fp_requires_explicit_rounding = false;
3530 
3531 // Are floats converted to double when stored to stack during
3532 // deoptimization?
3533 bool Matcher::float_in_double() { return true; }
3534 
3535 // Do ints take an entire long register or just half?
3536 // The relevant question is how the int is callee-saved:
3537 // the whole long is written but de-opt'ing will have to extract
3538 // the relevant 32 bits.
3539 const bool Matcher::int_in_long = true;
3540 
3541 // Return whether or not this register is ever used as an argument.
3542 // This function is used on startup to build the trampoline stubs in
3543 // generateOptoStub.  Registers not mentioned will be killed by the VM
3544 // call in the trampoline, and arguments in those registers not be
3545 // available to the callee.
3546 bool Matcher::can_be_java_arg(int reg)
3547 {
3548   return
3549     reg ==  R0_num || reg == R0_H_num ||
3550     reg ==  R1_num || reg == R1_H_num ||
3551     reg ==  R2_num || reg == R2_H_num ||
3552     reg ==  R3_num || reg == R3_H_num ||
3553     reg ==  R4_num || reg == R4_H_num ||
3554     reg ==  R5_num || reg == R5_H_num ||
3555     reg ==  R6_num || reg == R6_H_num ||
3556     reg ==  R7_num || reg == R7_H_num ||
3557     reg ==  V0_num || reg == V0_H_num ||
3558     reg ==  V1_num || reg == V1_H_num ||
3559     reg ==  V2_num || reg == V2_H_num ||
3560     reg ==  V3_num || reg == V3_H_num ||
3561     reg ==  V4_num || reg == V4_H_num ||
3562     reg ==  V5_num || reg == V5_H_num ||
3563     reg ==  V6_num || reg == V6_H_num ||
3564     reg ==  V7_num || reg == V7_H_num;
3565 }
3566 
3567 bool Matcher::is_spillable_arg(int reg)
3568 {
3569   return can_be_java_arg(reg);
3570 }
3571 
3572 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
3573   return false;
3574 }
3575 
3576 RegMask Matcher::divI_proj_mask() {
3577   ShouldNotReachHere();
3578   return RegMask();
3579 }
3580 
3581 // Register for MODI projection of divmodI.
3582 RegMask Matcher::modI_proj_mask() {
3583   ShouldNotReachHere();
3584   return RegMask();
3585 }
3586 
3587 // Register for DIVL projection of divmodL.
3588 RegMask Matcher::divL_proj_mask() {
3589   ShouldNotReachHere();
3590   return RegMask();
3591 }
3592 
3593 // Register for MODL projection of divmodL.
3594 RegMask Matcher::modL_proj_mask() {
3595   ShouldNotReachHere();
3596   return RegMask();
3597 }
3598 
3599 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
3600   return FP_REG_mask();
3601 }
3602 
3603 bool size_fits_all_mem_uses(AddPNode* addp, int shift) {
3604   for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
3605     Node* u = addp->fast_out(i);
3606     if (u->is_Mem()) {
3607       int opsize = u->as_Mem()->memory_size();
3608       assert(opsize > 0, "unexpected memory operand size");
3609       if (u->as_Mem()->memory_size() != (1<<shift)) {
3610         return false;
3611       }
3612     }
3613   }
3614   return true;
3615 }
3616 
3617 const bool Matcher::convi2l_type_required = false;
3618 
3619 // Should the Matcher clone shifts on addressing modes, expecting them
3620 // to be subsumed into complex addressing expressions or compute them
3621 // into registers?
3622 bool Matcher::clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
3623   if (clone_base_plus_offset_address(m, mstack, address_visited)) {
3624     return true;
3625   }
3626 
3627   Node *off = m->in(AddPNode::Offset);
3628   if (off->Opcode() == Op_LShiftL && off->in(2)->is_Con() &&
3629       size_fits_all_mem_uses(m, off->in(2)->get_int()) &&
3630       // Are there other uses besides address expressions?
3631       !is_visited(off)) {
3632     address_visited.set(off->_idx); // Flag as address_visited
3633     mstack.push(off->in(2), Visit);
3634     Node *conv = off->in(1);
3635     if (conv->Opcode() == Op_ConvI2L &&
3636         // Are there other uses besides address expressions?
3637         !is_visited(conv)) {
3638       address_visited.set(conv->_idx); // Flag as address_visited
3639       mstack.push(conv->in(1), Pre_Visit);
3640     } else {
3641       mstack.push(conv, Pre_Visit);
3642     }
3643     address_visited.test_set(m->_idx); // Flag as address_visited
3644     mstack.push(m->in(AddPNode::Address), Pre_Visit);
3645     mstack.push(m->in(AddPNode::Base), Pre_Visit);
3646     return true;
3647   } else if (off->Opcode() == Op_ConvI2L &&
3648              // Are there other uses besides address expressions?
3649              !is_visited(off)) {
3650     address_visited.test_set(m->_idx); // Flag as address_visited
3651     address_visited.set(off->_idx); // Flag as address_visited
3652     mstack.push(off->in(1), Pre_Visit);
3653     mstack.push(m->in(AddPNode::Address), Pre_Visit);
3654     mstack.push(m->in(AddPNode::Base), Pre_Visit);
3655     return true;
3656   }
3657   return false;
3658 }
3659 
3660 // Transform:
3661 // (AddP base (AddP base address (LShiftL index con)) offset)
3662 // into:
3663 // (AddP base (AddP base offset) (LShiftL index con))
3664 // to take full advantage of ARM's addressing modes
3665 void Compile::reshape_address(AddPNode* addp) {
3666   Node *addr = addp->in(AddPNode::Address);
3667   if (addr->is_AddP() && addr->in(AddPNode::Base) == addp->in(AddPNode::Base)) {
3668     const AddPNode *addp2 = addr->as_AddP();
3669     if ((addp2->in(AddPNode::Offset)->Opcode() == Op_LShiftL &&
3670          addp2->in(AddPNode::Offset)->in(2)->is_Con() &&
3671          size_fits_all_mem_uses(addp, addp2->in(AddPNode::Offset)->in(2)->get_int())) ||
3672         addp2->in(AddPNode::Offset)->Opcode() == Op_ConvI2L) {
3673 
3674       // Any use that can't embed the address computation?
3675       for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
3676         Node* u = addp->fast_out(i);
3677         if (!u->is_Mem() || u->is_LoadVector() || u->is_StoreVector() || u->Opcode() == Op_StoreCM) {
3678           return;
3679         }
3680       }
3681       
3682       Node* off = addp->in(AddPNode::Offset);
3683       Node* addr2 = addp2->in(AddPNode::Address);
3684       Node* base = addp->in(AddPNode::Base);
3685       
3686       Node* new_addr = NULL;
3687       // Check whether the graph already has the new AddP we need
3688       // before we create one (no GVN available here).
3689       for (DUIterator_Fast imax, i = addr2->fast_outs(imax); i < imax; i++) {
3690         Node* u = addr2->fast_out(i);
3691         if (u->is_AddP() &&
3692             u->in(AddPNode::Base) == base &&
3693             u->in(AddPNode::Address) == addr2 &&
3694             u->in(AddPNode::Offset) == off) {
3695           new_addr = u;
3696           break;
3697         }
3698       }
3699       
3700       if (new_addr == NULL) {
3701         new_addr = new AddPNode(base, addr2, off);
3702       }
3703       Node* new_off = addp2->in(AddPNode::Offset);
3704       addp->set_req(AddPNode::Address, new_addr);
3705       if (addr->outcnt() == 0) {
3706         addr->disconnect_inputs(NULL, this);
3707       }
3708       addp->set_req(AddPNode::Offset, new_off);
3709       if (off->outcnt() == 0) {
3710         off->disconnect_inputs(NULL, this);
3711       }
3712     }
3713   }
3714 }
3715 
3716 // helper for encoding java_to_runtime calls on sim
3717 //
3718 // this is needed to compute the extra arguments required when
3719 // planting a call to the simulator blrt instruction. the TypeFunc
3720 // can be queried to identify the counts for integral, and floating
3721 // arguments and the return type
3722 
3723 static void getCallInfo(const TypeFunc *tf, int &gpcnt, int &fpcnt, int &rtype)
3724 {
3725   int gps = 0;
3726   int fps = 0;
3727   const TypeTuple *domain = tf->domain();
3728   int max = domain->cnt();
3729   for (int i = TypeFunc::Parms; i < max; i++) {
3730     const Type *t = domain->field_at(i);
3731     switch(t->basic_type()) {
3732     case T_FLOAT:
3733     case T_DOUBLE:
3734       fps++;
3735     default:
3736       gps++;
3737     }
3738   }
3739   gpcnt = gps;
3740   fpcnt = fps;
3741   BasicType rt = tf->return_type();
3742   switch (rt) {
3743   case T_VOID:
3744     rtype = MacroAssembler::ret_type_void;
3745     break;
3746   default:
3747     rtype = MacroAssembler::ret_type_integral;
3748     break;
3749   case T_FLOAT:
3750     rtype = MacroAssembler::ret_type_float;
3751     break;
3752   case T_DOUBLE:
3753     rtype = MacroAssembler::ret_type_double;
3754     break;
3755   }
3756 }
3757 
3758 #define MOV_VOLATILE(REG, BASE, INDEX, SCALE, DISP, SCRATCH, INSN)      \
3759   MacroAssembler _masm(&cbuf);                                          \
3760   {                                                                     \
3761     guarantee(INDEX == -1, "mode not permitted for volatile");          \
3762     guarantee(DISP == 0, "mode not permitted for volatile");            \
3763     guarantee(SCALE == 0, "mode not permitted for volatile");           \
3764     __ INSN(REG, as_Register(BASE));                                    \
3765   }
3766 
3767 typedef void (MacroAssembler::* mem_insn)(Register Rt, const Address &adr);
3768 typedef void (MacroAssembler::* mem_float_insn)(FloatRegister Rt, const Address &adr);
3769 typedef void (MacroAssembler::* mem_vector_insn)(FloatRegister Rt,
3770                                   MacroAssembler::SIMD_RegVariant T, const Address &adr);
3771 
3772   // Used for all non-volatile memory accesses.  The use of
3773   // $mem->opcode() to discover whether this pattern uses sign-extended
3774   // offsets is something of a kludge.
3775   static void loadStore(MacroAssembler masm, mem_insn insn,
3776                          Register reg, int opcode,
3777                          Register base, int index, int size, int disp)
3778   {
3779     Address::extend scale;
3780 
3781     // Hooboy, this is fugly.  We need a way to communicate to the
3782     // encoder that the index needs to be sign extended, so we have to
3783     // enumerate all the cases.
3784     switch (opcode) {
3785     case INDINDEXSCALEDI2L:
3786     case INDINDEXSCALEDI2LN:
3787     case INDINDEXI2L:
3788     case INDINDEXI2LN:
3789       scale = Address::sxtw(size);
3790       break;
3791     default:
3792       scale = Address::lsl(size);
3793     }
3794 
3795     if (index == -1) {
3796       (masm.*insn)(reg, Address(base, disp));
3797     } else {
3798       assert(disp == 0, "unsupported address mode: disp = %d", disp);
3799       (masm.*insn)(reg, Address(base, as_Register(index), scale));
3800     }
3801   }
3802 
3803   static void loadStore(MacroAssembler masm, mem_float_insn insn,
3804                          FloatRegister reg, int opcode,
3805                          Register base, int index, int size, int disp)
3806   {
3807     Address::extend scale;
3808 
3809     switch (opcode) {
3810     case INDINDEXSCALEDI2L:
3811     case INDINDEXSCALEDI2LN:
3812       scale = Address::sxtw(size);
3813       break;
3814     default:
3815       scale = Address::lsl(size);
3816     }
3817 
3818      if (index == -1) {
3819       (masm.*insn)(reg, Address(base, disp));
3820     } else {
3821       assert(disp == 0, "unsupported address mode: disp = %d", disp);
3822       (masm.*insn)(reg, Address(base, as_Register(index), scale));
3823     }
3824   }
3825 
3826   static void loadStore(MacroAssembler masm, mem_vector_insn insn,
3827                          FloatRegister reg, MacroAssembler::SIMD_RegVariant T,
3828                          int opcode, Register base, int index, int size, int disp)
3829   {
3830     if (index == -1) {
3831       (masm.*insn)(reg, T, Address(base, disp));
3832     } else {
3833       assert(disp == 0, "unsupported address mode");
3834       (masm.*insn)(reg, T, Address(base, as_Register(index), Address::lsl(size)));
3835     }
3836   }
3837 
3838 %}
3839 
3840 
3841 
3842 //----------ENCODING BLOCK-----------------------------------------------------
3843 // This block specifies the encoding classes used by the compiler to
3844 // output byte streams.  Encoding classes are parameterized macros
3845 // used by Machine Instruction Nodes in order to generate the bit
3846 // encoding of the instruction.  Operands specify their base encoding
3847 // interface with the interface keyword.  There are currently
3848 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
3849 // COND_INTER.  REG_INTER causes an operand to generate a function
3850 // which returns its register number when queried.  CONST_INTER causes
3851 // an operand to generate a function which returns the value of the
3852 // constant when queried.  MEMORY_INTER causes an operand to generate
3853 // four functions which return the Base Register, the Index Register,
3854 // the Scale Value, and the Offset Value of the operand when queried.
3855 // COND_INTER causes an operand to generate six functions which return
3856 // the encoding code (ie - encoding bits for the instruction)
3857 // associated with each basic boolean condition for a conditional
3858 // instruction.
3859 //
3860 // Instructions specify two basic values for encoding.  Again, a
3861 // function is available to check if the constant displacement is an
3862 // oop. They use the ins_encode keyword to specify their encoding
3863 // classes (which must be a sequence of enc_class names, and their
3864 // parameters, specified in the encoding block), and they use the
3865 // opcode keyword to specify, in order, their primary, secondary, and
3866 // tertiary opcode.  Only the opcode sections which a particular
3867 // instruction needs for encoding need to be specified.
3868 encode %{
3869   // Build emit functions for each basic byte or larger field in the
3870   // intel encoding scheme (opcode, rm, sib, immediate), and call them
3871   // from C++ code in the enc_class source block.  Emit functions will
3872   // live in the main source block for now.  In future, we can
3873   // generalize this by adding a syntax that specifies the sizes of
3874   // fields in an order, so that the adlc can build the emit functions
3875   // automagically
3876 
3877   // catch all for unimplemented encodings
3878   enc_class enc_unimplemented %{
3879     MacroAssembler _masm(&cbuf);
3880     __ unimplemented("C2 catch all");
3881   %}
3882 
3883   // BEGIN Non-volatile memory access
3884 
3885   enc_class aarch64_enc_ldrsbw(iRegI dst, memory mem) %{
3886     Register dst_reg = as_Register($dst$$reg);
3887     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrsbw, dst_reg, $mem->opcode(),
3888                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3889   %}
3890 
3891   enc_class aarch64_enc_ldrsb(iRegI dst, memory mem) %{
3892     Register dst_reg = as_Register($dst$$reg);
3893     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrsb, dst_reg, $mem->opcode(),
3894                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3895   %}
3896 
3897   enc_class aarch64_enc_ldrb(iRegI dst, memory mem) %{
3898     Register dst_reg = as_Register($dst$$reg);
3899     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrb, dst_reg, $mem->opcode(),
3900                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3901   %}
3902 
3903   enc_class aarch64_enc_ldrb(iRegL dst, memory mem) %{
3904     Register dst_reg = as_Register($dst$$reg);
3905     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrb, dst_reg, $mem->opcode(),
3906                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3907   %}
3908 
3909   enc_class aarch64_enc_ldrshw(iRegI dst, memory mem) %{
3910     Register dst_reg = as_Register($dst$$reg);
3911     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrshw, dst_reg, $mem->opcode(),
3912                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3913   %}
3914 
3915   enc_class aarch64_enc_ldrsh(iRegI dst, memory mem) %{
3916     Register dst_reg = as_Register($dst$$reg);
3917     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrsh, dst_reg, $mem->opcode(),
3918                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3919   %}
3920 
3921   enc_class aarch64_enc_ldrh(iRegI dst, memory mem) %{
3922     Register dst_reg = as_Register($dst$$reg);
3923     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrh, dst_reg, $mem->opcode(),
3924                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3925   %}
3926 
3927   enc_class aarch64_enc_ldrh(iRegL dst, memory mem) %{
3928     Register dst_reg = as_Register($dst$$reg);
3929     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrh, dst_reg, $mem->opcode(),
3930                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3931   %}
3932 
3933   enc_class aarch64_enc_ldrw(iRegI dst, memory mem) %{
3934     Register dst_reg = as_Register($dst$$reg);
3935     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrw, dst_reg, $mem->opcode(),
3936                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3937   %}
3938 
3939   enc_class aarch64_enc_ldrw(iRegL dst, memory mem) %{
3940     Register dst_reg = as_Register($dst$$reg);
3941     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrw, dst_reg, $mem->opcode(),
3942                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3943   %}
3944 
3945   enc_class aarch64_enc_ldrsw(iRegL dst, memory mem) %{
3946     Register dst_reg = as_Register($dst$$reg);
3947     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrsw, dst_reg, $mem->opcode(),
3948                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3949   %}
3950 
3951   enc_class aarch64_enc_ldr(iRegL dst, memory mem) %{
3952     Register dst_reg = as_Register($dst$$reg);
3953     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, $mem->opcode(),
3954                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3955   %}
3956 
3957   enc_class aarch64_enc_ldrs(vRegF dst, memory mem) %{
3958     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
3959     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrs, dst_reg, $mem->opcode(),
3960                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3961   %}
3962 
3963   enc_class aarch64_enc_ldrd(vRegD dst, memory mem) %{
3964     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
3965     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrd, dst_reg, $mem->opcode(),
3966                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3967   %}
3968 
3969   enc_class aarch64_enc_ldrvS(vecD dst, memory mem) %{
3970     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
3971     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, MacroAssembler::S,
3972        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3973   %}
3974 
3975   enc_class aarch64_enc_ldrvD(vecD dst, memory mem) %{
3976     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
3977     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, MacroAssembler::D,
3978        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3979   %}
3980 
3981   enc_class aarch64_enc_ldrvQ(vecX dst, memory mem) %{
3982     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
3983     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, MacroAssembler::Q,
3984        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3985   %}
3986 
3987   enc_class aarch64_enc_strb(iRegI src, memory mem) %{
3988     Register src_reg = as_Register($src$$reg);
3989     loadStore(MacroAssembler(&cbuf), &MacroAssembler::strb, src_reg, $mem->opcode(),
3990                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3991   %}
3992 
3993   enc_class aarch64_enc_strb0(memory mem) %{
3994     MacroAssembler _masm(&cbuf);
3995     loadStore(_masm, &MacroAssembler::strb, zr, $mem->opcode(),
3996                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
3997   %}
3998 
3999   enc_class aarch64_enc_strb0_ordered(memory mem) %{
4000     MacroAssembler _masm(&cbuf);
4001     __ membar(Assembler::StoreStore);
4002     loadStore(_masm, &MacroAssembler::strb, zr, $mem->opcode(),
4003                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4004   %}
4005 
4006   enc_class aarch64_enc_strh(iRegI src, memory mem) %{
4007     Register src_reg = as_Register($src$$reg);
4008     loadStore(MacroAssembler(&cbuf), &MacroAssembler::strh, src_reg, $mem->opcode(),
4009                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4010   %}
4011 
4012   enc_class aarch64_enc_strh0(memory mem) %{
4013     MacroAssembler _masm(&cbuf);
4014     loadStore(_masm, &MacroAssembler::strh, zr, $mem->opcode(),
4015                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4016   %}
4017 
4018   enc_class aarch64_enc_strw(iRegI src, memory mem) %{
4019     Register src_reg = as_Register($src$$reg);
4020     loadStore(MacroAssembler(&cbuf), &MacroAssembler::strw, src_reg, $mem->opcode(),
4021                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4022   %}
4023 
4024   enc_class aarch64_enc_strw0(memory mem) %{
4025     MacroAssembler _masm(&cbuf);
4026     loadStore(_masm, &MacroAssembler::strw, zr, $mem->opcode(),
4027                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4028   %}
4029 
4030   enc_class aarch64_enc_str(iRegL src, memory mem) %{
4031     Register src_reg = as_Register($src$$reg);
4032     // we sometimes get asked to store the stack pointer into the
4033     // current thread -- we cannot do that directly on AArch64
4034     if (src_reg == r31_sp) {
4035       MacroAssembler _masm(&cbuf);
4036       assert(as_Register($mem$$base) == rthread, "unexpected store for sp");
4037       __ mov(rscratch2, sp);
4038       src_reg = rscratch2;
4039     }
4040     loadStore(MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, $mem->opcode(),
4041                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4042   %}
4043 
4044   enc_class aarch64_enc_str0(memory mem) %{
4045     MacroAssembler _masm(&cbuf);
4046     loadStore(_masm, &MacroAssembler::str, zr, $mem->opcode(),
4047                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4048   %}
4049 
4050   enc_class aarch64_enc_strs(vRegF src, memory mem) %{
4051     FloatRegister src_reg = as_FloatRegister($src$$reg);
4052     loadStore(MacroAssembler(&cbuf), &MacroAssembler::strs, src_reg, $mem->opcode(),
4053                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4054   %}
4055 
4056   enc_class aarch64_enc_strd(vRegD src, memory mem) %{
4057     FloatRegister src_reg = as_FloatRegister($src$$reg);
4058     loadStore(MacroAssembler(&cbuf), &MacroAssembler::strd, src_reg, $mem->opcode(),
4059                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4060   %}
4061 
4062   enc_class aarch64_enc_strvS(vecD src, memory mem) %{
4063     FloatRegister src_reg = as_FloatRegister($src$$reg);
4064     loadStore(MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, MacroAssembler::S,
4065        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4066   %}
4067 
4068   enc_class aarch64_enc_strvD(vecD src, memory mem) %{
4069     FloatRegister src_reg = as_FloatRegister($src$$reg);
4070     loadStore(MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, MacroAssembler::D,
4071        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4072   %}
4073 
4074   enc_class aarch64_enc_strvQ(vecX src, memory mem) %{
4075     FloatRegister src_reg = as_FloatRegister($src$$reg);
4076     loadStore(MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, MacroAssembler::Q,
4077        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
4078   %}
4079 
4080   // END Non-volatile memory access
4081 
4082   // volatile loads and stores
4083 
4084   enc_class aarch64_enc_stlrb(iRegI src, memory mem) %{
4085     MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4086                  rscratch1, stlrb);
4087   %}
4088 
4089   enc_class aarch64_enc_stlrh(iRegI src, memory mem) %{
4090     MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4091                  rscratch1, stlrh);
4092   %}
4093 
4094   enc_class aarch64_enc_stlrw(iRegI src, memory mem) %{
4095     MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4096                  rscratch1, stlrw);
4097   %}
4098 
4099 
4100   enc_class aarch64_enc_ldarsbw(iRegI dst, memory mem) %{
4101     Register dst_reg = as_Register($dst$$reg);
4102     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4103              rscratch1, ldarb);
4104     __ sxtbw(dst_reg, dst_reg);
4105   %}
4106 
4107   enc_class aarch64_enc_ldarsb(iRegL dst, memory mem) %{
4108     Register dst_reg = as_Register($dst$$reg);
4109     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4110              rscratch1, ldarb);
4111     __ sxtb(dst_reg, dst_reg);
4112   %}
4113 
4114   enc_class aarch64_enc_ldarbw(iRegI dst, memory mem) %{
4115     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4116              rscratch1, ldarb);
4117   %}
4118 
4119   enc_class aarch64_enc_ldarb(iRegL dst, memory mem) %{
4120     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4121              rscratch1, ldarb);
4122   %}
4123 
4124   enc_class aarch64_enc_ldarshw(iRegI dst, memory mem) %{
4125     Register dst_reg = as_Register($dst$$reg);
4126     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4127              rscratch1, ldarh);
4128     __ sxthw(dst_reg, dst_reg);
4129   %}
4130 
4131   enc_class aarch64_enc_ldarsh(iRegL dst, memory mem) %{
4132     Register dst_reg = as_Register($dst$$reg);
4133     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4134              rscratch1, ldarh);
4135     __ sxth(dst_reg, dst_reg);
4136   %}
4137 
4138   enc_class aarch64_enc_ldarhw(iRegI dst, memory mem) %{
4139     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4140              rscratch1, ldarh);
4141   %}
4142 
4143   enc_class aarch64_enc_ldarh(iRegL dst, memory mem) %{
4144     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4145              rscratch1, ldarh);
4146   %}
4147 
4148   enc_class aarch64_enc_ldarw(iRegI dst, memory mem) %{
4149     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4150              rscratch1, ldarw);
4151   %}
4152 
4153   enc_class aarch64_enc_ldarw(iRegL dst, memory mem) %{
4154     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4155              rscratch1, ldarw);
4156   %}
4157 
4158   enc_class aarch64_enc_ldar(iRegL dst, memory mem) %{
4159     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4160              rscratch1, ldar);
4161   %}
4162 
4163   enc_class aarch64_enc_fldars(vRegF dst, memory mem) %{
4164     MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4165              rscratch1, ldarw);
4166     __ fmovs(as_FloatRegister($dst$$reg), rscratch1);
4167   %}
4168 
4169   enc_class aarch64_enc_fldard(vRegD dst, memory mem) %{
4170     MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4171              rscratch1, ldar);
4172     __ fmovd(as_FloatRegister($dst$$reg), rscratch1);
4173   %}
4174 
4175   enc_class aarch64_enc_stlr(iRegL src, memory mem) %{
4176     Register src_reg = as_Register($src$$reg);
4177     // we sometimes get asked to store the stack pointer into the
4178     // current thread -- we cannot do that directly on AArch64
4179     if (src_reg == r31_sp) {
4180         MacroAssembler _masm(&cbuf);
4181       assert(as_Register($mem$$base) == rthread, "unexpected store for sp");
4182       __ mov(rscratch2, sp);
4183       src_reg = rscratch2;
4184     }
4185     MOV_VOLATILE(src_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4186                  rscratch1, stlr);
4187   %}
4188 
4189   enc_class aarch64_enc_fstlrs(vRegF src, memory mem) %{
4190     {
4191       MacroAssembler _masm(&cbuf);
4192       FloatRegister src_reg = as_FloatRegister($src$$reg);
4193       __ fmovs(rscratch2, src_reg);
4194     }
4195     MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4196                  rscratch1, stlrw);
4197   %}
4198 
4199   enc_class aarch64_enc_fstlrd(vRegD src, memory mem) %{
4200     {
4201       MacroAssembler _masm(&cbuf);
4202       FloatRegister src_reg = as_FloatRegister($src$$reg);
4203       __ fmovd(rscratch2, src_reg);
4204     }
4205     MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
4206                  rscratch1, stlr);
4207   %}
4208 
4209   // synchronized read/update encodings
4210 
4211   enc_class aarch64_enc_ldaxr(iRegL dst, memory mem) %{
4212     MacroAssembler _masm(&cbuf);
4213     Register dst_reg = as_Register($dst$$reg);
4214     Register base = as_Register($mem$$base);
4215     int index = $mem$$index;
4216     int scale = $mem$$scale;
4217     int disp = $mem$$disp;
4218     if (index == -1) {
4219        if (disp != 0) {
4220         __ lea(rscratch1, Address(base, disp));
4221         __ ldaxr(dst_reg, rscratch1);
4222       } else {
4223         // TODO
4224         // should we ever get anything other than this case?
4225         __ ldaxr(dst_reg, base);
4226       }
4227     } else {
4228       Register index_reg = as_Register(index);
4229       if (disp == 0) {
4230         __ lea(rscratch1, Address(base, index_reg, Address::lsl(scale)));
4231         __ ldaxr(dst_reg, rscratch1);
4232       } else {
4233         __ lea(rscratch1, Address(base, disp));
4234         __ lea(rscratch1, Address(rscratch1, index_reg, Address::lsl(scale)));
4235         __ ldaxr(dst_reg, rscratch1);
4236       }
4237     }
4238   %}
4239 
4240   enc_class aarch64_enc_stlxr(iRegLNoSp src, memory mem) %{
4241     MacroAssembler _masm(&cbuf);
4242     Register src_reg = as_Register($src$$reg);
4243     Register base = as_Register($mem$$base);
4244     int index = $mem$$index;
4245     int scale = $mem$$scale;
4246     int disp = $mem$$disp;
4247     if (index == -1) {
4248        if (disp != 0) {
4249         __ lea(rscratch2, Address(base, disp));
4250         __ stlxr(rscratch1, src_reg, rscratch2);
4251       } else {
4252         // TODO
4253         // should we ever get anything other than this case?
4254         __ stlxr(rscratch1, src_reg, base);
4255       }
4256     } else {
4257       Register index_reg = as_Register(index);
4258       if (disp == 0) {
4259         __ lea(rscratch2, Address(base, index_reg, Address::lsl(scale)));
4260         __ stlxr(rscratch1, src_reg, rscratch2);
4261       } else {
4262         __ lea(rscratch2, Address(base, disp));
4263         __ lea(rscratch2, Address(rscratch2, index_reg, Address::lsl(scale)));
4264         __ stlxr(rscratch1, src_reg, rscratch2);
4265       }
4266     }
4267     __ cmpw(rscratch1, zr);
4268   %}
4269 
4270   enc_class aarch64_enc_cmpxchg(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{
4271     MacroAssembler _masm(&cbuf);
4272     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
4273     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
4274                Assembler::xword, /*acquire*/ false, /*release*/ true,
4275                /*weak*/ false, noreg);
4276   %}
4277 
4278   enc_class aarch64_enc_cmpxchgw(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
4279     MacroAssembler _masm(&cbuf);
4280     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
4281     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
4282                Assembler::word, /*acquire*/ false, /*release*/ true,
4283                /*weak*/ false, noreg);
4284   %}
4285 
4286 
4287   // The only difference between aarch64_enc_cmpxchg and
4288   // aarch64_enc_cmpxchg_acq is that we use load-acquire in the
4289   // CompareAndSwap sequence to serve as a barrier on acquiring a
4290   // lock.
4291   enc_class aarch64_enc_cmpxchg_acq(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{
4292     MacroAssembler _masm(&cbuf);
4293     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
4294     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
4295                Assembler::xword, /*acquire*/ true, /*release*/ true,
4296                /*weak*/ false, noreg);
4297   %}
4298 
4299   enc_class aarch64_enc_cmpxchgw_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
4300     MacroAssembler _masm(&cbuf);
4301     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
4302     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
4303                Assembler::word, /*acquire*/ true, /*release*/ true,
4304                /*weak*/ false, noreg);
4305   %}
4306 
4307 
4308   // auxiliary used for CompareAndSwapX to set result register
4309   enc_class aarch64_enc_cset_eq(iRegINoSp res) %{
4310     MacroAssembler _masm(&cbuf);
4311     Register res_reg = as_Register($res$$reg);
4312     __ cset(res_reg, Assembler::EQ);
4313   %}
4314 
4315   // prefetch encodings
4316 
4317   enc_class aarch64_enc_prefetchw(memory mem) %{
4318     MacroAssembler _masm(&cbuf);
4319     Register base = as_Register($mem$$base);
4320     int index = $mem$$index;
4321     int scale = $mem$$scale;
4322     int disp = $mem$$disp;
4323     if (index == -1) {
4324       __ prfm(Address(base, disp), PSTL1KEEP);
4325     } else {
4326       Register index_reg = as_Register(index);
4327       if (disp == 0) {
4328         __ prfm(Address(base, index_reg, Address::lsl(scale)), PSTL1KEEP);
4329       } else {
4330         __ lea(rscratch1, Address(base, disp));
4331         __ prfm(Address(rscratch1, index_reg, Address::lsl(scale)), PSTL1KEEP);
4332       }
4333     }
4334   %}
4335 
4336   /// mov envcodings
4337 
4338   enc_class aarch64_enc_movw_imm(iRegI dst, immI src) %{
4339     MacroAssembler _masm(&cbuf);
4340     u_int32_t con = (u_int32_t)$src$$constant;
4341     Register dst_reg = as_Register($dst$$reg);
4342     if (con == 0) {
4343       __ movw(dst_reg, zr);
4344     } else {
4345       __ movw(dst_reg, con);
4346     }
4347   %}
4348 
4349   enc_class aarch64_enc_mov_imm(iRegL dst, immL src) %{
4350     MacroAssembler _masm(&cbuf);
4351     Register dst_reg = as_Register($dst$$reg);
4352     u_int64_t con = (u_int64_t)$src$$constant;
4353     if (con == 0) {
4354       __ mov(dst_reg, zr);
4355     } else {
4356       __ mov(dst_reg, con);
4357     }
4358   %}
4359 
4360   enc_class aarch64_enc_mov_p(iRegP dst, immP src) %{
4361     MacroAssembler _masm(&cbuf);
4362     Register dst_reg = as_Register($dst$$reg);
4363     address con = (address)$src$$constant;
4364     if (con == NULL || con == (address)1) {
4365       ShouldNotReachHere();
4366     } else {
4367       relocInfo::relocType rtype = $src->constant_reloc();
4368       if (rtype == relocInfo::oop_type) {
4369         __ movoop(dst_reg, (jobject)con, /*immediate*/true);
4370       } else if (rtype == relocInfo::metadata_type) {
4371         __ mov_metadata(dst_reg, (Metadata*)con);
4372       } else {
4373         assert(rtype == relocInfo::none, "unexpected reloc type");
4374         if (con < (address)(uintptr_t)os::vm_page_size()) {
4375           __ mov(dst_reg, con);
4376         } else {
4377           unsigned long offset;
4378           __ adrp(dst_reg, con, offset);
4379           __ add(dst_reg, dst_reg, offset);
4380         }
4381       }
4382     }
4383   %}
4384 
4385   enc_class aarch64_enc_mov_p0(iRegP dst, immP0 src) %{
4386     MacroAssembler _masm(&cbuf);
4387     Register dst_reg = as_Register($dst$$reg);
4388     __ mov(dst_reg, zr);
4389   %}
4390 
4391   enc_class aarch64_enc_mov_p1(iRegP dst, immP_1 src) %{
4392     MacroAssembler _masm(&cbuf);
4393     Register dst_reg = as_Register($dst$$reg);
4394     __ mov(dst_reg, (u_int64_t)1);
4395   %}
4396 
4397   enc_class aarch64_enc_mov_poll_page(iRegP dst, immPollPage src) %{
4398     MacroAssembler _masm(&cbuf);
4399     address page = (address)$src$$constant;
4400     Register dst_reg = as_Register($dst$$reg);
4401     unsigned long off;
4402     __ adrp(dst_reg, Address(page, relocInfo::poll_type), off);
4403     assert(off == 0, "assumed offset == 0");
4404   %}
4405 
4406   enc_class aarch64_enc_mov_byte_map_base(iRegP dst, immByteMapBase src) %{
4407     MacroAssembler _masm(&cbuf);
4408     __ load_byte_map_base($dst$$Register);
4409   %}
4410 
4411   enc_class aarch64_enc_mov_n(iRegN dst, immN src) %{
4412     MacroAssembler _masm(&cbuf);
4413     Register dst_reg = as_Register($dst$$reg);
4414     address con = (address)$src$$constant;
4415     if (con == NULL) {
4416       ShouldNotReachHere();
4417     } else {
4418       relocInfo::relocType rtype = $src->constant_reloc();
4419       assert(rtype == relocInfo::oop_type, "unexpected reloc type");
4420       __ set_narrow_oop(dst_reg, (jobject)con);
4421     }
4422   %}
4423 
4424   enc_class aarch64_enc_mov_n0(iRegN dst, immN0 src) %{
4425     MacroAssembler _masm(&cbuf);
4426     Register dst_reg = as_Register($dst$$reg);
4427     __ mov(dst_reg, zr);
4428   %}
4429 
4430   enc_class aarch64_enc_mov_nk(iRegN dst, immNKlass src) %{
4431     MacroAssembler _masm(&cbuf);
4432     Register dst_reg = as_Register($dst$$reg);
4433     address con = (address)$src$$constant;
4434     if (con == NULL) {
4435       ShouldNotReachHere();
4436     } else {
4437       relocInfo::relocType rtype = $src->constant_reloc();
4438       assert(rtype == relocInfo::metadata_type, "unexpected reloc type");
4439       __ set_narrow_klass(dst_reg, (Klass *)con);
4440     }
4441   %}
4442 
4443   // arithmetic encodings
4444 
4445   enc_class aarch64_enc_addsubw_imm(iRegI dst, iRegI src1, immIAddSub src2) %{
4446     MacroAssembler _masm(&cbuf);
4447     Register dst_reg = as_Register($dst$$reg);
4448     Register src_reg = as_Register($src1$$reg);
4449     int32_t con = (int32_t)$src2$$constant;
4450     // add has primary == 0, subtract has primary == 1
4451     if ($primary) { con = -con; }
4452     if (con < 0) {
4453       __ subw(dst_reg, src_reg, -con);
4454     } else {
4455       __ addw(dst_reg, src_reg, con);
4456     }
4457   %}
4458 
4459   enc_class aarch64_enc_addsub_imm(iRegL dst, iRegL src1, immLAddSub src2) %{
4460     MacroAssembler _masm(&cbuf);
4461     Register dst_reg = as_Register($dst$$reg);
4462     Register src_reg = as_Register($src1$$reg);
4463     int32_t con = (int32_t)$src2$$constant;
4464     // add has primary == 0, subtract has primary == 1
4465     if ($primary) { con = -con; }
4466     if (con < 0) {
4467       __ sub(dst_reg, src_reg, -con);
4468     } else {
4469       __ add(dst_reg, src_reg, con);
4470     }
4471   %}
4472 
4473   enc_class aarch64_enc_divw(iRegI dst, iRegI src1, iRegI src2) %{
4474     MacroAssembler _masm(&cbuf);
4475    Register dst_reg = as_Register($dst$$reg);
4476    Register src1_reg = as_Register($src1$$reg);
4477    Register src2_reg = as_Register($src2$$reg);
4478     __ corrected_idivl(dst_reg, src1_reg, src2_reg, false, rscratch1);
4479   %}
4480 
4481   enc_class aarch64_enc_div(iRegI dst, iRegI src1, iRegI src2) %{
4482     MacroAssembler _masm(&cbuf);
4483    Register dst_reg = as_Register($dst$$reg);
4484    Register src1_reg = as_Register($src1$$reg);
4485    Register src2_reg = as_Register($src2$$reg);
4486     __ corrected_idivq(dst_reg, src1_reg, src2_reg, false, rscratch1);
4487   %}
4488 
4489   enc_class aarch64_enc_modw(iRegI dst, iRegI src1, iRegI src2) %{
4490     MacroAssembler _masm(&cbuf);
4491    Register dst_reg = as_Register($dst$$reg);
4492    Register src1_reg = as_Register($src1$$reg);
4493    Register src2_reg = as_Register($src2$$reg);
4494     __ corrected_idivl(dst_reg, src1_reg, src2_reg, true, rscratch1);
4495   %}
4496 
4497   enc_class aarch64_enc_mod(iRegI dst, iRegI src1, iRegI src2) %{
4498     MacroAssembler _masm(&cbuf);
4499    Register dst_reg = as_Register($dst$$reg);
4500    Register src1_reg = as_Register($src1$$reg);
4501    Register src2_reg = as_Register($src2$$reg);
4502     __ corrected_idivq(dst_reg, src1_reg, src2_reg, true, rscratch1);
4503   %}
4504 
4505   // compare instruction encodings
4506 
4507   enc_class aarch64_enc_cmpw(iRegI src1, iRegI src2) %{
4508     MacroAssembler _masm(&cbuf);
4509     Register reg1 = as_Register($src1$$reg);
4510     Register reg2 = as_Register($src2$$reg);
4511     __ cmpw(reg1, reg2);
4512   %}
4513 
4514   enc_class aarch64_enc_cmpw_imm_addsub(iRegI src1, immIAddSub src2) %{
4515     MacroAssembler _masm(&cbuf);
4516     Register reg = as_Register($src1$$reg);
4517     int32_t val = $src2$$constant;
4518     if (val >= 0) {
4519       __ subsw(zr, reg, val);
4520     } else {
4521       __ addsw(zr, reg, -val);
4522     }
4523   %}
4524 
4525   enc_class aarch64_enc_cmpw_imm(iRegI src1, immI src2) %{
4526     MacroAssembler _masm(&cbuf);
4527     Register reg1 = as_Register($src1$$reg);
4528     u_int32_t val = (u_int32_t)$src2$$constant;
4529     __ movw(rscratch1, val);
4530     __ cmpw(reg1, rscratch1);
4531   %}
4532 
4533   enc_class aarch64_enc_cmp(iRegL src1, iRegL src2) %{
4534     MacroAssembler _masm(&cbuf);
4535     Register reg1 = as_Register($src1$$reg);
4536     Register reg2 = as_Register($src2$$reg);
4537     __ cmp(reg1, reg2);
4538   %}
4539 
4540   enc_class aarch64_enc_cmp_imm_addsub(iRegL src1, immL12 src2) %{
4541     MacroAssembler _masm(&cbuf);
4542     Register reg = as_Register($src1$$reg);
4543     int64_t val = $src2$$constant;
4544     if (val >= 0) {
4545       __ subs(zr, reg, val);
4546     } else if (val != -val) {
4547       __ adds(zr, reg, -val);
4548     } else {
4549     // aargh, Long.MIN_VALUE is a special case
4550       __ orr(rscratch1, zr, (u_int64_t)val);
4551       __ subs(zr, reg, rscratch1);
4552     }
4553   %}
4554 
4555   enc_class aarch64_enc_cmp_imm(iRegL src1, immL src2) %{
4556     MacroAssembler _masm(&cbuf);
4557     Register reg1 = as_Register($src1$$reg);
4558     u_int64_t val = (u_int64_t)$src2$$constant;
4559     __ mov(rscratch1, val);
4560     __ cmp(reg1, rscratch1);
4561   %}
4562 
4563   enc_class aarch64_enc_cmpp(iRegP src1, iRegP src2) %{
4564     MacroAssembler _masm(&cbuf);
4565     Register reg1 = as_Register($src1$$reg);
4566     Register reg2 = as_Register($src2$$reg);
4567     __ cmp(reg1, reg2);
4568   %}
4569 
4570   enc_class aarch64_enc_cmpn(iRegN src1, iRegN src2) %{
4571     MacroAssembler _masm(&cbuf);
4572     Register reg1 = as_Register($src1$$reg);
4573     Register reg2 = as_Register($src2$$reg);
4574     __ cmpw(reg1, reg2);
4575   %}
4576 
4577   enc_class aarch64_enc_testp(iRegP src) %{
4578     MacroAssembler _masm(&cbuf);
4579     Register reg = as_Register($src$$reg);
4580     __ cmp(reg, zr);
4581   %}
4582 
4583   enc_class aarch64_enc_testn(iRegN src) %{
4584     MacroAssembler _masm(&cbuf);
4585     Register reg = as_Register($src$$reg);
4586     __ cmpw(reg, zr);
4587   %}
4588 
4589   enc_class aarch64_enc_b(label lbl) %{
4590     MacroAssembler _masm(&cbuf);
4591     Label *L = $lbl$$label;
4592     __ b(*L);
4593   %}
4594 
4595   enc_class aarch64_enc_br_con(cmpOp cmp, label lbl) %{
4596     MacroAssembler _masm(&cbuf);
4597     Label *L = $lbl$$label;
4598     __ br ((Assembler::Condition)$cmp$$cmpcode, *L);
4599   %}
4600 
4601   enc_class aarch64_enc_br_conU(cmpOpU cmp, label lbl) %{
4602     MacroAssembler _masm(&cbuf);
4603     Label *L = $lbl$$label;
4604     __ br ((Assembler::Condition)$cmp$$cmpcode, *L);
4605   %}
4606 
4607   enc_class aarch64_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result)
4608   %{
4609      Register sub_reg = as_Register($sub$$reg);
4610      Register super_reg = as_Register($super$$reg);
4611      Register temp_reg = as_Register($temp$$reg);
4612      Register result_reg = as_Register($result$$reg);
4613 
4614      Label miss;
4615      MacroAssembler _masm(&cbuf);
4616      __ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg,
4617                                      NULL, &miss,
4618                                      /*set_cond_codes:*/ true);
4619      if ($primary) {
4620        __ mov(result_reg, zr);
4621      }
4622      __ bind(miss);
4623   %}
4624 
4625   enc_class aarch64_enc_java_static_call(method meth) %{
4626     MacroAssembler _masm(&cbuf);
4627 
4628     address addr = (address)$meth$$method;
4629     address call;
4630     if (!_method) {
4631       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
4632       call = __ trampoline_call(Address(addr, relocInfo::runtime_call_type), &cbuf);
4633     } else {
4634       int method_index = resolved_method_index(cbuf);
4635       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
4636                                                   : static_call_Relocation::spec(method_index);
4637       call = __ trampoline_call(Address(addr, rspec), &cbuf);
4638 
4639       // Emit stub for static call
4640       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
4641       if (stub == NULL) {
4642         ciEnv::current()->record_failure("CodeCache is full");
4643         return;
4644       }
4645     }
4646     if (call == NULL) {
4647       ciEnv::current()->record_failure("CodeCache is full");
4648       return;
4649     }
4650   %}
4651 
4652   enc_class aarch64_enc_java_dynamic_call(method meth) %{
4653     MacroAssembler _masm(&cbuf);
4654     int method_index = resolved_method_index(cbuf);
4655     address call = __ ic_call((address)$meth$$method, method_index);
4656     if (call == NULL) {
4657       ciEnv::current()->record_failure("CodeCache is full");
4658       return;
4659     }
4660   %}
4661 
4662   enc_class aarch64_enc_call_epilog() %{
4663     MacroAssembler _masm(&cbuf);
4664     if (VerifyStackAtCalls) {
4665       // Check that stack depth is unchanged: find majik cookie on stack
4666       __ call_Unimplemented();
4667     }
4668   %}
4669 
4670   enc_class aarch64_enc_java_to_runtime(method meth) %{
4671     MacroAssembler _masm(&cbuf);
4672 
4673     // some calls to generated routines (arraycopy code) are scheduled
4674     // by C2 as runtime calls. if so we can call them using a br (they
4675     // will be in a reachable segment) otherwise we have to use a blrt
4676     // which loads the absolute address into a register.
4677     address entry = (address)$meth$$method;
4678     CodeBlob *cb = CodeCache::find_blob(entry);
4679     if (cb) {
4680       address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type));
4681       if (call == NULL) {
4682         ciEnv::current()->record_failure("CodeCache is full");
4683         return;
4684       }
4685     } else {
4686       int gpcnt;
4687       int fpcnt;
4688       int rtype;
4689       getCallInfo(tf(), gpcnt, fpcnt, rtype);
4690       Label retaddr;
4691       __ adr(rscratch2, retaddr);
4692       __ lea(rscratch1, RuntimeAddress(entry));
4693       // Leave a breadcrumb for JavaFrameAnchor::capture_last_Java_pc()
4694       __ stp(zr, rscratch2, Address(__ pre(sp, -2 * wordSize)));
4695       __ blrt(rscratch1, gpcnt, fpcnt, rtype);
4696       __ bind(retaddr);
4697       __ add(sp, sp, 2 * wordSize);
4698     }
4699   %}
4700 
4701   enc_class aarch64_enc_rethrow() %{
4702     MacroAssembler _masm(&cbuf);
4703     __ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub()));
4704   %}
4705 
4706   enc_class aarch64_enc_ret() %{
4707     MacroAssembler _masm(&cbuf);
4708     __ ret(lr);
4709   %}
4710 
4711   enc_class aarch64_enc_tail_call(iRegP jump_target) %{
4712     MacroAssembler _masm(&cbuf);
4713     Register target_reg = as_Register($jump_target$$reg);
4714     __ br(target_reg);
4715   %}
4716 
4717   enc_class aarch64_enc_tail_jmp(iRegP jump_target) %{
4718     MacroAssembler _masm(&cbuf);
4719     Register target_reg = as_Register($jump_target$$reg);
4720     // exception oop should be in r0
4721     // ret addr has been popped into lr
4722     // callee expects it in r3
4723     __ mov(r3, lr);
4724     __ br(target_reg);
4725   %}
4726 
4727   enc_class aarch64_enc_fast_lock(iRegP object, iRegP box, iRegP tmp, iRegP tmp2) %{
4728     MacroAssembler _masm(&cbuf);
4729     Register oop = as_Register($object$$reg);
4730     Register box = as_Register($box$$reg);
4731     Register disp_hdr = as_Register($tmp$$reg);
4732     Register tmp = as_Register($tmp2$$reg);
4733     Label cont;
4734     Label object_has_monitor;
4735     Label cas_failed;
4736 
4737     assert_different_registers(oop, box, tmp, disp_hdr);
4738 
4739     // Load markOop from object into displaced_header.
4740     __ ldr(disp_hdr, Address(oop, oopDesc::mark_offset_in_bytes()));
4741 
4742     // Always do locking in runtime.
4743     if (EmitSync & 0x01) {
4744       __ cmp(oop, zr);
4745       return;
4746     }
4747 
4748     if (UseBiasedLocking && !UseOptoBiasInlining) {
4749       __ biased_locking_enter(box, oop, disp_hdr, tmp, true, cont);
4750     }
4751 
4752     // Handle existing monitor
4753     if ((EmitSync & 0x02) == 0) {
4754       // we can use AArch64's bit test and branch here but
4755       // markoopDesc does not define a bit index just the bit value
4756       // so assert in case the bit pos changes
4757 #     define __monitor_value_log2 1
4758       assert(markOopDesc::monitor_value == (1 << __monitor_value_log2), "incorrect bit position");
4759       __ tbnz(disp_hdr, __monitor_value_log2, object_has_monitor);
4760 #     undef __monitor_value_log2
4761     }
4762 
4763     // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
4764     __ orr(disp_hdr, disp_hdr, markOopDesc::unlocked_value);
4765 
4766     // Load Compare Value application register.
4767 
4768     // Initialize the box. (Must happen before we update the object mark!)
4769     __ str(disp_hdr, Address(box, BasicLock::displaced_header_offset_in_bytes()));
4770 
4771     // Compare object markOop with mark and if equal exchange scratch1
4772     // with object markOop.
4773     if (UseLSE) {
4774       __ mov(tmp, disp_hdr);
4775       __ casal(Assembler::xword, tmp, box, oop);
4776       __ cmp(tmp, disp_hdr);
4777       __ br(Assembler::EQ, cont);
4778     } else {
4779       Label retry_load;
4780       if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
4781         __ prfm(Address(oop), PSTL1STRM);
4782       __ bind(retry_load);
4783       __ ldaxr(tmp, oop);
4784       __ cmp(tmp, disp_hdr);
4785       __ br(Assembler::NE, cas_failed);
4786       // use stlxr to ensure update is immediately visible
4787       __ stlxr(tmp, box, oop);
4788       __ cbzw(tmp, cont);
4789       __ b(retry_load);
4790     }
4791 
4792     // Formerly:
4793     // __ cmpxchgptr(/*oldv=*/disp_hdr,
4794     //               /*newv=*/box,
4795     //               /*addr=*/oop,
4796     //               /*tmp=*/tmp,
4797     //               cont,
4798     //               /*fail*/NULL);
4799 
4800     assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
4801 
4802     // If the compare-and-exchange succeeded, then we found an unlocked
4803     // object, will have now locked it will continue at label cont
4804 
4805     __ bind(cas_failed);
4806     // We did not see an unlocked object so try the fast recursive case.
4807 
4808     // Check if the owner is self by comparing the value in the
4809     // markOop of object (disp_hdr) with the stack pointer.
4810     __ mov(rscratch1, sp);
4811     __ sub(disp_hdr, disp_hdr, rscratch1);
4812     __ mov(tmp, (address) (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place));
4813     // If condition is true we are cont and hence we can store 0 as the
4814     // displaced header in the box, which indicates that it is a recursive lock.
4815     __ ands(tmp/*==0?*/, disp_hdr, tmp);
4816     __ str(tmp/*==0, perhaps*/, Address(box, BasicLock::displaced_header_offset_in_bytes()));
4817 
4818     // Handle existing monitor.
4819     if ((EmitSync & 0x02) == 0) {
4820       __ b(cont);
4821 
4822       __ bind(object_has_monitor);
4823       // The object's monitor m is unlocked iff m->owner == NULL,
4824       // otherwise m->owner may contain a thread or a stack address.
4825       //
4826       // Try to CAS m->owner from NULL to current thread.
4827       __ add(tmp, disp_hdr, (ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value));
4828       __ mov(disp_hdr, zr);
4829 
4830       if (UseLSE) {
4831         __ mov(rscratch1, disp_hdr);
4832         __ casal(Assembler::xword, rscratch1, rthread, tmp);
4833         __ cmp(rscratch1, disp_hdr);
4834       } else {
4835         Label retry_load, fail;
4836         if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
4837           __ prfm(Address(tmp), PSTL1STRM);
4838         __ bind(retry_load);
4839         __ ldaxr(rscratch1, tmp);
4840         __ cmp(disp_hdr, rscratch1);
4841         __ br(Assembler::NE, fail);
4842         // use stlxr to ensure update is immediately visible
4843         __ stlxr(rscratch1, rthread, tmp);
4844         __ cbnzw(rscratch1, retry_load);
4845         __ bind(fail);
4846       }
4847 
4848       // Label next;
4849       // __ cmpxchgptr(/*oldv=*/disp_hdr,
4850       //               /*newv=*/rthread,
4851       //               /*addr=*/tmp,
4852       //               /*tmp=*/rscratch1,
4853       //               /*succeed*/next,
4854       //               /*fail*/NULL);
4855       // __ bind(next);
4856 
4857       // store a non-null value into the box.
4858       __ str(box, Address(box, BasicLock::displaced_header_offset_in_bytes()));
4859 
4860       // PPC port checks the following invariants
4861       // #ifdef ASSERT
4862       // bne(flag, cont);
4863       // We have acquired the monitor, check some invariants.
4864       // addw(/*monitor=*/tmp, tmp, -ObjectMonitor::owner_offset_in_bytes());
4865       // Invariant 1: _recursions should be 0.
4866       // assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
4867       // assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), tmp,
4868       //                        "monitor->_recursions should be 0", -1);
4869       // Invariant 2: OwnerIsThread shouldn't be 0.
4870       // assert(ObjectMonitor::OwnerIsThread_size_in_bytes() == 4, "unexpected size");
4871       //assert_mem4_isnot_zero(ObjectMonitor::OwnerIsThread_offset_in_bytes(), tmp,
4872       //                           "monitor->OwnerIsThread shouldn't be 0", -1);
4873       // #endif
4874     }
4875 
4876     __ bind(cont);
4877     // flag == EQ indicates success
4878     // flag == NE indicates failure
4879 
4880   %}
4881 
4882   // TODO
4883   // reimplement this with custom cmpxchgptr code
4884   // which avoids some of the unnecessary branching
4885   enc_class aarch64_enc_fast_unlock(iRegP object, iRegP box, iRegP tmp, iRegP tmp2) %{
4886     MacroAssembler _masm(&cbuf);
4887     Register oop = as_Register($object$$reg);
4888     Register box = as_Register($box$$reg);
4889     Register disp_hdr = as_Register($tmp$$reg);
4890     Register tmp = as_Register($tmp2$$reg);
4891     Label cont;
4892     Label object_has_monitor;
4893     Label cas_failed;
4894 
4895     assert_different_registers(oop, box, tmp, disp_hdr);
4896 
4897     // Always do locking in runtime.
4898     if (EmitSync & 0x01) {
4899       __ cmp(oop, zr); // Oop can't be 0 here => always false.
4900       return;
4901     }
4902 
4903     if (UseBiasedLocking && !UseOptoBiasInlining) {
4904       __ biased_locking_exit(oop, tmp, cont);
4905     }
4906 
4907     // Find the lock address and load the displaced header from the stack.
4908     __ ldr(disp_hdr, Address(box, BasicLock::displaced_header_offset_in_bytes()));
4909 
4910     // If the displaced header is 0, we have a recursive unlock.
4911     __ cmp(disp_hdr, zr);
4912     __ br(Assembler::EQ, cont);
4913 
4914 
4915     // Handle existing monitor.
4916     if ((EmitSync & 0x02) == 0) {
4917       __ ldr(tmp, Address(oop, oopDesc::mark_offset_in_bytes()));
4918       __ tbnz(disp_hdr, exact_log2(markOopDesc::monitor_value), object_has_monitor);
4919     }
4920 
4921     // Check if it is still a light weight lock, this is is true if we
4922     // see the stack address of the basicLock in the markOop of the
4923     // object.
4924 
4925       if (UseLSE) {
4926         __ mov(tmp, box);
4927         __ casl(Assembler::xword, tmp, disp_hdr, oop);
4928         __ cmp(tmp, box);
4929       } else {
4930         Label retry_load;
4931         if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
4932           __ prfm(Address(oop), PSTL1STRM);
4933         __ bind(retry_load);
4934         __ ldxr(tmp, oop);
4935         __ cmp(box, tmp);
4936         __ br(Assembler::NE, cas_failed);
4937         // use stlxr to ensure update is immediately visible
4938         __ stlxr(tmp, disp_hdr, oop);
4939         __ cbzw(tmp, cont);
4940         __ b(retry_load);
4941       }
4942 
4943     // __ cmpxchgptr(/*compare_value=*/box,
4944     //               /*exchange_value=*/disp_hdr,
4945     //               /*where=*/oop,
4946     //               /*result=*/tmp,
4947     //               cont,
4948     //               /*cas_failed*/NULL);
4949     assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
4950 
4951     __ bind(cas_failed);
4952 
4953     // Handle existing monitor.
4954     if ((EmitSync & 0x02) == 0) {
4955       __ b(cont);
4956 
4957       __ bind(object_has_monitor);
4958       __ add(tmp, tmp, -markOopDesc::monitor_value); // monitor
4959       __ ldr(rscratch1, Address(tmp, ObjectMonitor::owner_offset_in_bytes()));
4960       __ ldr(disp_hdr, Address(tmp, ObjectMonitor::recursions_offset_in_bytes()));
4961       __ eor(rscratch1, rscratch1, rthread); // Will be 0 if we are the owner.
4962       __ orr(rscratch1, rscratch1, disp_hdr); // Will be 0 if there are 0 recursions
4963       __ cmp(rscratch1, zr);
4964       __ br(Assembler::NE, cont);
4965 
4966       __ ldr(rscratch1, Address(tmp, ObjectMonitor::EntryList_offset_in_bytes()));
4967       __ ldr(disp_hdr, Address(tmp, ObjectMonitor::cxq_offset_in_bytes()));
4968       __ orr(rscratch1, rscratch1, disp_hdr); // Will be 0 if both are 0.
4969       __ cmp(rscratch1, zr);
4970       __ cbnz(rscratch1, cont);
4971       // need a release store here
4972       __ lea(tmp, Address(tmp, ObjectMonitor::owner_offset_in_bytes()));
4973       __ stlr(rscratch1, tmp); // rscratch1 is zero
4974     }
4975 
4976     __ bind(cont);
4977     // flag == EQ indicates success
4978     // flag == NE indicates failure
4979   %}
4980 
4981 %}
4982 
4983 //----------FRAME--------------------------------------------------------------
4984 // Definition of frame structure and management information.
4985 //
4986 //  S T A C K   L A Y O U T    Allocators stack-slot number
4987 //                             |   (to get allocators register number
4988 //  G  Owned by    |        |  v    add OptoReg::stack0())
4989 //  r   CALLER     |        |
4990 //  o     |        +--------+      pad to even-align allocators stack-slot
4991 //  w     V        |  pad0  |        numbers; owned by CALLER
4992 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
4993 //  h     ^        |   in   |  5
4994 //        |        |  args  |  4   Holes in incoming args owned by SELF
4995 //  |     |        |        |  3
4996 //  |     |        +--------+
4997 //  V     |        | old out|      Empty on Intel, window on Sparc
4998 //        |    old |preserve|      Must be even aligned.
4999 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
5000 //        |        |   in   |  3   area for Intel ret address
5001 //     Owned by    |preserve|      Empty on Sparc.
5002 //       SELF      +--------+
5003 //        |        |  pad2  |  2   pad to align old SP
5004 //        |        +--------+  1
5005 //        |        | locks  |  0
5006 //        |        +--------+----> OptoReg::stack0(), even aligned
5007 //        |        |  pad1  | 11   pad to align new SP
5008 //        |        +--------+
5009 //        |        |        | 10
5010 //        |        | spills |  9   spills
5011 //        V        |        |  8   (pad0 slot for callee)
5012 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
5013 //        ^        |  out   |  7
5014 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
5015 //     Owned by    +--------+
5016 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
5017 //        |    new |preserve|      Must be even-aligned.
5018 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
5019 //        |        |        |
5020 //
5021 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
5022 //         known from SELF's arguments and the Java calling convention.
5023 //         Region 6-7 is determined per call site.
5024 // Note 2: If the calling convention leaves holes in the incoming argument
5025 //         area, those holes are owned by SELF.  Holes in the outgoing area
5026 //         are owned by the CALLEE.  Holes should not be nessecary in the
5027 //         incoming area, as the Java calling convention is completely under
5028 //         the control of the AD file.  Doubles can be sorted and packed to
5029 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
5030 //         varargs C calling conventions.
5031 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
5032 //         even aligned with pad0 as needed.
5033 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
5034 //           (the latter is true on Intel but is it false on AArch64?)
5035 //         region 6-11 is even aligned; it may be padded out more so that
5036 //         the region from SP to FP meets the minimum stack alignment.
5037 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
5038 //         alignment.  Region 11, pad1, may be dynamically extended so that
5039 //         SP meets the minimum alignment.
5040 
5041 frame %{
5042   // What direction does stack grow in (assumed to be same for C & Java)
5043   stack_direction(TOWARDS_LOW);
5044 
5045   // These three registers define part of the calling convention
5046   // between compiled code and the interpreter.
5047 
5048   // Inline Cache Register or methodOop for I2C.
5049   inline_cache_reg(R12);
5050 
5051   // Method Oop Register when calling interpreter.
5052   interpreter_method_oop_reg(R12);
5053 
5054   // Number of stack slots consumed by locking an object
5055   sync_stack_slots(2);
5056 
5057   // Compiled code's Frame Pointer
5058   frame_pointer(R31);
5059 
5060   // Interpreter stores its frame pointer in a register which is
5061   // stored to the stack by I2CAdaptors.
5062   // I2CAdaptors convert from interpreted java to compiled java.
5063   interpreter_frame_pointer(R29);
5064 
5065   // Stack alignment requirement
5066   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
5067 
5068   // Number of stack slots between incoming argument block and the start of
5069   // a new frame.  The PROLOG must add this many slots to the stack.  The
5070   // EPILOG must remove this many slots. aarch64 needs two slots for
5071   // return address and fp.
5072   // TODO think this is correct but check
5073   in_preserve_stack_slots(4);
5074 
5075   // Number of outgoing stack slots killed above the out_preserve_stack_slots
5076   // for calls to C.  Supports the var-args backing area for register parms.
5077   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
5078 
5079   // The after-PROLOG location of the return address.  Location of
5080   // return address specifies a type (REG or STACK) and a number
5081   // representing the register number (i.e. - use a register name) or
5082   // stack slot.
5083   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
5084   // Otherwise, it is above the locks and verification slot and alignment word
5085   // TODO this may well be correct but need to check why that - 2 is there
5086   // ppc port uses 0 but we definitely need to allow for fixed_slots
5087   // which folds in the space used for monitors
5088   return_addr(STACK - 2 +
5089               round_to((Compile::current()->in_preserve_stack_slots() +
5090                         Compile::current()->fixed_slots()),
5091                        stack_alignment_in_slots()));
5092 
5093   // Body of function which returns an integer array locating
5094   // arguments either in registers or in stack slots.  Passed an array
5095   // of ideal registers called "sig" and a "length" count.  Stack-slot
5096   // offsets are based on outgoing arguments, i.e. a CALLER setting up
5097   // arguments for a CALLEE.  Incoming stack arguments are
5098   // automatically biased by the preserve_stack_slots field above.
5099 
5100   calling_convention
5101   %{
5102     // No difference between ingoing/outgoing just pass false
5103     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
5104   %}
5105 
5106   c_calling_convention
5107   %{
5108     // This is obviously always outgoing
5109     (void) SharedRuntime::c_calling_convention(sig_bt, regs, NULL, length);
5110   %}
5111 
5112   // Location of compiled Java return values.  Same as C for now.
5113   return_value
5114   %{
5115     // TODO do we allow ideal_reg == Op_RegN???
5116     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
5117            "only return normal values");
5118 
5119     static const int lo[Op_RegL + 1] = { // enum name
5120       0,                                 // Op_Node
5121       0,                                 // Op_Set
5122       R0_num,                            // Op_RegN
5123       R0_num,                            // Op_RegI
5124       R0_num,                            // Op_RegP
5125       V0_num,                            // Op_RegF
5126       V0_num,                            // Op_RegD
5127       R0_num                             // Op_RegL
5128     };
5129 
5130     static const int hi[Op_RegL + 1] = { // enum name
5131       0,                                 // Op_Node
5132       0,                                 // Op_Set
5133       OptoReg::Bad,                       // Op_RegN
5134       OptoReg::Bad,                      // Op_RegI
5135       R0_H_num,                          // Op_RegP
5136       OptoReg::Bad,                      // Op_RegF
5137       V0_H_num,                          // Op_RegD
5138       R0_H_num                           // Op_RegL
5139     };
5140 
5141     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
5142   %}
5143 %}
5144 
5145 //----------ATTRIBUTES---------------------------------------------------------
5146 //----------Operand Attributes-------------------------------------------------
5147 op_attrib op_cost(1);        // Required cost attribute
5148 
5149 //----------Instruction Attributes---------------------------------------------
5150 ins_attrib ins_cost(INSN_COST); // Required cost attribute
5151 ins_attrib ins_size(32);        // Required size attribute (in bits)
5152 ins_attrib ins_short_branch(0); // Required flag: is this instruction
5153                                 // a non-matching short branch variant
5154                                 // of some long branch?
5155 ins_attrib ins_alignment(4);    // Required alignment attribute (must
5156                                 // be a power of 2) specifies the
5157                                 // alignment that some part of the
5158                                 // instruction (not necessarily the
5159                                 // start) requires.  If > 1, a
5160                                 // compute_padding() function must be
5161                                 // provided for the instruction
5162 
5163 //----------OPERANDS-----------------------------------------------------------
5164 // Operand definitions must precede instruction definitions for correct parsing
5165 // in the ADLC because operands constitute user defined types which are used in
5166 // instruction definitions.
5167 
5168 //----------Simple Operands----------------------------------------------------
5169 
5170 // Integer operands 32 bit
5171 // 32 bit immediate
5172 operand immI()
5173 %{
5174   match(ConI);
5175 
5176   op_cost(0);
5177   format %{ %}
5178   interface(CONST_INTER);
5179 %}
5180 
5181 // 32 bit zero
5182 operand immI0()
5183 %{
5184   predicate(n->get_int() == 0);
5185   match(ConI);
5186 
5187   op_cost(0);
5188   format %{ %}
5189   interface(CONST_INTER);
5190 %}
5191 
5192 // 32 bit unit increment
5193 operand immI_1()
5194 %{
5195   predicate(n->get_int() == 1);
5196   match(ConI);
5197 
5198   op_cost(0);
5199   format %{ %}
5200   interface(CONST_INTER);
5201 %}
5202 
5203 // 32 bit unit decrement
5204 operand immI_M1()
5205 %{
5206   predicate(n->get_int() == -1);
5207   match(ConI);
5208 
5209   op_cost(0);
5210   format %{ %}
5211   interface(CONST_INTER);
5212 %}
5213 
5214 operand immI_le_4()
5215 %{
5216   predicate(n->get_int() <= 4);
5217   match(ConI);
5218 
5219   op_cost(0);
5220   format %{ %}
5221   interface(CONST_INTER);
5222 %}
5223 
5224 operand immI_31()
5225 %{
5226   predicate(n->get_int() == 31);
5227   match(ConI);
5228 
5229   op_cost(0);
5230   format %{ %}
5231   interface(CONST_INTER);
5232 %}
5233 
5234 operand immI_8()
5235 %{
5236   predicate(n->get_int() == 8);
5237   match(ConI);
5238 
5239   op_cost(0);
5240   format %{ %}
5241   interface(CONST_INTER);
5242 %}
5243 
5244 operand immI_16()
5245 %{
5246   predicate(n->get_int() == 16);
5247   match(ConI);
5248 
5249   op_cost(0);
5250   format %{ %}
5251   interface(CONST_INTER);
5252 %}
5253 
5254 operand immI_24()
5255 %{
5256   predicate(n->get_int() == 24);
5257   match(ConI);
5258 
5259   op_cost(0);
5260   format %{ %}
5261   interface(CONST_INTER);
5262 %}
5263 
5264 operand immI_32()
5265 %{
5266   predicate(n->get_int() == 32);
5267   match(ConI);
5268 
5269   op_cost(0);
5270   format %{ %}
5271   interface(CONST_INTER);
5272 %}
5273 
5274 operand immI_48()
5275 %{
5276   predicate(n->get_int() == 48);
5277   match(ConI);
5278 
5279   op_cost(0);
5280   format %{ %}
5281   interface(CONST_INTER);
5282 %}
5283 
5284 operand immI_56()
5285 %{
5286   predicate(n->get_int() == 56);
5287   match(ConI);
5288 
5289   op_cost(0);
5290   format %{ %}
5291   interface(CONST_INTER);
5292 %}
5293 
5294 operand immI_64()
5295 %{
5296   predicate(n->get_int() == 64);
5297   match(ConI);
5298 
5299   op_cost(0);
5300   format %{ %}
5301   interface(CONST_INTER);
5302 %}
5303 
5304 operand immI_255()
5305 %{
5306   predicate(n->get_int() == 255);
5307   match(ConI);
5308 
5309   op_cost(0);
5310   format %{ %}
5311   interface(CONST_INTER);
5312 %}
5313 
5314 operand immI_65535()
5315 %{
5316   predicate(n->get_int() == 65535);
5317   match(ConI);
5318 
5319   op_cost(0);
5320   format %{ %}
5321   interface(CONST_INTER);
5322 %}
5323 
5324 operand immL_63()
5325 %{
5326   predicate(n->get_int() == 63);
5327   match(ConI);
5328 
5329   op_cost(0);
5330   format %{ %}
5331   interface(CONST_INTER);
5332 %}
5333 
5334 operand immL_255()
5335 %{
5336   predicate(n->get_int() == 255);
5337   match(ConI);
5338 
5339   op_cost(0);
5340   format %{ %}
5341   interface(CONST_INTER);
5342 %}
5343 
5344 operand immL_65535()
5345 %{
5346   predicate(n->get_long() == 65535L);
5347   match(ConL);
5348 
5349   op_cost(0);
5350   format %{ %}
5351   interface(CONST_INTER);
5352 %}
5353 
5354 operand immL_4294967295()
5355 %{
5356   predicate(n->get_long() == 4294967295L);
5357   match(ConL);
5358 
5359   op_cost(0);
5360   format %{ %}
5361   interface(CONST_INTER);
5362 %}
5363 
5364 operand immL_bitmask()
5365 %{
5366   predicate(((n->get_long() & 0xc000000000000000l) == 0)
5367             && is_power_of_2(n->get_long() + 1));
5368   match(ConL);
5369 
5370   op_cost(0);
5371   format %{ %}
5372   interface(CONST_INTER);
5373 %}
5374 
5375 operand immI_bitmask()
5376 %{
5377   predicate(((n->get_int() & 0xc0000000) == 0)
5378             && is_power_of_2(n->get_int() + 1));
5379   match(ConI);
5380 
5381   op_cost(0);
5382   format %{ %}
5383   interface(CONST_INTER);
5384 %}
5385 
5386 // Scale values for scaled offset addressing modes (up to long but not quad)
5387 operand immIScale()
5388 %{
5389   predicate(0 <= n->get_int() && (n->get_int() <= 3));
5390   match(ConI);
5391 
5392   op_cost(0);
5393   format %{ %}
5394   interface(CONST_INTER);
5395 %}
5396 
5397 // 26 bit signed offset -- for pc-relative branches
5398 operand immI26()
5399 %{
5400   predicate(((-(1 << 25)) <= n->get_int()) && (n->get_int() < (1 << 25)));
5401   match(ConI);
5402 
5403   op_cost(0);
5404   format %{ %}
5405   interface(CONST_INTER);
5406 %}
5407 
5408 // 19 bit signed offset -- for pc-relative loads
5409 operand immI19()
5410 %{
5411   predicate(((-(1 << 18)) <= n->get_int()) && (n->get_int() < (1 << 18)));
5412   match(ConI);
5413 
5414   op_cost(0);
5415   format %{ %}
5416   interface(CONST_INTER);
5417 %}
5418 
5419 // 12 bit unsigned offset -- for base plus immediate loads
5420 operand immIU12()
5421 %{
5422   predicate((0 <= n->get_int()) && (n->get_int() < (1 << 12)));
5423   match(ConI);
5424 
5425   op_cost(0);
5426   format %{ %}
5427   interface(CONST_INTER);
5428 %}
5429 
5430 operand immLU12()
5431 %{
5432   predicate((0 <= n->get_long()) && (n->get_long() < (1 << 12)));
5433   match(ConL);
5434 
5435   op_cost(0);
5436   format %{ %}
5437   interface(CONST_INTER);
5438 %}
5439 
5440 // Offset for scaled or unscaled immediate loads and stores
5441 operand immIOffset()
5442 %{
5443   predicate(Address::offset_ok_for_immed(n->get_int()));
5444   match(ConI);
5445 
5446   op_cost(0);
5447   format %{ %}
5448   interface(CONST_INTER);
5449 %}
5450 
5451 operand immIOffset4()
5452 %{
5453   predicate(Address::offset_ok_for_immed(n->get_int(), 2));
5454   match(ConI);
5455 
5456   op_cost(0);
5457   format %{ %}
5458   interface(CONST_INTER);
5459 %}
5460 
5461 operand immIOffset8()
5462 %{
5463   predicate(Address::offset_ok_for_immed(n->get_int(), 3));
5464   match(ConI);
5465 
5466   op_cost(0);
5467   format %{ %}
5468   interface(CONST_INTER);
5469 %}
5470 
5471 operand immIOffset16()
5472 %{
5473   predicate(Address::offset_ok_for_immed(n->get_int(), 4));
5474   match(ConI);
5475 
5476   op_cost(0);
5477   format %{ %}
5478   interface(CONST_INTER);
5479 %}
5480 
5481 operand immLoffset()
5482 %{
5483   predicate(Address::offset_ok_for_immed(n->get_long()));
5484   match(ConL);
5485 
5486   op_cost(0);
5487   format %{ %}
5488   interface(CONST_INTER);
5489 %}
5490 
5491 operand immLoffset4()
5492 %{
5493   predicate(Address::offset_ok_for_immed(n->get_long(), 2));
5494   match(ConL);
5495 
5496   op_cost(0);
5497   format %{ %}
5498   interface(CONST_INTER);
5499 %}
5500 
5501 operand immLoffset8()
5502 %{
5503   predicate(Address::offset_ok_for_immed(n->get_long(), 3));
5504   match(ConL);
5505 
5506   op_cost(0);
5507   format %{ %}
5508   interface(CONST_INTER);
5509 %}
5510 
5511 operand immLoffset16()
5512 %{
5513   predicate(Address::offset_ok_for_immed(n->get_long(), 4));
5514   match(ConL);
5515 
5516   op_cost(0);
5517   format %{ %}
5518   interface(CONST_INTER);
5519 %}
5520 
5521 // 32 bit integer valid for add sub immediate
5522 operand immIAddSub()
5523 %{
5524   predicate(Assembler::operand_valid_for_add_sub_immediate((long)n->get_int()));
5525   match(ConI);
5526   op_cost(0);
5527   format %{ %}
5528   interface(CONST_INTER);
5529 %}
5530 
5531 // 32 bit unsigned integer valid for logical immediate
5532 // TODO -- check this is right when e.g the mask is 0x80000000
5533 operand immILog()
5534 %{
5535   predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/true, (unsigned long)n->get_int()));
5536   match(ConI);
5537 
5538   op_cost(0);
5539   format %{ %}
5540   interface(CONST_INTER);
5541 %}
5542 
5543 // Integer operands 64 bit
5544 // 64 bit immediate
5545 operand immL()
5546 %{
5547   match(ConL);
5548 
5549   op_cost(0);
5550   format %{ %}
5551   interface(CONST_INTER);
5552 %}
5553 
5554 // 64 bit zero
5555 operand immL0()
5556 %{
5557   predicate(n->get_long() == 0);
5558   match(ConL);
5559 
5560   op_cost(0);
5561   format %{ %}
5562   interface(CONST_INTER);
5563 %}
5564 
5565 // 64 bit unit increment
5566 operand immL_1()
5567 %{
5568   predicate(n->get_long() == 1);
5569   match(ConL);
5570 
5571   op_cost(0);
5572   format %{ %}
5573   interface(CONST_INTER);
5574 %}
5575 
5576 // 64 bit unit decrement
5577 operand immL_M1()
5578 %{
5579   predicate(n->get_long() == -1);
5580   match(ConL);
5581 
5582   op_cost(0);
5583   format %{ %}
5584   interface(CONST_INTER);
5585 %}
5586 
5587 // 32 bit offset of pc in thread anchor
5588 
5589 operand immL_pc_off()
5590 %{
5591   predicate(n->get_long() == in_bytes(JavaThread::frame_anchor_offset()) +
5592                              in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
5593   match(ConL);
5594 
5595   op_cost(0);
5596   format %{ %}
5597   interface(CONST_INTER);
5598 %}
5599 
5600 // 64 bit integer valid for add sub immediate
5601 operand immLAddSub()
5602 %{
5603   predicate(Assembler::operand_valid_for_add_sub_immediate(n->get_long()));
5604   match(ConL);
5605   op_cost(0);
5606   format %{ %}
5607   interface(CONST_INTER);
5608 %}
5609 
5610 // 64 bit integer valid for logical immediate
5611 operand immLLog()
5612 %{
5613   predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/false, (unsigned long)n->get_long()));
5614   match(ConL);
5615   op_cost(0);
5616   format %{ %}
5617   interface(CONST_INTER);
5618 %}
5619 
5620 // Long Immediate: low 32-bit mask
5621 operand immL_32bits()
5622 %{
5623   predicate(n->get_long() == 0xFFFFFFFFL);
5624   match(ConL);
5625   op_cost(0);
5626   format %{ %}
5627   interface(CONST_INTER);
5628 %}
5629 
5630 // Pointer operands
5631 // Pointer Immediate
5632 operand immP()
5633 %{
5634   match(ConP);
5635 
5636   op_cost(0);
5637   format %{ %}
5638   interface(CONST_INTER);
5639 %}
5640 
5641 // NULL Pointer Immediate
5642 operand immP0()
5643 %{
5644   predicate(n->get_ptr() == 0);
5645   match(ConP);
5646 
5647   op_cost(0);
5648   format %{ %}
5649   interface(CONST_INTER);
5650 %}
5651 
5652 // Pointer Immediate One
5653 // this is used in object initialization (initial object header)
5654 operand immP_1()
5655 %{
5656   predicate(n->get_ptr() == 1);
5657   match(ConP);
5658 
5659   op_cost(0);
5660   format %{ %}
5661   interface(CONST_INTER);
5662 %}
5663 
5664 // Polling Page Pointer Immediate
5665 operand immPollPage()
5666 %{
5667   predicate((address)n->get_ptr() == os::get_polling_page());
5668   match(ConP);
5669 
5670   op_cost(0);
5671   format %{ %}
5672   interface(CONST_INTER);
5673 %}
5674 
5675 // Card Table Byte Map Base
5676 operand immByteMapBase()
5677 %{
5678   // Get base of card map
5679   predicate((jbyte*)n->get_ptr() ==
5680         ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base);
5681   match(ConP);
5682 
5683   op_cost(0);
5684   format %{ %}
5685   interface(CONST_INTER);
5686 %}
5687 
5688 // Pointer Immediate Minus One
5689 // this is used when we want to write the current PC to the thread anchor
5690 operand immP_M1()
5691 %{
5692   predicate(n->get_ptr() == -1);
5693   match(ConP);
5694 
5695   op_cost(0);
5696   format %{ %}
5697   interface(CONST_INTER);
5698 %}
5699 
5700 // Pointer Immediate Minus Two
5701 // this is used when we want to write the current PC to the thread anchor
5702 operand immP_M2()
5703 %{
5704   predicate(n->get_ptr() == -2);
5705   match(ConP);
5706 
5707   op_cost(0);
5708   format %{ %}
5709   interface(CONST_INTER);
5710 %}
5711 
5712 // Float and Double operands
5713 // Double Immediate
5714 operand immD()
5715 %{
5716   match(ConD);
5717   op_cost(0);
5718   format %{ %}
5719   interface(CONST_INTER);
5720 %}
5721 
5722 // Double Immediate: +0.0d
5723 operand immD0()
5724 %{
5725   predicate(jlong_cast(n->getd()) == 0);
5726   match(ConD);
5727 
5728   op_cost(0);
5729   format %{ %}
5730   interface(CONST_INTER);
5731 %}
5732 
5733 // constant 'double +0.0'.
5734 operand immDPacked()
5735 %{
5736   predicate(Assembler::operand_valid_for_float_immediate(n->getd()));
5737   match(ConD);
5738   op_cost(0);
5739   format %{ %}
5740   interface(CONST_INTER);
5741 %}
5742 
5743 // Float Immediate
5744 operand immF()
5745 %{
5746   match(ConF);
5747   op_cost(0);
5748   format %{ %}
5749   interface(CONST_INTER);
5750 %}
5751 
5752 // Float Immediate: +0.0f.
5753 operand immF0()
5754 %{
5755   predicate(jint_cast(n->getf()) == 0);
5756   match(ConF);
5757 
5758   op_cost(0);
5759   format %{ %}
5760   interface(CONST_INTER);
5761 %}
5762 
5763 //
5764 operand immFPacked()
5765 %{
5766   predicate(Assembler::operand_valid_for_float_immediate((double)n->getf()));
5767   match(ConF);
5768   op_cost(0);
5769   format %{ %}
5770   interface(CONST_INTER);
5771 %}
5772 
5773 // Narrow pointer operands
5774 // Narrow Pointer Immediate
5775 operand immN()
5776 %{
5777   match(ConN);
5778 
5779   op_cost(0);
5780   format %{ %}
5781   interface(CONST_INTER);
5782 %}
5783 
5784 // Narrow NULL Pointer Immediate
5785 operand immN0()
5786 %{
5787   predicate(n->get_narrowcon() == 0);
5788   match(ConN);
5789 
5790   op_cost(0);
5791   format %{ %}
5792   interface(CONST_INTER);
5793 %}
5794 
5795 operand immNKlass()
5796 %{
5797   match(ConNKlass);
5798 
5799   op_cost(0);
5800   format %{ %}
5801   interface(CONST_INTER);
5802 %}
5803 
5804 // Integer 32 bit Register Operands
5805 // Integer 32 bitRegister (excludes SP)
5806 operand iRegI()
5807 %{
5808   constraint(ALLOC_IN_RC(any_reg32));
5809   match(RegI);
5810   match(iRegINoSp);
5811   op_cost(0);
5812   format %{ %}
5813   interface(REG_INTER);
5814 %}
5815 
5816 // Integer 32 bit Register not Special
5817 operand iRegINoSp()
5818 %{
5819   constraint(ALLOC_IN_RC(no_special_reg32));
5820   match(RegI);
5821   op_cost(0);
5822   format %{ %}
5823   interface(REG_INTER);
5824 %}
5825 
5826 // Integer 64 bit Register Operands
5827 // Integer 64 bit Register (includes SP)
5828 operand iRegL()
5829 %{
5830   constraint(ALLOC_IN_RC(any_reg));
5831   match(RegL);
5832   match(iRegLNoSp);
5833   op_cost(0);
5834   format %{ %}
5835   interface(REG_INTER);
5836 %}
5837 
5838 // Integer 64 bit Register not Special
5839 operand iRegLNoSp()
5840 %{
5841   constraint(ALLOC_IN_RC(no_special_reg));
5842   match(RegL);
5843   match(iRegL_R0);
5844   format %{ %}
5845   interface(REG_INTER);
5846 %}
5847 
5848 // Pointer Register Operands
5849 // Pointer Register
5850 operand iRegP()
5851 %{
5852   constraint(ALLOC_IN_RC(ptr_reg));
5853   match(RegP);
5854   match(iRegPNoSp);
5855   match(iRegP_R0);
5856   //match(iRegP_R2);
5857   //match(iRegP_R4);
5858   //match(iRegP_R5);
5859   match(thread_RegP);
5860   op_cost(0);
5861   format %{ %}
5862   interface(REG_INTER);
5863 %}
5864 
5865 // Pointer 64 bit Register not Special
5866 operand iRegPNoSp()
5867 %{
5868   constraint(ALLOC_IN_RC(no_special_ptr_reg));
5869   match(RegP);
5870   // match(iRegP);
5871   // match(iRegP_R0);
5872   // match(iRegP_R2);
5873   // match(iRegP_R4);
5874   // match(iRegP_R5);
5875   // match(thread_RegP);
5876   op_cost(0);
5877   format %{ %}
5878   interface(REG_INTER);
5879 %}
5880 
5881 // Pointer 64 bit Register R0 only
5882 operand iRegP_R0()
5883 %{
5884   constraint(ALLOC_IN_RC(r0_reg));
5885   match(RegP);
5886   // match(iRegP);
5887   match(iRegPNoSp);
5888   op_cost(0);
5889   format %{ %}
5890   interface(REG_INTER);
5891 %}
5892 
5893 // Pointer 64 bit Register R1 only
5894 operand iRegP_R1()
5895 %{
5896   constraint(ALLOC_IN_RC(r1_reg));
5897   match(RegP);
5898   // match(iRegP);
5899   match(iRegPNoSp);
5900   op_cost(0);
5901   format %{ %}
5902   interface(REG_INTER);
5903 %}
5904 
5905 // Pointer 64 bit Register R2 only
5906 operand iRegP_R2()
5907 %{
5908   constraint(ALLOC_IN_RC(r2_reg));
5909   match(RegP);
5910   // match(iRegP);
5911   match(iRegPNoSp);
5912   op_cost(0);
5913   format %{ %}
5914   interface(REG_INTER);
5915 %}
5916 
5917 // Pointer 64 bit Register R3 only
5918 operand iRegP_R3()
5919 %{
5920   constraint(ALLOC_IN_RC(r3_reg));
5921   match(RegP);
5922   // match(iRegP);
5923   match(iRegPNoSp);
5924   op_cost(0);
5925   format %{ %}
5926   interface(REG_INTER);
5927 %}
5928 
5929 // Pointer 64 bit Register R4 only
5930 operand iRegP_R4()
5931 %{
5932   constraint(ALLOC_IN_RC(r4_reg));
5933   match(RegP);
5934   // match(iRegP);
5935   match(iRegPNoSp);
5936   op_cost(0);
5937   format %{ %}
5938   interface(REG_INTER);
5939 %}
5940 
5941 // Pointer 64 bit Register R5 only
5942 operand iRegP_R5()
5943 %{
5944   constraint(ALLOC_IN_RC(r5_reg));
5945   match(RegP);
5946   // match(iRegP);
5947   match(iRegPNoSp);
5948   op_cost(0);
5949   format %{ %}
5950   interface(REG_INTER);
5951 %}
5952 
5953 // Pointer 64 bit Register R10 only
5954 operand iRegP_R10()
5955 %{
5956   constraint(ALLOC_IN_RC(r10_reg));
5957   match(RegP);
5958   // match(iRegP);
5959   match(iRegPNoSp);
5960   op_cost(0);
5961   format %{ %}
5962   interface(REG_INTER);
5963 %}
5964 
5965 // Long 64 bit Register R0 only
5966 operand iRegL_R0()
5967 %{
5968   constraint(ALLOC_IN_RC(r0_reg));
5969   match(RegL);
5970   match(iRegLNoSp);
5971   op_cost(0);
5972   format %{ %}
5973   interface(REG_INTER);
5974 %}
5975 
5976 // Long 64 bit Register R2 only
5977 operand iRegL_R2()
5978 %{
5979   constraint(ALLOC_IN_RC(r2_reg));
5980   match(RegL);
5981   match(iRegLNoSp);
5982   op_cost(0);
5983   format %{ %}
5984   interface(REG_INTER);
5985 %}
5986 
5987 // Long 64 bit Register R3 only
5988 operand iRegL_R3()
5989 %{
5990   constraint(ALLOC_IN_RC(r3_reg));
5991   match(RegL);
5992   match(iRegLNoSp);
5993   op_cost(0);
5994   format %{ %}
5995   interface(REG_INTER);
5996 %}
5997 
5998 // Long 64 bit Register R11 only
5999 operand iRegL_R11()
6000 %{
6001   constraint(ALLOC_IN_RC(r11_reg));
6002   match(RegL);
6003   match(iRegLNoSp);
6004   op_cost(0);
6005   format %{ %}
6006   interface(REG_INTER);
6007 %}
6008 
6009 // Pointer 64 bit Register FP only
6010 operand iRegP_FP()
6011 %{
6012   constraint(ALLOC_IN_RC(fp_reg));
6013   match(RegP);
6014   // match(iRegP);
6015   op_cost(0);
6016   format %{ %}
6017   interface(REG_INTER);
6018 %}
6019 
6020 // Register R0 only
6021 operand iRegI_R0()
6022 %{
6023   constraint(ALLOC_IN_RC(int_r0_reg));
6024   match(RegI);
6025   match(iRegINoSp);
6026   op_cost(0);
6027   format %{ %}
6028   interface(REG_INTER);
6029 %}
6030 
6031 // Register R2 only
6032 operand iRegI_R2()
6033 %{
6034   constraint(ALLOC_IN_RC(int_r2_reg));
6035   match(RegI);
6036   match(iRegINoSp);
6037   op_cost(0);
6038   format %{ %}
6039   interface(REG_INTER);
6040 %}
6041 
6042 // Register R3 only
6043 operand iRegI_R3()
6044 %{
6045   constraint(ALLOC_IN_RC(int_r3_reg));
6046   match(RegI);
6047   match(iRegINoSp);
6048   op_cost(0);
6049   format %{ %}
6050   interface(REG_INTER);
6051 %}
6052 
6053 
6054 // Register R4 only
6055 operand iRegI_R4()
6056 %{
6057   constraint(ALLOC_IN_RC(int_r4_reg));
6058   match(RegI);
6059   match(iRegINoSp);
6060   op_cost(0);
6061   format %{ %}
6062   interface(REG_INTER);
6063 %}
6064 
6065 
6066 // Pointer Register Operands
6067 // Narrow Pointer Register
6068 operand iRegN()
6069 %{
6070   constraint(ALLOC_IN_RC(any_reg32));
6071   match(RegN);
6072   match(iRegNNoSp);
6073   op_cost(0);
6074   format %{ %}
6075   interface(REG_INTER);
6076 %}
6077 
6078 operand iRegN_R0()
6079 %{
6080   constraint(ALLOC_IN_RC(r0_reg));
6081   match(iRegN);
6082   op_cost(0);
6083   format %{ %}
6084   interface(REG_INTER);
6085 %}
6086 
6087 operand iRegN_R2()
6088 %{
6089   constraint(ALLOC_IN_RC(r2_reg));
6090   match(iRegN);
6091   op_cost(0);
6092   format %{ %}
6093   interface(REG_INTER);
6094 %}
6095 
6096 operand iRegN_R3()
6097 %{
6098   constraint(ALLOC_IN_RC(r3_reg));
6099   match(iRegN);
6100   op_cost(0);
6101   format %{ %}
6102   interface(REG_INTER);
6103 %}
6104 
6105 // Integer 64 bit Register not Special
6106 operand iRegNNoSp()
6107 %{
6108   constraint(ALLOC_IN_RC(no_special_reg32));
6109   match(RegN);
6110   op_cost(0);
6111   format %{ %}
6112   interface(REG_INTER);
6113 %}
6114 
6115 // heap base register -- used for encoding immN0
6116 
6117 operand iRegIHeapbase()
6118 %{
6119   constraint(ALLOC_IN_RC(heapbase_reg));
6120   match(RegI);
6121   op_cost(0);
6122   format %{ %}
6123   interface(REG_INTER);
6124 %}
6125 
6126 // Float Register
6127 // Float register operands
6128 operand vRegF()
6129 %{
6130   constraint(ALLOC_IN_RC(float_reg));
6131   match(RegF);
6132 
6133   op_cost(0);
6134   format %{ %}
6135   interface(REG_INTER);
6136 %}
6137 
6138 // Double Register
6139 // Double register operands
6140 operand vRegD()
6141 %{
6142   constraint(ALLOC_IN_RC(double_reg));
6143   match(RegD);
6144 
6145   op_cost(0);
6146   format %{ %}
6147   interface(REG_INTER);
6148 %}
6149 
6150 operand vecD()
6151 %{
6152   constraint(ALLOC_IN_RC(vectord_reg));
6153   match(VecD);
6154 
6155   op_cost(0);
6156   format %{ %}
6157   interface(REG_INTER);
6158 %}
6159 
6160 operand vecX()
6161 %{
6162   constraint(ALLOC_IN_RC(vectorx_reg));
6163   match(VecX);
6164 
6165   op_cost(0);
6166   format %{ %}
6167   interface(REG_INTER);
6168 %}
6169 
6170 operand vRegD_V0()
6171 %{
6172   constraint(ALLOC_IN_RC(v0_reg));
6173   match(RegD);
6174   op_cost(0);
6175   format %{ %}
6176   interface(REG_INTER);
6177 %}
6178 
6179 operand vRegD_V1()
6180 %{
6181   constraint(ALLOC_IN_RC(v1_reg));
6182   match(RegD);
6183   op_cost(0);
6184   format %{ %}
6185   interface(REG_INTER);
6186 %}
6187 
6188 operand vRegD_V2()
6189 %{
6190   constraint(ALLOC_IN_RC(v2_reg));
6191   match(RegD);
6192   op_cost(0);
6193   format %{ %}
6194   interface(REG_INTER);
6195 %}
6196 
6197 operand vRegD_V3()
6198 %{
6199   constraint(ALLOC_IN_RC(v3_reg));
6200   match(RegD);
6201   op_cost(0);
6202   format %{ %}
6203   interface(REG_INTER);
6204 %}
6205 
6206 // Flags register, used as output of signed compare instructions
6207 
6208 // note that on AArch64 we also use this register as the output for
6209 // for floating point compare instructions (CmpF CmpD). this ensures
6210 // that ordered inequality tests use GT, GE, LT or LE none of which
6211 // pass through cases where the result is unordered i.e. one or both
6212 // inputs to the compare is a NaN. this means that the ideal code can
6213 // replace e.g. a GT with an LE and not end up capturing the NaN case
6214 // (where the comparison should always fail). EQ and NE tests are
6215 // always generated in ideal code so that unordered folds into the NE
6216 // case, matching the behaviour of AArch64 NE.
6217 //
6218 // This differs from x86 where the outputs of FP compares use a
6219 // special FP flags registers and where compares based on this
6220 // register are distinguished into ordered inequalities (cmpOpUCF) and
6221 // EQ/NEQ tests (cmpOpUCF2). x86 has to special case the latter tests
6222 // to explicitly handle the unordered case in branches. x86 also has
6223 // to include extra CMoveX rules to accept a cmpOpUCF input.
6224 
6225 operand rFlagsReg()
6226 %{
6227   constraint(ALLOC_IN_RC(int_flags));
6228   match(RegFlags);
6229 
6230   op_cost(0);
6231   format %{ "RFLAGS" %}
6232   interface(REG_INTER);
6233 %}
6234 
6235 // Flags register, used as output of unsigned compare instructions
6236 operand rFlagsRegU()
6237 %{
6238   constraint(ALLOC_IN_RC(int_flags));
6239   match(RegFlags);
6240 
6241   op_cost(0);
6242   format %{ "RFLAGSU" %}
6243   interface(REG_INTER);
6244 %}
6245 
6246 // Special Registers
6247 
6248 // Method Register
6249 operand inline_cache_RegP(iRegP reg)
6250 %{
6251   constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg
6252   match(reg);
6253   match(iRegPNoSp);
6254   op_cost(0);
6255   format %{ %}
6256   interface(REG_INTER);
6257 %}
6258 
6259 operand interpreter_method_oop_RegP(iRegP reg)
6260 %{
6261   constraint(ALLOC_IN_RC(method_reg)); // interpreter_method_oop_reg
6262   match(reg);
6263   match(iRegPNoSp);
6264   op_cost(0);
6265   format %{ %}
6266   interface(REG_INTER);
6267 %}
6268 
6269 // Thread Register
6270 operand thread_RegP(iRegP reg)
6271 %{
6272   constraint(ALLOC_IN_RC(thread_reg)); // link_reg
6273   match(reg);
6274   op_cost(0);
6275   format %{ %}
6276   interface(REG_INTER);
6277 %}
6278 
6279 operand lr_RegP(iRegP reg)
6280 %{
6281   constraint(ALLOC_IN_RC(lr_reg)); // link_reg
6282   match(reg);
6283   op_cost(0);
6284   format %{ %}
6285   interface(REG_INTER);
6286 %}
6287 
6288 //----------Memory Operands----------------------------------------------------
6289 
6290 operand indirect(iRegP reg)
6291 %{
6292   constraint(ALLOC_IN_RC(ptr_reg));
6293   match(reg);
6294   op_cost(0);
6295   format %{ "[$reg]" %}
6296   interface(MEMORY_INTER) %{
6297     base($reg);
6298     index(0xffffffff);
6299     scale(0x0);
6300     disp(0x0);
6301   %}
6302 %}
6303 
6304 operand indIndexScaledI2L(iRegP reg, iRegI ireg, immIScale scale)
6305 %{
6306   constraint(ALLOC_IN_RC(ptr_reg));
6307   predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
6308   match(AddP reg (LShiftL (ConvI2L ireg) scale));
6309   op_cost(0);
6310   format %{ "$reg, $ireg sxtw($scale), 0, I2L" %}
6311   interface(MEMORY_INTER) %{
6312     base($reg);
6313     index($ireg);
6314     scale($scale);
6315     disp(0x0);
6316   %}
6317 %}
6318 
6319 operand indIndexScaled(iRegP reg, iRegL lreg, immIScale scale)
6320 %{
6321   constraint(ALLOC_IN_RC(ptr_reg));
6322   predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
6323   match(AddP reg (LShiftL lreg scale));
6324   op_cost(0);
6325   format %{ "$reg, $lreg lsl($scale)" %}
6326   interface(MEMORY_INTER) %{
6327     base($reg);
6328     index($lreg);
6329     scale($scale);
6330     disp(0x0);
6331   %}
6332 %}
6333 
6334 operand indIndexI2L(iRegP reg, iRegI ireg)
6335 %{
6336   constraint(ALLOC_IN_RC(ptr_reg));
6337   match(AddP reg (ConvI2L ireg));
6338   op_cost(0);
6339   format %{ "$reg, $ireg, 0, I2L" %}
6340   interface(MEMORY_INTER) %{
6341     base($reg);
6342     index($ireg);
6343     scale(0x0);
6344     disp(0x0);
6345   %}
6346 %}
6347 
6348 operand indIndex(iRegP reg, iRegL lreg)
6349 %{
6350   constraint(ALLOC_IN_RC(ptr_reg));
6351   match(AddP reg lreg);
6352   op_cost(0);
6353   format %{ "$reg, $lreg" %}
6354   interface(MEMORY_INTER) %{
6355     base($reg);
6356     index($lreg);
6357     scale(0x0);
6358     disp(0x0);
6359   %}
6360 %}
6361 
6362 operand indOffI(iRegP reg, immIOffset off)
6363 %{
6364   constraint(ALLOC_IN_RC(ptr_reg));
6365   match(AddP reg off);
6366   op_cost(0);
6367   format %{ "[$reg, $off]" %}
6368   interface(MEMORY_INTER) %{
6369     base($reg);
6370     index(0xffffffff);
6371     scale(0x0);
6372     disp($off);
6373   %}
6374 %}
6375 
6376 operand indOffI4(iRegP reg, immIOffset4 off)
6377 %{
6378   constraint(ALLOC_IN_RC(ptr_reg));
6379   match(AddP reg off);
6380   op_cost(0);
6381   format %{ "[$reg, $off]" %}
6382   interface(MEMORY_INTER) %{
6383     base($reg);
6384     index(0xffffffff);
6385     scale(0x0);
6386     disp($off);
6387   %}
6388 %}
6389 
6390 operand indOffI8(iRegP reg, immIOffset8 off)
6391 %{
6392   constraint(ALLOC_IN_RC(ptr_reg));
6393   match(AddP reg off);
6394   op_cost(0);
6395   format %{ "[$reg, $off]" %}
6396   interface(MEMORY_INTER) %{
6397     base($reg);
6398     index(0xffffffff);
6399     scale(0x0);
6400     disp($off);
6401   %}
6402 %}
6403 
6404 operand indOffI16(iRegP reg, immIOffset16 off)
6405 %{
6406   constraint(ALLOC_IN_RC(ptr_reg));
6407   match(AddP reg off);
6408   op_cost(0);
6409   format %{ "[$reg, $off]" %}
6410   interface(MEMORY_INTER) %{
6411     base($reg);
6412     index(0xffffffff);
6413     scale(0x0);
6414     disp($off);
6415   %}
6416 %}
6417 
6418 operand indOffL(iRegP reg, immLoffset off)
6419 %{
6420   constraint(ALLOC_IN_RC(ptr_reg));
6421   match(AddP reg off);
6422   op_cost(0);
6423   format %{ "[$reg, $off]" %}
6424   interface(MEMORY_INTER) %{
6425     base($reg);
6426     index(0xffffffff);
6427     scale(0x0);
6428     disp($off);
6429   %}
6430 %}
6431 
6432 operand indOffL4(iRegP reg, immLoffset4 off)
6433 %{
6434   constraint(ALLOC_IN_RC(ptr_reg));
6435   match(AddP reg off);
6436   op_cost(0);
6437   format %{ "[$reg, $off]" %}
6438   interface(MEMORY_INTER) %{
6439     base($reg);
6440     index(0xffffffff);
6441     scale(0x0);
6442     disp($off);
6443   %}
6444 %}
6445 
6446 operand indOffL8(iRegP reg, immLoffset8 off)
6447 %{
6448   constraint(ALLOC_IN_RC(ptr_reg));
6449   match(AddP reg off);
6450   op_cost(0);
6451   format %{ "[$reg, $off]" %}
6452   interface(MEMORY_INTER) %{
6453     base($reg);
6454     index(0xffffffff);
6455     scale(0x0);
6456     disp($off);
6457   %}
6458 %}
6459 
6460 operand indOffL16(iRegP reg, immLoffset16 off)
6461 %{
6462   constraint(ALLOC_IN_RC(ptr_reg));
6463   match(AddP reg off);
6464   op_cost(0);
6465   format %{ "[$reg, $off]" %}
6466   interface(MEMORY_INTER) %{
6467     base($reg);
6468     index(0xffffffff);
6469     scale(0x0);
6470     disp($off);
6471   %}
6472 %}
6473 
6474 operand indirectN(iRegN reg)
6475 %{
6476   predicate(Universe::narrow_oop_shift() == 0);
6477   constraint(ALLOC_IN_RC(ptr_reg));
6478   match(DecodeN reg);
6479   op_cost(0);
6480   format %{ "[$reg]\t# narrow" %}
6481   interface(MEMORY_INTER) %{
6482     base($reg);
6483     index(0xffffffff);
6484     scale(0x0);
6485     disp(0x0);
6486   %}
6487 %}
6488 
6489 operand indIndexScaledI2LN(iRegN reg, iRegI ireg, immIScale scale)
6490 %{
6491   predicate(Universe::narrow_oop_shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
6492   constraint(ALLOC_IN_RC(ptr_reg));
6493   match(AddP (DecodeN reg) (LShiftL (ConvI2L ireg) scale));
6494   op_cost(0);
6495   format %{ "$reg, $ireg sxtw($scale), 0, I2L\t# narrow" %}
6496   interface(MEMORY_INTER) %{
6497     base($reg);
6498     index($ireg);
6499     scale($scale);
6500     disp(0x0);
6501   %}
6502 %}
6503 
6504 operand indIndexScaledN(iRegN reg, iRegL lreg, immIScale scale)
6505 %{
6506   predicate(Universe::narrow_oop_shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
6507   constraint(ALLOC_IN_RC(ptr_reg));
6508   match(AddP (DecodeN reg) (LShiftL lreg scale));
6509   op_cost(0);
6510   format %{ "$reg, $lreg lsl($scale)\t# narrow" %}
6511   interface(MEMORY_INTER) %{
6512     base($reg);
6513     index($lreg);
6514     scale($scale);
6515     disp(0x0);
6516   %}
6517 %}
6518 
6519 operand indIndexI2LN(iRegN reg, iRegI ireg)
6520 %{
6521   predicate(Universe::narrow_oop_shift() == 0);
6522   constraint(ALLOC_IN_RC(ptr_reg));
6523   match(AddP (DecodeN reg) (ConvI2L ireg));
6524   op_cost(0);
6525   format %{ "$reg, $ireg, 0, I2L\t# narrow" %}
6526   interface(MEMORY_INTER) %{
6527     base($reg);
6528     index($ireg);
6529     scale(0x0);
6530     disp(0x0);
6531   %}
6532 %}
6533 
6534 operand indIndexN(iRegN reg, iRegL lreg)
6535 %{
6536   predicate(Universe::narrow_oop_shift() == 0);
6537   constraint(ALLOC_IN_RC(ptr_reg));
6538   match(AddP (DecodeN reg) lreg);
6539   op_cost(0);
6540   format %{ "$reg, $lreg\t# narrow" %}
6541   interface(MEMORY_INTER) %{
6542     base($reg);
6543     index($lreg);
6544     scale(0x0);
6545     disp(0x0);
6546   %}
6547 %}
6548 
6549 operand indOffIN(iRegN reg, immIOffset off)
6550 %{
6551   predicate(Universe::narrow_oop_shift() == 0);
6552   constraint(ALLOC_IN_RC(ptr_reg));
6553   match(AddP (DecodeN reg) off);
6554   op_cost(0);
6555   format %{ "[$reg, $off]\t# narrow" %}
6556   interface(MEMORY_INTER) %{
6557     base($reg);
6558     index(0xffffffff);
6559     scale(0x0);
6560     disp($off);
6561   %}
6562 %}
6563 
6564 operand indOffLN(iRegN reg, immLoffset off)
6565 %{
6566   predicate(Universe::narrow_oop_shift() == 0);
6567   constraint(ALLOC_IN_RC(ptr_reg));
6568   match(AddP (DecodeN reg) off);
6569   op_cost(0);
6570   format %{ "[$reg, $off]\t# narrow" %}
6571   interface(MEMORY_INTER) %{
6572     base($reg);
6573     index(0xffffffff);
6574     scale(0x0);
6575     disp($off);
6576   %}
6577 %}
6578 
6579 
6580 
6581 // AArch64 opto stubs need to write to the pc slot in the thread anchor
6582 operand thread_anchor_pc(thread_RegP reg, immL_pc_off off)
6583 %{
6584   constraint(ALLOC_IN_RC(ptr_reg));
6585   match(AddP reg off);
6586   op_cost(0);
6587   format %{ "[$reg, $off]" %}
6588   interface(MEMORY_INTER) %{
6589     base($reg);
6590     index(0xffffffff);
6591     scale(0x0);
6592     disp($off);
6593   %}
6594 %}
6595 
6596 //----------Special Memory Operands--------------------------------------------
6597 // Stack Slot Operand - This operand is used for loading and storing temporary
6598 //                      values on the stack where a match requires a value to
6599 //                      flow through memory.
6600 operand stackSlotP(sRegP reg)
6601 %{
6602   constraint(ALLOC_IN_RC(stack_slots));
6603   op_cost(100);
6604   // No match rule because this operand is only generated in matching
6605   // match(RegP);
6606   format %{ "[$reg]" %}
6607   interface(MEMORY_INTER) %{
6608     base(0x1e);  // RSP
6609     index(0x0);  // No Index
6610     scale(0x0);  // No Scale
6611     disp($reg);  // Stack Offset
6612   %}
6613 %}
6614 
6615 operand stackSlotI(sRegI reg)
6616 %{
6617   constraint(ALLOC_IN_RC(stack_slots));
6618   // No match rule because this operand is only generated in matching
6619   // match(RegI);
6620   format %{ "[$reg]" %}
6621   interface(MEMORY_INTER) %{
6622     base(0x1e);  // RSP
6623     index(0x0);  // No Index
6624     scale(0x0);  // No Scale
6625     disp($reg);  // Stack Offset
6626   %}
6627 %}
6628 
6629 operand stackSlotF(sRegF reg)
6630 %{
6631   constraint(ALLOC_IN_RC(stack_slots));
6632   // No match rule because this operand is only generated in matching
6633   // match(RegF);
6634   format %{ "[$reg]" %}
6635   interface(MEMORY_INTER) %{
6636     base(0x1e);  // RSP
6637     index(0x0);  // No Index
6638     scale(0x0);  // No Scale
6639     disp($reg);  // Stack Offset
6640   %}
6641 %}
6642 
6643 operand stackSlotD(sRegD reg)
6644 %{
6645   constraint(ALLOC_IN_RC(stack_slots));
6646   // No match rule because this operand is only generated in matching
6647   // match(RegD);
6648   format %{ "[$reg]" %}
6649   interface(MEMORY_INTER) %{
6650     base(0x1e);  // RSP
6651     index(0x0);  // No Index
6652     scale(0x0);  // No Scale
6653     disp($reg);  // Stack Offset
6654   %}
6655 %}
6656 
6657 operand stackSlotL(sRegL reg)
6658 %{
6659   constraint(ALLOC_IN_RC(stack_slots));
6660   // No match rule because this operand is only generated in matching
6661   // match(RegL);
6662   format %{ "[$reg]" %}
6663   interface(MEMORY_INTER) %{
6664     base(0x1e);  // RSP
6665     index(0x0);  // No Index
6666     scale(0x0);  // No Scale
6667     disp($reg);  // Stack Offset
6668   %}
6669 %}
6670 
6671 // Operands for expressing Control Flow
6672 // NOTE: Label is a predefined operand which should not be redefined in
6673 //       the AD file. It is generically handled within the ADLC.
6674 
6675 //----------Conditional Branch Operands----------------------------------------
6676 // Comparison Op  - This is the operation of the comparison, and is limited to
6677 //                  the following set of codes:
6678 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
6679 //
6680 // Other attributes of the comparison, such as unsignedness, are specified
6681 // by the comparison instruction that sets a condition code flags register.
6682 // That result is represented by a flags operand whose subtype is appropriate
6683 // to the unsignedness (etc.) of the comparison.
6684 //
6685 // Later, the instruction which matches both the Comparison Op (a Bool) and
6686 // the flags (produced by the Cmp) specifies the coding of the comparison op
6687 // by matching a specific subtype of Bool operand below, such as cmpOpU.
6688 
6689 // used for signed integral comparisons and fp comparisons
6690 
6691 operand cmpOp()
6692 %{
6693   match(Bool);
6694 
6695   format %{ "" %}
6696   interface(COND_INTER) %{
6697     equal(0x0, "eq");
6698     not_equal(0x1, "ne");
6699     less(0xb, "lt");
6700     greater_equal(0xa, "ge");
6701     less_equal(0xd, "le");
6702     greater(0xc, "gt");
6703     overflow(0x6, "vs");
6704     no_overflow(0x7, "vc");
6705   %}
6706 %}
6707 
6708 // used for unsigned integral comparisons
6709 
6710 operand cmpOpU()
6711 %{
6712   match(Bool);
6713 
6714   format %{ "" %}
6715   interface(COND_INTER) %{
6716     equal(0x0, "eq");
6717     not_equal(0x1, "ne");
6718     less(0x3, "lo");
6719     greater_equal(0x2, "hs");
6720     less_equal(0x9, "ls");
6721     greater(0x8, "hi");
6722     overflow(0x6, "vs");
6723     no_overflow(0x7, "vc");
6724   %}
6725 %}
6726 
6727 // used for certain integral comparisons which can be
6728 // converted to cbxx or tbxx instructions
6729 
6730 operand cmpOpEqNe()
6731 %{
6732   match(Bool);
6733   match(CmpOp);
6734   op_cost(0);
6735   predicate(n->as_Bool()->_test._test == BoolTest::ne
6736             || n->as_Bool()->_test._test == BoolTest::eq);
6737 
6738   format %{ "" %}
6739   interface(COND_INTER) %{
6740     equal(0x0, "eq");
6741     not_equal(0x1, "ne");
6742     less(0xb, "lt");
6743     greater_equal(0xa, "ge");
6744     less_equal(0xd, "le");
6745     greater(0xc, "gt");
6746     overflow(0x6, "vs");
6747     no_overflow(0x7, "vc");
6748   %}
6749 %}
6750 
6751 // used for certain integral comparisons which can be
6752 // converted to cbxx or tbxx instructions
6753 
6754 operand cmpOpLtGe()
6755 %{
6756   match(Bool);
6757   match(CmpOp);
6758   op_cost(0);
6759 
6760   predicate(n->as_Bool()->_test._test == BoolTest::lt
6761             || n->as_Bool()->_test._test == BoolTest::ge);
6762 
6763   format %{ "" %}
6764   interface(COND_INTER) %{
6765     equal(0x0, "eq");
6766     not_equal(0x1, "ne");
6767     less(0xb, "lt");
6768     greater_equal(0xa, "ge");
6769     less_equal(0xd, "le");
6770     greater(0xc, "gt");
6771     overflow(0x6, "vs");
6772     no_overflow(0x7, "vc");
6773   %}
6774 %}
6775 
6776 // used for certain unsigned integral comparisons which can be
6777 // converted to cbxx or tbxx instructions
6778 
6779 operand cmpOpUEqNeLtGe()
6780 %{
6781   match(Bool);
6782   match(CmpOp);
6783   op_cost(0);
6784 
6785   predicate(n->as_Bool()->_test._test == BoolTest::eq
6786             || n->as_Bool()->_test._test == BoolTest::ne
6787             || n->as_Bool()->_test._test == BoolTest::lt
6788             || n->as_Bool()->_test._test == BoolTest::ge);
6789 
6790   format %{ "" %}
6791   interface(COND_INTER) %{
6792     equal(0x0, "eq");
6793     not_equal(0x1, "ne");
6794     less(0xb, "lt");
6795     greater_equal(0xa, "ge");
6796     less_equal(0xd, "le");
6797     greater(0xc, "gt");
6798     overflow(0x6, "vs");
6799     no_overflow(0x7, "vc");
6800   %}
6801 %}
6802 
6803 // Special operand allowing long args to int ops to be truncated for free
6804 
6805 operand iRegL2I(iRegL reg) %{
6806 
6807   op_cost(0);
6808 
6809   match(ConvL2I reg);
6810 
6811   format %{ "l2i($reg)" %}
6812 
6813   interface(REG_INTER)
6814 %}
6815 
6816 opclass vmem4(indirect, indIndex, indOffI4, indOffL4);
6817 opclass vmem8(indirect, indIndex, indOffI8, indOffL8);
6818 opclass vmem16(indirect, indIndex, indOffI16, indOffL16);
6819 
6820 //----------OPERAND CLASSES----------------------------------------------------
6821 // Operand Classes are groups of operands that are used as to simplify
6822 // instruction definitions by not requiring the AD writer to specify
6823 // separate instructions for every form of operand when the
6824 // instruction accepts multiple operand types with the same basic
6825 // encoding and format. The classic case of this is memory operands.
6826 
6827 // memory is used to define read/write location for load/store
6828 // instruction defs. we can turn a memory op into an Address
6829 
6830 opclass memory(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI, indOffL,
6831                indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN);
6832 
6833 // iRegIorL2I is used for src inputs in rules for 32 bit int (I)
6834 // operations. it allows the src to be either an iRegI or a (ConvL2I
6835 // iRegL). in the latter case the l2i normally planted for a ConvL2I
6836 // can be elided because the 32-bit instruction will just employ the
6837 // lower 32 bits anyway.
6838 //
6839 // n.b. this does not elide all L2I conversions. if the truncated
6840 // value is consumed by more than one operation then the ConvL2I
6841 // cannot be bundled into the consuming nodes so an l2i gets planted
6842 // (actually a movw $dst $src) and the downstream instructions consume
6843 // the result of the l2i as an iRegI input. That's a shame since the
6844 // movw is actually redundant but its not too costly.
6845 
6846 opclass iRegIorL2I(iRegI, iRegL2I);
6847 
6848 //----------PIPELINE-----------------------------------------------------------
6849 // Rules which define the behavior of the target architectures pipeline.
6850 
6851 // For specific pipelines, eg A53, define the stages of that pipeline
6852 //pipe_desc(ISS, EX1, EX2, WR);
6853 #define ISS S0
6854 #define EX1 S1
6855 #define EX2 S2
6856 #define WR  S3
6857 
6858 // Integer ALU reg operation
6859 pipeline %{
6860 
6861 attributes %{
6862   // ARM instructions are of fixed length
6863   fixed_size_instructions;        // Fixed size instructions TODO does
6864   max_instructions_per_bundle = 2;   // A53 = 2, A57 = 4
6865   // ARM instructions come in 32-bit word units
6866   instruction_unit_size = 4;         // An instruction is 4 bytes long
6867   instruction_fetch_unit_size = 64;  // The processor fetches one line
6868   instruction_fetch_units = 1;       // of 64 bytes
6869 
6870   // List of nop instructions
6871   nops( MachNop );
6872 %}
6873 
6874 // We don't use an actual pipeline model so don't care about resources
6875 // or description. we do use pipeline classes to introduce fixed
6876 // latencies
6877 
6878 //----------RESOURCES----------------------------------------------------------
6879 // Resources are the functional units available to the machine
6880 
6881 resources( INS0, INS1, INS01 = INS0 | INS1,
6882            ALU0, ALU1, ALU = ALU0 | ALU1,
6883            MAC,
6884            DIV,
6885            BRANCH,
6886            LDST,
6887            NEON_FP);
6888 
6889 //----------PIPELINE DESCRIPTION-----------------------------------------------
6890 // Pipeline Description specifies the stages in the machine's pipeline
6891 
6892 // Define the pipeline as a generic 6 stage pipeline
6893 pipe_desc(S0, S1, S2, S3, S4, S5);
6894 
6895 //----------PIPELINE CLASSES---------------------------------------------------
6896 // Pipeline Classes describe the stages in which input and output are
6897 // referenced by the hardware pipeline.
6898 
6899 pipe_class fp_dop_reg_reg_s(vRegF dst, vRegF src1, vRegF src2)
6900 %{
6901   single_instruction;
6902   src1   : S1(read);
6903   src2   : S2(read);
6904   dst    : S5(write);
6905   INS01  : ISS;
6906   NEON_FP : S5;
6907 %}
6908 
6909 pipe_class fp_dop_reg_reg_d(vRegD dst, vRegD src1, vRegD src2)
6910 %{
6911   single_instruction;
6912   src1   : S1(read);
6913   src2   : S2(read);
6914   dst    : S5(write);
6915   INS01  : ISS;
6916   NEON_FP : S5;
6917 %}
6918 
6919 pipe_class fp_uop_s(vRegF dst, vRegF src)
6920 %{
6921   single_instruction;
6922   src    : S1(read);
6923   dst    : S5(write);
6924   INS01  : ISS;
6925   NEON_FP : S5;
6926 %}
6927 
6928 pipe_class fp_uop_d(vRegD dst, vRegD src)
6929 %{
6930   single_instruction;
6931   src    : S1(read);
6932   dst    : S5(write);
6933   INS01  : ISS;
6934   NEON_FP : S5;
6935 %}
6936 
6937 pipe_class fp_d2f(vRegF dst, vRegD src)
6938 %{
6939   single_instruction;
6940   src    : S1(read);
6941   dst    : S5(write);
6942   INS01  : ISS;
6943   NEON_FP : S5;
6944 %}
6945 
6946 pipe_class fp_f2d(vRegD dst, vRegF src)
6947 %{
6948   single_instruction;
6949   src    : S1(read);
6950   dst    : S5(write);
6951   INS01  : ISS;
6952   NEON_FP : S5;
6953 %}
6954 
6955 pipe_class fp_f2i(iRegINoSp dst, vRegF src)
6956 %{
6957   single_instruction;
6958   src    : S1(read);
6959   dst    : S5(write);
6960   INS01  : ISS;
6961   NEON_FP : S5;
6962 %}
6963 
6964 pipe_class fp_f2l(iRegLNoSp dst, vRegF src)
6965 %{
6966   single_instruction;
6967   src    : S1(read);
6968   dst    : S5(write);
6969   INS01  : ISS;
6970   NEON_FP : S5;
6971 %}
6972 
6973 pipe_class fp_i2f(vRegF dst, iRegIorL2I src)
6974 %{
6975   single_instruction;
6976   src    : S1(read);
6977   dst    : S5(write);
6978   INS01  : ISS;
6979   NEON_FP : S5;
6980 %}
6981 
6982 pipe_class fp_l2f(vRegF dst, iRegL src)
6983 %{
6984   single_instruction;
6985   src    : S1(read);
6986   dst    : S5(write);
6987   INS01  : ISS;
6988   NEON_FP : S5;
6989 %}
6990 
6991 pipe_class fp_d2i(iRegINoSp dst, vRegD src)
6992 %{
6993   single_instruction;
6994   src    : S1(read);
6995   dst    : S5(write);
6996   INS01  : ISS;
6997   NEON_FP : S5;
6998 %}
6999 
7000 pipe_class fp_d2l(iRegLNoSp dst, vRegD src)
7001 %{
7002   single_instruction;
7003   src    : S1(read);
7004   dst    : S5(write);
7005   INS01  : ISS;
7006   NEON_FP : S5;
7007 %}
7008 
7009 pipe_class fp_i2d(vRegD dst, iRegIorL2I src)
7010 %{
7011   single_instruction;
7012   src    : S1(read);
7013   dst    : S5(write);
7014   INS01  : ISS;
7015   NEON_FP : S5;
7016 %}
7017 
7018 pipe_class fp_l2d(vRegD dst, iRegIorL2I src)
7019 %{
7020   single_instruction;
7021   src    : S1(read);
7022   dst    : S5(write);
7023   INS01  : ISS;
7024   NEON_FP : S5;
7025 %}
7026 
7027 pipe_class fp_div_s(vRegF dst, vRegF src1, vRegF src2)
7028 %{
7029   single_instruction;
7030   src1   : S1(read);
7031   src2   : S2(read);
7032   dst    : S5(write);
7033   INS0   : ISS;
7034   NEON_FP : S5;
7035 %}
7036 
7037 pipe_class fp_div_d(vRegD dst, vRegD src1, vRegD src2)
7038 %{
7039   single_instruction;
7040   src1   : S1(read);
7041   src2   : S2(read);
7042   dst    : S5(write);
7043   INS0   : ISS;
7044   NEON_FP : S5;
7045 %}
7046 
7047 pipe_class fp_cond_reg_reg_s(vRegF dst, vRegF src1, vRegF src2, rFlagsReg cr)
7048 %{
7049   single_instruction;
7050   cr     : S1(read);
7051   src1   : S1(read);
7052   src2   : S1(read);
7053   dst    : S3(write);
7054   INS01  : ISS;
7055   NEON_FP : S3;
7056 %}
7057 
7058 pipe_class fp_cond_reg_reg_d(vRegD dst, vRegD src1, vRegD src2, rFlagsReg cr)
7059 %{
7060   single_instruction;
7061   cr     : S1(read);
7062   src1   : S1(read);
7063   src2   : S1(read);
7064   dst    : S3(write);
7065   INS01  : ISS;
7066   NEON_FP : S3;
7067 %}
7068 
7069 pipe_class fp_imm_s(vRegF dst)
7070 %{
7071   single_instruction;
7072   dst    : S3(write);
7073   INS01  : ISS;
7074   NEON_FP : S3;
7075 %}
7076 
7077 pipe_class fp_imm_d(vRegD dst)
7078 %{
7079   single_instruction;
7080   dst    : S3(write);
7081   INS01  : ISS;
7082   NEON_FP : S3;
7083 %}
7084 
7085 pipe_class fp_load_constant_s(vRegF dst)
7086 %{
7087   single_instruction;
7088   dst    : S4(write);
7089   INS01  : ISS;
7090   NEON_FP : S4;
7091 %}
7092 
7093 pipe_class fp_load_constant_d(vRegD dst)
7094 %{
7095   single_instruction;
7096   dst    : S4(write);
7097   INS01  : ISS;
7098   NEON_FP : S4;
7099 %}
7100 
7101 pipe_class vmul64(vecD dst, vecD src1, vecD src2)
7102 %{
7103   single_instruction;
7104   dst    : S5(write);
7105   src1   : S1(read);
7106   src2   : S1(read);
7107   INS01  : ISS;
7108   NEON_FP : S5;
7109 %}
7110 
7111 pipe_class vmul128(vecX dst, vecX src1, vecX src2)
7112 %{
7113   single_instruction;
7114   dst    : S5(write);
7115   src1   : S1(read);
7116   src2   : S1(read);
7117   INS0   : ISS;
7118   NEON_FP : S5;
7119 %}
7120 
7121 pipe_class vmla64(vecD dst, vecD src1, vecD src2)
7122 %{
7123   single_instruction;
7124   dst    : S5(write);
7125   src1   : S1(read);
7126   src2   : S1(read);
7127   dst    : S1(read);
7128   INS01  : ISS;
7129   NEON_FP : S5;
7130 %}
7131 
7132 pipe_class vmla128(vecX dst, vecX src1, vecX src2)
7133 %{
7134   single_instruction;
7135   dst    : S5(write);
7136   src1   : S1(read);
7137   src2   : S1(read);
7138   dst    : S1(read);
7139   INS0   : ISS;
7140   NEON_FP : S5;
7141 %}
7142 
7143 pipe_class vdop64(vecD dst, vecD src1, vecD src2)
7144 %{
7145   single_instruction;
7146   dst    : S4(write);
7147   src1   : S2(read);
7148   src2   : S2(read);
7149   INS01  : ISS;
7150   NEON_FP : S4;
7151 %}
7152 
7153 pipe_class vdop128(vecX dst, vecX src1, vecX src2)
7154 %{
7155   single_instruction;
7156   dst    : S4(write);
7157   src1   : S2(read);
7158   src2   : S2(read);
7159   INS0   : ISS;
7160   NEON_FP : S4;
7161 %}
7162 
7163 pipe_class vlogical64(vecD dst, vecD src1, vecD src2)
7164 %{
7165   single_instruction;
7166   dst    : S3(write);
7167   src1   : S2(read);
7168   src2   : S2(read);
7169   INS01  : ISS;
7170   NEON_FP : S3;
7171 %}
7172 
7173 pipe_class vlogical128(vecX dst, vecX src1, vecX src2)
7174 %{
7175   single_instruction;
7176   dst    : S3(write);
7177   src1   : S2(read);
7178   src2   : S2(read);
7179   INS0   : ISS;
7180   NEON_FP : S3;
7181 %}
7182 
7183 pipe_class vshift64(vecD dst, vecD src, vecX shift)
7184 %{
7185   single_instruction;
7186   dst    : S3(write);
7187   src    : S1(read);
7188   shift  : S1(read);
7189   INS01  : ISS;
7190   NEON_FP : S3;
7191 %}
7192 
7193 pipe_class vshift128(vecX dst, vecX src, vecX shift)
7194 %{
7195   single_instruction;
7196   dst    : S3(write);
7197   src    : S1(read);
7198   shift  : S1(read);
7199   INS0   : ISS;
7200   NEON_FP : S3;
7201 %}
7202 
7203 pipe_class vshift64_imm(vecD dst, vecD src, immI shift)
7204 %{
7205   single_instruction;
7206   dst    : S3(write);
7207   src    : S1(read);
7208   INS01  : ISS;
7209   NEON_FP : S3;
7210 %}
7211 
7212 pipe_class vshift128_imm(vecX dst, vecX src, immI shift)
7213 %{
7214   single_instruction;
7215   dst    : S3(write);
7216   src    : S1(read);
7217   INS0   : ISS;
7218   NEON_FP : S3;
7219 %}
7220 
7221 pipe_class vdop_fp64(vecD dst, vecD src1, vecD src2)
7222 %{
7223   single_instruction;
7224   dst    : S5(write);
7225   src1   : S1(read);
7226   src2   : S1(read);
7227   INS01  : ISS;
7228   NEON_FP : S5;
7229 %}
7230 
7231 pipe_class vdop_fp128(vecX dst, vecX src1, vecX src2)
7232 %{
7233   single_instruction;
7234   dst    : S5(write);
7235   src1   : S1(read);
7236   src2   : S1(read);
7237   INS0   : ISS;
7238   NEON_FP : S5;
7239 %}
7240 
7241 pipe_class vmuldiv_fp64(vecD dst, vecD src1, vecD src2)
7242 %{
7243   single_instruction;
7244   dst    : S5(write);
7245   src1   : S1(read);
7246   src2   : S1(read);
7247   INS0   : ISS;
7248   NEON_FP : S5;
7249 %}
7250 
7251 pipe_class vmuldiv_fp128(vecX dst, vecX src1, vecX src2)
7252 %{
7253   single_instruction;
7254   dst    : S5(write);
7255   src1   : S1(read);
7256   src2   : S1(read);
7257   INS0   : ISS;
7258   NEON_FP : S5;
7259 %}
7260 
7261 pipe_class vsqrt_fp128(vecX dst, vecX src)
7262 %{
7263   single_instruction;
7264   dst    : S5(write);
7265   src    : S1(read);
7266   INS0   : ISS;
7267   NEON_FP : S5;
7268 %}
7269 
7270 pipe_class vunop_fp64(vecD dst, vecD src)
7271 %{
7272   single_instruction;
7273   dst    : S5(write);
7274   src    : S1(read);
7275   INS01  : ISS;
7276   NEON_FP : S5;
7277 %}
7278 
7279 pipe_class vunop_fp128(vecX dst, vecX src)
7280 %{
7281   single_instruction;
7282   dst    : S5(write);
7283   src    : S1(read);
7284   INS0   : ISS;
7285   NEON_FP : S5;
7286 %}
7287 
7288 pipe_class vdup_reg_reg64(vecD dst, iRegI src)
7289 %{
7290   single_instruction;
7291   dst    : S3(write);
7292   src    : S1(read);
7293   INS01  : ISS;
7294   NEON_FP : S3;
7295 %}
7296 
7297 pipe_class vdup_reg_reg128(vecX dst, iRegI src)
7298 %{
7299   single_instruction;
7300   dst    : S3(write);
7301   src    : S1(read);
7302   INS01  : ISS;
7303   NEON_FP : S3;
7304 %}
7305 
7306 pipe_class vdup_reg_freg64(vecD dst, vRegF src)
7307 %{
7308   single_instruction;
7309   dst    : S3(write);
7310   src    : S1(read);
7311   INS01  : ISS;
7312   NEON_FP : S3;
7313 %}
7314 
7315 pipe_class vdup_reg_freg128(vecX dst, vRegF src)
7316 %{
7317   single_instruction;
7318   dst    : S3(write);
7319   src    : S1(read);
7320   INS01  : ISS;
7321   NEON_FP : S3;
7322 %}
7323 
7324 pipe_class vdup_reg_dreg128(vecX dst, vRegD src)
7325 %{
7326   single_instruction;
7327   dst    : S3(write);
7328   src    : S1(read);
7329   INS01  : ISS;
7330   NEON_FP : S3;
7331 %}
7332 
7333 pipe_class vmovi_reg_imm64(vecD dst)
7334 %{
7335   single_instruction;
7336   dst    : S3(write);
7337   INS01  : ISS;
7338   NEON_FP : S3;
7339 %}
7340 
7341 pipe_class vmovi_reg_imm128(vecX dst)
7342 %{
7343   single_instruction;
7344   dst    : S3(write);
7345   INS0   : ISS;
7346   NEON_FP : S3;
7347 %}
7348 
7349 pipe_class vload_reg_mem64(vecD dst, vmem8 mem)
7350 %{
7351   single_instruction;
7352   dst    : S5(write);
7353   mem    : ISS(read);
7354   INS01  : ISS;
7355   NEON_FP : S3;
7356 %}
7357 
7358 pipe_class vload_reg_mem128(vecX dst, vmem16 mem)
7359 %{
7360   single_instruction;
7361   dst    : S5(write);
7362   mem    : ISS(read);
7363   INS01  : ISS;
7364   NEON_FP : S3;
7365 %}
7366 
7367 pipe_class vstore_reg_mem64(vecD src, vmem8 mem)
7368 %{
7369   single_instruction;
7370   mem    : ISS(read);
7371   src    : S2(read);
7372   INS01  : ISS;
7373   NEON_FP : S3;
7374 %}
7375 
7376 pipe_class vstore_reg_mem128(vecD src, vmem16 mem)
7377 %{
7378   single_instruction;
7379   mem    : ISS(read);
7380   src    : S2(read);
7381   INS01  : ISS;
7382   NEON_FP : S3;
7383 %}
7384 
7385 //------- Integer ALU operations --------------------------
7386 
7387 // Integer ALU reg-reg operation
7388 // Operands needed in EX1, result generated in EX2
7389 // Eg.  ADD     x0, x1, x2
7390 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2)
7391 %{
7392   single_instruction;
7393   dst    : EX2(write);
7394   src1   : EX1(read);
7395   src2   : EX1(read);
7396   INS01  : ISS; // Dual issue as instruction 0 or 1
7397   ALU    : EX2;
7398 %}
7399 
7400 // Integer ALU reg-reg operation with constant shift
7401 // Shifted register must be available in LATE_ISS instead of EX1
7402 // Eg.  ADD     x0, x1, x2, LSL #2
7403 pipe_class ialu_reg_reg_shift(iRegI dst, iRegI src1, iRegI src2, immI shift)
7404 %{
7405   single_instruction;
7406   dst    : EX2(write);
7407   src1   : EX1(read);
7408   src2   : ISS(read);
7409   INS01  : ISS;
7410   ALU    : EX2;
7411 %}
7412 
7413 // Integer ALU reg operation with constant shift
7414 // Eg.  LSL     x0, x1, #shift
7415 pipe_class ialu_reg_shift(iRegI dst, iRegI src1)
7416 %{
7417   single_instruction;
7418   dst    : EX2(write);
7419   src1   : ISS(read);
7420   INS01  : ISS;
7421   ALU    : EX2;
7422 %}
7423 
7424 // Integer ALU reg-reg operation with variable shift
7425 // Both operands must be available in LATE_ISS instead of EX1
7426 // Result is available in EX1 instead of EX2
7427 // Eg.  LSLV    x0, x1, x2
7428 pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2)
7429 %{
7430   single_instruction;
7431   dst    : EX1(write);
7432   src1   : ISS(read);
7433   src2   : ISS(read);
7434   INS01  : ISS;
7435   ALU    : EX1;
7436 %}
7437 
7438 // Integer ALU reg-reg operation with extract
7439 // As for _vshift above, but result generated in EX2
7440 // Eg.  EXTR    x0, x1, x2, #N
7441 pipe_class ialu_reg_reg_extr(iRegI dst, iRegI src1, iRegI src2)
7442 %{
7443   single_instruction;
7444   dst    : EX2(write);
7445   src1   : ISS(read);
7446   src2   : ISS(read);
7447   INS1   : ISS; // Can only dual issue as Instruction 1
7448   ALU    : EX1;
7449 %}
7450 
7451 // Integer ALU reg operation
7452 // Eg.  NEG     x0, x1
7453 pipe_class ialu_reg(iRegI dst, iRegI src)
7454 %{
7455   single_instruction;
7456   dst    : EX2(write);
7457   src    : EX1(read);
7458   INS01  : ISS;
7459   ALU    : EX2;
7460 %}
7461 
7462 // Integer ALU reg mmediate operation
7463 // Eg.  ADD     x0, x1, #N
7464 pipe_class ialu_reg_imm(iRegI dst, iRegI src1)
7465 %{
7466   single_instruction;
7467   dst    : EX2(write);
7468   src1   : EX1(read);
7469   INS01  : ISS;
7470   ALU    : EX2;
7471 %}
7472 
7473 // Integer ALU immediate operation (no source operands)
7474 // Eg.  MOV     x0, #N
7475 pipe_class ialu_imm(iRegI dst)
7476 %{
7477   single_instruction;
7478   dst    : EX1(write);
7479   INS01  : ISS;
7480   ALU    : EX1;
7481 %}
7482 
7483 //------- Compare operation -------------------------------
7484 
7485 // Compare reg-reg
7486 // Eg.  CMP     x0, x1
7487 pipe_class icmp_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2)
7488 %{
7489   single_instruction;
7490 //  fixed_latency(16);
7491   cr     : EX2(write);
7492   op1    : EX1(read);
7493   op2    : EX1(read);
7494   INS01  : ISS;
7495   ALU    : EX2;
7496 %}
7497 
7498 // Compare reg-reg
7499 // Eg.  CMP     x0, #N
7500 pipe_class icmp_reg_imm(rFlagsReg cr, iRegI op1)
7501 %{
7502   single_instruction;
7503 //  fixed_latency(16);
7504   cr     : EX2(write);
7505   op1    : EX1(read);
7506   INS01  : ISS;
7507   ALU    : EX2;
7508 %}
7509 
7510 //------- Conditional instructions ------------------------
7511 
7512 // Conditional no operands
7513 // Eg.  CSINC   x0, zr, zr, <cond>
7514 pipe_class icond_none(iRegI dst, rFlagsReg cr)
7515 %{
7516   single_instruction;
7517   cr     : EX1(read);
7518   dst    : EX2(write);
7519   INS01  : ISS;
7520   ALU    : EX2;
7521 %}
7522 
7523 // Conditional 2 operand
7524 // EG.  CSEL    X0, X1, X2, <cond>
7525 pipe_class icond_reg_reg(iRegI dst, iRegI src1, iRegI src2, rFlagsReg cr)
7526 %{
7527   single_instruction;
7528   cr     : EX1(read);
7529   src1   : EX1(read);
7530   src2   : EX1(read);
7531   dst    : EX2(write);
7532   INS01  : ISS;
7533   ALU    : EX2;
7534 %}
7535 
7536 // Conditional 2 operand
7537 // EG.  CSEL    X0, X1, X2, <cond>
7538 pipe_class icond_reg(iRegI dst, iRegI src, rFlagsReg cr)
7539 %{
7540   single_instruction;
7541   cr     : EX1(read);
7542   src    : EX1(read);
7543   dst    : EX2(write);
7544   INS01  : ISS;
7545   ALU    : EX2;
7546 %}
7547 
7548 //------- Multiply pipeline operations --------------------
7549 
7550 // Multiply reg-reg
7551 // Eg.  MUL     w0, w1, w2
7552 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2)
7553 %{
7554   single_instruction;
7555   dst    : WR(write);
7556   src1   : ISS(read);
7557   src2   : ISS(read);
7558   INS01  : ISS;
7559   MAC    : WR;
7560 %}
7561 
7562 // Multiply accumulate
7563 // Eg.  MADD    w0, w1, w2, w3
7564 pipe_class imac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3)
7565 %{
7566   single_instruction;
7567   dst    : WR(write);
7568   src1   : ISS(read);
7569   src2   : ISS(read);
7570   src3   : ISS(read);
7571   INS01  : ISS;
7572   MAC    : WR;
7573 %}
7574 
7575 // Eg.  MUL     w0, w1, w2
7576 pipe_class lmul_reg_reg(iRegI dst, iRegI src1, iRegI src2)
7577 %{
7578   single_instruction;
7579   fixed_latency(3); // Maximum latency for 64 bit mul
7580   dst    : WR(write);
7581   src1   : ISS(read);
7582   src2   : ISS(read);
7583   INS01  : ISS;
7584   MAC    : WR;
7585 %}
7586 
7587 // Multiply accumulate
7588 // Eg.  MADD    w0, w1, w2, w3
7589 pipe_class lmac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3)
7590 %{
7591   single_instruction;
7592   fixed_latency(3); // Maximum latency for 64 bit mul
7593   dst    : WR(write);
7594   src1   : ISS(read);
7595   src2   : ISS(read);
7596   src3   : ISS(read);
7597   INS01  : ISS;
7598   MAC    : WR;
7599 %}
7600 
7601 //------- Divide pipeline operations --------------------
7602 
7603 // Eg.  SDIV    w0, w1, w2
7604 pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2)
7605 %{
7606   single_instruction;
7607   fixed_latency(8); // Maximum latency for 32 bit divide
7608   dst    : WR(write);
7609   src1   : ISS(read);
7610   src2   : ISS(read);
7611   INS0   : ISS; // Can only dual issue as instruction 0
7612   DIV    : WR;
7613 %}
7614 
7615 // Eg.  SDIV    x0, x1, x2
7616 pipe_class ldiv_reg_reg(iRegI dst, iRegI src1, iRegI src2)
7617 %{
7618   single_instruction;
7619   fixed_latency(16); // Maximum latency for 64 bit divide
7620   dst    : WR(write);
7621   src1   : ISS(read);
7622   src2   : ISS(read);
7623   INS0   : ISS; // Can only dual issue as instruction 0
7624   DIV    : WR;
7625 %}
7626 
7627 //------- Load pipeline operations ------------------------
7628 
7629 // Load - prefetch
7630 // Eg.  PFRM    <mem>
7631 pipe_class iload_prefetch(memory mem)
7632 %{
7633   single_instruction;
7634   mem    : ISS(read);
7635   INS01  : ISS;
7636   LDST   : WR;
7637 %}
7638 
7639 // Load - reg, mem
7640 // Eg.  LDR     x0, <mem>
7641 pipe_class iload_reg_mem(iRegI dst, memory mem)
7642 %{
7643   single_instruction;
7644   dst    : WR(write);
7645   mem    : ISS(read);
7646   INS01  : ISS;
7647   LDST   : WR;
7648 %}
7649 
7650 // Load - reg, reg
7651 // Eg.  LDR     x0, [sp, x1]
7652 pipe_class iload_reg_reg(iRegI dst, iRegI src)
7653 %{
7654   single_instruction;
7655   dst    : WR(write);
7656   src    : ISS(read);
7657   INS01  : ISS;
7658   LDST   : WR;
7659 %}
7660 
7661 //------- Store pipeline operations -----------------------
7662 
7663 // Store - zr, mem
7664 // Eg.  STR     zr, <mem>
7665 pipe_class istore_mem(memory mem)
7666 %{
7667   single_instruction;
7668   mem    : ISS(read);
7669   INS01  : ISS;
7670   LDST   : WR;
7671 %}
7672 
7673 // Store - reg, mem
7674 // Eg.  STR     x0, <mem>
7675 pipe_class istore_reg_mem(iRegI src, memory mem)
7676 %{
7677   single_instruction;
7678   mem    : ISS(read);
7679   src    : EX2(read);
7680   INS01  : ISS;
7681   LDST   : WR;
7682 %}
7683 
7684 // Store - reg, reg
7685 // Eg. STR      x0, [sp, x1]
7686 pipe_class istore_reg_reg(iRegI dst, iRegI src)
7687 %{
7688   single_instruction;
7689   dst    : ISS(read);
7690   src    : EX2(read);
7691   INS01  : ISS;
7692   LDST   : WR;
7693 %}
7694 
7695 //------- Store pipeline operations -----------------------
7696 
7697 // Branch
7698 pipe_class pipe_branch()
7699 %{
7700   single_instruction;
7701   INS01  : ISS;
7702   BRANCH : EX1;
7703 %}
7704 
7705 // Conditional branch
7706 pipe_class pipe_branch_cond(rFlagsReg cr)
7707 %{
7708   single_instruction;
7709   cr     : EX1(read);
7710   INS01  : ISS;
7711   BRANCH : EX1;
7712 %}
7713 
7714 // Compare & Branch
7715 // EG.  CBZ/CBNZ
7716 pipe_class pipe_cmp_branch(iRegI op1)
7717 %{
7718   single_instruction;
7719   op1    : EX1(read);
7720   INS01  : ISS;
7721   BRANCH : EX1;
7722 %}
7723 
7724 //------- Synchronisation operations ----------------------
7725 
7726 // Any operation requiring serialization.
7727 // EG.  DMB/Atomic Ops/Load Acquire/Str Release
7728 pipe_class pipe_serial()
7729 %{
7730   single_instruction;
7731   force_serialization;
7732   fixed_latency(16);
7733   INS01  : ISS(2); // Cannot dual issue with any other instruction
7734   LDST   : WR;
7735 %}
7736 
7737 // Generic big/slow expanded idiom - also serialized
7738 pipe_class pipe_slow()
7739 %{
7740   instruction_count(10);
7741   multiple_bundles;
7742   force_serialization;
7743   fixed_latency(16);
7744   INS01  : ISS(2); // Cannot dual issue with any other instruction
7745   LDST   : WR;
7746 %}
7747 
7748 // Empty pipeline class
7749 pipe_class pipe_class_empty()
7750 %{
7751   single_instruction;
7752   fixed_latency(0);
7753 %}
7754 
7755 // Default pipeline class.
7756 pipe_class pipe_class_default()
7757 %{
7758   single_instruction;
7759   fixed_latency(2);
7760 %}
7761 
7762 // Pipeline class for compares.
7763 pipe_class pipe_class_compare()
7764 %{
7765   single_instruction;
7766   fixed_latency(16);
7767 %}
7768 
7769 // Pipeline class for memory operations.
7770 pipe_class pipe_class_memory()
7771 %{
7772   single_instruction;
7773   fixed_latency(16);
7774 %}
7775 
7776 // Pipeline class for call.
7777 pipe_class pipe_class_call()
7778 %{
7779   single_instruction;
7780   fixed_latency(100);
7781 %}
7782 
7783 // Define the class for the Nop node.
7784 define %{
7785    MachNop = pipe_class_empty;
7786 %}
7787 
7788 %}
7789 //----------INSTRUCTIONS-------------------------------------------------------
7790 //
7791 // match      -- States which machine-independent subtree may be replaced
7792 //               by this instruction.
7793 // ins_cost   -- The estimated cost of this instruction is used by instruction
7794 //               selection to identify a minimum cost tree of machine
7795 //               instructions that matches a tree of machine-independent
7796 //               instructions.
7797 // format     -- A string providing the disassembly for this instruction.
7798 //               The value of an instruction's operand may be inserted
7799 //               by referring to it with a '$' prefix.
7800 // opcode     -- Three instruction opcodes may be provided.  These are referred
7801 //               to within an encode class as $primary, $secondary, and $tertiary
7802 //               rrspectively.  The primary opcode is commonly used to
7803 //               indicate the type of machine instruction, while secondary
7804 //               and tertiary are often used for prefix options or addressing
7805 //               modes.
7806 // ins_encode -- A list of encode classes with parameters. The encode class
7807 //               name must have been defined in an 'enc_class' specification
7808 //               in the encode section of the architecture description.
7809 
7810 // ============================================================================
7811 // Memory (Load/Store) Instructions
7812 
7813 // Load Instructions
7814 
7815 // Load Byte (8 bit signed)
7816 instruct loadB(iRegINoSp dst, memory mem)
7817 %{
7818   match(Set dst (LoadB mem));
7819   predicate(!needs_acquiring_load(n));
7820 
7821   ins_cost(4 * INSN_COST);
7822   format %{ "ldrsbw  $dst, $mem\t# byte" %}
7823 
7824   ins_encode(aarch64_enc_ldrsbw(dst, mem));
7825 
7826   ins_pipe(iload_reg_mem);
7827 %}
7828 
7829 // Load Byte (8 bit signed) into long
7830 instruct loadB2L(iRegLNoSp dst, memory mem)
7831 %{
7832   match(Set dst (ConvI2L (LoadB mem)));
7833   predicate(!needs_acquiring_load(n->in(1)));
7834 
7835   ins_cost(4 * INSN_COST);
7836   format %{ "ldrsb  $dst, $mem\t# byte" %}
7837 
7838   ins_encode(aarch64_enc_ldrsb(dst, mem));
7839 
7840   ins_pipe(iload_reg_mem);
7841 %}
7842 
7843 // Load Byte (8 bit unsigned)
7844 instruct loadUB(iRegINoSp dst, memory mem)
7845 %{
7846   match(Set dst (LoadUB mem));
7847   predicate(!needs_acquiring_load(n));
7848 
7849   ins_cost(4 * INSN_COST);
7850   format %{ "ldrbw  $dst, $mem\t# byte" %}
7851 
7852   ins_encode(aarch64_enc_ldrb(dst, mem));
7853 
7854   ins_pipe(iload_reg_mem);
7855 %}
7856 
7857 // Load Byte (8 bit unsigned) into long
7858 instruct loadUB2L(iRegLNoSp dst, memory mem)
7859 %{
7860   match(Set dst (ConvI2L (LoadUB mem)));
7861   predicate(!needs_acquiring_load(n->in(1)));
7862 
7863   ins_cost(4 * INSN_COST);
7864   format %{ "ldrb  $dst, $mem\t# byte" %}
7865 
7866   ins_encode(aarch64_enc_ldrb(dst, mem));
7867 
7868   ins_pipe(iload_reg_mem);
7869 %}
7870 
7871 // Load Short (16 bit signed)
7872 instruct loadS(iRegINoSp dst, memory mem)
7873 %{
7874   match(Set dst (LoadS mem));
7875   predicate(!needs_acquiring_load(n));
7876 
7877   ins_cost(4 * INSN_COST);
7878   format %{ "ldrshw  $dst, $mem\t# short" %}
7879 
7880   ins_encode(aarch64_enc_ldrshw(dst, mem));
7881 
7882   ins_pipe(iload_reg_mem);
7883 %}
7884 
7885 // Load Short (16 bit signed) into long
7886 instruct loadS2L(iRegLNoSp dst, memory mem)
7887 %{
7888   match(Set dst (ConvI2L (LoadS mem)));
7889   predicate(!needs_acquiring_load(n->in(1)));
7890 
7891   ins_cost(4 * INSN_COST);
7892   format %{ "ldrsh  $dst, $mem\t# short" %}
7893 
7894   ins_encode(aarch64_enc_ldrsh(dst, mem));
7895 
7896   ins_pipe(iload_reg_mem);
7897 %}
7898 
7899 // Load Char (16 bit unsigned)
7900 instruct loadUS(iRegINoSp dst, memory mem)
7901 %{
7902   match(Set dst (LoadUS mem));
7903   predicate(!needs_acquiring_load(n));
7904 
7905   ins_cost(4 * INSN_COST);
7906   format %{ "ldrh  $dst, $mem\t# short" %}
7907 
7908   ins_encode(aarch64_enc_ldrh(dst, mem));
7909 
7910   ins_pipe(iload_reg_mem);
7911 %}
7912 
7913 // Load Short/Char (16 bit unsigned) into long
7914 instruct loadUS2L(iRegLNoSp dst, memory mem)
7915 %{
7916   match(Set dst (ConvI2L (LoadUS mem)));
7917   predicate(!needs_acquiring_load(n->in(1)));
7918 
7919   ins_cost(4 * INSN_COST);
7920   format %{ "ldrh  $dst, $mem\t# short" %}
7921 
7922   ins_encode(aarch64_enc_ldrh(dst, mem));
7923 
7924   ins_pipe(iload_reg_mem);
7925 %}
7926 
7927 // Load Integer (32 bit signed)
7928 instruct loadI(iRegINoSp dst, memory mem)
7929 %{
7930   match(Set dst (LoadI mem));
7931   predicate(!needs_acquiring_load(n));
7932 
7933   ins_cost(4 * INSN_COST);
7934   format %{ "ldrw  $dst, $mem\t# int" %}
7935 
7936   ins_encode(aarch64_enc_ldrw(dst, mem));
7937 
7938   ins_pipe(iload_reg_mem);
7939 %}
7940 
7941 // Load Integer (32 bit signed) into long
7942 instruct loadI2L(iRegLNoSp dst, memory mem)
7943 %{
7944   match(Set dst (ConvI2L (LoadI mem)));
7945   predicate(!needs_acquiring_load(n->in(1)));
7946 
7947   ins_cost(4 * INSN_COST);
7948   format %{ "ldrsw  $dst, $mem\t# int" %}
7949 
7950   ins_encode(aarch64_enc_ldrsw(dst, mem));
7951 
7952   ins_pipe(iload_reg_mem);
7953 %}
7954 
7955 // Load Integer (32 bit unsigned) into long
7956 instruct loadUI2L(iRegLNoSp dst, memory mem, immL_32bits mask)
7957 %{
7958   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
7959   predicate(!needs_acquiring_load(n->in(1)->in(1)->as_Load()));
7960 
7961   ins_cost(4 * INSN_COST);
7962   format %{ "ldrw  $dst, $mem\t# int" %}
7963 
7964   ins_encode(aarch64_enc_ldrw(dst, mem));
7965 
7966   ins_pipe(iload_reg_mem);
7967 %}
7968 
7969 // Load Long (64 bit signed)
7970 instruct loadL(iRegLNoSp dst, memory mem)
7971 %{
7972   match(Set dst (LoadL mem));
7973   predicate(!needs_acquiring_load(n));
7974 
7975   ins_cost(4 * INSN_COST);
7976   format %{ "ldr  $dst, $mem\t# int" %}
7977 
7978   ins_encode(aarch64_enc_ldr(dst, mem));
7979 
7980   ins_pipe(iload_reg_mem);
7981 %}
7982 
7983 // Load Range
7984 instruct loadRange(iRegINoSp dst, memory mem)
7985 %{
7986   match(Set dst (LoadRange mem));
7987 
7988   ins_cost(4 * INSN_COST);
7989   format %{ "ldrw  $dst, $mem\t# range" %}
7990 
7991   ins_encode(aarch64_enc_ldrw(dst, mem));
7992 
7993   ins_pipe(iload_reg_mem);
7994 %}
7995 
7996 // Load Pointer
7997 instruct loadP(iRegPNoSp dst, memory mem)
7998 %{
7999   match(Set dst (LoadP mem));
8000   predicate(!needs_acquiring_load(n));
8001 
8002   ins_cost(4 * INSN_COST);
8003   format %{ "ldr  $dst, $mem\t# ptr" %}
8004 
8005   ins_encode(aarch64_enc_ldr(dst, mem));
8006 
8007   ins_pipe(iload_reg_mem);
8008 %}
8009 
8010 // Load Compressed Pointer
8011 instruct loadN(iRegNNoSp dst, memory mem)
8012 %{
8013   match(Set dst (LoadN mem));
8014   predicate(!needs_acquiring_load(n));
8015 
8016   ins_cost(4 * INSN_COST);
8017   format %{ "ldrw  $dst, $mem\t# compressed ptr" %}
8018 
8019   ins_encode(aarch64_enc_ldrw(dst, mem));
8020 
8021   ins_pipe(iload_reg_mem);
8022 %}
8023 
8024 // Load Klass Pointer
8025 instruct loadKlass(iRegPNoSp dst, memory mem)
8026 %{
8027   match(Set dst (LoadKlass mem));
8028   predicate(!needs_acquiring_load(n));
8029 
8030   ins_cost(4 * INSN_COST);
8031   format %{ "ldr  $dst, $mem\t# class" %}
8032 
8033   ins_encode(aarch64_enc_ldr(dst, mem));
8034 
8035   ins_pipe(iload_reg_mem);
8036 %}
8037 
8038 // Load Narrow Klass Pointer
8039 instruct loadNKlass(iRegNNoSp dst, memory mem)
8040 %{
8041   match(Set dst (LoadNKlass mem));
8042   predicate(!needs_acquiring_load(n));
8043 
8044   ins_cost(4 * INSN_COST);
8045   format %{ "ldrw  $dst, $mem\t# compressed class ptr" %}
8046 
8047   ins_encode(aarch64_enc_ldrw(dst, mem));
8048 
8049   ins_pipe(iload_reg_mem);
8050 %}
8051 
8052 // Load Float
8053 instruct loadF(vRegF dst, memory mem)
8054 %{
8055   match(Set dst (LoadF mem));
8056   predicate(!needs_acquiring_load(n));
8057 
8058   ins_cost(4 * INSN_COST);
8059   format %{ "ldrs  $dst, $mem\t# float" %}
8060 
8061   ins_encode( aarch64_enc_ldrs(dst, mem) );
8062 
8063   ins_pipe(pipe_class_memory);
8064 %}
8065 
8066 // Load Double
8067 instruct loadD(vRegD dst, memory mem)
8068 %{
8069   match(Set dst (LoadD mem));
8070   predicate(!needs_acquiring_load(n));
8071 
8072   ins_cost(4 * INSN_COST);
8073   format %{ "ldrd  $dst, $mem\t# double" %}
8074 
8075   ins_encode( aarch64_enc_ldrd(dst, mem) );
8076 
8077   ins_pipe(pipe_class_memory);
8078 %}
8079 
8080 
8081 // Load Int Constant
8082 instruct loadConI(iRegINoSp dst, immI src)
8083 %{
8084   match(Set dst src);
8085 
8086   ins_cost(INSN_COST);
8087   format %{ "mov $dst, $src\t# int" %}
8088 
8089   ins_encode( aarch64_enc_movw_imm(dst, src) );
8090 
8091   ins_pipe(ialu_imm);
8092 %}
8093 
8094 // Load Long Constant
8095 instruct loadConL(iRegLNoSp dst, immL src)
8096 %{
8097   match(Set dst src);
8098 
8099   ins_cost(INSN_COST);
8100   format %{ "mov $dst, $src\t# long" %}
8101 
8102   ins_encode( aarch64_enc_mov_imm(dst, src) );
8103 
8104   ins_pipe(ialu_imm);
8105 %}
8106 
8107 // Load Pointer Constant
8108 
8109 instruct loadConP(iRegPNoSp dst, immP con)
8110 %{
8111   match(Set dst con);
8112 
8113   ins_cost(INSN_COST * 4);
8114   format %{
8115     "mov  $dst, $con\t# ptr\n\t"
8116   %}
8117 
8118   ins_encode(aarch64_enc_mov_p(dst, con));
8119 
8120   ins_pipe(ialu_imm);
8121 %}
8122 
8123 // Load Null Pointer Constant
8124 
8125 instruct loadConP0(iRegPNoSp dst, immP0 con)
8126 %{
8127   match(Set dst con);
8128 
8129   ins_cost(INSN_COST);
8130   format %{ "mov  $dst, $con\t# NULL ptr" %}
8131 
8132   ins_encode(aarch64_enc_mov_p0(dst, con));
8133 
8134   ins_pipe(ialu_imm);
8135 %}
8136 
8137 // Load Pointer Constant One
8138 
8139 instruct loadConP1(iRegPNoSp dst, immP_1 con)
8140 %{
8141   match(Set dst con);
8142 
8143   ins_cost(INSN_COST);
8144   format %{ "mov  $dst, $con\t# NULL ptr" %}
8145 
8146   ins_encode(aarch64_enc_mov_p1(dst, con));
8147 
8148   ins_pipe(ialu_imm);
8149 %}
8150 
8151 // Load Poll Page Constant
8152 
8153 instruct loadConPollPage(iRegPNoSp dst, immPollPage con)
8154 %{
8155   match(Set dst con);
8156 
8157   ins_cost(INSN_COST);
8158   format %{ "adr  $dst, $con\t# Poll Page Ptr" %}
8159 
8160   ins_encode(aarch64_enc_mov_poll_page(dst, con));
8161 
8162   ins_pipe(ialu_imm);
8163 %}
8164 
8165 // Load Byte Map Base Constant
8166 
8167 instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con)
8168 %{
8169   match(Set dst con);
8170 
8171   ins_cost(INSN_COST);
8172   format %{ "adr  $dst, $con\t# Byte Map Base" %}
8173 
8174   ins_encode(aarch64_enc_mov_byte_map_base(dst, con));
8175 
8176   ins_pipe(ialu_imm);
8177 %}
8178 
8179 // Load Narrow Pointer Constant
8180 
8181 instruct loadConN(iRegNNoSp dst, immN con)
8182 %{
8183   match(Set dst con);
8184 
8185   ins_cost(INSN_COST * 4);
8186   format %{ "mov  $dst, $con\t# compressed ptr" %}
8187 
8188   ins_encode(aarch64_enc_mov_n(dst, con));
8189 
8190   ins_pipe(ialu_imm);
8191 %}
8192 
8193 // Load Narrow Null Pointer Constant
8194 
8195 instruct loadConN0(iRegNNoSp dst, immN0 con)
8196 %{
8197   match(Set dst con);
8198 
8199   ins_cost(INSN_COST);
8200   format %{ "mov  $dst, $con\t# compressed NULL ptr" %}
8201 
8202   ins_encode(aarch64_enc_mov_n0(dst, con));
8203 
8204   ins_pipe(ialu_imm);
8205 %}
8206 
8207 // Load Narrow Klass Constant
8208 
8209 instruct loadConNKlass(iRegNNoSp dst, immNKlass con)
8210 %{
8211   match(Set dst con);
8212 
8213   ins_cost(INSN_COST);
8214   format %{ "mov  $dst, $con\t# compressed klass ptr" %}
8215 
8216   ins_encode(aarch64_enc_mov_nk(dst, con));
8217 
8218   ins_pipe(ialu_imm);
8219 %}
8220 
8221 // Load Packed Float Constant
8222 
8223 instruct loadConF_packed(vRegF dst, immFPacked con) %{
8224   match(Set dst con);
8225   ins_cost(INSN_COST * 4);
8226   format %{ "fmovs  $dst, $con"%}
8227   ins_encode %{
8228     __ fmovs(as_FloatRegister($dst$$reg), (double)$con$$constant);
8229   %}
8230 
8231   ins_pipe(fp_imm_s);
8232 %}
8233 
8234 // Load Float Constant
8235 
8236 instruct loadConF(vRegF dst, immF con) %{
8237   match(Set dst con);
8238 
8239   ins_cost(INSN_COST * 4);
8240 
8241   format %{
8242     "ldrs $dst, [$constantaddress]\t# load from constant table: float=$con\n\t"
8243   %}
8244 
8245   ins_encode %{
8246     __ ldrs(as_FloatRegister($dst$$reg), $constantaddress($con));
8247   %}
8248 
8249   ins_pipe(fp_load_constant_s);
8250 %}
8251 
8252 // Load Packed Double Constant
8253 
8254 instruct loadConD_packed(vRegD dst, immDPacked con) %{
8255   match(Set dst con);
8256   ins_cost(INSN_COST);
8257   format %{ "fmovd  $dst, $con"%}
8258   ins_encode %{
8259     __ fmovd(as_FloatRegister($dst$$reg), $con$$constant);
8260   %}
8261 
8262   ins_pipe(fp_imm_d);
8263 %}
8264 
8265 // Load Double Constant
8266 
8267 instruct loadConD(vRegD dst, immD con) %{
8268   match(Set dst con);
8269 
8270   ins_cost(INSN_COST * 5);
8271   format %{
8272     "ldrd $dst, [$constantaddress]\t# load from constant table: float=$con\n\t"
8273   %}
8274 
8275   ins_encode %{
8276     __ ldrd(as_FloatRegister($dst$$reg), $constantaddress($con));
8277   %}
8278 
8279   ins_pipe(fp_load_constant_d);
8280 %}
8281 
8282 // Store Instructions
8283 
8284 // Store CMS card-mark Immediate
8285 instruct storeimmCM0(immI0 zero, memory mem)
8286 %{
8287   match(Set mem (StoreCM mem zero));
8288   predicate(unnecessary_storestore(n));
8289 
8290   ins_cost(INSN_COST);
8291   format %{ "strb zr, $mem\t# byte" %}
8292 
8293   ins_encode(aarch64_enc_strb0(mem));
8294 
8295   ins_pipe(istore_mem);
8296 %}
8297 
8298 // Store CMS card-mark Immediate with intervening StoreStore
8299 // needed when using CMS with no conditional card marking
8300 instruct storeimmCM0_ordered(immI0 zero, memory mem)
8301 %{
8302   match(Set mem (StoreCM mem zero));
8303 
8304   ins_cost(INSN_COST * 2);
8305   format %{ "dmb ishst"
8306       "\n\tstrb zr, $mem\t# byte" %}
8307 
8308   ins_encode(aarch64_enc_strb0_ordered(mem));
8309 
8310   ins_pipe(istore_mem);
8311 %}
8312 
8313 // Store Byte
8314 instruct storeB(iRegIorL2I src, memory mem)
8315 %{
8316   match(Set mem (StoreB mem src));
8317   predicate(!needs_releasing_store(n));
8318 
8319   ins_cost(INSN_COST);
8320   format %{ "strb  $src, $mem\t# byte" %}
8321 
8322   ins_encode(aarch64_enc_strb(src, mem));
8323 
8324   ins_pipe(istore_reg_mem);
8325 %}
8326 
8327 
8328 instruct storeimmB0(immI0 zero, memory mem)
8329 %{
8330   match(Set mem (StoreB mem zero));
8331   predicate(!needs_releasing_store(n));
8332 
8333   ins_cost(INSN_COST);
8334   format %{ "strb rscractch2, $mem\t# byte" %}
8335 
8336   ins_encode(aarch64_enc_strb0(mem));
8337 
8338   ins_pipe(istore_mem);
8339 %}
8340 
8341 // Store Char/Short
8342 instruct storeC(iRegIorL2I src, memory mem)
8343 %{
8344   match(Set mem (StoreC mem src));
8345   predicate(!needs_releasing_store(n));
8346 
8347   ins_cost(INSN_COST);
8348   format %{ "strh  $src, $mem\t# short" %}
8349 
8350   ins_encode(aarch64_enc_strh(src, mem));
8351 
8352   ins_pipe(istore_reg_mem);
8353 %}
8354 
8355 instruct storeimmC0(immI0 zero, memory mem)
8356 %{
8357   match(Set mem (StoreC mem zero));
8358   predicate(!needs_releasing_store(n));
8359 
8360   ins_cost(INSN_COST);
8361   format %{ "strh  zr, $mem\t# short" %}
8362 
8363   ins_encode(aarch64_enc_strh0(mem));
8364 
8365   ins_pipe(istore_mem);
8366 %}
8367 
8368 // Store Integer
8369 
8370 instruct storeI(iRegIorL2I src, memory mem)
8371 %{
8372   match(Set mem(StoreI mem src));
8373   predicate(!needs_releasing_store(n));
8374 
8375   ins_cost(INSN_COST);
8376   format %{ "strw  $src, $mem\t# int" %}
8377 
8378   ins_encode(aarch64_enc_strw(src, mem));
8379 
8380   ins_pipe(istore_reg_mem);
8381 %}
8382 
8383 instruct storeimmI0(immI0 zero, memory mem)
8384 %{
8385   match(Set mem(StoreI mem zero));
8386   predicate(!needs_releasing_store(n));
8387 
8388   ins_cost(INSN_COST);
8389   format %{ "strw  zr, $mem\t# int" %}
8390 
8391   ins_encode(aarch64_enc_strw0(mem));
8392 
8393   ins_pipe(istore_mem);
8394 %}
8395 
8396 // Store Long (64 bit signed)
8397 instruct storeL(iRegL src, memory mem)
8398 %{
8399   match(Set mem (StoreL mem src));
8400   predicate(!needs_releasing_store(n));
8401 
8402   ins_cost(INSN_COST);
8403   format %{ "str  $src, $mem\t# int" %}
8404 
8405   ins_encode(aarch64_enc_str(src, mem));
8406 
8407   ins_pipe(istore_reg_mem);
8408 %}
8409 
8410 // Store Long (64 bit signed)
8411 instruct storeimmL0(immL0 zero, memory mem)
8412 %{
8413   match(Set mem (StoreL mem zero));
8414   predicate(!needs_releasing_store(n));
8415 
8416   ins_cost(INSN_COST);
8417   format %{ "str  zr, $mem\t# int" %}
8418 
8419   ins_encode(aarch64_enc_str0(mem));
8420 
8421   ins_pipe(istore_mem);
8422 %}
8423 
8424 // Store Pointer
8425 instruct storeP(iRegP src, memory mem)
8426 %{
8427   match(Set mem (StoreP mem src));
8428   predicate(!needs_releasing_store(n));
8429 
8430   ins_cost(INSN_COST);
8431   format %{ "str  $src, $mem\t# ptr" %}
8432 
8433   ins_encode(aarch64_enc_str(src, mem));
8434 
8435   ins_pipe(istore_reg_mem);
8436 %}
8437 
8438 // Store Pointer
8439 instruct storeimmP0(immP0 zero, memory mem)
8440 %{
8441   match(Set mem (StoreP mem zero));
8442   predicate(!needs_releasing_store(n));
8443 
8444   ins_cost(INSN_COST);
8445   format %{ "str zr, $mem\t# ptr" %}
8446 
8447   ins_encode(aarch64_enc_str0(mem));
8448 
8449   ins_pipe(istore_mem);
8450 %}
8451 
8452 // Store Compressed Pointer
8453 instruct storeN(iRegN src, memory mem)
8454 %{
8455   match(Set mem (StoreN mem src));
8456   predicate(!needs_releasing_store(n));
8457 
8458   ins_cost(INSN_COST);
8459   format %{ "strw  $src, $mem\t# compressed ptr" %}
8460 
8461   ins_encode(aarch64_enc_strw(src, mem));
8462 
8463   ins_pipe(istore_reg_mem);
8464 %}
8465 
8466 instruct storeImmN0(iRegIHeapbase heapbase, immN0 zero, memory mem)
8467 %{
8468   match(Set mem (StoreN mem zero));
8469   predicate(Universe::narrow_oop_base() == NULL &&
8470             Universe::narrow_klass_base() == NULL &&
8471             (!needs_releasing_store(n)));
8472 
8473   ins_cost(INSN_COST);
8474   format %{ "strw  rheapbase, $mem\t# compressed ptr (rheapbase==0)" %}
8475 
8476   ins_encode(aarch64_enc_strw(heapbase, mem));
8477 
8478   ins_pipe(istore_reg_mem);
8479 %}
8480 
8481 // Store Float
8482 instruct storeF(vRegF src, memory mem)
8483 %{
8484   match(Set mem (StoreF mem src));
8485   predicate(!needs_releasing_store(n));
8486 
8487   ins_cost(INSN_COST);
8488   format %{ "strs  $src, $mem\t# float" %}
8489 
8490   ins_encode( aarch64_enc_strs(src, mem) );
8491 
8492   ins_pipe(pipe_class_memory);
8493 %}
8494 
8495 // TODO
8496 // implement storeImmF0 and storeFImmPacked
8497 
8498 // Store Double
8499 instruct storeD(vRegD src, memory mem)
8500 %{
8501   match(Set mem (StoreD mem src));
8502   predicate(!needs_releasing_store(n));
8503 
8504   ins_cost(INSN_COST);
8505   format %{ "strd  $src, $mem\t# double" %}
8506 
8507   ins_encode( aarch64_enc_strd(src, mem) );
8508 
8509   ins_pipe(pipe_class_memory);
8510 %}
8511 
8512 // Store Compressed Klass Pointer
8513 instruct storeNKlass(iRegN src, memory mem)
8514 %{
8515   predicate(!needs_releasing_store(n));
8516   match(Set mem (StoreNKlass mem src));
8517 
8518   ins_cost(INSN_COST);
8519   format %{ "strw  $src, $mem\t# compressed klass ptr" %}
8520 
8521   ins_encode(aarch64_enc_strw(src, mem));
8522 
8523   ins_pipe(istore_reg_mem);
8524 %}
8525 
8526 // TODO
8527 // implement storeImmD0 and storeDImmPacked
8528 
8529 // prefetch instructions
8530 // Must be safe to execute with invalid address (cannot fault).
8531 
8532 instruct prefetchalloc( memory mem ) %{
8533   match(PrefetchAllocation mem);
8534 
8535   ins_cost(INSN_COST);
8536   format %{ "prfm $mem, PSTL1KEEP\t# Prefetch into level 1 cache write keep" %}
8537 
8538   ins_encode( aarch64_enc_prefetchw(mem) );
8539 
8540   ins_pipe(iload_prefetch);
8541 %}
8542 
8543 //  ---------------- volatile loads and stores ----------------
8544 
8545 // Load Byte (8 bit signed)
8546 instruct loadB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
8547 %{
8548   match(Set dst (LoadB mem));
8549 
8550   ins_cost(VOLATILE_REF_COST);
8551   format %{ "ldarsb  $dst, $mem\t# byte" %}
8552 
8553   ins_encode(aarch64_enc_ldarsb(dst, mem));
8554 
8555   ins_pipe(pipe_serial);
8556 %}
8557 
8558 // Load Byte (8 bit signed) into long
8559 instruct loadB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
8560 %{
8561   match(Set dst (ConvI2L (LoadB mem)));
8562 
8563   ins_cost(VOLATILE_REF_COST);
8564   format %{ "ldarsb  $dst, $mem\t# byte" %}
8565 
8566   ins_encode(aarch64_enc_ldarsb(dst, mem));
8567 
8568   ins_pipe(pipe_serial);
8569 %}
8570 
8571 // Load Byte (8 bit unsigned)
8572 instruct loadUB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
8573 %{
8574   match(Set dst (LoadUB mem));
8575 
8576   ins_cost(VOLATILE_REF_COST);
8577   format %{ "ldarb  $dst, $mem\t# byte" %}
8578 
8579   ins_encode(aarch64_enc_ldarb(dst, mem));
8580 
8581   ins_pipe(pipe_serial);
8582 %}
8583 
8584 // Load Byte (8 bit unsigned) into long
8585 instruct loadUB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
8586 %{
8587   match(Set dst (ConvI2L (LoadUB mem)));
8588 
8589   ins_cost(VOLATILE_REF_COST);
8590   format %{ "ldarb  $dst, $mem\t# byte" %}
8591 
8592   ins_encode(aarch64_enc_ldarb(dst, mem));
8593 
8594   ins_pipe(pipe_serial);
8595 %}
8596 
8597 // Load Short (16 bit signed)
8598 instruct loadS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
8599 %{
8600   match(Set dst (LoadS mem));
8601 
8602   ins_cost(VOLATILE_REF_COST);
8603   format %{ "ldarshw  $dst, $mem\t# short" %}
8604 
8605   ins_encode(aarch64_enc_ldarshw(dst, mem));
8606 
8607   ins_pipe(pipe_serial);
8608 %}
8609 
8610 instruct loadUS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
8611 %{
8612   match(Set dst (LoadUS mem));
8613 
8614   ins_cost(VOLATILE_REF_COST);
8615   format %{ "ldarhw  $dst, $mem\t# short" %}
8616 
8617   ins_encode(aarch64_enc_ldarhw(dst, mem));
8618 
8619   ins_pipe(pipe_serial);
8620 %}
8621 
8622 // Load Short/Char (16 bit unsigned) into long
8623 instruct loadUS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
8624 %{
8625   match(Set dst (ConvI2L (LoadUS mem)));
8626 
8627   ins_cost(VOLATILE_REF_COST);
8628   format %{ "ldarh  $dst, $mem\t# short" %}
8629 
8630   ins_encode(aarch64_enc_ldarh(dst, mem));
8631 
8632   ins_pipe(pipe_serial);
8633 %}
8634 
8635 // Load Short/Char (16 bit signed) into long
8636 instruct loadS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
8637 %{
8638   match(Set dst (ConvI2L (LoadS mem)));
8639 
8640   ins_cost(VOLATILE_REF_COST);
8641   format %{ "ldarh  $dst, $mem\t# short" %}
8642 
8643   ins_encode(aarch64_enc_ldarsh(dst, mem));
8644 
8645   ins_pipe(pipe_serial);
8646 %}
8647 
8648 // Load Integer (32 bit signed)
8649 instruct loadI_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
8650 %{
8651   match(Set dst (LoadI mem));
8652 
8653   ins_cost(VOLATILE_REF_COST);
8654   format %{ "ldarw  $dst, $mem\t# int" %}
8655 
8656   ins_encode(aarch64_enc_ldarw(dst, mem));
8657 
8658   ins_pipe(pipe_serial);
8659 %}
8660 
8661 // Load Integer (32 bit unsigned) into long
8662 instruct loadUI2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem, immL_32bits mask)
8663 %{
8664   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
8665 
8666   ins_cost(VOLATILE_REF_COST);
8667   format %{ "ldarw  $dst, $mem\t# int" %}
8668 
8669   ins_encode(aarch64_enc_ldarw(dst, mem));
8670 
8671   ins_pipe(pipe_serial);
8672 %}
8673 
8674 // Load Long (64 bit signed)
8675 instruct loadL_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
8676 %{
8677   match(Set dst (LoadL mem));
8678 
8679   ins_cost(VOLATILE_REF_COST);
8680   format %{ "ldar  $dst, $mem\t# int" %}
8681 
8682   ins_encode(aarch64_enc_ldar(dst, mem));
8683 
8684   ins_pipe(pipe_serial);
8685 %}
8686 
8687 // Load Pointer
8688 instruct loadP_volatile(iRegPNoSp dst, /* sync_memory*/indirect mem)
8689 %{
8690   match(Set dst (LoadP mem));
8691 
8692   ins_cost(VOLATILE_REF_COST);
8693   format %{ "ldar  $dst, $mem\t# ptr" %}
8694 
8695   ins_encode(aarch64_enc_ldar(dst, mem));
8696 
8697   ins_pipe(pipe_serial);
8698 %}
8699 
8700 // Load Compressed Pointer
8701 instruct loadN_volatile(iRegNNoSp dst, /* sync_memory*/indirect mem)
8702 %{
8703   match(Set dst (LoadN mem));
8704 
8705   ins_cost(VOLATILE_REF_COST);
8706   format %{ "ldarw  $dst, $mem\t# compressed ptr" %}
8707 
8708   ins_encode(aarch64_enc_ldarw(dst, mem));
8709 
8710   ins_pipe(pipe_serial);
8711 %}
8712 
8713 // Load Float
8714 instruct loadF_volatile(vRegF dst, /* sync_memory*/indirect mem)
8715 %{
8716   match(Set dst (LoadF mem));
8717 
8718   ins_cost(VOLATILE_REF_COST);
8719   format %{ "ldars  $dst, $mem\t# float" %}
8720 
8721   ins_encode( aarch64_enc_fldars(dst, mem) );
8722 
8723   ins_pipe(pipe_serial);
8724 %}
8725 
8726 // Load Double
8727 instruct loadD_volatile(vRegD dst, /* sync_memory*/indirect mem)
8728 %{
8729   match(Set dst (LoadD mem));
8730 
8731   ins_cost(VOLATILE_REF_COST);
8732   format %{ "ldard  $dst, $mem\t# double" %}
8733 
8734   ins_encode( aarch64_enc_fldard(dst, mem) );
8735 
8736   ins_pipe(pipe_serial);
8737 %}
8738 
8739 // Store Byte
8740 instruct storeB_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
8741 %{
8742   match(Set mem (StoreB mem src));
8743 
8744   ins_cost(VOLATILE_REF_COST);
8745   format %{ "stlrb  $src, $mem\t# byte" %}
8746 
8747   ins_encode(aarch64_enc_stlrb(src, mem));
8748 
8749   ins_pipe(pipe_class_memory);
8750 %}
8751 
8752 // Store Char/Short
8753 instruct storeC_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
8754 %{
8755   match(Set mem (StoreC mem src));
8756 
8757   ins_cost(VOLATILE_REF_COST);
8758   format %{ "stlrh  $src, $mem\t# short" %}
8759 
8760   ins_encode(aarch64_enc_stlrh(src, mem));
8761 
8762   ins_pipe(pipe_class_memory);
8763 %}
8764 
8765 // Store Integer
8766 
8767 instruct storeI_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
8768 %{
8769   match(Set mem(StoreI mem src));
8770 
8771   ins_cost(VOLATILE_REF_COST);
8772   format %{ "stlrw  $src, $mem\t# int" %}
8773 
8774   ins_encode(aarch64_enc_stlrw(src, mem));
8775 
8776   ins_pipe(pipe_class_memory);
8777 %}
8778 
8779 // Store Long (64 bit signed)
8780 instruct storeL_volatile(iRegL src, /* sync_memory*/indirect mem)
8781 %{
8782   match(Set mem (StoreL mem src));
8783 
8784   ins_cost(VOLATILE_REF_COST);
8785   format %{ "stlr  $src, $mem\t# int" %}
8786 
8787   ins_encode(aarch64_enc_stlr(src, mem));
8788 
8789   ins_pipe(pipe_class_memory);
8790 %}
8791 
8792 // Store Pointer
8793 instruct storeP_volatile(iRegP src, /* sync_memory*/indirect mem)
8794 %{
8795   match(Set mem (StoreP mem src));
8796 
8797   ins_cost(VOLATILE_REF_COST);
8798   format %{ "stlr  $src, $mem\t# ptr" %}
8799 
8800   ins_encode(aarch64_enc_stlr(src, mem));
8801 
8802   ins_pipe(pipe_class_memory);
8803 %}
8804 
8805 // Store Compressed Pointer
8806 instruct storeN_volatile(iRegN src, /* sync_memory*/indirect mem)
8807 %{
8808   match(Set mem (StoreN mem src));
8809 
8810   ins_cost(VOLATILE_REF_COST);
8811   format %{ "stlrw  $src, $mem\t# compressed ptr" %}
8812 
8813   ins_encode(aarch64_enc_stlrw(src, mem));
8814 
8815   ins_pipe(pipe_class_memory);
8816 %}
8817 
8818 // Store Float
8819 instruct storeF_volatile(vRegF src, /* sync_memory*/indirect mem)
8820 %{
8821   match(Set mem (StoreF mem src));
8822 
8823   ins_cost(VOLATILE_REF_COST);
8824   format %{ "stlrs  $src, $mem\t# float" %}
8825 
8826   ins_encode( aarch64_enc_fstlrs(src, mem) );
8827 
8828   ins_pipe(pipe_class_memory);
8829 %}
8830 
8831 // TODO
8832 // implement storeImmF0 and storeFImmPacked
8833 
8834 // Store Double
8835 instruct storeD_volatile(vRegD src, /* sync_memory*/indirect mem)
8836 %{
8837   match(Set mem (StoreD mem src));
8838 
8839   ins_cost(VOLATILE_REF_COST);
8840   format %{ "stlrd  $src, $mem\t# double" %}
8841 
8842   ins_encode( aarch64_enc_fstlrd(src, mem) );
8843 
8844   ins_pipe(pipe_class_memory);
8845 %}
8846 
8847 //  ---------------- end of volatile loads and stores ----------------
8848 
8849 // ============================================================================
8850 // BSWAP Instructions
8851 
8852 instruct bytes_reverse_int(iRegINoSp dst, iRegIorL2I src) %{
8853   match(Set dst (ReverseBytesI src));
8854 
8855   ins_cost(INSN_COST);
8856   format %{ "revw  $dst, $src" %}
8857 
8858   ins_encode %{
8859     __ revw(as_Register($dst$$reg), as_Register($src$$reg));
8860   %}
8861 
8862   ins_pipe(ialu_reg);
8863 %}
8864 
8865 instruct bytes_reverse_long(iRegLNoSp dst, iRegL src) %{
8866   match(Set dst (ReverseBytesL src));
8867 
8868   ins_cost(INSN_COST);
8869   format %{ "rev  $dst, $src" %}
8870 
8871   ins_encode %{
8872     __ rev(as_Register($dst$$reg), as_Register($src$$reg));
8873   %}
8874 
8875   ins_pipe(ialu_reg);
8876 %}
8877 
8878 instruct bytes_reverse_unsigned_short(iRegINoSp dst, iRegIorL2I src) %{
8879   match(Set dst (ReverseBytesUS src));
8880 
8881   ins_cost(INSN_COST);
8882   format %{ "rev16w  $dst, $src" %}
8883 
8884   ins_encode %{
8885     __ rev16w(as_Register($dst$$reg), as_Register($src$$reg));
8886   %}
8887 
8888   ins_pipe(ialu_reg);
8889 %}
8890 
8891 instruct bytes_reverse_short(iRegINoSp dst, iRegIorL2I src) %{
8892   match(Set dst (ReverseBytesS src));
8893 
8894   ins_cost(INSN_COST);
8895   format %{ "rev16w  $dst, $src\n\t"
8896             "sbfmw $dst, $dst, #0, #15" %}
8897 
8898   ins_encode %{
8899     __ rev16w(as_Register($dst$$reg), as_Register($src$$reg));
8900     __ sbfmw(as_Register($dst$$reg), as_Register($dst$$reg), 0U, 15U);
8901   %}
8902 
8903   ins_pipe(ialu_reg);
8904 %}
8905 
8906 // ============================================================================
8907 // Zero Count Instructions
8908 
8909 instruct countLeadingZerosI(iRegINoSp dst, iRegIorL2I src) %{
8910   match(Set dst (CountLeadingZerosI src));
8911 
8912   ins_cost(INSN_COST);
8913   format %{ "clzw  $dst, $src" %}
8914   ins_encode %{
8915     __ clzw(as_Register($dst$$reg), as_Register($src$$reg));
8916   %}
8917 
8918   ins_pipe(ialu_reg);
8919 %}
8920 
8921 instruct countLeadingZerosL(iRegINoSp dst, iRegL src) %{
8922   match(Set dst (CountLeadingZerosL src));
8923 
8924   ins_cost(INSN_COST);
8925   format %{ "clz   $dst, $src" %}
8926   ins_encode %{
8927     __ clz(as_Register($dst$$reg), as_Register($src$$reg));
8928   %}
8929 
8930   ins_pipe(ialu_reg);
8931 %}
8932 
8933 instruct countTrailingZerosI(iRegINoSp dst, iRegIorL2I src) %{
8934   match(Set dst (CountTrailingZerosI src));
8935 
8936   ins_cost(INSN_COST * 2);
8937   format %{ "rbitw  $dst, $src\n\t"
8938             "clzw   $dst, $dst" %}
8939   ins_encode %{
8940     __ rbitw(as_Register($dst$$reg), as_Register($src$$reg));
8941     __ clzw(as_Register($dst$$reg), as_Register($dst$$reg));
8942   %}
8943 
8944   ins_pipe(ialu_reg);
8945 %}
8946 
8947 instruct countTrailingZerosL(iRegINoSp dst, iRegL src) %{
8948   match(Set dst (CountTrailingZerosL src));
8949 
8950   ins_cost(INSN_COST * 2);
8951   format %{ "rbit   $dst, $src\n\t"
8952             "clz    $dst, $dst" %}
8953   ins_encode %{
8954     __ rbit(as_Register($dst$$reg), as_Register($src$$reg));
8955     __ clz(as_Register($dst$$reg), as_Register($dst$$reg));
8956   %}
8957 
8958   ins_pipe(ialu_reg);
8959 %}
8960 
8961 //---------- Population Count Instructions -------------------------------------
8962 //
8963 
8964 instruct popCountI(iRegINoSp dst, iRegIorL2I src, vRegF tmp) %{
8965   predicate(UsePopCountInstruction);
8966   match(Set dst (PopCountI src));
8967   effect(TEMP tmp);
8968   ins_cost(INSN_COST * 13);
8969 
8970   format %{ "movw   $src, $src\n\t"
8971             "mov    $tmp, $src\t# vector (1D)\n\t"
8972             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
8973             "addv   $tmp, $tmp\t# vector (8B)\n\t"
8974             "mov    $dst, $tmp\t# vector (1D)" %}
8975   ins_encode %{
8976     __ movw($src$$Register, $src$$Register); // ensure top 32 bits 0
8977     __ mov($tmp$$FloatRegister, __ T1D, 0, $src$$Register);
8978     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
8979     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
8980     __ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0);
8981   %}
8982 
8983   ins_pipe(pipe_class_default);
8984 %}
8985 
8986 instruct popCountI_mem(iRegINoSp dst, memory mem, vRegF tmp) %{
8987   predicate(UsePopCountInstruction);
8988   match(Set dst (PopCountI (LoadI mem)));
8989   effect(TEMP tmp);
8990   ins_cost(INSN_COST * 13);
8991 
8992   format %{ "ldrs   $tmp, $mem\n\t"
8993             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
8994             "addv   $tmp, $tmp\t# vector (8B)\n\t"
8995             "mov    $dst, $tmp\t# vector (1D)" %}
8996   ins_encode %{
8997     FloatRegister tmp_reg = as_FloatRegister($tmp$$reg);
8998     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrs, tmp_reg, $mem->opcode(),
8999                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
9000     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
9001     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
9002     __ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0);
9003   %}
9004 
9005   ins_pipe(pipe_class_default);
9006 %}
9007 
9008 // Note: Long.bitCount(long) returns an int.
9009 instruct popCountL(iRegINoSp dst, iRegL src, vRegD tmp) %{
9010   predicate(UsePopCountInstruction);
9011   match(Set dst (PopCountL src));
9012   effect(TEMP tmp);
9013   ins_cost(INSN_COST * 13);
9014 
9015   format %{ "mov    $tmp, $src\t# vector (1D)\n\t"
9016             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
9017             "addv   $tmp, $tmp\t# vector (8B)\n\t"
9018             "mov    $dst, $tmp\t# vector (1D)" %}
9019   ins_encode %{
9020     __ mov($tmp$$FloatRegister, __ T1D, 0, $src$$Register);
9021     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
9022     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
9023     __ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0);
9024   %}
9025 
9026   ins_pipe(pipe_class_default);
9027 %}
9028 
9029 instruct popCountL_mem(iRegINoSp dst, memory mem, vRegD tmp) %{
9030   predicate(UsePopCountInstruction);
9031   match(Set dst (PopCountL (LoadL mem)));
9032   effect(TEMP tmp);
9033   ins_cost(INSN_COST * 13);
9034 
9035   format %{ "ldrd   $tmp, $mem\n\t"
9036             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
9037             "addv   $tmp, $tmp\t# vector (8B)\n\t"
9038             "mov    $dst, $tmp\t# vector (1D)" %}
9039   ins_encode %{
9040     FloatRegister tmp_reg = as_FloatRegister($tmp$$reg);
9041     loadStore(MacroAssembler(&cbuf), &MacroAssembler::ldrd, tmp_reg, $mem->opcode(),
9042                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
9043     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
9044     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
9045     __ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0);
9046   %}
9047 
9048   ins_pipe(pipe_class_default);
9049 %}
9050 
9051 // ============================================================================
9052 // MemBar Instruction
9053 
9054 instruct load_fence() %{
9055   match(LoadFence);
9056   ins_cost(VOLATILE_REF_COST);
9057 
9058   format %{ "load_fence" %}
9059 
9060   ins_encode %{
9061     __ membar(Assembler::LoadLoad|Assembler::LoadStore);
9062   %}
9063   ins_pipe(pipe_serial);
9064 %}
9065 
9066 instruct unnecessary_membar_acquire() %{
9067   predicate(unnecessary_acquire(n));
9068   match(MemBarAcquire);
9069   ins_cost(0);
9070 
9071   format %{ "membar_acquire (elided)" %}
9072 
9073   ins_encode %{
9074     __ block_comment("membar_acquire (elided)");
9075   %}
9076 
9077   ins_pipe(pipe_class_empty);
9078 %}
9079 
9080 instruct membar_acquire() %{
9081   match(MemBarAcquire);
9082   ins_cost(VOLATILE_REF_COST);
9083 
9084   format %{ "membar_acquire" %}
9085 
9086   ins_encode %{
9087     __ block_comment("membar_acquire");
9088     __ membar(Assembler::LoadLoad|Assembler::LoadStore);
9089   %}
9090 
9091   ins_pipe(pipe_serial);
9092 %}
9093 
9094 
9095 instruct membar_acquire_lock() %{
9096   match(MemBarAcquireLock);
9097   ins_cost(VOLATILE_REF_COST);
9098 
9099   format %{ "membar_acquire_lock (elided)" %}
9100 
9101   ins_encode %{
9102     __ block_comment("membar_acquire_lock (elided)");
9103   %}
9104 
9105   ins_pipe(pipe_serial);
9106 %}
9107 
9108 instruct store_fence() %{
9109   match(StoreFence);
9110   ins_cost(VOLATILE_REF_COST);
9111 
9112   format %{ "store_fence" %}
9113 
9114   ins_encode %{
9115     __ membar(Assembler::LoadStore|Assembler::StoreStore);
9116   %}
9117   ins_pipe(pipe_serial);
9118 %}
9119 
9120 instruct unnecessary_membar_release() %{
9121   predicate(unnecessary_release(n));
9122   match(MemBarRelease);
9123   ins_cost(0);
9124 
9125   format %{ "membar_release (elided)" %}
9126 
9127   ins_encode %{
9128     __ block_comment("membar_release (elided)");
9129   %}
9130   ins_pipe(pipe_serial);
9131 %}
9132 
9133 instruct membar_release() %{
9134   match(MemBarRelease);
9135   ins_cost(VOLATILE_REF_COST);
9136 
9137   format %{ "membar_release" %}
9138 
9139   ins_encode %{
9140     __ block_comment("membar_release");
9141     __ membar(Assembler::LoadStore|Assembler::StoreStore);
9142   %}
9143   ins_pipe(pipe_serial);
9144 %}
9145 
9146 instruct membar_storestore() %{
9147   match(MemBarStoreStore);
9148   ins_cost(VOLATILE_REF_COST);
9149 
9150   format %{ "MEMBAR-store-store" %}
9151 
9152   ins_encode %{
9153     __ membar(Assembler::StoreStore);
9154   %}
9155   ins_pipe(pipe_serial);
9156 %}
9157 
9158 instruct membar_release_lock() %{
9159   match(MemBarReleaseLock);
9160   ins_cost(VOLATILE_REF_COST);
9161 
9162   format %{ "membar_release_lock (elided)" %}
9163 
9164   ins_encode %{
9165     __ block_comment("membar_release_lock (elided)");
9166   %}
9167 
9168   ins_pipe(pipe_serial);
9169 %}
9170 
9171 instruct unnecessary_membar_volatile() %{
9172   predicate(unnecessary_volatile(n));
9173   match(MemBarVolatile);
9174   ins_cost(0);
9175 
9176   format %{ "membar_volatile (elided)" %}
9177 
9178   ins_encode %{
9179     __ block_comment("membar_volatile (elided)");
9180   %}
9181 
9182   ins_pipe(pipe_serial);
9183 %}
9184 
9185 instruct membar_volatile() %{
9186   match(MemBarVolatile);
9187   ins_cost(VOLATILE_REF_COST*100);
9188 
9189   format %{ "membar_volatile" %}
9190 
9191   ins_encode %{
9192     __ block_comment("membar_volatile");
9193     __ membar(Assembler::StoreLoad);
9194   %}
9195 
9196   ins_pipe(pipe_serial);
9197 %}
9198 
9199 // ============================================================================
9200 // Cast/Convert Instructions
9201 
9202 instruct castX2P(iRegPNoSp dst, iRegL src) %{
9203   match(Set dst (CastX2P src));
9204 
9205   ins_cost(INSN_COST);
9206   format %{ "mov $dst, $src\t# long -> ptr" %}
9207 
9208   ins_encode %{
9209     if ($dst$$reg != $src$$reg) {
9210       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
9211     }
9212   %}
9213 
9214   ins_pipe(ialu_reg);
9215 %}
9216 
9217 instruct castP2X(iRegLNoSp dst, iRegP src) %{
9218   match(Set dst (CastP2X src));
9219 
9220   ins_cost(INSN_COST);
9221   format %{ "mov $dst, $src\t# ptr -> long" %}
9222 
9223   ins_encode %{
9224     if ($dst$$reg != $src$$reg) {
9225       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
9226     }
9227   %}
9228 
9229   ins_pipe(ialu_reg);
9230 %}
9231 
9232 // Convert oop into int for vectors alignment masking
9233 instruct convP2I(iRegINoSp dst, iRegP src) %{
9234   match(Set dst (ConvL2I (CastP2X src)));
9235 
9236   ins_cost(INSN_COST);
9237   format %{ "movw $dst, $src\t# ptr -> int" %}
9238   ins_encode %{
9239     __ movw($dst$$Register, $src$$Register);
9240   %}
9241 
9242   ins_pipe(ialu_reg);
9243 %}
9244 
9245 // Convert compressed oop into int for vectors alignment masking
9246 // in case of 32bit oops (heap < 4Gb).
9247 instruct convN2I(iRegINoSp dst, iRegN src)
9248 %{
9249   predicate(Universe::narrow_oop_shift() == 0);
9250   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
9251 
9252   ins_cost(INSN_COST);
9253   format %{ "mov dst, $src\t# compressed ptr -> int" %}
9254   ins_encode %{
9255     __ movw($dst$$Register, $src$$Register);
9256   %}
9257 
9258   ins_pipe(ialu_reg);
9259 %}
9260 
9261 
9262 // Convert oop pointer into compressed form
9263 instruct encodeHeapOop(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{
9264   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
9265   match(Set dst (EncodeP src));
9266   effect(KILL cr);
9267   ins_cost(INSN_COST * 3);
9268   format %{ "encode_heap_oop $dst, $src" %}
9269   ins_encode %{
9270     Register s = $src$$Register;
9271     Register d = $dst$$Register;
9272     __ encode_heap_oop(d, s);
9273   %}
9274   ins_pipe(ialu_reg);
9275 %}
9276 
9277 instruct encodeHeapOop_not_null(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{
9278   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
9279   match(Set dst (EncodeP src));
9280   ins_cost(INSN_COST * 3);
9281   format %{ "encode_heap_oop_not_null $dst, $src" %}
9282   ins_encode %{
9283     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
9284   %}
9285   ins_pipe(ialu_reg);
9286 %}
9287 
9288 instruct decodeHeapOop(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{
9289   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
9290             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
9291   match(Set dst (DecodeN src));
9292   ins_cost(INSN_COST * 3);
9293   format %{ "decode_heap_oop $dst, $src" %}
9294   ins_encode %{
9295     Register s = $src$$Register;
9296     Register d = $dst$$Register;
9297     __ decode_heap_oop(d, s);
9298   %}
9299   ins_pipe(ialu_reg);
9300 %}
9301 
9302 instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{
9303   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
9304             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
9305   match(Set dst (DecodeN src));
9306   ins_cost(INSN_COST * 3);
9307   format %{ "decode_heap_oop_not_null $dst, $src" %}
9308   ins_encode %{
9309     Register s = $src$$Register;
9310     Register d = $dst$$Register;
9311     __ decode_heap_oop_not_null(d, s);
9312   %}
9313   ins_pipe(ialu_reg);
9314 %}
9315 
9316 // n.b. AArch64 implementations of encode_klass_not_null and
9317 // decode_klass_not_null do not modify the flags register so, unlike
9318 // Intel, we don't kill CR as a side effect here
9319 
9320 instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{
9321   match(Set dst (EncodePKlass src));
9322 
9323   ins_cost(INSN_COST * 3);
9324   format %{ "encode_klass_not_null $dst,$src" %}
9325 
9326   ins_encode %{
9327     Register src_reg = as_Register($src$$reg);
9328     Register dst_reg = as_Register($dst$$reg);
9329     __ encode_klass_not_null(dst_reg, src_reg);
9330   %}
9331 
9332    ins_pipe(ialu_reg);
9333 %}
9334 
9335 instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src) %{
9336   match(Set dst (DecodeNKlass src));
9337 
9338   ins_cost(INSN_COST * 3);
9339   format %{ "decode_klass_not_null $dst,$src" %}
9340 
9341   ins_encode %{
9342     Register src_reg = as_Register($src$$reg);
9343     Register dst_reg = as_Register($dst$$reg);
9344     if (dst_reg != src_reg) {
9345       __ decode_klass_not_null(dst_reg, src_reg);
9346     } else {
9347       __ decode_klass_not_null(dst_reg);
9348     }
9349   %}
9350 
9351    ins_pipe(ialu_reg);
9352 %}
9353 
9354 instruct checkCastPP(iRegPNoSp dst)
9355 %{
9356   match(Set dst (CheckCastPP dst));
9357 
9358   size(0);
9359   format %{ "# checkcastPP of $dst" %}
9360   ins_encode(/* empty encoding */);
9361   ins_pipe(pipe_class_empty);
9362 %}
9363 
9364 instruct castPP(iRegPNoSp dst)
9365 %{
9366   match(Set dst (CastPP dst));
9367 
9368   size(0);
9369   format %{ "# castPP of $dst" %}
9370   ins_encode(/* empty encoding */);
9371   ins_pipe(pipe_class_empty);
9372 %}
9373 
9374 instruct castII(iRegI dst)
9375 %{
9376   match(Set dst (CastII dst));
9377 
9378   size(0);
9379   format %{ "# castII of $dst" %}
9380   ins_encode(/* empty encoding */);
9381   ins_cost(0);
9382   ins_pipe(pipe_class_empty);
9383 %}
9384 
9385 // ============================================================================
9386 // Atomic operation instructions
9387 //
9388 // Intel and SPARC both implement Ideal Node LoadPLocked and
9389 // Store{PIL}Conditional instructions using a normal load for the
9390 // LoadPLocked and a CAS for the Store{PIL}Conditional.
9391 //
9392 // The ideal code appears only to use LoadPLocked/StorePLocked as a
9393 // pair to lock object allocations from Eden space when not using
9394 // TLABs.
9395 //
9396 // There does not appear to be a Load{IL}Locked Ideal Node and the
9397 // Ideal code appears to use Store{IL}Conditional as an alias for CAS
9398 // and to use StoreIConditional only for 32-bit and StoreLConditional
9399 // only for 64-bit.
9400 //
9401 // We implement LoadPLocked and StorePLocked instructions using,
9402 // respectively the AArch64 hw load-exclusive and store-conditional
9403 // instructions. Whereas we must implement each of
9404 // Store{IL}Conditional using a CAS which employs a pair of
9405 // instructions comprising a load-exclusive followed by a
9406 // store-conditional.
9407 
9408 
9409 // Locked-load (linked load) of the current heap-top
9410 // used when updating the eden heap top
9411 // implemented using ldaxr on AArch64
9412 
9413 instruct loadPLocked(iRegPNoSp dst, indirect mem)
9414 %{
9415   match(Set dst (LoadPLocked mem));
9416 
9417   ins_cost(VOLATILE_REF_COST);
9418 
9419   format %{ "ldaxr $dst, $mem\t# ptr linked acquire" %}
9420 
9421   ins_encode(aarch64_enc_ldaxr(dst, mem));
9422 
9423   ins_pipe(pipe_serial);
9424 %}
9425 
9426 // Conditional-store of the updated heap-top.
9427 // Used during allocation of the shared heap.
9428 // Sets flag (EQ) on success.
9429 // implemented using stlxr on AArch64.
9430 
9431 instruct storePConditional(memory heap_top_ptr, iRegP oldval, iRegP newval, rFlagsReg cr)
9432 %{
9433   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
9434 
9435   ins_cost(VOLATILE_REF_COST);
9436 
9437  // TODO
9438  // do we need to do a store-conditional release or can we just use a
9439  // plain store-conditional?
9440 
9441   format %{
9442     "stlxr rscratch1, $newval, $heap_top_ptr\t# ptr cond release"
9443     "cmpw rscratch1, zr\t# EQ on successful write"
9444   %}
9445 
9446   ins_encode(aarch64_enc_stlxr(newval, heap_top_ptr));
9447 
9448   ins_pipe(pipe_serial);
9449 %}
9450 
9451 
9452 // storeLConditional is used by PhaseMacroExpand::expand_lock_node
9453 // when attempting to rebias a lock towards the current thread.  We
9454 // must use the acquire form of cmpxchg in order to guarantee acquire
9455 // semantics in this case.
9456 instruct storeLConditional(indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr)
9457 %{
9458   match(Set cr (StoreLConditional mem (Binary oldval newval)));
9459 
9460   ins_cost(VOLATILE_REF_COST);
9461 
9462   format %{
9463     "cmpxchg rscratch1, $mem, $oldval, $newval, $mem\t# if $mem == $oldval then $mem <-- $newval"
9464     "cmpw rscratch1, zr\t# EQ on successful write"
9465   %}
9466 
9467   ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval));
9468 
9469   ins_pipe(pipe_slow);
9470 %}
9471 
9472 // storeIConditional also has acquire semantics, for no better reason
9473 // than matching storeLConditional.  At the time of writing this
9474 // comment storeIConditional was not used anywhere by AArch64.
9475 instruct storeIConditional(indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr)
9476 %{
9477   match(Set cr (StoreIConditional mem (Binary oldval newval)));
9478 
9479   ins_cost(VOLATILE_REF_COST);
9480 
9481   format %{
9482     "cmpxchgw rscratch1, $mem, $oldval, $newval, $mem\t# if $mem == $oldval then $mem <-- $newval"
9483     "cmpw rscratch1, zr\t# EQ on successful write"
9484   %}
9485 
9486   ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval));
9487 
9488   ins_pipe(pipe_slow);
9489 %}
9490 
9491 // standard CompareAndSwapX when we are using barriers
9492 // these have higher priority than the rules selected by a predicate
9493 
9494 // XXX No flag versions for CompareAndSwap{I,L,P,N} because matcher
9495 // can't match them
9496 
9497 instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
9498 
9499   match(Set res (CompareAndSwapI mem (Binary oldval newval)));
9500   ins_cost(2 * VOLATILE_REF_COST);
9501 
9502   effect(KILL cr);
9503 
9504  format %{
9505     "cmpxchgw $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
9506     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9507  %}
9508 
9509  ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval),
9510             aarch64_enc_cset_eq(res));
9511 
9512   ins_pipe(pipe_slow);
9513 %}
9514 
9515 instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{
9516 
9517   match(Set res (CompareAndSwapL mem (Binary oldval newval)));
9518   ins_cost(2 * VOLATILE_REF_COST);
9519 
9520   effect(KILL cr);
9521 
9522  format %{
9523     "cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval"
9524     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9525  %}
9526 
9527  ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval),
9528             aarch64_enc_cset_eq(res));
9529 
9530   ins_pipe(pipe_slow);
9531 %}
9532 
9533 instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
9534 
9535   match(Set res (CompareAndSwapP mem (Binary oldval newval)));
9536   ins_cost(2 * VOLATILE_REF_COST);
9537 
9538   effect(KILL cr);
9539 
9540  format %{
9541     "cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval"
9542     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9543  %}
9544 
9545  ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval),
9546             aarch64_enc_cset_eq(res));
9547 
9548   ins_pipe(pipe_slow);
9549 %}
9550 
9551 instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{
9552 
9553   match(Set res (CompareAndSwapN mem (Binary oldval newval)));
9554   ins_cost(2 * VOLATILE_REF_COST);
9555 
9556   effect(KILL cr);
9557 
9558  format %{
9559     "cmpxchgw $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval"
9560     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9561  %}
9562 
9563  ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval),
9564             aarch64_enc_cset_eq(res));
9565 
9566   ins_pipe(pipe_slow);
9567 %}
9568 
9569 // alternative CompareAndSwapX when we are eliding barriers
9570 
9571 instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
9572 
9573   predicate(needs_acquiring_load_exclusive(n));
9574   match(Set res (CompareAndSwapI mem (Binary oldval newval)));
9575   ins_cost(VOLATILE_REF_COST);
9576 
9577   effect(KILL cr);
9578 
9579  format %{
9580     "cmpxchgw_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
9581     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9582  %}
9583 
9584  ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval),
9585             aarch64_enc_cset_eq(res));
9586 
9587   ins_pipe(pipe_slow);
9588 %}
9589 
9590 instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{
9591 
9592   predicate(needs_acquiring_load_exclusive(n));
9593   match(Set res (CompareAndSwapL mem (Binary oldval newval)));
9594   ins_cost(VOLATILE_REF_COST);
9595 
9596   effect(KILL cr);
9597 
9598  format %{
9599     "cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval"
9600     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9601  %}
9602 
9603  ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval),
9604             aarch64_enc_cset_eq(res));
9605 
9606   ins_pipe(pipe_slow);
9607 %}
9608 
9609 instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
9610 
9611   predicate(needs_acquiring_load_exclusive(n));
9612   match(Set res (CompareAndSwapP mem (Binary oldval newval)));
9613   ins_cost(VOLATILE_REF_COST);
9614 
9615   effect(KILL cr);
9616 
9617  format %{
9618     "cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval"
9619     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9620  %}
9621 
9622  ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval),
9623             aarch64_enc_cset_eq(res));
9624 
9625   ins_pipe(pipe_slow);
9626 %}
9627 
9628 instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{
9629 
9630   predicate(needs_acquiring_load_exclusive(n));
9631   match(Set res (CompareAndSwapN mem (Binary oldval newval)));
9632   ins_cost(VOLATILE_REF_COST);
9633 
9634   effect(KILL cr);
9635 
9636  format %{
9637     "cmpxchgw_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval"
9638     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9639  %}
9640 
9641  ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval),
9642             aarch64_enc_cset_eq(res));
9643 
9644   ins_pipe(pipe_slow);
9645 %}
9646 
9647 
9648 // ---------------------------------------------------------------------
9649 // Sundry CAS operations.  Note that release is always true,
9650 // regardless of the memory ordering of the CAS.  This is because we
9651 // need the volatile case to be sequentially consistent but there is
9652 // no trailing StoreLoad barrier emitted by C2.  Unfortunately we
9653 // can't check the type of memory ordering here, so we always emit a
9654 // STLXR.
9655 
9656 // This section is generated from aarch64_ad_cas.m4
9657 
9658 
9659 instruct compareAndExchangeB(iRegI_R0 res, indirect mem, iRegI_R2 oldval, iRegI_R3 newval, rFlagsReg cr) %{
9660   match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
9661   ins_cost(2 * VOLATILE_REF_COST);
9662   effect(KILL cr);
9663   format %{
9664     "cmpxchg $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
9665   %}
9666   ins_encode %{
9667     __ uxtbw(rscratch2, $oldval$$Register);
9668     __ cmpxchg($mem$$Register, rscratch2, $newval$$Register,
9669                Assembler::byte, /*acquire*/ false, /*release*/ true,
9670                /*weak*/ false, $res$$Register);
9671     __ sxtbw($res$$Register, $res$$Register);
9672   %}
9673   ins_pipe(pipe_slow);
9674 %}
9675 
9676 instruct compareAndExchangeS(iRegI_R0 res, indirect mem, iRegI_R2 oldval, iRegI_R3 newval, rFlagsReg cr) %{
9677   match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
9678   ins_cost(2 * VOLATILE_REF_COST);
9679   effect(KILL cr);
9680   format %{
9681     "cmpxchg $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
9682   %}
9683   ins_encode %{
9684     __ uxthw(rscratch2, $oldval$$Register);
9685     __ cmpxchg($mem$$Register, rscratch2, $newval$$Register,
9686                Assembler::halfword, /*acquire*/ false, /*release*/ true,
9687                /*weak*/ false, $res$$Register);
9688     __ sxthw($res$$Register, $res$$Register);
9689   %}
9690   ins_pipe(pipe_slow);
9691 %}
9692 
9693 instruct compareAndExchangeI(iRegI_R0 res, indirect mem, iRegI_R2 oldval, iRegI_R3 newval, rFlagsReg cr) %{
9694   match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
9695   ins_cost(2 * VOLATILE_REF_COST);
9696   effect(KILL cr);
9697   format %{
9698     "cmpxchg $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
9699   %}
9700   ins_encode %{
9701     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
9702                Assembler::word, /*acquire*/ false, /*release*/ true,
9703                /*weak*/ false, $res$$Register);
9704   %}
9705   ins_pipe(pipe_slow);
9706 %}
9707 
9708 instruct compareAndExchangeL(iRegL_R0 res, indirect mem, iRegL_R2 oldval, iRegL_R3 newval, rFlagsReg cr) %{
9709   match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
9710   ins_cost(2 * VOLATILE_REF_COST);
9711   effect(KILL cr);
9712   format %{
9713     "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
9714   %}
9715   ins_encode %{
9716     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
9717                Assembler::xword, /*acquire*/ false, /*release*/ true,
9718                /*weak*/ false, $res$$Register);
9719   %}
9720   ins_pipe(pipe_slow);
9721 %}
9722 
9723 instruct compareAndExchangeN(iRegN_R0 res, indirect mem, iRegN_R2 oldval, iRegN_R3 newval, rFlagsReg cr) %{
9724   match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
9725   ins_cost(2 * VOLATILE_REF_COST);
9726   effect(KILL cr);
9727   format %{
9728     "cmpxchg $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
9729   %}
9730   ins_encode %{
9731     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
9732                Assembler::word, /*acquire*/ false, /*release*/ true,
9733                /*weak*/ false, $res$$Register);
9734   %}
9735   ins_pipe(pipe_slow);
9736 %}
9737 
9738 instruct compareAndExchangeP(iRegP_R0 res, indirect mem, iRegP_R2 oldval, iRegP_R3 newval, rFlagsReg cr) %{
9739   match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
9740   ins_cost(2 * VOLATILE_REF_COST);
9741   effect(KILL cr);
9742   format %{
9743     "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
9744   %}
9745   ins_encode %{
9746     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
9747                Assembler::xword, /*acquire*/ false, /*release*/ true,
9748                /*weak*/ false, $res$$Register);
9749   %}
9750   ins_pipe(pipe_slow);
9751 %}
9752 
9753 instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
9754   match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
9755   ins_cost(2 * VOLATILE_REF_COST);
9756   effect(KILL cr);
9757   format %{
9758     "cmpxchg $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
9759     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9760   %}
9761   ins_encode %{
9762     __ uxtbw(rscratch2, $oldval$$Register);
9763     __ cmpxchg($mem$$Register, rscratch2, $newval$$Register,
9764                Assembler::byte, /*acquire*/ false, /*release*/ true,
9765                /*weak*/ true, noreg);
9766     __ csetw($res$$Register, Assembler::EQ);
9767   %}
9768   ins_pipe(pipe_slow);
9769 %}
9770 
9771 instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
9772   match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
9773   ins_cost(2 * VOLATILE_REF_COST);
9774   effect(KILL cr);
9775   format %{
9776     "cmpxchg $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
9777     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9778   %}
9779   ins_encode %{
9780     __ uxthw(rscratch2, $oldval$$Register);
9781     __ cmpxchg($mem$$Register, rscratch2, $newval$$Register,
9782                Assembler::halfword, /*acquire*/ false, /*release*/ true,
9783                /*weak*/ true, noreg);
9784     __ csetw($res$$Register, Assembler::EQ);
9785   %}
9786   ins_pipe(pipe_slow);
9787 %}
9788 
9789 instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
9790   match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
9791   ins_cost(2 * VOLATILE_REF_COST);
9792   effect(KILL cr);
9793   format %{
9794     "cmpxchg $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
9795     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9796   %}
9797   ins_encode %{
9798     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
9799                Assembler::word, /*acquire*/ false, /*release*/ true,
9800                /*weak*/ true, noreg);
9801     __ csetw($res$$Register, Assembler::EQ);
9802   %}
9803   ins_pipe(pipe_slow);
9804 %}
9805 
9806 instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{
9807   match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
9808   ins_cost(2 * VOLATILE_REF_COST);
9809   effect(KILL cr);
9810   format %{
9811     "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
9812     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9813   %}
9814   ins_encode %{
9815     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
9816                Assembler::xword, /*acquire*/ false, /*release*/ true,
9817                /*weak*/ true, noreg);
9818     __ csetw($res$$Register, Assembler::EQ);
9819   %}
9820   ins_pipe(pipe_slow);
9821 %}
9822 
9823 instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{
9824   match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
9825   ins_cost(2 * VOLATILE_REF_COST);
9826   effect(KILL cr);
9827   format %{
9828     "cmpxchg $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
9829     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9830   %}
9831   ins_encode %{
9832     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
9833                Assembler::word, /*acquire*/ false, /*release*/ true,
9834                /*weak*/ true, noreg);
9835     __ csetw($res$$Register, Assembler::EQ);
9836   %}
9837   ins_pipe(pipe_slow);
9838 %}
9839 
9840 instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
9841   match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
9842   ins_cost(2 * VOLATILE_REF_COST);
9843   effect(KILL cr);
9844   format %{
9845     "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
9846     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
9847   %}
9848   ins_encode %{
9849     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
9850                Assembler::xword, /*acquire*/ false, /*release*/ true,
9851                /*weak*/ true, noreg);
9852     __ csetw($res$$Register, Assembler::EQ);
9853   %}
9854   ins_pipe(pipe_slow);
9855 %}
9856 // ---------------------------------------------------------------------
9857 
9858 instruct get_and_setI(indirect mem, iRegINoSp newv, iRegI prev) %{
9859   match(Set prev (GetAndSetI mem newv));
9860   format %{ "atomic_xchgw  $prev, $newv, [$mem]" %}
9861   ins_encode %{
9862     __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base));
9863   %}
9864   ins_pipe(pipe_serial);
9865 %}
9866 
9867 instruct get_and_setL(indirect mem, iRegLNoSp newv, iRegL prev) %{
9868   match(Set prev (GetAndSetL mem newv));
9869   format %{ "atomic_xchg  $prev, $newv, [$mem]" %}
9870   ins_encode %{
9871     __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
9872   %}
9873   ins_pipe(pipe_serial);
9874 %}
9875 
9876 instruct get_and_setN(indirect mem, iRegNNoSp newv, iRegI prev) %{
9877   match(Set prev (GetAndSetN mem newv));
9878   format %{ "atomic_xchgw $prev, $newv, [$mem]" %}
9879   ins_encode %{
9880     __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base));
9881   %}
9882   ins_pipe(pipe_serial);
9883 %}
9884 
9885 instruct get_and_setP(indirect mem, iRegPNoSp newv, iRegP prev) %{
9886   match(Set prev (GetAndSetP mem newv));
9887   format %{ "atomic_xchg  $prev, $newv, [$mem]" %}
9888   ins_encode %{
9889     __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
9890   %}
9891   ins_pipe(pipe_serial);
9892 %}
9893 
9894 
9895 instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr) %{
9896   match(Set newval (GetAndAddL mem incr));
9897   ins_cost(INSN_COST * 10);
9898   format %{ "get_and_addL $newval, [$mem], $incr" %}
9899   ins_encode %{
9900     __ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base));
9901   %}
9902   ins_pipe(pipe_serial);
9903 %}
9904 
9905 instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr) %{
9906   predicate(n->as_LoadStore()->result_not_used());
9907   match(Set dummy (GetAndAddL mem incr));
9908   ins_cost(INSN_COST * 9);
9909   format %{ "get_and_addL [$mem], $incr" %}
9910   ins_encode %{
9911     __ atomic_add(noreg, $incr$$Register, as_Register($mem$$base));
9912   %}
9913   ins_pipe(pipe_serial);
9914 %}
9915 
9916 instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAddSub incr) %{
9917   match(Set newval (GetAndAddL mem incr));
9918   ins_cost(INSN_COST * 10);
9919   format %{ "get_and_addL $newval, [$mem], $incr" %}
9920   ins_encode %{
9921     __ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base));
9922   %}
9923   ins_pipe(pipe_serial);
9924 %}
9925 
9926 instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAddSub incr) %{
9927   predicate(n->as_LoadStore()->result_not_used());
9928   match(Set dummy (GetAndAddL mem incr));
9929   ins_cost(INSN_COST * 9);
9930   format %{ "get_and_addL [$mem], $incr" %}
9931   ins_encode %{
9932     __ atomic_add(noreg, $incr$$constant, as_Register($mem$$base));
9933   %}
9934   ins_pipe(pipe_serial);
9935 %}
9936 
9937 instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr) %{
9938   match(Set newval (GetAndAddI mem incr));
9939   ins_cost(INSN_COST * 10);
9940   format %{ "get_and_addI $newval, [$mem], $incr" %}
9941   ins_encode %{
9942     __ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base));
9943   %}
9944   ins_pipe(pipe_serial);
9945 %}
9946 
9947 instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr) %{
9948   predicate(n->as_LoadStore()->result_not_used());
9949   match(Set dummy (GetAndAddI mem incr));
9950   ins_cost(INSN_COST * 9);
9951   format %{ "get_and_addI [$mem], $incr" %}
9952   ins_encode %{
9953     __ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base));
9954   %}
9955   ins_pipe(pipe_serial);
9956 %}
9957 
9958 instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAddSub incr) %{
9959   match(Set newval (GetAndAddI mem incr));
9960   ins_cost(INSN_COST * 10);
9961   format %{ "get_and_addI $newval, [$mem], $incr" %}
9962   ins_encode %{
9963     __ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base));
9964   %}
9965   ins_pipe(pipe_serial);
9966 %}
9967 
9968 instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAddSub incr) %{
9969   predicate(n->as_LoadStore()->result_not_used());
9970   match(Set dummy (GetAndAddI mem incr));
9971   ins_cost(INSN_COST * 9);
9972   format %{ "get_and_addI [$mem], $incr" %}
9973   ins_encode %{
9974     __ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base));
9975   %}
9976   ins_pipe(pipe_serial);
9977 %}
9978 
9979 // Manifest a CmpL result in an integer register.
9980 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
9981 instruct cmpL3_reg_reg(iRegINoSp dst, iRegL src1, iRegL src2, rFlagsReg flags)
9982 %{
9983   match(Set dst (CmpL3 src1 src2));
9984   effect(KILL flags);
9985 
9986   ins_cost(INSN_COST * 6);
9987   format %{
9988       "cmp $src1, $src2"
9989       "csetw $dst, ne"
9990       "cnegw $dst, lt"
9991   %}
9992   // format %{ "CmpL3 $dst, $src1, $src2" %}
9993   ins_encode %{
9994     __ cmp($src1$$Register, $src2$$Register);
9995     __ csetw($dst$$Register, Assembler::NE);
9996     __ cnegw($dst$$Register, $dst$$Register, Assembler::LT);
9997   %}
9998 
9999   ins_pipe(pipe_class_default);
10000 %}
10001 
10002 instruct cmpL3_reg_imm(iRegINoSp dst, iRegL src1, immLAddSub src2, rFlagsReg flags)
10003 %{
10004   match(Set dst (CmpL3 src1 src2));
10005   effect(KILL flags);
10006 
10007   ins_cost(INSN_COST * 6);
10008   format %{
10009       "cmp $src1, $src2"
10010       "csetw $dst, ne"
10011       "cnegw $dst, lt"
10012   %}
10013   ins_encode %{
10014     int32_t con = (int32_t)$src2$$constant;
10015      if (con < 0) {
10016       __ adds(zr, $src1$$Register, -con);
10017     } else {
10018       __ subs(zr, $src1$$Register, con);
10019     }
10020     __ csetw($dst$$Register, Assembler::NE);
10021     __ cnegw($dst$$Register, $dst$$Register, Assembler::LT);
10022   %}
10023 
10024   ins_pipe(pipe_class_default);
10025 %}
10026 
10027 // ============================================================================
10028 // Conditional Move Instructions
10029 
10030 // n.b. we have identical rules for both a signed compare op (cmpOp)
10031 // and an unsigned compare op (cmpOpU). it would be nice if we could
10032 // define an op class which merged both inputs and use it to type the
10033 // argument to a single rule. unfortunatelyt his fails because the
10034 // opclass does not live up to the COND_INTER interface of its
10035 // component operands. When the generic code tries to negate the
10036 // operand it ends up running the generci Machoper::negate method
10037 // which throws a ShouldNotHappen. So, we have to provide two flavours
10038 // of each rule, one for a cmpOp and a second for a cmpOpU (sigh).
10039 
10040 instruct cmovI_reg_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10041   match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2)));
10042 
10043   ins_cost(INSN_COST * 2);
10044   format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, int"  %}
10045 
10046   ins_encode %{
10047     __ cselw(as_Register($dst$$reg),
10048              as_Register($src2$$reg),
10049              as_Register($src1$$reg),
10050              (Assembler::Condition)$cmp$$cmpcode);
10051   %}
10052 
10053   ins_pipe(icond_reg_reg);
10054 %}
10055 
10056 instruct cmovUI_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10057   match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2)));
10058 
10059   ins_cost(INSN_COST * 2);
10060   format %{ "cselw $dst, $src2, $src1 $cmp\t# unsigned, int"  %}
10061 
10062   ins_encode %{
10063     __ cselw(as_Register($dst$$reg),
10064              as_Register($src2$$reg),
10065              as_Register($src1$$reg),
10066              (Assembler::Condition)$cmp$$cmpcode);
10067   %}
10068 
10069   ins_pipe(icond_reg_reg);
10070 %}
10071 
10072 // special cases where one arg is zero
10073 
10074 // n.b. this is selected in preference to the rule above because it
10075 // avoids loading constant 0 into a source register
10076 
10077 // TODO
10078 // we ought only to be able to cull one of these variants as the ideal
10079 // transforms ought always to order the zero consistently (to left/right?)
10080 
10081 instruct cmovI_zero_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{
10082   match(Set dst (CMoveI (Binary cmp cr) (Binary zero src)));
10083 
10084   ins_cost(INSN_COST * 2);
10085   format %{ "cselw $dst, $src, zr $cmp\t# signed, int"  %}
10086 
10087   ins_encode %{
10088     __ cselw(as_Register($dst$$reg),
10089              as_Register($src$$reg),
10090              zr,
10091              (Assembler::Condition)$cmp$$cmpcode);
10092   %}
10093 
10094   ins_pipe(icond_reg);
10095 %}
10096 
10097 instruct cmovUI_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{
10098   match(Set dst (CMoveI (Binary cmp cr) (Binary zero src)));
10099 
10100   ins_cost(INSN_COST * 2);
10101   format %{ "cselw $dst, $src, zr $cmp\t# unsigned, int"  %}
10102 
10103   ins_encode %{
10104     __ cselw(as_Register($dst$$reg),
10105              as_Register($src$$reg),
10106              zr,
10107              (Assembler::Condition)$cmp$$cmpcode);
10108   %}
10109 
10110   ins_pipe(icond_reg);
10111 %}
10112 
10113 instruct cmovI_reg_zero(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{
10114   match(Set dst (CMoveI (Binary cmp cr) (Binary src zero)));
10115 
10116   ins_cost(INSN_COST * 2);
10117   format %{ "cselw $dst, zr, $src $cmp\t# signed, int"  %}
10118 
10119   ins_encode %{
10120     __ cselw(as_Register($dst$$reg),
10121              zr,
10122              as_Register($src$$reg),
10123              (Assembler::Condition)$cmp$$cmpcode);
10124   %}
10125 
10126   ins_pipe(icond_reg);
10127 %}
10128 
10129 instruct cmovUI_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{
10130   match(Set dst (CMoveI (Binary cmp cr) (Binary src zero)));
10131 
10132   ins_cost(INSN_COST * 2);
10133   format %{ "cselw $dst, zr, $src $cmp\t# unsigned, int"  %}
10134 
10135   ins_encode %{
10136     __ cselw(as_Register($dst$$reg),
10137              zr,
10138              as_Register($src$$reg),
10139              (Assembler::Condition)$cmp$$cmpcode);
10140   %}
10141 
10142   ins_pipe(icond_reg);
10143 %}
10144 
10145 // special case for creating a boolean 0 or 1
10146 
10147 // n.b. this is selected in preference to the rule above because it
10148 // avoids loading constants 0 and 1 into a source register
10149 
10150 instruct cmovI_reg_zero_one(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, immI_1 one) %{
10151   match(Set dst (CMoveI (Binary cmp cr) (Binary one zero)));
10152 
10153   ins_cost(INSN_COST * 2);
10154   format %{ "csincw $dst, zr, zr $cmp\t# signed, int"  %}
10155 
10156   ins_encode %{
10157     // equivalently
10158     // cset(as_Register($dst$$reg),
10159     //      negate_condition((Assembler::Condition)$cmp$$cmpcode));
10160     __ csincw(as_Register($dst$$reg),
10161              zr,
10162              zr,
10163              (Assembler::Condition)$cmp$$cmpcode);
10164   %}
10165 
10166   ins_pipe(icond_none);
10167 %}
10168 
10169 instruct cmovUI_reg_zero_one(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, immI_1 one) %{
10170   match(Set dst (CMoveI (Binary cmp cr) (Binary one zero)));
10171 
10172   ins_cost(INSN_COST * 2);
10173   format %{ "csincw $dst, zr, zr $cmp\t# unsigned, int"  %}
10174 
10175   ins_encode %{
10176     // equivalently
10177     // cset(as_Register($dst$$reg),
10178     //      negate_condition((Assembler::Condition)$cmp$$cmpcode));
10179     __ csincw(as_Register($dst$$reg),
10180              zr,
10181              zr,
10182              (Assembler::Condition)$cmp$$cmpcode);
10183   %}
10184 
10185   ins_pipe(icond_none);
10186 %}
10187 
10188 instruct cmovL_reg_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{
10189   match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2)));
10190 
10191   ins_cost(INSN_COST * 2);
10192   format %{ "csel $dst, $src2, $src1 $cmp\t# signed, long"  %}
10193 
10194   ins_encode %{
10195     __ csel(as_Register($dst$$reg),
10196             as_Register($src2$$reg),
10197             as_Register($src1$$reg),
10198             (Assembler::Condition)$cmp$$cmpcode);
10199   %}
10200 
10201   ins_pipe(icond_reg_reg);
10202 %}
10203 
10204 instruct cmovUL_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{
10205   match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2)));
10206 
10207   ins_cost(INSN_COST * 2);
10208   format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, long"  %}
10209 
10210   ins_encode %{
10211     __ csel(as_Register($dst$$reg),
10212             as_Register($src2$$reg),
10213             as_Register($src1$$reg),
10214             (Assembler::Condition)$cmp$$cmpcode);
10215   %}
10216 
10217   ins_pipe(icond_reg_reg);
10218 %}
10219 
10220 // special cases where one arg is zero
10221 
10222 instruct cmovL_reg_zero(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src, immL0 zero) %{
10223   match(Set dst (CMoveL (Binary cmp cr) (Binary src zero)));
10224 
10225   ins_cost(INSN_COST * 2);
10226   format %{ "csel $dst, zr, $src $cmp\t# signed, long"  %}
10227 
10228   ins_encode %{
10229     __ csel(as_Register($dst$$reg),
10230             zr,
10231             as_Register($src$$reg),
10232             (Assembler::Condition)$cmp$$cmpcode);
10233   %}
10234 
10235   ins_pipe(icond_reg);
10236 %}
10237 
10238 instruct cmovUL_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src, immL0 zero) %{
10239   match(Set dst (CMoveL (Binary cmp cr) (Binary src zero)));
10240 
10241   ins_cost(INSN_COST * 2);
10242   format %{ "csel $dst, zr, $src $cmp\t# unsigned, long"  %}
10243 
10244   ins_encode %{
10245     __ csel(as_Register($dst$$reg),
10246             zr,
10247             as_Register($src$$reg),
10248             (Assembler::Condition)$cmp$$cmpcode);
10249   %}
10250 
10251   ins_pipe(icond_reg);
10252 %}
10253 
10254 instruct cmovL_zero_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, immL0 zero, iRegL src) %{
10255   match(Set dst (CMoveL (Binary cmp cr) (Binary zero src)));
10256 
10257   ins_cost(INSN_COST * 2);
10258   format %{ "csel $dst, $src, zr $cmp\t# signed, long"  %}
10259 
10260   ins_encode %{
10261     __ csel(as_Register($dst$$reg),
10262             as_Register($src$$reg),
10263             zr,
10264             (Assembler::Condition)$cmp$$cmpcode);
10265   %}
10266 
10267   ins_pipe(icond_reg);
10268 %}
10269 
10270 instruct cmovUL_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, immL0 zero, iRegL src) %{
10271   match(Set dst (CMoveL (Binary cmp cr) (Binary zero src)));
10272 
10273   ins_cost(INSN_COST * 2);
10274   format %{ "csel $dst, $src, zr $cmp\t# unsigned, long"  %}
10275 
10276   ins_encode %{
10277     __ csel(as_Register($dst$$reg),
10278             as_Register($src$$reg),
10279             zr,
10280             (Assembler::Condition)$cmp$$cmpcode);
10281   %}
10282 
10283   ins_pipe(icond_reg);
10284 %}
10285 
10286 instruct cmovP_reg_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{
10287   match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2)));
10288 
10289   ins_cost(INSN_COST * 2);
10290   format %{ "csel $dst, $src2, $src1 $cmp\t# signed, ptr"  %}
10291 
10292   ins_encode %{
10293     __ csel(as_Register($dst$$reg),
10294             as_Register($src2$$reg),
10295             as_Register($src1$$reg),
10296             (Assembler::Condition)$cmp$$cmpcode);
10297   %}
10298 
10299   ins_pipe(icond_reg_reg);
10300 %}
10301 
10302 instruct cmovUP_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{
10303   match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2)));
10304 
10305   ins_cost(INSN_COST * 2);
10306   format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, ptr"  %}
10307 
10308   ins_encode %{
10309     __ csel(as_Register($dst$$reg),
10310             as_Register($src2$$reg),
10311             as_Register($src1$$reg),
10312             (Assembler::Condition)$cmp$$cmpcode);
10313   %}
10314 
10315   ins_pipe(icond_reg_reg);
10316 %}
10317 
10318 // special cases where one arg is zero
10319 
10320 instruct cmovP_reg_zero(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src, immP0 zero) %{
10321   match(Set dst (CMoveP (Binary cmp cr) (Binary src zero)));
10322 
10323   ins_cost(INSN_COST * 2);
10324   format %{ "csel $dst, zr, $src $cmp\t# signed, ptr"  %}
10325 
10326   ins_encode %{
10327     __ csel(as_Register($dst$$reg),
10328             zr,
10329             as_Register($src$$reg),
10330             (Assembler::Condition)$cmp$$cmpcode);
10331   %}
10332 
10333   ins_pipe(icond_reg);
10334 %}
10335 
10336 instruct cmovUP_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src, immP0 zero) %{
10337   match(Set dst (CMoveP (Binary cmp cr) (Binary src zero)));
10338 
10339   ins_cost(INSN_COST * 2);
10340   format %{ "csel $dst, zr, $src $cmp\t# unsigned, ptr"  %}
10341 
10342   ins_encode %{
10343     __ csel(as_Register($dst$$reg),
10344             zr,
10345             as_Register($src$$reg),
10346             (Assembler::Condition)$cmp$$cmpcode);
10347   %}
10348 
10349   ins_pipe(icond_reg);
10350 %}
10351 
10352 instruct cmovP_zero_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, immP0 zero, iRegP src) %{
10353   match(Set dst (CMoveP (Binary cmp cr) (Binary zero src)));
10354 
10355   ins_cost(INSN_COST * 2);
10356   format %{ "csel $dst, $src, zr $cmp\t# signed, ptr"  %}
10357 
10358   ins_encode %{
10359     __ csel(as_Register($dst$$reg),
10360             as_Register($src$$reg),
10361             zr,
10362             (Assembler::Condition)$cmp$$cmpcode);
10363   %}
10364 
10365   ins_pipe(icond_reg);
10366 %}
10367 
10368 instruct cmovUP_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, immP0 zero, iRegP src) %{
10369   match(Set dst (CMoveP (Binary cmp cr) (Binary zero src)));
10370 
10371   ins_cost(INSN_COST * 2);
10372   format %{ "csel $dst, $src, zr $cmp\t# unsigned, ptr"  %}
10373 
10374   ins_encode %{
10375     __ csel(as_Register($dst$$reg),
10376             as_Register($src$$reg),
10377             zr,
10378             (Assembler::Condition)$cmp$$cmpcode);
10379   %}
10380 
10381   ins_pipe(icond_reg);
10382 %}
10383 
10384 instruct cmovN_reg_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{
10385   match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2)));
10386 
10387   ins_cost(INSN_COST * 2);
10388   format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr"  %}
10389 
10390   ins_encode %{
10391     __ cselw(as_Register($dst$$reg),
10392              as_Register($src2$$reg),
10393              as_Register($src1$$reg),
10394              (Assembler::Condition)$cmp$$cmpcode);
10395   %}
10396 
10397   ins_pipe(icond_reg_reg);
10398 %}
10399 
10400 instruct cmovUN_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{
10401   match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2)));
10402 
10403   ins_cost(INSN_COST * 2);
10404   format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr"  %}
10405 
10406   ins_encode %{
10407     __ cselw(as_Register($dst$$reg),
10408              as_Register($src2$$reg),
10409              as_Register($src1$$reg),
10410              (Assembler::Condition)$cmp$$cmpcode);
10411   %}
10412 
10413   ins_pipe(icond_reg_reg);
10414 %}
10415 
10416 // special cases where one arg is zero
10417 
10418 instruct cmovN_reg_zero(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src, immN0 zero) %{
10419   match(Set dst (CMoveN (Binary cmp cr) (Binary src zero)));
10420 
10421   ins_cost(INSN_COST * 2);
10422   format %{ "cselw $dst, zr, $src $cmp\t# signed, compressed ptr"  %}
10423 
10424   ins_encode %{
10425     __ cselw(as_Register($dst$$reg),
10426              zr,
10427              as_Register($src$$reg),
10428              (Assembler::Condition)$cmp$$cmpcode);
10429   %}
10430 
10431   ins_pipe(icond_reg);
10432 %}
10433 
10434 instruct cmovUN_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src, immN0 zero) %{
10435   match(Set dst (CMoveN (Binary cmp cr) (Binary src zero)));
10436 
10437   ins_cost(INSN_COST * 2);
10438   format %{ "cselw $dst, zr, $src $cmp\t# unsigned, compressed ptr"  %}
10439 
10440   ins_encode %{
10441     __ cselw(as_Register($dst$$reg),
10442              zr,
10443              as_Register($src$$reg),
10444              (Assembler::Condition)$cmp$$cmpcode);
10445   %}
10446 
10447   ins_pipe(icond_reg);
10448 %}
10449 
10450 instruct cmovN_zero_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, immN0 zero, iRegN src) %{
10451   match(Set dst (CMoveN (Binary cmp cr) (Binary zero src)));
10452 
10453   ins_cost(INSN_COST * 2);
10454   format %{ "cselw $dst, $src, zr $cmp\t# signed, compressed ptr"  %}
10455 
10456   ins_encode %{
10457     __ cselw(as_Register($dst$$reg),
10458              as_Register($src$$reg),
10459              zr,
10460              (Assembler::Condition)$cmp$$cmpcode);
10461   %}
10462 
10463   ins_pipe(icond_reg);
10464 %}
10465 
10466 instruct cmovUN_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, immN0 zero, iRegN src) %{
10467   match(Set dst (CMoveN (Binary cmp cr) (Binary zero src)));
10468 
10469   ins_cost(INSN_COST * 2);
10470   format %{ "cselw $dst, $src, zr $cmp\t# unsigned, compressed ptr"  %}
10471 
10472   ins_encode %{
10473     __ cselw(as_Register($dst$$reg),
10474              as_Register($src$$reg),
10475              zr,
10476              (Assembler::Condition)$cmp$$cmpcode);
10477   %}
10478 
10479   ins_pipe(icond_reg);
10480 %}
10481 
10482 instruct cmovF_reg(cmpOp cmp, rFlagsReg cr, vRegF dst, vRegF src1,  vRegF src2)
10483 %{
10484   match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2)));
10485 
10486   ins_cost(INSN_COST * 3);
10487 
10488   format %{ "fcsels $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %}
10489   ins_encode %{
10490     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
10491     __ fcsels(as_FloatRegister($dst$$reg),
10492               as_FloatRegister($src2$$reg),
10493               as_FloatRegister($src1$$reg),
10494               cond);
10495   %}
10496 
10497   ins_pipe(fp_cond_reg_reg_s);
10498 %}
10499 
10500 instruct cmovUF_reg(cmpOpU cmp, rFlagsRegU cr, vRegF dst, vRegF src1,  vRegF src2)
10501 %{
10502   match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2)));
10503 
10504   ins_cost(INSN_COST * 3);
10505 
10506   format %{ "fcsels $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %}
10507   ins_encode %{
10508     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
10509     __ fcsels(as_FloatRegister($dst$$reg),
10510               as_FloatRegister($src2$$reg),
10511               as_FloatRegister($src1$$reg),
10512               cond);
10513   %}
10514 
10515   ins_pipe(fp_cond_reg_reg_s);
10516 %}
10517 
10518 instruct cmovD_reg(cmpOp cmp, rFlagsReg cr, vRegD dst, vRegD src1,  vRegD src2)
10519 %{
10520   match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2)));
10521 
10522   ins_cost(INSN_COST * 3);
10523 
10524   format %{ "fcseld $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %}
10525   ins_encode %{
10526     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
10527     __ fcseld(as_FloatRegister($dst$$reg),
10528               as_FloatRegister($src2$$reg),
10529               as_FloatRegister($src1$$reg),
10530               cond);
10531   %}
10532 
10533   ins_pipe(fp_cond_reg_reg_d);
10534 %}
10535 
10536 instruct cmovUD_reg(cmpOpU cmp, rFlagsRegU cr, vRegD dst, vRegD src1,  vRegD src2)
10537 %{
10538   match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2)));
10539 
10540   ins_cost(INSN_COST * 3);
10541 
10542   format %{ "fcseld $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %}
10543   ins_encode %{
10544     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
10545     __ fcseld(as_FloatRegister($dst$$reg),
10546               as_FloatRegister($src2$$reg),
10547               as_FloatRegister($src1$$reg),
10548               cond);
10549   %}
10550 
10551   ins_pipe(fp_cond_reg_reg_d);
10552 %}
10553 
10554 // ============================================================================
10555 // Arithmetic Instructions
10556 //
10557 
10558 // Integer Addition
10559 
10560 // TODO
10561 // these currently employ operations which do not set CR and hence are
10562 // not flagged as killing CR but we would like to isolate the cases
10563 // where we want to set flags from those where we don't. need to work
10564 // out how to do that.
10565 
10566 instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10567   match(Set dst (AddI src1 src2));
10568 
10569   ins_cost(INSN_COST);
10570   format %{ "addw  $dst, $src1, $src2" %}
10571 
10572   ins_encode %{
10573     __ addw(as_Register($dst$$reg),
10574             as_Register($src1$$reg),
10575             as_Register($src2$$reg));
10576   %}
10577 
10578   ins_pipe(ialu_reg_reg);
10579 %}
10580 
10581 instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{
10582   match(Set dst (AddI src1 src2));
10583 
10584   ins_cost(INSN_COST);
10585   format %{ "addw $dst, $src1, $src2" %}
10586 
10587   // use opcode to indicate that this is an add not a sub
10588   opcode(0x0);
10589 
10590   ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
10591 
10592   ins_pipe(ialu_reg_imm);
10593 %}
10594 
10595 instruct addI_reg_imm_i2l(iRegINoSp dst, iRegL src1, immIAddSub src2) %{
10596   match(Set dst (AddI (ConvL2I src1) src2));
10597 
10598   ins_cost(INSN_COST);
10599   format %{ "addw $dst, $src1, $src2" %}
10600 
10601   // use opcode to indicate that this is an add not a sub
10602   opcode(0x0);
10603 
10604   ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
10605 
10606   ins_pipe(ialu_reg_imm);
10607 %}
10608 
10609 // Pointer Addition
10610 instruct addP_reg_reg(iRegPNoSp dst, iRegP src1, iRegL src2) %{
10611   match(Set dst (AddP src1 src2));
10612 
10613   ins_cost(INSN_COST);
10614   format %{ "add $dst, $src1, $src2\t# ptr" %}
10615 
10616   ins_encode %{
10617     __ add(as_Register($dst$$reg),
10618            as_Register($src1$$reg),
10619            as_Register($src2$$reg));
10620   %}
10621 
10622   ins_pipe(ialu_reg_reg);
10623 %}
10624 
10625 instruct addP_reg_reg_ext(iRegPNoSp dst, iRegP src1, iRegIorL2I src2) %{
10626   match(Set dst (AddP src1 (ConvI2L src2)));
10627 
10628   ins_cost(1.9 * INSN_COST);
10629   format %{ "add $dst, $src1, $src2, sxtw\t# ptr" %}
10630 
10631   ins_encode %{
10632     __ add(as_Register($dst$$reg),
10633            as_Register($src1$$reg),
10634            as_Register($src2$$reg), ext::sxtw);
10635   %}
10636 
10637   ins_pipe(ialu_reg_reg);
10638 %}
10639 
10640 instruct addP_reg_reg_lsl(iRegPNoSp dst, iRegP src1, iRegL src2, immIScale scale) %{
10641   match(Set dst (AddP src1 (LShiftL src2 scale)));
10642 
10643   ins_cost(1.9 * INSN_COST);
10644   format %{ "add $dst, $src1, $src2, LShiftL $scale\t# ptr" %}
10645 
10646   ins_encode %{
10647     __ lea(as_Register($dst$$reg),
10648            Address(as_Register($src1$$reg), as_Register($src2$$reg),
10649                    Address::lsl($scale$$constant)));
10650   %}
10651 
10652   ins_pipe(ialu_reg_reg_shift);
10653 %}
10654 
10655 instruct addP_reg_reg_ext_shift(iRegPNoSp dst, iRegP src1, iRegIorL2I src2, immIScale scale) %{
10656   match(Set dst (AddP src1 (LShiftL (ConvI2L src2) scale)));
10657 
10658   ins_cost(1.9 * INSN_COST);
10659   format %{ "add $dst, $src1, $src2, I2L $scale\t# ptr" %}
10660 
10661   ins_encode %{
10662     __ lea(as_Register($dst$$reg),
10663            Address(as_Register($src1$$reg), as_Register($src2$$reg),
10664                    Address::sxtw($scale$$constant)));
10665   %}
10666 
10667   ins_pipe(ialu_reg_reg_shift);
10668 %}
10669 
10670 instruct lshift_ext(iRegLNoSp dst, iRegIorL2I src, immI scale, rFlagsReg cr) %{
10671   match(Set dst (LShiftL (ConvI2L src) scale));
10672 
10673   ins_cost(INSN_COST);
10674   format %{ "sbfiz $dst, $src, $scale & 63, -$scale & 63\t" %}
10675 
10676   ins_encode %{
10677     __ sbfiz(as_Register($dst$$reg),
10678           as_Register($src$$reg),
10679           $scale$$constant & 63, MIN(32, (-$scale$$constant) & 63));
10680   %}
10681 
10682   ins_pipe(ialu_reg_shift);
10683 %}
10684 
10685 // Pointer Immediate Addition
10686 // n.b. this needs to be more expensive than using an indirect memory
10687 // operand
10688 instruct addP_reg_imm(iRegPNoSp dst, iRegP src1, immLAddSub src2) %{
10689   match(Set dst (AddP src1 src2));
10690 
10691   ins_cost(INSN_COST);
10692   format %{ "add $dst, $src1, $src2\t# ptr" %}
10693 
10694   // use opcode to indicate that this is an add not a sub
10695   opcode(0x0);
10696 
10697   ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
10698 
10699   ins_pipe(ialu_reg_imm);
10700 %}
10701 
10702 // Long Addition
10703 instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10704 
10705   match(Set dst (AddL src1 src2));
10706 
10707   ins_cost(INSN_COST);
10708   format %{ "add  $dst, $src1, $src2" %}
10709 
10710   ins_encode %{
10711     __ add(as_Register($dst$$reg),
10712            as_Register($src1$$reg),
10713            as_Register($src2$$reg));
10714   %}
10715 
10716   ins_pipe(ialu_reg_reg);
10717 %}
10718 
10719 // No constant pool entries requiredLong Immediate Addition.
10720 instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{
10721   match(Set dst (AddL src1 src2));
10722 
10723   ins_cost(INSN_COST);
10724   format %{ "add $dst, $src1, $src2" %}
10725 
10726   // use opcode to indicate that this is an add not a sub
10727   opcode(0x0);
10728 
10729   ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
10730 
10731   ins_pipe(ialu_reg_imm);
10732 %}
10733 
10734 // Integer Subtraction
10735 instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10736   match(Set dst (SubI src1 src2));
10737 
10738   ins_cost(INSN_COST);
10739   format %{ "subw  $dst, $src1, $src2" %}
10740 
10741   ins_encode %{
10742     __ subw(as_Register($dst$$reg),
10743             as_Register($src1$$reg),
10744             as_Register($src2$$reg));
10745   %}
10746 
10747   ins_pipe(ialu_reg_reg);
10748 %}
10749 
10750 // Immediate Subtraction
10751 instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{
10752   match(Set dst (SubI src1 src2));
10753 
10754   ins_cost(INSN_COST);
10755   format %{ "subw $dst, $src1, $src2" %}
10756 
10757   // use opcode to indicate that this is a sub not an add
10758   opcode(0x1);
10759 
10760   ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
10761 
10762   ins_pipe(ialu_reg_imm);
10763 %}
10764 
10765 // Long Subtraction
10766 instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10767 
10768   match(Set dst (SubL src1 src2));
10769 
10770   ins_cost(INSN_COST);
10771   format %{ "sub  $dst, $src1, $src2" %}
10772 
10773   ins_encode %{
10774     __ sub(as_Register($dst$$reg),
10775            as_Register($src1$$reg),
10776            as_Register($src2$$reg));
10777   %}
10778 
10779   ins_pipe(ialu_reg_reg);
10780 %}
10781 
10782 // No constant pool entries requiredLong Immediate Subtraction.
10783 instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{
10784   match(Set dst (SubL src1 src2));
10785 
10786   ins_cost(INSN_COST);
10787   format %{ "sub$dst, $src1, $src2" %}
10788 
10789   // use opcode to indicate that this is a sub not an add
10790   opcode(0x1);
10791 
10792   ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
10793 
10794   ins_pipe(ialu_reg_imm);
10795 %}
10796 
10797 // Integer Negation (special case for sub)
10798 
10799 instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr) %{
10800   match(Set dst (SubI zero src));
10801 
10802   ins_cost(INSN_COST);
10803   format %{ "negw $dst, $src\t# int" %}
10804 
10805   ins_encode %{
10806     __ negw(as_Register($dst$$reg),
10807             as_Register($src$$reg));
10808   %}
10809 
10810   ins_pipe(ialu_reg);
10811 %}
10812 
10813 // Long Negation
10814 
10815 instruct negL_reg(iRegLNoSp dst, iRegIorL2I src, immL0 zero, rFlagsReg cr) %{
10816   match(Set dst (SubL zero src));
10817 
10818   ins_cost(INSN_COST);
10819   format %{ "neg $dst, $src\t# long" %}
10820 
10821   ins_encode %{
10822     __ neg(as_Register($dst$$reg),
10823            as_Register($src$$reg));
10824   %}
10825 
10826   ins_pipe(ialu_reg);
10827 %}
10828 
10829 // Integer Multiply
10830 
10831 instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10832   match(Set dst (MulI src1 src2));
10833 
10834   ins_cost(INSN_COST * 3);
10835   format %{ "mulw  $dst, $src1, $src2" %}
10836 
10837   ins_encode %{
10838     __ mulw(as_Register($dst$$reg),
10839             as_Register($src1$$reg),
10840             as_Register($src2$$reg));
10841   %}
10842 
10843   ins_pipe(imul_reg_reg);
10844 %}
10845 
10846 instruct smulI(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10847   match(Set dst (MulL (ConvI2L src1) (ConvI2L src2)));
10848 
10849   ins_cost(INSN_COST * 3);
10850   format %{ "smull  $dst, $src1, $src2" %}
10851 
10852   ins_encode %{
10853     __ smull(as_Register($dst$$reg),
10854              as_Register($src1$$reg),
10855              as_Register($src2$$reg));
10856   %}
10857 
10858   ins_pipe(imul_reg_reg);
10859 %}
10860 
10861 // Long Multiply
10862 
10863 instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10864   match(Set dst (MulL src1 src2));
10865 
10866   ins_cost(INSN_COST * 5);
10867   format %{ "mul  $dst, $src1, $src2" %}
10868 
10869   ins_encode %{
10870     __ mul(as_Register($dst$$reg),
10871            as_Register($src1$$reg),
10872            as_Register($src2$$reg));
10873   %}
10874 
10875   ins_pipe(lmul_reg_reg);
10876 %}
10877 
10878 instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr)
10879 %{
10880   match(Set dst (MulHiL src1 src2));
10881 
10882   ins_cost(INSN_COST * 7);
10883   format %{ "smulh   $dst, $src1, $src2, \t# mulhi" %}
10884 
10885   ins_encode %{
10886     __ smulh(as_Register($dst$$reg),
10887              as_Register($src1$$reg),
10888              as_Register($src2$$reg));
10889   %}
10890 
10891   ins_pipe(lmul_reg_reg);
10892 %}
10893 
10894 // Combined Integer Multiply & Add/Sub
10895 
10896 instruct maddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{
10897   match(Set dst (AddI src3 (MulI src1 src2)));
10898 
10899   ins_cost(INSN_COST * 3);
10900   format %{ "madd  $dst, $src1, $src2, $src3" %}
10901 
10902   ins_encode %{
10903     __ maddw(as_Register($dst$$reg),
10904              as_Register($src1$$reg),
10905              as_Register($src2$$reg),
10906              as_Register($src3$$reg));
10907   %}
10908 
10909   ins_pipe(imac_reg_reg);
10910 %}
10911 
10912 instruct msubI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{
10913   match(Set dst (SubI src3 (MulI src1 src2)));
10914 
10915   ins_cost(INSN_COST * 3);
10916   format %{ "msub  $dst, $src1, $src2, $src3" %}
10917 
10918   ins_encode %{
10919     __ msubw(as_Register($dst$$reg),
10920              as_Register($src1$$reg),
10921              as_Register($src2$$reg),
10922              as_Register($src3$$reg));
10923   %}
10924 
10925   ins_pipe(imac_reg_reg);
10926 %}
10927 
10928 // Combined Long Multiply & Add/Sub
10929 
10930 instruct maddL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{
10931   match(Set dst (AddL src3 (MulL src1 src2)));
10932 
10933   ins_cost(INSN_COST * 5);
10934   format %{ "madd  $dst, $src1, $src2, $src3" %}
10935 
10936   ins_encode %{
10937     __ madd(as_Register($dst$$reg),
10938             as_Register($src1$$reg),
10939             as_Register($src2$$reg),
10940             as_Register($src3$$reg));
10941   %}
10942 
10943   ins_pipe(lmac_reg_reg);
10944 %}
10945 
10946 instruct msubL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{
10947   match(Set dst (SubL src3 (MulL src1 src2)));
10948 
10949   ins_cost(INSN_COST * 5);
10950   format %{ "msub  $dst, $src1, $src2, $src3" %}
10951 
10952   ins_encode %{
10953     __ msub(as_Register($dst$$reg),
10954             as_Register($src1$$reg),
10955             as_Register($src2$$reg),
10956             as_Register($src3$$reg));
10957   %}
10958 
10959   ins_pipe(lmac_reg_reg);
10960 %}
10961 
10962 // Integer Divide
10963 
10964 instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10965   match(Set dst (DivI src1 src2));
10966 
10967   ins_cost(INSN_COST * 19);
10968   format %{ "sdivw  $dst, $src1, $src2" %}
10969 
10970   ins_encode(aarch64_enc_divw(dst, src1, src2));
10971   ins_pipe(idiv_reg_reg);
10972 %}
10973 
10974 instruct signExtract(iRegINoSp dst, iRegIorL2I src1, immI_31 div1, immI_31 div2) %{
10975   match(Set dst (URShiftI (RShiftI src1 div1) div2));
10976   ins_cost(INSN_COST);
10977   format %{ "lsrw $dst, $src1, $div1" %}
10978   ins_encode %{
10979     __ lsrw(as_Register($dst$$reg), as_Register($src1$$reg), 31);
10980   %}
10981   ins_pipe(ialu_reg_shift);
10982 %}
10983 
10984 instruct div2Round(iRegINoSp dst, iRegIorL2I src, immI_31 div1, immI_31 div2) %{
10985   match(Set dst (AddI src (URShiftI (RShiftI src div1) div2)));
10986   ins_cost(INSN_COST);
10987   format %{ "addw $dst, $src, LSR $div1" %}
10988 
10989   ins_encode %{
10990     __ addw(as_Register($dst$$reg),
10991               as_Register($src$$reg),
10992               as_Register($src$$reg),
10993               Assembler::LSR, 31);
10994   %}
10995   ins_pipe(ialu_reg);
10996 %}
10997 
10998 // Long Divide
10999 
11000 instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
11001   match(Set dst (DivL src1 src2));
11002 
11003   ins_cost(INSN_COST * 35);
11004   format %{ "sdiv   $dst, $src1, $src2" %}
11005 
11006   ins_encode(aarch64_enc_div(dst, src1, src2));
11007   ins_pipe(ldiv_reg_reg);
11008 %}
11009 
11010 instruct signExtractL(iRegLNoSp dst, iRegL src1, immL_63 div1, immL_63 div2) %{
11011   match(Set dst (URShiftL (RShiftL src1 div1) div2));
11012   ins_cost(INSN_COST);
11013   format %{ "lsr $dst, $src1, $div1" %}
11014   ins_encode %{
11015     __ lsr(as_Register($dst$$reg), as_Register($src1$$reg), 63);
11016   %}
11017   ins_pipe(ialu_reg_shift);
11018 %}
11019 
11020 instruct div2RoundL(iRegLNoSp dst, iRegL src, immL_63 div1, immL_63 div2) %{
11021   match(Set dst (AddL src (URShiftL (RShiftL src div1) div2)));
11022   ins_cost(INSN_COST);
11023   format %{ "add $dst, $src, $div1" %}
11024 
11025   ins_encode %{
11026     __ add(as_Register($dst$$reg),
11027               as_Register($src$$reg),
11028               as_Register($src$$reg),
11029               Assembler::LSR, 63);
11030   %}
11031   ins_pipe(ialu_reg);
11032 %}
11033 
11034 // Integer Remainder
11035 
11036 instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
11037   match(Set dst (ModI src1 src2));
11038 
11039   ins_cost(INSN_COST * 22);
11040   format %{ "sdivw  rscratch1, $src1, $src2\n\t"
11041             "msubw($dst, rscratch1, $src2, $src1" %}
11042 
11043   ins_encode(aarch64_enc_modw(dst, src1, src2));
11044   ins_pipe(idiv_reg_reg);
11045 %}
11046 
11047 // Long Remainder
11048 
11049 instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
11050   match(Set dst (ModL src1 src2));
11051 
11052   ins_cost(INSN_COST * 38);
11053   format %{ "sdiv   rscratch1, $src1, $src2\n"
11054             "msub($dst, rscratch1, $src2, $src1" %}
11055 
11056   ins_encode(aarch64_enc_mod(dst, src1, src2));
11057   ins_pipe(ldiv_reg_reg);
11058 %}
11059 
11060 // Integer Shifts
11061 
11062 // Shift Left Register
11063 instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
11064   match(Set dst (LShiftI src1 src2));
11065 
11066   ins_cost(INSN_COST * 2);
11067   format %{ "lslvw  $dst, $src1, $src2" %}
11068 
11069   ins_encode %{
11070     __ lslvw(as_Register($dst$$reg),
11071              as_Register($src1$$reg),
11072              as_Register($src2$$reg));
11073   %}
11074 
11075   ins_pipe(ialu_reg_reg_vshift);
11076 %}
11077 
11078 // Shift Left Immediate
11079 instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
11080   match(Set dst (LShiftI src1 src2));
11081 
11082   ins_cost(INSN_COST);
11083   format %{ "lslw $dst, $src1, ($src2 & 0x1f)" %}
11084 
11085   ins_encode %{
11086     __ lslw(as_Register($dst$$reg),
11087             as_Register($src1$$reg),
11088             $src2$$constant & 0x1f);
11089   %}
11090 
11091   ins_pipe(ialu_reg_shift);
11092 %}
11093 
11094 // Shift Right Logical Register
11095 instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
11096   match(Set dst (URShiftI src1 src2));
11097 
11098   ins_cost(INSN_COST * 2);
11099   format %{ "lsrvw  $dst, $src1, $src2" %}
11100 
11101   ins_encode %{
11102     __ lsrvw(as_Register($dst$$reg),
11103              as_Register($src1$$reg),
11104              as_Register($src2$$reg));
11105   %}
11106 
11107   ins_pipe(ialu_reg_reg_vshift);
11108 %}
11109 
11110 // Shift Right Logical Immediate
11111 instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
11112   match(Set dst (URShiftI src1 src2));
11113 
11114   ins_cost(INSN_COST);
11115   format %{ "lsrw $dst, $src1, ($src2 & 0x1f)" %}
11116 
11117   ins_encode %{
11118     __ lsrw(as_Register($dst$$reg),
11119             as_Register($src1$$reg),
11120             $src2$$constant & 0x1f);
11121   %}
11122 
11123   ins_pipe(ialu_reg_shift);
11124 %}
11125 
11126 // Shift Right Arithmetic Register
11127 instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
11128   match(Set dst (RShiftI src1 src2));
11129 
11130   ins_cost(INSN_COST * 2);
11131   format %{ "asrvw  $dst, $src1, $src2" %}
11132 
11133   ins_encode %{
11134     __ asrvw(as_Register($dst$$reg),
11135              as_Register($src1$$reg),
11136              as_Register($src2$$reg));
11137   %}
11138 
11139   ins_pipe(ialu_reg_reg_vshift);
11140 %}
11141 
11142 // Shift Right Arithmetic Immediate
11143 instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
11144   match(Set dst (RShiftI src1 src2));
11145 
11146   ins_cost(INSN_COST);
11147   format %{ "asrw $dst, $src1, ($src2 & 0x1f)" %}
11148 
11149   ins_encode %{
11150     __ asrw(as_Register($dst$$reg),
11151             as_Register($src1$$reg),
11152             $src2$$constant & 0x1f);
11153   %}
11154 
11155   ins_pipe(ialu_reg_shift);
11156 %}
11157 
11158 // Combined Int Mask and Right Shift (using UBFM)
11159 // TODO
11160 
11161 // Long Shifts
11162 
11163 // Shift Left Register
11164 instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
11165   match(Set dst (LShiftL src1 src2));
11166 
11167   ins_cost(INSN_COST * 2);
11168   format %{ "lslv  $dst, $src1, $src2" %}
11169 
11170   ins_encode %{
11171     __ lslv(as_Register($dst$$reg),
11172             as_Register($src1$$reg),
11173             as_Register($src2$$reg));
11174   %}
11175 
11176   ins_pipe(ialu_reg_reg_vshift);
11177 %}
11178 
11179 // Shift Left Immediate
11180 instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
11181   match(Set dst (LShiftL src1 src2));
11182 
11183   ins_cost(INSN_COST);
11184   format %{ "lsl $dst, $src1, ($src2 & 0x3f)" %}
11185 
11186   ins_encode %{
11187     __ lsl(as_Register($dst$$reg),
11188             as_Register($src1$$reg),
11189             $src2$$constant & 0x3f);
11190   %}
11191 
11192   ins_pipe(ialu_reg_shift);
11193 %}
11194 
11195 // Shift Right Logical Register
11196 instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
11197   match(Set dst (URShiftL src1 src2));
11198 
11199   ins_cost(INSN_COST * 2);
11200   format %{ "lsrv  $dst, $src1, $src2" %}
11201 
11202   ins_encode %{
11203     __ lsrv(as_Register($dst$$reg),
11204             as_Register($src1$$reg),
11205             as_Register($src2$$reg));
11206   %}
11207 
11208   ins_pipe(ialu_reg_reg_vshift);
11209 %}
11210 
11211 // Shift Right Logical Immediate
11212 instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
11213   match(Set dst (URShiftL src1 src2));
11214 
11215   ins_cost(INSN_COST);
11216   format %{ "lsr $dst, $src1, ($src2 & 0x3f)" %}
11217 
11218   ins_encode %{
11219     __ lsr(as_Register($dst$$reg),
11220            as_Register($src1$$reg),
11221            $src2$$constant & 0x3f);
11222   %}
11223 
11224   ins_pipe(ialu_reg_shift);
11225 %}
11226 
11227 // A special-case pattern for card table stores.
11228 instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{
11229   match(Set dst (URShiftL (CastP2X src1) src2));
11230 
11231   ins_cost(INSN_COST);
11232   format %{ "lsr $dst, p2x($src1), ($src2 & 0x3f)" %}
11233 
11234   ins_encode %{
11235     __ lsr(as_Register($dst$$reg),
11236            as_Register($src1$$reg),
11237            $src2$$constant & 0x3f);
11238   %}
11239 
11240   ins_pipe(ialu_reg_shift);
11241 %}
11242 
11243 // Shift Right Arithmetic Register
11244 instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
11245   match(Set dst (RShiftL src1 src2));
11246 
11247   ins_cost(INSN_COST * 2);
11248   format %{ "asrv  $dst, $src1, $src2" %}
11249 
11250   ins_encode %{
11251     __ asrv(as_Register($dst$$reg),
11252             as_Register($src1$$reg),
11253             as_Register($src2$$reg));
11254   %}
11255 
11256   ins_pipe(ialu_reg_reg_vshift);
11257 %}
11258 
11259 // Shift Right Arithmetic Immediate
11260 instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
11261   match(Set dst (RShiftL src1 src2));
11262 
11263   ins_cost(INSN_COST);
11264   format %{ "asr $dst, $src1, ($src2 & 0x3f)" %}
11265 
11266   ins_encode %{
11267     __ asr(as_Register($dst$$reg),
11268            as_Register($src1$$reg),
11269            $src2$$constant & 0x3f);
11270   %}
11271 
11272   ins_pipe(ialu_reg_shift);
11273 %}
11274 
11275 // BEGIN This section of the file is automatically generated. Do not edit --------------
11276 
11277 instruct regL_not_reg(iRegLNoSp dst,
11278                          iRegL src1, immL_M1 m1,
11279                          rFlagsReg cr) %{
11280   match(Set dst (XorL src1 m1));
11281   ins_cost(INSN_COST);
11282   format %{ "eon  $dst, $src1, zr" %}
11283 
11284   ins_encode %{
11285     __ eon(as_Register($dst$$reg),
11286               as_Register($src1$$reg),
11287               zr,
11288               Assembler::LSL, 0);
11289   %}
11290 
11291   ins_pipe(ialu_reg);
11292 %}
11293 instruct regI_not_reg(iRegINoSp dst,
11294                          iRegIorL2I src1, immI_M1 m1,
11295                          rFlagsReg cr) %{
11296   match(Set dst (XorI src1 m1));
11297   ins_cost(INSN_COST);
11298   format %{ "eonw  $dst, $src1, zr" %}
11299 
11300   ins_encode %{
11301     __ eonw(as_Register($dst$$reg),
11302               as_Register($src1$$reg),
11303               zr,
11304               Assembler::LSL, 0);
11305   %}
11306 
11307   ins_pipe(ialu_reg);
11308 %}
11309 
11310 instruct AndI_reg_not_reg(iRegINoSp dst,
11311                          iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1,
11312                          rFlagsReg cr) %{
11313   match(Set dst (AndI src1 (XorI src2 m1)));
11314   ins_cost(INSN_COST);
11315   format %{ "bicw  $dst, $src1, $src2" %}
11316 
11317   ins_encode %{
11318     __ bicw(as_Register($dst$$reg),
11319               as_Register($src1$$reg),
11320               as_Register($src2$$reg),
11321               Assembler::LSL, 0);
11322   %}
11323 
11324   ins_pipe(ialu_reg_reg);
11325 %}
11326 
11327 instruct AndL_reg_not_reg(iRegLNoSp dst,
11328                          iRegL src1, iRegL src2, immL_M1 m1,
11329                          rFlagsReg cr) %{
11330   match(Set dst (AndL src1 (XorL src2 m1)));
11331   ins_cost(INSN_COST);
11332   format %{ "bic  $dst, $src1, $src2" %}
11333 
11334   ins_encode %{
11335     __ bic(as_Register($dst$$reg),
11336               as_Register($src1$$reg),
11337               as_Register($src2$$reg),
11338               Assembler::LSL, 0);
11339   %}
11340 
11341   ins_pipe(ialu_reg_reg);
11342 %}
11343 
11344 instruct OrI_reg_not_reg(iRegINoSp dst,
11345                          iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1,
11346                          rFlagsReg cr) %{
11347   match(Set dst (OrI src1 (XorI src2 m1)));
11348   ins_cost(INSN_COST);
11349   format %{ "ornw  $dst, $src1, $src2" %}
11350 
11351   ins_encode %{
11352     __ ornw(as_Register($dst$$reg),
11353               as_Register($src1$$reg),
11354               as_Register($src2$$reg),
11355               Assembler::LSL, 0);
11356   %}
11357 
11358   ins_pipe(ialu_reg_reg);
11359 %}
11360 
11361 instruct OrL_reg_not_reg(iRegLNoSp dst,
11362                          iRegL src1, iRegL src2, immL_M1 m1,
11363                          rFlagsReg cr) %{
11364   match(Set dst (OrL src1 (XorL src2 m1)));
11365   ins_cost(INSN_COST);
11366   format %{ "orn  $dst, $src1, $src2" %}
11367 
11368   ins_encode %{
11369     __ orn(as_Register($dst$$reg),
11370               as_Register($src1$$reg),
11371               as_Register($src2$$reg),
11372               Assembler::LSL, 0);
11373   %}
11374 
11375   ins_pipe(ialu_reg_reg);
11376 %}
11377 
11378 instruct XorI_reg_not_reg(iRegINoSp dst,
11379                          iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1,
11380                          rFlagsReg cr) %{
11381   match(Set dst (XorI m1 (XorI src2 src1)));
11382   ins_cost(INSN_COST);
11383   format %{ "eonw  $dst, $src1, $src2" %}
11384 
11385   ins_encode %{
11386     __ eonw(as_Register($dst$$reg),
11387               as_Register($src1$$reg),
11388               as_Register($src2$$reg),
11389               Assembler::LSL, 0);
11390   %}
11391 
11392   ins_pipe(ialu_reg_reg);
11393 %}
11394 
11395 instruct XorL_reg_not_reg(iRegLNoSp dst,
11396                          iRegL src1, iRegL src2, immL_M1 m1,
11397                          rFlagsReg cr) %{
11398   match(Set dst (XorL m1 (XorL src2 src1)));
11399   ins_cost(INSN_COST);
11400   format %{ "eon  $dst, $src1, $src2" %}
11401 
11402   ins_encode %{
11403     __ eon(as_Register($dst$$reg),
11404               as_Register($src1$$reg),
11405               as_Register($src2$$reg),
11406               Assembler::LSL, 0);
11407   %}
11408 
11409   ins_pipe(ialu_reg_reg);
11410 %}
11411 
11412 instruct AndI_reg_URShift_not_reg(iRegINoSp dst,
11413                          iRegIorL2I src1, iRegIorL2I src2,
11414                          immI src3, immI_M1 src4, rFlagsReg cr) %{
11415   match(Set dst (AndI src1 (XorI(URShiftI src2 src3) src4)));
11416   ins_cost(1.9 * INSN_COST);
11417   format %{ "bicw  $dst, $src1, $src2, LSR $src3" %}
11418 
11419   ins_encode %{
11420     __ bicw(as_Register($dst$$reg),
11421               as_Register($src1$$reg),
11422               as_Register($src2$$reg),
11423               Assembler::LSR,
11424               $src3$$constant & 0x1f);
11425   %}
11426 
11427   ins_pipe(ialu_reg_reg_shift);
11428 %}
11429 
11430 instruct AndL_reg_URShift_not_reg(iRegLNoSp dst,
11431                          iRegL src1, iRegL src2,
11432                          immI src3, immL_M1 src4, rFlagsReg cr) %{
11433   match(Set dst (AndL src1 (XorL(URShiftL src2 src3) src4)));
11434   ins_cost(1.9 * INSN_COST);
11435   format %{ "bic  $dst, $src1, $src2, LSR $src3" %}
11436 
11437   ins_encode %{
11438     __ bic(as_Register($dst$$reg),
11439               as_Register($src1$$reg),
11440               as_Register($src2$$reg),
11441               Assembler::LSR,
11442               $src3$$constant & 0x3f);
11443   %}
11444 
11445   ins_pipe(ialu_reg_reg_shift);
11446 %}
11447 
11448 instruct AndI_reg_RShift_not_reg(iRegINoSp dst,
11449                          iRegIorL2I src1, iRegIorL2I src2,
11450                          immI src3, immI_M1 src4, rFlagsReg cr) %{
11451   match(Set dst (AndI src1 (XorI(RShiftI src2 src3) src4)));
11452   ins_cost(1.9 * INSN_COST);
11453   format %{ "bicw  $dst, $src1, $src2, ASR $src3" %}
11454 
11455   ins_encode %{
11456     __ bicw(as_Register($dst$$reg),
11457               as_Register($src1$$reg),
11458               as_Register($src2$$reg),
11459               Assembler::ASR,
11460               $src3$$constant & 0x1f);
11461   %}
11462 
11463   ins_pipe(ialu_reg_reg_shift);
11464 %}
11465 
11466 instruct AndL_reg_RShift_not_reg(iRegLNoSp dst,
11467                          iRegL src1, iRegL src2,
11468                          immI src3, immL_M1 src4, rFlagsReg cr) %{
11469   match(Set dst (AndL src1 (XorL(RShiftL src2 src3) src4)));
11470   ins_cost(1.9 * INSN_COST);
11471   format %{ "bic  $dst, $src1, $src2, ASR $src3" %}
11472 
11473   ins_encode %{
11474     __ bic(as_Register($dst$$reg),
11475               as_Register($src1$$reg),
11476               as_Register($src2$$reg),
11477               Assembler::ASR,
11478               $src3$$constant & 0x3f);
11479   %}
11480 
11481   ins_pipe(ialu_reg_reg_shift);
11482 %}
11483 
11484 instruct AndI_reg_LShift_not_reg(iRegINoSp dst,
11485                          iRegIorL2I src1, iRegIorL2I src2,
11486                          immI src3, immI_M1 src4, rFlagsReg cr) %{
11487   match(Set dst (AndI src1 (XorI(LShiftI src2 src3) src4)));
11488   ins_cost(1.9 * INSN_COST);
11489   format %{ "bicw  $dst, $src1, $src2, LSL $src3" %}
11490 
11491   ins_encode %{
11492     __ bicw(as_Register($dst$$reg),
11493               as_Register($src1$$reg),
11494               as_Register($src2$$reg),
11495               Assembler::LSL,
11496               $src3$$constant & 0x1f);
11497   %}
11498 
11499   ins_pipe(ialu_reg_reg_shift);
11500 %}
11501 
11502 instruct AndL_reg_LShift_not_reg(iRegLNoSp dst,
11503                          iRegL src1, iRegL src2,
11504                          immI src3, immL_M1 src4, rFlagsReg cr) %{
11505   match(Set dst (AndL src1 (XorL(LShiftL src2 src3) src4)));
11506   ins_cost(1.9 * INSN_COST);
11507   format %{ "bic  $dst, $src1, $src2, LSL $src3" %}
11508 
11509   ins_encode %{
11510     __ bic(as_Register($dst$$reg),
11511               as_Register($src1$$reg),
11512               as_Register($src2$$reg),
11513               Assembler::LSL,
11514               $src3$$constant & 0x3f);
11515   %}
11516 
11517   ins_pipe(ialu_reg_reg_shift);
11518 %}
11519 
11520 instruct XorI_reg_URShift_not_reg(iRegINoSp dst,
11521                          iRegIorL2I src1, iRegIorL2I src2,
11522                          immI src3, immI_M1 src4, rFlagsReg cr) %{
11523   match(Set dst (XorI src4 (XorI(URShiftI src2 src3) src1)));
11524   ins_cost(1.9 * INSN_COST);
11525   format %{ "eonw  $dst, $src1, $src2, LSR $src3" %}
11526 
11527   ins_encode %{
11528     __ eonw(as_Register($dst$$reg),
11529               as_Register($src1$$reg),
11530               as_Register($src2$$reg),
11531               Assembler::LSR,
11532               $src3$$constant & 0x1f);
11533   %}
11534 
11535   ins_pipe(ialu_reg_reg_shift);
11536 %}
11537 
11538 instruct XorL_reg_URShift_not_reg(iRegLNoSp dst,
11539                          iRegL src1, iRegL src2,
11540                          immI src3, immL_M1 src4, rFlagsReg cr) %{
11541   match(Set dst (XorL src4 (XorL(URShiftL src2 src3) src1)));
11542   ins_cost(1.9 * INSN_COST);
11543   format %{ "eon  $dst, $src1, $src2, LSR $src3" %}
11544 
11545   ins_encode %{
11546     __ eon(as_Register($dst$$reg),
11547               as_Register($src1$$reg),
11548               as_Register($src2$$reg),
11549               Assembler::LSR,
11550               $src3$$constant & 0x3f);
11551   %}
11552 
11553   ins_pipe(ialu_reg_reg_shift);
11554 %}
11555 
11556 instruct XorI_reg_RShift_not_reg(iRegINoSp dst,
11557                          iRegIorL2I src1, iRegIorL2I src2,
11558                          immI src3, immI_M1 src4, rFlagsReg cr) %{
11559   match(Set dst (XorI src4 (XorI(RShiftI src2 src3) src1)));
11560   ins_cost(1.9 * INSN_COST);
11561   format %{ "eonw  $dst, $src1, $src2, ASR $src3" %}
11562 
11563   ins_encode %{
11564     __ eonw(as_Register($dst$$reg),
11565               as_Register($src1$$reg),
11566               as_Register($src2$$reg),
11567               Assembler::ASR,
11568               $src3$$constant & 0x1f);
11569   %}
11570 
11571   ins_pipe(ialu_reg_reg_shift);
11572 %}
11573 
11574 instruct XorL_reg_RShift_not_reg(iRegLNoSp dst,
11575                          iRegL src1, iRegL src2,
11576                          immI src3, immL_M1 src4, rFlagsReg cr) %{
11577   match(Set dst (XorL src4 (XorL(RShiftL src2 src3) src1)));
11578   ins_cost(1.9 * INSN_COST);
11579   format %{ "eon  $dst, $src1, $src2, ASR $src3" %}
11580 
11581   ins_encode %{
11582     __ eon(as_Register($dst$$reg),
11583               as_Register($src1$$reg),
11584               as_Register($src2$$reg),
11585               Assembler::ASR,
11586               $src3$$constant & 0x3f);
11587   %}
11588 
11589   ins_pipe(ialu_reg_reg_shift);
11590 %}
11591 
11592 instruct XorI_reg_LShift_not_reg(iRegINoSp dst,
11593                          iRegIorL2I src1, iRegIorL2I src2,
11594                          immI src3, immI_M1 src4, rFlagsReg cr) %{
11595   match(Set dst (XorI src4 (XorI(LShiftI src2 src3) src1)));
11596   ins_cost(1.9 * INSN_COST);
11597   format %{ "eonw  $dst, $src1, $src2, LSL $src3" %}
11598 
11599   ins_encode %{
11600     __ eonw(as_Register($dst$$reg),
11601               as_Register($src1$$reg),
11602               as_Register($src2$$reg),
11603               Assembler::LSL,
11604               $src3$$constant & 0x1f);
11605   %}
11606 
11607   ins_pipe(ialu_reg_reg_shift);
11608 %}
11609 
11610 instruct XorL_reg_LShift_not_reg(iRegLNoSp dst,
11611                          iRegL src1, iRegL src2,
11612                          immI src3, immL_M1 src4, rFlagsReg cr) %{
11613   match(Set dst (XorL src4 (XorL(LShiftL src2 src3) src1)));
11614   ins_cost(1.9 * INSN_COST);
11615   format %{ "eon  $dst, $src1, $src2, LSL $src3" %}
11616 
11617   ins_encode %{
11618     __ eon(as_Register($dst$$reg),
11619               as_Register($src1$$reg),
11620               as_Register($src2$$reg),
11621               Assembler::LSL,
11622               $src3$$constant & 0x3f);
11623   %}
11624 
11625   ins_pipe(ialu_reg_reg_shift);
11626 %}
11627 
11628 instruct OrI_reg_URShift_not_reg(iRegINoSp dst,
11629                          iRegIorL2I src1, iRegIorL2I src2,
11630                          immI src3, immI_M1 src4, rFlagsReg cr) %{
11631   match(Set dst (OrI src1 (XorI(URShiftI src2 src3) src4)));
11632   ins_cost(1.9 * INSN_COST);
11633   format %{ "ornw  $dst, $src1, $src2, LSR $src3" %}
11634 
11635   ins_encode %{
11636     __ ornw(as_Register($dst$$reg),
11637               as_Register($src1$$reg),
11638               as_Register($src2$$reg),
11639               Assembler::LSR,
11640               $src3$$constant & 0x1f);
11641   %}
11642 
11643   ins_pipe(ialu_reg_reg_shift);
11644 %}
11645 
11646 instruct OrL_reg_URShift_not_reg(iRegLNoSp dst,
11647                          iRegL src1, iRegL src2,
11648                          immI src3, immL_M1 src4, rFlagsReg cr) %{
11649   match(Set dst (OrL src1 (XorL(URShiftL src2 src3) src4)));
11650   ins_cost(1.9 * INSN_COST);
11651   format %{ "orn  $dst, $src1, $src2, LSR $src3" %}
11652 
11653   ins_encode %{
11654     __ orn(as_Register($dst$$reg),
11655               as_Register($src1$$reg),
11656               as_Register($src2$$reg),
11657               Assembler::LSR,
11658               $src3$$constant & 0x3f);
11659   %}
11660 
11661   ins_pipe(ialu_reg_reg_shift);
11662 %}
11663 
11664 instruct OrI_reg_RShift_not_reg(iRegINoSp dst,
11665                          iRegIorL2I src1, iRegIorL2I src2,
11666                          immI src3, immI_M1 src4, rFlagsReg cr) %{
11667   match(Set dst (OrI src1 (XorI(RShiftI src2 src3) src4)));
11668   ins_cost(1.9 * INSN_COST);
11669   format %{ "ornw  $dst, $src1, $src2, ASR $src3" %}
11670 
11671   ins_encode %{
11672     __ ornw(as_Register($dst$$reg),
11673               as_Register($src1$$reg),
11674               as_Register($src2$$reg),
11675               Assembler::ASR,
11676               $src3$$constant & 0x1f);
11677   %}
11678 
11679   ins_pipe(ialu_reg_reg_shift);
11680 %}
11681 
11682 instruct OrL_reg_RShift_not_reg(iRegLNoSp dst,
11683                          iRegL src1, iRegL src2,
11684                          immI src3, immL_M1 src4, rFlagsReg cr) %{
11685   match(Set dst (OrL src1 (XorL(RShiftL src2 src3) src4)));
11686   ins_cost(1.9 * INSN_COST);
11687   format %{ "orn  $dst, $src1, $src2, ASR $src3" %}
11688 
11689   ins_encode %{
11690     __ orn(as_Register($dst$$reg),
11691               as_Register($src1$$reg),
11692               as_Register($src2$$reg),
11693               Assembler::ASR,
11694               $src3$$constant & 0x3f);
11695   %}
11696 
11697   ins_pipe(ialu_reg_reg_shift);
11698 %}
11699 
11700 instruct OrI_reg_LShift_not_reg(iRegINoSp dst,
11701                          iRegIorL2I src1, iRegIorL2I src2,
11702                          immI src3, immI_M1 src4, rFlagsReg cr) %{
11703   match(Set dst (OrI src1 (XorI(LShiftI src2 src3) src4)));
11704   ins_cost(1.9 * INSN_COST);
11705   format %{ "ornw  $dst, $src1, $src2, LSL $src3" %}
11706 
11707   ins_encode %{
11708     __ ornw(as_Register($dst$$reg),
11709               as_Register($src1$$reg),
11710               as_Register($src2$$reg),
11711               Assembler::LSL,
11712               $src3$$constant & 0x1f);
11713   %}
11714 
11715   ins_pipe(ialu_reg_reg_shift);
11716 %}
11717 
11718 instruct OrL_reg_LShift_not_reg(iRegLNoSp dst,
11719                          iRegL src1, iRegL src2,
11720                          immI src3, immL_M1 src4, rFlagsReg cr) %{
11721   match(Set dst (OrL src1 (XorL(LShiftL src2 src3) src4)));
11722   ins_cost(1.9 * INSN_COST);
11723   format %{ "orn  $dst, $src1, $src2, LSL $src3" %}
11724 
11725   ins_encode %{
11726     __ orn(as_Register($dst$$reg),
11727               as_Register($src1$$reg),
11728               as_Register($src2$$reg),
11729               Assembler::LSL,
11730               $src3$$constant & 0x3f);
11731   %}
11732 
11733   ins_pipe(ialu_reg_reg_shift);
11734 %}
11735 
11736 instruct AndI_reg_URShift_reg(iRegINoSp dst,
11737                          iRegIorL2I src1, iRegIorL2I src2,
11738                          immI src3, rFlagsReg cr) %{
11739   match(Set dst (AndI src1 (URShiftI src2 src3)));
11740 
11741   ins_cost(1.9 * INSN_COST);
11742   format %{ "andw  $dst, $src1, $src2, LSR $src3" %}
11743 
11744   ins_encode %{
11745     __ andw(as_Register($dst$$reg),
11746               as_Register($src1$$reg),
11747               as_Register($src2$$reg),
11748               Assembler::LSR,
11749               $src3$$constant & 0x1f);
11750   %}
11751 
11752   ins_pipe(ialu_reg_reg_shift);
11753 %}
11754 
11755 instruct AndL_reg_URShift_reg(iRegLNoSp dst,
11756                          iRegL src1, iRegL src2,
11757                          immI src3, rFlagsReg cr) %{
11758   match(Set dst (AndL src1 (URShiftL src2 src3)));
11759 
11760   ins_cost(1.9 * INSN_COST);
11761   format %{ "andr  $dst, $src1, $src2, LSR $src3" %}
11762 
11763   ins_encode %{
11764     __ andr(as_Register($dst$$reg),
11765               as_Register($src1$$reg),
11766               as_Register($src2$$reg),
11767               Assembler::LSR,
11768               $src3$$constant & 0x3f);
11769   %}
11770 
11771   ins_pipe(ialu_reg_reg_shift);
11772 %}
11773 
11774 instruct AndI_reg_RShift_reg(iRegINoSp dst,
11775                          iRegIorL2I src1, iRegIorL2I src2,
11776                          immI src3, rFlagsReg cr) %{
11777   match(Set dst (AndI src1 (RShiftI src2 src3)));
11778 
11779   ins_cost(1.9 * INSN_COST);
11780   format %{ "andw  $dst, $src1, $src2, ASR $src3" %}
11781 
11782   ins_encode %{
11783     __ andw(as_Register($dst$$reg),
11784               as_Register($src1$$reg),
11785               as_Register($src2$$reg),
11786               Assembler::ASR,
11787               $src3$$constant & 0x1f);
11788   %}
11789 
11790   ins_pipe(ialu_reg_reg_shift);
11791 %}
11792 
11793 instruct AndL_reg_RShift_reg(iRegLNoSp dst,
11794                          iRegL src1, iRegL src2,
11795                          immI src3, rFlagsReg cr) %{
11796   match(Set dst (AndL src1 (RShiftL src2 src3)));
11797 
11798   ins_cost(1.9 * INSN_COST);
11799   format %{ "andr  $dst, $src1, $src2, ASR $src3" %}
11800 
11801   ins_encode %{
11802     __ andr(as_Register($dst$$reg),
11803               as_Register($src1$$reg),
11804               as_Register($src2$$reg),
11805               Assembler::ASR,
11806               $src3$$constant & 0x3f);
11807   %}
11808 
11809   ins_pipe(ialu_reg_reg_shift);
11810 %}
11811 
11812 instruct AndI_reg_LShift_reg(iRegINoSp dst,
11813                          iRegIorL2I src1, iRegIorL2I src2,
11814                          immI src3, rFlagsReg cr) %{
11815   match(Set dst (AndI src1 (LShiftI src2 src3)));
11816 
11817   ins_cost(1.9 * INSN_COST);
11818   format %{ "andw  $dst, $src1, $src2, LSL $src3" %}
11819 
11820   ins_encode %{
11821     __ andw(as_Register($dst$$reg),
11822               as_Register($src1$$reg),
11823               as_Register($src2$$reg),
11824               Assembler::LSL,
11825               $src3$$constant & 0x1f);
11826   %}
11827 
11828   ins_pipe(ialu_reg_reg_shift);
11829 %}
11830 
11831 instruct AndL_reg_LShift_reg(iRegLNoSp dst,
11832                          iRegL src1, iRegL src2,
11833                          immI src3, rFlagsReg cr) %{
11834   match(Set dst (AndL src1 (LShiftL src2 src3)));
11835 
11836   ins_cost(1.9 * INSN_COST);
11837   format %{ "andr  $dst, $src1, $src2, LSL $src3" %}
11838 
11839   ins_encode %{
11840     __ andr(as_Register($dst$$reg),
11841               as_Register($src1$$reg),
11842               as_Register($src2$$reg),
11843               Assembler::LSL,
11844               $src3$$constant & 0x3f);
11845   %}
11846 
11847   ins_pipe(ialu_reg_reg_shift);
11848 %}
11849 
11850 instruct XorI_reg_URShift_reg(iRegINoSp dst,
11851                          iRegIorL2I src1, iRegIorL2I src2,
11852                          immI src3, rFlagsReg cr) %{
11853   match(Set dst (XorI src1 (URShiftI src2 src3)));
11854 
11855   ins_cost(1.9 * INSN_COST);
11856   format %{ "eorw  $dst, $src1, $src2, LSR $src3" %}
11857 
11858   ins_encode %{
11859     __ eorw(as_Register($dst$$reg),
11860               as_Register($src1$$reg),
11861               as_Register($src2$$reg),
11862               Assembler::LSR,
11863               $src3$$constant & 0x1f);
11864   %}
11865 
11866   ins_pipe(ialu_reg_reg_shift);
11867 %}
11868 
11869 instruct XorL_reg_URShift_reg(iRegLNoSp dst,
11870                          iRegL src1, iRegL src2,
11871                          immI src3, rFlagsReg cr) %{
11872   match(Set dst (XorL src1 (URShiftL src2 src3)));
11873 
11874   ins_cost(1.9 * INSN_COST);
11875   format %{ "eor  $dst, $src1, $src2, LSR $src3" %}
11876 
11877   ins_encode %{
11878     __ eor(as_Register($dst$$reg),
11879               as_Register($src1$$reg),
11880               as_Register($src2$$reg),
11881               Assembler::LSR,
11882               $src3$$constant & 0x3f);
11883   %}
11884 
11885   ins_pipe(ialu_reg_reg_shift);
11886 %}
11887 
11888 instruct XorI_reg_RShift_reg(iRegINoSp dst,
11889                          iRegIorL2I src1, iRegIorL2I src2,
11890                          immI src3, rFlagsReg cr) %{
11891   match(Set dst (XorI src1 (RShiftI src2 src3)));
11892 
11893   ins_cost(1.9 * INSN_COST);
11894   format %{ "eorw  $dst, $src1, $src2, ASR $src3" %}
11895 
11896   ins_encode %{
11897     __ eorw(as_Register($dst$$reg),
11898               as_Register($src1$$reg),
11899               as_Register($src2$$reg),
11900               Assembler::ASR,
11901               $src3$$constant & 0x1f);
11902   %}
11903 
11904   ins_pipe(ialu_reg_reg_shift);
11905 %}
11906 
11907 instruct XorL_reg_RShift_reg(iRegLNoSp dst,
11908                          iRegL src1, iRegL src2,
11909                          immI src3, rFlagsReg cr) %{
11910   match(Set dst (XorL src1 (RShiftL src2 src3)));
11911 
11912   ins_cost(1.9 * INSN_COST);
11913   format %{ "eor  $dst, $src1, $src2, ASR $src3" %}
11914 
11915   ins_encode %{
11916     __ eor(as_Register($dst$$reg),
11917               as_Register($src1$$reg),
11918               as_Register($src2$$reg),
11919               Assembler::ASR,
11920               $src3$$constant & 0x3f);
11921   %}
11922 
11923   ins_pipe(ialu_reg_reg_shift);
11924 %}
11925 
11926 instruct XorI_reg_LShift_reg(iRegINoSp dst,
11927                          iRegIorL2I src1, iRegIorL2I src2,
11928                          immI src3, rFlagsReg cr) %{
11929   match(Set dst (XorI src1 (LShiftI src2 src3)));
11930 
11931   ins_cost(1.9 * INSN_COST);
11932   format %{ "eorw  $dst, $src1, $src2, LSL $src3" %}
11933 
11934   ins_encode %{
11935     __ eorw(as_Register($dst$$reg),
11936               as_Register($src1$$reg),
11937               as_Register($src2$$reg),
11938               Assembler::LSL,
11939               $src3$$constant & 0x1f);
11940   %}
11941 
11942   ins_pipe(ialu_reg_reg_shift);
11943 %}
11944 
11945 instruct XorL_reg_LShift_reg(iRegLNoSp dst,
11946                          iRegL src1, iRegL src2,
11947                          immI src3, rFlagsReg cr) %{
11948   match(Set dst (XorL src1 (LShiftL src2 src3)));
11949 
11950   ins_cost(1.9 * INSN_COST);
11951   format %{ "eor  $dst, $src1, $src2, LSL $src3" %}
11952 
11953   ins_encode %{
11954     __ eor(as_Register($dst$$reg),
11955               as_Register($src1$$reg),
11956               as_Register($src2$$reg),
11957               Assembler::LSL,
11958               $src3$$constant & 0x3f);
11959   %}
11960 
11961   ins_pipe(ialu_reg_reg_shift);
11962 %}
11963 
11964 instruct OrI_reg_URShift_reg(iRegINoSp dst,
11965                          iRegIorL2I src1, iRegIorL2I src2,
11966                          immI src3, rFlagsReg cr) %{
11967   match(Set dst (OrI src1 (URShiftI src2 src3)));
11968 
11969   ins_cost(1.9 * INSN_COST);
11970   format %{ "orrw  $dst, $src1, $src2, LSR $src3" %}
11971 
11972   ins_encode %{
11973     __ orrw(as_Register($dst$$reg),
11974               as_Register($src1$$reg),
11975               as_Register($src2$$reg),
11976               Assembler::LSR,
11977               $src3$$constant & 0x1f);
11978   %}
11979 
11980   ins_pipe(ialu_reg_reg_shift);
11981 %}
11982 
11983 instruct OrL_reg_URShift_reg(iRegLNoSp dst,
11984                          iRegL src1, iRegL src2,
11985                          immI src3, rFlagsReg cr) %{
11986   match(Set dst (OrL src1 (URShiftL src2 src3)));
11987 
11988   ins_cost(1.9 * INSN_COST);
11989   format %{ "orr  $dst, $src1, $src2, LSR $src3" %}
11990 
11991   ins_encode %{
11992     __ orr(as_Register($dst$$reg),
11993               as_Register($src1$$reg),
11994               as_Register($src2$$reg),
11995               Assembler::LSR,
11996               $src3$$constant & 0x3f);
11997   %}
11998 
11999   ins_pipe(ialu_reg_reg_shift);
12000 %}
12001 
12002 instruct OrI_reg_RShift_reg(iRegINoSp dst,
12003                          iRegIorL2I src1, iRegIorL2I src2,
12004                          immI src3, rFlagsReg cr) %{
12005   match(Set dst (OrI src1 (RShiftI src2 src3)));
12006 
12007   ins_cost(1.9 * INSN_COST);
12008   format %{ "orrw  $dst, $src1, $src2, ASR $src3" %}
12009 
12010   ins_encode %{
12011     __ orrw(as_Register($dst$$reg),
12012               as_Register($src1$$reg),
12013               as_Register($src2$$reg),
12014               Assembler::ASR,
12015               $src3$$constant & 0x1f);
12016   %}
12017 
12018   ins_pipe(ialu_reg_reg_shift);
12019 %}
12020 
12021 instruct OrL_reg_RShift_reg(iRegLNoSp dst,
12022                          iRegL src1, iRegL src2,
12023                          immI src3, rFlagsReg cr) %{
12024   match(Set dst (OrL src1 (RShiftL src2 src3)));
12025 
12026   ins_cost(1.9 * INSN_COST);
12027   format %{ "orr  $dst, $src1, $src2, ASR $src3" %}
12028 
12029   ins_encode %{
12030     __ orr(as_Register($dst$$reg),
12031               as_Register($src1$$reg),
12032               as_Register($src2$$reg),
12033               Assembler::ASR,
12034               $src3$$constant & 0x3f);
12035   %}
12036 
12037   ins_pipe(ialu_reg_reg_shift);
12038 %}
12039 
12040 instruct OrI_reg_LShift_reg(iRegINoSp dst,
12041                          iRegIorL2I src1, iRegIorL2I src2,
12042                          immI src3, rFlagsReg cr) %{
12043   match(Set dst (OrI src1 (LShiftI src2 src3)));
12044 
12045   ins_cost(1.9 * INSN_COST);
12046   format %{ "orrw  $dst, $src1, $src2, LSL $src3" %}
12047 
12048   ins_encode %{
12049     __ orrw(as_Register($dst$$reg),
12050               as_Register($src1$$reg),
12051               as_Register($src2$$reg),
12052               Assembler::LSL,
12053               $src3$$constant & 0x1f);
12054   %}
12055 
12056   ins_pipe(ialu_reg_reg_shift);
12057 %}
12058 
12059 instruct OrL_reg_LShift_reg(iRegLNoSp dst,
12060                          iRegL src1, iRegL src2,
12061                          immI src3, rFlagsReg cr) %{
12062   match(Set dst (OrL src1 (LShiftL src2 src3)));
12063 
12064   ins_cost(1.9 * INSN_COST);
12065   format %{ "orr  $dst, $src1, $src2, LSL $src3" %}
12066 
12067   ins_encode %{
12068     __ orr(as_Register($dst$$reg),
12069               as_Register($src1$$reg),
12070               as_Register($src2$$reg),
12071               Assembler::LSL,
12072               $src3$$constant & 0x3f);
12073   %}
12074 
12075   ins_pipe(ialu_reg_reg_shift);
12076 %}
12077 
12078 instruct AddI_reg_URShift_reg(iRegINoSp dst,
12079                          iRegIorL2I src1, iRegIorL2I src2,
12080                          immI src3, rFlagsReg cr) %{
12081   match(Set dst (AddI src1 (URShiftI src2 src3)));
12082 
12083   ins_cost(1.9 * INSN_COST);
12084   format %{ "addw  $dst, $src1, $src2, LSR $src3" %}
12085 
12086   ins_encode %{
12087     __ addw(as_Register($dst$$reg),
12088               as_Register($src1$$reg),
12089               as_Register($src2$$reg),
12090               Assembler::LSR,
12091               $src3$$constant & 0x1f);
12092   %}
12093 
12094   ins_pipe(ialu_reg_reg_shift);
12095 %}
12096 
12097 instruct AddL_reg_URShift_reg(iRegLNoSp dst,
12098                          iRegL src1, iRegL src2,
12099                          immI src3, rFlagsReg cr) %{
12100   match(Set dst (AddL src1 (URShiftL src2 src3)));
12101 
12102   ins_cost(1.9 * INSN_COST);
12103   format %{ "add  $dst, $src1, $src2, LSR $src3" %}
12104 
12105   ins_encode %{
12106     __ add(as_Register($dst$$reg),
12107               as_Register($src1$$reg),
12108               as_Register($src2$$reg),
12109               Assembler::LSR,
12110               $src3$$constant & 0x3f);
12111   %}
12112 
12113   ins_pipe(ialu_reg_reg_shift);
12114 %}
12115 
12116 instruct AddI_reg_RShift_reg(iRegINoSp dst,
12117                          iRegIorL2I src1, iRegIorL2I src2,
12118                          immI src3, rFlagsReg cr) %{
12119   match(Set dst (AddI src1 (RShiftI src2 src3)));
12120 
12121   ins_cost(1.9 * INSN_COST);
12122   format %{ "addw  $dst, $src1, $src2, ASR $src3" %}
12123 
12124   ins_encode %{
12125     __ addw(as_Register($dst$$reg),
12126               as_Register($src1$$reg),
12127               as_Register($src2$$reg),
12128               Assembler::ASR,
12129               $src3$$constant & 0x1f);
12130   %}
12131 
12132   ins_pipe(ialu_reg_reg_shift);
12133 %}
12134 
12135 instruct AddL_reg_RShift_reg(iRegLNoSp dst,
12136                          iRegL src1, iRegL src2,
12137                          immI src3, rFlagsReg cr) %{
12138   match(Set dst (AddL src1 (RShiftL src2 src3)));
12139 
12140   ins_cost(1.9 * INSN_COST);
12141   format %{ "add  $dst, $src1, $src2, ASR $src3" %}
12142 
12143   ins_encode %{
12144     __ add(as_Register($dst$$reg),
12145               as_Register($src1$$reg),
12146               as_Register($src2$$reg),
12147               Assembler::ASR,
12148               $src3$$constant & 0x3f);
12149   %}
12150 
12151   ins_pipe(ialu_reg_reg_shift);
12152 %}
12153 
12154 instruct AddI_reg_LShift_reg(iRegINoSp dst,
12155                          iRegIorL2I src1, iRegIorL2I src2,
12156                          immI src3, rFlagsReg cr) %{
12157   match(Set dst (AddI src1 (LShiftI src2 src3)));
12158 
12159   ins_cost(1.9 * INSN_COST);
12160   format %{ "addw  $dst, $src1, $src2, LSL $src3" %}
12161 
12162   ins_encode %{
12163     __ addw(as_Register($dst$$reg),
12164               as_Register($src1$$reg),
12165               as_Register($src2$$reg),
12166               Assembler::LSL,
12167               $src3$$constant & 0x1f);
12168   %}
12169 
12170   ins_pipe(ialu_reg_reg_shift);
12171 %}
12172 
12173 instruct AddL_reg_LShift_reg(iRegLNoSp dst,
12174                          iRegL src1, iRegL src2,
12175                          immI src3, rFlagsReg cr) %{
12176   match(Set dst (AddL src1 (LShiftL src2 src3)));
12177 
12178   ins_cost(1.9 * INSN_COST);
12179   format %{ "add  $dst, $src1, $src2, LSL $src3" %}
12180 
12181   ins_encode %{
12182     __ add(as_Register($dst$$reg),
12183               as_Register($src1$$reg),
12184               as_Register($src2$$reg),
12185               Assembler::LSL,
12186               $src3$$constant & 0x3f);
12187   %}
12188 
12189   ins_pipe(ialu_reg_reg_shift);
12190 %}
12191 
12192 instruct SubI_reg_URShift_reg(iRegINoSp dst,
12193                          iRegIorL2I src1, iRegIorL2I src2,
12194                          immI src3, rFlagsReg cr) %{
12195   match(Set dst (SubI src1 (URShiftI src2 src3)));
12196 
12197   ins_cost(1.9 * INSN_COST);
12198   format %{ "subw  $dst, $src1, $src2, LSR $src3" %}
12199 
12200   ins_encode %{
12201     __ subw(as_Register($dst$$reg),
12202               as_Register($src1$$reg),
12203               as_Register($src2$$reg),
12204               Assembler::LSR,
12205               $src3$$constant & 0x1f);
12206   %}
12207 
12208   ins_pipe(ialu_reg_reg_shift);
12209 %}
12210 
12211 instruct SubL_reg_URShift_reg(iRegLNoSp dst,
12212                          iRegL src1, iRegL src2,
12213                          immI src3, rFlagsReg cr) %{
12214   match(Set dst (SubL src1 (URShiftL src2 src3)));
12215 
12216   ins_cost(1.9 * INSN_COST);
12217   format %{ "sub  $dst, $src1, $src2, LSR $src3" %}
12218 
12219   ins_encode %{
12220     __ sub(as_Register($dst$$reg),
12221               as_Register($src1$$reg),
12222               as_Register($src2$$reg),
12223               Assembler::LSR,
12224               $src3$$constant & 0x3f);
12225   %}
12226 
12227   ins_pipe(ialu_reg_reg_shift);
12228 %}
12229 
12230 instruct SubI_reg_RShift_reg(iRegINoSp dst,
12231                          iRegIorL2I src1, iRegIorL2I src2,
12232                          immI src3, rFlagsReg cr) %{
12233   match(Set dst (SubI src1 (RShiftI src2 src3)));
12234 
12235   ins_cost(1.9 * INSN_COST);
12236   format %{ "subw  $dst, $src1, $src2, ASR $src3" %}
12237 
12238   ins_encode %{
12239     __ subw(as_Register($dst$$reg),
12240               as_Register($src1$$reg),
12241               as_Register($src2$$reg),
12242               Assembler::ASR,
12243               $src3$$constant & 0x1f);
12244   %}
12245 
12246   ins_pipe(ialu_reg_reg_shift);
12247 %}
12248 
12249 instruct SubL_reg_RShift_reg(iRegLNoSp dst,
12250                          iRegL src1, iRegL src2,
12251                          immI src3, rFlagsReg cr) %{
12252   match(Set dst (SubL src1 (RShiftL src2 src3)));
12253 
12254   ins_cost(1.9 * INSN_COST);
12255   format %{ "sub  $dst, $src1, $src2, ASR $src3" %}
12256 
12257   ins_encode %{
12258     __ sub(as_Register($dst$$reg),
12259               as_Register($src1$$reg),
12260               as_Register($src2$$reg),
12261               Assembler::ASR,
12262               $src3$$constant & 0x3f);
12263   %}
12264 
12265   ins_pipe(ialu_reg_reg_shift);
12266 %}
12267 
12268 instruct SubI_reg_LShift_reg(iRegINoSp dst,
12269                          iRegIorL2I src1, iRegIorL2I src2,
12270                          immI src3, rFlagsReg cr) %{
12271   match(Set dst (SubI src1 (LShiftI src2 src3)));
12272 
12273   ins_cost(1.9 * INSN_COST);
12274   format %{ "subw  $dst, $src1, $src2, LSL $src3" %}
12275 
12276   ins_encode %{
12277     __ subw(as_Register($dst$$reg),
12278               as_Register($src1$$reg),
12279               as_Register($src2$$reg),
12280               Assembler::LSL,
12281               $src3$$constant & 0x1f);
12282   %}
12283 
12284   ins_pipe(ialu_reg_reg_shift);
12285 %}
12286 
12287 instruct SubL_reg_LShift_reg(iRegLNoSp dst,
12288                          iRegL src1, iRegL src2,
12289                          immI src3, rFlagsReg cr) %{
12290   match(Set dst (SubL src1 (LShiftL src2 src3)));
12291 
12292   ins_cost(1.9 * INSN_COST);
12293   format %{ "sub  $dst, $src1, $src2, LSL $src3" %}
12294 
12295   ins_encode %{
12296     __ sub(as_Register($dst$$reg),
12297               as_Register($src1$$reg),
12298               as_Register($src2$$reg),
12299               Assembler::LSL,
12300               $src3$$constant & 0x3f);
12301   %}
12302 
12303   ins_pipe(ialu_reg_reg_shift);
12304 %}
12305 
12306 
12307 
12308 // Shift Left followed by Shift Right.
12309 // This idiom is used by the compiler for the i2b bytecode etc.
12310 instruct sbfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count)
12311 %{
12312   match(Set dst (RShiftL (LShiftL src lshift_count) rshift_count));
12313   // Make sure we are not going to exceed what sbfm can do.
12314   predicate((unsigned int)n->in(2)->get_int() <= 63
12315             && (unsigned int)n->in(1)->in(2)->get_int() <= 63);
12316 
12317   ins_cost(INSN_COST * 2);
12318   format %{ "sbfm  $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %}
12319   ins_encode %{
12320     int lshift = $lshift_count$$constant, rshift = $rshift_count$$constant;
12321     int s = 63 - lshift;
12322     int r = (rshift - lshift) & 63;
12323     __ sbfm(as_Register($dst$$reg),
12324             as_Register($src$$reg),
12325             r, s);
12326   %}
12327 
12328   ins_pipe(ialu_reg_shift);
12329 %}
12330 
12331 // Shift Left followed by Shift Right.
12332 // This idiom is used by the compiler for the i2b bytecode etc.
12333 instruct sbfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count)
12334 %{
12335   match(Set dst (RShiftI (LShiftI src lshift_count) rshift_count));
12336   // Make sure we are not going to exceed what sbfmw can do.
12337   predicate((unsigned int)n->in(2)->get_int() <= 31
12338             && (unsigned int)n->in(1)->in(2)->get_int() <= 31);
12339 
12340   ins_cost(INSN_COST * 2);
12341   format %{ "sbfmw  $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %}
12342   ins_encode %{
12343     int lshift = $lshift_count$$constant, rshift = $rshift_count$$constant;
12344     int s = 31 - lshift;
12345     int r = (rshift - lshift) & 31;
12346     __ sbfmw(as_Register($dst$$reg),
12347             as_Register($src$$reg),
12348             r, s);
12349   %}
12350 
12351   ins_pipe(ialu_reg_shift);
12352 %}
12353 
12354 // Shift Left followed by Shift Right.
12355 // This idiom is used by the compiler for the i2b bytecode etc.
12356 instruct ubfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count)
12357 %{
12358   match(Set dst (URShiftL (LShiftL src lshift_count) rshift_count));
12359   // Make sure we are not going to exceed what ubfm can do.
12360   predicate((unsigned int)n->in(2)->get_int() <= 63
12361             && (unsigned int)n->in(1)->in(2)->get_int() <= 63);
12362 
12363   ins_cost(INSN_COST * 2);
12364   format %{ "ubfm  $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %}
12365   ins_encode %{
12366     int lshift = $lshift_count$$constant, rshift = $rshift_count$$constant;
12367     int s = 63 - lshift;
12368     int r = (rshift - lshift) & 63;
12369     __ ubfm(as_Register($dst$$reg),
12370             as_Register($src$$reg),
12371             r, s);
12372   %}
12373 
12374   ins_pipe(ialu_reg_shift);
12375 %}
12376 
12377 // Shift Left followed by Shift Right.
12378 // This idiom is used by the compiler for the i2b bytecode etc.
12379 instruct ubfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count)
12380 %{
12381   match(Set dst (URShiftI (LShiftI src lshift_count) rshift_count));
12382   // Make sure we are not going to exceed what ubfmw can do.
12383   predicate((unsigned int)n->in(2)->get_int() <= 31
12384             && (unsigned int)n->in(1)->in(2)->get_int() <= 31);
12385 
12386   ins_cost(INSN_COST * 2);
12387   format %{ "ubfmw  $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %}
12388   ins_encode %{
12389     int lshift = $lshift_count$$constant, rshift = $rshift_count$$constant;
12390     int s = 31 - lshift;
12391     int r = (rshift - lshift) & 31;
12392     __ ubfmw(as_Register($dst$$reg),
12393             as_Register($src$$reg),
12394             r, s);
12395   %}
12396 
12397   ins_pipe(ialu_reg_shift);
12398 %}
12399 // Bitfield extract with shift & mask
12400 
12401 instruct ubfxwI(iRegINoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask)
12402 %{
12403   match(Set dst (AndI (URShiftI src rshift) mask));
12404 
12405   ins_cost(INSN_COST);
12406   format %{ "ubfxw $dst, $src, $mask" %}
12407   ins_encode %{
12408     int rshift = $rshift$$constant;
12409     long mask = $mask$$constant;
12410     int width = exact_log2(mask+1);
12411     __ ubfxw(as_Register($dst$$reg),
12412             as_Register($src$$reg), rshift, width);
12413   %}
12414   ins_pipe(ialu_reg_shift);
12415 %}
12416 instruct ubfxL(iRegLNoSp dst, iRegL src, immI rshift, immL_bitmask mask)
12417 %{
12418   match(Set dst (AndL (URShiftL src rshift) mask));
12419 
12420   ins_cost(INSN_COST);
12421   format %{ "ubfx $dst, $src, $mask" %}
12422   ins_encode %{
12423     int rshift = $rshift$$constant;
12424     long mask = $mask$$constant;
12425     int width = exact_log2(mask+1);
12426     __ ubfx(as_Register($dst$$reg),
12427             as_Register($src$$reg), rshift, width);
12428   %}
12429   ins_pipe(ialu_reg_shift);
12430 %}
12431 
12432 // We can use ubfx when extending an And with a mask when we know mask
12433 // is positive.  We know that because immI_bitmask guarantees it.
12434 instruct ubfxIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask)
12435 %{
12436   match(Set dst (ConvI2L (AndI (URShiftI src rshift) mask)));
12437 
12438   ins_cost(INSN_COST * 2);
12439   format %{ "ubfx $dst, $src, $mask" %}
12440   ins_encode %{
12441     int rshift = $rshift$$constant;
12442     long mask = $mask$$constant;
12443     int width = exact_log2(mask+1);
12444     __ ubfx(as_Register($dst$$reg),
12445             as_Register($src$$reg), rshift, width);
12446   %}
12447   ins_pipe(ialu_reg_shift);
12448 %}
12449 
12450 // Rotations
12451 
12452 instruct extrOrL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr)
12453 %{
12454   match(Set dst (OrL (LShiftL src1 lshift) (URShiftL src2 rshift)));
12455   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 63));
12456 
12457   ins_cost(INSN_COST);
12458   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12459 
12460   ins_encode %{
12461     __ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12462             $rshift$$constant & 63);
12463   %}
12464   ins_pipe(ialu_reg_reg_extr);
12465 %}
12466 
12467 instruct extrOrI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr)
12468 %{
12469   match(Set dst (OrI (LShiftI src1 lshift) (URShiftI src2 rshift)));
12470   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 31));
12471 
12472   ins_cost(INSN_COST);
12473   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12474 
12475   ins_encode %{
12476     __ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12477             $rshift$$constant & 31);
12478   %}
12479   ins_pipe(ialu_reg_reg_extr);
12480 %}
12481 
12482 instruct extrAddL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr)
12483 %{
12484   match(Set dst (AddL (LShiftL src1 lshift) (URShiftL src2 rshift)));
12485   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 63));
12486 
12487   ins_cost(INSN_COST);
12488   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12489 
12490   ins_encode %{
12491     __ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12492             $rshift$$constant & 63);
12493   %}
12494   ins_pipe(ialu_reg_reg_extr);
12495 %}
12496 
12497 instruct extrAddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr)
12498 %{
12499   match(Set dst (AddI (LShiftI src1 lshift) (URShiftI src2 rshift)));
12500   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 31));
12501 
12502   ins_cost(INSN_COST);
12503   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12504 
12505   ins_encode %{
12506     __ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12507             $rshift$$constant & 31);
12508   %}
12509   ins_pipe(ialu_reg_reg_extr);
12510 %}
12511 
12512 
12513 // rol expander
12514 
12515 instruct rolL_rReg(iRegLNoSp dst, iRegL src, iRegI shift, rFlagsReg cr)
12516 %{
12517   effect(DEF dst, USE src, USE shift);
12518 
12519   format %{ "rol    $dst, $src, $shift" %}
12520   ins_cost(INSN_COST * 3);
12521   ins_encode %{
12522     __ subw(rscratch1, zr, as_Register($shift$$reg));
12523     __ rorv(as_Register($dst$$reg), as_Register($src$$reg),
12524             rscratch1);
12525     %}
12526   ins_pipe(ialu_reg_reg_vshift);
12527 %}
12528 
12529 // rol expander
12530 
12531 instruct rolI_rReg(iRegINoSp dst, iRegI src, iRegI shift, rFlagsReg cr)
12532 %{
12533   effect(DEF dst, USE src, USE shift);
12534 
12535   format %{ "rol    $dst, $src, $shift" %}
12536   ins_cost(INSN_COST * 3);
12537   ins_encode %{
12538     __ subw(rscratch1, zr, as_Register($shift$$reg));
12539     __ rorvw(as_Register($dst$$reg), as_Register($src$$reg),
12540             rscratch1);
12541     %}
12542   ins_pipe(ialu_reg_reg_vshift);
12543 %}
12544 
12545 instruct rolL_rReg_Var_C_64(iRegLNoSp dst, iRegL src, iRegI shift, immI_64 c_64, rFlagsReg cr)
12546 %{
12547   match(Set dst (OrL (LShiftL src shift) (URShiftL src (SubI c_64 shift))));
12548 
12549   expand %{
12550     rolL_rReg(dst, src, shift, cr);
12551   %}
12552 %}
12553 
12554 instruct rolL_rReg_Var_C0(iRegLNoSp dst, iRegL src, iRegI shift, immI0 c0, rFlagsReg cr)
12555 %{
12556   match(Set dst (OrL (LShiftL src shift) (URShiftL src (SubI c0 shift))));
12557 
12558   expand %{
12559     rolL_rReg(dst, src, shift, cr);
12560   %}
12561 %}
12562 
12563 instruct rolI_rReg_Var_C_32(iRegINoSp dst, iRegI src, iRegI shift, immI_32 c_32, rFlagsReg cr)
12564 %{
12565   match(Set dst (OrI (LShiftI src shift) (URShiftI src (SubI c_32 shift))));
12566 
12567   expand %{
12568     rolI_rReg(dst, src, shift, cr);
12569   %}
12570 %}
12571 
12572 instruct rolI_rReg_Var_C0(iRegINoSp dst, iRegI src, iRegI shift, immI0 c0, rFlagsReg cr)
12573 %{
12574   match(Set dst (OrI (LShiftI src shift) (URShiftI src (SubI c0 shift))));
12575 
12576   expand %{
12577     rolI_rReg(dst, src, shift, cr);
12578   %}
12579 %}
12580 
12581 // ror expander
12582 
12583 instruct rorL_rReg(iRegLNoSp dst, iRegL src, iRegI shift, rFlagsReg cr)
12584 %{
12585   effect(DEF dst, USE src, USE shift);
12586 
12587   format %{ "ror    $dst, $src, $shift" %}
12588   ins_cost(INSN_COST);
12589   ins_encode %{
12590     __ rorv(as_Register($dst$$reg), as_Register($src$$reg),
12591             as_Register($shift$$reg));
12592     %}
12593   ins_pipe(ialu_reg_reg_vshift);
12594 %}
12595 
12596 // ror expander
12597 
12598 instruct rorI_rReg(iRegINoSp dst, iRegI src, iRegI shift, rFlagsReg cr)
12599 %{
12600   effect(DEF dst, USE src, USE shift);
12601 
12602   format %{ "ror    $dst, $src, $shift" %}
12603   ins_cost(INSN_COST);
12604   ins_encode %{
12605     __ rorvw(as_Register($dst$$reg), as_Register($src$$reg),
12606             as_Register($shift$$reg));
12607     %}
12608   ins_pipe(ialu_reg_reg_vshift);
12609 %}
12610 
12611 instruct rorL_rReg_Var_C_64(iRegLNoSp dst, iRegL src, iRegI shift, immI_64 c_64, rFlagsReg cr)
12612 %{
12613   match(Set dst (OrL (URShiftL src shift) (LShiftL src (SubI c_64 shift))));
12614 
12615   expand %{
12616     rorL_rReg(dst, src, shift, cr);
12617   %}
12618 %}
12619 
12620 instruct rorL_rReg_Var_C0(iRegLNoSp dst, iRegL src, iRegI shift, immI0 c0, rFlagsReg cr)
12621 %{
12622   match(Set dst (OrL (URShiftL src shift) (LShiftL src (SubI c0 shift))));
12623 
12624   expand %{
12625     rorL_rReg(dst, src, shift, cr);
12626   %}
12627 %}
12628 
12629 instruct rorI_rReg_Var_C_32(iRegINoSp dst, iRegI src, iRegI shift, immI_32 c_32, rFlagsReg cr)
12630 %{
12631   match(Set dst (OrI (URShiftI src shift) (LShiftI src (SubI c_32 shift))));
12632 
12633   expand %{
12634     rorI_rReg(dst, src, shift, cr);
12635   %}
12636 %}
12637 
12638 instruct rorI_rReg_Var_C0(iRegINoSp dst, iRegI src, iRegI shift, immI0 c0, rFlagsReg cr)
12639 %{
12640   match(Set dst (OrI (URShiftI src shift) (LShiftI src (SubI c0 shift))));
12641 
12642   expand %{
12643     rorI_rReg(dst, src, shift, cr);
12644   %}
12645 %}
12646 
12647 // Add/subtract (extended)
12648 
12649 instruct AddExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr)
12650 %{
12651   match(Set dst (AddL src1 (ConvI2L src2)));
12652   ins_cost(INSN_COST);
12653   format %{ "add  $dst, $src1, sxtw $src2" %}
12654 
12655    ins_encode %{
12656      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12657             as_Register($src2$$reg), ext::sxtw);
12658    %}
12659   ins_pipe(ialu_reg_reg);
12660 %};
12661 
12662 instruct SubExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr)
12663 %{
12664   match(Set dst (SubL src1 (ConvI2L src2)));
12665   ins_cost(INSN_COST);
12666   format %{ "sub  $dst, $src1, sxtw $src2" %}
12667 
12668    ins_encode %{
12669      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
12670             as_Register($src2$$reg), ext::sxtw);
12671    %}
12672   ins_pipe(ialu_reg_reg);
12673 %};
12674 
12675 
12676 instruct AddExtI_sxth(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_16 lshift, immI_16 rshift, rFlagsReg cr)
12677 %{
12678   match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift)));
12679   ins_cost(INSN_COST);
12680   format %{ "add  $dst, $src1, sxth $src2" %}
12681 
12682    ins_encode %{
12683      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12684             as_Register($src2$$reg), ext::sxth);
12685    %}
12686   ins_pipe(ialu_reg_reg);
12687 %}
12688 
12689 instruct AddExtI_sxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr)
12690 %{
12691   match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift)));
12692   ins_cost(INSN_COST);
12693   format %{ "add  $dst, $src1, sxtb $src2" %}
12694 
12695    ins_encode %{
12696      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12697             as_Register($src2$$reg), ext::sxtb);
12698    %}
12699   ins_pipe(ialu_reg_reg);
12700 %}
12701 
12702 instruct AddExtI_uxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr)
12703 %{
12704   match(Set dst (AddI src1 (URShiftI (LShiftI src2 lshift) rshift)));
12705   ins_cost(INSN_COST);
12706   format %{ "add  $dst, $src1, uxtb $src2" %}
12707 
12708    ins_encode %{
12709      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12710             as_Register($src2$$reg), ext::uxtb);
12711    %}
12712   ins_pipe(ialu_reg_reg);
12713 %}
12714 
12715 instruct AddExtL_sxth(iRegLNoSp dst, iRegL src1, iRegL src2, immI_48 lshift, immI_48 rshift, rFlagsReg cr)
12716 %{
12717   match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
12718   ins_cost(INSN_COST);
12719   format %{ "add  $dst, $src1, sxth $src2" %}
12720 
12721    ins_encode %{
12722      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12723             as_Register($src2$$reg), ext::sxth);
12724    %}
12725   ins_pipe(ialu_reg_reg);
12726 %}
12727 
12728 instruct AddExtL_sxtw(iRegLNoSp dst, iRegL src1, iRegL src2, immI_32 lshift, immI_32 rshift, rFlagsReg cr)
12729 %{
12730   match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
12731   ins_cost(INSN_COST);
12732   format %{ "add  $dst, $src1, sxtw $src2" %}
12733 
12734    ins_encode %{
12735      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12736             as_Register($src2$$reg), ext::sxtw);
12737    %}
12738   ins_pipe(ialu_reg_reg);
12739 %}
12740 
12741 instruct AddExtL_sxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr)
12742 %{
12743   match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
12744   ins_cost(INSN_COST);
12745   format %{ "add  $dst, $src1, sxtb $src2" %}
12746 
12747    ins_encode %{
12748      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12749             as_Register($src2$$reg), ext::sxtb);
12750    %}
12751   ins_pipe(ialu_reg_reg);
12752 %}
12753 
12754 instruct AddExtL_uxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr)
12755 %{
12756   match(Set dst (AddL src1 (URShiftL (LShiftL src2 lshift) rshift)));
12757   ins_cost(INSN_COST);
12758   format %{ "add  $dst, $src1, uxtb $src2" %}
12759 
12760    ins_encode %{
12761      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12762             as_Register($src2$$reg), ext::uxtb);
12763    %}
12764   ins_pipe(ialu_reg_reg);
12765 %}
12766 
12767 
12768 instruct AddExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr)
12769 %{
12770   match(Set dst (AddI src1 (AndI src2 mask)));
12771   ins_cost(INSN_COST);
12772   format %{ "addw  $dst, $src1, $src2, uxtb" %}
12773 
12774    ins_encode %{
12775      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
12776             as_Register($src2$$reg), ext::uxtb);
12777    %}
12778   ins_pipe(ialu_reg_reg);
12779 %}
12780 
12781 instruct AddExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr)
12782 %{
12783   match(Set dst (AddI src1 (AndI src2 mask)));
12784   ins_cost(INSN_COST);
12785   format %{ "addw  $dst, $src1, $src2, uxth" %}
12786 
12787    ins_encode %{
12788      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
12789             as_Register($src2$$reg), ext::uxth);
12790    %}
12791   ins_pipe(ialu_reg_reg);
12792 %}
12793 
12794 instruct AddExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr)
12795 %{
12796   match(Set dst (AddL src1 (AndL src2 mask)));
12797   ins_cost(INSN_COST);
12798   format %{ "add  $dst, $src1, $src2, uxtb" %}
12799 
12800    ins_encode %{
12801      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12802             as_Register($src2$$reg), ext::uxtb);
12803    %}
12804   ins_pipe(ialu_reg_reg);
12805 %}
12806 
12807 instruct AddExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr)
12808 %{
12809   match(Set dst (AddL src1 (AndL src2 mask)));
12810   ins_cost(INSN_COST);
12811   format %{ "add  $dst, $src1, $src2, uxth" %}
12812 
12813    ins_encode %{
12814      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12815             as_Register($src2$$reg), ext::uxth);
12816    %}
12817   ins_pipe(ialu_reg_reg);
12818 %}
12819 
12820 instruct AddExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr)
12821 %{
12822   match(Set dst (AddL src1 (AndL src2 mask)));
12823   ins_cost(INSN_COST);
12824   format %{ "add  $dst, $src1, $src2, uxtw" %}
12825 
12826    ins_encode %{
12827      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12828             as_Register($src2$$reg), ext::uxtw);
12829    %}
12830   ins_pipe(ialu_reg_reg);
12831 %}
12832 
12833 instruct SubExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr)
12834 %{
12835   match(Set dst (SubI src1 (AndI src2 mask)));
12836   ins_cost(INSN_COST);
12837   format %{ "subw  $dst, $src1, $src2, uxtb" %}
12838 
12839    ins_encode %{
12840      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
12841             as_Register($src2$$reg), ext::uxtb);
12842    %}
12843   ins_pipe(ialu_reg_reg);
12844 %}
12845 
12846 instruct SubExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr)
12847 %{
12848   match(Set dst (SubI src1 (AndI src2 mask)));
12849   ins_cost(INSN_COST);
12850   format %{ "subw  $dst, $src1, $src2, uxth" %}
12851 
12852    ins_encode %{
12853      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
12854             as_Register($src2$$reg), ext::uxth);
12855    %}
12856   ins_pipe(ialu_reg_reg);
12857 %}
12858 
12859 instruct SubExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr)
12860 %{
12861   match(Set dst (SubL src1 (AndL src2 mask)));
12862   ins_cost(INSN_COST);
12863   format %{ "sub  $dst, $src1, $src2, uxtb" %}
12864 
12865    ins_encode %{
12866      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
12867             as_Register($src2$$reg), ext::uxtb);
12868    %}
12869   ins_pipe(ialu_reg_reg);
12870 %}
12871 
12872 instruct SubExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr)
12873 %{
12874   match(Set dst (SubL src1 (AndL src2 mask)));
12875   ins_cost(INSN_COST);
12876   format %{ "sub  $dst, $src1, $src2, uxth" %}
12877 
12878    ins_encode %{
12879      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
12880             as_Register($src2$$reg), ext::uxth);
12881    %}
12882   ins_pipe(ialu_reg_reg);
12883 %}
12884 
12885 instruct SubExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr)
12886 %{
12887   match(Set dst (SubL src1 (AndL src2 mask)));
12888   ins_cost(INSN_COST);
12889   format %{ "sub  $dst, $src1, $src2, uxtw" %}
12890 
12891    ins_encode %{
12892      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
12893             as_Register($src2$$reg), ext::uxtw);
12894    %}
12895   ins_pipe(ialu_reg_reg);
12896 %}
12897 
12898 // END This section of the file is automatically generated. Do not edit --------------
12899 
12900 // ============================================================================
12901 // Floating Point Arithmetic Instructions
12902 
12903 instruct addF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
12904   match(Set dst (AddF src1 src2));
12905 
12906   ins_cost(INSN_COST * 5);
12907   format %{ "fadds   $dst, $src1, $src2" %}
12908 
12909   ins_encode %{
12910     __ fadds(as_FloatRegister($dst$$reg),
12911              as_FloatRegister($src1$$reg),
12912              as_FloatRegister($src2$$reg));
12913   %}
12914 
12915   ins_pipe(fp_dop_reg_reg_s);
12916 %}
12917 
12918 instruct addD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
12919   match(Set dst (AddD src1 src2));
12920 
12921   ins_cost(INSN_COST * 5);
12922   format %{ "faddd   $dst, $src1, $src2" %}
12923 
12924   ins_encode %{
12925     __ faddd(as_FloatRegister($dst$$reg),
12926              as_FloatRegister($src1$$reg),
12927              as_FloatRegister($src2$$reg));
12928   %}
12929 
12930   ins_pipe(fp_dop_reg_reg_d);
12931 %}
12932 
12933 instruct subF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
12934   match(Set dst (SubF src1 src2));
12935 
12936   ins_cost(INSN_COST * 5);
12937   format %{ "fsubs   $dst, $src1, $src2" %}
12938 
12939   ins_encode %{
12940     __ fsubs(as_FloatRegister($dst$$reg),
12941              as_FloatRegister($src1$$reg),
12942              as_FloatRegister($src2$$reg));
12943   %}
12944 
12945   ins_pipe(fp_dop_reg_reg_s);
12946 %}
12947 
12948 instruct subD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
12949   match(Set dst (SubD src1 src2));
12950 
12951   ins_cost(INSN_COST * 5);
12952   format %{ "fsubd   $dst, $src1, $src2" %}
12953 
12954   ins_encode %{
12955     __ fsubd(as_FloatRegister($dst$$reg),
12956              as_FloatRegister($src1$$reg),
12957              as_FloatRegister($src2$$reg));
12958   %}
12959 
12960   ins_pipe(fp_dop_reg_reg_d);
12961 %}
12962 
12963 instruct mulF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
12964   match(Set dst (MulF src1 src2));
12965 
12966   ins_cost(INSN_COST * 6);
12967   format %{ "fmuls   $dst, $src1, $src2" %}
12968 
12969   ins_encode %{
12970     __ fmuls(as_FloatRegister($dst$$reg),
12971              as_FloatRegister($src1$$reg),
12972              as_FloatRegister($src2$$reg));
12973   %}
12974 
12975   ins_pipe(fp_dop_reg_reg_s);
12976 %}
12977 
12978 instruct mulD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
12979   match(Set dst (MulD src1 src2));
12980 
12981   ins_cost(INSN_COST * 6);
12982   format %{ "fmuld   $dst, $src1, $src2" %}
12983 
12984   ins_encode %{
12985     __ fmuld(as_FloatRegister($dst$$reg),
12986              as_FloatRegister($src1$$reg),
12987              as_FloatRegister($src2$$reg));
12988   %}
12989 
12990   ins_pipe(fp_dop_reg_reg_d);
12991 %}
12992 
12993 // We cannot use these fused mul w add/sub ops because they don't
12994 // produce the same result as the equivalent separated ops
12995 // (essentially they don't round the intermediate result). that's a
12996 // shame. leaving them here in case we can idenitfy cases where it is
12997 // legitimate to use them
12998 
12999 
13000 // instruct maddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
13001 //   match(Set dst (AddF (MulF src1 src2) src3));
13002 
13003 //   format %{ "fmadds   $dst, $src1, $src2, $src3" %}
13004 
13005 //   ins_encode %{
13006 //     __ fmadds(as_FloatRegister($dst$$reg),
13007 //              as_FloatRegister($src1$$reg),
13008 //              as_FloatRegister($src2$$reg),
13009 //              as_FloatRegister($src3$$reg));
13010 //   %}
13011 
13012 //   ins_pipe(pipe_class_default);
13013 // %}
13014 
13015 // instruct maddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
13016 //   match(Set dst (AddD (MulD src1 src2) src3));
13017 
13018 //   format %{ "fmaddd   $dst, $src1, $src2, $src3" %}
13019 
13020 //   ins_encode %{
13021 //     __ fmaddd(as_FloatRegister($dst$$reg),
13022 //              as_FloatRegister($src1$$reg),
13023 //              as_FloatRegister($src2$$reg),
13024 //              as_FloatRegister($src3$$reg));
13025 //   %}
13026 
13027 //   ins_pipe(pipe_class_default);
13028 // %}
13029 
13030 // instruct msubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
13031 //   match(Set dst (AddF (MulF (NegF src1) src2) src3));
13032 //   match(Set dst (AddF (NegF (MulF src1 src2)) src3));
13033 
13034 //   format %{ "fmsubs   $dst, $src1, $src2, $src3" %}
13035 
13036 //   ins_encode %{
13037 //     __ fmsubs(as_FloatRegister($dst$$reg),
13038 //               as_FloatRegister($src1$$reg),
13039 //               as_FloatRegister($src2$$reg),
13040 //              as_FloatRegister($src3$$reg));
13041 //   %}
13042 
13043 //   ins_pipe(pipe_class_default);
13044 // %}
13045 
13046 // instruct msubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
13047 //   match(Set dst (AddD (MulD (NegD src1) src2) src3));
13048 //   match(Set dst (AddD (NegD (MulD src1 src2)) src3));
13049 
13050 //   format %{ "fmsubd   $dst, $src1, $src2, $src3" %}
13051 
13052 //   ins_encode %{
13053 //     __ fmsubd(as_FloatRegister($dst$$reg),
13054 //               as_FloatRegister($src1$$reg),
13055 //               as_FloatRegister($src2$$reg),
13056 //               as_FloatRegister($src3$$reg));
13057 //   %}
13058 
13059 //   ins_pipe(pipe_class_default);
13060 // %}
13061 
13062 // instruct mnaddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
13063 //   match(Set dst (SubF (MulF (NegF src1) src2) src3));
13064 //   match(Set dst (SubF (NegF (MulF src1 src2)) src3));
13065 
13066 //   format %{ "fnmadds  $dst, $src1, $src2, $src3" %}
13067 
13068 //   ins_encode %{
13069 //     __ fnmadds(as_FloatRegister($dst$$reg),
13070 //                as_FloatRegister($src1$$reg),
13071 //                as_FloatRegister($src2$$reg),
13072 //                as_FloatRegister($src3$$reg));
13073 //   %}
13074 
13075 //   ins_pipe(pipe_class_default);
13076 // %}
13077 
13078 // instruct mnaddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
13079 //   match(Set dst (SubD (MulD (NegD src1) src2) src3));
13080 //   match(Set dst (SubD (NegD (MulD src1 src2)) src3));
13081 
13082 //   format %{ "fnmaddd   $dst, $src1, $src2, $src3" %}
13083 
13084 //   ins_encode %{
13085 //     __ fnmaddd(as_FloatRegister($dst$$reg),
13086 //                as_FloatRegister($src1$$reg),
13087 //                as_FloatRegister($src2$$reg),
13088 //                as_FloatRegister($src3$$reg));
13089 //   %}
13090 
13091 //   ins_pipe(pipe_class_default);
13092 // %}
13093 
13094 // instruct mnsubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3, immF0 zero) %{
13095 //   match(Set dst (SubF (MulF src1 src2) src3));
13096 
13097 //   format %{ "fnmsubs  $dst, $src1, $src2, $src3" %}
13098 
13099 //   ins_encode %{
13100 //     __ fnmsubs(as_FloatRegister($dst$$reg),
13101 //                as_FloatRegister($src1$$reg),
13102 //                as_FloatRegister($src2$$reg),
13103 //                as_FloatRegister($src3$$reg));
13104 //   %}
13105 
13106 //   ins_pipe(pipe_class_default);
13107 // %}
13108 
13109 // instruct mnsubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3, immD0 zero) %{
13110 //   match(Set dst (SubD (MulD src1 src2) src3));
13111 
13112 //   format %{ "fnmsubd   $dst, $src1, $src2, $src3" %}
13113 
13114 //   ins_encode %{
13115 //   // n.b. insn name should be fnmsubd
13116 //     __ fnmsub(as_FloatRegister($dst$$reg),
13117 //                as_FloatRegister($src1$$reg),
13118 //                as_FloatRegister($src2$$reg),
13119 //                as_FloatRegister($src3$$reg));
13120 //   %}
13121 
13122 //   ins_pipe(pipe_class_default);
13123 // %}
13124 
13125 
13126 instruct divF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13127   match(Set dst (DivF src1  src2));
13128 
13129   ins_cost(INSN_COST * 18);
13130   format %{ "fdivs   $dst, $src1, $src2" %}
13131 
13132   ins_encode %{
13133     __ fdivs(as_FloatRegister($dst$$reg),
13134              as_FloatRegister($src1$$reg),
13135              as_FloatRegister($src2$$reg));
13136   %}
13137 
13138   ins_pipe(fp_div_s);
13139 %}
13140 
13141 instruct divD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
13142   match(Set dst (DivD src1  src2));
13143 
13144   ins_cost(INSN_COST * 32);
13145   format %{ "fdivd   $dst, $src1, $src2" %}
13146 
13147   ins_encode %{
13148     __ fdivd(as_FloatRegister($dst$$reg),
13149              as_FloatRegister($src1$$reg),
13150              as_FloatRegister($src2$$reg));
13151   %}
13152 
13153   ins_pipe(fp_div_d);
13154 %}
13155 
13156 instruct negF_reg_reg(vRegF dst, vRegF src) %{
13157   match(Set dst (NegF src));
13158 
13159   ins_cost(INSN_COST * 3);
13160   format %{ "fneg   $dst, $src" %}
13161 
13162   ins_encode %{
13163     __ fnegs(as_FloatRegister($dst$$reg),
13164              as_FloatRegister($src$$reg));
13165   %}
13166 
13167   ins_pipe(fp_uop_s);
13168 %}
13169 
13170 instruct negD_reg_reg(vRegD dst, vRegD src) %{
13171   match(Set dst (NegD src));
13172 
13173   ins_cost(INSN_COST * 3);
13174   format %{ "fnegd   $dst, $src" %}
13175 
13176   ins_encode %{
13177     __ fnegd(as_FloatRegister($dst$$reg),
13178              as_FloatRegister($src$$reg));
13179   %}
13180 
13181   ins_pipe(fp_uop_d);
13182 %}
13183 
13184 instruct absF_reg(vRegF dst, vRegF src) %{
13185   match(Set dst (AbsF src));
13186 
13187   ins_cost(INSN_COST * 3);
13188   format %{ "fabss   $dst, $src" %}
13189   ins_encode %{
13190     __ fabss(as_FloatRegister($dst$$reg),
13191              as_FloatRegister($src$$reg));
13192   %}
13193 
13194   ins_pipe(fp_uop_s);
13195 %}
13196 
13197 instruct absD_reg(vRegD dst, vRegD src) %{
13198   match(Set dst (AbsD src));
13199 
13200   ins_cost(INSN_COST * 3);
13201   format %{ "fabsd   $dst, $src" %}
13202   ins_encode %{
13203     __ fabsd(as_FloatRegister($dst$$reg),
13204              as_FloatRegister($src$$reg));
13205   %}
13206 
13207   ins_pipe(fp_uop_d);
13208 %}
13209 
13210 instruct sqrtD_reg(vRegD dst, vRegD src) %{
13211   match(Set dst (SqrtD src));
13212 
13213   ins_cost(INSN_COST * 50);
13214   format %{ "fsqrtd  $dst, $src" %}
13215   ins_encode %{
13216     __ fsqrtd(as_FloatRegister($dst$$reg),
13217              as_FloatRegister($src$$reg));
13218   %}
13219 
13220   ins_pipe(fp_div_s);
13221 %}
13222 
13223 instruct sqrtF_reg(vRegF dst, vRegF src) %{
13224   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
13225 
13226   ins_cost(INSN_COST * 50);
13227   format %{ "fsqrts  $dst, $src" %}
13228   ins_encode %{
13229     __ fsqrts(as_FloatRegister($dst$$reg),
13230              as_FloatRegister($src$$reg));
13231   %}
13232 
13233   ins_pipe(fp_div_d);
13234 %}
13235 
13236 // ============================================================================
13237 // Logical Instructions
13238 
13239 // Integer Logical Instructions
13240 
13241 // And Instructions
13242 
13243 
13244 instruct andI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, rFlagsReg cr) %{
13245   match(Set dst (AndI src1 src2));
13246 
13247   format %{ "andw  $dst, $src1, $src2\t# int" %}
13248 
13249   ins_cost(INSN_COST);
13250   ins_encode %{
13251     __ andw(as_Register($dst$$reg),
13252             as_Register($src1$$reg),
13253             as_Register($src2$$reg));
13254   %}
13255 
13256   ins_pipe(ialu_reg_reg);
13257 %}
13258 
13259 instruct andI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2, rFlagsReg cr) %{
13260   match(Set dst (AndI src1 src2));
13261 
13262   format %{ "andsw  $dst, $src1, $src2\t# int" %}
13263 
13264   ins_cost(INSN_COST);
13265   ins_encode %{
13266     __ andw(as_Register($dst$$reg),
13267             as_Register($src1$$reg),
13268             (unsigned long)($src2$$constant));
13269   %}
13270 
13271   ins_pipe(ialu_reg_imm);
13272 %}
13273 
13274 // Or Instructions
13275 
13276 instruct orI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
13277   match(Set dst (OrI src1 src2));
13278 
13279   format %{ "orrw  $dst, $src1, $src2\t# int" %}
13280 
13281   ins_cost(INSN_COST);
13282   ins_encode %{
13283     __ orrw(as_Register($dst$$reg),
13284             as_Register($src1$$reg),
13285             as_Register($src2$$reg));
13286   %}
13287 
13288   ins_pipe(ialu_reg_reg);
13289 %}
13290 
13291 instruct orI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{
13292   match(Set dst (OrI src1 src2));
13293 
13294   format %{ "orrw  $dst, $src1, $src2\t# int" %}
13295 
13296   ins_cost(INSN_COST);
13297   ins_encode %{
13298     __ orrw(as_Register($dst$$reg),
13299             as_Register($src1$$reg),
13300             (unsigned long)($src2$$constant));
13301   %}
13302 
13303   ins_pipe(ialu_reg_imm);
13304 %}
13305 
13306 // Xor Instructions
13307 
13308 instruct xorI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
13309   match(Set dst (XorI src1 src2));
13310 
13311   format %{ "eorw  $dst, $src1, $src2\t# int" %}
13312 
13313   ins_cost(INSN_COST);
13314   ins_encode %{
13315     __ eorw(as_Register($dst$$reg),
13316             as_Register($src1$$reg),
13317             as_Register($src2$$reg));
13318   %}
13319 
13320   ins_pipe(ialu_reg_reg);
13321 %}
13322 
13323 instruct xorI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{
13324   match(Set dst (XorI src1 src2));
13325 
13326   format %{ "eorw  $dst, $src1, $src2\t# int" %}
13327 
13328   ins_cost(INSN_COST);
13329   ins_encode %{
13330     __ eorw(as_Register($dst$$reg),
13331             as_Register($src1$$reg),
13332             (unsigned long)($src2$$constant));
13333   %}
13334 
13335   ins_pipe(ialu_reg_imm);
13336 %}
13337 
13338 // Long Logical Instructions
13339 // TODO
13340 
13341 instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr) %{
13342   match(Set dst (AndL src1 src2));
13343 
13344   format %{ "and  $dst, $src1, $src2\t# int" %}
13345 
13346   ins_cost(INSN_COST);
13347   ins_encode %{
13348     __ andr(as_Register($dst$$reg),
13349             as_Register($src1$$reg),
13350             as_Register($src2$$reg));
13351   %}
13352 
13353   ins_pipe(ialu_reg_reg);
13354 %}
13355 
13356 instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2, rFlagsReg cr) %{
13357   match(Set dst (AndL src1 src2));
13358 
13359   format %{ "and  $dst, $src1, $src2\t# int" %}
13360 
13361   ins_cost(INSN_COST);
13362   ins_encode %{
13363     __ andr(as_Register($dst$$reg),
13364             as_Register($src1$$reg),
13365             (unsigned long)($src2$$constant));
13366   %}
13367 
13368   ins_pipe(ialu_reg_imm);
13369 %}
13370 
13371 // Or Instructions
13372 
13373 instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
13374   match(Set dst (OrL src1 src2));
13375 
13376   format %{ "orr  $dst, $src1, $src2\t# int" %}
13377 
13378   ins_cost(INSN_COST);
13379   ins_encode %{
13380     __ orr(as_Register($dst$$reg),
13381            as_Register($src1$$reg),
13382            as_Register($src2$$reg));
13383   %}
13384 
13385   ins_pipe(ialu_reg_reg);
13386 %}
13387 
13388 instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{
13389   match(Set dst (OrL src1 src2));
13390 
13391   format %{ "orr  $dst, $src1, $src2\t# int" %}
13392 
13393   ins_cost(INSN_COST);
13394   ins_encode %{
13395     __ orr(as_Register($dst$$reg),
13396            as_Register($src1$$reg),
13397            (unsigned long)($src2$$constant));
13398   %}
13399 
13400   ins_pipe(ialu_reg_imm);
13401 %}
13402 
13403 // Xor Instructions
13404 
13405 instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
13406   match(Set dst (XorL src1 src2));
13407 
13408   format %{ "eor  $dst, $src1, $src2\t# int" %}
13409 
13410   ins_cost(INSN_COST);
13411   ins_encode %{
13412     __ eor(as_Register($dst$$reg),
13413            as_Register($src1$$reg),
13414            as_Register($src2$$reg));
13415   %}
13416 
13417   ins_pipe(ialu_reg_reg);
13418 %}
13419 
13420 instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{
13421   match(Set dst (XorL src1 src2));
13422 
13423   ins_cost(INSN_COST);
13424   format %{ "eor  $dst, $src1, $src2\t# int" %}
13425 
13426   ins_encode %{
13427     __ eor(as_Register($dst$$reg),
13428            as_Register($src1$$reg),
13429            (unsigned long)($src2$$constant));
13430   %}
13431 
13432   ins_pipe(ialu_reg_imm);
13433 %}
13434 
13435 instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src)
13436 %{
13437   match(Set dst (ConvI2L src));
13438 
13439   ins_cost(INSN_COST);
13440   format %{ "sxtw  $dst, $src\t# i2l" %}
13441   ins_encode %{
13442     __ sbfm($dst$$Register, $src$$Register, 0, 31);
13443   %}
13444   ins_pipe(ialu_reg_shift);
13445 %}
13446 
13447 // this pattern occurs in bigmath arithmetic
13448 instruct convUI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask)
13449 %{
13450   match(Set dst (AndL (ConvI2L src) mask));
13451 
13452   ins_cost(INSN_COST);
13453   format %{ "ubfm  $dst, $src, 0, 31\t# ui2l" %}
13454   ins_encode %{
13455     __ ubfm($dst$$Register, $src$$Register, 0, 31);
13456   %}
13457 
13458   ins_pipe(ialu_reg_shift);
13459 %}
13460 
13461 instruct convL2I_reg(iRegINoSp dst, iRegL src) %{
13462   match(Set dst (ConvL2I src));
13463 
13464   ins_cost(INSN_COST);
13465   format %{ "movw  $dst, $src \t// l2i" %}
13466 
13467   ins_encode %{
13468     __ movw(as_Register($dst$$reg), as_Register($src$$reg));
13469   %}
13470 
13471   ins_pipe(ialu_reg);
13472 %}
13473 
13474 instruct convI2B(iRegINoSp dst, iRegIorL2I src, rFlagsReg cr)
13475 %{
13476   match(Set dst (Conv2B src));
13477   effect(KILL cr);
13478 
13479   format %{
13480     "cmpw $src, zr\n\t"
13481     "cset $dst, ne"
13482   %}
13483 
13484   ins_encode %{
13485     __ cmpw(as_Register($src$$reg), zr);
13486     __ cset(as_Register($dst$$reg), Assembler::NE);
13487   %}
13488 
13489   ins_pipe(ialu_reg);
13490 %}
13491 
13492 instruct convP2B(iRegINoSp dst, iRegP src, rFlagsReg cr)
13493 %{
13494   match(Set dst (Conv2B src));
13495   effect(KILL cr);
13496 
13497   format %{
13498     "cmp  $src, zr\n\t"
13499     "cset $dst, ne"
13500   %}
13501 
13502   ins_encode %{
13503     __ cmp(as_Register($src$$reg), zr);
13504     __ cset(as_Register($dst$$reg), Assembler::NE);
13505   %}
13506 
13507   ins_pipe(ialu_reg);
13508 %}
13509 
13510 instruct convD2F_reg(vRegF dst, vRegD src) %{
13511   match(Set dst (ConvD2F src));
13512 
13513   ins_cost(INSN_COST * 5);
13514   format %{ "fcvtd  $dst, $src \t// d2f" %}
13515 
13516   ins_encode %{
13517     __ fcvtd(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
13518   %}
13519 
13520   ins_pipe(fp_d2f);
13521 %}
13522 
13523 instruct convF2D_reg(vRegD dst, vRegF src) %{
13524   match(Set dst (ConvF2D src));
13525 
13526   ins_cost(INSN_COST * 5);
13527   format %{ "fcvts  $dst, $src \t// f2d" %}
13528 
13529   ins_encode %{
13530     __ fcvts(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
13531   %}
13532 
13533   ins_pipe(fp_f2d);
13534 %}
13535 
13536 instruct convF2I_reg_reg(iRegINoSp dst, vRegF src) %{
13537   match(Set dst (ConvF2I src));
13538 
13539   ins_cost(INSN_COST * 5);
13540   format %{ "fcvtzsw  $dst, $src \t// f2i" %}
13541 
13542   ins_encode %{
13543     __ fcvtzsw(as_Register($dst$$reg), as_FloatRegister($src$$reg));
13544   %}
13545 
13546   ins_pipe(fp_f2i);
13547 %}
13548 
13549 instruct convF2L_reg_reg(iRegLNoSp dst, vRegF src) %{
13550   match(Set dst (ConvF2L src));
13551 
13552   ins_cost(INSN_COST * 5);
13553   format %{ "fcvtzs  $dst, $src \t// f2l" %}
13554 
13555   ins_encode %{
13556     __ fcvtzs(as_Register($dst$$reg), as_FloatRegister($src$$reg));
13557   %}
13558 
13559   ins_pipe(fp_f2l);
13560 %}
13561 
13562 instruct convI2F_reg_reg(vRegF dst, iRegIorL2I src) %{
13563   match(Set dst (ConvI2F src));
13564 
13565   ins_cost(INSN_COST * 5);
13566   format %{ "scvtfws  $dst, $src \t// i2f" %}
13567 
13568   ins_encode %{
13569     __ scvtfws(as_FloatRegister($dst$$reg), as_Register($src$$reg));
13570   %}
13571 
13572   ins_pipe(fp_i2f);
13573 %}
13574 
13575 instruct convL2F_reg_reg(vRegF dst, iRegL src) %{
13576   match(Set dst (ConvL2F src));
13577 
13578   ins_cost(INSN_COST * 5);
13579   format %{ "scvtfs  $dst, $src \t// l2f" %}
13580 
13581   ins_encode %{
13582     __ scvtfs(as_FloatRegister($dst$$reg), as_Register($src$$reg));
13583   %}
13584 
13585   ins_pipe(fp_l2f);
13586 %}
13587 
13588 instruct convD2I_reg_reg(iRegINoSp dst, vRegD src) %{
13589   match(Set dst (ConvD2I src));
13590 
13591   ins_cost(INSN_COST * 5);
13592   format %{ "fcvtzdw  $dst, $src \t// d2i" %}
13593 
13594   ins_encode %{
13595     __ fcvtzdw(as_Register($dst$$reg), as_FloatRegister($src$$reg));
13596   %}
13597 
13598   ins_pipe(fp_d2i);
13599 %}
13600 
13601 instruct convD2L_reg_reg(iRegLNoSp dst, vRegD src) %{
13602   match(Set dst (ConvD2L src));
13603 
13604   ins_cost(INSN_COST * 5);
13605   format %{ "fcvtzd  $dst, $src \t// d2l" %}
13606 
13607   ins_encode %{
13608     __ fcvtzd(as_Register($dst$$reg), as_FloatRegister($src$$reg));
13609   %}
13610 
13611   ins_pipe(fp_d2l);
13612 %}
13613 
13614 instruct convI2D_reg_reg(vRegD dst, iRegIorL2I src) %{
13615   match(Set dst (ConvI2D src));
13616 
13617   ins_cost(INSN_COST * 5);
13618   format %{ "scvtfwd  $dst, $src \t// i2d" %}
13619 
13620   ins_encode %{
13621     __ scvtfwd(as_FloatRegister($dst$$reg), as_Register($src$$reg));
13622   %}
13623 
13624   ins_pipe(fp_i2d);
13625 %}
13626 
13627 instruct convL2D_reg_reg(vRegD dst, iRegL src) %{
13628   match(Set dst (ConvL2D src));
13629 
13630   ins_cost(INSN_COST * 5);
13631   format %{ "scvtfd  $dst, $src \t// l2d" %}
13632 
13633   ins_encode %{
13634     __ scvtfd(as_FloatRegister($dst$$reg), as_Register($src$$reg));
13635   %}
13636 
13637   ins_pipe(fp_l2d);
13638 %}
13639 
13640 // stack <-> reg and reg <-> reg shuffles with no conversion
13641 
13642 instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{
13643 
13644   match(Set dst (MoveF2I src));
13645 
13646   effect(DEF dst, USE src);
13647 
13648   ins_cost(4 * INSN_COST);
13649 
13650   format %{ "ldrw $dst, $src\t# MoveF2I_stack_reg" %}
13651 
13652   ins_encode %{
13653     __ ldrw($dst$$Register, Address(sp, $src$$disp));
13654   %}
13655 
13656   ins_pipe(iload_reg_reg);
13657 
13658 %}
13659 
13660 instruct MoveI2F_stack_reg(vRegF dst, stackSlotI src) %{
13661 
13662   match(Set dst (MoveI2F src));
13663 
13664   effect(DEF dst, USE src);
13665 
13666   ins_cost(4 * INSN_COST);
13667 
13668   format %{ "ldrs $dst, $src\t# MoveI2F_stack_reg" %}
13669 
13670   ins_encode %{
13671     __ ldrs(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
13672   %}
13673 
13674   ins_pipe(pipe_class_memory);
13675 
13676 %}
13677 
13678 instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{
13679 
13680   match(Set dst (MoveD2L src));
13681 
13682   effect(DEF dst, USE src);
13683 
13684   ins_cost(4 * INSN_COST);
13685 
13686   format %{ "ldr $dst, $src\t# MoveD2L_stack_reg" %}
13687 
13688   ins_encode %{
13689     __ ldr($dst$$Register, Address(sp, $src$$disp));
13690   %}
13691 
13692   ins_pipe(iload_reg_reg);
13693 
13694 %}
13695 
13696 instruct MoveL2D_stack_reg(vRegD dst, stackSlotL src) %{
13697 
13698   match(Set dst (MoveL2D src));
13699 
13700   effect(DEF dst, USE src);
13701 
13702   ins_cost(4 * INSN_COST);
13703 
13704   format %{ "ldrd $dst, $src\t# MoveL2D_stack_reg" %}
13705 
13706   ins_encode %{
13707     __ ldrd(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
13708   %}
13709 
13710   ins_pipe(pipe_class_memory);
13711 
13712 %}
13713 
13714 instruct MoveF2I_reg_stack(stackSlotI dst, vRegF src) %{
13715 
13716   match(Set dst (MoveF2I src));
13717 
13718   effect(DEF dst, USE src);
13719 
13720   ins_cost(INSN_COST);
13721 
13722   format %{ "strs $src, $dst\t# MoveF2I_reg_stack" %}
13723 
13724   ins_encode %{
13725     __ strs(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
13726   %}
13727 
13728   ins_pipe(pipe_class_memory);
13729 
13730 %}
13731 
13732 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
13733 
13734   match(Set dst (MoveI2F src));
13735 
13736   effect(DEF dst, USE src);
13737 
13738   ins_cost(INSN_COST);
13739 
13740   format %{ "strw $src, $dst\t# MoveI2F_reg_stack" %}
13741 
13742   ins_encode %{
13743     __ strw($src$$Register, Address(sp, $dst$$disp));
13744   %}
13745 
13746   ins_pipe(istore_reg_reg);
13747 
13748 %}
13749 
13750 instruct MoveD2L_reg_stack(stackSlotL dst, vRegD src) %{
13751 
13752   match(Set dst (MoveD2L src));
13753 
13754   effect(DEF dst, USE src);
13755 
13756   ins_cost(INSN_COST);
13757 
13758   format %{ "strd $dst, $src\t# MoveD2L_reg_stack" %}
13759 
13760   ins_encode %{
13761     __ strd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
13762   %}
13763 
13764   ins_pipe(pipe_class_memory);
13765 
13766 %}
13767 
13768 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
13769 
13770   match(Set dst (MoveL2D src));
13771 
13772   effect(DEF dst, USE src);
13773 
13774   ins_cost(INSN_COST);
13775 
13776   format %{ "str $src, $dst\t# MoveL2D_reg_stack" %}
13777 
13778   ins_encode %{
13779     __ str($src$$Register, Address(sp, $dst$$disp));
13780   %}
13781 
13782   ins_pipe(istore_reg_reg);
13783 
13784 %}
13785 
13786 instruct MoveF2I_reg_reg(iRegINoSp dst, vRegF src) %{
13787 
13788   match(Set dst (MoveF2I src));
13789 
13790   effect(DEF dst, USE src);
13791 
13792   ins_cost(INSN_COST);
13793 
13794   format %{ "fmovs $dst, $src\t# MoveF2I_reg_reg" %}
13795 
13796   ins_encode %{
13797     __ fmovs($dst$$Register, as_FloatRegister($src$$reg));
13798   %}
13799 
13800   ins_pipe(fp_f2i);
13801 
13802 %}
13803 
13804 instruct MoveI2F_reg_reg(vRegF dst, iRegI src) %{
13805 
13806   match(Set dst (MoveI2F src));
13807 
13808   effect(DEF dst, USE src);
13809 
13810   ins_cost(INSN_COST);
13811 
13812   format %{ "fmovs $dst, $src\t# MoveI2F_reg_reg" %}
13813 
13814   ins_encode %{
13815     __ fmovs(as_FloatRegister($dst$$reg), $src$$Register);
13816   %}
13817 
13818   ins_pipe(fp_i2f);
13819 
13820 %}
13821 
13822 instruct MoveD2L_reg_reg(iRegLNoSp dst, vRegD src) %{
13823 
13824   match(Set dst (MoveD2L src));
13825 
13826   effect(DEF dst, USE src);
13827 
13828   ins_cost(INSN_COST);
13829 
13830   format %{ "fmovd $dst, $src\t# MoveD2L_reg_reg" %}
13831 
13832   ins_encode %{
13833     __ fmovd($dst$$Register, as_FloatRegister($src$$reg));
13834   %}
13835 
13836   ins_pipe(fp_d2l);
13837 
13838 %}
13839 
13840 instruct MoveL2D_reg_reg(vRegD dst, iRegL src) %{
13841 
13842   match(Set dst (MoveL2D src));
13843 
13844   effect(DEF dst, USE src);
13845 
13846   ins_cost(INSN_COST);
13847 
13848   format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %}
13849 
13850   ins_encode %{
13851     __ fmovd(as_FloatRegister($dst$$reg), $src$$Register);
13852   %}
13853 
13854   ins_pipe(fp_l2d);
13855 
13856 %}
13857 
13858 // ============================================================================
13859 // clearing of an array
13860 
13861 instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, Universe dummy, rFlagsReg cr)
13862 %{
13863   match(Set dummy (ClearArray cnt base));
13864   effect(USE_KILL cnt, USE_KILL base);
13865 
13866   ins_cost(4 * INSN_COST);
13867   format %{ "ClearArray $cnt, $base" %}
13868 
13869   ins_encode %{
13870     __ zero_words($base$$Register, $cnt$$Register);
13871   %}
13872 
13873   ins_pipe(pipe_class_memory);
13874 %}
13875 
13876 instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 tmp, Universe dummy, rFlagsReg cr)
13877 %{
13878   match(Set dummy (ClearArray cnt base));
13879   effect(USE_KILL base, TEMP tmp);
13880 
13881   ins_cost(4 * INSN_COST);
13882   format %{ "ClearArray $cnt, $base" %}
13883 
13884   ins_encode %{
13885     __ zero_words($base$$Register, (u_int64_t)$cnt$$constant);
13886   %}
13887 
13888   ins_pipe(pipe_class_memory);
13889 %}
13890 
13891 // ============================================================================
13892 // Overflow Math Instructions
13893 
13894 instruct overflowAddI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
13895 %{
13896   match(Set cr (OverflowAddI op1 op2));
13897 
13898   format %{ "cmnw  $op1, $op2\t# overflow check int" %}
13899   ins_cost(INSN_COST);
13900   ins_encode %{
13901     __ cmnw($op1$$Register, $op2$$Register);
13902   %}
13903 
13904   ins_pipe(icmp_reg_reg);
13905 %}
13906 
13907 instruct overflowAddI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2)
13908 %{
13909   match(Set cr (OverflowAddI op1 op2));
13910 
13911   format %{ "cmnw  $op1, $op2\t# overflow check int" %}
13912   ins_cost(INSN_COST);
13913   ins_encode %{
13914     __ cmnw($op1$$Register, $op2$$constant);
13915   %}
13916 
13917   ins_pipe(icmp_reg_imm);
13918 %}
13919 
13920 instruct overflowAddL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
13921 %{
13922   match(Set cr (OverflowAddL op1 op2));
13923 
13924   format %{ "cmn   $op1, $op2\t# overflow check long" %}
13925   ins_cost(INSN_COST);
13926   ins_encode %{
13927     __ cmn($op1$$Register, $op2$$Register);
13928   %}
13929 
13930   ins_pipe(icmp_reg_reg);
13931 %}
13932 
13933 instruct overflowAddL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2)
13934 %{
13935   match(Set cr (OverflowAddL op1 op2));
13936 
13937   format %{ "cmn   $op1, $op2\t# overflow check long" %}
13938   ins_cost(INSN_COST);
13939   ins_encode %{
13940     __ cmn($op1$$Register, $op2$$constant);
13941   %}
13942 
13943   ins_pipe(icmp_reg_imm);
13944 %}
13945 
13946 instruct overflowSubI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
13947 %{
13948   match(Set cr (OverflowSubI op1 op2));
13949 
13950   format %{ "cmpw  $op1, $op2\t# overflow check int" %}
13951   ins_cost(INSN_COST);
13952   ins_encode %{
13953     __ cmpw($op1$$Register, $op2$$Register);
13954   %}
13955 
13956   ins_pipe(icmp_reg_reg);
13957 %}
13958 
13959 instruct overflowSubI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2)
13960 %{
13961   match(Set cr (OverflowSubI op1 op2));
13962 
13963   format %{ "cmpw  $op1, $op2\t# overflow check int" %}
13964   ins_cost(INSN_COST);
13965   ins_encode %{
13966     __ cmpw($op1$$Register, $op2$$constant);
13967   %}
13968 
13969   ins_pipe(icmp_reg_imm);
13970 %}
13971 
13972 instruct overflowSubL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
13973 %{
13974   match(Set cr (OverflowSubL op1 op2));
13975 
13976   format %{ "cmp   $op1, $op2\t# overflow check long" %}
13977   ins_cost(INSN_COST);
13978   ins_encode %{
13979     __ cmp($op1$$Register, $op2$$Register);
13980   %}
13981 
13982   ins_pipe(icmp_reg_reg);
13983 %}
13984 
13985 instruct overflowSubL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2)
13986 %{
13987   match(Set cr (OverflowSubL op1 op2));
13988 
13989   format %{ "cmp   $op1, $op2\t# overflow check long" %}
13990   ins_cost(INSN_COST);
13991   ins_encode %{
13992     __ cmp($op1$$Register, $op2$$constant);
13993   %}
13994 
13995   ins_pipe(icmp_reg_imm);
13996 %}
13997 
13998 instruct overflowNegI_reg(rFlagsReg cr, immI0 zero, iRegIorL2I op1)
13999 %{
14000   match(Set cr (OverflowSubI zero op1));
14001 
14002   format %{ "cmpw  zr, $op1\t# overflow check int" %}
14003   ins_cost(INSN_COST);
14004   ins_encode %{
14005     __ cmpw(zr, $op1$$Register);
14006   %}
14007 
14008   ins_pipe(icmp_reg_imm);
14009 %}
14010 
14011 instruct overflowNegL_reg(rFlagsReg cr, immI0 zero, iRegL op1)
14012 %{
14013   match(Set cr (OverflowSubL zero op1));
14014 
14015   format %{ "cmp   zr, $op1\t# overflow check long" %}
14016   ins_cost(INSN_COST);
14017   ins_encode %{
14018     __ cmp(zr, $op1$$Register);
14019   %}
14020 
14021   ins_pipe(icmp_reg_imm);
14022 %}
14023 
14024 instruct overflowMulI_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
14025 %{
14026   match(Set cr (OverflowMulI op1 op2));
14027 
14028   format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t"
14029             "cmp   rscratch1, rscratch1, sxtw\n\t"
14030             "movw  rscratch1, #0x80000000\n\t"
14031             "cselw rscratch1, rscratch1, zr, NE\n\t"
14032             "cmpw  rscratch1, #1" %}
14033   ins_cost(5 * INSN_COST);
14034   ins_encode %{
14035     __ smull(rscratch1, $op1$$Register, $op2$$Register);
14036     __ subs(zr, rscratch1, rscratch1, ext::sxtw);      // NE => overflow
14037     __ movw(rscratch1, 0x80000000);                    // Develop 0 (EQ),
14038     __ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE)
14039     __ cmpw(rscratch1, 1);                             // 0x80000000 - 1 => VS
14040   %}
14041 
14042   ins_pipe(pipe_slow);
14043 %}
14044 
14045 instruct overflowMulI_reg_branch(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, label labl, rFlagsReg cr)
14046 %{
14047   match(If cmp (OverflowMulI op1 op2));
14048   predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow
14049             || n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow);
14050   effect(USE labl, KILL cr);
14051 
14052   format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t"
14053             "cmp   rscratch1, rscratch1, sxtw\n\t"
14054             "b$cmp   $labl" %}
14055   ins_cost(3 * INSN_COST); // Branch is rare so treat as INSN_COST
14056   ins_encode %{
14057     Label* L = $labl$$label;
14058     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14059     __ smull(rscratch1, $op1$$Register, $op2$$Register);
14060     __ subs(zr, rscratch1, rscratch1, ext::sxtw);      // NE => overflow
14061     __ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L);
14062   %}
14063 
14064   ins_pipe(pipe_serial);
14065 %}
14066 
14067 instruct overflowMulL_reg(rFlagsReg cr, iRegL op1, iRegL op2)
14068 %{
14069   match(Set cr (OverflowMulL op1 op2));
14070 
14071   format %{ "mul   rscratch1, $op1, $op2\t#overflow check long\n\t"
14072             "smulh rscratch2, $op1, $op2\n\t"
14073             "cmp   rscratch2, rscratch1, ASR #31\n\t"
14074             "movw  rscratch1, #0x80000000\n\t"
14075             "cselw rscratch1, rscratch1, zr, NE\n\t"
14076             "cmpw  rscratch1, #1" %}
14077   ins_cost(6 * INSN_COST);
14078   ins_encode %{
14079     __ mul(rscratch1, $op1$$Register, $op2$$Register);   // Result bits 0..63
14080     __ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127
14081     __ cmp(rscratch2, rscratch1, Assembler::ASR, 31);    // Top is pure sign ext
14082     __ movw(rscratch1, 0x80000000);                    // Develop 0 (EQ),
14083     __ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE)
14084     __ cmpw(rscratch1, 1);                             // 0x80000000 - 1 => VS
14085   %}
14086 
14087   ins_pipe(pipe_slow);
14088 %}
14089 
14090 instruct overflowMulL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, rFlagsReg cr)
14091 %{
14092   match(If cmp (OverflowMulL op1 op2));
14093   predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow
14094             || n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow);
14095   effect(USE labl, KILL cr);
14096 
14097   format %{ "mul   rscratch1, $op1, $op2\t#overflow check long\n\t"
14098             "smulh rscratch2, $op1, $op2\n\t"
14099             "cmp   rscratch2, rscratch1, ASR #31\n\t"
14100             "b$cmp $labl" %}
14101   ins_cost(4 * INSN_COST); // Branch is rare so treat as INSN_COST
14102   ins_encode %{
14103     Label* L = $labl$$label;
14104     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14105     __ mul(rscratch1, $op1$$Register, $op2$$Register);   // Result bits 0..63
14106     __ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127
14107     __ cmp(rscratch2, rscratch1, Assembler::ASR, 31);    // Top is pure sign ext
14108     __ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L);
14109   %}
14110 
14111   ins_pipe(pipe_serial);
14112 %}
14113 
14114 // ============================================================================
14115 // Compare Instructions
14116 
14117 instruct compI_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2)
14118 %{
14119   match(Set cr (CmpI op1 op2));
14120 
14121   effect(DEF cr, USE op1, USE op2);
14122 
14123   ins_cost(INSN_COST);
14124   format %{ "cmpw  $op1, $op2" %}
14125 
14126   ins_encode(aarch64_enc_cmpw(op1, op2));
14127 
14128   ins_pipe(icmp_reg_reg);
14129 %}
14130 
14131 instruct compI_reg_immI0(rFlagsReg cr, iRegI op1, immI0 zero)
14132 %{
14133   match(Set cr (CmpI op1 zero));
14134 
14135   effect(DEF cr, USE op1);
14136 
14137   ins_cost(INSN_COST);
14138   format %{ "cmpw $op1, 0" %}
14139 
14140   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero));
14141 
14142   ins_pipe(icmp_reg_imm);
14143 %}
14144 
14145 instruct compI_reg_immIAddSub(rFlagsReg cr, iRegI op1, immIAddSub op2)
14146 %{
14147   match(Set cr (CmpI op1 op2));
14148 
14149   effect(DEF cr, USE op1);
14150 
14151   ins_cost(INSN_COST);
14152   format %{ "cmpw  $op1, $op2" %}
14153 
14154   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2));
14155 
14156   ins_pipe(icmp_reg_imm);
14157 %}
14158 
14159 instruct compI_reg_immI(rFlagsReg cr, iRegI op1, immI op2)
14160 %{
14161   match(Set cr (CmpI op1 op2));
14162 
14163   effect(DEF cr, USE op1);
14164 
14165   ins_cost(INSN_COST * 2);
14166   format %{ "cmpw  $op1, $op2" %}
14167 
14168   ins_encode(aarch64_enc_cmpw_imm(op1, op2));
14169 
14170   ins_pipe(icmp_reg_imm);
14171 %}
14172 
14173 // Unsigned compare Instructions; really, same as signed compare
14174 // except it should only be used to feed an If or a CMovI which takes a
14175 // cmpOpU.
14176 
14177 instruct compU_reg_reg(rFlagsRegU cr, iRegI op1, iRegI op2)
14178 %{
14179   match(Set cr (CmpU op1 op2));
14180 
14181   effect(DEF cr, USE op1, USE op2);
14182 
14183   ins_cost(INSN_COST);
14184   format %{ "cmpw  $op1, $op2\t# unsigned" %}
14185 
14186   ins_encode(aarch64_enc_cmpw(op1, op2));
14187 
14188   ins_pipe(icmp_reg_reg);
14189 %}
14190 
14191 instruct compU_reg_immI0(rFlagsRegU cr, iRegI op1, immI0 zero)
14192 %{
14193   match(Set cr (CmpU op1 zero));
14194 
14195   effect(DEF cr, USE op1);
14196 
14197   ins_cost(INSN_COST);
14198   format %{ "cmpw $op1, #0\t# unsigned" %}
14199 
14200   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero));
14201 
14202   ins_pipe(icmp_reg_imm);
14203 %}
14204 
14205 instruct compU_reg_immIAddSub(rFlagsRegU cr, iRegI op1, immIAddSub op2)
14206 %{
14207   match(Set cr (CmpU op1 op2));
14208 
14209   effect(DEF cr, USE op1);
14210 
14211   ins_cost(INSN_COST);
14212   format %{ "cmpw  $op1, $op2\t# unsigned" %}
14213 
14214   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2));
14215 
14216   ins_pipe(icmp_reg_imm);
14217 %}
14218 
14219 instruct compU_reg_immI(rFlagsRegU cr, iRegI op1, immI op2)
14220 %{
14221   match(Set cr (CmpU op1 op2));
14222 
14223   effect(DEF cr, USE op1);
14224 
14225   ins_cost(INSN_COST * 2);
14226   format %{ "cmpw  $op1, $op2\t# unsigned" %}
14227 
14228   ins_encode(aarch64_enc_cmpw_imm(op1, op2));
14229 
14230   ins_pipe(icmp_reg_imm);
14231 %}
14232 
14233 instruct compL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
14234 %{
14235   match(Set cr (CmpL op1 op2));
14236 
14237   effect(DEF cr, USE op1, USE op2);
14238 
14239   ins_cost(INSN_COST);
14240   format %{ "cmp  $op1, $op2" %}
14241 
14242   ins_encode(aarch64_enc_cmp(op1, op2));
14243 
14244   ins_pipe(icmp_reg_reg);
14245 %}
14246 
14247 instruct compL_reg_immI0(rFlagsReg cr, iRegL op1, immI0 zero)
14248 %{
14249   match(Set cr (CmpL op1 zero));
14250 
14251   effect(DEF cr, USE op1);
14252 
14253   ins_cost(INSN_COST);
14254   format %{ "tst  $op1" %}
14255 
14256   ins_encode(aarch64_enc_cmp_imm_addsub(op1, zero));
14257 
14258   ins_pipe(icmp_reg_imm);
14259 %}
14260 
14261 instruct compL_reg_immLAddSub(rFlagsReg cr, iRegL op1, immLAddSub op2)
14262 %{
14263   match(Set cr (CmpL op1 op2));
14264 
14265   effect(DEF cr, USE op1);
14266 
14267   ins_cost(INSN_COST);
14268   format %{ "cmp  $op1, $op2" %}
14269 
14270   ins_encode(aarch64_enc_cmp_imm_addsub(op1, op2));
14271 
14272   ins_pipe(icmp_reg_imm);
14273 %}
14274 
14275 instruct compL_reg_immL(rFlagsReg cr, iRegL op1, immL op2)
14276 %{
14277   match(Set cr (CmpL op1 op2));
14278 
14279   effect(DEF cr, USE op1);
14280 
14281   ins_cost(INSN_COST * 2);
14282   format %{ "cmp  $op1, $op2" %}
14283 
14284   ins_encode(aarch64_enc_cmp_imm(op1, op2));
14285 
14286   ins_pipe(icmp_reg_imm);
14287 %}
14288 
14289 instruct compP_reg_reg(rFlagsRegU cr, iRegP op1, iRegP op2)
14290 %{
14291   match(Set cr (CmpP op1 op2));
14292 
14293   effect(DEF cr, USE op1, USE op2);
14294 
14295   ins_cost(INSN_COST);
14296   format %{ "cmp  $op1, $op2\t // ptr" %}
14297 
14298   ins_encode(aarch64_enc_cmpp(op1, op2));
14299 
14300   ins_pipe(icmp_reg_reg);
14301 %}
14302 
14303 instruct compN_reg_reg(rFlagsRegU cr, iRegN op1, iRegN op2)
14304 %{
14305   match(Set cr (CmpN op1 op2));
14306 
14307   effect(DEF cr, USE op1, USE op2);
14308 
14309   ins_cost(INSN_COST);
14310   format %{ "cmp  $op1, $op2\t // compressed ptr" %}
14311 
14312   ins_encode(aarch64_enc_cmpn(op1, op2));
14313 
14314   ins_pipe(icmp_reg_reg);
14315 %}
14316 
14317 instruct testP_reg(rFlagsRegU cr, iRegP op1, immP0 zero)
14318 %{
14319   match(Set cr (CmpP op1 zero));
14320 
14321   effect(DEF cr, USE op1, USE zero);
14322 
14323   ins_cost(INSN_COST);
14324   format %{ "cmp  $op1, 0\t // ptr" %}
14325 
14326   ins_encode(aarch64_enc_testp(op1));
14327 
14328   ins_pipe(icmp_reg_imm);
14329 %}
14330 
14331 instruct testN_reg(rFlagsRegU cr, iRegN op1, immN0 zero)
14332 %{
14333   match(Set cr (CmpN op1 zero));
14334 
14335   effect(DEF cr, USE op1, USE zero);
14336 
14337   ins_cost(INSN_COST);
14338   format %{ "cmp  $op1, 0\t // compressed ptr" %}
14339 
14340   ins_encode(aarch64_enc_testn(op1));
14341 
14342   ins_pipe(icmp_reg_imm);
14343 %}
14344 
14345 // FP comparisons
14346 //
14347 // n.b. CmpF/CmpD set a normal flags reg which then gets compared
14348 // using normal cmpOp. See declaration of rFlagsReg for details.
14349 
14350 instruct compF_reg_reg(rFlagsReg cr, vRegF src1, vRegF src2)
14351 %{
14352   match(Set cr (CmpF src1 src2));
14353 
14354   ins_cost(3 * INSN_COST);
14355   format %{ "fcmps $src1, $src2" %}
14356 
14357   ins_encode %{
14358     __ fcmps(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
14359   %}
14360 
14361   ins_pipe(pipe_class_compare);
14362 %}
14363 
14364 instruct compF_reg_zero(rFlagsReg cr, vRegF src1, immF0 src2)
14365 %{
14366   match(Set cr (CmpF src1 src2));
14367 
14368   ins_cost(3 * INSN_COST);
14369   format %{ "fcmps $src1, 0.0" %}
14370 
14371   ins_encode %{
14372     __ fcmps(as_FloatRegister($src1$$reg), 0.0D);
14373   %}
14374 
14375   ins_pipe(pipe_class_compare);
14376 %}
14377 // FROM HERE
14378 
14379 instruct compD_reg_reg(rFlagsReg cr, vRegD src1, vRegD src2)
14380 %{
14381   match(Set cr (CmpD src1 src2));
14382 
14383   ins_cost(3 * INSN_COST);
14384   format %{ "fcmpd $src1, $src2" %}
14385 
14386   ins_encode %{
14387     __ fcmpd(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
14388   %}
14389 
14390   ins_pipe(pipe_class_compare);
14391 %}
14392 
14393 instruct compD_reg_zero(rFlagsReg cr, vRegD src1, immD0 src2)
14394 %{
14395   match(Set cr (CmpD src1 src2));
14396 
14397   ins_cost(3 * INSN_COST);
14398   format %{ "fcmpd $src1, 0.0" %}
14399 
14400   ins_encode %{
14401     __ fcmpd(as_FloatRegister($src1$$reg), 0.0D);
14402   %}
14403 
14404   ins_pipe(pipe_class_compare);
14405 %}
14406 
14407 instruct compF3_reg_reg(iRegINoSp dst, vRegF src1, vRegF src2, rFlagsReg cr)
14408 %{
14409   match(Set dst (CmpF3 src1 src2));
14410   effect(KILL cr);
14411 
14412   ins_cost(5 * INSN_COST);
14413   format %{ "fcmps $src1, $src2\n\t"
14414             "csinvw($dst, zr, zr, eq\n\t"
14415             "csnegw($dst, $dst, $dst, lt)"
14416   %}
14417 
14418   ins_encode %{
14419     Label done;
14420     FloatRegister s1 = as_FloatRegister($src1$$reg);
14421     FloatRegister s2 = as_FloatRegister($src2$$reg);
14422     Register d = as_Register($dst$$reg);
14423     __ fcmps(s1, s2);
14424     // installs 0 if EQ else -1
14425     __ csinvw(d, zr, zr, Assembler::EQ);
14426     // keeps -1 if less or unordered else installs 1
14427     __ csnegw(d, d, d, Assembler::LT);
14428     __ bind(done);
14429   %}
14430 
14431   ins_pipe(pipe_class_default);
14432 
14433 %}
14434 
14435 instruct compD3_reg_reg(iRegINoSp dst, vRegD src1, vRegD src2, rFlagsReg cr)
14436 %{
14437   match(Set dst (CmpD3 src1 src2));
14438   effect(KILL cr);
14439 
14440   ins_cost(5 * INSN_COST);
14441   format %{ "fcmpd $src1, $src2\n\t"
14442             "csinvw($dst, zr, zr, eq\n\t"
14443             "csnegw($dst, $dst, $dst, lt)"
14444   %}
14445 
14446   ins_encode %{
14447     Label done;
14448     FloatRegister s1 = as_FloatRegister($src1$$reg);
14449     FloatRegister s2 = as_FloatRegister($src2$$reg);
14450     Register d = as_Register($dst$$reg);
14451     __ fcmpd(s1, s2);
14452     // installs 0 if EQ else -1
14453     __ csinvw(d, zr, zr, Assembler::EQ);
14454     // keeps -1 if less or unordered else installs 1
14455     __ csnegw(d, d, d, Assembler::LT);
14456     __ bind(done);
14457   %}
14458   ins_pipe(pipe_class_default);
14459 
14460 %}
14461 
14462 instruct compF3_reg_immF0(iRegINoSp dst, vRegF src1, immF0 zero, rFlagsReg cr)
14463 %{
14464   match(Set dst (CmpF3 src1 zero));
14465   effect(KILL cr);
14466 
14467   ins_cost(5 * INSN_COST);
14468   format %{ "fcmps $src1, 0.0\n\t"
14469             "csinvw($dst, zr, zr, eq\n\t"
14470             "csnegw($dst, $dst, $dst, lt)"
14471   %}
14472 
14473   ins_encode %{
14474     Label done;
14475     FloatRegister s1 = as_FloatRegister($src1$$reg);
14476     Register d = as_Register($dst$$reg);
14477     __ fcmps(s1, 0.0D);
14478     // installs 0 if EQ else -1
14479     __ csinvw(d, zr, zr, Assembler::EQ);
14480     // keeps -1 if less or unordered else installs 1
14481     __ csnegw(d, d, d, Assembler::LT);
14482     __ bind(done);
14483   %}
14484 
14485   ins_pipe(pipe_class_default);
14486 
14487 %}
14488 
14489 instruct compD3_reg_immD0(iRegINoSp dst, vRegD src1, immD0 zero, rFlagsReg cr)
14490 %{
14491   match(Set dst (CmpD3 src1 zero));
14492   effect(KILL cr);
14493 
14494   ins_cost(5 * INSN_COST);
14495   format %{ "fcmpd $src1, 0.0\n\t"
14496             "csinvw($dst, zr, zr, eq\n\t"
14497             "csnegw($dst, $dst, $dst, lt)"
14498   %}
14499 
14500   ins_encode %{
14501     Label done;
14502     FloatRegister s1 = as_FloatRegister($src1$$reg);
14503     Register d = as_Register($dst$$reg);
14504     __ fcmpd(s1, 0.0D);
14505     // installs 0 if EQ else -1
14506     __ csinvw(d, zr, zr, Assembler::EQ);
14507     // keeps -1 if less or unordered else installs 1
14508     __ csnegw(d, d, d, Assembler::LT);
14509     __ bind(done);
14510   %}
14511   ins_pipe(pipe_class_default);
14512 
14513 %}
14514 
14515 instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegIorL2I p, iRegIorL2I q, rFlagsReg cr)
14516 %{
14517   match(Set dst (CmpLTMask p q));
14518   effect(KILL cr);
14519 
14520   ins_cost(3 * INSN_COST);
14521 
14522   format %{ "cmpw $p, $q\t# cmpLTMask\n\t"
14523             "csetw $dst, lt\n\t"
14524             "subw $dst, zr, $dst"
14525   %}
14526 
14527   ins_encode %{
14528     __ cmpw(as_Register($p$$reg), as_Register($q$$reg));
14529     __ csetw(as_Register($dst$$reg), Assembler::LT);
14530     __ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg));
14531   %}
14532 
14533   ins_pipe(ialu_reg_reg);
14534 %}
14535 
14536 instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr)
14537 %{
14538   match(Set dst (CmpLTMask src zero));
14539   effect(KILL cr);
14540 
14541   ins_cost(INSN_COST);
14542 
14543   format %{ "asrw $dst, $src, #31\t# cmpLTMask0" %}
14544 
14545   ins_encode %{
14546     __ asrw(as_Register($dst$$reg), as_Register($src$$reg), 31);
14547   %}
14548 
14549   ins_pipe(ialu_reg_shift);
14550 %}
14551 
14552 // ============================================================================
14553 // Max and Min
14554 
14555 instruct minI_rReg(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr)
14556 %{
14557   match(Set dst (MinI src1 src2));
14558 
14559   effect(DEF dst, USE src1, USE src2, KILL cr);
14560   size(8);
14561 
14562   ins_cost(INSN_COST * 3);
14563   format %{
14564     "cmpw $src1 $src2\t signed int\n\t"
14565     "cselw $dst, $src1, $src2 lt\t"
14566   %}
14567 
14568   ins_encode %{
14569     __ cmpw(as_Register($src1$$reg),
14570             as_Register($src2$$reg));
14571     __ cselw(as_Register($dst$$reg),
14572              as_Register($src1$$reg),
14573              as_Register($src2$$reg),
14574              Assembler::LT);
14575   %}
14576 
14577   ins_pipe(ialu_reg_reg);
14578 %}
14579 // FROM HERE
14580 
14581 instruct maxI_rReg(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr)
14582 %{
14583   match(Set dst (MaxI src1 src2));
14584 
14585   effect(DEF dst, USE src1, USE src2, KILL cr);
14586   size(8);
14587 
14588   ins_cost(INSN_COST * 3);
14589   format %{
14590     "cmpw $src1 $src2\t signed int\n\t"
14591     "cselw $dst, $src1, $src2 gt\t"
14592   %}
14593 
14594   ins_encode %{
14595     __ cmpw(as_Register($src1$$reg),
14596             as_Register($src2$$reg));
14597     __ cselw(as_Register($dst$$reg),
14598              as_Register($src1$$reg),
14599              as_Register($src2$$reg),
14600              Assembler::GT);
14601   %}
14602 
14603   ins_pipe(ialu_reg_reg);
14604 %}
14605 
14606 // ============================================================================
14607 // Branch Instructions
14608 
14609 // Direct Branch.
14610 instruct branch(label lbl)
14611 %{
14612   match(Goto);
14613 
14614   effect(USE lbl);
14615 
14616   ins_cost(BRANCH_COST);
14617   format %{ "b  $lbl" %}
14618 
14619   ins_encode(aarch64_enc_b(lbl));
14620 
14621   ins_pipe(pipe_branch);
14622 %}
14623 
14624 // Conditional Near Branch
14625 instruct branchCon(cmpOp cmp, rFlagsReg cr, label lbl)
14626 %{
14627   // Same match rule as `branchConFar'.
14628   match(If cmp cr);
14629 
14630   effect(USE lbl);
14631 
14632   ins_cost(BRANCH_COST);
14633   // If set to 1 this indicates that the current instruction is a
14634   // short variant of a long branch. This avoids using this
14635   // instruction in first-pass matching. It will then only be used in
14636   // the `Shorten_branches' pass.
14637   // ins_short_branch(1);
14638   format %{ "b$cmp  $lbl" %}
14639 
14640   ins_encode(aarch64_enc_br_con(cmp, lbl));
14641 
14642   ins_pipe(pipe_branch_cond);
14643 %}
14644 
14645 // Conditional Near Branch Unsigned
14646 instruct branchConU(cmpOpU cmp, rFlagsRegU cr, label lbl)
14647 %{
14648   // Same match rule as `branchConFar'.
14649   match(If cmp cr);
14650 
14651   effect(USE lbl);
14652 
14653   ins_cost(BRANCH_COST);
14654   // If set to 1 this indicates that the current instruction is a
14655   // short variant of a long branch. This avoids using this
14656   // instruction in first-pass matching. It will then only be used in
14657   // the `Shorten_branches' pass.
14658   // ins_short_branch(1);
14659   format %{ "b$cmp  $lbl\t# unsigned" %}
14660 
14661   ins_encode(aarch64_enc_br_conU(cmp, lbl));
14662 
14663   ins_pipe(pipe_branch_cond);
14664 %}
14665 
14666 // Make use of CBZ and CBNZ.  These instructions, as well as being
14667 // shorter than (cmp; branch), have the additional benefit of not
14668 // killing the flags.
14669 
14670 instruct cmpI_imm0_branch(cmpOpEqNe cmp, iRegIorL2I op1, immI0 op2, label labl, rFlagsReg cr) %{
14671   match(If cmp (CmpI op1 op2));
14672   effect(USE labl);
14673 
14674   ins_cost(BRANCH_COST);
14675   format %{ "cbw$cmp   $op1, $labl" %}
14676   ins_encode %{
14677     Label* L = $labl$$label;
14678     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14679     if (cond == Assembler::EQ)
14680       __ cbzw($op1$$Register, *L);
14681     else
14682       __ cbnzw($op1$$Register, *L);
14683   %}
14684   ins_pipe(pipe_cmp_branch);
14685 %}
14686 
14687 instruct cmpL_imm0_branch(cmpOpEqNe cmp, iRegL op1, immL0 op2, label labl, rFlagsReg cr) %{
14688   match(If cmp (CmpL op1 op2));
14689   effect(USE labl);
14690 
14691   ins_cost(BRANCH_COST);
14692   format %{ "cb$cmp   $op1, $labl" %}
14693   ins_encode %{
14694     Label* L = $labl$$label;
14695     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14696     if (cond == Assembler::EQ)
14697       __ cbz($op1$$Register, *L);
14698     else
14699       __ cbnz($op1$$Register, *L);
14700   %}
14701   ins_pipe(pipe_cmp_branch);
14702 %}
14703 
14704 instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 op2, label labl, rFlagsReg cr) %{
14705   match(If cmp (CmpP op1 op2));
14706   effect(USE labl);
14707 
14708   ins_cost(BRANCH_COST);
14709   format %{ "cb$cmp   $op1, $labl" %}
14710   ins_encode %{
14711     Label* L = $labl$$label;
14712     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14713     if (cond == Assembler::EQ)
14714       __ cbz($op1$$Register, *L);
14715     else
14716       __ cbnz($op1$$Register, *L);
14717   %}
14718   ins_pipe(pipe_cmp_branch);
14719 %}
14720 
14721 instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 op2, label labl, rFlagsReg cr) %{
14722   match(If cmp (CmpN op1 op2));
14723   effect(USE labl);
14724 
14725   ins_cost(BRANCH_COST);
14726   format %{ "cbw$cmp   $op1, $labl" %}
14727   ins_encode %{
14728     Label* L = $labl$$label;
14729     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14730     if (cond == Assembler::EQ)
14731       __ cbzw($op1$$Register, *L);
14732     else
14733       __ cbnzw($op1$$Register, *L);
14734   %}
14735   ins_pipe(pipe_cmp_branch);
14736 %}
14737 
14738 instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN oop, immP0 zero, label labl, rFlagsReg cr) %{
14739   match(If cmp (CmpP (DecodeN oop) zero));
14740   effect(USE labl);
14741 
14742   ins_cost(BRANCH_COST);
14743   format %{ "cb$cmp   $oop, $labl" %}
14744   ins_encode %{
14745     Label* L = $labl$$label;
14746     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14747     if (cond == Assembler::EQ)
14748       __ cbzw($oop$$Register, *L);
14749     else
14750       __ cbnzw($oop$$Register, *L);
14751   %}
14752   ins_pipe(pipe_cmp_branch);
14753 %}
14754 
14755 instruct cmpUI_imm0_branch(cmpOpUEqNeLtGe cmp, iRegIorL2I op1, immI0 op2, label labl, rFlagsRegU cr) %{
14756   match(If cmp (CmpU op1 op2));
14757   effect(USE labl);
14758 
14759   ins_cost(BRANCH_COST);
14760   format %{ "cbw$cmp   $op1, $labl" %}
14761   ins_encode %{
14762     Label* L = $labl$$label;
14763     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14764     if (cond == Assembler::EQ || cond == Assembler::LS)
14765       __ cbzw($op1$$Register, *L);
14766     else
14767       __ cbnzw($op1$$Register, *L);
14768   %}
14769   ins_pipe(pipe_cmp_branch);
14770 %}
14771 
14772 instruct cmpUL_imm0_branch(cmpOpUEqNeLtGe cmp, iRegL op1, immL0 op2, label labl, rFlagsRegU cr) %{
14773   match(If cmp (CmpU op1 op2));
14774   effect(USE labl);
14775 
14776   ins_cost(BRANCH_COST);
14777   format %{ "cb$cmp   $op1, $labl" %}
14778   ins_encode %{
14779     Label* L = $labl$$label;
14780     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14781     if (cond == Assembler::EQ || cond == Assembler::LS)
14782       __ cbz($op1$$Register, *L);
14783     else
14784       __ cbnz($op1$$Register, *L);
14785   %}
14786   ins_pipe(pipe_cmp_branch);
14787 %}
14788 
14789 // Test bit and Branch
14790 
14791 // Patterns for short (< 32KiB) variants
14792 instruct cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{
14793   match(If cmp (CmpL op1 op2));
14794   effect(USE labl);
14795 
14796   ins_cost(BRANCH_COST);
14797   format %{ "cb$cmp   $op1, $labl # long" %}
14798   ins_encode %{
14799     Label* L = $labl$$label;
14800     Assembler::Condition cond =
14801       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
14802     __ tbr(cond, $op1$$Register, 63, *L);
14803   %}
14804   ins_pipe(pipe_cmp_branch);
14805   ins_short_branch(1);
14806 %}
14807 
14808 instruct cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{
14809   match(If cmp (CmpI op1 op2));
14810   effect(USE labl);
14811 
14812   ins_cost(BRANCH_COST);
14813   format %{ "cb$cmp   $op1, $labl # int" %}
14814   ins_encode %{
14815     Label* L = $labl$$label;
14816     Assembler::Condition cond =
14817       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
14818     __ tbr(cond, $op1$$Register, 31, *L);
14819   %}
14820   ins_pipe(pipe_cmp_branch);
14821   ins_short_branch(1);
14822 %}
14823 
14824 instruct cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{
14825   match(If cmp (CmpL (AndL op1 op2) op3));
14826   predicate(is_power_of_2(n->in(2)->in(1)->in(2)->get_long()));
14827   effect(USE labl);
14828 
14829   ins_cost(BRANCH_COST);
14830   format %{ "tb$cmp   $op1, $op2, $labl" %}
14831   ins_encode %{
14832     Label* L = $labl$$label;
14833     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14834     int bit = exact_log2($op2$$constant);
14835     __ tbr(cond, $op1$$Register, bit, *L);
14836   %}
14837   ins_pipe(pipe_cmp_branch);
14838   ins_short_branch(1);
14839 %}
14840 
14841 instruct cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{
14842   match(If cmp (CmpI (AndI op1 op2) op3));
14843   predicate(is_power_of_2(n->in(2)->in(1)->in(2)->get_int()));
14844   effect(USE labl);
14845 
14846   ins_cost(BRANCH_COST);
14847   format %{ "tb$cmp   $op1, $op2, $labl" %}
14848   ins_encode %{
14849     Label* L = $labl$$label;
14850     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14851     int bit = exact_log2($op2$$constant);
14852     __ tbr(cond, $op1$$Register, bit, *L);
14853   %}
14854   ins_pipe(pipe_cmp_branch);
14855   ins_short_branch(1);
14856 %}
14857 
14858 // And far variants
14859 instruct far_cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{
14860   match(If cmp (CmpL op1 op2));
14861   effect(USE labl);
14862 
14863   ins_cost(BRANCH_COST);
14864   format %{ "cb$cmp   $op1, $labl # long" %}
14865   ins_encode %{
14866     Label* L = $labl$$label;
14867     Assembler::Condition cond =
14868       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
14869     __ tbr(cond, $op1$$Register, 63, *L, /*far*/true);
14870   %}
14871   ins_pipe(pipe_cmp_branch);
14872 %}
14873 
14874 instruct far_cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{
14875   match(If cmp (CmpI op1 op2));
14876   effect(USE labl);
14877 
14878   ins_cost(BRANCH_COST);
14879   format %{ "cb$cmp   $op1, $labl # int" %}
14880   ins_encode %{
14881     Label* L = $labl$$label;
14882     Assembler::Condition cond =
14883       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
14884     __ tbr(cond, $op1$$Register, 31, *L, /*far*/true);
14885   %}
14886   ins_pipe(pipe_cmp_branch);
14887 %}
14888 
14889 instruct far_cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{
14890   match(If cmp (CmpL (AndL op1 op2) op3));
14891   predicate(is_power_of_2(n->in(2)->in(1)->in(2)->get_long()));
14892   effect(USE labl);
14893 
14894   ins_cost(BRANCH_COST);
14895   format %{ "tb$cmp   $op1, $op2, $labl" %}
14896   ins_encode %{
14897     Label* L = $labl$$label;
14898     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14899     int bit = exact_log2($op2$$constant);
14900     __ tbr(cond, $op1$$Register, bit, *L, /*far*/true);
14901   %}
14902   ins_pipe(pipe_cmp_branch);
14903 %}
14904 
14905 instruct far_cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{
14906   match(If cmp (CmpI (AndI op1 op2) op3));
14907   predicate(is_power_of_2(n->in(2)->in(1)->in(2)->get_int()));
14908   effect(USE labl);
14909 
14910   ins_cost(BRANCH_COST);
14911   format %{ "tb$cmp   $op1, $op2, $labl" %}
14912   ins_encode %{
14913     Label* L = $labl$$label;
14914     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
14915     int bit = exact_log2($op2$$constant);
14916     __ tbr(cond, $op1$$Register, bit, *L, /*far*/true);
14917   %}
14918   ins_pipe(pipe_cmp_branch);
14919 %}
14920 
14921 // Test bits
14922 
14923 instruct cmpL_and(cmpOp cmp, iRegL op1, immL op2, immL0 op3, rFlagsReg cr) %{
14924   match(Set cr (CmpL (AndL op1 op2) op3));
14925   predicate(Assembler::operand_valid_for_logical_immediate
14926             (/*is_32*/false, n->in(1)->in(2)->get_long()));
14927 
14928   ins_cost(INSN_COST);
14929   format %{ "tst $op1, $op2 # long" %}
14930   ins_encode %{
14931     __ tst($op1$$Register, $op2$$constant);
14932   %}
14933   ins_pipe(ialu_reg_reg);
14934 %}
14935 
14936 instruct cmpI_and(cmpOp cmp, iRegIorL2I op1, immI op2, immI0 op3, rFlagsReg cr) %{
14937   match(Set cr (CmpI (AndI op1 op2) op3));
14938   predicate(Assembler::operand_valid_for_logical_immediate
14939             (/*is_32*/true, n->in(1)->in(2)->get_int()));
14940 
14941   ins_cost(INSN_COST);
14942   format %{ "tst $op1, $op2 # int" %}
14943   ins_encode %{
14944     __ tstw($op1$$Register, $op2$$constant);
14945   %}
14946   ins_pipe(ialu_reg_reg);
14947 %}
14948 
14949 instruct cmpL_and_reg(cmpOp cmp, iRegL op1, iRegL op2, immL0 op3, rFlagsReg cr) %{
14950   match(Set cr (CmpL (AndL op1 op2) op3));
14951 
14952   ins_cost(INSN_COST);
14953   format %{ "tst $op1, $op2 # long" %}
14954   ins_encode %{
14955     __ tst($op1$$Register, $op2$$Register);
14956   %}
14957   ins_pipe(ialu_reg_reg);
14958 %}
14959 
14960 instruct cmpI_and_reg(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, immI0 op3, rFlagsReg cr) %{
14961   match(Set cr (CmpI (AndI op1 op2) op3));
14962 
14963   ins_cost(INSN_COST);
14964   format %{ "tstw $op1, $op2 # int" %}
14965   ins_encode %{
14966     __ tstw($op1$$Register, $op2$$Register);
14967   %}
14968   ins_pipe(ialu_reg_reg);
14969 %}
14970 
14971 
14972 // Conditional Far Branch
14973 // Conditional Far Branch Unsigned
14974 // TODO: fixme
14975 
14976 // counted loop end branch near
14977 instruct branchLoopEnd(cmpOp cmp, rFlagsReg cr, label lbl)
14978 %{
14979   match(CountedLoopEnd cmp cr);
14980 
14981   effect(USE lbl);
14982 
14983   ins_cost(BRANCH_COST);
14984   // short variant.
14985   // ins_short_branch(1);
14986   format %{ "b$cmp $lbl \t// counted loop end" %}
14987 
14988   ins_encode(aarch64_enc_br_con(cmp, lbl));
14989 
14990   ins_pipe(pipe_branch);
14991 %}
14992 
14993 // counted loop end branch near Unsigned
14994 instruct branchLoopEndU(cmpOpU cmp, rFlagsRegU cr, label lbl)
14995 %{
14996   match(CountedLoopEnd cmp cr);
14997 
14998   effect(USE lbl);
14999 
15000   ins_cost(BRANCH_COST);
15001   // short variant.
15002   // ins_short_branch(1);
15003   format %{ "b$cmp $lbl \t// counted loop end unsigned" %}
15004 
15005   ins_encode(aarch64_enc_br_conU(cmp, lbl));
15006 
15007   ins_pipe(pipe_branch);
15008 %}
15009 
15010 // counted loop end branch far
15011 // counted loop end branch far unsigned
15012 // TODO: fixme
15013 
15014 // ============================================================================
15015 // inlined locking and unlocking
15016 
15017 instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2)
15018 %{
15019   match(Set cr (FastLock object box));
15020   effect(TEMP tmp, TEMP tmp2);
15021 
15022   // TODO
15023   // identify correct cost
15024   ins_cost(5 * INSN_COST);
15025   format %{ "fastlock $object,$box\t! kills $tmp,$tmp2" %}
15026 
15027   ins_encode(aarch64_enc_fast_lock(object, box, tmp, tmp2));
15028 
15029   ins_pipe(pipe_serial);
15030 %}
15031 
15032 instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2)
15033 %{
15034   match(Set cr (FastUnlock object box));
15035   effect(TEMP tmp, TEMP tmp2);
15036 
15037   ins_cost(5 * INSN_COST);
15038   format %{ "fastunlock $object,$box\t! kills $tmp, $tmp2" %}
15039 
15040   ins_encode(aarch64_enc_fast_unlock(object, box, tmp, tmp2));
15041 
15042   ins_pipe(pipe_serial);
15043 %}
15044 
15045 
15046 // ============================================================================
15047 // Safepoint Instructions
15048 
15049 // TODO
15050 // provide a near and far version of this code
15051 
15052 instruct safePoint(iRegP poll)
15053 %{
15054   match(SafePoint poll);
15055 
15056   format %{
15057     "ldrw zr, [$poll]\t# Safepoint: poll for GC"
15058   %}
15059   ins_encode %{
15060     __ read_polling_page(as_Register($poll$$reg), relocInfo::poll_type);
15061   %}
15062   ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem);
15063 %}
15064 
15065 
15066 // ============================================================================
15067 // Procedure Call/Return Instructions
15068 
15069 // Call Java Static Instruction
15070 
15071 instruct CallStaticJavaDirect(method meth)
15072 %{
15073   match(CallStaticJava);
15074 
15075   effect(USE meth);
15076 
15077   ins_cost(CALL_COST);
15078 
15079   format %{ "call,static $meth \t// ==> " %}
15080 
15081   ins_encode( aarch64_enc_java_static_call(meth),
15082               aarch64_enc_call_epilog );
15083 
15084   ins_pipe(pipe_class_call);
15085 %}
15086 
15087 // TO HERE
15088 
15089 // Call Java Dynamic Instruction
15090 instruct CallDynamicJavaDirect(method meth)
15091 %{
15092   match(CallDynamicJava);
15093 
15094   effect(USE meth);
15095 
15096   ins_cost(CALL_COST);
15097 
15098   format %{ "CALL,dynamic $meth \t// ==> " %}
15099 
15100   ins_encode( aarch64_enc_java_dynamic_call(meth),
15101                aarch64_enc_call_epilog );
15102 
15103   ins_pipe(pipe_class_call);
15104 %}
15105 
15106 // Call Runtime Instruction
15107 
15108 instruct CallRuntimeDirect(method meth)
15109 %{
15110   match(CallRuntime);
15111 
15112   effect(USE meth);
15113 
15114   ins_cost(CALL_COST);
15115 
15116   format %{ "CALL, runtime $meth" %}
15117 
15118   ins_encode( aarch64_enc_java_to_runtime(meth) );
15119 
15120   ins_pipe(pipe_class_call);
15121 %}
15122 
15123 // Call Runtime Instruction
15124 
15125 instruct CallLeafDirect(method meth)
15126 %{
15127   match(CallLeaf);
15128 
15129   effect(USE meth);
15130 
15131   ins_cost(CALL_COST);
15132 
15133   format %{ "CALL, runtime leaf $meth" %}
15134 
15135   ins_encode( aarch64_enc_java_to_runtime(meth) );
15136 
15137   ins_pipe(pipe_class_call);
15138 %}
15139 
15140 // Call Runtime Instruction
15141 
15142 instruct CallLeafNoFPDirect(method meth)
15143 %{
15144   match(CallLeafNoFP);
15145 
15146   effect(USE meth);
15147 
15148   ins_cost(CALL_COST);
15149 
15150   format %{ "CALL, runtime leaf nofp $meth" %}
15151 
15152   ins_encode( aarch64_enc_java_to_runtime(meth) );
15153 
15154   ins_pipe(pipe_class_call);
15155 %}
15156 
15157 // Tail Call; Jump from runtime stub to Java code.
15158 // Also known as an 'interprocedural jump'.
15159 // Target of jump will eventually return to caller.
15160 // TailJump below removes the return address.
15161 instruct TailCalljmpInd(iRegPNoSp jump_target, inline_cache_RegP method_oop)
15162 %{
15163   match(TailCall jump_target method_oop);
15164 
15165   ins_cost(CALL_COST);
15166 
15167   format %{ "br $jump_target\t# $method_oop holds method oop" %}
15168 
15169   ins_encode(aarch64_enc_tail_call(jump_target));
15170 
15171   ins_pipe(pipe_class_call);
15172 %}
15173 
15174 instruct TailjmpInd(iRegPNoSp jump_target, iRegP_R0 ex_oop)
15175 %{
15176   match(TailJump jump_target ex_oop);
15177 
15178   ins_cost(CALL_COST);
15179 
15180   format %{ "br $jump_target\t# $ex_oop holds exception oop" %}
15181 
15182   ins_encode(aarch64_enc_tail_jmp(jump_target));
15183 
15184   ins_pipe(pipe_class_call);
15185 %}
15186 
15187 // Create exception oop: created by stack-crawling runtime code.
15188 // Created exception is now available to this handler, and is setup
15189 // just prior to jumping to this handler. No code emitted.
15190 // TODO check
15191 // should ex_oop be in r0? intel uses rax, ppc cannot use r0 so uses rarg1
15192 instruct CreateException(iRegP_R0 ex_oop)
15193 %{
15194   match(Set ex_oop (CreateEx));
15195 
15196   format %{ " -- \t// exception oop; no code emitted" %}
15197 
15198   size(0);
15199 
15200   ins_encode( /*empty*/ );
15201 
15202   ins_pipe(pipe_class_empty);
15203 %}
15204 
15205 // Rethrow exception: The exception oop will come in the first
15206 // argument position. Then JUMP (not call) to the rethrow stub code.
15207 instruct RethrowException() %{
15208   match(Rethrow);
15209   ins_cost(CALL_COST);
15210 
15211   format %{ "b rethrow_stub" %}
15212 
15213   ins_encode( aarch64_enc_rethrow() );
15214 
15215   ins_pipe(pipe_class_call);
15216 %}
15217 
15218 
15219 // Return Instruction
15220 // epilog node loads ret address into lr as part of frame pop
15221 instruct Ret()
15222 %{
15223   match(Return);
15224 
15225   format %{ "ret\t// return register" %}
15226 
15227   ins_encode( aarch64_enc_ret() );
15228 
15229   ins_pipe(pipe_branch);
15230 %}
15231 
15232 // Die now.
15233 instruct ShouldNotReachHere() %{
15234   match(Halt);
15235 
15236   ins_cost(CALL_COST);
15237   format %{ "ShouldNotReachHere" %}
15238 
15239   ins_encode %{
15240     // TODO
15241     // implement proper trap call here
15242     __ brk(999);
15243   %}
15244 
15245   ins_pipe(pipe_class_default);
15246 %}
15247 
15248 // ============================================================================
15249 // Partial Subtype Check
15250 //
15251 // superklass array for an instance of the superklass.  Set a hidden
15252 // internal cache on a hit (cache is checked with exposed code in
15253 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
15254 // encoding ALSO sets flags.
15255 
15256 instruct partialSubtypeCheck(iRegP_R4 sub, iRegP_R0 super, iRegP_R2 temp, iRegP_R5 result, rFlagsReg cr)
15257 %{
15258   match(Set result (PartialSubtypeCheck sub super));
15259   effect(KILL cr, KILL temp);
15260 
15261   ins_cost(1100);  // slightly larger than the next version
15262   format %{ "partialSubtypeCheck $result, $sub, $super" %}
15263 
15264   ins_encode(aarch64_enc_partial_subtype_check(sub, super, temp, result));
15265 
15266   opcode(0x1); // Force zero of result reg on hit
15267 
15268   ins_pipe(pipe_class_memory);
15269 %}
15270 
15271 instruct partialSubtypeCheckVsZero(iRegP_R4 sub, iRegP_R0 super, iRegP_R2 temp, iRegP_R5 result, immP0 zero, rFlagsReg cr)
15272 %{
15273   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
15274   effect(KILL temp, KILL result);
15275 
15276   ins_cost(1100);  // slightly larger than the next version
15277   format %{ "partialSubtypeCheck $result, $sub, $super == 0" %}
15278 
15279   ins_encode(aarch64_enc_partial_subtype_check(sub, super, temp, result));
15280 
15281   opcode(0x0); // Don't zero result reg on hit
15282 
15283   ins_pipe(pipe_class_memory);
15284 %}
15285 
15286 instruct string_compareU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
15287                         iRegI_R0 result, iRegP_R10 tmp1, rFlagsReg cr)
15288 %{
15289   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
15290   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
15291   effect(KILL tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
15292 
15293   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1" %}
15294   ins_encode %{
15295     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
15296     __ string_compare($str1$$Register, $str2$$Register,
15297                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
15298                       $tmp1$$Register,
15299                       fnoreg, fnoreg, StrIntrinsicNode::UU);
15300   %}
15301   ins_pipe(pipe_class_memory);
15302 %}
15303 
15304 instruct string_compareL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
15305                         iRegI_R0 result, iRegP_R10 tmp1, rFlagsReg cr)
15306 %{
15307   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
15308   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
15309   effect(KILL tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
15310 
15311   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1" %}
15312   ins_encode %{
15313     __ string_compare($str1$$Register, $str2$$Register,
15314                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
15315                       $tmp1$$Register,
15316                       fnoreg, fnoreg, StrIntrinsicNode::LL);
15317   %}
15318   ins_pipe(pipe_class_memory);
15319 %}
15320 
15321 instruct string_compareUL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
15322                         iRegI_R0 result, vRegD vtmp1, vRegD vtmp2, iRegP_R10 tmp1, rFlagsReg cr)
15323 %{
15324   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
15325   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
15326   effect(KILL tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP vtmp1, TEMP vtmp2, KILL cr);
15327 
15328   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1" %}
15329   ins_encode %{
15330     __ string_compare($str1$$Register, $str2$$Register,
15331                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
15332                       $tmp1$$Register,
15333                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, StrIntrinsicNode::UL);
15334   %}
15335   ins_pipe(pipe_class_memory);
15336 %}
15337 
15338 instruct string_compareLU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
15339                         iRegI_R0 result, vRegD vtmp1, vRegD vtmp2, iRegP_R10 tmp1, rFlagsReg cr)
15340 %{
15341   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
15342   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
15343   effect(KILL tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP vtmp1, TEMP vtmp2, KILL cr);
15344 
15345   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1" %}
15346   ins_encode %{
15347     __ string_compare($str1$$Register, $str2$$Register,
15348                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
15349                       $tmp1$$Register,
15350                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, StrIntrinsicNode::LU);
15351   %}
15352   ins_pipe(pipe_class_memory);
15353 %}
15354 
15355 instruct string_indexofUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
15356        iRegI_R0 result, iRegI tmp1, iRegI tmp2, iRegI tmp3, iRegI tmp4, rFlagsReg cr)
15357 %{
15358   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
15359   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
15360   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
15361          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
15362   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU)" %}
15363 
15364   ins_encode %{
15365     __ string_indexof($str1$$Register, $str2$$Register,
15366                       $cnt1$$Register, $cnt2$$Register,
15367                       $tmp1$$Register, $tmp2$$Register,
15368                       $tmp3$$Register, $tmp4$$Register,
15369                       -1, $result$$Register, StrIntrinsicNode::UU);
15370   %}
15371   ins_pipe(pipe_class_memory);
15372 %}
15373 
15374 instruct string_indexofLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
15375        iRegI_R0 result, iRegI tmp1, iRegI tmp2, iRegI tmp3, iRegI tmp4, rFlagsReg cr)
15376 %{
15377   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
15378   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
15379   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
15380          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
15381   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL)" %}
15382 
15383   ins_encode %{
15384     __ string_indexof($str1$$Register, $str2$$Register,
15385                       $cnt1$$Register, $cnt2$$Register,
15386                       $tmp1$$Register, $tmp2$$Register,
15387                       $tmp3$$Register, $tmp4$$Register,
15388                       -1, $result$$Register, StrIntrinsicNode::LL);
15389   %}
15390   ins_pipe(pipe_class_memory);
15391 %}
15392 
15393 instruct string_indexofUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
15394        iRegI_R0 result, iRegI tmp1, iRegI tmp2, iRegI tmp3, iRegI tmp4, rFlagsReg cr)
15395 %{
15396   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
15397   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
15398   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
15399          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
15400   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL)" %}
15401 
15402   ins_encode %{
15403     __ string_indexof($str1$$Register, $str2$$Register,
15404                       $cnt1$$Register, $cnt2$$Register,
15405                       $tmp1$$Register, $tmp2$$Register,
15406                       $tmp3$$Register, $tmp4$$Register,
15407                       -1, $result$$Register, StrIntrinsicNode::UL);
15408   %}
15409   ins_pipe(pipe_class_memory);
15410 %}
15411 
15412 instruct string_indexofLU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
15413        iRegI_R0 result, iRegI tmp1, iRegI tmp2, iRegI tmp3, iRegI tmp4, rFlagsReg cr)
15414 %{
15415   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LU);
15416   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
15417   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
15418          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
15419   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LU)" %}
15420 
15421   ins_encode %{
15422     __ string_indexof($str1$$Register, $str2$$Register,
15423                       $cnt1$$Register, $cnt2$$Register,
15424                       $tmp1$$Register, $tmp2$$Register,
15425                       $tmp3$$Register, $tmp4$$Register,
15426                       -1, $result$$Register, StrIntrinsicNode::LU);
15427   %}
15428   ins_pipe(pipe_class_memory);
15429 %}
15430 
15431 instruct string_indexof_conUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
15432                  immI_le_4 int_cnt2, iRegI_R0 result, iRegI tmp1, iRegI tmp2,
15433                  iRegI tmp3, iRegI tmp4, rFlagsReg cr)
15434 %{
15435   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
15436   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
15437   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
15438          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
15439   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU)" %}
15440 
15441   ins_encode %{
15442     int icnt2 = (int)$int_cnt2$$constant;
15443     __ string_indexof($str1$$Register, $str2$$Register,
15444                       $cnt1$$Register, zr,
15445                       $tmp1$$Register, $tmp2$$Register,
15446                       $tmp3$$Register, $tmp4$$Register,
15447                       icnt2, $result$$Register, StrIntrinsicNode::UU);
15448   %}
15449   ins_pipe(pipe_class_memory);
15450 %}
15451 
15452 instruct string_indexof_conLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
15453                  immI_le_4 int_cnt2, iRegI_R0 result, iRegI tmp1, iRegI tmp2,
15454                  iRegI tmp3, iRegI tmp4, rFlagsReg cr)
15455 %{
15456   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
15457   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
15458   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
15459          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
15460   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL)" %}
15461 
15462   ins_encode %{
15463     int icnt2 = (int)$int_cnt2$$constant;
15464     __ string_indexof($str1$$Register, $str2$$Register,
15465                       $cnt1$$Register, zr,
15466                       $tmp1$$Register, $tmp2$$Register,
15467                       $tmp3$$Register, $tmp4$$Register,
15468                       icnt2, $result$$Register, StrIntrinsicNode::LL);
15469   %}
15470   ins_pipe(pipe_class_memory);
15471 %}
15472 
15473 instruct string_indexof_conUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
15474                  immI_1 int_cnt2, iRegI_R0 result, iRegI tmp1, iRegI tmp2,
15475                  iRegI tmp3, iRegI tmp4, rFlagsReg cr)
15476 %{
15477   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
15478   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
15479   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
15480          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
15481   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL)" %}
15482 
15483   ins_encode %{
15484     int icnt2 = (int)$int_cnt2$$constant;
15485     __ string_indexof($str1$$Register, $str2$$Register,
15486                       $cnt1$$Register, zr,
15487                       $tmp1$$Register, $tmp2$$Register,
15488                       $tmp3$$Register, $tmp4$$Register,
15489                       icnt2, $result$$Register, StrIntrinsicNode::UL);
15490   %}
15491   ins_pipe(pipe_class_memory);
15492 %}
15493 
15494 instruct string_indexof_conLU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
15495                  immI_1 int_cnt2, iRegI_R0 result, iRegI tmp1, iRegI tmp2,
15496                  iRegI tmp3, iRegI tmp4, rFlagsReg cr)
15497 %{
15498   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LU);
15499   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
15500   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
15501          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
15502   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LU)" %}
15503 
15504   ins_encode %{
15505     int icnt2 = (int)$int_cnt2$$constant;
15506     __ string_indexof($str1$$Register, $str2$$Register,
15507                       $cnt1$$Register, zr,
15508                       $tmp1$$Register, $tmp2$$Register,
15509                       $tmp3$$Register, $tmp4$$Register,
15510                       icnt2, $result$$Register, StrIntrinsicNode::LU);
15511   %}
15512   ins_pipe(pipe_class_memory);
15513 %}
15514 
15515 instruct string_indexofU_char(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch,
15516                               iRegI_R0 result, iRegI tmp1, iRegI tmp2,
15517                               iRegI tmp3, rFlagsReg cr)
15518 %{
15519   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
15520   effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch,
15521          TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
15522 
15523   format %{ "String IndexOf char[] $str1,$cnt1,$ch -> $result" %}
15524 
15525   ins_encode %{
15526     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
15527                            $result$$Register, $tmp1$$Register, $tmp2$$Register,
15528                            $tmp3$$Register);
15529   %}
15530   ins_pipe(pipe_class_memory);
15531 %}
15532 
15533 instruct string_equalsL(iRegP_R1 str1, iRegP_R3 str2, iRegI_R4 cnt,
15534                         iRegI_R0 result, rFlagsReg cr)
15535 %{
15536   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
15537   match(Set result (StrEquals (Binary str1 str2) cnt));
15538   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr);
15539 
15540   format %{ "String Equals $str1,$str2,$cnt -> $result" %}
15541   ins_encode %{
15542     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
15543     __ arrays_equals($str1$$Register, $str2$$Register,
15544                      $result$$Register, $cnt$$Register,
15545                      1, /*is_string*/true);
15546   %}
15547   ins_pipe(pipe_class_memory);
15548 %}
15549 
15550 instruct string_equalsU(iRegP_R1 str1, iRegP_R3 str2, iRegI_R4 cnt,
15551                         iRegI_R0 result, rFlagsReg cr)
15552 %{
15553   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
15554   match(Set result (StrEquals (Binary str1 str2) cnt));
15555   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr);
15556 
15557   format %{ "String Equals $str1,$str2,$cnt -> $result" %}
15558   ins_encode %{
15559     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
15560     __ asrw($cnt$$Register, $cnt$$Register, 1);
15561     __ arrays_equals($str1$$Register, $str2$$Register,
15562                      $result$$Register, $cnt$$Register,
15563                      2, /*is_string*/true);
15564   %}
15565   ins_pipe(pipe_class_memory);
15566 %}
15567 
15568 instruct array_equalsB(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result,
15569                       iRegP_R10 tmp, rFlagsReg cr)
15570 %{
15571   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
15572   match(Set result (AryEq ary1 ary2));
15573   effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, KILL cr);
15574 
15575   format %{ "Array Equals $ary1,ary2 -> $result    // KILL $tmp" %}
15576   ins_encode %{
15577     __ arrays_equals($ary1$$Register, $ary2$$Register,
15578                      $result$$Register, $tmp$$Register,
15579                      1, /*is_string*/false);
15580     %}
15581   ins_pipe(pipe_class_memory);
15582 %}
15583 
15584 instruct array_equalsC(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result,
15585                       iRegP_R10 tmp, rFlagsReg cr)
15586 %{
15587   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
15588   match(Set result (AryEq ary1 ary2));
15589   effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, KILL cr);
15590 
15591   format %{ "Array Equals $ary1,ary2 -> $result    // KILL $tmp" %}
15592   ins_encode %{
15593     __ arrays_equals($ary1$$Register, $ary2$$Register,
15594                      $result$$Register, $tmp$$Register,
15595                      2, /*is_string*/false);
15596   %}
15597   ins_pipe(pipe_class_memory);
15598 %}
15599 
15600 
15601 // fast char[] to byte[] compression
15602 instruct string_compress(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len,
15603                          vRegD_V0 tmp1, vRegD_V1 tmp2,
15604                          vRegD_V2 tmp3, vRegD_V3 tmp4,
15605                          iRegI_R0 result, rFlagsReg cr)
15606 %{
15607   match(Set result (StrCompressedCopy src (Binary dst len)));
15608   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
15609 
15610   format %{ "String Compress $src,$dst -> $result    // KILL R1, R2, R3, R4" %}
15611   ins_encode %{
15612     __ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
15613                            $tmp1$$FloatRegister, $tmp2$$FloatRegister,
15614                            $tmp3$$FloatRegister, $tmp4$$FloatRegister,
15615                            $result$$Register);
15616   %}
15617   ins_pipe( pipe_slow );
15618 %}
15619 
15620 // fast byte[] to char[] inflation
15621 instruct string_inflate(Universe dummy, iRegP_R0 src, iRegP_R1 dst, iRegI_R2 len,
15622                         vRegD tmp1, vRegD tmp2, vRegD tmp3, iRegP_R3 tmp4, rFlagsReg cr)
15623 %{
15624   match(Set dummy (StrInflatedCopy src (Binary dst len)));
15625   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
15626 
15627   format %{ "String Inflate $src,$dst    // KILL $tmp1, $tmp2" %}
15628   ins_encode %{
15629     __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
15630                           $tmp1$$FloatRegister, $tmp2$$FloatRegister, $tmp3$$FloatRegister, $tmp4$$Register);
15631   %}
15632   ins_pipe(pipe_class_memory);
15633 %}
15634 
15635 // encode char[] to byte[] in ISO_8859_1
15636 instruct encode_iso_array(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len,
15637                           vRegD_V0 Vtmp1, vRegD_V1 Vtmp2,
15638                           vRegD_V2 Vtmp3, vRegD_V3 Vtmp4,
15639                           iRegI_R0 result, rFlagsReg cr)
15640 %{
15641   match(Set result (EncodeISOArray src (Binary dst len)));
15642   effect(USE_KILL src, USE_KILL dst, USE_KILL len,
15643          KILL Vtmp1, KILL Vtmp2, KILL Vtmp3, KILL Vtmp4, KILL cr);
15644 
15645   format %{ "Encode array $src,$dst,$len -> $result" %}
15646   ins_encode %{
15647     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
15648          $result$$Register, $Vtmp1$$FloatRegister,  $Vtmp2$$FloatRegister,
15649          $Vtmp3$$FloatRegister,  $Vtmp4$$FloatRegister);
15650   %}
15651   ins_pipe( pipe_class_memory );
15652 %}
15653 
15654 // ============================================================================
15655 // This name is KNOWN by the ADLC and cannot be changed.
15656 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
15657 // for this guy.
15658 instruct tlsLoadP(thread_RegP dst)
15659 %{
15660   match(Set dst (ThreadLocal));
15661 
15662   ins_cost(0);
15663 
15664   format %{ " -- \t// $dst=Thread::current(), empty" %}
15665 
15666   size(0);
15667 
15668   ins_encode( /*empty*/ );
15669 
15670   ins_pipe(pipe_class_empty);
15671 %}
15672 
15673 // ====================VECTOR INSTRUCTIONS=====================================
15674 
15675 // Load vector (32 bits)
15676 instruct loadV4(vecD dst, vmem4 mem)
15677 %{
15678   predicate(n->as_LoadVector()->memory_size() == 4);
15679   match(Set dst (LoadVector mem));
15680   ins_cost(4 * INSN_COST);
15681   format %{ "ldrs   $dst,$mem\t# vector (32 bits)" %}
15682   ins_encode( aarch64_enc_ldrvS(dst, mem) );
15683   ins_pipe(vload_reg_mem64);
15684 %}
15685 
15686 // Load vector (64 bits)
15687 instruct loadV8(vecD dst, vmem8 mem)
15688 %{
15689   predicate(n->as_LoadVector()->memory_size() == 8);
15690   match(Set dst (LoadVector mem));
15691   ins_cost(4 * INSN_COST);
15692   format %{ "ldrd   $dst,$mem\t# vector (64 bits)" %}
15693   ins_encode( aarch64_enc_ldrvD(dst, mem) );
15694   ins_pipe(vload_reg_mem64);
15695 %}
15696 
15697 // Load Vector (128 bits)
15698 instruct loadV16(vecX dst, vmem16 mem)
15699 %{
15700   predicate(n->as_LoadVector()->memory_size() == 16);
15701   match(Set dst (LoadVector mem));
15702   ins_cost(4 * INSN_COST);
15703   format %{ "ldrq   $dst,$mem\t# vector (128 bits)" %}
15704   ins_encode( aarch64_enc_ldrvQ(dst, mem) );
15705   ins_pipe(vload_reg_mem128);
15706 %}
15707 
15708 // Store Vector (32 bits)
15709 instruct storeV4(vecD src, vmem4 mem)
15710 %{
15711   predicate(n->as_StoreVector()->memory_size() == 4);
15712   match(Set mem (StoreVector mem src));
15713   ins_cost(4 * INSN_COST);
15714   format %{ "strs   $mem,$src\t# vector (32 bits)" %}
15715   ins_encode( aarch64_enc_strvS(src, mem) );
15716   ins_pipe(vstore_reg_mem64);
15717 %}
15718 
15719 // Store Vector (64 bits)
15720 instruct storeV8(vecD src, vmem8 mem)
15721 %{
15722   predicate(n->as_StoreVector()->memory_size() == 8);
15723   match(Set mem (StoreVector mem src));
15724   ins_cost(4 * INSN_COST);
15725   format %{ "strd   $mem,$src\t# vector (64 bits)" %}
15726   ins_encode( aarch64_enc_strvD(src, mem) );
15727   ins_pipe(vstore_reg_mem64);
15728 %}
15729 
15730 // Store Vector (128 bits)
15731 instruct storeV16(vecX src, vmem16 mem)
15732 %{
15733   predicate(n->as_StoreVector()->memory_size() == 16);
15734   match(Set mem (StoreVector mem src));
15735   ins_cost(4 * INSN_COST);
15736   format %{ "strq   $mem,$src\t# vector (128 bits)" %}
15737   ins_encode( aarch64_enc_strvQ(src, mem) );
15738   ins_pipe(vstore_reg_mem128);
15739 %}
15740 
15741 instruct replicate8B(vecD dst, iRegIorL2I src)
15742 %{
15743   predicate(n->as_Vector()->length() == 4 ||
15744             n->as_Vector()->length() == 8);
15745   match(Set dst (ReplicateB src));
15746   ins_cost(INSN_COST);
15747   format %{ "dup  $dst, $src\t# vector (8B)" %}
15748   ins_encode %{
15749     __ dup(as_FloatRegister($dst$$reg), __ T8B, as_Register($src$$reg));
15750   %}
15751   ins_pipe(vdup_reg_reg64);
15752 %}
15753 
15754 instruct replicate16B(vecX dst, iRegIorL2I src)
15755 %{
15756   predicate(n->as_Vector()->length() == 16);
15757   match(Set dst (ReplicateB src));
15758   ins_cost(INSN_COST);
15759   format %{ "dup  $dst, $src\t# vector (16B)" %}
15760   ins_encode %{
15761     __ dup(as_FloatRegister($dst$$reg), __ T16B, as_Register($src$$reg));
15762   %}
15763   ins_pipe(vdup_reg_reg128);
15764 %}
15765 
15766 instruct replicate8B_imm(vecD dst, immI con)
15767 %{
15768   predicate(n->as_Vector()->length() == 4 ||
15769             n->as_Vector()->length() == 8);
15770   match(Set dst (ReplicateB con));
15771   ins_cost(INSN_COST);
15772   format %{ "movi  $dst, $con\t# vector(8B)" %}
15773   ins_encode %{
15774     __ mov(as_FloatRegister($dst$$reg), __ T8B, $con$$constant & 0xff);
15775   %}
15776   ins_pipe(vmovi_reg_imm64);
15777 %}
15778 
15779 instruct replicate16B_imm(vecX dst, immI con)
15780 %{
15781   predicate(n->as_Vector()->length() == 16);
15782   match(Set dst (ReplicateB con));
15783   ins_cost(INSN_COST);
15784   format %{ "movi  $dst, $con\t# vector(16B)" %}
15785   ins_encode %{
15786     __ mov(as_FloatRegister($dst$$reg), __ T16B, $con$$constant & 0xff);
15787   %}
15788   ins_pipe(vmovi_reg_imm128);
15789 %}
15790 
15791 instruct replicate4S(vecD dst, iRegIorL2I src)
15792 %{
15793   predicate(n->as_Vector()->length() == 2 ||
15794             n->as_Vector()->length() == 4);
15795   match(Set dst (ReplicateS src));
15796   ins_cost(INSN_COST);
15797   format %{ "dup  $dst, $src\t# vector (4S)" %}
15798   ins_encode %{
15799     __ dup(as_FloatRegister($dst$$reg), __ T4H, as_Register($src$$reg));
15800   %}
15801   ins_pipe(vdup_reg_reg64);
15802 %}
15803 
15804 instruct replicate8S(vecX dst, iRegIorL2I src)
15805 %{
15806   predicate(n->as_Vector()->length() == 8);
15807   match(Set dst (ReplicateS src));
15808   ins_cost(INSN_COST);
15809   format %{ "dup  $dst, $src\t# vector (8S)" %}
15810   ins_encode %{
15811     __ dup(as_FloatRegister($dst$$reg), __ T8H, as_Register($src$$reg));
15812   %}
15813   ins_pipe(vdup_reg_reg128);
15814 %}
15815 
15816 instruct replicate4S_imm(vecD dst, immI con)
15817 %{
15818   predicate(n->as_Vector()->length() == 2 ||
15819             n->as_Vector()->length() == 4);
15820   match(Set dst (ReplicateS con));
15821   ins_cost(INSN_COST);
15822   format %{ "movi  $dst, $con\t# vector(4H)" %}
15823   ins_encode %{
15824     __ mov(as_FloatRegister($dst$$reg), __ T4H, $con$$constant & 0xffff);
15825   %}
15826   ins_pipe(vmovi_reg_imm64);
15827 %}
15828 
15829 instruct replicate8S_imm(vecX dst, immI con)
15830 %{
15831   predicate(n->as_Vector()->length() == 8);
15832   match(Set dst (ReplicateS con));
15833   ins_cost(INSN_COST);
15834   format %{ "movi  $dst, $con\t# vector(8H)" %}
15835   ins_encode %{
15836     __ mov(as_FloatRegister($dst$$reg), __ T8H, $con$$constant & 0xffff);
15837   %}
15838   ins_pipe(vmovi_reg_imm128);
15839 %}
15840 
15841 instruct replicate2I(vecD dst, iRegIorL2I src)
15842 %{
15843   predicate(n->as_Vector()->length() == 2);
15844   match(Set dst (ReplicateI src));
15845   ins_cost(INSN_COST);
15846   format %{ "dup  $dst, $src\t# vector (2I)" %}
15847   ins_encode %{
15848     __ dup(as_FloatRegister($dst$$reg), __ T2S, as_Register($src$$reg));
15849   %}
15850   ins_pipe(vdup_reg_reg64);
15851 %}
15852 
15853 instruct replicate4I(vecX dst, iRegIorL2I src)
15854 %{
15855   predicate(n->as_Vector()->length() == 4);
15856   match(Set dst (ReplicateI src));
15857   ins_cost(INSN_COST);
15858   format %{ "dup  $dst, $src\t# vector (4I)" %}
15859   ins_encode %{
15860     __ dup(as_FloatRegister($dst$$reg), __ T4S, as_Register($src$$reg));
15861   %}
15862   ins_pipe(vdup_reg_reg128);
15863 %}
15864 
15865 instruct replicate2I_imm(vecD dst, immI con)
15866 %{
15867   predicate(n->as_Vector()->length() == 2);
15868   match(Set dst (ReplicateI con));
15869   ins_cost(INSN_COST);
15870   format %{ "movi  $dst, $con\t# vector(2I)" %}
15871   ins_encode %{
15872     __ mov(as_FloatRegister($dst$$reg), __ T2S, $con$$constant);
15873   %}
15874   ins_pipe(vmovi_reg_imm64);
15875 %}
15876 
15877 instruct replicate4I_imm(vecX dst, immI con)
15878 %{
15879   predicate(n->as_Vector()->length() == 4);
15880   match(Set dst (ReplicateI con));
15881   ins_cost(INSN_COST);
15882   format %{ "movi  $dst, $con\t# vector(4I)" %}
15883   ins_encode %{
15884     __ mov(as_FloatRegister($dst$$reg), __ T4S, $con$$constant);
15885   %}
15886   ins_pipe(vmovi_reg_imm128);
15887 %}
15888 
15889 instruct replicate2L(vecX dst, iRegL src)
15890 %{
15891   predicate(n->as_Vector()->length() == 2);
15892   match(Set dst (ReplicateL src));
15893   ins_cost(INSN_COST);
15894   format %{ "dup  $dst, $src\t# vector (2L)" %}
15895   ins_encode %{
15896     __ dup(as_FloatRegister($dst$$reg), __ T2D, as_Register($src$$reg));
15897   %}
15898   ins_pipe(vdup_reg_reg128);
15899 %}
15900 
15901 instruct replicate2L_zero(vecX dst, immI0 zero)
15902 %{
15903   predicate(n->as_Vector()->length() == 2);
15904   match(Set dst (ReplicateI zero));
15905   ins_cost(INSN_COST);
15906   format %{ "movi  $dst, $zero\t# vector(4I)" %}
15907   ins_encode %{
15908     __ eor(as_FloatRegister($dst$$reg), __ T16B,
15909            as_FloatRegister($dst$$reg),
15910            as_FloatRegister($dst$$reg));
15911   %}
15912   ins_pipe(vmovi_reg_imm128);
15913 %}
15914 
15915 instruct replicate2F(vecD dst, vRegF src)
15916 %{
15917   predicate(n->as_Vector()->length() == 2);
15918   match(Set dst (ReplicateF src));
15919   ins_cost(INSN_COST);
15920   format %{ "dup  $dst, $src\t# vector (2F)" %}
15921   ins_encode %{
15922     __ dup(as_FloatRegister($dst$$reg), __ T2S,
15923            as_FloatRegister($src$$reg));
15924   %}
15925   ins_pipe(vdup_reg_freg64);
15926 %}
15927 
15928 instruct replicate4F(vecX dst, vRegF src)
15929 %{
15930   predicate(n->as_Vector()->length() == 4);
15931   match(Set dst (ReplicateF src));
15932   ins_cost(INSN_COST);
15933   format %{ "dup  $dst, $src\t# vector (4F)" %}
15934   ins_encode %{
15935     __ dup(as_FloatRegister($dst$$reg), __ T4S,
15936            as_FloatRegister($src$$reg));
15937   %}
15938   ins_pipe(vdup_reg_freg128);
15939 %}
15940 
15941 instruct replicate2D(vecX dst, vRegD src)
15942 %{
15943   predicate(n->as_Vector()->length() == 2);
15944   match(Set dst (ReplicateD src));
15945   ins_cost(INSN_COST);
15946   format %{ "dup  $dst, $src\t# vector (2D)" %}
15947   ins_encode %{
15948     __ dup(as_FloatRegister($dst$$reg), __ T2D,
15949            as_FloatRegister($src$$reg));
15950   %}
15951   ins_pipe(vdup_reg_dreg128);
15952 %}
15953 
15954 // ====================REDUCTION ARITHMETIC====================================
15955 
15956 instruct reduce_add2I(iRegINoSp dst, iRegIorL2I src1, vecD src2, iRegI tmp, iRegI tmp2)
15957 %{
15958   match(Set dst (AddReductionVI src1 src2));
15959   ins_cost(INSN_COST);
15960   effect(TEMP tmp, TEMP tmp2);
15961   format %{ "umov  $tmp, $src2, S, 0\n\t"
15962             "umov  $tmp2, $src2, S, 1\n\t"
15963             "addw  $dst, $src1, $tmp\n\t"
15964             "addw  $dst, $dst, $tmp2\t add reduction2i"
15965   %}
15966   ins_encode %{
15967     __ umov($tmp$$Register, as_FloatRegister($src2$$reg), __ S, 0);
15968     __ umov($tmp2$$Register, as_FloatRegister($src2$$reg), __ S, 1);
15969     __ addw($dst$$Register, $src1$$Register, $tmp$$Register);
15970     __ addw($dst$$Register, $dst$$Register, $tmp2$$Register);
15971   %}
15972   ins_pipe(pipe_class_default);
15973 %}
15974 
15975 instruct reduce_add4I(iRegINoSp dst, iRegIorL2I src1, vecX src2, vecX tmp, iRegI tmp2)
15976 %{
15977   match(Set dst (AddReductionVI src1 src2));
15978   ins_cost(INSN_COST);
15979   effect(TEMP tmp, TEMP tmp2);
15980   format %{ "addv  $tmp, T4S, $src2\n\t"
15981             "umov  $tmp2, $tmp, S, 0\n\t"
15982             "addw  $dst, $tmp2, $src1\t add reduction4i"
15983   %}
15984   ins_encode %{
15985     __ addv(as_FloatRegister($tmp$$reg), __ T4S,
15986             as_FloatRegister($src2$$reg));
15987     __ umov($tmp2$$Register, as_FloatRegister($tmp$$reg), __ S, 0);
15988     __ addw($dst$$Register, $tmp2$$Register, $src1$$Register);
15989   %}
15990   ins_pipe(pipe_class_default);
15991 %}
15992 
15993 instruct reduce_mul2I(iRegINoSp dst, iRegIorL2I src1, vecD src2, iRegI tmp)
15994 %{
15995   match(Set dst (MulReductionVI src1 src2));
15996   ins_cost(INSN_COST);
15997   effect(TEMP tmp, TEMP dst);
15998   format %{ "umov  $tmp, $src2, S, 0\n\t"
15999             "mul   $dst, $tmp, $src1\n\t"
16000             "umov  $tmp, $src2, S, 1\n\t"
16001             "mul   $dst, $tmp, $dst\t mul reduction2i\n\t"
16002   %}
16003   ins_encode %{
16004     __ umov($tmp$$Register, as_FloatRegister($src2$$reg), __ S, 0);
16005     __ mul($dst$$Register, $tmp$$Register, $src1$$Register);
16006     __ umov($tmp$$Register, as_FloatRegister($src2$$reg), __ S, 1);
16007     __ mul($dst$$Register, $tmp$$Register, $dst$$Register);
16008   %}
16009   ins_pipe(pipe_class_default);
16010 %}
16011 
16012 instruct reduce_mul4I(iRegINoSp dst, iRegIorL2I src1, vecX src2, vecX tmp, iRegI tmp2)
16013 %{
16014   match(Set dst (MulReductionVI src1 src2));
16015   ins_cost(INSN_COST);
16016   effect(TEMP tmp, TEMP tmp2, TEMP dst);
16017   format %{ "ins   $tmp, $src2, 0, 1\n\t"
16018             "mul   $tmp, $tmp, $src2\n\t"
16019             "umov  $tmp2, $tmp, S, 0\n\t"
16020             "mul   $dst, $tmp2, $src1\n\t"
16021             "umov  $tmp2, $tmp, S, 1\n\t"
16022             "mul   $dst, $tmp2, $dst\t mul reduction4i\n\t"
16023   %}
16024   ins_encode %{
16025     __ ins(as_FloatRegister($tmp$$reg), __ D,
16026            as_FloatRegister($src2$$reg), 0, 1);
16027     __ mulv(as_FloatRegister($tmp$$reg), __ T2S,
16028            as_FloatRegister($tmp$$reg), as_FloatRegister($src2$$reg));
16029     __ umov($tmp2$$Register, as_FloatRegister($tmp$$reg), __ S, 0);
16030     __ mul($dst$$Register, $tmp2$$Register, $src1$$Register);
16031     __ umov($tmp2$$Register, as_FloatRegister($tmp$$reg), __ S, 1);
16032     __ mul($dst$$Register, $tmp2$$Register, $dst$$Register);
16033   %}
16034   ins_pipe(pipe_class_default);
16035 %}
16036 
16037 instruct reduce_add2F(vRegF dst, vRegF src1, vecD src2, vecD tmp)
16038 %{
16039   match(Set dst (AddReductionVF src1 src2));
16040   ins_cost(INSN_COST);
16041   effect(TEMP tmp, TEMP dst);
16042   format %{ "fadds $dst, $src1, $src2\n\t"
16043             "ins   $tmp, S, $src2, 0, 1\n\t"
16044             "fadds $dst, $dst, $tmp\t add reduction2f"
16045   %}
16046   ins_encode %{
16047     __ fadds(as_FloatRegister($dst$$reg),
16048              as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
16049     __ ins(as_FloatRegister($tmp$$reg), __ S,
16050            as_FloatRegister($src2$$reg), 0, 1);
16051     __ fadds(as_FloatRegister($dst$$reg),
16052              as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
16053   %}
16054   ins_pipe(pipe_class_default);
16055 %}
16056 
16057 instruct reduce_add4F(vRegF dst, vRegF src1, vecX src2, vecX tmp)
16058 %{
16059   match(Set dst (AddReductionVF src1 src2));
16060   ins_cost(INSN_COST);
16061   effect(TEMP tmp, TEMP dst);
16062   format %{ "fadds $dst, $src1, $src2\n\t"
16063             "ins   $tmp, S, $src2, 0, 1\n\t"
16064             "fadds $dst, $dst, $tmp\n\t"
16065             "ins   $tmp, S, $src2, 0, 2\n\t"
16066             "fadds $dst, $dst, $tmp\n\t"
16067             "ins   $tmp, S, $src2, 0, 3\n\t"
16068             "fadds $dst, $dst, $tmp\t add reduction4f"
16069   %}
16070   ins_encode %{
16071     __ fadds(as_FloatRegister($dst$$reg),
16072              as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
16073     __ ins(as_FloatRegister($tmp$$reg), __ S,
16074            as_FloatRegister($src2$$reg), 0, 1);
16075     __ fadds(as_FloatRegister($dst$$reg),
16076              as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
16077     __ ins(as_FloatRegister($tmp$$reg), __ S,
16078            as_FloatRegister($src2$$reg), 0, 2);
16079     __ fadds(as_FloatRegister($dst$$reg),
16080              as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
16081     __ ins(as_FloatRegister($tmp$$reg), __ S,
16082            as_FloatRegister($src2$$reg), 0, 3);
16083     __ fadds(as_FloatRegister($dst$$reg),
16084              as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
16085   %}
16086   ins_pipe(pipe_class_default);
16087 %}
16088 
16089 instruct reduce_mul2F(vRegF dst, vRegF src1, vecD src2, vecD tmp)
16090 %{
16091   match(Set dst (MulReductionVF src1 src2));
16092   ins_cost(INSN_COST);
16093   effect(TEMP tmp, TEMP dst);
16094   format %{ "fmuls $dst, $src1, $src2\n\t"
16095             "ins   $tmp, S, $src2, 0, 1\n\t"
16096             "fmuls $dst, $dst, $tmp\t add reduction4f"
16097   %}
16098   ins_encode %{
16099     __ fmuls(as_FloatRegister($dst$$reg),
16100              as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
16101     __ ins(as_FloatRegister($tmp$$reg), __ S,
16102            as_FloatRegister($src2$$reg), 0, 1);
16103     __ fmuls(as_FloatRegister($dst$$reg),
16104              as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
16105   %}
16106   ins_pipe(pipe_class_default);
16107 %}
16108 
16109 instruct reduce_mul4F(vRegF dst, vRegF src1, vecX src2, vecX tmp)
16110 %{
16111   match(Set dst (MulReductionVF src1 src2));
16112   ins_cost(INSN_COST);
16113   effect(TEMP tmp, TEMP dst);
16114   format %{ "fmuls $dst, $src1, $src2\n\t"
16115             "ins   $tmp, S, $src2, 0, 1\n\t"
16116             "fmuls $dst, $dst, $tmp\n\t"
16117             "ins   $tmp, S, $src2, 0, 2\n\t"
16118             "fmuls $dst, $dst, $tmp\n\t"
16119             "ins   $tmp, S, $src2, 0, 3\n\t"
16120             "fmuls $dst, $dst, $tmp\t add reduction4f"
16121   %}
16122   ins_encode %{
16123     __ fmuls(as_FloatRegister($dst$$reg),
16124              as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
16125     __ ins(as_FloatRegister($tmp$$reg), __ S,
16126            as_FloatRegister($src2$$reg), 0, 1);
16127     __ fmuls(as_FloatRegister($dst$$reg),
16128              as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
16129     __ ins(as_FloatRegister($tmp$$reg), __ S,
16130            as_FloatRegister($src2$$reg), 0, 2);
16131     __ fmuls(as_FloatRegister($dst$$reg),
16132              as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
16133     __ ins(as_FloatRegister($tmp$$reg), __ S,
16134            as_FloatRegister($src2$$reg), 0, 3);
16135     __ fmuls(as_FloatRegister($dst$$reg),
16136              as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
16137   %}
16138   ins_pipe(pipe_class_default);
16139 %}
16140 
16141 instruct reduce_add2D(vRegD dst, vRegD src1, vecX src2, vecX tmp)
16142 %{
16143   match(Set dst (AddReductionVD src1 src2));
16144   ins_cost(INSN_COST);
16145   effect(TEMP tmp, TEMP dst);
16146   format %{ "faddd $dst, $src1, $src2\n\t"
16147             "ins   $tmp, D, $src2, 0, 1\n\t"
16148             "faddd $dst, $dst, $tmp\t add reduction2d"
16149   %}
16150   ins_encode %{
16151     __ faddd(as_FloatRegister($dst$$reg),
16152              as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
16153     __ ins(as_FloatRegister($tmp$$reg), __ D,
16154            as_FloatRegister($src2$$reg), 0, 1);
16155     __ faddd(as_FloatRegister($dst$$reg),
16156              as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
16157   %}
16158   ins_pipe(pipe_class_default);
16159 %}
16160 
16161 instruct reduce_mul2D(vRegD dst, vRegD src1, vecX src2, vecX tmp)
16162 %{
16163   match(Set dst (MulReductionVD src1 src2));
16164   ins_cost(INSN_COST);
16165   effect(TEMP tmp, TEMP dst);
16166   format %{ "fmuld $dst, $src1, $src2\n\t"
16167             "ins   $tmp, D, $src2, 0, 1\n\t"
16168             "fmuld $dst, $dst, $tmp\t add reduction2d"
16169   %}
16170   ins_encode %{
16171     __ fmuld(as_FloatRegister($dst$$reg),
16172              as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
16173     __ ins(as_FloatRegister($tmp$$reg), __ D,
16174            as_FloatRegister($src2$$reg), 0, 1);
16175     __ fmuld(as_FloatRegister($dst$$reg),
16176              as_FloatRegister($dst$$reg), as_FloatRegister($tmp$$reg));
16177   %}
16178   ins_pipe(pipe_class_default);
16179 %}
16180 
16181 // ====================VECTOR ARITHMETIC=======================================
16182 
16183 // --------------------------------- ADD --------------------------------------
16184 
16185 instruct vadd8B(vecD dst, vecD src1, vecD src2)
16186 %{
16187   predicate(n->as_Vector()->length() == 4 ||
16188             n->as_Vector()->length() == 8);
16189   match(Set dst (AddVB src1 src2));
16190   ins_cost(INSN_COST);
16191   format %{ "addv  $dst,$src1,$src2\t# vector (8B)" %}
16192   ins_encode %{
16193     __ addv(as_FloatRegister($dst$$reg), __ T8B,
16194             as_FloatRegister($src1$$reg),
16195             as_FloatRegister($src2$$reg));
16196   %}
16197   ins_pipe(vdop64);
16198 %}
16199 
16200 instruct vadd16B(vecX dst, vecX src1, vecX src2)
16201 %{
16202   predicate(n->as_Vector()->length() == 16);
16203   match(Set dst (AddVB src1 src2));
16204   ins_cost(INSN_COST);
16205   format %{ "addv  $dst,$src1,$src2\t# vector (16B)" %}
16206   ins_encode %{
16207     __ addv(as_FloatRegister($dst$$reg), __ T16B,
16208             as_FloatRegister($src1$$reg),
16209             as_FloatRegister($src2$$reg));
16210   %}
16211   ins_pipe(vdop128);
16212 %}
16213 
16214 instruct vadd4S(vecD dst, vecD src1, vecD src2)
16215 %{
16216   predicate(n->as_Vector()->length() == 2 ||
16217             n->as_Vector()->length() == 4);
16218   match(Set dst (AddVS src1 src2));
16219   ins_cost(INSN_COST);
16220   format %{ "addv  $dst,$src1,$src2\t# vector (4H)" %}
16221   ins_encode %{
16222     __ addv(as_FloatRegister($dst$$reg), __ T4H,
16223             as_FloatRegister($src1$$reg),
16224             as_FloatRegister($src2$$reg));
16225   %}
16226   ins_pipe(vdop64);
16227 %}
16228 
16229 instruct vadd8S(vecX dst, vecX src1, vecX src2)
16230 %{
16231   predicate(n->as_Vector()->length() == 8);
16232   match(Set dst (AddVS src1 src2));
16233   ins_cost(INSN_COST);
16234   format %{ "addv  $dst,$src1,$src2\t# vector (8H)" %}
16235   ins_encode %{
16236     __ addv(as_FloatRegister($dst$$reg), __ T8H,
16237             as_FloatRegister($src1$$reg),
16238             as_FloatRegister($src2$$reg));
16239   %}
16240   ins_pipe(vdop128);
16241 %}
16242 
16243 instruct vadd2I(vecD dst, vecD src1, vecD src2)
16244 %{
16245   predicate(n->as_Vector()->length() == 2);
16246   match(Set dst (AddVI src1 src2));
16247   ins_cost(INSN_COST);
16248   format %{ "addv  $dst,$src1,$src2\t# vector (2S)" %}
16249   ins_encode %{
16250     __ addv(as_FloatRegister($dst$$reg), __ T2S,
16251             as_FloatRegister($src1$$reg),
16252             as_FloatRegister($src2$$reg));
16253   %}
16254   ins_pipe(vdop64);
16255 %}
16256 
16257 instruct vadd4I(vecX dst, vecX src1, vecX src2)
16258 %{
16259   predicate(n->as_Vector()->length() == 4);
16260   match(Set dst (AddVI src1 src2));
16261   ins_cost(INSN_COST);
16262   format %{ "addv  $dst,$src1,$src2\t# vector (4S)" %}
16263   ins_encode %{
16264     __ addv(as_FloatRegister($dst$$reg), __ T4S,
16265             as_FloatRegister($src1$$reg),
16266             as_FloatRegister($src2$$reg));
16267   %}
16268   ins_pipe(vdop128);
16269 %}
16270 
16271 instruct vadd2L(vecX dst, vecX src1, vecX src2)
16272 %{
16273   predicate(n->as_Vector()->length() == 2);
16274   match(Set dst (AddVL src1 src2));
16275   ins_cost(INSN_COST);
16276   format %{ "addv  $dst,$src1,$src2\t# vector (2L)" %}
16277   ins_encode %{
16278     __ addv(as_FloatRegister($dst$$reg), __ T2D,
16279             as_FloatRegister($src1$$reg),
16280             as_FloatRegister($src2$$reg));
16281   %}
16282   ins_pipe(vdop128);
16283 %}
16284 
16285 instruct vadd2F(vecD dst, vecD src1, vecD src2)
16286 %{
16287   predicate(n->as_Vector()->length() == 2);
16288   match(Set dst (AddVF src1 src2));
16289   ins_cost(INSN_COST);
16290   format %{ "fadd  $dst,$src1,$src2\t# vector (2S)" %}
16291   ins_encode %{
16292     __ fadd(as_FloatRegister($dst$$reg), __ T2S,
16293             as_FloatRegister($src1$$reg),
16294             as_FloatRegister($src2$$reg));
16295   %}
16296   ins_pipe(vdop_fp64);
16297 %}
16298 
16299 instruct vadd4F(vecX dst, vecX src1, vecX src2)
16300 %{
16301   predicate(n->as_Vector()->length() == 4);
16302   match(Set dst (AddVF src1 src2));
16303   ins_cost(INSN_COST);
16304   format %{ "fadd  $dst,$src1,$src2\t# vector (4S)" %}
16305   ins_encode %{
16306     __ fadd(as_FloatRegister($dst$$reg), __ T4S,
16307             as_FloatRegister($src1$$reg),
16308             as_FloatRegister($src2$$reg));
16309   %}
16310   ins_pipe(vdop_fp128);
16311 %}
16312 
16313 instruct vadd2D(vecX dst, vecX src1, vecX src2)
16314 %{
16315   match(Set dst (AddVD src1 src2));
16316   ins_cost(INSN_COST);
16317   format %{ "fadd  $dst,$src1,$src2\t# vector (2D)" %}
16318   ins_encode %{
16319     __ fadd(as_FloatRegister($dst$$reg), __ T2D,
16320             as_FloatRegister($src1$$reg),
16321             as_FloatRegister($src2$$reg));
16322   %}
16323   ins_pipe(vdop_fp128);
16324 %}
16325 
16326 // --------------------------------- SUB --------------------------------------
16327 
16328 instruct vsub8B(vecD dst, vecD src1, vecD src2)
16329 %{
16330   predicate(n->as_Vector()->length() == 4 ||
16331             n->as_Vector()->length() == 8);
16332   match(Set dst (SubVB src1 src2));
16333   ins_cost(INSN_COST);
16334   format %{ "subv  $dst,$src1,$src2\t# vector (8B)" %}
16335   ins_encode %{
16336     __ subv(as_FloatRegister($dst$$reg), __ T8B,
16337             as_FloatRegister($src1$$reg),
16338             as_FloatRegister($src2$$reg));
16339   %}
16340   ins_pipe(vdop64);
16341 %}
16342 
16343 instruct vsub16B(vecX dst, vecX src1, vecX src2)
16344 %{
16345   predicate(n->as_Vector()->length() == 16);
16346   match(Set dst (SubVB src1 src2));
16347   ins_cost(INSN_COST);
16348   format %{ "subv  $dst,$src1,$src2\t# vector (16B)" %}
16349   ins_encode %{
16350     __ subv(as_FloatRegister($dst$$reg), __ T16B,
16351             as_FloatRegister($src1$$reg),
16352             as_FloatRegister($src2$$reg));
16353   %}
16354   ins_pipe(vdop128);
16355 %}
16356 
16357 instruct vsub4S(vecD dst, vecD src1, vecD src2)
16358 %{
16359   predicate(n->as_Vector()->length() == 2 ||
16360             n->as_Vector()->length() == 4);
16361   match(Set dst (SubVS src1 src2));
16362   ins_cost(INSN_COST);
16363   format %{ "subv  $dst,$src1,$src2\t# vector (4H)" %}
16364   ins_encode %{
16365     __ subv(as_FloatRegister($dst$$reg), __ T4H,
16366             as_FloatRegister($src1$$reg),
16367             as_FloatRegister($src2$$reg));
16368   %}
16369   ins_pipe(vdop64);
16370 %}
16371 
16372 instruct vsub8S(vecX dst, vecX src1, vecX src2)
16373 %{
16374   predicate(n->as_Vector()->length() == 8);
16375   match(Set dst (SubVS src1 src2));
16376   ins_cost(INSN_COST);
16377   format %{ "subv  $dst,$src1,$src2\t# vector (8H)" %}
16378   ins_encode %{
16379     __ subv(as_FloatRegister($dst$$reg), __ T8H,
16380             as_FloatRegister($src1$$reg),
16381             as_FloatRegister($src2$$reg));
16382   %}
16383   ins_pipe(vdop128);
16384 %}
16385 
16386 instruct vsub2I(vecD dst, vecD src1, vecD src2)
16387 %{
16388   predicate(n->as_Vector()->length() == 2);
16389   match(Set dst (SubVI src1 src2));
16390   ins_cost(INSN_COST);
16391   format %{ "subv  $dst,$src1,$src2\t# vector (2S)" %}
16392   ins_encode %{
16393     __ subv(as_FloatRegister($dst$$reg), __ T2S,
16394             as_FloatRegister($src1$$reg),
16395             as_FloatRegister($src2$$reg));
16396   %}
16397   ins_pipe(vdop64);
16398 %}
16399 
16400 instruct vsub4I(vecX dst, vecX src1, vecX src2)
16401 %{
16402   predicate(n->as_Vector()->length() == 4);
16403   match(Set dst (SubVI src1 src2));
16404   ins_cost(INSN_COST);
16405   format %{ "subv  $dst,$src1,$src2\t# vector (4S)" %}
16406   ins_encode %{
16407     __ subv(as_FloatRegister($dst$$reg), __ T4S,
16408             as_FloatRegister($src1$$reg),
16409             as_FloatRegister($src2$$reg));
16410   %}
16411   ins_pipe(vdop128);
16412 %}
16413 
16414 instruct vsub2L(vecX dst, vecX src1, vecX src2)
16415 %{
16416   predicate(n->as_Vector()->length() == 2);
16417   match(Set dst (SubVL src1 src2));
16418   ins_cost(INSN_COST);
16419   format %{ "subv  $dst,$src1,$src2\t# vector (2L)" %}
16420   ins_encode %{
16421     __ subv(as_FloatRegister($dst$$reg), __ T2D,
16422             as_FloatRegister($src1$$reg),
16423             as_FloatRegister($src2$$reg));
16424   %}
16425   ins_pipe(vdop128);
16426 %}
16427 
16428 instruct vsub2F(vecD dst, vecD src1, vecD src2)
16429 %{
16430   predicate(n->as_Vector()->length() == 2);
16431   match(Set dst (SubVF src1 src2));
16432   ins_cost(INSN_COST);
16433   format %{ "fsub  $dst,$src1,$src2\t# vector (2S)" %}
16434   ins_encode %{
16435     __ fsub(as_FloatRegister($dst$$reg), __ T2S,
16436             as_FloatRegister($src1$$reg),
16437             as_FloatRegister($src2$$reg));
16438   %}
16439   ins_pipe(vdop_fp64);
16440 %}
16441 
16442 instruct vsub4F(vecX dst, vecX src1, vecX src2)
16443 %{
16444   predicate(n->as_Vector()->length() == 4);
16445   match(Set dst (SubVF src1 src2));
16446   ins_cost(INSN_COST);
16447   format %{ "fsub  $dst,$src1,$src2\t# vector (4S)" %}
16448   ins_encode %{
16449     __ fsub(as_FloatRegister($dst$$reg), __ T4S,
16450             as_FloatRegister($src1$$reg),
16451             as_FloatRegister($src2$$reg));
16452   %}
16453   ins_pipe(vdop_fp128);
16454 %}
16455 
16456 instruct vsub2D(vecX dst, vecX src1, vecX src2)
16457 %{
16458   predicate(n->as_Vector()->length() == 2);
16459   match(Set dst (SubVD src1 src2));
16460   ins_cost(INSN_COST);
16461   format %{ "fsub  $dst,$src1,$src2\t# vector (2D)" %}
16462   ins_encode %{
16463     __ fsub(as_FloatRegister($dst$$reg), __ T2D,
16464             as_FloatRegister($src1$$reg),
16465             as_FloatRegister($src2$$reg));
16466   %}
16467   ins_pipe(vdop_fp128);
16468 %}
16469 
16470 // --------------------------------- MUL --------------------------------------
16471 
16472 instruct vmul4S(vecD dst, vecD src1, vecD src2)
16473 %{
16474   predicate(n->as_Vector()->length() == 2 ||
16475             n->as_Vector()->length() == 4);
16476   match(Set dst (MulVS src1 src2));
16477   ins_cost(INSN_COST);
16478   format %{ "mulv  $dst,$src1,$src2\t# vector (4H)" %}
16479   ins_encode %{
16480     __ mulv(as_FloatRegister($dst$$reg), __ T4H,
16481             as_FloatRegister($src1$$reg),
16482             as_FloatRegister($src2$$reg));
16483   %}
16484   ins_pipe(vmul64);
16485 %}
16486 
16487 instruct vmul8S(vecX dst, vecX src1, vecX src2)
16488 %{
16489   predicate(n->as_Vector()->length() == 8);
16490   match(Set dst (MulVS src1 src2));
16491   ins_cost(INSN_COST);
16492   format %{ "mulv  $dst,$src1,$src2\t# vector (8H)" %}
16493   ins_encode %{
16494     __ mulv(as_FloatRegister($dst$$reg), __ T8H,
16495             as_FloatRegister($src1$$reg),
16496             as_FloatRegister($src2$$reg));
16497   %}
16498   ins_pipe(vmul128);
16499 %}
16500 
16501 instruct vmul2I(vecD dst, vecD src1, vecD src2)
16502 %{
16503   predicate(n->as_Vector()->length() == 2);
16504   match(Set dst (MulVI src1 src2));
16505   ins_cost(INSN_COST);
16506   format %{ "mulv  $dst,$src1,$src2\t# vector (2S)" %}
16507   ins_encode %{
16508     __ mulv(as_FloatRegister($dst$$reg), __ T2S,
16509             as_FloatRegister($src1$$reg),
16510             as_FloatRegister($src2$$reg));
16511   %}
16512   ins_pipe(vmul64);
16513 %}
16514 
16515 instruct vmul4I(vecX dst, vecX src1, vecX src2)
16516 %{
16517   predicate(n->as_Vector()->length() == 4);
16518   match(Set dst (MulVI src1 src2));
16519   ins_cost(INSN_COST);
16520   format %{ "mulv  $dst,$src1,$src2\t# vector (4S)" %}
16521   ins_encode %{
16522     __ mulv(as_FloatRegister($dst$$reg), __ T4S,
16523             as_FloatRegister($src1$$reg),
16524             as_FloatRegister($src2$$reg));
16525   %}
16526   ins_pipe(vmul128);
16527 %}
16528 
16529 instruct vmul2F(vecD dst, vecD src1, vecD src2)
16530 %{
16531   predicate(n->as_Vector()->length() == 2);
16532   match(Set dst (MulVF src1 src2));
16533   ins_cost(INSN_COST);
16534   format %{ "fmul  $dst,$src1,$src2\t# vector (2S)" %}
16535   ins_encode %{
16536     __ fmul(as_FloatRegister($dst$$reg), __ T2S,
16537             as_FloatRegister($src1$$reg),
16538             as_FloatRegister($src2$$reg));
16539   %}
16540   ins_pipe(vmuldiv_fp64);
16541 %}
16542 
16543 instruct vmul4F(vecX dst, vecX src1, vecX src2)
16544 %{
16545   predicate(n->as_Vector()->length() == 4);
16546   match(Set dst (MulVF src1 src2));
16547   ins_cost(INSN_COST);
16548   format %{ "fmul  $dst,$src1,$src2\t# vector (4S)" %}
16549   ins_encode %{
16550     __ fmul(as_FloatRegister($dst$$reg), __ T4S,
16551             as_FloatRegister($src1$$reg),
16552             as_FloatRegister($src2$$reg));
16553   %}
16554   ins_pipe(vmuldiv_fp128);
16555 %}
16556 
16557 instruct vmul2D(vecX dst, vecX src1, vecX src2)
16558 %{
16559   predicate(n->as_Vector()->length() == 2);
16560   match(Set dst (MulVD src1 src2));
16561   ins_cost(INSN_COST);
16562   format %{ "fmul  $dst,$src1,$src2\t# vector (2D)" %}
16563   ins_encode %{
16564     __ fmul(as_FloatRegister($dst$$reg), __ T2D,
16565             as_FloatRegister($src1$$reg),
16566             as_FloatRegister($src2$$reg));
16567   %}
16568   ins_pipe(vmuldiv_fp128);
16569 %}
16570 
16571 // --------------------------------- MLA --------------------------------------
16572 
16573 instruct vmla4S(vecD dst, vecD src1, vecD src2)
16574 %{
16575   predicate(n->as_Vector()->length() == 2 ||
16576             n->as_Vector()->length() == 4);
16577   match(Set dst (AddVS dst (MulVS src1 src2)));
16578   ins_cost(INSN_COST);
16579   format %{ "mlav  $dst,$src1,$src2\t# vector (4H)" %}
16580   ins_encode %{
16581     __ mlav(as_FloatRegister($dst$$reg), __ T4H,
16582             as_FloatRegister($src1$$reg),
16583             as_FloatRegister($src2$$reg));
16584   %}
16585   ins_pipe(vmla64);
16586 %}
16587 
16588 instruct vmla8S(vecX dst, vecX src1, vecX src2)
16589 %{
16590   predicate(n->as_Vector()->length() == 8);
16591   match(Set dst (AddVS dst (MulVS src1 src2)));
16592   ins_cost(INSN_COST);
16593   format %{ "mlav  $dst,$src1,$src2\t# vector (8H)" %}
16594   ins_encode %{
16595     __ mlav(as_FloatRegister($dst$$reg), __ T8H,
16596             as_FloatRegister($src1$$reg),
16597             as_FloatRegister($src2$$reg));
16598   %}
16599   ins_pipe(vmla128);
16600 %}
16601 
16602 instruct vmla2I(vecD dst, vecD src1, vecD src2)
16603 %{
16604   predicate(n->as_Vector()->length() == 2);
16605   match(Set dst (AddVI dst (MulVI src1 src2)));
16606   ins_cost(INSN_COST);
16607   format %{ "mlav  $dst,$src1,$src2\t# vector (2S)" %}
16608   ins_encode %{
16609     __ mlav(as_FloatRegister($dst$$reg), __ T2S,
16610             as_FloatRegister($src1$$reg),
16611             as_FloatRegister($src2$$reg));
16612   %}
16613   ins_pipe(vmla64);
16614 %}
16615 
16616 instruct vmla4I(vecX dst, vecX src1, vecX src2)
16617 %{
16618   predicate(n->as_Vector()->length() == 4);
16619   match(Set dst (AddVI dst (MulVI src1 src2)));
16620   ins_cost(INSN_COST);
16621   format %{ "mlav  $dst,$src1,$src2\t# vector (4S)" %}
16622   ins_encode %{
16623     __ mlav(as_FloatRegister($dst$$reg), __ T4S,
16624             as_FloatRegister($src1$$reg),
16625             as_FloatRegister($src2$$reg));
16626   %}
16627   ins_pipe(vmla128);
16628 %}
16629 
16630 // --------------------------------- MLS --------------------------------------
16631 
16632 instruct vmls4S(vecD dst, vecD src1, vecD src2)
16633 %{
16634   predicate(n->as_Vector()->length() == 2 ||
16635             n->as_Vector()->length() == 4);
16636   match(Set dst (SubVS dst (MulVS src1 src2)));
16637   ins_cost(INSN_COST);
16638   format %{ "mlsv  $dst,$src1,$src2\t# vector (4H)" %}
16639   ins_encode %{
16640     __ mlsv(as_FloatRegister($dst$$reg), __ T4H,
16641             as_FloatRegister($src1$$reg),
16642             as_FloatRegister($src2$$reg));
16643   %}
16644   ins_pipe(vmla64);
16645 %}
16646 
16647 instruct vmls8S(vecX dst, vecX src1, vecX src2)
16648 %{
16649   predicate(n->as_Vector()->length() == 8);
16650   match(Set dst (SubVS dst (MulVS src1 src2)));
16651   ins_cost(INSN_COST);
16652   format %{ "mlsv  $dst,$src1,$src2\t# vector (8H)" %}
16653   ins_encode %{
16654     __ mlsv(as_FloatRegister($dst$$reg), __ T8H,
16655             as_FloatRegister($src1$$reg),
16656             as_FloatRegister($src2$$reg));
16657   %}
16658   ins_pipe(vmla128);
16659 %}
16660 
16661 instruct vmls2I(vecD dst, vecD src1, vecD src2)
16662 %{
16663   predicate(n->as_Vector()->length() == 2);
16664   match(Set dst (SubVI dst (MulVI src1 src2)));
16665   ins_cost(INSN_COST);
16666   format %{ "mlsv  $dst,$src1,$src2\t# vector (2S)" %}
16667   ins_encode %{
16668     __ mlsv(as_FloatRegister($dst$$reg), __ T2S,
16669             as_FloatRegister($src1$$reg),
16670             as_FloatRegister($src2$$reg));
16671   %}
16672   ins_pipe(vmla64);
16673 %}
16674 
16675 instruct vmls4I(vecX dst, vecX src1, vecX src2)
16676 %{
16677   predicate(n->as_Vector()->length() == 4);
16678   match(Set dst (SubVI dst (MulVI src1 src2)));
16679   ins_cost(INSN_COST);
16680   format %{ "mlsv  $dst,$src1,$src2\t# vector (4S)" %}
16681   ins_encode %{
16682     __ mlsv(as_FloatRegister($dst$$reg), __ T4S,
16683             as_FloatRegister($src1$$reg),
16684             as_FloatRegister($src2$$reg));
16685   %}
16686   ins_pipe(vmla128);
16687 %}
16688 
16689 // --------------------------------- DIV --------------------------------------
16690 
16691 instruct vdiv2F(vecD dst, vecD src1, vecD src2)
16692 %{
16693   predicate(n->as_Vector()->length() == 2);
16694   match(Set dst (DivVF src1 src2));
16695   ins_cost(INSN_COST);
16696   format %{ "fdiv  $dst,$src1,$src2\t# vector (2S)" %}
16697   ins_encode %{
16698     __ fdiv(as_FloatRegister($dst$$reg), __ T2S,
16699             as_FloatRegister($src1$$reg),
16700             as_FloatRegister($src2$$reg));
16701   %}
16702   ins_pipe(vmuldiv_fp64);
16703 %}
16704 
16705 instruct vdiv4F(vecX dst, vecX src1, vecX src2)
16706 %{
16707   predicate(n->as_Vector()->length() == 4);
16708   match(Set dst (DivVF src1 src2));
16709   ins_cost(INSN_COST);
16710   format %{ "fdiv  $dst,$src1,$src2\t# vector (4S)" %}
16711   ins_encode %{
16712     __ fdiv(as_FloatRegister($dst$$reg), __ T4S,
16713             as_FloatRegister($src1$$reg),
16714             as_FloatRegister($src2$$reg));
16715   %}
16716   ins_pipe(vmuldiv_fp128);
16717 %}
16718 
16719 instruct vdiv2D(vecX dst, vecX src1, vecX src2)
16720 %{
16721   predicate(n->as_Vector()->length() == 2);
16722   match(Set dst (DivVD src1 src2));
16723   ins_cost(INSN_COST);
16724   format %{ "fdiv  $dst,$src1,$src2\t# vector (2D)" %}
16725   ins_encode %{
16726     __ fdiv(as_FloatRegister($dst$$reg), __ T2D,
16727             as_FloatRegister($src1$$reg),
16728             as_FloatRegister($src2$$reg));
16729   %}
16730   ins_pipe(vmuldiv_fp128);
16731 %}
16732 
16733 // --------------------------------- SQRT -------------------------------------
16734 
16735 instruct vsqrt2D(vecX dst, vecX src)
16736 %{
16737   predicate(n->as_Vector()->length() == 2);
16738   match(Set dst (SqrtVD src));
16739   format %{ "fsqrt  $dst, $src\t# vector (2D)" %}
16740   ins_encode %{
16741     __ fsqrt(as_FloatRegister($dst$$reg), __ T2D,
16742              as_FloatRegister($src$$reg));
16743   %}
16744   ins_pipe(vsqrt_fp128);
16745 %}
16746 
16747 // --------------------------------- ABS --------------------------------------
16748 
16749 instruct vabs2F(vecD dst, vecD src)
16750 %{
16751   predicate(n->as_Vector()->length() == 2);
16752   match(Set dst (AbsVF src));
16753   ins_cost(INSN_COST * 3);
16754   format %{ "fabs  $dst,$src\t# vector (2S)" %}
16755   ins_encode %{
16756     __ fabs(as_FloatRegister($dst$$reg), __ T2S,
16757             as_FloatRegister($src$$reg));
16758   %}
16759   ins_pipe(vunop_fp64);
16760 %}
16761 
16762 instruct vabs4F(vecX dst, vecX src)
16763 %{
16764   predicate(n->as_Vector()->length() == 4);
16765   match(Set dst (AbsVF src));
16766   ins_cost(INSN_COST * 3);
16767   format %{ "fabs  $dst,$src\t# vector (4S)" %}
16768   ins_encode %{
16769     __ fabs(as_FloatRegister($dst$$reg), __ T4S,
16770             as_FloatRegister($src$$reg));
16771   %}
16772   ins_pipe(vunop_fp128);
16773 %}
16774 
16775 instruct vabs2D(vecX dst, vecX src)
16776 %{
16777   predicate(n->as_Vector()->length() == 2);
16778   match(Set dst (AbsVD src));
16779   ins_cost(INSN_COST * 3);
16780   format %{ "fabs  $dst,$src\t# vector (2D)" %}
16781   ins_encode %{
16782     __ fabs(as_FloatRegister($dst$$reg), __ T2D,
16783             as_FloatRegister($src$$reg));
16784   %}
16785   ins_pipe(vunop_fp128);
16786 %}
16787 
16788 // --------------------------------- NEG --------------------------------------
16789 
16790 instruct vneg2F(vecD dst, vecD src)
16791 %{
16792   predicate(n->as_Vector()->length() == 2);
16793   match(Set dst (NegVF src));
16794   ins_cost(INSN_COST * 3);
16795   format %{ "fneg  $dst,$src\t# vector (2S)" %}
16796   ins_encode %{
16797     __ fneg(as_FloatRegister($dst$$reg), __ T2S,
16798             as_FloatRegister($src$$reg));
16799   %}
16800   ins_pipe(vunop_fp64);
16801 %}
16802 
16803 instruct vneg4F(vecX dst, vecX src)
16804 %{
16805   predicate(n->as_Vector()->length() == 4);
16806   match(Set dst (NegVF src));
16807   ins_cost(INSN_COST * 3);
16808   format %{ "fneg  $dst,$src\t# vector (4S)" %}
16809   ins_encode %{
16810     __ fneg(as_FloatRegister($dst$$reg), __ T4S,
16811             as_FloatRegister($src$$reg));
16812   %}
16813   ins_pipe(vunop_fp128);
16814 %}
16815 
16816 instruct vneg2D(vecX dst, vecX src)
16817 %{
16818   predicate(n->as_Vector()->length() == 2);
16819   match(Set dst (NegVD src));
16820   ins_cost(INSN_COST * 3);
16821   format %{ "fneg  $dst,$src\t# vector (2D)" %}
16822   ins_encode %{
16823     __ fneg(as_FloatRegister($dst$$reg), __ T2D,
16824             as_FloatRegister($src$$reg));
16825   %}
16826   ins_pipe(vunop_fp128);
16827 %}
16828 
16829 // --------------------------------- AND --------------------------------------
16830 
16831 instruct vand8B(vecD dst, vecD src1, vecD src2)
16832 %{
16833   predicate(n->as_Vector()->length_in_bytes() == 4 ||
16834             n->as_Vector()->length_in_bytes() == 8);
16835   match(Set dst (AndV src1 src2));
16836   ins_cost(INSN_COST);
16837   format %{ "and  $dst,$src1,$src2\t# vector (8B)" %}
16838   ins_encode %{
16839     __ andr(as_FloatRegister($dst$$reg), __ T8B,
16840             as_FloatRegister($src1$$reg),
16841             as_FloatRegister($src2$$reg));
16842   %}
16843   ins_pipe(vlogical64);
16844 %}
16845 
16846 instruct vand16B(vecX dst, vecX src1, vecX src2)
16847 %{
16848   predicate(n->as_Vector()->length_in_bytes() == 16);
16849   match(Set dst (AndV src1 src2));
16850   ins_cost(INSN_COST);
16851   format %{ "and  $dst,$src1,$src2\t# vector (16B)" %}
16852   ins_encode %{
16853     __ andr(as_FloatRegister($dst$$reg), __ T16B,
16854             as_FloatRegister($src1$$reg),
16855             as_FloatRegister($src2$$reg));
16856   %}
16857   ins_pipe(vlogical128);
16858 %}
16859 
16860 // --------------------------------- OR ---------------------------------------
16861 
16862 instruct vor8B(vecD dst, vecD src1, vecD src2)
16863 %{
16864   predicate(n->as_Vector()->length_in_bytes() == 4 ||
16865             n->as_Vector()->length_in_bytes() == 8);
16866   match(Set dst (OrV src1 src2));
16867   ins_cost(INSN_COST);
16868   format %{ "and  $dst,$src1,$src2\t# vector (8B)" %}
16869   ins_encode %{
16870     __ orr(as_FloatRegister($dst$$reg), __ T8B,
16871             as_FloatRegister($src1$$reg),
16872             as_FloatRegister($src2$$reg));
16873   %}
16874   ins_pipe(vlogical64);
16875 %}
16876 
16877 instruct vor16B(vecX dst, vecX src1, vecX src2)
16878 %{
16879   predicate(n->as_Vector()->length_in_bytes() == 16);
16880   match(Set dst (OrV src1 src2));
16881   ins_cost(INSN_COST);
16882   format %{ "orr  $dst,$src1,$src2\t# vector (16B)" %}
16883   ins_encode %{
16884     __ orr(as_FloatRegister($dst$$reg), __ T16B,
16885             as_FloatRegister($src1$$reg),
16886             as_FloatRegister($src2$$reg));
16887   %}
16888   ins_pipe(vlogical128);
16889 %}
16890 
16891 // --------------------------------- XOR --------------------------------------
16892 
16893 instruct vxor8B(vecD dst, vecD src1, vecD src2)
16894 %{
16895   predicate(n->as_Vector()->length_in_bytes() == 4 ||
16896             n->as_Vector()->length_in_bytes() == 8);
16897   match(Set dst (XorV src1 src2));
16898   ins_cost(INSN_COST);
16899   format %{ "xor  $dst,$src1,$src2\t# vector (8B)" %}
16900   ins_encode %{
16901     __ eor(as_FloatRegister($dst$$reg), __ T8B,
16902             as_FloatRegister($src1$$reg),
16903             as_FloatRegister($src2$$reg));
16904   %}
16905   ins_pipe(vlogical64);
16906 %}
16907 
16908 instruct vxor16B(vecX dst, vecX src1, vecX src2)
16909 %{
16910   predicate(n->as_Vector()->length_in_bytes() == 16);
16911   match(Set dst (XorV src1 src2));
16912   ins_cost(INSN_COST);
16913   format %{ "xor  $dst,$src1,$src2\t# vector (16B)" %}
16914   ins_encode %{
16915     __ eor(as_FloatRegister($dst$$reg), __ T16B,
16916             as_FloatRegister($src1$$reg),
16917             as_FloatRegister($src2$$reg));
16918   %}
16919   ins_pipe(vlogical128);
16920 %}
16921 
16922 // ------------------------------ Shift ---------------------------------------
16923 
16924 instruct vshiftcntL(vecX dst, iRegIorL2I cnt) %{
16925   match(Set dst (LShiftCntV cnt));
16926   format %{ "dup  $dst, $cnt\t# shift count (vecX)" %}
16927   ins_encode %{
16928     __ dup(as_FloatRegister($dst$$reg), __ T16B, as_Register($cnt$$reg));
16929   %}
16930   ins_pipe(vdup_reg_reg128);
16931 %}
16932 
16933 // Right shifts on aarch64 SIMD are implemented as left shift by -ve amount
16934 instruct vshiftcntR(vecX dst, iRegIorL2I cnt) %{
16935   match(Set dst (RShiftCntV cnt));
16936   format %{ "dup  $dst, $cnt\t# shift count (vecX)\n\tneg  $dst, $dst\t T16B" %}
16937   ins_encode %{
16938     __ dup(as_FloatRegister($dst$$reg), __ T16B, as_Register($cnt$$reg));
16939     __ negr(as_FloatRegister($dst$$reg), __ T16B, as_FloatRegister($dst$$reg));
16940   %}
16941   ins_pipe(vdup_reg_reg128);
16942 %}
16943 
16944 instruct vsll8B(vecD dst, vecD src, vecX shift) %{
16945   predicate(n->as_Vector()->length() == 4 ||
16946             n->as_Vector()->length() == 8);
16947   match(Set dst (LShiftVB src shift));
16948   match(Set dst (RShiftVB src shift));
16949   ins_cost(INSN_COST);
16950   format %{ "sshl  $dst,$src,$shift\t# vector (8B)" %}
16951   ins_encode %{
16952     __ sshl(as_FloatRegister($dst$$reg), __ T8B,
16953             as_FloatRegister($src$$reg),
16954             as_FloatRegister($shift$$reg));
16955   %}
16956   ins_pipe(vshift64);
16957 %}
16958 
16959 instruct vsll16B(vecX dst, vecX src, vecX shift) %{
16960   predicate(n->as_Vector()->length() == 16);
16961   match(Set dst (LShiftVB src shift));
16962   match(Set dst (RShiftVB src shift));
16963   ins_cost(INSN_COST);
16964   format %{ "sshl  $dst,$src,$shift\t# vector (16B)" %}
16965   ins_encode %{
16966     __ sshl(as_FloatRegister($dst$$reg), __ T16B,
16967             as_FloatRegister($src$$reg),
16968             as_FloatRegister($shift$$reg));
16969   %}
16970   ins_pipe(vshift128);
16971 %}
16972 
16973 instruct vsrl8B(vecD dst, vecD src, vecX shift) %{
16974   predicate(n->as_Vector()->length() == 4 ||
16975             n->as_Vector()->length() == 8);
16976   match(Set dst (URShiftVB src shift));
16977   ins_cost(INSN_COST);
16978   format %{ "ushl  $dst,$src,$shift\t# vector (8B)" %}
16979   ins_encode %{
16980     __ ushl(as_FloatRegister($dst$$reg), __ T8B,
16981             as_FloatRegister($src$$reg),
16982             as_FloatRegister($shift$$reg));
16983   %}
16984   ins_pipe(vshift64);
16985 %}
16986 
16987 instruct vsrl16B(vecX dst, vecX src, vecX shift) %{
16988   predicate(n->as_Vector()->length() == 16);
16989   match(Set dst (URShiftVB src shift));
16990   ins_cost(INSN_COST);
16991   format %{ "ushl  $dst,$src,$shift\t# vector (16B)" %}
16992   ins_encode %{
16993     __ ushl(as_FloatRegister($dst$$reg), __ T16B,
16994             as_FloatRegister($src$$reg),
16995             as_FloatRegister($shift$$reg));
16996   %}
16997   ins_pipe(vshift128);
16998 %}
16999 
17000 instruct vsll8B_imm(vecD dst, vecD src, immI shift) %{
17001   predicate(n->as_Vector()->length() == 4 ||
17002             n->as_Vector()->length() == 8);
17003   match(Set dst (LShiftVB src shift));
17004   ins_cost(INSN_COST);
17005   format %{ "shl    $dst, $src, $shift\t# vector (8B)" %}
17006   ins_encode %{
17007     int sh = (int)$shift$$constant & 31;
17008     if (sh >= 8) {
17009       __ eor(as_FloatRegister($dst$$reg), __ T8B,
17010              as_FloatRegister($src$$reg),
17011              as_FloatRegister($src$$reg));
17012     } else {
17013       __ shl(as_FloatRegister($dst$$reg), __ T8B,
17014              as_FloatRegister($src$$reg), sh);
17015     }
17016   %}
17017   ins_pipe(vshift64_imm);
17018 %}
17019 
17020 instruct vsll16B_imm(vecX dst, vecX src, immI shift) %{
17021   predicate(n->as_Vector()->length() == 16);
17022   match(Set dst (LShiftVB src shift));
17023   ins_cost(INSN_COST);
17024   format %{ "shl    $dst, $src, $shift\t# vector (16B)" %}
17025   ins_encode %{
17026     int sh = (int)$shift$$constant & 31;
17027     if (sh >= 8) {
17028       __ eor(as_FloatRegister($dst$$reg), __ T16B,
17029              as_FloatRegister($src$$reg),
17030              as_FloatRegister($src$$reg));
17031     } else {
17032       __ shl(as_FloatRegister($dst$$reg), __ T16B,
17033              as_FloatRegister($src$$reg), sh);
17034     }
17035   %}
17036   ins_pipe(vshift128_imm);
17037 %}
17038 
17039 instruct vsra8B_imm(vecD dst, vecD src, immI shift) %{
17040   predicate(n->as_Vector()->length() == 4 ||
17041             n->as_Vector()->length() == 8);
17042   match(Set dst (RShiftVB src shift));
17043   ins_cost(INSN_COST);
17044   format %{ "sshr    $dst, $src, $shift\t# vector (8B)" %}
17045   ins_encode %{
17046     int sh = (int)$shift$$constant & 31;
17047     if (sh >= 8) sh = 7;
17048     sh = -sh & 7;
17049     __ sshr(as_FloatRegister($dst$$reg), __ T8B,
17050            as_FloatRegister($src$$reg), sh);
17051   %}
17052   ins_pipe(vshift64_imm);
17053 %}
17054 
17055 instruct vsra16B_imm(vecX dst, vecX src, immI shift) %{
17056   predicate(n->as_Vector()->length() == 16);
17057   match(Set dst (RShiftVB src shift));
17058   ins_cost(INSN_COST);
17059   format %{ "sshr    $dst, $src, $shift\t# vector (16B)" %}
17060   ins_encode %{
17061     int sh = (int)$shift$$constant & 31;
17062     if (sh >= 8) sh = 7;
17063     sh = -sh & 7;
17064     __ sshr(as_FloatRegister($dst$$reg), __ T16B,
17065            as_FloatRegister($src$$reg), sh);
17066   %}
17067   ins_pipe(vshift128_imm);
17068 %}
17069 
17070 instruct vsrl8B_imm(vecD dst, vecD src, immI shift) %{
17071   predicate(n->as_Vector()->length() == 4 ||
17072             n->as_Vector()->length() == 8);
17073   match(Set dst (URShiftVB src shift));
17074   ins_cost(INSN_COST);
17075   format %{ "ushr    $dst, $src, $shift\t# vector (8B)" %}
17076   ins_encode %{
17077     int sh = (int)$shift$$constant & 31;
17078     if (sh >= 8) {
17079       __ eor(as_FloatRegister($dst$$reg), __ T8B,
17080              as_FloatRegister($src$$reg),
17081              as_FloatRegister($src$$reg));
17082     } else {
17083       __ ushr(as_FloatRegister($dst$$reg), __ T8B,
17084              as_FloatRegister($src$$reg), -sh & 7);
17085     }
17086   %}
17087   ins_pipe(vshift64_imm);
17088 %}
17089 
17090 instruct vsrl16B_imm(vecX dst, vecX src, immI shift) %{
17091   predicate(n->as_Vector()->length() == 16);
17092   match(Set dst (URShiftVB src shift));
17093   ins_cost(INSN_COST);
17094   format %{ "ushr    $dst, $src, $shift\t# vector (16B)" %}
17095   ins_encode %{
17096     int sh = (int)$shift$$constant & 31;
17097     if (sh >= 8) {
17098       __ eor(as_FloatRegister($dst$$reg), __ T16B,
17099              as_FloatRegister($src$$reg),
17100              as_FloatRegister($src$$reg));
17101     } else {
17102       __ ushr(as_FloatRegister($dst$$reg), __ T16B,
17103              as_FloatRegister($src$$reg), -sh & 7);
17104     }
17105   %}
17106   ins_pipe(vshift128_imm);
17107 %}
17108 
17109 instruct vsll4S(vecD dst, vecD src, vecX shift) %{
17110   predicate(n->as_Vector()->length() == 2 ||
17111             n->as_Vector()->length() == 4);
17112   match(Set dst (LShiftVS src shift));
17113   match(Set dst (RShiftVS src shift));
17114   ins_cost(INSN_COST);
17115   format %{ "sshl  $dst,$src,$shift\t# vector (4H)" %}
17116   ins_encode %{
17117     __ sshl(as_FloatRegister($dst$$reg), __ T4H,
17118             as_FloatRegister($src$$reg),
17119             as_FloatRegister($shift$$reg));
17120   %}
17121   ins_pipe(vshift64);
17122 %}
17123 
17124 instruct vsll8S(vecX dst, vecX src, vecX shift) %{
17125   predicate(n->as_Vector()->length() == 8);
17126   match(Set dst (LShiftVS src shift));
17127   match(Set dst (RShiftVS src shift));
17128   ins_cost(INSN_COST);
17129   format %{ "sshl  $dst,$src,$shift\t# vector (8H)" %}
17130   ins_encode %{
17131     __ sshl(as_FloatRegister($dst$$reg), __ T8H,
17132             as_FloatRegister($src$$reg),
17133             as_FloatRegister($shift$$reg));
17134   %}
17135   ins_pipe(vshift128);
17136 %}
17137 
17138 instruct vsrl4S(vecD dst, vecD src, vecX shift) %{
17139   predicate(n->as_Vector()->length() == 2 ||
17140             n->as_Vector()->length() == 4);
17141   match(Set dst (URShiftVS src shift));
17142   ins_cost(INSN_COST);
17143   format %{ "ushl  $dst,$src,$shift\t# vector (4H)" %}
17144   ins_encode %{
17145     __ ushl(as_FloatRegister($dst$$reg), __ T4H,
17146             as_FloatRegister($src$$reg),
17147             as_FloatRegister($shift$$reg));
17148   %}
17149   ins_pipe(vshift64);
17150 %}
17151 
17152 instruct vsrl8S(vecX dst, vecX src, vecX shift) %{
17153   predicate(n->as_Vector()->length() == 8);
17154   match(Set dst (URShiftVS src shift));
17155   ins_cost(INSN_COST);
17156   format %{ "ushl  $dst,$src,$shift\t# vector (8H)" %}
17157   ins_encode %{
17158     __ ushl(as_FloatRegister($dst$$reg), __ T8H,
17159             as_FloatRegister($src$$reg),
17160             as_FloatRegister($shift$$reg));
17161   %}
17162   ins_pipe(vshift128);
17163 %}
17164 
17165 instruct vsll4S_imm(vecD dst, vecD src, immI shift) %{
17166   predicate(n->as_Vector()->length() == 2 ||
17167             n->as_Vector()->length() == 4);
17168   match(Set dst (LShiftVS src shift));
17169   ins_cost(INSN_COST);
17170   format %{ "shl    $dst, $src, $shift\t# vector (4H)" %}
17171   ins_encode %{
17172     int sh = (int)$shift$$constant & 31;
17173     if (sh >= 16) {
17174       __ eor(as_FloatRegister($dst$$reg), __ T8B,
17175              as_FloatRegister($src$$reg),
17176              as_FloatRegister($src$$reg));
17177     } else {
17178       __ shl(as_FloatRegister($dst$$reg), __ T4H,
17179              as_FloatRegister($src$$reg), sh);
17180     }
17181   %}
17182   ins_pipe(vshift64_imm);
17183 %}
17184 
17185 instruct vsll8S_imm(vecX dst, vecX src, immI shift) %{
17186   predicate(n->as_Vector()->length() == 8);
17187   match(Set dst (LShiftVS src shift));
17188   ins_cost(INSN_COST);
17189   format %{ "shl    $dst, $src, $shift\t# vector (8H)" %}
17190   ins_encode %{
17191     int sh = (int)$shift$$constant & 31;
17192     if (sh >= 16) {
17193       __ eor(as_FloatRegister($dst$$reg), __ T16B,
17194              as_FloatRegister($src$$reg),
17195              as_FloatRegister($src$$reg));
17196     } else {
17197       __ shl(as_FloatRegister($dst$$reg), __ T8H,
17198              as_FloatRegister($src$$reg), sh);
17199     }
17200   %}
17201   ins_pipe(vshift128_imm);
17202 %}
17203 
17204 instruct vsra4S_imm(vecD dst, vecD src, immI shift) %{
17205   predicate(n->as_Vector()->length() == 2 ||
17206             n->as_Vector()->length() == 4);
17207   match(Set dst (RShiftVS src shift));
17208   ins_cost(INSN_COST);
17209   format %{ "sshr    $dst, $src, $shift\t# vector (4H)" %}
17210   ins_encode %{
17211     int sh = (int)$shift$$constant & 31;
17212     if (sh >= 16) sh = 15;
17213     sh = -sh & 15;
17214     __ sshr(as_FloatRegister($dst$$reg), __ T4H,
17215            as_FloatRegister($src$$reg), sh);
17216   %}
17217   ins_pipe(vshift64_imm);
17218 %}
17219 
17220 instruct vsra8S_imm(vecX dst, vecX src, immI shift) %{
17221   predicate(n->as_Vector()->length() == 8);
17222   match(Set dst (RShiftVS src shift));
17223   ins_cost(INSN_COST);
17224   format %{ "sshr    $dst, $src, $shift\t# vector (8H)" %}
17225   ins_encode %{
17226     int sh = (int)$shift$$constant & 31;
17227     if (sh >= 16) sh = 15;
17228     sh = -sh & 15;
17229     __ sshr(as_FloatRegister($dst$$reg), __ T8H,
17230            as_FloatRegister($src$$reg), sh);
17231   %}
17232   ins_pipe(vshift128_imm);
17233 %}
17234 
17235 instruct vsrl4S_imm(vecD dst, vecD src, immI shift) %{
17236   predicate(n->as_Vector()->length() == 2 ||
17237             n->as_Vector()->length() == 4);
17238   match(Set dst (URShiftVS src shift));
17239   ins_cost(INSN_COST);
17240   format %{ "ushr    $dst, $src, $shift\t# vector (4H)" %}
17241   ins_encode %{
17242     int sh = (int)$shift$$constant & 31;
17243     if (sh >= 16) {
17244       __ eor(as_FloatRegister($dst$$reg), __ T8B,
17245              as_FloatRegister($src$$reg),
17246              as_FloatRegister($src$$reg));
17247     } else {
17248       __ ushr(as_FloatRegister($dst$$reg), __ T4H,
17249              as_FloatRegister($src$$reg), -sh & 15);
17250     }
17251   %}
17252   ins_pipe(vshift64_imm);
17253 %}
17254 
17255 instruct vsrl8S_imm(vecX dst, vecX src, immI shift) %{
17256   predicate(n->as_Vector()->length() == 8);
17257   match(Set dst (URShiftVS src shift));
17258   ins_cost(INSN_COST);
17259   format %{ "ushr    $dst, $src, $shift\t# vector (8H)" %}
17260   ins_encode %{
17261     int sh = (int)$shift$$constant & 31;
17262     if (sh >= 16) {
17263       __ eor(as_FloatRegister($dst$$reg), __ T16B,
17264              as_FloatRegister($src$$reg),
17265              as_FloatRegister($src$$reg));
17266     } else {
17267       __ ushr(as_FloatRegister($dst$$reg), __ T8H,
17268              as_FloatRegister($src$$reg), -sh & 15);
17269     }
17270   %}
17271   ins_pipe(vshift128_imm);
17272 %}
17273 
17274 instruct vsll2I(vecD dst, vecD src, vecX shift) %{
17275   predicate(n->as_Vector()->length() == 2);
17276   match(Set dst (LShiftVI src shift));
17277   match(Set dst (RShiftVI src shift));
17278   ins_cost(INSN_COST);
17279   format %{ "sshl  $dst,$src,$shift\t# vector (2S)" %}
17280   ins_encode %{
17281     __ sshl(as_FloatRegister($dst$$reg), __ T2S,
17282             as_FloatRegister($src$$reg),
17283             as_FloatRegister($shift$$reg));
17284   %}
17285   ins_pipe(vshift64);
17286 %}
17287 
17288 instruct vsll4I(vecX dst, vecX src, vecX shift) %{
17289   predicate(n->as_Vector()->length() == 4);
17290   match(Set dst (LShiftVI src shift));
17291   match(Set dst (RShiftVI src shift));
17292   ins_cost(INSN_COST);
17293   format %{ "sshl  $dst,$src,$shift\t# vector (4S)" %}
17294   ins_encode %{
17295     __ sshl(as_FloatRegister($dst$$reg), __ T4S,
17296             as_FloatRegister($src$$reg),
17297             as_FloatRegister($shift$$reg));
17298   %}
17299   ins_pipe(vshift128);
17300 %}
17301 
17302 instruct vsrl2I(vecD dst, vecD src, vecX shift) %{
17303   predicate(n->as_Vector()->length() == 2);
17304   match(Set dst (URShiftVI src shift));
17305   ins_cost(INSN_COST);
17306   format %{ "ushl  $dst,$src,$shift\t# vector (2S)" %}
17307   ins_encode %{
17308     __ ushl(as_FloatRegister($dst$$reg), __ T2S,
17309             as_FloatRegister($src$$reg),
17310             as_FloatRegister($shift$$reg));
17311   %}
17312   ins_pipe(vshift64);
17313 %}
17314 
17315 instruct vsrl4I(vecX dst, vecX src, vecX shift) %{
17316   predicate(n->as_Vector()->length() == 4);
17317   match(Set dst (URShiftVI src shift));
17318   ins_cost(INSN_COST);
17319   format %{ "ushl  $dst,$src,$shift\t# vector (4S)" %}
17320   ins_encode %{
17321     __ ushl(as_FloatRegister($dst$$reg), __ T4S,
17322             as_FloatRegister($src$$reg),
17323             as_FloatRegister($shift$$reg));
17324   %}
17325   ins_pipe(vshift128);
17326 %}
17327 
17328 instruct vsll2I_imm(vecD dst, vecD src, immI shift) %{
17329   predicate(n->as_Vector()->length() == 2);
17330   match(Set dst (LShiftVI src shift));
17331   ins_cost(INSN_COST);
17332   format %{ "shl    $dst, $src, $shift\t# vector (2S)" %}
17333   ins_encode %{
17334     __ shl(as_FloatRegister($dst$$reg), __ T2S,
17335            as_FloatRegister($src$$reg),
17336            (int)$shift$$constant & 31);
17337   %}
17338   ins_pipe(vshift64_imm);
17339 %}
17340 
17341 instruct vsll4I_imm(vecX dst, vecX src, immI shift) %{
17342   predicate(n->as_Vector()->length() == 4);
17343   match(Set dst (LShiftVI src shift));
17344   ins_cost(INSN_COST);
17345   format %{ "shl    $dst, $src, $shift\t# vector (4S)" %}
17346   ins_encode %{
17347     __ shl(as_FloatRegister($dst$$reg), __ T4S,
17348            as_FloatRegister($src$$reg),
17349            (int)$shift$$constant & 31);
17350   %}
17351   ins_pipe(vshift128_imm);
17352 %}
17353 
17354 instruct vsra2I_imm(vecD dst, vecD src, immI shift) %{
17355   predicate(n->as_Vector()->length() == 2);
17356   match(Set dst (RShiftVI src shift));
17357   ins_cost(INSN_COST);
17358   format %{ "sshr    $dst, $src, $shift\t# vector (2S)" %}
17359   ins_encode %{
17360     __ sshr(as_FloatRegister($dst$$reg), __ T2S,
17361             as_FloatRegister($src$$reg),
17362             -(int)$shift$$constant & 31);
17363   %}
17364   ins_pipe(vshift64_imm);
17365 %}
17366 
17367 instruct vsra4I_imm(vecX dst, vecX src, immI shift) %{
17368   predicate(n->as_Vector()->length() == 4);
17369   match(Set dst (RShiftVI src shift));
17370   ins_cost(INSN_COST);
17371   format %{ "sshr    $dst, $src, $shift\t# vector (4S)" %}
17372   ins_encode %{
17373     __ sshr(as_FloatRegister($dst$$reg), __ T4S,
17374             as_FloatRegister($src$$reg),
17375             -(int)$shift$$constant & 31);
17376   %}
17377   ins_pipe(vshift128_imm);
17378 %}
17379 
17380 instruct vsrl2I_imm(vecD dst, vecD src, immI shift) %{
17381   predicate(n->as_Vector()->length() == 2);
17382   match(Set dst (URShiftVI src shift));
17383   ins_cost(INSN_COST);
17384   format %{ "ushr    $dst, $src, $shift\t# vector (2S)" %}
17385   ins_encode %{
17386     __ ushr(as_FloatRegister($dst$$reg), __ T2S,
17387             as_FloatRegister($src$$reg),
17388             -(int)$shift$$constant & 31);
17389   %}
17390   ins_pipe(vshift64_imm);
17391 %}
17392 
17393 instruct vsrl4I_imm(vecX dst, vecX src, immI shift) %{
17394   predicate(n->as_Vector()->length() == 4);
17395   match(Set dst (URShiftVI src shift));
17396   ins_cost(INSN_COST);
17397   format %{ "ushr    $dst, $src, $shift\t# vector (4S)" %}
17398   ins_encode %{
17399     __ ushr(as_FloatRegister($dst$$reg), __ T4S,
17400             as_FloatRegister($src$$reg),
17401             -(int)$shift$$constant & 31);
17402   %}
17403   ins_pipe(vshift128_imm);
17404 %}
17405 
17406 instruct vsll2L(vecX dst, vecX src, vecX shift) %{
17407   predicate(n->as_Vector()->length() == 2);
17408   match(Set dst (LShiftVL src shift));
17409   match(Set dst (RShiftVL src shift));
17410   ins_cost(INSN_COST);
17411   format %{ "sshl  $dst,$src,$shift\t# vector (2D)" %}
17412   ins_encode %{
17413     __ sshl(as_FloatRegister($dst$$reg), __ T2D,
17414             as_FloatRegister($src$$reg),
17415             as_FloatRegister($shift$$reg));
17416   %}
17417   ins_pipe(vshift128);
17418 %}
17419 
17420 instruct vsrl2L(vecX dst, vecX src, vecX shift) %{
17421   predicate(n->as_Vector()->length() == 2);
17422   match(Set dst (URShiftVL src shift));
17423   ins_cost(INSN_COST);
17424   format %{ "ushl  $dst,$src,$shift\t# vector (2D)" %}
17425   ins_encode %{
17426     __ ushl(as_FloatRegister($dst$$reg), __ T2D,
17427             as_FloatRegister($src$$reg),
17428             as_FloatRegister($shift$$reg));
17429   %}
17430   ins_pipe(vshift128);
17431 %}
17432 
17433 instruct vsll2L_imm(vecX dst, vecX src, immI shift) %{
17434   predicate(n->as_Vector()->length() == 2);
17435   match(Set dst (LShiftVL src shift));
17436   ins_cost(INSN_COST);
17437   format %{ "shl    $dst, $src, $shift\t# vector (2D)" %}
17438   ins_encode %{
17439     __ shl(as_FloatRegister($dst$$reg), __ T2D,
17440            as_FloatRegister($src$$reg),
17441            (int)$shift$$constant & 63);
17442   %}
17443   ins_pipe(vshift128_imm);
17444 %}
17445 
17446 instruct vsra2L_imm(vecX dst, vecX src, immI shift) %{
17447   predicate(n->as_Vector()->length() == 2);
17448   match(Set dst (RShiftVL src shift));
17449   ins_cost(INSN_COST);
17450   format %{ "sshr    $dst, $src, $shift\t# vector (2D)" %}
17451   ins_encode %{
17452     __ sshr(as_FloatRegister($dst$$reg), __ T2D,
17453             as_FloatRegister($src$$reg),
17454             -(int)$shift$$constant & 63);
17455   %}
17456   ins_pipe(vshift128_imm);
17457 %}
17458 
17459 instruct vsrl2L_imm(vecX dst, vecX src, immI shift) %{
17460   predicate(n->as_Vector()->length() == 2);
17461   match(Set dst (URShiftVL src shift));
17462   ins_cost(INSN_COST);
17463   format %{ "ushr    $dst, $src, $shift\t# vector (2D)" %}
17464   ins_encode %{
17465     __ ushr(as_FloatRegister($dst$$reg), __ T2D,
17466             as_FloatRegister($src$$reg),
17467             -(int)$shift$$constant & 63);
17468   %}
17469   ins_pipe(vshift128_imm);
17470 %}
17471 
17472 //----------PEEPHOLE RULES-----------------------------------------------------
17473 // These must follow all instruction definitions as they use the names
17474 // defined in the instructions definitions.
17475 //
17476 // peepmatch ( root_instr_name [preceding_instruction]* );
17477 //
17478 // peepconstraint %{
17479 // (instruction_number.operand_name relational_op instruction_number.operand_name
17480 //  [, ...] );
17481 // // instruction numbers are zero-based using left to right order in peepmatch
17482 //
17483 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
17484 // // provide an instruction_number.operand_name for each operand that appears
17485 // // in the replacement instruction's match rule
17486 //
17487 // ---------VM FLAGS---------------------------------------------------------
17488 //
17489 // All peephole optimizations can be turned off using -XX:-OptoPeephole
17490 //
17491 // Each peephole rule is given an identifying number starting with zero and
17492 // increasing by one in the order seen by the parser.  An individual peephole
17493 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
17494 // on the command-line.
17495 //
17496 // ---------CURRENT LIMITATIONS----------------------------------------------
17497 //
17498 // Only match adjacent instructions in same basic block
17499 // Only equality constraints
17500 // Only constraints between operands, not (0.dest_reg == RAX_enc)
17501 // Only one replacement instruction
17502 //
17503 // ---------EXAMPLE----------------------------------------------------------
17504 //
17505 // // pertinent parts of existing instructions in architecture description
17506 // instruct movI(iRegINoSp dst, iRegI src)
17507 // %{
17508 //   match(Set dst (CopyI src));
17509 // %}
17510 //
17511 // instruct incI_iReg(iRegINoSp dst, immI1 src, rFlagsReg cr)
17512 // %{
17513 //   match(Set dst (AddI dst src));
17514 //   effect(KILL cr);
17515 // %}
17516 //
17517 // // Change (inc mov) to lea
17518 // peephole %{
17519 //   // increment preceeded by register-register move
17520 //   peepmatch ( incI_iReg movI );
17521 //   // require that the destination register of the increment
17522 //   // match the destination register of the move
17523 //   peepconstraint ( 0.dst == 1.dst );
17524 //   // construct a replacement instruction that sets
17525 //   // the destination to ( move's source register + one )
17526 //   peepreplace ( leaI_iReg_immI( 0.dst 1.src 0.src ) );
17527 // %}
17528 //
17529 
17530 // Implementation no longer uses movX instructions since
17531 // machine-independent system no longer uses CopyX nodes.
17532 //
17533 // peephole
17534 // %{
17535 //   peepmatch (incI_iReg movI);
17536 //   peepconstraint (0.dst == 1.dst);
17537 //   peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
17538 // %}
17539 
17540 // peephole
17541 // %{
17542 //   peepmatch (decI_iReg movI);
17543 //   peepconstraint (0.dst == 1.dst);
17544 //   peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
17545 // %}
17546 
17547 // peephole
17548 // %{
17549 //   peepmatch (addI_iReg_imm movI);
17550 //   peepconstraint (0.dst == 1.dst);
17551 //   peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
17552 // %}
17553 
17554 // peephole
17555 // %{
17556 //   peepmatch (incL_iReg movL);
17557 //   peepconstraint (0.dst == 1.dst);
17558 //   peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
17559 // %}
17560 
17561 // peephole
17562 // %{
17563 //   peepmatch (decL_iReg movL);
17564 //   peepconstraint (0.dst == 1.dst);
17565 //   peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
17566 // %}
17567 
17568 // peephole
17569 // %{
17570 //   peepmatch (addL_iReg_imm movL);
17571 //   peepconstraint (0.dst == 1.dst);
17572 //   peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
17573 // %}
17574 
17575 // peephole
17576 // %{
17577 //   peepmatch (addP_iReg_imm movP);
17578 //   peepconstraint (0.dst == 1.dst);
17579 //   peepreplace (leaP_iReg_imm(0.dst 1.src 0.src));
17580 // %}
17581 
17582 // // Change load of spilled value to only a spill
17583 // instruct storeI(memory mem, iRegI src)
17584 // %{
17585 //   match(Set mem (StoreI mem src));
17586 // %}
17587 //
17588 // instruct loadI(iRegINoSp dst, memory mem)
17589 // %{
17590 //   match(Set dst (LoadI mem));
17591 // %}
17592 //
17593 
17594 //----------SMARTSPILL RULES---------------------------------------------------
17595 // These must follow all instruction definitions as they use the names
17596 // defined in the instructions definitions.
17597 
17598 // Local Variables:
17599 // mode: c++
17600 // End: