1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 
  31 #ifdef ASSERT
  32 #include "gc/shared/collectedHeap.hpp"
  33 #endif
  34 
  35 // MacroAssembler extends Assembler by frequently used macros.
  36 //
  37 // Instructions for which a 'better' code sequence exists depending
  38 // on arguments should also go in here.
  39 
  40 class MacroAssembler: public Assembler {
  41   friend class LIR_Assembler;
  42 
  43  public:
  44   using Assembler::mov;
  45   using Assembler::movi;
  46 
  47  protected:
  48 
  49   // Support for VM calls
  50   //
  51   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  52   // may customize this version by overriding it for its purposes (e.g., to save/restore
  53   // additional registers when doing a VM call).
  54   virtual void call_VM_leaf_base(
  55     address entry_point,               // the entry point
  56     int     number_of_arguments,        // the number of arguments to pop after the call
  57     Label *retaddr = NULL
  58   );
  59 
  60   virtual void call_VM_leaf_base(
  61     address entry_point,               // the entry point
  62     int     number_of_arguments,        // the number of arguments to pop after the call
  63     Label &retaddr) {
  64     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  65   }
  66 
  67   // This is the base routine called by the different versions of call_VM. The interpreter
  68   // may customize this version by overriding it for its purposes (e.g., to save/restore
  69   // additional registers when doing a VM call).
  70   //
  71   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  72   // returns the register which contains the thread upon return. If a thread register has been
  73   // specified, the return value will correspond to that register. If no last_java_sp is specified
  74   // (noreg) than rsp will be used instead.
  75   virtual void call_VM_base(           // returns the register containing the thread upon return
  76     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  77     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  78     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  79     address  entry_point,              // the entry point
  80     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  81     bool     check_exceptions          // whether to check for pending exceptions after return
  82   );
  83 
  84   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85   // The implementation is only non-empty for the InterpreterMacroAssembler,
  86   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87   virtual void check_and_handle_popframe(Register java_thread);
  88   virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  91 
  92   // Maximum size of class area in Metaspace when compressed
  93   uint64_t use_XOR_for_compressed_class_base;
  94 
  95  public:
  96   MacroAssembler(CodeBuffer* code) : Assembler(code) {
  97     use_XOR_for_compressed_class_base
  98       = (operand_valid_for_logical_immediate(false /*is32*/,
  99                                              (uint64_t)Universe::narrow_klass_base())
 100          && ((uint64_t)Universe::narrow_klass_base()
 101              > (1u << log2_intptr(CompressedClassSpaceSize))));
 102   }
 103 
 104   // Biased locking support
 105   // lock_reg and obj_reg must be loaded up with the appropriate values.
 106   // swap_reg is killed.
 107   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 108   // Optional slow case is for implementations (interpreter and C1) which branch to
 109   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 110   // Returns offset of first potentially-faulting instruction for null
 111   // check info (currently consumed only by C1). If
 112   // swap_reg_contains_mark is true then returns -1 as it is assumed
 113   // the calling code has already passed any potential faults.
 114   int biased_locking_enter(Register lock_reg, Register obj_reg,
 115                            Register swap_reg, Register tmp_reg,
 116                            bool swap_reg_contains_mark,
 117                            Label& done, Label* slow_case = NULL,
 118                            BiasedLockingCounters* counters = NULL);
 119   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 120 
 121 
 122   // Helper functions for statistics gathering.
 123   // Unconditional atomic increment.
 124   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 125   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 126     lea(tmp1, counter_addr);
 127     atomic_incw(tmp1, tmp2, tmp3);
 128   }
 129   // Load Effective Address
 130   void lea(Register r, const Address &a) {
 131     InstructionMark im(this);
 132     code_section()->relocate(inst_mark(), a.rspec());
 133     a.lea(this, r);
 134   }
 135 
 136   void addmw(Address a, Register incr, Register scratch) {
 137     ldrw(scratch, a);
 138     addw(scratch, scratch, incr);
 139     strw(scratch, a);
 140   }
 141 
 142   // Add constant to memory word
 143   void addmw(Address a, int imm, Register scratch) {
 144     ldrw(scratch, a);
 145     if (imm > 0)
 146       addw(scratch, scratch, (unsigned)imm);
 147     else
 148       subw(scratch, scratch, (unsigned)-imm);
 149     strw(scratch, a);
 150   }
 151 
 152   void bind(Label& L) {
 153     Assembler::bind(L);
 154     code()->clear_last_membar();
 155   }
 156 
 157   void membar(Membar_mask_bits order_constraint);
 158 
 159   // Frame creation and destruction shared between JITs.
 160   void build_frame(int framesize);
 161   void remove_frame(int framesize);
 162 
 163   virtual void _call_Unimplemented(address call_site) {
 164     mov(rscratch2, call_site);
 165     haltsim();
 166   }
 167 
 168 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 169 
 170   virtual void notify(int type);
 171 
 172   // aliases defined in AARCH64 spec
 173 
 174   template<class T>
 175   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 176   inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
 177 
 178   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 179   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 180 
 181   void cset(Register Rd, Assembler::Condition cond) {
 182     csinc(Rd, zr, zr, ~cond);
 183   }
 184   void csetw(Register Rd, Assembler::Condition cond) {
 185     csincw(Rd, zr, zr, ~cond);
 186   }
 187 
 188   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 189     csneg(Rd, Rn, Rn, ~cond);
 190   }
 191   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 192     csnegw(Rd, Rn, Rn, ~cond);
 193   }
 194 
 195   inline void movw(Register Rd, Register Rn) {
 196     if (Rd == sp || Rn == sp) {
 197       addw(Rd, Rn, 0U);
 198     } else {
 199       orrw(Rd, zr, Rn);
 200     }
 201   }
 202   inline void mov(Register Rd, Register Rn) {
 203     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 204     if (Rd == Rn) {
 205     } else if (Rd == sp || Rn == sp) {
 206       add(Rd, Rn, 0U);
 207     } else {
 208       orr(Rd, zr, Rn);
 209     }
 210   }
 211 
 212   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 213   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 214 
 215   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 216   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 217 
 218   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 219   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 220 
 221   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 222     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 223   }
 224   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 225     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 226   }
 227 
 228   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 229     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 230   }
 231   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 232     bfm(Rd, Rn, lsb , (lsb + width - 1));
 233   }
 234 
 235   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 236     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 237   }
 238   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 239     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 240   }
 241 
 242   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 243     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 244   }
 245   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 246     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 247   }
 248 
 249   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 250     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 251   }
 252   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 253     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 254   }
 255 
 256   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 257     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 258   }
 259   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 260     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 261   }
 262 
 263   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 264     sbfmw(Rd, Rn, imm, 31);
 265   }
 266 
 267   inline void asr(Register Rd, Register Rn, unsigned imm) {
 268     sbfm(Rd, Rn, imm, 63);
 269   }
 270 
 271   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 272     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 273   }
 274 
 275   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 276     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 277   }
 278 
 279   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 280     ubfmw(Rd, Rn, imm, 31);
 281   }
 282 
 283   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 284     ubfm(Rd, Rn, imm, 63);
 285   }
 286 
 287   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 288     extrw(Rd, Rn, Rn, imm);
 289   }
 290 
 291   inline void ror(Register Rd, Register Rn, unsigned imm) {
 292     extr(Rd, Rn, Rn, imm);
 293   }
 294 
 295   inline void sxtbw(Register Rd, Register Rn) {
 296     sbfmw(Rd, Rn, 0, 7);
 297   }
 298   inline void sxthw(Register Rd, Register Rn) {
 299     sbfmw(Rd, Rn, 0, 15);
 300   }
 301   inline void sxtb(Register Rd, Register Rn) {
 302     sbfm(Rd, Rn, 0, 7);
 303   }
 304   inline void sxth(Register Rd, Register Rn) {
 305     sbfm(Rd, Rn, 0, 15);
 306   }
 307   inline void sxtw(Register Rd, Register Rn) {
 308     sbfm(Rd, Rn, 0, 31);
 309   }
 310 
 311   inline void uxtbw(Register Rd, Register Rn) {
 312     ubfmw(Rd, Rn, 0, 7);
 313   }
 314   inline void uxthw(Register Rd, Register Rn) {
 315     ubfmw(Rd, Rn, 0, 15);
 316   }
 317   inline void uxtb(Register Rd, Register Rn) {
 318     ubfm(Rd, Rn, 0, 7);
 319   }
 320   inline void uxth(Register Rd, Register Rn) {
 321     ubfm(Rd, Rn, 0, 15);
 322   }
 323   inline void uxtw(Register Rd, Register Rn) {
 324     ubfm(Rd, Rn, 0, 31);
 325   }
 326 
 327   inline void cmnw(Register Rn, Register Rm) {
 328     addsw(zr, Rn, Rm);
 329   }
 330   inline void cmn(Register Rn, Register Rm) {
 331     adds(zr, Rn, Rm);
 332   }
 333 
 334   inline void cmpw(Register Rn, Register Rm) {
 335     subsw(zr, Rn, Rm);
 336   }
 337   inline void cmp(Register Rn, Register Rm) {
 338     subs(zr, Rn, Rm);
 339   }
 340 
 341   inline void negw(Register Rd, Register Rn) {
 342     subw(Rd, zr, Rn);
 343   }
 344 
 345   inline void neg(Register Rd, Register Rn) {
 346     sub(Rd, zr, Rn);
 347   }
 348 
 349   inline void negsw(Register Rd, Register Rn) {
 350     subsw(Rd, zr, Rn);
 351   }
 352 
 353   inline void negs(Register Rd, Register Rn) {
 354     subs(Rd, zr, Rn);
 355   }
 356 
 357   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 358     addsw(zr, Rn, Rm, kind, shift);
 359   }
 360   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 361     adds(zr, Rn, Rm, kind, shift);
 362   }
 363 
 364   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 365     subsw(zr, Rn, Rm, kind, shift);
 366   }
 367   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 368     subs(zr, Rn, Rm, kind, shift);
 369   }
 370 
 371   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 372     subw(Rd, zr, Rn, kind, shift);
 373   }
 374 
 375   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 376     sub(Rd, zr, Rn, kind, shift);
 377   }
 378 
 379   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 380     subsw(Rd, zr, Rn, kind, shift);
 381   }
 382 
 383   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 384     subs(Rd, zr, Rn, kind, shift);
 385   }
 386 
 387   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 388     msubw(Rd, Rn, Rm, zr);
 389   }
 390   inline void mneg(Register Rd, Register Rn, Register Rm) {
 391     msub(Rd, Rn, Rm, zr);
 392   }
 393 
 394   inline void mulw(Register Rd, Register Rn, Register Rm) {
 395     maddw(Rd, Rn, Rm, zr);
 396   }
 397   inline void mul(Register Rd, Register Rn, Register Rm) {
 398     madd(Rd, Rn, Rm, zr);
 399   }
 400 
 401   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 402     smsubl(Rd, Rn, Rm, zr);
 403   }
 404   inline void smull(Register Rd, Register Rn, Register Rm) {
 405     smaddl(Rd, Rn, Rm, zr);
 406   }
 407 
 408   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 409     umsubl(Rd, Rn, Rm, zr);
 410   }
 411   inline void umull(Register Rd, Register Rn, Register Rm) {
 412     umaddl(Rd, Rn, Rm, zr);
 413   }
 414 
 415 #define WRAP(INSN)                                                            \
 416   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 417     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 418       nop();                                                                  \
 419     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 420   }
 421 
 422   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 423   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 424 #undef WRAP
 425 
 426 
 427   // macro assembly operations needed for aarch64
 428 
 429   // first two private routines for loading 32 bit or 64 bit constants
 430 private:
 431 
 432   void mov_immediate64(Register dst, u_int64_t imm64);
 433   void mov_immediate32(Register dst, u_int32_t imm32);
 434 
 435   int push(unsigned int bitset, Register stack);
 436   int pop(unsigned int bitset, Register stack);
 437 
 438   void mov(Register dst, Address a);
 439 
 440 public:
 441   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 442   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 443 
 444   // Push and pop everything that might be clobbered by a native
 445   // runtime call except rscratch1 and rscratch2.  (They are always
 446   // scratch, so we don't have to protect them.)  Only save the lower
 447   // 64 bits of each vector register.
 448   void push_call_clobbered_registers();
 449   void pop_call_clobbered_registers();
 450   void push_call_clobbered_fp_registers();
 451   void pop_call_clobbered_fp_registers();
 452 
 453   // now mov instructions for loading absolute addresses and 32 or
 454   // 64 bit integers
 455 
 456   inline void mov(Register dst, address addr) {
 457     assert(Universe::heap() == NULL
 458            || !Universe::heap()->is_in(addr), "use movptr for oop pointers");
 459     mov_immediate64(dst, (uintptr_t)addr);
 460   }
 461 
 462   inline void mov(Register dst, u_int64_t imm64)
 463   {
 464     mov_immediate64(dst, imm64);
 465   }
 466 
 467   inline void movw(Register dst, u_int32_t imm32)
 468   {
 469     mov_immediate32(dst, imm32);
 470   }
 471 
 472   inline void mov(Register dst, long l)
 473   {
 474     mov(dst, (u_int64_t)l);
 475   }
 476 
 477   inline void mov(Register dst, int i)
 478   {
 479     mov(dst, (long)i);
 480   }
 481 
 482   void mov(Register dst, RegisterOrConstant src) {
 483     if (src.is_register())
 484       mov(dst, src.as_register());
 485     else
 486       mov(dst, src.as_constant());
 487   }
 488 
 489   void movptr(Register r, uintptr_t imm64);
 490 
 491   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 492 
 493   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 494     orr(Vd, T, Vn, Vn);
 495   }
 496 
 497 public:
 498 
 499   // Generalized Test Bit And Branch, including a "far" variety which
 500   // spans more than 32KiB.
 501   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 502     assert(cond == EQ || cond == NE, "must be");
 503 
 504     if (far)
 505       cond = ~cond;
 506 
 507     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 508     if (cond == Assembler::EQ)
 509       branch = &Assembler::tbz;
 510     else
 511       branch = &Assembler::tbnz;
 512 
 513     if (far) {
 514       Label L;
 515       (this->*branch)(Rt, bitpos, L);
 516       b(dest);
 517       bind(L);
 518     } else {
 519       (this->*branch)(Rt, bitpos, dest);
 520     }
 521   }
 522 
 523   // macro instructions for accessing and updating floating point
 524   // status register
 525   //
 526   // FPSR : op1 == 011
 527   //        CRn == 0100
 528   //        CRm == 0100
 529   //        op2 == 001
 530 
 531   inline void get_fpsr(Register reg)
 532   {
 533     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 534   }
 535 
 536   inline void set_fpsr(Register reg)
 537   {
 538     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 539   }
 540 
 541   inline void clear_fpsr()
 542   {
 543     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 544   }
 545 
 546   // Macro instructions for accessing and updating the condition flags
 547   inline void get_nzcv(Register reg)
 548   {
 549     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 550   }
 551 
 552   inline void set_nzcv(Register reg)
 553   {
 554     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 555   }
 556 
 557   // DCZID_EL0: op1 == 011
 558   //            CRn == 0000
 559   //            CRm == 0000
 560   //            op2 == 111
 561   inline void get_dczid_el0(Register reg)
 562   {
 563     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 564   }
 565 
 566   // CTR_EL0:   op1 == 011
 567   //            CRn == 0000
 568   //            CRm == 0000
 569   //            op2 == 001
 570   inline void get_ctr_el0(Register reg)
 571   {
 572     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 573   }
 574 
 575   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 576   int corrected_idivl(Register result, Register ra, Register rb,
 577                       bool want_remainder, Register tmp = rscratch1);
 578   int corrected_idivq(Register result, Register ra, Register rb,
 579                       bool want_remainder, Register tmp = rscratch1);
 580 
 581   // Support for NULL-checks
 582   //
 583   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 584   // If the accessed location is M[reg + offset] and the offset is known, provide the
 585   // offset. No explicit code generation is needed if the offset is within a certain
 586   // range (0 <= offset <= page_size).
 587 
 588   virtual void null_check(Register reg, int offset = -1);
 589   static bool needs_explicit_null_check(intptr_t offset);
 590 
 591   static address target_addr_for_insn(address insn_addr, unsigned insn);
 592   static address target_addr_for_insn(address insn_addr) {
 593     unsigned insn = *(unsigned*)insn_addr;
 594     return target_addr_for_insn(insn_addr, insn);
 595   }
 596 
 597   // Required platform-specific helpers for Label::patch_instructions.
 598   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 599   static int pd_patch_instruction_size(address branch, address target);
 600   static void pd_patch_instruction(address branch, address target) {
 601     pd_patch_instruction_size(branch, target);
 602   }
 603   static address pd_call_destination(address branch) {
 604     return target_addr_for_insn(branch);
 605   }
 606 #ifndef PRODUCT
 607   static void pd_print_patched_instruction(address branch);
 608 #endif
 609 
 610   static int patch_oop(address insn_addr, address o);
 611 
 612   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 613 
 614   // The following 4 methods return the offset of the appropriate move instruction
 615 
 616   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 617   int load_unsigned_byte(Register dst, Address src);
 618   int load_unsigned_short(Register dst, Address src);
 619 
 620   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 621   int load_signed_byte(Register dst, Address src);
 622   int load_signed_short(Register dst, Address src);
 623 
 624   int load_signed_byte32(Register dst, Address src);
 625   int load_signed_short32(Register dst, Address src);
 626 
 627   // Support for sign-extension (hi:lo = extend_sign(lo))
 628   void extend_sign(Register hi, Register lo);
 629 
 630   // Load and store values by size and signed-ness
 631   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 632   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 633 
 634   // Support for inc/dec with optimal instruction selection depending on value
 635 
 636   // x86_64 aliases an unqualified register/address increment and
 637   // decrement to call incrementq and decrementq but also supports
 638   // explicitly sized calls to incrementq/decrementq or
 639   // incrementl/decrementl
 640 
 641   // for aarch64 the proper convention would be to use
 642   // increment/decrement for 64 bit operatons and
 643   // incrementw/decrementw for 32 bit operations. so when porting
 644   // x86_64 code we can leave calls to increment/decrement as is,
 645   // replace incrementq/decrementq with increment/decrement and
 646   // replace incrementl/decrementl with incrementw/decrementw.
 647 
 648   // n.b. increment/decrement calls with an Address destination will
 649   // need to use a scratch register to load the value to be
 650   // incremented. increment/decrement calls which add or subtract a
 651   // constant value greater than 2^12 will need to use a 2nd scratch
 652   // register to hold the constant. so, a register increment/decrement
 653   // may trash rscratch2 and an address increment/decrement trash
 654   // rscratch and rscratch2
 655 
 656   void decrementw(Address dst, int value = 1);
 657   void decrementw(Register reg, int value = 1);
 658 
 659   void decrement(Register reg, int value = 1);
 660   void decrement(Address dst, int value = 1);
 661 
 662   void incrementw(Address dst, int value = 1);
 663   void incrementw(Register reg, int value = 1);
 664 
 665   void increment(Register reg, int value = 1);
 666   void increment(Address dst, int value = 1);
 667 
 668 
 669   // Alignment
 670   void align(int modulus);
 671 
 672   // Stack frame creation/removal
 673   void enter()
 674   {
 675     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 676     mov(rfp, sp);
 677   }
 678   void leave()
 679   {
 680     mov(sp, rfp);
 681     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 682   }
 683 
 684   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 685   // The pointer will be loaded into the thread register.
 686   void get_thread(Register thread);
 687 
 688 
 689   // Support for VM calls
 690   //
 691   // It is imperative that all calls into the VM are handled via the call_VM macros.
 692   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 693   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 694 
 695 
 696   void call_VM(Register oop_result,
 697                address entry_point,
 698                bool check_exceptions = true);
 699   void call_VM(Register oop_result,
 700                address entry_point,
 701                Register arg_1,
 702                bool check_exceptions = true);
 703   void call_VM(Register oop_result,
 704                address entry_point,
 705                Register arg_1, Register arg_2,
 706                bool check_exceptions = true);
 707   void call_VM(Register oop_result,
 708                address entry_point,
 709                Register arg_1, Register arg_2, Register arg_3,
 710                bool check_exceptions = true);
 711 
 712   // Overloadings with last_Java_sp
 713   void call_VM(Register oop_result,
 714                Register last_java_sp,
 715                address entry_point,
 716                int number_of_arguments = 0,
 717                bool check_exceptions = true);
 718   void call_VM(Register oop_result,
 719                Register last_java_sp,
 720                address entry_point,
 721                Register arg_1, bool
 722                check_exceptions = true);
 723   void call_VM(Register oop_result,
 724                Register last_java_sp,
 725                address entry_point,
 726                Register arg_1, Register arg_2,
 727                bool check_exceptions = true);
 728   void call_VM(Register oop_result,
 729                Register last_java_sp,
 730                address entry_point,
 731                Register arg_1, Register arg_2, Register arg_3,
 732                bool check_exceptions = true);
 733 
 734   void get_vm_result  (Register oop_result, Register thread);
 735   void get_vm_result_2(Register metadata_result, Register thread);
 736 
 737   // These always tightly bind to MacroAssembler::call_VM_base
 738   // bypassing the virtual implementation
 739   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 740   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 741   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 742   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 743   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 744 
 745   void call_VM_leaf(address entry_point,
 746                     int number_of_arguments = 0);
 747   void call_VM_leaf(address entry_point,
 748                     Register arg_1);
 749   void call_VM_leaf(address entry_point,
 750                     Register arg_1, Register arg_2);
 751   void call_VM_leaf(address entry_point,
 752                     Register arg_1, Register arg_2, Register arg_3);
 753 
 754   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 755   // bypassing the virtual implementation
 756   void super_call_VM_leaf(address entry_point);
 757   void super_call_VM_leaf(address entry_point, Register arg_1);
 758   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 759   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 760   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 761 
 762   // last Java Frame (fills frame anchor)
 763   void set_last_Java_frame(Register last_java_sp,
 764                            Register last_java_fp,
 765                            address last_java_pc,
 766                            Register scratch);
 767 
 768   void set_last_Java_frame(Register last_java_sp,
 769                            Register last_java_fp,
 770                            Label &last_java_pc,
 771                            Register scratch);
 772 
 773   void set_last_Java_frame(Register last_java_sp,
 774                            Register last_java_fp,
 775                            Register last_java_pc,
 776                            Register scratch);
 777 
 778   void reset_last_Java_frame(Register thread);
 779 
 780   // thread in the default location (rthread)
 781   void reset_last_Java_frame(bool clear_fp);
 782 
 783   // Stores
 784   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 785   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 786 
 787 #if INCLUDE_ALL_GCS
 788 
 789   void g1_write_barrier_pre(Register obj,
 790                             Register pre_val,
 791                             Register thread,
 792                             Register tmp,
 793                             bool tosca_live,
 794                             bool expand_call);
 795 
 796   void g1_write_barrier_post(Register store_addr,
 797                              Register new_val,
 798                              Register thread,
 799                              Register tmp,
 800                              Register tmp2);
 801 
 802   void shenandoah_write_barrier(Register dst);
 803 
 804 #endif // INCLUDE_ALL_GCS
 805 
 806   // oop manipulations
 807   void load_klass(Register dst, Register src);
 808   void store_klass(Register dst, Register src);
 809   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 810 
 811   void load_mirror(Register dst, Register method);
 812 
 813   void load_heap_oop(Register dst, Address src);
 814 
 815   void load_heap_oop_not_null(Register dst, Address src);
 816   void store_heap_oop(Address dst, Register src);
 817 
 818   // currently unimplemented
 819   // Used for storing NULL. All other oop constants should be
 820   // stored using routines that take a jobject.
 821   void store_heap_oop_null(Address dst);
 822 
 823   void load_prototype_header(Register dst, Register src);
 824 
 825   void store_klass_gap(Register dst, Register src);
 826 
 827   // This dummy is to prevent a call to store_heap_oop from
 828   // converting a zero (like NULL) into a Register by giving
 829   // the compiler two choices it can't resolve
 830 
 831   void store_heap_oop(Address dst, void* dummy);
 832 
 833   void encode_heap_oop(Register d, Register s);
 834   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 835   void decode_heap_oop(Register d, Register s);
 836   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 837   void encode_heap_oop_not_null(Register r);
 838   void decode_heap_oop_not_null(Register r);
 839   void encode_heap_oop_not_null(Register dst, Register src);
 840   void decode_heap_oop_not_null(Register dst, Register src);
 841 
 842   void set_narrow_oop(Register dst, jobject obj);
 843 
 844   void encode_klass_not_null(Register r);
 845   void decode_klass_not_null(Register r);
 846   void encode_klass_not_null(Register dst, Register src);
 847   void decode_klass_not_null(Register dst, Register src);
 848 
 849   void set_narrow_klass(Register dst, Klass* k);
 850 
 851   // if heap base register is used - reinit it with the correct value
 852   void reinit_heapbase();
 853 
 854   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 855 
 856   void push_CPU_state(bool save_vectors = false);
 857   void pop_CPU_state(bool restore_vectors = false) ;
 858 
 859   // Round up to a power of two
 860   void round_to(Register reg, int modulus);
 861 
 862   // allocation
 863   void eden_allocate(
 864     Register obj,                      // result: pointer to object after successful allocation
 865     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 866     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 867     Register t1,                       // temp register
 868     Label&   slow_case                 // continuation point if fast allocation fails
 869   );
 870   void tlab_allocate(
 871     Register obj,                      // result: pointer to object after successful allocation
 872     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 873     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 874     Register t1,                       // temp register
 875     Register t2,                       // temp register
 876     Label&   slow_case                 // continuation point if fast allocation fails
 877   );
 878   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 879   void verify_tlab();
 880 
 881   void incr_allocated_bytes(Register thread,
 882                             Register var_size_in_bytes, int con_size_in_bytes,
 883                             Register t1 = noreg);
 884 
 885   // interface method calling
 886   void lookup_interface_method(Register recv_klass,
 887                                Register intf_klass,
 888                                RegisterOrConstant itable_index,
 889                                Register method_result,
 890                                Register scan_temp,
 891                                Label& no_such_interface);
 892 
 893   // virtual method calling
 894   // n.b. x86 allows RegisterOrConstant for vtable_index
 895   void lookup_virtual_method(Register recv_klass,
 896                              RegisterOrConstant vtable_index,
 897                              Register method_result);
 898 
 899   // Test sub_klass against super_klass, with fast and slow paths.
 900 
 901   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 902   // One of the three labels can be NULL, meaning take the fall-through.
 903   // If super_check_offset is -1, the value is loaded up from super_klass.
 904   // No registers are killed, except temp_reg.
 905   void check_klass_subtype_fast_path(Register sub_klass,
 906                                      Register super_klass,
 907                                      Register temp_reg,
 908                                      Label* L_success,
 909                                      Label* L_failure,
 910                                      Label* L_slow_path,
 911                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 912 
 913   // The rest of the type check; must be wired to a corresponding fast path.
 914   // It does not repeat the fast path logic, so don't use it standalone.
 915   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 916   // Updates the sub's secondary super cache as necessary.
 917   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 918   void check_klass_subtype_slow_path(Register sub_klass,
 919                                      Register super_klass,
 920                                      Register temp_reg,
 921                                      Register temp2_reg,
 922                                      Label* L_success,
 923                                      Label* L_failure,
 924                                      bool set_cond_codes = false);
 925 
 926   // Simplified, combined version, good for typical uses.
 927   // Falls through on failure.
 928   void check_klass_subtype(Register sub_klass,
 929                            Register super_klass,
 930                            Register temp_reg,
 931                            Label& L_success);
 932 
 933   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 934 
 935 
 936   // Debugging
 937 
 938   // only if +VerifyOops
 939   void verify_oop(Register reg, const char* s = "broken oop");
 940   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 941 
 942 // TODO: verify method and klass metadata (compare against vptr?)
 943   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 944   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 945 
 946 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 947 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 948 
 949   // only if +VerifyFPU
 950   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 951 
 952   // prints msg, dumps registers and stops execution
 953   void stop(const char* msg, Label *l = NULL);
 954 
 955   // prints msg and continues
 956   void warn(const char* msg);
 957 
 958   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 959 
 960   void untested()                                { stop("untested"); }
 961 
 962   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 963 
 964   void should_not_reach_here()                   { stop("should not reach here"); }
 965 
 966   // Stack overflow checking
 967   void bang_stack_with_offset(int offset) {
 968     // stack grows down, caller passes positive offset
 969     assert(offset > 0, "must bang with negative offset");
 970     mov(rscratch2, -offset);
 971     str(zr, Address(sp, rscratch2));
 972   }
 973 
 974   // Writes to stack successive pages until offset reached to check for
 975   // stack overflow + shadow pages.  Also, clobbers tmp
 976   void bang_stack_size(Register size, Register tmp);
 977 
 978   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 979                                                 Register tmp,
 980                                                 int offset);
 981 
 982   // Support for serializing memory accesses between threads
 983   void serialize_memory(Register thread, Register tmp);
 984 
 985   // Arithmetics
 986 
 987   void addptr(const Address &dst, int32_t src);
 988   void cmpptr(Register src1, Address src2);
 989 
 990   // Various forms of CAS
 991 
 992   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 993                   Label &suceed, Label *fail);
 994 
 995   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 996                   Label &suceed, Label *fail);
 997 
 998   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 999   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1000   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1001   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1002 
1003   void atomic_xchg(Register prev, Register newv, Register addr);
1004   void atomic_xchgw(Register prev, Register newv, Register addr);
1005   void atomic_xchgal(Register prev, Register newv, Register addr);
1006   void atomic_xchgalw(Register prev, Register newv, Register addr);
1007 
1008   void orptr(Address adr, RegisterOrConstant src) {
1009     ldr(rscratch2, adr);
1010     if (src.is_register())
1011       orr(rscratch2, rscratch2, src.as_register());
1012     else
1013       orr(rscratch2, rscratch2, src.as_constant());
1014     str(rscratch2, adr);
1015   }
1016 
1017   // A generic CAS; success or failure is in the EQ flag.
1018   // Clobbers rscratch1
1019   void cmpxchg(Register addr, Register expected, Register new_val,
1020                enum operand_size size,
1021                bool acquire, bool release, bool weak,
1022                Register result);
1023 
1024   void cmpxchg_oop_shenandoah(Register res, Register addr, Register expected, Register new_val,
1025                               bool narrow,
1026                               bool acquire, bool release,
1027                               Register tmp1 = rscratch1, Register tmp2 = rscratch2);
1028   // Calls
1029 
1030   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1031 
1032   static bool far_branches() {
1033     return ReservedCodeCacheSize > branch_range;
1034   }
1035 
1036   // Jumps that can reach anywhere in the code cache.
1037   // Trashes tmp.
1038   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1039   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1040 
1041   static int far_branch_size() {
1042     if (far_branches()) {
1043       return 3 * 4;  // adrp, add, br
1044     } else {
1045       return 4;
1046     }
1047   }
1048 
1049   // Emit the CompiledIC call idiom
1050   address ic_call(address entry, jint method_index = 0);
1051 
1052 public:
1053 
1054   // Data
1055 
1056   void mov_metadata(Register dst, Metadata* obj);
1057   Address allocate_metadata_address(Metadata* obj);
1058   Address constant_oop_address(jobject obj);
1059 
1060   void movoop(Register dst, jobject obj, bool immediate = false);
1061 
1062   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1063   void kernel_crc32(Register crc, Register buf, Register len,
1064         Register table0, Register table1, Register table2, Register table3,
1065         Register tmp, Register tmp2, Register tmp3);
1066   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1067   void kernel_crc32c(Register crc, Register buf, Register len,
1068         Register table0, Register table1, Register table2, Register table3,
1069         Register tmp, Register tmp2, Register tmp3);
1070 
1071   // Stack push and pop individual 64 bit registers
1072   void push(Register src);
1073   void pop(Register dst);
1074 
1075   // push all registers onto the stack
1076   void pusha();
1077   void popa();
1078 
1079   void repne_scan(Register addr, Register value, Register count,
1080                   Register scratch);
1081   void repne_scanw(Register addr, Register value, Register count,
1082                    Register scratch);
1083 
1084   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1085   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1086 
1087   // If a constant does not fit in an immediate field, generate some
1088   // number of MOV instructions and then perform the operation
1089   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1090                              add_sub_imm_insn insn1,
1091                              add_sub_reg_insn insn2);
1092   // Seperate vsn which sets the flags
1093   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1094                              add_sub_imm_insn insn1,
1095                              add_sub_reg_insn insn2);
1096 
1097 #define WRAP(INSN)                                                      \
1098   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1099     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1100   }                                                                     \
1101                                                                         \
1102   void INSN(Register Rd, Register Rn, Register Rm,                      \
1103              enum shift_kind kind, unsigned shift = 0) {                \
1104     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1105   }                                                                     \
1106                                                                         \
1107   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1108     Assembler::INSN(Rd, Rn, Rm);                                        \
1109   }                                                                     \
1110                                                                         \
1111   void INSN(Register Rd, Register Rn, Register Rm,                      \
1112            ext::operation option, int amount = 0) {                     \
1113     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1114   }
1115 
1116   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1117 
1118 #undef WRAP
1119 #define WRAP(INSN)                                                      \
1120   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1121     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1122   }                                                                     \
1123                                                                         \
1124   void INSN(Register Rd, Register Rn, Register Rm,                      \
1125              enum shift_kind kind, unsigned shift = 0) {                \
1126     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1127   }                                                                     \
1128                                                                         \
1129   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1130     Assembler::INSN(Rd, Rn, Rm);                                        \
1131   }                                                                     \
1132                                                                         \
1133   void INSN(Register Rd, Register Rn, Register Rm,                      \
1134            ext::operation option, int amount = 0) {                     \
1135     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1136   }
1137 
1138   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1139 
1140   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1141   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1142   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1143   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1144 
1145   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1146 
1147   void tableswitch(Register index, jint lowbound, jint highbound,
1148                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1149     adr(rscratch1, jumptable);
1150     subsw(rscratch2, index, lowbound);
1151     subsw(zr, rscratch2, highbound - lowbound);
1152     br(Assembler::HS, jumptable_end);
1153     add(rscratch1, rscratch1, rscratch2,
1154         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1155     br(rscratch1);
1156   }
1157 
1158   // Form an address from base + offset in Rd.  Rd may or may not
1159   // actually be used: you must use the Address that is returned.  It
1160   // is up to you to ensure that the shift provided matches the size
1161   // of your data.
1162   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1163 
1164   // Return true iff an address is within the 48-bit AArch64 address
1165   // space.
1166   bool is_valid_AArch64_address(address a) {
1167     return ((uint64_t)a >> 48) == 0;
1168   }
1169 
1170   // Load the base of the cardtable byte map into reg.
1171   void load_byte_map_base(Register reg);
1172 
1173   // Prolog generator routines to support switch between x86 code and
1174   // generated ARM code
1175 
1176   // routine to generate an x86 prolog for a stub function which
1177   // bootstraps into the generated ARM code which directly follows the
1178   // stub
1179   //
1180 
1181   public:
1182   // enum used for aarch64--x86 linkage to define return type of x86 function
1183   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1184 
1185 #ifdef BUILTIN_SIM
1186   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1187 #else
1188   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1189 #endif
1190 
1191   // special version of call_VM_leaf_base needed for aarch64 simulator
1192   // where we need to specify both the gp and fp arg counts and the
1193   // return type so that the linkage routine from aarch64 to x86 and
1194   // back knows which aarch64 registers to copy to x86 registers and
1195   // which x86 result register to copy back to an aarch64 register
1196 
1197   void call_VM_leaf_base1(
1198     address  entry_point,             // the entry point
1199     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1200     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1201     ret_type type,                    // the return type for the call
1202     Label*   retaddr = NULL
1203   );
1204 
1205   void ldr_constant(Register dest, const Address &const_addr) {
1206     if (NearCpool) {
1207       ldr(dest, const_addr);
1208     } else {
1209       unsigned long offset;
1210       adrp(dest, InternalAddress(const_addr.target()), offset);
1211       ldr(dest, Address(dest, offset));
1212     }
1213   }
1214 
1215   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1216   address read_polling_page(Register r, relocInfo::relocType rtype);
1217 
1218   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1219   void update_byte_crc32(Register crc, Register val, Register table);
1220   void update_word_crc32(Register crc, Register v, Register tmp,
1221         Register table0, Register table1, Register table2, Register table3,
1222         bool upper = false);
1223 
1224   void string_compare(Register str1, Register str2,
1225                       Register cnt1, Register cnt2, Register result,
1226                       Register tmp1,
1227                       FloatRegister vtmp, FloatRegister vtmpZ, int ae);
1228 
1229   void arrays_equals(Register a1, Register a2,
1230                      Register result, Register cnt1,
1231                      int elem_size, bool is_string);
1232 
1233   void fill_words(Register base, Register cnt, Register value);
1234   void zero_words(Register base, u_int64_t cnt);
1235   void zero_words(Register base, Register cnt);
1236   void block_zero(Register base, Register cnt, bool is_large = false);
1237 
1238   void byte_array_inflate(Register src, Register dst, Register len,
1239                           FloatRegister vtmp1, FloatRegister vtmp2,
1240                           FloatRegister vtmp3, Register tmp4);
1241 
1242   void char_array_compress(Register src, Register dst, Register len,
1243                            FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1244                            FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1245                            Register result);
1246 
1247   void encode_iso_array(Register src, Register dst,
1248                         Register len, Register result,
1249                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1250                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1251   void string_indexof(Register str1, Register str2,
1252                       Register cnt1, Register cnt2,
1253                       Register tmp1, Register tmp2,
1254                       Register tmp3, Register tmp4,
1255                       int int_cnt1, Register result, int ae);
1256 
1257   void in_heap_check(Register r, Register tmp, Label &nope);
1258 
1259 private:
1260   void shenandoah_cset_check(Register obj, Register tmp1, Register tmp2, Label& done);
1261 
1262 public:
1263   void _shenandoah_store_addr_check(Register addr, const char* msg, const char* file, int line);
1264   void _shenandoah_store_addr_check(Address addr, const char* msg, const char* file, int line);
1265 #define shenandoah_store_addr_check(reg) _shenandoah_store_addr_check(reg, "oop not safe for writing", __FILE__, __LINE__)
1266 
1267   void _shenandoah_store_check(Address addr, Register value, const char* msg, const char* file, int line);
1268   void _shenandoah_store_check(Register addr, Register value, const char* msg, const char* file, int line);
1269 #define shenandoah_store_check(addr, value) _shenandoah_store_check(addr, value, "oop not safe for writing", __FILE__, __LINE__)
1270 
1271 private:
1272   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1273                        Register src1, Register src2);
1274   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1275     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1276   }
1277   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1278                              Register y, Register y_idx, Register z,
1279                              Register carry, Register product,
1280                              Register idx, Register kdx);
1281   void multiply_128_x_128_loop(Register y, Register z,
1282                                Register carry, Register carry2,
1283                                Register idx, Register jdx,
1284                                Register yz_idx1, Register yz_idx2,
1285                                Register tmp, Register tmp3, Register tmp4,
1286                                Register tmp7, Register product_hi);
1287 public:
1288   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1289                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1290                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1291   // ISB may be needed because of a safepoint
1292   void maybe_isb() { isb(); }
1293 
1294 private:
1295   // Return the effective address r + (r1 << ext) + offset.
1296   // Uses rscratch2.
1297   Address offsetted_address(Register r, Register r1, Address::extend ext,
1298                             int offset, int size);
1299 
1300 private:
1301   // Returns an address on the stack which is reachable with a ldr/str of size
1302   // Uses rscratch2 if the address is not directly reachable
1303   Address spill_address(int size, int offset, Register tmp=rscratch2);
1304 
1305 public:
1306   void spill(Register Rx, bool is64, int offset) {
1307     if (is64) {
1308       str(Rx, spill_address(8, offset));
1309     } else {
1310       strw(Rx, spill_address(4, offset));
1311     }
1312   }
1313   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1314     str(Vx, T, spill_address(1 << (int)T, offset));
1315   }
1316   void unspill(Register Rx, bool is64, int offset) {
1317     if (is64) {
1318       ldr(Rx, spill_address(8, offset));
1319     } else {
1320       ldrw(Rx, spill_address(4, offset));
1321     }
1322   }
1323   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1324     ldr(Vx, T, spill_address(1 << (int)T, offset));
1325   }
1326   void spill_copy128(int src_offset, int dst_offset,
1327                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1328     if (src_offset < 512 && (src_offset & 7) == 0 &&
1329         dst_offset < 512 && (dst_offset & 7) == 0) {
1330       ldp(tmp1, tmp2, Address(sp, src_offset));
1331       stp(tmp1, tmp2, Address(sp, dst_offset));
1332     } else {
1333       unspill(tmp1, true, src_offset);
1334       spill(tmp1, true, dst_offset);
1335       unspill(tmp1, true, src_offset+8);
1336       spill(tmp1, true, dst_offset+8);
1337     }
1338   }
1339 };
1340 
1341 #ifdef ASSERT
1342 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1343 #endif
1344 
1345 /**
1346  * class SkipIfEqual:
1347  *
1348  * Instantiating this class will result in assembly code being output that will
1349  * jump around any code emitted between the creation of the instance and it's
1350  * automatic destruction at the end of a scope block, depending on the value of
1351  * the flag passed to the constructor, which will be checked at run-time.
1352  */
1353 class SkipIfEqual {
1354  private:
1355   MacroAssembler* _masm;
1356   Label _label;
1357 
1358  public:
1359    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1360    ~SkipIfEqual();
1361 };
1362 
1363 struct tableswitch {
1364   Register _reg;
1365   int _insn_index; jint _first_key; jint _last_key;
1366   Label _after;
1367   Label _branches;
1368 };
1369 
1370 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP