1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/g1Allocator.inline.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1EvacStats.inline.hpp"
  42 #include "gc/g1/g1FullCollector.hpp"
  43 #include "gc/g1/g1GCPhaseTimes.hpp"
  44 #include "gc/g1/g1HeapSizingPolicy.hpp"
  45 #include "gc/g1/g1HeapTransition.hpp"
  46 #include "gc/g1/g1HeapVerifier.hpp"
  47 #include "gc/g1/g1HotCardCache.hpp"
  48 #include "gc/g1/g1MemoryPool.hpp"
  49 #include "gc/g1/g1OopClosures.inline.hpp"
  50 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  51 #include "gc/g1/g1Policy.hpp"
  52 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  53 #include "gc/g1/g1RemSet.hpp"
  54 #include "gc/g1/g1RootClosures.hpp"
  55 #include "gc/g1/g1RootProcessor.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1ThreadLocalData.hpp"
  58 #include "gc/g1/g1YCTypes.hpp"
  59 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  60 #include "gc/g1/heapRegion.inline.hpp"
  61 #include "gc/g1/heapRegionRemSet.hpp"
  62 #include "gc/g1/heapRegionSet.inline.hpp"
  63 #include "gc/g1/vm_operations_g1.hpp"
  64 #include "gc/shared/adaptiveSizePolicy.hpp"
  65 #include "gc/shared/collectedHeap.inline.hpp"
  66 #include "gc/shared/gcHeapSummary.hpp"
  67 #include "gc/shared/gcId.hpp"
  68 #include "gc/shared/gcLocker.hpp"
  69 #include "gc/shared/gcTimer.hpp"
  70 #include "gc/shared/gcTrace.hpp"
  71 #include "gc/shared/gcTraceTime.inline.hpp"
  72 #include "gc/shared/generationSpec.hpp"
  73 #include "gc/shared/isGCActiveMark.hpp"
  74 #include "gc/shared/preservedMarks.inline.hpp"
  75 #include "gc/shared/suspendibleThreadSet.hpp"
  76 #include "gc/shared/referenceProcessor.inline.hpp"
  77 #include "gc/shared/taskqueue.inline.hpp"
  78 #include "gc/shared/weakProcessor.hpp"
  79 #include "logging/log.hpp"
  80 #include "memory/allocation.hpp"
  81 #include "memory/iterator.hpp"
  82 #include "memory/resourceArea.hpp"
  83 #include "oops/access.inline.hpp"
  84 #include "oops/compressedOops.inline.hpp"
  85 #include "oops/oop.inline.hpp"
  86 #include "prims/resolvedMethodTable.hpp"
  87 #include "runtime/atomic.hpp"
  88 #include "runtime/handles.inline.hpp"
  89 #include "runtime/init.hpp"
  90 #include "runtime/orderAccess.inline.hpp"
  91 #include "runtime/threadSMR.hpp"
  92 #include "runtime/vmThread.hpp"
  93 #include "utilities/align.hpp"
  94 #include "utilities/globalDefinitions.hpp"
  95 #include "utilities/stack.inline.hpp"
  96 
  97 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  98 
  99 // INVARIANTS/NOTES
 100 //
 101 // All allocation activity covered by the G1CollectedHeap interface is
 102 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 103 // and allocate_new_tlab, which are the "entry" points to the
 104 // allocation code from the rest of the JVM.  (Note that this does not
 105 // apply to TLAB allocation, which is not part of this interface: it
 106 // is done by clients of this interface.)
 107 
 108 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 109  private:
 110   size_t _num_dirtied;
 111   G1CollectedHeap* _g1h;
 112   G1CardTable* _g1_ct;
 113 
 114   HeapRegion* region_for_card(jbyte* card_ptr) const {
 115     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 116   }
 117 
 118   bool will_become_free(HeapRegion* hr) const {
 119     // A region will be freed by free_collection_set if the region is in the
 120     // collection set and has not had an evacuation failure.
 121     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 122   }
 123 
 124  public:
 125   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 126     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 127 
 128   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 129     HeapRegion* hr = region_for_card(card_ptr);
 130 
 131     // Should only dirty cards in regions that won't be freed.
 132     if (!will_become_free(hr)) {
 133       *card_ptr = G1CardTable::dirty_card_val();
 134       _num_dirtied++;
 135     }
 136 
 137     return true;
 138   }
 139 
 140   size_t num_dirtied()   const { return _num_dirtied; }
 141 };
 142 
 143 
 144 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 145   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 146 }
 147 
 148 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 149   // The from card cache is not the memory that is actually committed. So we cannot
 150   // take advantage of the zero_filled parameter.
 151   reset_from_card_cache(start_idx, num_regions);
 152 }
 153 
 154 
 155 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 156                                              MemRegion mr) {
 157   return new HeapRegion(hrs_index, bot(), mr);
 158 }
 159 
 160 // Private methods.
 161 
 162 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 163   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 164          "the only time we use this to allocate a humongous region is "
 165          "when we are allocating a single humongous region");
 166 
 167   HeapRegion* res = _hrm.allocate_free_region(is_old);
 168 
 169   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 170     // Currently, only attempts to allocate GC alloc regions set
 171     // do_expand to true. So, we should only reach here during a
 172     // safepoint. If this assumption changes we might have to
 173     // reconsider the use of _expand_heap_after_alloc_failure.
 174     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 175 
 176     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 177                               word_size * HeapWordSize);
 178 
 179     if (expand(word_size * HeapWordSize)) {
 180       // Given that expand() succeeded in expanding the heap, and we
 181       // always expand the heap by an amount aligned to the heap
 182       // region size, the free list should in theory not be empty.
 183       // In either case allocate_free_region() will check for NULL.
 184       res = _hrm.allocate_free_region(is_old);
 185     } else {
 186       _expand_heap_after_alloc_failure = false;
 187     }
 188   }
 189   return res;
 190 }
 191 
 192 HeapWord*
 193 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 194                                                            uint num_regions,
 195                                                            size_t word_size) {
 196   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 197   assert(is_humongous(word_size), "word_size should be humongous");
 198   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 199 
 200   // Index of last region in the series.
 201   uint last = first + num_regions - 1;
 202 
 203   // We need to initialize the region(s) we just discovered. This is
 204   // a bit tricky given that it can happen concurrently with
 205   // refinement threads refining cards on these regions and
 206   // potentially wanting to refine the BOT as they are scanning
 207   // those cards (this can happen shortly after a cleanup; see CR
 208   // 6991377). So we have to set up the region(s) carefully and in
 209   // a specific order.
 210 
 211   // The word size sum of all the regions we will allocate.
 212   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 213   assert(word_size <= word_size_sum, "sanity");
 214 
 215   // This will be the "starts humongous" region.
 216   HeapRegion* first_hr = region_at(first);
 217   // The header of the new object will be placed at the bottom of
 218   // the first region.
 219   HeapWord* new_obj = first_hr->bottom();
 220   // This will be the new top of the new object.
 221   HeapWord* obj_top = new_obj + word_size;
 222 
 223   // First, we need to zero the header of the space that we will be
 224   // allocating. When we update top further down, some refinement
 225   // threads might try to scan the region. By zeroing the header we
 226   // ensure that any thread that will try to scan the region will
 227   // come across the zero klass word and bail out.
 228   //
 229   // NOTE: It would not have been correct to have used
 230   // CollectedHeap::fill_with_object() and make the space look like
 231   // an int array. The thread that is doing the allocation will
 232   // later update the object header to a potentially different array
 233   // type and, for a very short period of time, the klass and length
 234   // fields will be inconsistent. This could cause a refinement
 235   // thread to calculate the object size incorrectly.
 236   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 237 
 238   // Next, pad out the unused tail of the last region with filler
 239   // objects, for improved usage accounting.
 240   // How many words we use for filler objects.
 241   size_t word_fill_size = word_size_sum - word_size;
 242 
 243   // How many words memory we "waste" which cannot hold a filler object.
 244   size_t words_not_fillable = 0;
 245 
 246   if (word_fill_size >= min_fill_size()) {
 247     fill_with_objects(obj_top, word_fill_size);
 248   } else if (word_fill_size > 0) {
 249     // We have space to fill, but we cannot fit an object there.
 250     words_not_fillable = word_fill_size;
 251     word_fill_size = 0;
 252   }
 253 
 254   // We will set up the first region as "starts humongous". This
 255   // will also update the BOT covering all the regions to reflect
 256   // that there is a single object that starts at the bottom of the
 257   // first region.
 258   first_hr->set_starts_humongous(obj_top, word_fill_size);
 259   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 260   // Then, if there are any, we will set up the "continues
 261   // humongous" regions.
 262   HeapRegion* hr = NULL;
 263   for (uint i = first + 1; i <= last; ++i) {
 264     hr = region_at(i);
 265     hr->set_continues_humongous(first_hr);
 266     _g1_policy->remset_tracker()->update_at_allocate(hr);
 267   }
 268 
 269   // Up to this point no concurrent thread would have been able to
 270   // do any scanning on any region in this series. All the top
 271   // fields still point to bottom, so the intersection between
 272   // [bottom,top] and [card_start,card_end] will be empty. Before we
 273   // update the top fields, we'll do a storestore to make sure that
 274   // no thread sees the update to top before the zeroing of the
 275   // object header and the BOT initialization.
 276   OrderAccess::storestore();
 277 
 278   // Now, we will update the top fields of the "continues humongous"
 279   // regions except the last one.
 280   for (uint i = first; i < last; ++i) {
 281     hr = region_at(i);
 282     hr->set_top(hr->end());
 283   }
 284 
 285   hr = region_at(last);
 286   // If we cannot fit a filler object, we must set top to the end
 287   // of the humongous object, otherwise we cannot iterate the heap
 288   // and the BOT will not be complete.
 289   hr->set_top(hr->end() - words_not_fillable);
 290 
 291   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 292          "obj_top should be in last region");
 293 
 294   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 295 
 296   assert(words_not_fillable == 0 ||
 297          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 298          "Miscalculation in humongous allocation");
 299 
 300   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 301 
 302   for (uint i = first; i <= last; ++i) {
 303     hr = region_at(i);
 304     _humongous_set.add(hr);
 305     _hr_printer.alloc(hr);
 306   }
 307 
 308   return new_obj;
 309 }
 310 
 311 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 312   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 313   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 314 }
 315 
 316 // If could fit into free regions w/o expansion, try.
 317 // Otherwise, if can expand, do so.
 318 // Otherwise, if using ex regions might help, try with ex given back.
 319 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 320   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 321 
 322   _verifier->verify_region_sets_optional();
 323 
 324   uint first = G1_NO_HRM_INDEX;
 325   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 326 
 327   if (obj_regions == 1) {
 328     // Only one region to allocate, try to use a fast path by directly allocating
 329     // from the free lists. Do not try to expand here, we will potentially do that
 330     // later.
 331     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 332     if (hr != NULL) {
 333       first = hr->hrm_index();
 334     }
 335   } else {
 336     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 337     // are lucky enough to find some.
 338     first = _hrm.find_contiguous_only_empty(obj_regions);
 339     if (first != G1_NO_HRM_INDEX) {
 340       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 341     }
 342   }
 343 
 344   if (first == G1_NO_HRM_INDEX) {
 345     // Policy: We could not find enough regions for the humongous object in the
 346     // free list. Look through the heap to find a mix of free and uncommitted regions.
 347     // If so, try expansion.
 348     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 349     if (first != G1_NO_HRM_INDEX) {
 350       // We found something. Make sure these regions are committed, i.e. expand
 351       // the heap. Alternatively we could do a defragmentation GC.
 352       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 353                                     word_size * HeapWordSize);
 354 
 355       _hrm.expand_at(first, obj_regions, workers());
 356       g1_policy()->record_new_heap_size(num_regions());
 357 
 358 #ifdef ASSERT
 359       for (uint i = first; i < first + obj_regions; ++i) {
 360         HeapRegion* hr = region_at(i);
 361         assert(hr->is_free(), "sanity");
 362         assert(hr->is_empty(), "sanity");
 363         assert(is_on_master_free_list(hr), "sanity");
 364       }
 365 #endif
 366       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 367     } else {
 368       // Policy: Potentially trigger a defragmentation GC.
 369     }
 370   }
 371 
 372   HeapWord* result = NULL;
 373   if (first != G1_NO_HRM_INDEX) {
 374     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 375     assert(result != NULL, "it should always return a valid result");
 376 
 377     // A successful humongous object allocation changes the used space
 378     // information of the old generation so we need to recalculate the
 379     // sizes and update the jstat counters here.
 380     g1mm()->update_sizes();
 381   }
 382 
 383   _verifier->verify_region_sets_optional();
 384 
 385   return result;
 386 }
 387 
 388 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 389   assert_heap_not_locked_and_not_at_safepoint();
 390   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 391 
 392   return attempt_allocation(word_size);
 393 }
 394 
 395 HeapWord*
 396 G1CollectedHeap::mem_allocate(size_t word_size, Klass* klass, Thread* thread,
 397                               bool*  gc_overhead_limit_was_exceeded) {
 398   assert_heap_not_locked_and_not_at_safepoint();
 399 
 400   HeapWord* obj = allocate_from_tlab(klass, thread, word_size);
 401   if (obj != NULL) {
 402     return obj;
 403   }
 404   if (is_humongous(word_size)) {
 405     return attempt_allocation_humongous(word_size);
 406   }
 407   return attempt_allocation(word_size);
 408 }
 409 
 410 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 411   ResourceMark rm; // For retrieving the thread names in log messages.
 412 
 413   // Make sure you read the note in attempt_allocation_humongous().
 414 
 415   assert_heap_not_locked_and_not_at_safepoint();
 416   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 417          "be called for humongous allocation requests");
 418 
 419   // We should only get here after the first-level allocation attempt
 420   // (attempt_allocation()) failed to allocate.
 421 
 422   // We will loop until a) we manage to successfully perform the
 423   // allocation or b) we successfully schedule a collection which
 424   // fails to perform the allocation. b) is the only case when we'll
 425   // return NULL.
 426   HeapWord* result = NULL;
 427   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 428     bool should_try_gc;
 429     uint gc_count_before;
 430 
 431     {
 432       MutexLockerEx x(Heap_lock);
 433       result = _allocator->attempt_allocation_locked(word_size);
 434       if (result != NULL) {
 435         return result;
 436       }
 437 
 438       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 439       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 440       // waiting because the GCLocker is active to not wait too long.
 441       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 442         // No need for an ergo message here, can_expand_young_list() does this when
 443         // it returns true.
 444         result = _allocator->attempt_allocation_force(word_size);
 445         if (result != NULL) {
 446           return result;
 447         }
 448       }
 449       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 450       // the GCLocker initiated GC has been performed and then retry. This includes
 451       // the case when the GC Locker is not active but has not been performed.
 452       should_try_gc = !GCLocker::needs_gc();
 453       // Read the GC count while still holding the Heap_lock.
 454       gc_count_before = total_collections();
 455     }
 456 
 457     if (should_try_gc) {
 458       bool succeeded;
 459       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 460                                    GCCause::_g1_inc_collection_pause);
 461       if (result != NULL) {
 462         assert(succeeded, "only way to get back a non-NULL result");
 463         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 464                              Thread::current()->name(), p2i(result));
 465         return result;
 466       }
 467 
 468       if (succeeded) {
 469         // We successfully scheduled a collection which failed to allocate. No
 470         // point in trying to allocate further. We'll just return NULL.
 471         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 472                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 473         return NULL;
 474       }
 475       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 476                            Thread::current()->name(), word_size);
 477     } else {
 478       // Failed to schedule a collection.
 479       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 480         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 481                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 482         return NULL;
 483       }
 484       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 485       // The GCLocker is either active or the GCLocker initiated
 486       // GC has not yet been performed. Stall until it is and
 487       // then retry the allocation.
 488       GCLocker::stall_until_clear();
 489       gclocker_retry_count += 1;
 490     }
 491 
 492     // We can reach here if we were unsuccessful in scheduling a
 493     // collection (because another thread beat us to it) or if we were
 494     // stalled due to the GC locker. In either can we should retry the
 495     // allocation attempt in case another thread successfully
 496     // performed a collection and reclaimed enough space. We do the
 497     // first attempt (without holding the Heap_lock) here and the
 498     // follow-on attempt will be at the start of the next loop
 499     // iteration (after taking the Heap_lock).
 500 
 501     result = _allocator->attempt_allocation(word_size);
 502     if (result != NULL) {
 503       return result;
 504     }
 505 
 506     // Give a warning if we seem to be looping forever.
 507     if ((QueuedAllocationWarningCount > 0) &&
 508         (try_count % QueuedAllocationWarningCount == 0)) {
 509       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 510                              Thread::current()->name(), try_count, word_size);
 511     }
 512   }
 513 
 514   ShouldNotReachHere();
 515   return NULL;
 516 }
 517 
 518 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 519   assert_at_safepoint_on_vm_thread();
 520   if (_archive_allocator == NULL) {
 521     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 522   }
 523 }
 524 
 525 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 526   // Allocations in archive regions cannot be of a size that would be considered
 527   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 528   // may be different at archive-restore time.
 529   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 530 }
 531 
 532 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 533   assert_at_safepoint_on_vm_thread();
 534   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 535   if (is_archive_alloc_too_large(word_size)) {
 536     return NULL;
 537   }
 538   return _archive_allocator->archive_mem_allocate(word_size);
 539 }
 540 
 541 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 542                                               size_t end_alignment_in_bytes) {
 543   assert_at_safepoint_on_vm_thread();
 544   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 545 
 546   // Call complete_archive to do the real work, filling in the MemRegion
 547   // array with the archive regions.
 548   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 549   delete _archive_allocator;
 550   _archive_allocator = NULL;
 551 }
 552 
 553 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 554   assert(ranges != NULL, "MemRegion array NULL");
 555   assert(count != 0, "No MemRegions provided");
 556   MemRegion reserved = _hrm.reserved();
 557   for (size_t i = 0; i < count; i++) {
 558     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 559       return false;
 560     }
 561   }
 562   return true;
 563 }
 564 
 565 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 566                                             size_t count,
 567                                             bool open) {
 568   assert(!is_init_completed(), "Expect to be called at JVM init time");
 569   assert(ranges != NULL, "MemRegion array NULL");
 570   assert(count != 0, "No MemRegions provided");
 571   MutexLockerEx x(Heap_lock);
 572 
 573   MemRegion reserved = _hrm.reserved();
 574   HeapWord* prev_last_addr = NULL;
 575   HeapRegion* prev_last_region = NULL;
 576 
 577   // Temporarily disable pretouching of heap pages. This interface is used
 578   // when mmap'ing archived heap data in, so pre-touching is wasted.
 579   FlagSetting fs(AlwaysPreTouch, false);
 580 
 581   // Enable archive object checking used by G1MarkSweep. We have to let it know
 582   // about each archive range, so that objects in those ranges aren't marked.
 583   G1ArchiveAllocator::enable_archive_object_check();
 584 
 585   // For each specified MemRegion range, allocate the corresponding G1
 586   // regions and mark them as archive regions. We expect the ranges
 587   // in ascending starting address order, without overlap.
 588   for (size_t i = 0; i < count; i++) {
 589     MemRegion curr_range = ranges[i];
 590     HeapWord* start_address = curr_range.start();
 591     size_t word_size = curr_range.word_size();
 592     HeapWord* last_address = curr_range.last();
 593     size_t commits = 0;
 594 
 595     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 596               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 597               p2i(start_address), p2i(last_address));
 598     guarantee(start_address > prev_last_addr,
 599               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 600               p2i(start_address), p2i(prev_last_addr));
 601     prev_last_addr = last_address;
 602 
 603     // Check for ranges that start in the same G1 region in which the previous
 604     // range ended, and adjust the start address so we don't try to allocate
 605     // the same region again. If the current range is entirely within that
 606     // region, skip it, just adjusting the recorded top.
 607     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 608     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 609       start_address = start_region->end();
 610       if (start_address > last_address) {
 611         increase_used(word_size * HeapWordSize);
 612         start_region->set_top(last_address + 1);
 613         continue;
 614       }
 615       start_region->set_top(start_address);
 616       curr_range = MemRegion(start_address, last_address + 1);
 617       start_region = _hrm.addr_to_region(start_address);
 618     }
 619 
 620     // Perform the actual region allocation, exiting if it fails.
 621     // Then note how much new space we have allocated.
 622     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 623       return false;
 624     }
 625     increase_used(word_size * HeapWordSize);
 626     if (commits != 0) {
 627       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 628                                 HeapRegion::GrainWords * HeapWordSize * commits);
 629 
 630     }
 631 
 632     // Mark each G1 region touched by the range as archive, add it to
 633     // the old set, and set top.
 634     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 635     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 636     prev_last_region = last_region;
 637 
 638     while (curr_region != NULL) {
 639       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 640              "Region already in use (index %u)", curr_region->hrm_index());
 641       if (open) {
 642         curr_region->set_open_archive();
 643       } else {
 644         curr_region->set_closed_archive();
 645       }
 646       _hr_printer.alloc(curr_region);
 647       _old_set.add(curr_region);
 648       HeapWord* top;
 649       HeapRegion* next_region;
 650       if (curr_region != last_region) {
 651         top = curr_region->end();
 652         next_region = _hrm.next_region_in_heap(curr_region);
 653       } else {
 654         top = last_address + 1;
 655         next_region = NULL;
 656       }
 657       curr_region->set_top(top);
 658       curr_region->set_first_dead(top);
 659       curr_region->set_end_of_live(top);
 660       curr_region = next_region;
 661     }
 662 
 663     // Notify mark-sweep of the archive
 664     G1ArchiveAllocator::set_range_archive(curr_range, open);
 665   }
 666   return true;
 667 }
 668 
 669 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 670   assert(!is_init_completed(), "Expect to be called at JVM init time");
 671   assert(ranges != NULL, "MemRegion array NULL");
 672   assert(count != 0, "No MemRegions provided");
 673   MemRegion reserved = _hrm.reserved();
 674   HeapWord *prev_last_addr = NULL;
 675   HeapRegion* prev_last_region = NULL;
 676 
 677   // For each MemRegion, create filler objects, if needed, in the G1 regions
 678   // that contain the address range. The address range actually within the
 679   // MemRegion will not be modified. That is assumed to have been initialized
 680   // elsewhere, probably via an mmap of archived heap data.
 681   MutexLockerEx x(Heap_lock);
 682   for (size_t i = 0; i < count; i++) {
 683     HeapWord* start_address = ranges[i].start();
 684     HeapWord* last_address = ranges[i].last();
 685 
 686     assert(reserved.contains(start_address) && reserved.contains(last_address),
 687            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 688            p2i(start_address), p2i(last_address));
 689     assert(start_address > prev_last_addr,
 690            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 691            p2i(start_address), p2i(prev_last_addr));
 692 
 693     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 694     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 695     HeapWord* bottom_address = start_region->bottom();
 696 
 697     // Check for a range beginning in the same region in which the
 698     // previous one ended.
 699     if (start_region == prev_last_region) {
 700       bottom_address = prev_last_addr + 1;
 701     }
 702 
 703     // Verify that the regions were all marked as archive regions by
 704     // alloc_archive_regions.
 705     HeapRegion* curr_region = start_region;
 706     while (curr_region != NULL) {
 707       guarantee(curr_region->is_archive(),
 708                 "Expected archive region at index %u", curr_region->hrm_index());
 709       if (curr_region != last_region) {
 710         curr_region = _hrm.next_region_in_heap(curr_region);
 711       } else {
 712         curr_region = NULL;
 713       }
 714     }
 715 
 716     prev_last_addr = last_address;
 717     prev_last_region = last_region;
 718 
 719     // Fill the memory below the allocated range with dummy object(s),
 720     // if the region bottom does not match the range start, or if the previous
 721     // range ended within the same G1 region, and there is a gap.
 722     if (start_address != bottom_address) {
 723       size_t fill_size = pointer_delta(start_address, bottom_address);
 724       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 725       increase_used(fill_size * HeapWordSize);
 726     }
 727   }
 728 }
 729 
 730 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size) {
 731   assert_heap_not_locked_and_not_at_safepoint();
 732   assert(!is_humongous(word_size), "attempt_allocation() should not "
 733          "be called for humongous allocation requests");
 734 
 735   HeapWord* result = _allocator->attempt_allocation(word_size);
 736 
 737   if (result == NULL) {
 738     result = attempt_allocation_slow(word_size);
 739   }
 740   assert_heap_not_locked();
 741   if (result != NULL) {
 742     dirty_young_block(result, word_size);
 743   }
 744   return result;
 745 }
 746 
 747 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 748   assert(!is_init_completed(), "Expect to be called at JVM init time");
 749   assert(ranges != NULL, "MemRegion array NULL");
 750   assert(count != 0, "No MemRegions provided");
 751   MemRegion reserved = _hrm.reserved();
 752   HeapWord* prev_last_addr = NULL;
 753   HeapRegion* prev_last_region = NULL;
 754   size_t size_used = 0;
 755   size_t uncommitted_regions = 0;
 756 
 757   // For each Memregion, free the G1 regions that constitute it, and
 758   // notify mark-sweep that the range is no longer to be considered 'archive.'
 759   MutexLockerEx x(Heap_lock);
 760   for (size_t i = 0; i < count; i++) {
 761     HeapWord* start_address = ranges[i].start();
 762     HeapWord* last_address = ranges[i].last();
 763 
 764     assert(reserved.contains(start_address) && reserved.contains(last_address),
 765            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 766            p2i(start_address), p2i(last_address));
 767     assert(start_address > prev_last_addr,
 768            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 769            p2i(start_address), p2i(prev_last_addr));
 770     size_used += ranges[i].byte_size();
 771     prev_last_addr = last_address;
 772 
 773     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 774     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 775 
 776     // Check for ranges that start in the same G1 region in which the previous
 777     // range ended, and adjust the start address so we don't try to free
 778     // the same region again. If the current range is entirely within that
 779     // region, skip it.
 780     if (start_region == prev_last_region) {
 781       start_address = start_region->end();
 782       if (start_address > last_address) {
 783         continue;
 784       }
 785       start_region = _hrm.addr_to_region(start_address);
 786     }
 787     prev_last_region = last_region;
 788 
 789     // After verifying that each region was marked as an archive region by
 790     // alloc_archive_regions, set it free and empty and uncommit it.
 791     HeapRegion* curr_region = start_region;
 792     while (curr_region != NULL) {
 793       guarantee(curr_region->is_archive(),
 794                 "Expected archive region at index %u", curr_region->hrm_index());
 795       uint curr_index = curr_region->hrm_index();
 796       _old_set.remove(curr_region);
 797       curr_region->set_free();
 798       curr_region->set_top(curr_region->bottom());
 799       if (curr_region != last_region) {
 800         curr_region = _hrm.next_region_in_heap(curr_region);
 801       } else {
 802         curr_region = NULL;
 803       }
 804       _hrm.shrink_at(curr_index, 1);
 805       uncommitted_regions++;
 806     }
 807 
 808     // Notify mark-sweep that this is no longer an archive range.
 809     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 810   }
 811 
 812   if (uncommitted_regions != 0) {
 813     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 814                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 815   }
 816   decrease_used(size_used);
 817 }
 818 
 819 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 820   ResourceMark rm; // For retrieving the thread names in log messages.
 821 
 822   // The structure of this method has a lot of similarities to
 823   // attempt_allocation_slow(). The reason these two were not merged
 824   // into a single one is that such a method would require several "if
 825   // allocation is not humongous do this, otherwise do that"
 826   // conditional paths which would obscure its flow. In fact, an early
 827   // version of this code did use a unified method which was harder to
 828   // follow and, as a result, it had subtle bugs that were hard to
 829   // track down. So keeping these two methods separate allows each to
 830   // be more readable. It will be good to keep these two in sync as
 831   // much as possible.
 832 
 833   assert_heap_not_locked_and_not_at_safepoint();
 834   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 835          "should only be called for humongous allocations");
 836 
 837   // Humongous objects can exhaust the heap quickly, so we should check if we
 838   // need to start a marking cycle at each humongous object allocation. We do
 839   // the check before we do the actual allocation. The reason for doing it
 840   // before the allocation is that we avoid having to keep track of the newly
 841   // allocated memory while we do a GC.
 842   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 843                                            word_size)) {
 844     collect(GCCause::_g1_humongous_allocation);
 845   }
 846 
 847   // We will loop until a) we manage to successfully perform the
 848   // allocation or b) we successfully schedule a collection which
 849   // fails to perform the allocation. b) is the only case when we'll
 850   // return NULL.
 851   HeapWord* result = NULL;
 852   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 853     bool should_try_gc;
 854     uint gc_count_before;
 855 
 856 
 857     {
 858       MutexLockerEx x(Heap_lock);
 859 
 860       // Given that humongous objects are not allocated in young
 861       // regions, we'll first try to do the allocation without doing a
 862       // collection hoping that there's enough space in the heap.
 863       result = humongous_obj_allocate(word_size);
 864       if (result != NULL) {
 865         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 866         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 867         return result;
 868       }
 869 
 870       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 871       // the GCLocker initiated GC has been performed and then retry. This includes
 872       // the case when the GC Locker is not active but has not been performed.
 873       should_try_gc = !GCLocker::needs_gc();
 874       // Read the GC count while still holding the Heap_lock.
 875       gc_count_before = total_collections();
 876     }
 877 
 878     if (should_try_gc) {
 879       bool succeeded;
 880       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 881                                    GCCause::_g1_humongous_allocation);
 882       if (result != NULL) {
 883         assert(succeeded, "only way to get back a non-NULL result");
 884         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 885                              Thread::current()->name(), p2i(result));
 886         return result;
 887       }
 888 
 889       if (succeeded) {
 890         // We successfully scheduled a collection which failed to allocate. No
 891         // point in trying to allocate further. We'll just return NULL.
 892         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 893                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 894         return NULL;
 895       }
 896       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 897                            Thread::current()->name(), word_size);
 898     } else {
 899       // Failed to schedule a collection.
 900       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 901         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 902                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 903         return NULL;
 904       }
 905       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 906       // The GCLocker is either active or the GCLocker initiated
 907       // GC has not yet been performed. Stall until it is and
 908       // then retry the allocation.
 909       GCLocker::stall_until_clear();
 910       gclocker_retry_count += 1;
 911     }
 912 
 913 
 914     // We can reach here if we were unsuccessful in scheduling a
 915     // collection (because another thread beat us to it) or if we were
 916     // stalled due to the GC locker. In either can we should retry the
 917     // allocation attempt in case another thread successfully
 918     // performed a collection and reclaimed enough space.
 919     // Humongous object allocation always needs a lock, so we wait for the retry
 920     // in the next iteration of the loop, unlike for the regular iteration case.
 921     // Give a warning if we seem to be looping forever.
 922 
 923     if ((QueuedAllocationWarningCount > 0) &&
 924         (try_count % QueuedAllocationWarningCount == 0)) {
 925       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 926                              Thread::current()->name(), try_count, word_size);
 927     }
 928   }
 929 
 930   ShouldNotReachHere();
 931   return NULL;
 932 }
 933 
 934 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 935                                                            bool expect_null_mutator_alloc_region) {
 936   assert_at_safepoint_on_vm_thread();
 937   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 938          "the current alloc region was unexpectedly found to be non-NULL");
 939 
 940   if (!is_humongous(word_size)) {
 941     return _allocator->attempt_allocation_locked(word_size);
 942   } else {
 943     HeapWord* result = humongous_obj_allocate(word_size);
 944     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 945       collector_state()->set_initiate_conc_mark_if_possible(true);
 946     }
 947     return result;
 948   }
 949 
 950   ShouldNotReachHere();
 951 }
 952 
 953 class PostCompactionPrinterClosure: public HeapRegionClosure {
 954 private:
 955   G1HRPrinter* _hr_printer;
 956 public:
 957   bool do_heap_region(HeapRegion* hr) {
 958     assert(!hr->is_young(), "not expecting to find young regions");
 959     _hr_printer->post_compaction(hr);
 960     return false;
 961   }
 962 
 963   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 964     : _hr_printer(hr_printer) { }
 965 };
 966 
 967 void G1CollectedHeap::print_hrm_post_compaction() {
 968   if (_hr_printer.is_active()) {
 969     PostCompactionPrinterClosure cl(hr_printer());
 970     heap_region_iterate(&cl);
 971   }
 972 }
 973 
 974 void G1CollectedHeap::abort_concurrent_cycle() {
 975   // If we start the compaction before the CM threads finish
 976   // scanning the root regions we might trip them over as we'll
 977   // be moving objects / updating references. So let's wait until
 978   // they are done. By telling them to abort, they should complete
 979   // early.
 980   _cm->root_regions()->abort();
 981   _cm->root_regions()->wait_until_scan_finished();
 982 
 983   // Disable discovery and empty the discovered lists
 984   // for the CM ref processor.
 985   ref_processor_cm()->disable_discovery();
 986   ref_processor_cm()->abandon_partial_discovery();
 987   ref_processor_cm()->verify_no_references_recorded();
 988 
 989   // Abandon current iterations of concurrent marking and concurrent
 990   // refinement, if any are in progress.
 991   concurrent_mark()->concurrent_cycle_abort();
 992 }
 993 
 994 void G1CollectedHeap::prepare_heap_for_full_collection() {
 995   // Make sure we'll choose a new allocation region afterwards.
 996   _allocator->release_mutator_alloc_region();
 997   _allocator->abandon_gc_alloc_regions();
 998   g1_rem_set()->cleanupHRRS();
 999 
1000   // We may have added regions to the current incremental collection
1001   // set between the last GC or pause and now. We need to clear the
1002   // incremental collection set and then start rebuilding it afresh
1003   // after this full GC.
1004   abandon_collection_set(collection_set());
1005 
1006   tear_down_region_sets(false /* free_list_only */);
1007 }
1008 
1009 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1010   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1011   assert(used() == recalculate_used(), "Should be equal");
1012   _verifier->verify_region_sets_optional();
1013   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1014   _verifier->check_bitmaps("Full GC Start");
1015 }
1016 
1017 void G1CollectedHeap::prepare_heap_for_mutators() {
1018   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1019   ClassLoaderDataGraph::purge();
1020   MetaspaceUtils::verify_metrics();
1021 
1022   // Prepare heap for normal collections.
1023   assert(num_free_regions() == 0, "we should not have added any free regions");
1024   rebuild_region_sets(false /* free_list_only */);
1025   abort_refinement();
1026   resize_if_necessary_after_full_collection();
1027 
1028   // Rebuild the strong code root lists for each region
1029   rebuild_strong_code_roots();
1030 
1031   // Start a new incremental collection set for the next pause
1032   start_new_collection_set();
1033 
1034   _allocator->init_mutator_alloc_region();
1035 
1036   // Post collection state updates.
1037   MetaspaceGC::compute_new_size();
1038 }
1039 
1040 void G1CollectedHeap::abort_refinement() {
1041   if (_hot_card_cache->use_cache()) {
1042     _hot_card_cache->reset_hot_cache();
1043   }
1044 
1045   // Discard all remembered set updates.
1046   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1047   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1048 }
1049 
1050 void G1CollectedHeap::verify_after_full_collection() {
1051   _hrm.verify_optional();
1052   _verifier->verify_region_sets_optional();
1053   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1054   // Clear the previous marking bitmap, if needed for bitmap verification.
1055   // Note we cannot do this when we clear the next marking bitmap in
1056   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1057   // objects marked during a full GC against the previous bitmap.
1058   // But we need to clear it before calling check_bitmaps below since
1059   // the full GC has compacted objects and updated TAMS but not updated
1060   // the prev bitmap.
1061   if (G1VerifyBitmaps) {
1062     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1063     _cm->clear_prev_bitmap(workers());
1064   }
1065   _verifier->check_bitmaps("Full GC End");
1066 
1067   // At this point there should be no regions in the
1068   // entire heap tagged as young.
1069   assert(check_young_list_empty(), "young list should be empty at this point");
1070 
1071   // Note: since we've just done a full GC, concurrent
1072   // marking is no longer active. Therefore we need not
1073   // re-enable reference discovery for the CM ref processor.
1074   // That will be done at the start of the next marking cycle.
1075   // We also know that the STW processor should no longer
1076   // discover any new references.
1077   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1078   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1079   ref_processor_stw()->verify_no_references_recorded();
1080   ref_processor_cm()->verify_no_references_recorded();
1081 }
1082 
1083 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1084   // Post collection logging.
1085   // We should do this after we potentially resize the heap so
1086   // that all the COMMIT / UNCOMMIT events are generated before
1087   // the compaction events.
1088   print_hrm_post_compaction();
1089   heap_transition->print();
1090   print_heap_after_gc();
1091   print_heap_regions();
1092 #ifdef TRACESPINNING
1093   ParallelTaskTerminator::print_termination_counts();
1094 #endif
1095 }
1096 
1097 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1098                                          bool clear_all_soft_refs) {
1099   assert_at_safepoint_on_vm_thread();
1100 
1101   if (GCLocker::check_active_before_gc()) {
1102     // Full GC was not completed.
1103     return false;
1104   }
1105 
1106   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1107       soft_ref_policy()->should_clear_all_soft_refs();
1108 
1109   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1110   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1111 
1112   collector.prepare_collection();
1113   collector.collect();
1114   collector.complete_collection();
1115 
1116   // Full collection was successfully completed.
1117   return true;
1118 }
1119 
1120 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1121   // Currently, there is no facility in the do_full_collection(bool) API to notify
1122   // the caller that the collection did not succeed (e.g., because it was locked
1123   // out by the GC locker). So, right now, we'll ignore the return value.
1124   bool dummy = do_full_collection(true,                /* explicit_gc */
1125                                   clear_all_soft_refs);
1126 }
1127 
1128 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1129   // Capacity, free and used after the GC counted as full regions to
1130   // include the waste in the following calculations.
1131   const size_t capacity_after_gc = capacity();
1132   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1133 
1134   // This is enforced in arguments.cpp.
1135   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1136          "otherwise the code below doesn't make sense");
1137 
1138   // We don't have floating point command-line arguments
1139   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1140   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1141   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1142   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1143 
1144   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1145   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1146 
1147   // We have to be careful here as these two calculations can overflow
1148   // 32-bit size_t's.
1149   double used_after_gc_d = (double) used_after_gc;
1150   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1151   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1152 
1153   // Let's make sure that they are both under the max heap size, which
1154   // by default will make them fit into a size_t.
1155   double desired_capacity_upper_bound = (double) max_heap_size;
1156   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1157                                     desired_capacity_upper_bound);
1158   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1159                                     desired_capacity_upper_bound);
1160 
1161   // We can now safely turn them into size_t's.
1162   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1163   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1164 
1165   // This assert only makes sense here, before we adjust them
1166   // with respect to the min and max heap size.
1167   assert(minimum_desired_capacity <= maximum_desired_capacity,
1168          "minimum_desired_capacity = " SIZE_FORMAT ", "
1169          "maximum_desired_capacity = " SIZE_FORMAT,
1170          minimum_desired_capacity, maximum_desired_capacity);
1171 
1172   // Should not be greater than the heap max size. No need to adjust
1173   // it with respect to the heap min size as it's a lower bound (i.e.,
1174   // we'll try to make the capacity larger than it, not smaller).
1175   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1176   // Should not be less than the heap min size. No need to adjust it
1177   // with respect to the heap max size as it's an upper bound (i.e.,
1178   // we'll try to make the capacity smaller than it, not greater).
1179   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1180 
1181   if (capacity_after_gc < minimum_desired_capacity) {
1182     // Don't expand unless it's significant
1183     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1184 
1185     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1186                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1187                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1188                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1189 
1190     expand(expand_bytes, _workers);
1191 
1192     // No expansion, now see if we want to shrink
1193   } else if (capacity_after_gc > maximum_desired_capacity) {
1194     // Capacity too large, compute shrinking size
1195     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1196 
1197     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1198                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1199                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1200                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1201 
1202     shrink(shrink_bytes);
1203   }
1204 }
1205 
1206 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1207                                                             bool do_gc,
1208                                                             bool clear_all_soft_refs,
1209                                                             bool expect_null_mutator_alloc_region,
1210                                                             bool* gc_succeeded) {
1211   *gc_succeeded = true;
1212   // Let's attempt the allocation first.
1213   HeapWord* result =
1214     attempt_allocation_at_safepoint(word_size,
1215                                     expect_null_mutator_alloc_region);
1216   if (result != NULL) {
1217     return result;
1218   }
1219 
1220   // In a G1 heap, we're supposed to keep allocation from failing by
1221   // incremental pauses.  Therefore, at least for now, we'll favor
1222   // expansion over collection.  (This might change in the future if we can
1223   // do something smarter than full collection to satisfy a failed alloc.)
1224   result = expand_and_allocate(word_size);
1225   if (result != NULL) {
1226     return result;
1227   }
1228 
1229   if (do_gc) {
1230     // Expansion didn't work, we'll try to do a Full GC.
1231     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1232                                        clear_all_soft_refs);
1233   }
1234 
1235   return NULL;
1236 }
1237 
1238 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1239                                                      bool* succeeded) {
1240   assert_at_safepoint_on_vm_thread();
1241 
1242   // Attempts to allocate followed by Full GC.
1243   HeapWord* result =
1244     satisfy_failed_allocation_helper(word_size,
1245                                      true,  /* do_gc */
1246                                      false, /* clear_all_soft_refs */
1247                                      false, /* expect_null_mutator_alloc_region */
1248                                      succeeded);
1249 
1250   if (result != NULL || !*succeeded) {
1251     return result;
1252   }
1253 
1254   // Attempts to allocate followed by Full GC that will collect all soft references.
1255   result = satisfy_failed_allocation_helper(word_size,
1256                                             true, /* do_gc */
1257                                             true, /* clear_all_soft_refs */
1258                                             true, /* expect_null_mutator_alloc_region */
1259                                             succeeded);
1260 
1261   if (result != NULL || !*succeeded) {
1262     return result;
1263   }
1264 
1265   // Attempts to allocate, no GC
1266   result = satisfy_failed_allocation_helper(word_size,
1267                                             false, /* do_gc */
1268                                             false, /* clear_all_soft_refs */
1269                                             true,  /* expect_null_mutator_alloc_region */
1270                                             succeeded);
1271 
1272   if (result != NULL) {
1273     return result;
1274   }
1275 
1276   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1277          "Flag should have been handled and cleared prior to this point");
1278 
1279   // What else?  We might try synchronous finalization later.  If the total
1280   // space available is large enough for the allocation, then a more
1281   // complete compaction phase than we've tried so far might be
1282   // appropriate.
1283   return NULL;
1284 }
1285 
1286 // Attempting to expand the heap sufficiently
1287 // to support an allocation of the given "word_size".  If
1288 // successful, perform the allocation and return the address of the
1289 // allocated block, or else "NULL".
1290 
1291 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1292   assert_at_safepoint_on_vm_thread();
1293 
1294   _verifier->verify_region_sets_optional();
1295 
1296   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1297   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1298                             word_size * HeapWordSize);
1299 
1300 
1301   if (expand(expand_bytes, _workers)) {
1302     _hrm.verify_optional();
1303     _verifier->verify_region_sets_optional();
1304     return attempt_allocation_at_safepoint(word_size,
1305                                            false /* expect_null_mutator_alloc_region */);
1306   }
1307   return NULL;
1308 }
1309 
1310 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1311   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1312   aligned_expand_bytes = align_up(aligned_expand_bytes,
1313                                        HeapRegion::GrainBytes);
1314 
1315   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1316                             expand_bytes, aligned_expand_bytes);
1317 
1318   if (is_maximal_no_gc()) {
1319     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1320     return false;
1321   }
1322 
1323   double expand_heap_start_time_sec = os::elapsedTime();
1324   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1325   assert(regions_to_expand > 0, "Must expand by at least one region");
1326 
1327   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1328   if (expand_time_ms != NULL) {
1329     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1330   }
1331 
1332   if (expanded_by > 0) {
1333     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1334     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1335     g1_policy()->record_new_heap_size(num_regions());
1336   } else {
1337     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1338 
1339     // The expansion of the virtual storage space was unsuccessful.
1340     // Let's see if it was because we ran out of swap.
1341     if (G1ExitOnExpansionFailure &&
1342         _hrm.available() >= regions_to_expand) {
1343       // We had head room...
1344       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1345     }
1346   }
1347   return regions_to_expand > 0;
1348 }
1349 
1350 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1351   size_t aligned_shrink_bytes =
1352     ReservedSpace::page_align_size_down(shrink_bytes);
1353   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1354                                          HeapRegion::GrainBytes);
1355   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1356 
1357   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1358   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1359 
1360 
1361   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1362                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1363   if (num_regions_removed > 0) {
1364     g1_policy()->record_new_heap_size(num_regions());
1365   } else {
1366     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1367   }
1368 }
1369 
1370 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1371   _verifier->verify_region_sets_optional();
1372 
1373   // We should only reach here at the end of a Full GC which means we
1374   // should not not be holding to any GC alloc regions. The method
1375   // below will make sure of that and do any remaining clean up.
1376   _allocator->abandon_gc_alloc_regions();
1377 
1378   // Instead of tearing down / rebuilding the free lists here, we
1379   // could instead use the remove_all_pending() method on free_list to
1380   // remove only the ones that we need to remove.
1381   tear_down_region_sets(true /* free_list_only */);
1382   shrink_helper(shrink_bytes);
1383   rebuild_region_sets(true /* free_list_only */);
1384 
1385   _hrm.verify_optional();
1386   _verifier->verify_region_sets_optional();
1387 }
1388 
1389 // Public methods.
1390 
1391 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1392   CollectedHeap(),
1393   _young_gen_sampling_thread(NULL),
1394   _collector_policy(collector_policy),
1395   _soft_ref_policy(),
1396   _card_table(NULL),
1397   _memory_manager("G1 Young Generation", "end of minor GC"),
1398   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1399   _eden_pool(NULL),
1400   _survivor_pool(NULL),
1401   _old_pool(NULL),
1402   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1403   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1404   _g1_policy(new G1Policy(_gc_timer_stw)),
1405   _collection_set(this, _g1_policy),
1406   _dirty_card_queue_set(false),
1407   _is_alive_closure_cm(this),
1408   _is_alive_closure_stw(this),
1409   _ref_processor_cm(NULL),
1410   _ref_processor_stw(NULL),
1411   _bot(NULL),
1412   _hot_card_cache(NULL),
1413   _g1_rem_set(NULL),
1414   _cr(NULL),
1415   _g1mm(NULL),
1416   _preserved_marks_set(true /* in_c_heap */),
1417   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1418   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1419   _humongous_reclaim_candidates(),
1420   _has_humongous_reclaim_candidates(false),
1421   _archive_allocator(NULL),
1422   _summary_bytes_used(0),
1423   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1424   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1425   _expand_heap_after_alloc_failure(true),
1426   _old_marking_cycles_started(0),
1427   _old_marking_cycles_completed(0),
1428   _in_cset_fast_test() {
1429 
1430   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1431                           /* are_GC_task_threads */true,
1432                           /* are_ConcurrentGC_threads */false);
1433   _workers->initialize_workers();
1434   _verifier = new G1HeapVerifier(this);
1435 
1436   _allocator = new G1Allocator(this);
1437 
1438   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1439 
1440   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1441 
1442   // Override the default _filler_array_max_size so that no humongous filler
1443   // objects are created.
1444   _filler_array_max_size = _humongous_object_threshold_in_words;
1445 
1446   uint n_queues = ParallelGCThreads;
1447   _task_queues = new RefToScanQueueSet(n_queues);
1448 
1449   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1450 
1451   for (uint i = 0; i < n_queues; i++) {
1452     RefToScanQueue* q = new RefToScanQueue();
1453     q->initialize();
1454     _task_queues->register_queue(i, q);
1455     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1456   }
1457 
1458   // Initialize the G1EvacuationFailureALot counters and flags.
1459   NOT_PRODUCT(reset_evacuation_should_fail();)
1460 
1461   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1462 }
1463 
1464 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1465                                                                  size_t size,
1466                                                                  size_t translation_factor) {
1467   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1468   // Allocate a new reserved space, preferring to use large pages.
1469   ReservedSpace rs(size, preferred_page_size);
1470   G1RegionToSpaceMapper* result  =
1471     G1RegionToSpaceMapper::create_mapper(rs,
1472                                          size,
1473                                          rs.alignment(),
1474                                          HeapRegion::GrainBytes,
1475                                          translation_factor,
1476                                          mtGC);
1477 
1478   os::trace_page_sizes_for_requested_size(description,
1479                                           size,
1480                                           preferred_page_size,
1481                                           rs.alignment(),
1482                                           rs.base(),
1483                                           rs.size());
1484 
1485   return result;
1486 }
1487 
1488 jint G1CollectedHeap::initialize_concurrent_refinement() {
1489   jint ecode = JNI_OK;
1490   _cr = G1ConcurrentRefine::create(&ecode);
1491   return ecode;
1492 }
1493 
1494 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1495   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1496   if (_young_gen_sampling_thread->osthread() == NULL) {
1497     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1498     return JNI_ENOMEM;
1499   }
1500   return JNI_OK;
1501 }
1502 
1503 jint G1CollectedHeap::initialize() {
1504   os::enable_vtime();
1505 
1506   // Necessary to satisfy locking discipline assertions.
1507 
1508   MutexLocker x(Heap_lock);
1509 
1510   // While there are no constraints in the GC code that HeapWordSize
1511   // be any particular value, there are multiple other areas in the
1512   // system which believe this to be true (e.g. oop->object_size in some
1513   // cases incorrectly returns the size in wordSize units rather than
1514   // HeapWordSize).
1515   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1516 
1517   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1518   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1519   size_t heap_alignment = collector_policy()->heap_alignment();
1520 
1521   // Ensure that the sizes are properly aligned.
1522   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1523   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1524   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1525 
1526   // Reserve the maximum.
1527 
1528   // When compressed oops are enabled, the preferred heap base
1529   // is calculated by subtracting the requested size from the
1530   // 32Gb boundary and using the result as the base address for
1531   // heap reservation. If the requested size is not aligned to
1532   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1533   // into the ReservedHeapSpace constructor) then the actual
1534   // base of the reserved heap may end up differing from the
1535   // address that was requested (i.e. the preferred heap base).
1536   // If this happens then we could end up using a non-optimal
1537   // compressed oops mode.
1538 
1539   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1540                                                  heap_alignment);
1541 
1542   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1543 
1544   // Create the barrier set for the entire reserved region.
1545   G1CardTable* ct = new G1CardTable(reserved_region());
1546   ct->initialize();
1547   G1BarrierSet* bs = new G1BarrierSet(ct);
1548   bs->initialize();
1549   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1550   BarrierSet::set_barrier_set(bs);
1551   _card_table = ct;
1552 
1553   // Create the hot card cache.
1554   _hot_card_cache = new G1HotCardCache(this);
1555 
1556   // Carve out the G1 part of the heap.
1557   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1558   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1559   G1RegionToSpaceMapper* heap_storage =
1560     G1RegionToSpaceMapper::create_mapper(g1_rs,
1561                                          g1_rs.size(),
1562                                          page_size,
1563                                          HeapRegion::GrainBytes,
1564                                          1,
1565                                          mtJavaHeap);
1566   os::trace_page_sizes("Heap",
1567                        collector_policy()->min_heap_byte_size(),
1568                        max_byte_size,
1569                        page_size,
1570                        heap_rs.base(),
1571                        heap_rs.size());
1572   heap_storage->set_mapping_changed_listener(&_listener);
1573 
1574   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1575   G1RegionToSpaceMapper* bot_storage =
1576     create_aux_memory_mapper("Block Offset Table",
1577                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1578                              G1BlockOffsetTable::heap_map_factor());
1579 
1580   G1RegionToSpaceMapper* cardtable_storage =
1581     create_aux_memory_mapper("Card Table",
1582                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1583                              G1CardTable::heap_map_factor());
1584 
1585   G1RegionToSpaceMapper* card_counts_storage =
1586     create_aux_memory_mapper("Card Counts Table",
1587                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1588                              G1CardCounts::heap_map_factor());
1589 
1590   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1591   G1RegionToSpaceMapper* prev_bitmap_storage =
1592     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1593   G1RegionToSpaceMapper* next_bitmap_storage =
1594     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1595 
1596   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1597   _card_table->initialize(cardtable_storage);
1598   // Do later initialization work for concurrent refinement.
1599   _hot_card_cache->initialize(card_counts_storage);
1600 
1601   // 6843694 - ensure that the maximum region index can fit
1602   // in the remembered set structures.
1603   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1604   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1605 
1606   // Also create a G1 rem set.
1607   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1608   _g1_rem_set->initialize(max_capacity(), max_regions());
1609 
1610   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1611   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1612   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1613             "too many cards per region");
1614 
1615   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1616 
1617   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1618 
1619   {
1620     HeapWord* start = _hrm.reserved().start();
1621     HeapWord* end = _hrm.reserved().end();
1622     size_t granularity = HeapRegion::GrainBytes;
1623 
1624     _in_cset_fast_test.initialize(start, end, granularity);
1625     _humongous_reclaim_candidates.initialize(start, end, granularity);
1626   }
1627 
1628   // Create the G1ConcurrentMark data structure and thread.
1629   // (Must do this late, so that "max_regions" is defined.)
1630   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1631   if (_cm == NULL || !_cm->completed_initialization()) {
1632     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1633     return JNI_ENOMEM;
1634   }
1635   _cm_thread = _cm->cm_thread();
1636 
1637   // Now expand into the initial heap size.
1638   if (!expand(init_byte_size, _workers)) {
1639     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1640     return JNI_ENOMEM;
1641   }
1642 
1643   // Perform any initialization actions delegated to the policy.
1644   g1_policy()->init(this, &_collection_set);
1645 
1646   G1BarrierSet::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1647                                                  SATB_Q_FL_lock,
1648                                                  G1SATBProcessCompletedThreshold,
1649                                                  Shared_SATB_Q_lock);
1650 
1651   jint ecode = initialize_concurrent_refinement();
1652   if (ecode != JNI_OK) {
1653     return ecode;
1654   }
1655 
1656   ecode = initialize_young_gen_sampling_thread();
1657   if (ecode != JNI_OK) {
1658     return ecode;
1659   }
1660 
1661   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1662                                                   DirtyCardQ_FL_lock,
1663                                                   (int)concurrent_refine()->yellow_zone(),
1664                                                   (int)concurrent_refine()->red_zone(),
1665                                                   Shared_DirtyCardQ_lock,
1666                                                   NULL,  // fl_owner
1667                                                   true); // init_free_ids
1668 
1669   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1670                                     DirtyCardQ_FL_lock,
1671                                     -1, // never trigger processing
1672                                     -1, // no limit on length
1673                                     Shared_DirtyCardQ_lock,
1674                                     &G1BarrierSet::dirty_card_queue_set());
1675 
1676   // Here we allocate the dummy HeapRegion that is required by the
1677   // G1AllocRegion class.
1678   HeapRegion* dummy_region = _hrm.get_dummy_region();
1679 
1680   // We'll re-use the same region whether the alloc region will
1681   // require BOT updates or not and, if it doesn't, then a non-young
1682   // region will complain that it cannot support allocations without
1683   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1684   dummy_region->set_eden();
1685   // Make sure it's full.
1686   dummy_region->set_top(dummy_region->end());
1687   G1AllocRegion::setup(this, dummy_region);
1688 
1689   _allocator->init_mutator_alloc_region();
1690 
1691   // Do create of the monitoring and management support so that
1692   // values in the heap have been properly initialized.
1693   _g1mm = new G1MonitoringSupport(this);
1694 
1695   G1StringDedup::initialize();
1696 
1697   _preserved_marks_set.init(ParallelGCThreads);
1698 
1699   _collection_set.initialize(max_regions());
1700 
1701   return JNI_OK;
1702 }
1703 
1704 void G1CollectedHeap::initialize_serviceability() {
1705   _eden_pool = new G1EdenPool(this);
1706   _survivor_pool = new G1SurvivorPool(this);
1707   _old_pool = new G1OldGenPool(this);
1708 
1709   _full_gc_memory_manager.add_pool(_eden_pool);
1710   _full_gc_memory_manager.add_pool(_survivor_pool);
1711   _full_gc_memory_manager.add_pool(_old_pool);
1712 
1713   _memory_manager.add_pool(_eden_pool);
1714   _memory_manager.add_pool(_survivor_pool);
1715 
1716 }
1717 
1718 void G1CollectedHeap::stop() {
1719   // Stop all concurrent threads. We do this to make sure these threads
1720   // do not continue to execute and access resources (e.g. logging)
1721   // that are destroyed during shutdown.
1722   _cr->stop();
1723   _young_gen_sampling_thread->stop();
1724   _cm_thread->stop();
1725   if (G1StringDedup::is_enabled()) {
1726     G1StringDedup::stop();
1727   }
1728 }
1729 
1730 void G1CollectedHeap::safepoint_synchronize_begin() {
1731   SuspendibleThreadSet::synchronize();
1732 }
1733 
1734 void G1CollectedHeap::safepoint_synchronize_end() {
1735   SuspendibleThreadSet::desynchronize();
1736 }
1737 
1738 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1739   return HeapRegion::max_region_size();
1740 }
1741 
1742 void G1CollectedHeap::post_initialize() {
1743   CollectedHeap::post_initialize();
1744   ref_processing_init();
1745 }
1746 
1747 void G1CollectedHeap::ref_processing_init() {
1748   // Reference processing in G1 currently works as follows:
1749   //
1750   // * There are two reference processor instances. One is
1751   //   used to record and process discovered references
1752   //   during concurrent marking; the other is used to
1753   //   record and process references during STW pauses
1754   //   (both full and incremental).
1755   // * Both ref processors need to 'span' the entire heap as
1756   //   the regions in the collection set may be dotted around.
1757   //
1758   // * For the concurrent marking ref processor:
1759   //   * Reference discovery is enabled at initial marking.
1760   //   * Reference discovery is disabled and the discovered
1761   //     references processed etc during remarking.
1762   //   * Reference discovery is MT (see below).
1763   //   * Reference discovery requires a barrier (see below).
1764   //   * Reference processing may or may not be MT
1765   //     (depending on the value of ParallelRefProcEnabled
1766   //     and ParallelGCThreads).
1767   //   * A full GC disables reference discovery by the CM
1768   //     ref processor and abandons any entries on it's
1769   //     discovered lists.
1770   //
1771   // * For the STW processor:
1772   //   * Non MT discovery is enabled at the start of a full GC.
1773   //   * Processing and enqueueing during a full GC is non-MT.
1774   //   * During a full GC, references are processed after marking.
1775   //
1776   //   * Discovery (may or may not be MT) is enabled at the start
1777   //     of an incremental evacuation pause.
1778   //   * References are processed near the end of a STW evacuation pause.
1779   //   * For both types of GC:
1780   //     * Discovery is atomic - i.e. not concurrent.
1781   //     * Reference discovery will not need a barrier.
1782 
1783   MemRegion mr = reserved_region();
1784 
1785   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1786 
1787   // Concurrent Mark ref processor
1788   _ref_processor_cm =
1789     new ReferenceProcessor(mr,    // span
1790                            mt_processing,
1791                                 // mt processing
1792                            ParallelGCThreads,
1793                                 // degree of mt processing
1794                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1795                                 // mt discovery
1796                            MAX2(ParallelGCThreads, ConcGCThreads),
1797                                 // degree of mt discovery
1798                            false,
1799                                 // Reference discovery is not atomic
1800                            &_is_alive_closure_cm);
1801                                 // is alive closure
1802                                 // (for efficiency/performance)
1803 
1804   // STW ref processor
1805   _ref_processor_stw =
1806     new ReferenceProcessor(mr,    // span
1807                            mt_processing,
1808                                 // mt processing
1809                            ParallelGCThreads,
1810                                 // degree of mt processing
1811                            (ParallelGCThreads > 1),
1812                                 // mt discovery
1813                            ParallelGCThreads,
1814                                 // degree of mt discovery
1815                            true,
1816                                 // Reference discovery is atomic
1817                            &_is_alive_closure_stw);
1818                                 // is alive closure
1819                                 // (for efficiency/performance)
1820 }
1821 
1822 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1823   return _collector_policy;
1824 }
1825 
1826 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1827   return &_soft_ref_policy;
1828 }
1829 
1830 size_t G1CollectedHeap::capacity() const {
1831   return _hrm.length() * HeapRegion::GrainBytes;
1832 }
1833 
1834 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1835   return _hrm.total_free_bytes();
1836 }
1837 
1838 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1839   _hot_card_cache->drain(cl, worker_i);
1840 }
1841 
1842 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1843   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1844   size_t n_completed_buffers = 0;
1845   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1846     n_completed_buffers++;
1847   }
1848   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1849   dcqs.clear_n_completed_buffers();
1850   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1851 }
1852 
1853 // Computes the sum of the storage used by the various regions.
1854 size_t G1CollectedHeap::used() const {
1855   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1856   if (_archive_allocator != NULL) {
1857     result += _archive_allocator->used();
1858   }
1859   return result;
1860 }
1861 
1862 size_t G1CollectedHeap::used_unlocked() const {
1863   return _summary_bytes_used;
1864 }
1865 
1866 class SumUsedClosure: public HeapRegionClosure {
1867   size_t _used;
1868 public:
1869   SumUsedClosure() : _used(0) {}
1870   bool do_heap_region(HeapRegion* r) {
1871     _used += r->used();
1872     return false;
1873   }
1874   size_t result() { return _used; }
1875 };
1876 
1877 size_t G1CollectedHeap::recalculate_used() const {
1878   double recalculate_used_start = os::elapsedTime();
1879 
1880   SumUsedClosure blk;
1881   heap_region_iterate(&blk);
1882 
1883   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1884   return blk.result();
1885 }
1886 
1887 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1888   switch (cause) {
1889     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1890     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1891     case GCCause::_wb_conc_mark:                        return true;
1892     default :                                           return false;
1893   }
1894 }
1895 
1896 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1897   switch (cause) {
1898     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1899     case GCCause::_g1_humongous_allocation: return true;
1900     default:                                return is_user_requested_concurrent_full_gc(cause);
1901   }
1902 }
1903 
1904 #ifndef PRODUCT
1905 void G1CollectedHeap::allocate_dummy_regions() {
1906   // Let's fill up most of the region
1907   size_t word_size = HeapRegion::GrainWords - 1024;
1908   // And as a result the region we'll allocate will be humongous.
1909   guarantee(is_humongous(word_size), "sanity");
1910 
1911   // _filler_array_max_size is set to humongous object threshold
1912   // but temporarily change it to use CollectedHeap::fill_with_object().
1913   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1914 
1915   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1916     // Let's use the existing mechanism for the allocation
1917     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1918     if (dummy_obj != NULL) {
1919       MemRegion mr(dummy_obj, word_size);
1920       CollectedHeap::fill_with_object(mr);
1921     } else {
1922       // If we can't allocate once, we probably cannot allocate
1923       // again. Let's get out of the loop.
1924       break;
1925     }
1926   }
1927 }
1928 #endif // !PRODUCT
1929 
1930 void G1CollectedHeap::increment_old_marking_cycles_started() {
1931   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1932          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1933          "Wrong marking cycle count (started: %d, completed: %d)",
1934          _old_marking_cycles_started, _old_marking_cycles_completed);
1935 
1936   _old_marking_cycles_started++;
1937 }
1938 
1939 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1940   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1941 
1942   // We assume that if concurrent == true, then the caller is a
1943   // concurrent thread that was joined the Suspendible Thread
1944   // Set. If there's ever a cheap way to check this, we should add an
1945   // assert here.
1946 
1947   // Given that this method is called at the end of a Full GC or of a
1948   // concurrent cycle, and those can be nested (i.e., a Full GC can
1949   // interrupt a concurrent cycle), the number of full collections
1950   // completed should be either one (in the case where there was no
1951   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1952   // behind the number of full collections started.
1953 
1954   // This is the case for the inner caller, i.e. a Full GC.
1955   assert(concurrent ||
1956          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1957          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1958          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1959          "is inconsistent with _old_marking_cycles_completed = %u",
1960          _old_marking_cycles_started, _old_marking_cycles_completed);
1961 
1962   // This is the case for the outer caller, i.e. the concurrent cycle.
1963   assert(!concurrent ||
1964          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1965          "for outer caller (concurrent cycle): "
1966          "_old_marking_cycles_started = %u "
1967          "is inconsistent with _old_marking_cycles_completed = %u",
1968          _old_marking_cycles_started, _old_marking_cycles_completed);
1969 
1970   _old_marking_cycles_completed += 1;
1971 
1972   // We need to clear the "in_progress" flag in the CM thread before
1973   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1974   // is set) so that if a waiter requests another System.gc() it doesn't
1975   // incorrectly see that a marking cycle is still in progress.
1976   if (concurrent) {
1977     _cm_thread->set_idle();
1978   }
1979 
1980   // This notify_all() will ensure that a thread that called
1981   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
1982   // and it's waiting for a full GC to finish will be woken up. It is
1983   // waiting in VM_G1CollectForAllocation::doit_epilogue().
1984   FullGCCount_lock->notify_all();
1985 }
1986 
1987 void G1CollectedHeap::collect(GCCause::Cause cause) {
1988   assert_heap_not_locked();
1989 
1990   uint gc_count_before;
1991   uint old_marking_count_before;
1992   uint full_gc_count_before;
1993   bool retry_gc;
1994 
1995   do {
1996     retry_gc = false;
1997 
1998     {
1999       MutexLocker ml(Heap_lock);
2000 
2001       // Read the GC count while holding the Heap_lock
2002       gc_count_before = total_collections();
2003       full_gc_count_before = total_full_collections();
2004       old_marking_count_before = _old_marking_cycles_started;
2005     }
2006 
2007     if (should_do_concurrent_full_gc(cause)) {
2008       // Schedule an initial-mark evacuation pause that will start a
2009       // concurrent cycle. We're setting word_size to 0 which means that
2010       // we are not requesting a post-GC allocation.
2011       VM_G1CollectForAllocation op(0,     /* word_size */
2012                                    gc_count_before,
2013                                    cause,
2014                                    true,  /* should_initiate_conc_mark */
2015                                    g1_policy()->max_pause_time_ms());
2016       VMThread::execute(&op);
2017       if (!op.pause_succeeded()) {
2018         if (old_marking_count_before == _old_marking_cycles_started) {
2019           retry_gc = op.should_retry_gc();
2020         } else {
2021           // A Full GC happened while we were trying to schedule the
2022           // initial-mark GC. No point in starting a new cycle given
2023           // that the whole heap was collected anyway.
2024         }
2025 
2026         if (retry_gc) {
2027           if (GCLocker::is_active_and_needs_gc()) {
2028             GCLocker::stall_until_clear();
2029           }
2030         }
2031       }
2032     } else {
2033       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2034           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2035 
2036         // Schedule a standard evacuation pause. We're setting word_size
2037         // to 0 which means that we are not requesting a post-GC allocation.
2038         VM_G1CollectForAllocation op(0,     /* word_size */
2039                                      gc_count_before,
2040                                      cause,
2041                                      false, /* should_initiate_conc_mark */
2042                                      g1_policy()->max_pause_time_ms());
2043         VMThread::execute(&op);
2044       } else {
2045         // Schedule a Full GC.
2046         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2047         VMThread::execute(&op);
2048       }
2049     }
2050   } while (retry_gc);
2051 }
2052 
2053 bool G1CollectedHeap::is_in(const void* p) const {
2054   if (_hrm.reserved().contains(p)) {
2055     // Given that we know that p is in the reserved space,
2056     // heap_region_containing() should successfully
2057     // return the containing region.
2058     HeapRegion* hr = heap_region_containing(p);
2059     return hr->is_in(p);
2060   } else {
2061     return false;
2062   }
2063 }
2064 
2065 #ifdef ASSERT
2066 bool G1CollectedHeap::is_in_exact(const void* p) const {
2067   bool contains = reserved_region().contains(p);
2068   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2069   if (contains && available) {
2070     return true;
2071   } else {
2072     return false;
2073   }
2074 }
2075 #endif
2076 
2077 // Iteration functions.
2078 
2079 // Iterates an ObjectClosure over all objects within a HeapRegion.
2080 
2081 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2082   ObjectClosure* _cl;
2083 public:
2084   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2085   bool do_heap_region(HeapRegion* r) {
2086     if (!r->is_continues_humongous()) {
2087       r->object_iterate(_cl);
2088     }
2089     return false;
2090   }
2091 };
2092 
2093 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2094   IterateObjectClosureRegionClosure blk(cl);
2095   heap_region_iterate(&blk);
2096 }
2097 
2098 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2099   _hrm.iterate(cl);
2100 }
2101 
2102 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2103                                                                  HeapRegionClaimer *hrclaimer,
2104                                                                  uint worker_id) const {
2105   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2106 }
2107 
2108 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2109                                                          HeapRegionClaimer *hrclaimer) const {
2110   _hrm.par_iterate(cl, hrclaimer, 0);
2111 }
2112 
2113 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2114   _collection_set.iterate(cl);
2115 }
2116 
2117 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2118   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2119 }
2120 
2121 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2122   HeapRegion* hr = heap_region_containing(addr);
2123   return hr->block_start(addr);
2124 }
2125 
2126 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2127   HeapRegion* hr = heap_region_containing(addr);
2128   return hr->block_size(addr);
2129 }
2130 
2131 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2132   HeapRegion* hr = heap_region_containing(addr);
2133   return hr->block_is_obj(addr);
2134 }
2135 
2136 bool G1CollectedHeap::supports_tlab_allocation() const {
2137   return true;
2138 }
2139 
2140 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2141   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2142 }
2143 
2144 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2145   return _eden.length() * HeapRegion::GrainBytes;
2146 }
2147 
2148 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2149 // must be equal to the humongous object limit.
2150 size_t G1CollectedHeap::max_tlab_size() const {
2151   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2152 }
2153 
2154 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2155   return _allocator->unsafe_max_tlab_alloc();
2156 }
2157 
2158 size_t G1CollectedHeap::max_capacity() const {
2159   return _hrm.reserved().byte_size();
2160 }
2161 
2162 jlong G1CollectedHeap::millis_since_last_gc() {
2163   // See the notes in GenCollectedHeap::millis_since_last_gc()
2164   // for more information about the implementation.
2165   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2166     _g1_policy->collection_pause_end_millis();
2167   if (ret_val < 0) {
2168     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2169       ". returning zero instead.", ret_val);
2170     return 0;
2171   }
2172   return ret_val;
2173 }
2174 
2175 void G1CollectedHeap::prepare_for_verify() {
2176   _verifier->prepare_for_verify();
2177 }
2178 
2179 void G1CollectedHeap::verify(VerifyOption vo) {
2180   _verifier->verify(vo);
2181 }
2182 
2183 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2184   return true;
2185 }
2186 
2187 const char* const* G1CollectedHeap::concurrent_phases() const {
2188   return _cm_thread->concurrent_phases();
2189 }
2190 
2191 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2192   return _cm_thread->request_concurrent_phase(phase);
2193 }
2194 
2195 class PrintRegionClosure: public HeapRegionClosure {
2196   outputStream* _st;
2197 public:
2198   PrintRegionClosure(outputStream* st) : _st(st) {}
2199   bool do_heap_region(HeapRegion* r) {
2200     r->print_on(_st);
2201     return false;
2202   }
2203 };
2204 
2205 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2206                                        const HeapRegion* hr,
2207                                        const VerifyOption vo) const {
2208   switch (vo) {
2209   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2210   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2211   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2212   default:                            ShouldNotReachHere();
2213   }
2214   return false; // keep some compilers happy
2215 }
2216 
2217 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2218                                        const VerifyOption vo) const {
2219   switch (vo) {
2220   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2221   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2222   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2223   default:                            ShouldNotReachHere();
2224   }
2225   return false; // keep some compilers happy
2226 }
2227 
2228 void G1CollectedHeap::print_heap_regions() const {
2229   LogTarget(Trace, gc, heap, region) lt;
2230   if (lt.is_enabled()) {
2231     LogStream ls(lt);
2232     print_regions_on(&ls);
2233   }
2234 }
2235 
2236 void G1CollectedHeap::print_on(outputStream* st) const {
2237   st->print(" %-20s", "garbage-first heap");
2238   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2239             capacity()/K, used_unlocked()/K);
2240   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2241             p2i(_hrm.reserved().start()),
2242             p2i(_hrm.reserved().end()));
2243   st->cr();
2244   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2245   uint young_regions = young_regions_count();
2246   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2247             (size_t) young_regions * HeapRegion::GrainBytes / K);
2248   uint survivor_regions = survivor_regions_count();
2249   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2250             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2251   st->cr();
2252   MetaspaceUtils::print_on(st);
2253 }
2254 
2255 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2256   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2257                "HS=humongous(starts), HC=humongous(continues), "
2258                "CS=collection set, F=free, A=archive, "
2259                "TAMS=top-at-mark-start (previous, next)");
2260   PrintRegionClosure blk(st);
2261   heap_region_iterate(&blk);
2262 }
2263 
2264 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2265   print_on(st);
2266 
2267   // Print the per-region information.
2268   print_regions_on(st);
2269 }
2270 
2271 void G1CollectedHeap::print_on_error(outputStream* st) const {
2272   this->CollectedHeap::print_on_error(st);
2273 
2274   if (_cm != NULL) {
2275     st->cr();
2276     _cm->print_on_error(st);
2277   }
2278 }
2279 
2280 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2281   workers()->print_worker_threads_on(st);
2282   _cm_thread->print_on(st);
2283   st->cr();
2284   _cm->print_worker_threads_on(st);
2285   _cr->print_threads_on(st);
2286   _young_gen_sampling_thread->print_on(st);
2287   if (G1StringDedup::is_enabled()) {
2288     G1StringDedup::print_worker_threads_on(st);
2289   }
2290 }
2291 
2292 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2293   workers()->threads_do(tc);
2294   tc->do_thread(_cm_thread);
2295   _cm->threads_do(tc);
2296   _cr->threads_do(tc);
2297   tc->do_thread(_young_gen_sampling_thread);
2298   if (G1StringDedup::is_enabled()) {
2299     G1StringDedup::threads_do(tc);
2300   }
2301 }
2302 
2303 void G1CollectedHeap::print_tracing_info() const {
2304   g1_rem_set()->print_summary_info();
2305   concurrent_mark()->print_summary_info();
2306 }
2307 
2308 #ifndef PRODUCT
2309 // Helpful for debugging RSet issues.
2310 
2311 class PrintRSetsClosure : public HeapRegionClosure {
2312 private:
2313   const char* _msg;
2314   size_t _occupied_sum;
2315 
2316 public:
2317   bool do_heap_region(HeapRegion* r) {
2318     HeapRegionRemSet* hrrs = r->rem_set();
2319     size_t occupied = hrrs->occupied();
2320     _occupied_sum += occupied;
2321 
2322     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2323     if (occupied == 0) {
2324       tty->print_cr("  RSet is empty");
2325     } else {
2326       hrrs->print();
2327     }
2328     tty->print_cr("----------");
2329     return false;
2330   }
2331 
2332   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2333     tty->cr();
2334     tty->print_cr("========================================");
2335     tty->print_cr("%s", msg);
2336     tty->cr();
2337   }
2338 
2339   ~PrintRSetsClosure() {
2340     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2341     tty->print_cr("========================================");
2342     tty->cr();
2343   }
2344 };
2345 
2346 void G1CollectedHeap::print_cset_rsets() {
2347   PrintRSetsClosure cl("Printing CSet RSets");
2348   collection_set_iterate(&cl);
2349 }
2350 
2351 void G1CollectedHeap::print_all_rsets() {
2352   PrintRSetsClosure cl("Printing All RSets");;
2353   heap_region_iterate(&cl);
2354 }
2355 #endif // PRODUCT
2356 
2357 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2358 
2359   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2360   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2361   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2362 
2363   size_t eden_capacity_bytes =
2364     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2365 
2366   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2367   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2368                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2369 }
2370 
2371 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2372   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2373                        stats->unused(), stats->used(), stats->region_end_waste(),
2374                        stats->regions_filled(), stats->direct_allocated(),
2375                        stats->failure_used(), stats->failure_waste());
2376 }
2377 
2378 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2379   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2380   gc_tracer->report_gc_heap_summary(when, heap_summary);
2381 
2382   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2383   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2384 }
2385 
2386 G1CollectedHeap* G1CollectedHeap::heap() {
2387   CollectedHeap* heap = Universe::heap();
2388   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2389   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2390   return (G1CollectedHeap*)heap;
2391 }
2392 
2393 void G1CollectedHeap::gc_prologue(bool full) {
2394   // always_do_update_barrier = false;
2395   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2396 
2397   // This summary needs to be printed before incrementing total collections.
2398   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2399 
2400   // Update common counters.
2401   increment_total_collections(full /* full gc */);
2402   if (full) {
2403     increment_old_marking_cycles_started();
2404   }
2405 
2406   // Fill TLAB's and such
2407   double start = os::elapsedTime();
2408   accumulate_statistics_all_tlabs();
2409   ensure_parsability(true);
2410   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2411 }
2412 
2413 void G1CollectedHeap::gc_epilogue(bool full) {
2414   // Update common counters.
2415   if (full) {
2416     // Update the number of full collections that have been completed.
2417     increment_old_marking_cycles_completed(false /* concurrent */);
2418   }
2419 
2420   // We are at the end of the GC. Total collections has already been increased.
2421   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2422 
2423   // FIXME: what is this about?
2424   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2425   // is set.
2426 #if COMPILER2_OR_JVMCI
2427   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2428 #endif
2429   // always_do_update_barrier = true;
2430 
2431   double start = os::elapsedTime();
2432   resize_all_tlabs();
2433   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2434 
2435   MemoryService::track_memory_usage();
2436   // We have just completed a GC. Update the soft reference
2437   // policy with the new heap occupancy
2438   Universe::update_heap_info_at_gc();
2439 }
2440 
2441 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2442                                                uint gc_count_before,
2443                                                bool* succeeded,
2444                                                GCCause::Cause gc_cause) {
2445   assert_heap_not_locked_and_not_at_safepoint();
2446   VM_G1CollectForAllocation op(word_size,
2447                                gc_count_before,
2448                                gc_cause,
2449                                false, /* should_initiate_conc_mark */
2450                                g1_policy()->max_pause_time_ms());
2451   VMThread::execute(&op);
2452 
2453   HeapWord* result = op.result();
2454   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2455   assert(result == NULL || ret_succeeded,
2456          "the result should be NULL if the VM did not succeed");
2457   *succeeded = ret_succeeded;
2458 
2459   assert_heap_not_locked();
2460   return result;
2461 }
2462 
2463 void G1CollectedHeap::do_concurrent_mark() {
2464   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2465   if (!_cm_thread->in_progress()) {
2466     _cm_thread->set_started();
2467     CGC_lock->notify();
2468   }
2469 }
2470 
2471 size_t G1CollectedHeap::pending_card_num() {
2472   size_t extra_cards = 0;
2473   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2474     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2475     extra_cards += dcq.size();
2476   }
2477   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2478   size_t buffer_size = dcqs.buffer_size();
2479   size_t buffer_num = dcqs.completed_buffers_num();
2480 
2481   return buffer_size * buffer_num + extra_cards;
2482 }
2483 
2484 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2485   // We don't nominate objects with many remembered set entries, on
2486   // the assumption that such objects are likely still live.
2487   HeapRegionRemSet* rem_set = r->rem_set();
2488 
2489   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2490          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2491          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2492 }
2493 
2494 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2495  private:
2496   size_t _total_humongous;
2497   size_t _candidate_humongous;
2498 
2499   DirtyCardQueue _dcq;
2500 
2501   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2502     assert(region->is_starts_humongous(), "Must start a humongous object");
2503 
2504     oop obj = oop(region->bottom());
2505 
2506     // Dead objects cannot be eager reclaim candidates. Due to class
2507     // unloading it is unsafe to query their classes so we return early.
2508     if (g1h->is_obj_dead(obj, region)) {
2509       return false;
2510     }
2511 
2512     // If we do not have a complete remembered set for the region, then we can
2513     // not be sure that we have all references to it.
2514     if (!region->rem_set()->is_complete()) {
2515       return false;
2516     }
2517     // Candidate selection must satisfy the following constraints
2518     // while concurrent marking is in progress:
2519     //
2520     // * In order to maintain SATB invariants, an object must not be
2521     // reclaimed if it was allocated before the start of marking and
2522     // has not had its references scanned.  Such an object must have
2523     // its references (including type metadata) scanned to ensure no
2524     // live objects are missed by the marking process.  Objects
2525     // allocated after the start of concurrent marking don't need to
2526     // be scanned.
2527     //
2528     // * An object must not be reclaimed if it is on the concurrent
2529     // mark stack.  Objects allocated after the start of concurrent
2530     // marking are never pushed on the mark stack.
2531     //
2532     // Nominating only objects allocated after the start of concurrent
2533     // marking is sufficient to meet both constraints.  This may miss
2534     // some objects that satisfy the constraints, but the marking data
2535     // structures don't support efficiently performing the needed
2536     // additional tests or scrubbing of the mark stack.
2537     //
2538     // However, we presently only nominate is_typeArray() objects.
2539     // A humongous object containing references induces remembered
2540     // set entries on other regions.  In order to reclaim such an
2541     // object, those remembered sets would need to be cleaned up.
2542     //
2543     // We also treat is_typeArray() objects specially, allowing them
2544     // to be reclaimed even if allocated before the start of
2545     // concurrent mark.  For this we rely on mark stack insertion to
2546     // exclude is_typeArray() objects, preventing reclaiming an object
2547     // that is in the mark stack.  We also rely on the metadata for
2548     // such objects to be built-in and so ensured to be kept live.
2549     // Frequent allocation and drop of large binary blobs is an
2550     // important use case for eager reclaim, and this special handling
2551     // may reduce needed headroom.
2552 
2553     return obj->is_typeArray() &&
2554            g1h->is_potential_eager_reclaim_candidate(region);
2555   }
2556 
2557  public:
2558   RegisterHumongousWithInCSetFastTestClosure()
2559   : _total_humongous(0),
2560     _candidate_humongous(0),
2561     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2562   }
2563 
2564   virtual bool do_heap_region(HeapRegion* r) {
2565     if (!r->is_starts_humongous()) {
2566       return false;
2567     }
2568     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2569 
2570     bool is_candidate = humongous_region_is_candidate(g1h, r);
2571     uint rindex = r->hrm_index();
2572     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2573     if (is_candidate) {
2574       _candidate_humongous++;
2575       g1h->register_humongous_region_with_cset(rindex);
2576       // Is_candidate already filters out humongous object with large remembered sets.
2577       // If we have a humongous object with a few remembered sets, we simply flush these
2578       // remembered set entries into the DCQS. That will result in automatic
2579       // re-evaluation of their remembered set entries during the following evacuation
2580       // phase.
2581       if (!r->rem_set()->is_empty()) {
2582         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2583                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2584         G1CardTable* ct = g1h->card_table();
2585         HeapRegionRemSetIterator hrrs(r->rem_set());
2586         size_t card_index;
2587         while (hrrs.has_next(card_index)) {
2588           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2589           // The remembered set might contain references to already freed
2590           // regions. Filter out such entries to avoid failing card table
2591           // verification.
2592           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2593             if (*card_ptr != G1CardTable::dirty_card_val()) {
2594               *card_ptr = G1CardTable::dirty_card_val();
2595               _dcq.enqueue(card_ptr);
2596             }
2597           }
2598         }
2599         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2600                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2601                hrrs.n_yielded(), r->rem_set()->occupied());
2602         // We should only clear the card based remembered set here as we will not
2603         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2604         // (and probably never) we do not enter this path if there are other kind of
2605         // remembered sets for this region.
2606         r->rem_set()->clear_locked(true /* only_cardset */);
2607         // Clear_locked() above sets the state to Empty. However we want to continue
2608         // collecting remembered set entries for humongous regions that were not
2609         // reclaimed.
2610         r->rem_set()->set_state_complete();
2611       }
2612       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2613     }
2614     _total_humongous++;
2615 
2616     return false;
2617   }
2618 
2619   size_t total_humongous() const { return _total_humongous; }
2620   size_t candidate_humongous() const { return _candidate_humongous; }
2621 
2622   void flush_rem_set_entries() { _dcq.flush(); }
2623 };
2624 
2625 void G1CollectedHeap::register_humongous_regions_with_cset() {
2626   if (!G1EagerReclaimHumongousObjects) {
2627     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2628     return;
2629   }
2630   double time = os::elapsed_counter();
2631 
2632   // Collect reclaim candidate information and register candidates with cset.
2633   RegisterHumongousWithInCSetFastTestClosure cl;
2634   heap_region_iterate(&cl);
2635 
2636   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2637   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2638                                                                   cl.total_humongous(),
2639                                                                   cl.candidate_humongous());
2640   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2641 
2642   // Finally flush all remembered set entries to re-check into the global DCQS.
2643   cl.flush_rem_set_entries();
2644 }
2645 
2646 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2647   public:
2648     bool do_heap_region(HeapRegion* hr) {
2649       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2650         hr->verify_rem_set();
2651       }
2652       return false;
2653     }
2654 };
2655 
2656 uint G1CollectedHeap::num_task_queues() const {
2657   return _task_queues->size();
2658 }
2659 
2660 #if TASKQUEUE_STATS
2661 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2662   st->print_raw_cr("GC Task Stats");
2663   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2664   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2665 }
2666 
2667 void G1CollectedHeap::print_taskqueue_stats() const {
2668   if (!log_is_enabled(Trace, gc, task, stats)) {
2669     return;
2670   }
2671   Log(gc, task, stats) log;
2672   ResourceMark rm;
2673   LogStream ls(log.trace());
2674   outputStream* st = &ls;
2675 
2676   print_taskqueue_stats_hdr(st);
2677 
2678   TaskQueueStats totals;
2679   const uint n = num_task_queues();
2680   for (uint i = 0; i < n; ++i) {
2681     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2682     totals += task_queue(i)->stats;
2683   }
2684   st->print_raw("tot "); totals.print(st); st->cr();
2685 
2686   DEBUG_ONLY(totals.verify());
2687 }
2688 
2689 void G1CollectedHeap::reset_taskqueue_stats() {
2690   const uint n = num_task_queues();
2691   for (uint i = 0; i < n; ++i) {
2692     task_queue(i)->stats.reset();
2693   }
2694 }
2695 #endif // TASKQUEUE_STATS
2696 
2697 void G1CollectedHeap::wait_for_root_region_scanning() {
2698   double scan_wait_start = os::elapsedTime();
2699   // We have to wait until the CM threads finish scanning the
2700   // root regions as it's the only way to ensure that all the
2701   // objects on them have been correctly scanned before we start
2702   // moving them during the GC.
2703   bool waited = _cm->root_regions()->wait_until_scan_finished();
2704   double wait_time_ms = 0.0;
2705   if (waited) {
2706     double scan_wait_end = os::elapsedTime();
2707     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2708   }
2709   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2710 }
2711 
2712 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2713 private:
2714   G1HRPrinter* _hr_printer;
2715 public:
2716   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2717 
2718   virtual bool do_heap_region(HeapRegion* r) {
2719     _hr_printer->cset(r);
2720     return false;
2721   }
2722 };
2723 
2724 void G1CollectedHeap::start_new_collection_set() {
2725   collection_set()->start_incremental_building();
2726 
2727   clear_cset_fast_test();
2728 
2729   guarantee(_eden.length() == 0, "eden should have been cleared");
2730   g1_policy()->transfer_survivors_to_cset(survivor());
2731 }
2732 
2733 bool
2734 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2735   assert_at_safepoint_on_vm_thread();
2736   guarantee(!is_gc_active(), "collection is not reentrant");
2737 
2738   if (GCLocker::check_active_before_gc()) {
2739     return false;
2740   }
2741 
2742   _gc_timer_stw->register_gc_start();
2743 
2744   GCIdMark gc_id_mark;
2745   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2746 
2747   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2748   ResourceMark rm;
2749 
2750   g1_policy()->note_gc_start();
2751 
2752   wait_for_root_region_scanning();
2753 
2754   print_heap_before_gc();
2755   print_heap_regions();
2756   trace_heap_before_gc(_gc_tracer_stw);
2757 
2758   _verifier->verify_region_sets_optional();
2759   _verifier->verify_dirty_young_regions();
2760 
2761   // We should not be doing initial mark unless the conc mark thread is running
2762   if (!_cm_thread->should_terminate()) {
2763     // This call will decide whether this pause is an initial-mark
2764     // pause. If it is, in_initial_mark_gc() will return true
2765     // for the duration of this pause.
2766     g1_policy()->decide_on_conc_mark_initiation();
2767   }
2768 
2769   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2770   assert(!collector_state()->in_initial_mark_gc() ||
2771           collector_state()->in_young_only_phase(), "sanity");
2772 
2773   // We also do not allow mixed GCs during marking.
2774   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2775 
2776   // Record whether this pause is an initial mark. When the current
2777   // thread has completed its logging output and it's safe to signal
2778   // the CM thread, the flag's value in the policy has been reset.
2779   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2780 
2781   // Inner scope for scope based logging, timers, and stats collection
2782   {
2783     EvacuationInfo evacuation_info;
2784 
2785     if (collector_state()->in_initial_mark_gc()) {
2786       // We are about to start a marking cycle, so we increment the
2787       // full collection counter.
2788       increment_old_marking_cycles_started();
2789       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2790     }
2791 
2792     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2793 
2794     GCTraceCPUTime tcpu;
2795 
2796     G1HeapVerifier::G1VerifyType verify_type;
2797     FormatBuffer<> gc_string("Pause ");
2798     if (collector_state()->in_initial_mark_gc()) {
2799       gc_string.append("Initial Mark");
2800       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2801     } else if (collector_state()->in_young_only_phase()) {
2802       gc_string.append("Young");
2803       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2804     } else {
2805       gc_string.append("Mixed");
2806       verify_type = G1HeapVerifier::G1VerifyMixed;
2807     }
2808     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2809 
2810     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2811                                                                   workers()->active_workers(),
2812                                                                   Threads::number_of_non_daemon_threads());
2813     active_workers = workers()->update_active_workers(active_workers);
2814     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2815 
2816     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2817     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2818 
2819     G1HeapTransition heap_transition(this);
2820     size_t heap_used_bytes_before_gc = used();
2821 
2822     // Don't dynamically change the number of GC threads this early.  A value of
2823     // 0 is used to indicate serial work.  When parallel work is done,
2824     // it will be set.
2825 
2826     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2827       IsGCActiveMark x;
2828 
2829       gc_prologue(false);
2830 
2831       if (VerifyRememberedSets) {
2832         log_info(gc, verify)("[Verifying RemSets before GC]");
2833         VerifyRegionRemSetClosure v_cl;
2834         heap_region_iterate(&v_cl);
2835       }
2836 
2837       _verifier->verify_before_gc(verify_type);
2838 
2839       _verifier->check_bitmaps("GC Start");
2840 
2841 #if COMPILER2_OR_JVMCI
2842       DerivedPointerTable::clear();
2843 #endif
2844 
2845       // Please see comment in g1CollectedHeap.hpp and
2846       // G1CollectedHeap::ref_processing_init() to see how
2847       // reference processing currently works in G1.
2848 
2849       // Enable discovery in the STW reference processor
2850       ref_processor_stw()->enable_discovery();
2851 
2852       {
2853         // We want to temporarily turn off discovery by the
2854         // CM ref processor, if necessary, and turn it back on
2855         // on again later if we do. Using a scoped
2856         // NoRefDiscovery object will do this.
2857         NoRefDiscovery no_cm_discovery(ref_processor_cm());
2858 
2859         // Forget the current alloc region (we might even choose it to be part
2860         // of the collection set!).
2861         _allocator->release_mutator_alloc_region();
2862 
2863         // This timing is only used by the ergonomics to handle our pause target.
2864         // It is unclear why this should not include the full pause. We will
2865         // investigate this in CR 7178365.
2866         //
2867         // Preserving the old comment here if that helps the investigation:
2868         //
2869         // The elapsed time induced by the start time below deliberately elides
2870         // the possible verification above.
2871         double sample_start_time_sec = os::elapsedTime();
2872 
2873         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2874 
2875         if (collector_state()->in_initial_mark_gc()) {
2876           concurrent_mark()->pre_initial_mark();
2877         }
2878 
2879         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2880 
2881         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2882 
2883         // Make sure the remembered sets are up to date. This needs to be
2884         // done before register_humongous_regions_with_cset(), because the
2885         // remembered sets are used there to choose eager reclaim candidates.
2886         // If the remembered sets are not up to date we might miss some
2887         // entries that need to be handled.
2888         g1_rem_set()->cleanupHRRS();
2889 
2890         register_humongous_regions_with_cset();
2891 
2892         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2893 
2894         // We call this after finalize_cset() to
2895         // ensure that the CSet has been finalized.
2896         _cm->verify_no_cset_oops();
2897 
2898         if (_hr_printer.is_active()) {
2899           G1PrintCollectionSetClosure cl(&_hr_printer);
2900           _collection_set.iterate(&cl);
2901         }
2902 
2903         // Initialize the GC alloc regions.
2904         _allocator->init_gc_alloc_regions(evacuation_info);
2905 
2906         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2907         pre_evacuate_collection_set();
2908 
2909         // Actually do the work...
2910         evacuate_collection_set(&per_thread_states);
2911 
2912         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2913 
2914         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2915         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2916 
2917         eagerly_reclaim_humongous_regions();
2918 
2919         record_obj_copy_mem_stats();
2920         _survivor_evac_stats.adjust_desired_plab_sz();
2921         _old_evac_stats.adjust_desired_plab_sz();
2922 
2923         double start = os::elapsedTime();
2924         start_new_collection_set();
2925         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2926 
2927         if (evacuation_failed()) {
2928           set_used(recalculate_used());
2929           if (_archive_allocator != NULL) {
2930             _archive_allocator->clear_used();
2931           }
2932           for (uint i = 0; i < ParallelGCThreads; i++) {
2933             if (_evacuation_failed_info_array[i].has_failed()) {
2934               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2935             }
2936           }
2937         } else {
2938           // The "used" of the the collection set have already been subtracted
2939           // when they were freed.  Add in the bytes evacuated.
2940           increase_used(g1_policy()->bytes_copied_during_gc());
2941         }
2942 
2943         if (collector_state()->in_initial_mark_gc()) {
2944           // We have to do this before we notify the CM threads that
2945           // they can start working to make sure that all the
2946           // appropriate initialization is done on the CM object.
2947           concurrent_mark()->post_initial_mark();
2948           // Note that we don't actually trigger the CM thread at
2949           // this point. We do that later when we're sure that
2950           // the current thread has completed its logging output.
2951         }
2952 
2953         allocate_dummy_regions();
2954 
2955         _allocator->init_mutator_alloc_region();
2956 
2957         {
2958           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2959           if (expand_bytes > 0) {
2960             size_t bytes_before = capacity();
2961             // No need for an ergo logging here,
2962             // expansion_amount() does this when it returns a value > 0.
2963             double expand_ms;
2964             if (!expand(expand_bytes, _workers, &expand_ms)) {
2965               // We failed to expand the heap. Cannot do anything about it.
2966             }
2967             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
2968           }
2969         }
2970 
2971         // We redo the verification but now wrt to the new CSet which
2972         // has just got initialized after the previous CSet was freed.
2973         _cm->verify_no_cset_oops();
2974 
2975         // This timing is only used by the ergonomics to handle our pause target.
2976         // It is unclear why this should not include the full pause. We will
2977         // investigate this in CR 7178365.
2978         double sample_end_time_sec = os::elapsedTime();
2979         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
2980         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
2981         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
2982 
2983         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
2984         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
2985 
2986         if (VerifyRememberedSets) {
2987           log_info(gc, verify)("[Verifying RemSets after GC]");
2988           VerifyRegionRemSetClosure v_cl;
2989           heap_region_iterate(&v_cl);
2990         }
2991 
2992         _verifier->verify_after_gc(verify_type);
2993         _verifier->check_bitmaps("GC End");
2994 
2995         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
2996         ref_processor_stw()->verify_no_references_recorded();
2997 
2998         // CM reference discovery will be re-enabled if necessary.
2999       }
3000 
3001 #ifdef TRACESPINNING
3002       ParallelTaskTerminator::print_termination_counts();
3003 #endif
3004 
3005       gc_epilogue(false);
3006     }
3007 
3008     // Print the remainder of the GC log output.
3009     if (evacuation_failed()) {
3010       log_info(gc)("To-space exhausted");
3011     }
3012 
3013     g1_policy()->print_phases();
3014     heap_transition.print();
3015 
3016     // It is not yet to safe to tell the concurrent mark to
3017     // start as we have some optional output below. We don't want the
3018     // output from the concurrent mark thread interfering with this
3019     // logging output either.
3020 
3021     _hrm.verify_optional();
3022     _verifier->verify_region_sets_optional();
3023 
3024     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3025     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3026 
3027     print_heap_after_gc();
3028     print_heap_regions();
3029     trace_heap_after_gc(_gc_tracer_stw);
3030 
3031     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3032     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3033     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3034     // before any GC notifications are raised.
3035     g1mm()->update_sizes();
3036 
3037     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3038     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3039     _gc_timer_stw->register_gc_end();
3040     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3041   }
3042   // It should now be safe to tell the concurrent mark thread to start
3043   // without its logging output interfering with the logging output
3044   // that came from the pause.
3045 
3046   if (should_start_conc_mark) {
3047     // CAUTION: after the doConcurrentMark() call below,
3048     // the concurrent marking thread(s) could be running
3049     // concurrently with us. Make sure that anything after
3050     // this point does not assume that we are the only GC thread
3051     // running. Note: of course, the actual marking work will
3052     // not start until the safepoint itself is released in
3053     // SuspendibleThreadSet::desynchronize().
3054     do_concurrent_mark();
3055   }
3056 
3057   return true;
3058 }
3059 
3060 void G1CollectedHeap::remove_self_forwarding_pointers() {
3061   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3062   workers()->run_task(&rsfp_task);
3063 }
3064 
3065 void G1CollectedHeap::restore_after_evac_failure() {
3066   double remove_self_forwards_start = os::elapsedTime();
3067 
3068   remove_self_forwarding_pointers();
3069   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3070   _preserved_marks_set.restore(&task_executor);
3071 
3072   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3073 }
3074 
3075 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3076   if (!_evacuation_failed) {
3077     _evacuation_failed = true;
3078   }
3079 
3080   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3081   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3082 }
3083 
3084 bool G1ParEvacuateFollowersClosure::offer_termination() {
3085   G1ParScanThreadState* const pss = par_scan_state();
3086   start_term_time();
3087   const bool res = terminator()->offer_termination();
3088   end_term_time();
3089   return res;
3090 }
3091 
3092 void G1ParEvacuateFollowersClosure::do_void() {
3093   G1ParScanThreadState* const pss = par_scan_state();
3094   pss->trim_queue();
3095   do {
3096     pss->steal_and_trim_queue(queues());
3097   } while (!offer_termination());
3098 }
3099 
3100 class G1ParTask : public AbstractGangTask {
3101 protected:
3102   G1CollectedHeap*         _g1h;
3103   G1ParScanThreadStateSet* _pss;
3104   RefToScanQueueSet*       _queues;
3105   G1RootProcessor*         _root_processor;
3106   ParallelTaskTerminator   _terminator;
3107   uint                     _n_workers;
3108 
3109 public:
3110   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3111     : AbstractGangTask("G1 collection"),
3112       _g1h(g1h),
3113       _pss(per_thread_states),
3114       _queues(task_queues),
3115       _root_processor(root_processor),
3116       _terminator(n_workers, _queues),
3117       _n_workers(n_workers)
3118   {}
3119 
3120   void work(uint worker_id) {
3121     if (worker_id >= _n_workers) return;  // no work needed this round
3122 
3123     double start_sec = os::elapsedTime();
3124     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3125 
3126     {
3127       ResourceMark rm;
3128       HandleMark   hm;
3129 
3130       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3131 
3132       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3133       pss->set_ref_processor(rp);
3134 
3135       double start_strong_roots_sec = os::elapsedTime();
3136 
3137       _root_processor->evacuate_roots(pss->closures(), worker_id);
3138 
3139       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3140       // treating the nmethods visited to act as roots for concurrent marking.
3141       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3142       // objects copied by the current evacuation.
3143       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3144                                                       pss->closures()->weak_codeblobs(),
3145                                                       worker_id);
3146 
3147       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3148 
3149       double term_sec = 0.0;
3150       size_t evac_term_attempts = 0;
3151       {
3152         double start = os::elapsedTime();
3153         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3154         evac.do_void();
3155 
3156         evac_term_attempts = evac.term_attempts();
3157         term_sec = evac.term_time();
3158         double elapsed_sec = os::elapsedTime() - start;
3159         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3160         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3161         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3162       }
3163 
3164       assert(pss->queue_is_empty(), "should be empty");
3165 
3166       if (log_is_enabled(Debug, gc, task, stats)) {
3167         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3168         size_t lab_waste;
3169         size_t lab_undo_waste;
3170         pss->waste(lab_waste, lab_undo_waste);
3171         _g1h->print_termination_stats(worker_id,
3172                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3173                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3174                                       term_sec * 1000.0,                          /* evac term time */
3175                                       evac_term_attempts,                         /* evac term attempts */
3176                                       lab_waste,                                  /* alloc buffer waste */
3177                                       lab_undo_waste                              /* undo waste */
3178                                       );
3179       }
3180 
3181       // Close the inner scope so that the ResourceMark and HandleMark
3182       // destructors are executed here and are included as part of the
3183       // "GC Worker Time".
3184     }
3185     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3186   }
3187 };
3188 
3189 void G1CollectedHeap::print_termination_stats_hdr() {
3190   log_debug(gc, task, stats)("GC Termination Stats");
3191   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3192   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3193   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3194 }
3195 
3196 void G1CollectedHeap::print_termination_stats(uint worker_id,
3197                                               double elapsed_ms,
3198                                               double strong_roots_ms,
3199                                               double term_ms,
3200                                               size_t term_attempts,
3201                                               size_t alloc_buffer_waste,
3202                                               size_t undo_waste) const {
3203   log_debug(gc, task, stats)
3204               ("%3d %9.2f %9.2f %6.2f "
3205                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3206                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3207                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3208                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3209                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3210                alloc_buffer_waste * HeapWordSize / K,
3211                undo_waste * HeapWordSize / K);
3212 }
3213 
3214 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3215 private:
3216   BoolObjectClosure* _is_alive;
3217   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3218 
3219   int _initial_string_table_size;
3220   int _initial_symbol_table_size;
3221 
3222   bool  _process_strings;
3223   int _strings_processed;
3224   int _strings_removed;
3225 
3226   bool  _process_symbols;
3227   int _symbols_processed;
3228   int _symbols_removed;
3229 
3230   bool _process_string_dedup;
3231 
3232 public:
3233   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3234     AbstractGangTask("String/Symbol Unlinking"),
3235     _is_alive(is_alive),
3236     _dedup_closure(is_alive, NULL, false),
3237     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3238     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3239     _process_string_dedup(process_string_dedup) {
3240 
3241     _initial_string_table_size = StringTable::the_table()->table_size();
3242     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3243     if (process_strings) {
3244       StringTable::clear_parallel_claimed_index();
3245     }
3246     if (process_symbols) {
3247       SymbolTable::clear_parallel_claimed_index();
3248     }
3249   }
3250 
3251   ~G1StringAndSymbolCleaningTask() {
3252     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3253               "claim value %d after unlink less than initial string table size %d",
3254               StringTable::parallel_claimed_index(), _initial_string_table_size);
3255     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3256               "claim value %d after unlink less than initial symbol table size %d",
3257               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3258 
3259     log_info(gc, stringtable)(
3260         "Cleaned string and symbol table, "
3261         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3262         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3263         strings_processed(), strings_removed(),
3264         symbols_processed(), symbols_removed());
3265   }
3266 
3267   void work(uint worker_id) {
3268     int strings_processed = 0;
3269     int strings_removed = 0;
3270     int symbols_processed = 0;
3271     int symbols_removed = 0;
3272     if (_process_strings) {
3273       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3274       Atomic::add(strings_processed, &_strings_processed);
3275       Atomic::add(strings_removed, &_strings_removed);
3276     }
3277     if (_process_symbols) {
3278       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3279       Atomic::add(symbols_processed, &_symbols_processed);
3280       Atomic::add(symbols_removed, &_symbols_removed);
3281     }
3282     if (_process_string_dedup) {
3283       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3284     }
3285   }
3286 
3287   size_t strings_processed() const { return (size_t)_strings_processed; }
3288   size_t strings_removed()   const { return (size_t)_strings_removed; }
3289 
3290   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3291   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3292 };
3293 
3294 class G1CodeCacheUnloadingTask {
3295 private:
3296   static Monitor* _lock;
3297 
3298   BoolObjectClosure* const _is_alive;
3299   const bool               _unloading_occurred;
3300   const uint               _num_workers;
3301 
3302   // Variables used to claim nmethods.
3303   CompiledMethod* _first_nmethod;
3304   CompiledMethod* volatile _claimed_nmethod;
3305 
3306   // The list of nmethods that need to be processed by the second pass.
3307   CompiledMethod* volatile _postponed_list;
3308   volatile uint            _num_entered_barrier;
3309 
3310  public:
3311   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3312       _is_alive(is_alive),
3313       _unloading_occurred(unloading_occurred),
3314       _num_workers(num_workers),
3315       _first_nmethod(NULL),
3316       _claimed_nmethod(NULL),
3317       _postponed_list(NULL),
3318       _num_entered_barrier(0)
3319   {
3320     CompiledMethod::increase_unloading_clock();
3321     // Get first alive nmethod
3322     CompiledMethodIterator iter = CompiledMethodIterator();
3323     if(iter.next_alive()) {
3324       _first_nmethod = iter.method();
3325     }
3326     _claimed_nmethod = _first_nmethod;
3327   }
3328 
3329   ~G1CodeCacheUnloadingTask() {
3330     CodeCache::verify_clean_inline_caches();
3331 
3332     CodeCache::set_needs_cache_clean(false);
3333     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3334 
3335     CodeCache::verify_icholder_relocations();
3336   }
3337 
3338  private:
3339   void add_to_postponed_list(CompiledMethod* nm) {
3340       CompiledMethod* old;
3341       do {
3342         old = _postponed_list;
3343         nm->set_unloading_next(old);
3344       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3345   }
3346 
3347   void clean_nmethod(CompiledMethod* nm) {
3348     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3349 
3350     if (postponed) {
3351       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3352       add_to_postponed_list(nm);
3353     }
3354 
3355     // Mark that this thread has been cleaned/unloaded.
3356     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3357     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3358   }
3359 
3360   void clean_nmethod_postponed(CompiledMethod* nm) {
3361     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3362   }
3363 
3364   static const int MaxClaimNmethods = 16;
3365 
3366   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3367     CompiledMethod* first;
3368     CompiledMethodIterator last;
3369 
3370     do {
3371       *num_claimed_nmethods = 0;
3372 
3373       first = _claimed_nmethod;
3374       last = CompiledMethodIterator(first);
3375 
3376       if (first != NULL) {
3377 
3378         for (int i = 0; i < MaxClaimNmethods; i++) {
3379           if (!last.next_alive()) {
3380             break;
3381           }
3382           claimed_nmethods[i] = last.method();
3383           (*num_claimed_nmethods)++;
3384         }
3385       }
3386 
3387     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3388   }
3389 
3390   CompiledMethod* claim_postponed_nmethod() {
3391     CompiledMethod* claim;
3392     CompiledMethod* next;
3393 
3394     do {
3395       claim = _postponed_list;
3396       if (claim == NULL) {
3397         return NULL;
3398       }
3399 
3400       next = claim->unloading_next();
3401 
3402     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3403 
3404     return claim;
3405   }
3406 
3407  public:
3408   // Mark that we're done with the first pass of nmethod cleaning.
3409   void barrier_mark(uint worker_id) {
3410     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3411     _num_entered_barrier++;
3412     if (_num_entered_barrier == _num_workers) {
3413       ml.notify_all();
3414     }
3415   }
3416 
3417   // See if we have to wait for the other workers to
3418   // finish their first-pass nmethod cleaning work.
3419   void barrier_wait(uint worker_id) {
3420     if (_num_entered_barrier < _num_workers) {
3421       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3422       while (_num_entered_barrier < _num_workers) {
3423           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3424       }
3425     }
3426   }
3427 
3428   // Cleaning and unloading of nmethods. Some work has to be postponed
3429   // to the second pass, when we know which nmethods survive.
3430   void work_first_pass(uint worker_id) {
3431     // The first nmethods is claimed by the first worker.
3432     if (worker_id == 0 && _first_nmethod != NULL) {
3433       clean_nmethod(_first_nmethod);
3434       _first_nmethod = NULL;
3435     }
3436 
3437     int num_claimed_nmethods;
3438     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3439 
3440     while (true) {
3441       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3442 
3443       if (num_claimed_nmethods == 0) {
3444         break;
3445       }
3446 
3447       for (int i = 0; i < num_claimed_nmethods; i++) {
3448         clean_nmethod(claimed_nmethods[i]);
3449       }
3450     }
3451   }
3452 
3453   void work_second_pass(uint worker_id) {
3454     CompiledMethod* nm;
3455     // Take care of postponed nmethods.
3456     while ((nm = claim_postponed_nmethod()) != NULL) {
3457       clean_nmethod_postponed(nm);
3458     }
3459   }
3460 };
3461 
3462 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3463 
3464 class G1KlassCleaningTask : public StackObj {
3465   BoolObjectClosure*                      _is_alive;
3466   volatile int                            _clean_klass_tree_claimed;
3467   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3468 
3469  public:
3470   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3471       _is_alive(is_alive),
3472       _clean_klass_tree_claimed(0),
3473       _klass_iterator() {
3474   }
3475 
3476  private:
3477   bool claim_clean_klass_tree_task() {
3478     if (_clean_klass_tree_claimed) {
3479       return false;
3480     }
3481 
3482     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3483   }
3484 
3485   InstanceKlass* claim_next_klass() {
3486     Klass* klass;
3487     do {
3488       klass =_klass_iterator.next_klass();
3489     } while (klass != NULL && !klass->is_instance_klass());
3490 
3491     // this can be null so don't call InstanceKlass::cast
3492     return static_cast<InstanceKlass*>(klass);
3493   }
3494 
3495 public:
3496 
3497   void clean_klass(InstanceKlass* ik) {
3498     ik->clean_weak_instanceklass_links(_is_alive);
3499   }
3500 
3501   void work() {
3502     ResourceMark rm;
3503 
3504     // One worker will clean the subklass/sibling klass tree.
3505     if (claim_clean_klass_tree_task()) {
3506       Klass::clean_subklass_tree(_is_alive);
3507     }
3508 
3509     // All workers will help cleaning the classes,
3510     InstanceKlass* klass;
3511     while ((klass = claim_next_klass()) != NULL) {
3512       clean_klass(klass);
3513     }
3514   }
3515 };
3516 
3517 class G1ResolvedMethodCleaningTask : public StackObj {
3518   BoolObjectClosure* _is_alive;
3519   volatile int       _resolved_method_task_claimed;
3520 public:
3521   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3522       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3523 
3524   bool claim_resolved_method_task() {
3525     if (_resolved_method_task_claimed) {
3526       return false;
3527     }
3528     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3529   }
3530 
3531   // These aren't big, one thread can do it all.
3532   void work() {
3533     if (claim_resolved_method_task()) {
3534       ResolvedMethodTable::unlink(_is_alive);
3535     }
3536   }
3537 };
3538 
3539 
3540 // To minimize the remark pause times, the tasks below are done in parallel.
3541 class G1ParallelCleaningTask : public AbstractGangTask {
3542 private:
3543   G1StringAndSymbolCleaningTask _string_symbol_task;
3544   G1CodeCacheUnloadingTask      _code_cache_task;
3545   G1KlassCleaningTask           _klass_cleaning_task;
3546   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3547 
3548 public:
3549   // The constructor is run in the VMThread.
3550   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3551       AbstractGangTask("Parallel Cleaning"),
3552       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3553       _code_cache_task(num_workers, is_alive, unloading_occurred),
3554       _klass_cleaning_task(is_alive),
3555       _resolved_method_cleaning_task(is_alive) {
3556   }
3557 
3558   // The parallel work done by all worker threads.
3559   void work(uint worker_id) {
3560     // Do first pass of code cache cleaning.
3561     _code_cache_task.work_first_pass(worker_id);
3562 
3563     // Let the threads mark that the first pass is done.
3564     _code_cache_task.barrier_mark(worker_id);
3565 
3566     // Clean the Strings and Symbols.
3567     _string_symbol_task.work(worker_id);
3568 
3569     // Clean unreferenced things in the ResolvedMethodTable
3570     _resolved_method_cleaning_task.work();
3571 
3572     // Wait for all workers to finish the first code cache cleaning pass.
3573     _code_cache_task.barrier_wait(worker_id);
3574 
3575     // Do the second code cache cleaning work, which realize on
3576     // the liveness information gathered during the first pass.
3577     _code_cache_task.work_second_pass(worker_id);
3578 
3579     // Clean all klasses that were not unloaded.
3580     _klass_cleaning_task.work();
3581   }
3582 };
3583 
3584 
3585 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3586                                         bool class_unloading_occurred) {
3587   uint n_workers = workers()->active_workers();
3588 
3589   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3590   workers()->run_task(&g1_unlink_task);
3591 }
3592 
3593 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3594                                        bool process_strings,
3595                                        bool process_symbols,
3596                                        bool process_string_dedup) {
3597   if (!process_strings && !process_symbols && !process_string_dedup) {
3598     // Nothing to clean.
3599     return;
3600   }
3601 
3602   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3603   workers()->run_task(&g1_unlink_task);
3604 
3605 }
3606 
3607 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3608  private:
3609   DirtyCardQueueSet* _queue;
3610   G1CollectedHeap* _g1h;
3611  public:
3612   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3613     _queue(queue), _g1h(g1h) { }
3614 
3615   virtual void work(uint worker_id) {
3616     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3617     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3618 
3619     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3620     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3621 
3622     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3623   }
3624 };
3625 
3626 void G1CollectedHeap::redirty_logged_cards() {
3627   double redirty_logged_cards_start = os::elapsedTime();
3628 
3629   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3630   dirty_card_queue_set().reset_for_par_iteration();
3631   workers()->run_task(&redirty_task);
3632 
3633   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3634   dcq.merge_bufferlists(&dirty_card_queue_set());
3635   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3636 
3637   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3638 }
3639 
3640 // Weak Reference Processing support
3641 
3642 // An always "is_alive" closure that is used to preserve referents.
3643 // If the object is non-null then it's alive.  Used in the preservation
3644 // of referent objects that are pointed to by reference objects
3645 // discovered by the CM ref processor.
3646 class G1AlwaysAliveClosure: public BoolObjectClosure {
3647   G1CollectedHeap* _g1;
3648 public:
3649   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3650   bool do_object_b(oop p) {
3651     if (p != NULL) {
3652       return true;
3653     }
3654     return false;
3655   }
3656 };
3657 
3658 bool G1STWIsAliveClosure::do_object_b(oop p) {
3659   // An object is reachable if it is outside the collection set,
3660   // or is inside and copied.
3661   return !_g1->is_in_cset(p) || p->is_forwarded();
3662 }
3663 
3664 // Non Copying Keep Alive closure
3665 class G1KeepAliveClosure: public OopClosure {
3666   G1CollectedHeap* _g1;
3667 public:
3668   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3669   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3670   void do_oop(oop* p) {
3671     oop obj = *p;
3672     assert(obj != NULL, "the caller should have filtered out NULL values");
3673 
3674     const InCSetState cset_state = _g1->in_cset_state(obj);
3675     if (!cset_state.is_in_cset_or_humongous()) {
3676       return;
3677     }
3678     if (cset_state.is_in_cset()) {
3679       assert( obj->is_forwarded(), "invariant" );
3680       *p = obj->forwardee();
3681     } else {
3682       assert(!obj->is_forwarded(), "invariant" );
3683       assert(cset_state.is_humongous(),
3684              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3685       _g1->set_humongous_is_live(obj);
3686     }
3687   }
3688 };
3689 
3690 // Copying Keep Alive closure - can be called from both
3691 // serial and parallel code as long as different worker
3692 // threads utilize different G1ParScanThreadState instances
3693 // and different queues.
3694 
3695 class G1CopyingKeepAliveClosure: public OopClosure {
3696   G1CollectedHeap*         _g1h;
3697   OopClosure*              _copy_non_heap_obj_cl;
3698   G1ParScanThreadState*    _par_scan_state;
3699 
3700 public:
3701   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3702                             OopClosure* non_heap_obj_cl,
3703                             G1ParScanThreadState* pss):
3704     _g1h(g1h),
3705     _copy_non_heap_obj_cl(non_heap_obj_cl),
3706     _par_scan_state(pss)
3707   {}
3708 
3709   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3710   virtual void do_oop(      oop* p) { do_oop_work(p); }
3711 
3712   template <class T> void do_oop_work(T* p) {
3713     oop obj = RawAccess<>::oop_load(p);
3714 
3715     if (_g1h->is_in_cset_or_humongous(obj)) {
3716       // If the referent object has been forwarded (either copied
3717       // to a new location or to itself in the event of an
3718       // evacuation failure) then we need to update the reference
3719       // field and, if both reference and referent are in the G1
3720       // heap, update the RSet for the referent.
3721       //
3722       // If the referent has not been forwarded then we have to keep
3723       // it alive by policy. Therefore we have copy the referent.
3724       //
3725       // If the reference field is in the G1 heap then we can push
3726       // on the PSS queue. When the queue is drained (after each
3727       // phase of reference processing) the object and it's followers
3728       // will be copied, the reference field set to point to the
3729       // new location, and the RSet updated. Otherwise we need to
3730       // use the the non-heap or metadata closures directly to copy
3731       // the referent object and update the pointer, while avoiding
3732       // updating the RSet.
3733 
3734       if (_g1h->is_in_g1_reserved(p)) {
3735         _par_scan_state->push_on_queue(p);
3736       } else {
3737         assert(!Metaspace::contains((const void*)p),
3738                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3739         _copy_non_heap_obj_cl->do_oop(p);
3740       }
3741     }
3742   }
3743 };
3744 
3745 // Serial drain queue closure. Called as the 'complete_gc'
3746 // closure for each discovered list in some of the
3747 // reference processing phases.
3748 
3749 class G1STWDrainQueueClosure: public VoidClosure {
3750 protected:
3751   G1CollectedHeap* _g1h;
3752   G1ParScanThreadState* _par_scan_state;
3753 
3754   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3755 
3756 public:
3757   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3758     _g1h(g1h),
3759     _par_scan_state(pss)
3760   { }
3761 
3762   void do_void() {
3763     G1ParScanThreadState* const pss = par_scan_state();
3764     pss->trim_queue();
3765   }
3766 };
3767 
3768 // Parallel Reference Processing closures
3769 
3770 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3771 // processing during G1 evacuation pauses.
3772 
3773 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3774 private:
3775   G1CollectedHeap*          _g1h;
3776   G1ParScanThreadStateSet*  _pss;
3777   RefToScanQueueSet*        _queues;
3778   WorkGang*                 _workers;
3779   uint                      _active_workers;
3780 
3781 public:
3782   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3783                            G1ParScanThreadStateSet* per_thread_states,
3784                            WorkGang* workers,
3785                            RefToScanQueueSet *task_queues,
3786                            uint n_workers) :
3787     _g1h(g1h),
3788     _pss(per_thread_states),
3789     _queues(task_queues),
3790     _workers(workers),
3791     _active_workers(n_workers)
3792   {
3793     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3794   }
3795 
3796   // Executes the given task using concurrent marking worker threads.
3797   virtual void execute(ProcessTask& task);
3798   virtual void execute(EnqueueTask& task);
3799 };
3800 
3801 // Gang task for possibly parallel reference processing
3802 
3803 class G1STWRefProcTaskProxy: public AbstractGangTask {
3804   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3805   ProcessTask&     _proc_task;
3806   G1CollectedHeap* _g1h;
3807   G1ParScanThreadStateSet* _pss;
3808   RefToScanQueueSet* _task_queues;
3809   ParallelTaskTerminator* _terminator;
3810 
3811 public:
3812   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3813                         G1CollectedHeap* g1h,
3814                         G1ParScanThreadStateSet* per_thread_states,
3815                         RefToScanQueueSet *task_queues,
3816                         ParallelTaskTerminator* terminator) :
3817     AbstractGangTask("Process reference objects in parallel"),
3818     _proc_task(proc_task),
3819     _g1h(g1h),
3820     _pss(per_thread_states),
3821     _task_queues(task_queues),
3822     _terminator(terminator)
3823   {}
3824 
3825   virtual void work(uint worker_id) {
3826     // The reference processing task executed by a single worker.
3827     ResourceMark rm;
3828     HandleMark   hm;
3829 
3830     G1STWIsAliveClosure is_alive(_g1h);
3831 
3832     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3833     pss->set_ref_processor(NULL);
3834 
3835     // Keep alive closure.
3836     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3837 
3838     // Complete GC closure
3839     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3840 
3841     // Call the reference processing task's work routine.
3842     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3843 
3844     // Note we cannot assert that the refs array is empty here as not all
3845     // of the processing tasks (specifically phase2 - pp2_work) execute
3846     // the complete_gc closure (which ordinarily would drain the queue) so
3847     // the queue may not be empty.
3848   }
3849 };
3850 
3851 // Driver routine for parallel reference processing.
3852 // Creates an instance of the ref processing gang
3853 // task and has the worker threads execute it.
3854 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3855   assert(_workers != NULL, "Need parallel worker threads.");
3856 
3857   ParallelTaskTerminator terminator(_active_workers, _queues);
3858   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3859 
3860   _workers->run_task(&proc_task_proxy);
3861 }
3862 
3863 // Gang task for parallel reference enqueueing.
3864 
3865 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
3866   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
3867   EnqueueTask& _enq_task;
3868 
3869 public:
3870   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
3871     AbstractGangTask("Enqueue reference objects in parallel"),
3872     _enq_task(enq_task)
3873   { }
3874 
3875   virtual void work(uint worker_id) {
3876     _enq_task.work(worker_id);
3877   }
3878 };
3879 
3880 // Driver routine for parallel reference enqueueing.
3881 // Creates an instance of the ref enqueueing gang
3882 // task and has the worker threads execute it.
3883 
3884 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
3885   assert(_workers != NULL, "Need parallel worker threads.");
3886 
3887   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
3888 
3889   _workers->run_task(&enq_task_proxy);
3890 }
3891 
3892 // End of weak reference support closures
3893 
3894 // Abstract task used to preserve (i.e. copy) any referent objects
3895 // that are in the collection set and are pointed to by reference
3896 // objects discovered by the CM ref processor.
3897 
3898 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
3899 protected:
3900   G1CollectedHeap*         _g1h;
3901   G1ParScanThreadStateSet* _pss;
3902   RefToScanQueueSet*       _queues;
3903   ParallelTaskTerminator   _terminator;
3904   uint                     _n_workers;
3905 
3906 public:
3907   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
3908     AbstractGangTask("ParPreserveCMReferents"),
3909     _g1h(g1h),
3910     _pss(per_thread_states),
3911     _queues(task_queues),
3912     _terminator(workers, _queues),
3913     _n_workers(workers)
3914   {
3915     g1h->ref_processor_cm()->set_active_mt_degree(workers);
3916   }
3917 
3918   void work(uint worker_id) {
3919     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
3920 
3921     ResourceMark rm;
3922     HandleMark   hm;
3923 
3924     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3925     pss->set_ref_processor(NULL);
3926     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3927 
3928     // Is alive closure
3929     G1AlwaysAliveClosure always_alive(_g1h);
3930 
3931     // Copying keep alive closure. Applied to referent objects that need
3932     // to be copied.
3933     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3934 
3935     ReferenceProcessor* rp = _g1h->ref_processor_cm();
3936 
3937     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
3938     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
3939 
3940     // limit is set using max_num_q() - which was set using ParallelGCThreads.
3941     // So this must be true - but assert just in case someone decides to
3942     // change the worker ids.
3943     assert(worker_id < limit, "sanity");
3944     assert(!rp->discovery_is_atomic(), "check this code");
3945 
3946     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
3947     for (uint idx = worker_id; idx < limit; idx += stride) {
3948       DiscoveredList& ref_list = rp->discovered_refs()[idx];
3949 
3950       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
3951       while (iter.has_next()) {
3952         // Since discovery is not atomic for the CM ref processor, we
3953         // can see some null referent objects.
3954         iter.load_ptrs(DEBUG_ONLY(true));
3955         oop ref = iter.obj();
3956 
3957         // This will filter nulls.
3958         if (iter.is_referent_alive()) {
3959           iter.make_referent_alive();
3960         }
3961         iter.move_to_next();
3962       }
3963     }
3964 
3965     // Drain the queue - which may cause stealing
3966     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
3967     drain_queue.do_void();
3968     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
3969     assert(pss->queue_is_empty(), "should be");
3970   }
3971 };
3972 
3973 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
3974   // Any reference objects, in the collection set, that were 'discovered'
3975   // by the CM ref processor should have already been copied (either by
3976   // applying the external root copy closure to the discovered lists, or
3977   // by following an RSet entry).
3978   //
3979   // But some of the referents, that are in the collection set, that these
3980   // reference objects point to may not have been copied: the STW ref
3981   // processor would have seen that the reference object had already
3982   // been 'discovered' and would have skipped discovering the reference,
3983   // but would not have treated the reference object as a regular oop.
3984   // As a result the copy closure would not have been applied to the
3985   // referent object.
3986   //
3987   // We need to explicitly copy these referent objects - the references
3988   // will be processed at the end of remarking.
3989   //
3990   // We also need to do this copying before we process the reference
3991   // objects discovered by the STW ref processor in case one of these
3992   // referents points to another object which is also referenced by an
3993   // object discovered by the STW ref processor.
3994   double preserve_cm_referents_time = 0.0;
3995 
3996   // To avoid spawning task when there is no work to do, check that
3997   // a concurrent cycle is active and that some references have been
3998   // discovered.
3999   if (concurrent_mark()->cm_thread()->during_cycle() &&
4000       ref_processor_cm()->has_discovered_references()) {
4001     double preserve_cm_referents_start = os::elapsedTime();
4002     uint no_of_gc_workers = workers()->active_workers();
4003     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4004                                                    per_thread_states,
4005                                                    no_of_gc_workers,
4006                                                    _task_queues);
4007     workers()->run_task(&keep_cm_referents);
4008     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4009   }
4010 
4011   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4012 }
4013 
4014 // Weak Reference processing during an evacuation pause (part 1).
4015 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4016   double ref_proc_start = os::elapsedTime();
4017 
4018   ReferenceProcessor* rp = _ref_processor_stw;
4019   assert(rp->discovery_enabled(), "should have been enabled");
4020 
4021   // Closure to test whether a referent is alive.
4022   G1STWIsAliveClosure is_alive(this);
4023 
4024   // Even when parallel reference processing is enabled, the processing
4025   // of JNI refs is serial and performed serially by the current thread
4026   // rather than by a worker. The following PSS will be used for processing
4027   // JNI refs.
4028 
4029   // Use only a single queue for this PSS.
4030   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4031   pss->set_ref_processor(NULL);
4032   assert(pss->queue_is_empty(), "pre-condition");
4033 
4034   // Keep alive closure.
4035   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4036 
4037   // Serial Complete GC closure
4038   G1STWDrainQueueClosure drain_queue(this, pss);
4039 
4040   // Setup the soft refs policy...
4041   rp->setup_policy(false);
4042 
4043   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4044 
4045   ReferenceProcessorStats stats;
4046   if (!rp->processing_is_mt()) {
4047     // Serial reference processing...
4048     stats = rp->process_discovered_references(&is_alive,
4049                                               &keep_alive,
4050                                               &drain_queue,
4051                                               NULL,
4052                                               pt);
4053   } else {
4054     uint no_of_gc_workers = workers()->active_workers();
4055 
4056     // Parallel reference processing
4057     assert(no_of_gc_workers <= rp->max_num_q(),
4058            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4059            no_of_gc_workers,  rp->max_num_q());
4060 
4061     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4062     stats = rp->process_discovered_references(&is_alive,
4063                                               &keep_alive,
4064                                               &drain_queue,
4065                                               &par_task_executor,
4066                                               pt);
4067   }
4068 
4069   _gc_tracer_stw->report_gc_reference_stats(stats);
4070 
4071   // We have completed copying any necessary live referent objects.
4072   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4073 
4074   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4075   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4076 }
4077 
4078 // Weak Reference processing during an evacuation pause (part 2).
4079 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4080   double ref_enq_start = os::elapsedTime();
4081 
4082   ReferenceProcessor* rp = _ref_processor_stw;
4083   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4084 
4085   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4086 
4087   // Now enqueue any remaining on the discovered lists on to
4088   // the pending list.
4089   if (!rp->processing_is_mt()) {
4090     // Serial reference processing...
4091     rp->enqueue_discovered_references(NULL, pt);
4092   } else {
4093     // Parallel reference enqueueing
4094 
4095     uint n_workers = workers()->active_workers();
4096 
4097     assert(n_workers <= rp->max_num_q(),
4098            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4099            n_workers,  rp->max_num_q());
4100 
4101     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4102     rp->enqueue_discovered_references(&par_task_executor, pt);
4103   }
4104 
4105   rp->verify_no_references_recorded();
4106   assert(!rp->discovery_enabled(), "should have been disabled");
4107 
4108   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4109   // ensure that it is marked in the bitmap for concurrent marking to discover.
4110   if (collector_state()->in_initial_mark_gc()) {
4111     oop pll_head = Universe::reference_pending_list();
4112     if (pll_head != NULL) {
4113       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
4114       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
4115     }
4116   }
4117 
4118   // FIXME
4119   // CM's reference processing also cleans up the string and symbol tables.
4120   // Should we do that here also? We could, but it is a serial operation
4121   // and could significantly increase the pause time.
4122 
4123   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4124   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4125 }
4126 
4127 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4128   double merge_pss_time_start = os::elapsedTime();
4129   per_thread_states->flush();
4130   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4131 }
4132 
4133 void G1CollectedHeap::pre_evacuate_collection_set() {
4134   _expand_heap_after_alloc_failure = true;
4135   _evacuation_failed = false;
4136 
4137   // Disable the hot card cache.
4138   _hot_card_cache->reset_hot_cache_claimed_index();
4139   _hot_card_cache->set_use_cache(false);
4140 
4141   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4142   _preserved_marks_set.assert_empty();
4143 
4144   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4145 
4146   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4147   if (collector_state()->in_initial_mark_gc()) {
4148     double start_clear_claimed_marks = os::elapsedTime();
4149 
4150     ClassLoaderDataGraph::clear_claimed_marks();
4151 
4152     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4153     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4154   }
4155 }
4156 
4157 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
4158   // Should G1EvacuationFailureALot be in effect for this GC?
4159   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4160 
4161   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4162 
4163   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4164 
4165   double start_par_time_sec = os::elapsedTime();
4166   double end_par_time_sec;
4167 
4168   {
4169     const uint n_workers = workers()->active_workers();
4170     G1RootProcessor root_processor(this, n_workers);
4171     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4172 
4173     print_termination_stats_hdr();
4174 
4175     workers()->run_task(&g1_par_task);
4176     end_par_time_sec = os::elapsedTime();
4177 
4178     // Closing the inner scope will execute the destructor
4179     // for the G1RootProcessor object. We record the current
4180     // elapsed time before closing the scope so that time
4181     // taken for the destructor is NOT included in the
4182     // reported parallel time.
4183   }
4184 
4185   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4186   phase_times->record_par_time(par_time_ms);
4187 
4188   double code_root_fixup_time_ms =
4189         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4190   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4191 }
4192 
4193 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4194   // Process any discovered reference objects - we have
4195   // to do this _before_ we retire the GC alloc regions
4196   // as we may have to copy some 'reachable' referent
4197   // objects (and their reachable sub-graphs) that were
4198   // not copied during the pause.
4199   preserve_cm_referents(per_thread_states);
4200   process_discovered_references(per_thread_states);
4201 
4202   G1STWIsAliveClosure is_alive(this);
4203   G1KeepAliveClosure keep_alive(this);
4204 
4205   {
4206     double start = os::elapsedTime();
4207 
4208     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4209 
4210     double time_ms = (os::elapsedTime() - start) * 1000.0;
4211     g1_policy()->phase_times()->record_ref_proc_time(time_ms);
4212   }
4213 
4214   if (G1StringDedup::is_enabled()) {
4215     double fixup_start = os::elapsedTime();
4216 
4217     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4218 
4219     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4220     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4221   }
4222 
4223   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4224 
4225   if (evacuation_failed()) {
4226     restore_after_evac_failure();
4227 
4228     // Reset the G1EvacuationFailureALot counters and flags
4229     // Note: the values are reset only when an actual
4230     // evacuation failure occurs.
4231     NOT_PRODUCT(reset_evacuation_should_fail();)
4232   }
4233 
4234   _preserved_marks_set.assert_empty();
4235 
4236   // Enqueue any remaining references remaining on the STW
4237   // reference processor's discovered lists. We need to do
4238   // this after the card table is cleaned (and verified) as
4239   // the act of enqueueing entries on to the pending list
4240   // will log these updates (and dirty their associated
4241   // cards). We need these updates logged to update any
4242   // RSets.
4243   enqueue_discovered_references(per_thread_states);
4244 
4245   _allocator->release_gc_alloc_regions(evacuation_info);
4246 
4247   merge_per_thread_state_info(per_thread_states);
4248 
4249   // Reset and re-enable the hot card cache.
4250   // Note the counts for the cards in the regions in the
4251   // collection set are reset when the collection set is freed.
4252   _hot_card_cache->reset_hot_cache();
4253   _hot_card_cache->set_use_cache(true);
4254 
4255   purge_code_root_memory();
4256 
4257   redirty_logged_cards();
4258 #if COMPILER2_OR_JVMCI
4259   double start = os::elapsedTime();
4260   DerivedPointerTable::update_pointers();
4261   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4262 #endif
4263   g1_policy()->print_age_table();
4264 }
4265 
4266 void G1CollectedHeap::record_obj_copy_mem_stats() {
4267   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4268 
4269   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4270                                                create_g1_evac_summary(&_old_evac_stats));
4271 }
4272 
4273 void G1CollectedHeap::free_region(HeapRegion* hr,
4274                                   FreeRegionList* free_list,
4275                                   bool skip_remset,
4276                                   bool skip_hot_card_cache,
4277                                   bool locked) {
4278   assert(!hr->is_free(), "the region should not be free");
4279   assert(!hr->is_empty(), "the region should not be empty");
4280   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4281   assert(free_list != NULL, "pre-condition");
4282 
4283   if (G1VerifyBitmaps) {
4284     MemRegion mr(hr->bottom(), hr->end());
4285     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4286   }
4287 
4288   // Clear the card counts for this region.
4289   // Note: we only need to do this if the region is not young
4290   // (since we don't refine cards in young regions).
4291   if (!skip_hot_card_cache && !hr->is_young()) {
4292     _hot_card_cache->reset_card_counts(hr);
4293   }
4294   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4295   _g1_policy->remset_tracker()->update_at_free(hr);
4296   free_list->add_ordered(hr);
4297 }
4298 
4299 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4300                                             FreeRegionList* free_list) {
4301   assert(hr->is_humongous(), "this is only for humongous regions");
4302   assert(free_list != NULL, "pre-condition");
4303   hr->clear_humongous();
4304   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4305 }
4306 
4307 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4308                                            const uint humongous_regions_removed) {
4309   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4310     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4311     _old_set.bulk_remove(old_regions_removed);
4312     _humongous_set.bulk_remove(humongous_regions_removed);
4313   }
4314 
4315 }
4316 
4317 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4318   assert(list != NULL, "list can't be null");
4319   if (!list->is_empty()) {
4320     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4321     _hrm.insert_list_into_free_list(list);
4322   }
4323 }
4324 
4325 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4326   decrease_used(bytes);
4327 }
4328 
4329 class G1FreeCollectionSetTask : public AbstractGangTask {
4330 private:
4331 
4332   // Closure applied to all regions in the collection set to do work that needs to
4333   // be done serially in a single thread.
4334   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4335   private:
4336     EvacuationInfo* _evacuation_info;
4337     const size_t* _surviving_young_words;
4338 
4339     // Bytes used in successfully evacuated regions before the evacuation.
4340     size_t _before_used_bytes;
4341     // Bytes used in unsucessfully evacuated regions before the evacuation
4342     size_t _after_used_bytes;
4343 
4344     size_t _bytes_allocated_in_old_since_last_gc;
4345 
4346     size_t _failure_used_words;
4347     size_t _failure_waste_words;
4348 
4349     FreeRegionList _local_free_list;
4350   public:
4351     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4352       HeapRegionClosure(),
4353       _evacuation_info(evacuation_info),
4354       _surviving_young_words(surviving_young_words),
4355       _before_used_bytes(0),
4356       _after_used_bytes(0),
4357       _bytes_allocated_in_old_since_last_gc(0),
4358       _failure_used_words(0),
4359       _failure_waste_words(0),
4360       _local_free_list("Local Region List for CSet Freeing") {
4361     }
4362 
4363     virtual bool do_heap_region(HeapRegion* r) {
4364       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4365 
4366       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4367       g1h->clear_in_cset(r);
4368 
4369       if (r->is_young()) {
4370         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4371                "Young index %d is wrong for region %u of type %s with %u young regions",
4372                r->young_index_in_cset(),
4373                r->hrm_index(),
4374                r->get_type_str(),
4375                g1h->collection_set()->young_region_length());
4376         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4377         r->record_surv_words_in_group(words_survived);
4378       }
4379 
4380       if (!r->evacuation_failed()) {
4381         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4382         _before_used_bytes += r->used();
4383         g1h->free_region(r,
4384                          &_local_free_list,
4385                          true, /* skip_remset */
4386                          true, /* skip_hot_card_cache */
4387                          true  /* locked */);
4388       } else {
4389         r->uninstall_surv_rate_group();
4390         r->set_young_index_in_cset(-1);
4391         r->set_evacuation_failed(false);
4392         // When moving a young gen region to old gen, we "allocate" that whole region
4393         // there. This is in addition to any already evacuated objects. Notify the
4394         // policy about that.
4395         // Old gen regions do not cause an additional allocation: both the objects
4396         // still in the region and the ones already moved are accounted for elsewhere.
4397         if (r->is_young()) {
4398           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4399         }
4400         // The region is now considered to be old.
4401         r->set_old();
4402         // Do some allocation statistics accounting. Regions that failed evacuation
4403         // are always made old, so there is no need to update anything in the young
4404         // gen statistics, but we need to update old gen statistics.
4405         size_t used_words = r->marked_bytes() / HeapWordSize;
4406 
4407         _failure_used_words += used_words;
4408         _failure_waste_words += HeapRegion::GrainWords - used_words;
4409 
4410         g1h->old_set_add(r);
4411         _after_used_bytes += r->used();
4412       }
4413       return false;
4414     }
4415 
4416     void complete_work() {
4417       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4418 
4419       _evacuation_info->set_regions_freed(_local_free_list.length());
4420       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4421 
4422       g1h->prepend_to_freelist(&_local_free_list);
4423       g1h->decrement_summary_bytes(_before_used_bytes);
4424 
4425       G1Policy* policy = g1h->g1_policy();
4426       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4427 
4428       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4429     }
4430   };
4431 
4432   G1CollectionSet* _collection_set;
4433   G1SerialFreeCollectionSetClosure _cl;
4434   const size_t* _surviving_young_words;
4435 
4436   size_t _rs_lengths;
4437 
4438   volatile jint _serial_work_claim;
4439 
4440   struct WorkItem {
4441     uint region_idx;
4442     bool is_young;
4443     bool evacuation_failed;
4444 
4445     WorkItem(HeapRegion* r) {
4446       region_idx = r->hrm_index();
4447       is_young = r->is_young();
4448       evacuation_failed = r->evacuation_failed();
4449     }
4450   };
4451 
4452   volatile size_t _parallel_work_claim;
4453   size_t _num_work_items;
4454   WorkItem* _work_items;
4455 
4456   void do_serial_work() {
4457     // Need to grab the lock to be allowed to modify the old region list.
4458     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4459     _collection_set->iterate(&_cl);
4460   }
4461 
4462   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4463     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4464 
4465     HeapRegion* r = g1h->region_at(region_idx);
4466     assert(!g1h->is_on_master_free_list(r), "sanity");
4467 
4468     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4469 
4470     if (!is_young) {
4471       g1h->_hot_card_cache->reset_card_counts(r);
4472     }
4473 
4474     if (!evacuation_failed) {
4475       r->rem_set()->clear_locked();
4476     }
4477   }
4478 
4479   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4480   private:
4481     size_t _cur_idx;
4482     WorkItem* _work_items;
4483   public:
4484     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4485 
4486     virtual bool do_heap_region(HeapRegion* r) {
4487       _work_items[_cur_idx++] = WorkItem(r);
4488       return false;
4489     }
4490   };
4491 
4492   void prepare_work() {
4493     G1PrepareFreeCollectionSetClosure cl(_work_items);
4494     _collection_set->iterate(&cl);
4495   }
4496 
4497   void complete_work() {
4498     _cl.complete_work();
4499 
4500     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4501     policy->record_max_rs_lengths(_rs_lengths);
4502     policy->cset_regions_freed();
4503   }
4504 public:
4505   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4506     AbstractGangTask("G1 Free Collection Set"),
4507     _cl(evacuation_info, surviving_young_words),
4508     _collection_set(collection_set),
4509     _surviving_young_words(surviving_young_words),
4510     _serial_work_claim(0),
4511     _rs_lengths(0),
4512     _parallel_work_claim(0),
4513     _num_work_items(collection_set->region_length()),
4514     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4515     prepare_work();
4516   }
4517 
4518   ~G1FreeCollectionSetTask() {
4519     complete_work();
4520     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4521   }
4522 
4523   // Chunk size for work distribution. The chosen value has been determined experimentally
4524   // to be a good tradeoff between overhead and achievable parallelism.
4525   static uint chunk_size() { return 32; }
4526 
4527   virtual void work(uint worker_id) {
4528     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4529 
4530     // Claim serial work.
4531     if (_serial_work_claim == 0) {
4532       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4533       if (value == 0) {
4534         double serial_time = os::elapsedTime();
4535         do_serial_work();
4536         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4537       }
4538     }
4539 
4540     // Start parallel work.
4541     double young_time = 0.0;
4542     bool has_young_time = false;
4543     double non_young_time = 0.0;
4544     bool has_non_young_time = false;
4545 
4546     while (true) {
4547       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4548       size_t cur = end - chunk_size();
4549 
4550       if (cur >= _num_work_items) {
4551         break;
4552       }
4553 
4554       double start_time = os::elapsedTime();
4555 
4556       end = MIN2(end, _num_work_items);
4557 
4558       for (; cur < end; cur++) {
4559         bool is_young = _work_items[cur].is_young;
4560 
4561         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4562 
4563         double end_time = os::elapsedTime();
4564         double time_taken = end_time - start_time;
4565         if (is_young) {
4566           young_time += time_taken;
4567           has_young_time = true;
4568         } else {
4569           non_young_time += time_taken;
4570           has_non_young_time = true;
4571         }
4572         start_time = end_time;
4573       }
4574     }
4575 
4576     if (has_young_time) {
4577       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4578     }
4579     if (has_non_young_time) {
4580       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4581     }
4582   }
4583 };
4584 
4585 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4586   _eden.clear();
4587 
4588   double free_cset_start_time = os::elapsedTime();
4589 
4590   {
4591     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4592     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4593 
4594     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4595 
4596     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4597                         cl.name(),
4598                         num_workers,
4599                         _collection_set.region_length());
4600     workers()->run_task(&cl, num_workers);
4601   }
4602   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4603 
4604   collection_set->clear();
4605 }
4606 
4607 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4608  private:
4609   FreeRegionList* _free_region_list;
4610   HeapRegionSet* _proxy_set;
4611   uint _humongous_objects_reclaimed;
4612   uint _humongous_regions_reclaimed;
4613   size_t _freed_bytes;
4614  public:
4615 
4616   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4617     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4618   }
4619 
4620   virtual bool do_heap_region(HeapRegion* r) {
4621     if (!r->is_starts_humongous()) {
4622       return false;
4623     }
4624 
4625     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4626 
4627     oop obj = (oop)r->bottom();
4628     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4629 
4630     // The following checks whether the humongous object is live are sufficient.
4631     // The main additional check (in addition to having a reference from the roots
4632     // or the young gen) is whether the humongous object has a remembered set entry.
4633     //
4634     // A humongous object cannot be live if there is no remembered set for it
4635     // because:
4636     // - there can be no references from within humongous starts regions referencing
4637     // the object because we never allocate other objects into them.
4638     // (I.e. there are no intra-region references that may be missed by the
4639     // remembered set)
4640     // - as soon there is a remembered set entry to the humongous starts region
4641     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4642     // until the end of a concurrent mark.
4643     //
4644     // It is not required to check whether the object has been found dead by marking
4645     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4646     // all objects allocated during that time are considered live.
4647     // SATB marking is even more conservative than the remembered set.
4648     // So if at this point in the collection there is no remembered set entry,
4649     // nobody has a reference to it.
4650     // At the start of collection we flush all refinement logs, and remembered sets
4651     // are completely up-to-date wrt to references to the humongous object.
4652     //
4653     // Other implementation considerations:
4654     // - never consider object arrays at this time because they would pose
4655     // considerable effort for cleaning up the the remembered sets. This is
4656     // required because stale remembered sets might reference locations that
4657     // are currently allocated into.
4658     uint region_idx = r->hrm_index();
4659     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4660         !r->rem_set()->is_empty()) {
4661       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4662                                region_idx,
4663                                (size_t)obj->size() * HeapWordSize,
4664                                p2i(r->bottom()),
4665                                r->rem_set()->occupied(),
4666                                r->rem_set()->strong_code_roots_list_length(),
4667                                next_bitmap->is_marked(r->bottom()),
4668                                g1h->is_humongous_reclaim_candidate(region_idx),
4669                                obj->is_typeArray()
4670                               );
4671       return false;
4672     }
4673 
4674     guarantee(obj->is_typeArray(),
4675               "Only eagerly reclaiming type arrays is supported, but the object "
4676               PTR_FORMAT " is not.", p2i(r->bottom()));
4677 
4678     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4679                              region_idx,
4680                              (size_t)obj->size() * HeapWordSize,
4681                              p2i(r->bottom()),
4682                              r->rem_set()->occupied(),
4683                              r->rem_set()->strong_code_roots_list_length(),
4684                              next_bitmap->is_marked(r->bottom()),
4685                              g1h->is_humongous_reclaim_candidate(region_idx),
4686                              obj->is_typeArray()
4687                             );
4688 
4689     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4690     cm->humongous_object_eagerly_reclaimed(r);
4691     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4692            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4693            region_idx,
4694            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4695            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4696     _humongous_objects_reclaimed++;
4697     do {
4698       HeapRegion* next = g1h->next_region_in_humongous(r);
4699       _freed_bytes += r->used();
4700       r->set_containing_set(NULL);
4701       _humongous_regions_reclaimed++;
4702       g1h->free_humongous_region(r, _free_region_list);
4703       r = next;
4704     } while (r != NULL);
4705 
4706     return false;
4707   }
4708 
4709   uint humongous_objects_reclaimed() {
4710     return _humongous_objects_reclaimed;
4711   }
4712 
4713   uint humongous_regions_reclaimed() {
4714     return _humongous_regions_reclaimed;
4715   }
4716 
4717   size_t bytes_freed() const {
4718     return _freed_bytes;
4719   }
4720 };
4721 
4722 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4723   assert_at_safepoint_on_vm_thread();
4724 
4725   if (!G1EagerReclaimHumongousObjects ||
4726       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4727     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4728     return;
4729   }
4730 
4731   double start_time = os::elapsedTime();
4732 
4733   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4734 
4735   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4736   heap_region_iterate(&cl);
4737 
4738   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4739 
4740   G1HRPrinter* hrp = hr_printer();
4741   if (hrp->is_active()) {
4742     FreeRegionListIterator iter(&local_cleanup_list);
4743     while (iter.more_available()) {
4744       HeapRegion* hr = iter.get_next();
4745       hrp->cleanup(hr);
4746     }
4747   }
4748 
4749   prepend_to_freelist(&local_cleanup_list);
4750   decrement_summary_bytes(cl.bytes_freed());
4751 
4752   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4753                                                                     cl.humongous_objects_reclaimed());
4754 }
4755 
4756 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4757 public:
4758   virtual bool do_heap_region(HeapRegion* r) {
4759     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4760     G1CollectedHeap::heap()->clear_in_cset(r);
4761     r->set_young_index_in_cset(-1);
4762     return false;
4763   }
4764 };
4765 
4766 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4767   G1AbandonCollectionSetClosure cl;
4768   collection_set->iterate(&cl);
4769 
4770   collection_set->clear();
4771   collection_set->stop_incremental_building();
4772 }
4773 
4774 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4775   return _allocator->is_retained_old_region(hr);
4776 }
4777 
4778 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4779   _eden.add(hr);
4780   _g1_policy->set_region_eden(hr);
4781 }
4782 
4783 #ifdef ASSERT
4784 
4785 class NoYoungRegionsClosure: public HeapRegionClosure {
4786 private:
4787   bool _success;
4788 public:
4789   NoYoungRegionsClosure() : _success(true) { }
4790   bool do_heap_region(HeapRegion* r) {
4791     if (r->is_young()) {
4792       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4793                             p2i(r->bottom()), p2i(r->end()));
4794       _success = false;
4795     }
4796     return false;
4797   }
4798   bool success() { return _success; }
4799 };
4800 
4801 bool G1CollectedHeap::check_young_list_empty() {
4802   bool ret = (young_regions_count() == 0);
4803 
4804   NoYoungRegionsClosure closure;
4805   heap_region_iterate(&closure);
4806   ret = ret && closure.success();
4807 
4808   return ret;
4809 }
4810 
4811 #endif // ASSERT
4812 
4813 class TearDownRegionSetsClosure : public HeapRegionClosure {
4814 private:
4815   HeapRegionSet *_old_set;
4816 
4817 public:
4818   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4819 
4820   bool do_heap_region(HeapRegion* r) {
4821     if (r->is_old()) {
4822       _old_set->remove(r);
4823     } else if(r->is_young()) {
4824       r->uninstall_surv_rate_group();
4825     } else {
4826       // We ignore free regions, we'll empty the free list afterwards.
4827       // We ignore humongous regions, we're not tearing down the
4828       // humongous regions set.
4829       assert(r->is_free() || r->is_humongous(),
4830              "it cannot be another type");
4831     }
4832     return false;
4833   }
4834 
4835   ~TearDownRegionSetsClosure() {
4836     assert(_old_set->is_empty(), "post-condition");
4837   }
4838 };
4839 
4840 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4841   assert_at_safepoint_on_vm_thread();
4842 
4843   if (!free_list_only) {
4844     TearDownRegionSetsClosure cl(&_old_set);
4845     heap_region_iterate(&cl);
4846 
4847     // Note that emptying the _young_list is postponed and instead done as
4848     // the first step when rebuilding the regions sets again. The reason for
4849     // this is that during a full GC string deduplication needs to know if
4850     // a collected region was young or old when the full GC was initiated.
4851   }
4852   _hrm.remove_all_free_regions();
4853 }
4854 
4855 void G1CollectedHeap::increase_used(size_t bytes) {
4856   _summary_bytes_used += bytes;
4857 }
4858 
4859 void G1CollectedHeap::decrease_used(size_t bytes) {
4860   assert(_summary_bytes_used >= bytes,
4861          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4862          _summary_bytes_used, bytes);
4863   _summary_bytes_used -= bytes;
4864 }
4865 
4866 void G1CollectedHeap::set_used(size_t bytes) {
4867   _summary_bytes_used = bytes;
4868 }
4869 
4870 class RebuildRegionSetsClosure : public HeapRegionClosure {
4871 private:
4872   bool            _free_list_only;
4873   HeapRegionSet*   _old_set;
4874   HeapRegionManager*   _hrm;
4875   size_t          _total_used;
4876 
4877 public:
4878   RebuildRegionSetsClosure(bool free_list_only,
4879                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
4880     _free_list_only(free_list_only),
4881     _old_set(old_set), _hrm(hrm), _total_used(0) {
4882     assert(_hrm->num_free_regions() == 0, "pre-condition");
4883     if (!free_list_only) {
4884       assert(_old_set->is_empty(), "pre-condition");
4885     }
4886   }
4887 
4888   bool do_heap_region(HeapRegion* r) {
4889     // After full GC, no region should have a remembered set.
4890     r->rem_set()->clear(true);
4891     if (r->is_empty()) {
4892       // Add free regions to the free list
4893       r->set_free();
4894       _hrm->insert_into_free_list(r);
4895     } else if (!_free_list_only) {
4896 
4897       if (r->is_humongous()) {
4898         // We ignore humongous regions. We left the humongous set unchanged.
4899       } else {
4900         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4901         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
4902         r->move_to_old();
4903         _old_set->add(r);
4904       }
4905       _total_used += r->used();
4906     }
4907 
4908     return false;
4909   }
4910 
4911   size_t total_used() {
4912     return _total_used;
4913   }
4914 };
4915 
4916 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4917   assert_at_safepoint_on_vm_thread();
4918 
4919   if (!free_list_only) {
4920     _eden.clear();
4921     _survivor.clear();
4922   }
4923 
4924   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4925   heap_region_iterate(&cl);
4926 
4927   if (!free_list_only) {
4928     set_used(cl.total_used());
4929     if (_archive_allocator != NULL) {
4930       _archive_allocator->clear_used();
4931     }
4932   }
4933   assert(used_unlocked() == recalculate_used(),
4934          "inconsistent used_unlocked(), "
4935          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4936          used_unlocked(), recalculate_used());
4937 }
4938 
4939 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4940   HeapRegion* hr = heap_region_containing(p);
4941   return hr->is_in(p);
4942 }
4943 
4944 // Methods for the mutator alloc region
4945 
4946 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4947                                                       bool force) {
4948   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4949   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4950   if (force || should_allocate) {
4951     HeapRegion* new_alloc_region = new_region(word_size,
4952                                               false /* is_old */,
4953                                               false /* do_expand */);
4954     if (new_alloc_region != NULL) {
4955       set_region_short_lived_locked(new_alloc_region);
4956       _hr_printer.alloc(new_alloc_region, !should_allocate);
4957       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4958       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4959       return new_alloc_region;
4960     }
4961   }
4962   return NULL;
4963 }
4964 
4965 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4966                                                   size_t allocated_bytes) {
4967   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4968   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4969 
4970   collection_set()->add_eden_region(alloc_region);
4971   increase_used(allocated_bytes);
4972   _hr_printer.retire(alloc_region);
4973   // We update the eden sizes here, when the region is retired,
4974   // instead of when it's allocated, since this is the point that its
4975   // used space has been recored in _summary_bytes_used.
4976   g1mm()->update_eden_size();
4977 }
4978 
4979 // Methods for the GC alloc regions
4980 
4981 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4982   if (dest.is_old()) {
4983     return true;
4984   } else {
4985     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4986   }
4987 }
4988 
4989 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4990   assert(FreeList_lock->owned_by_self(), "pre-condition");
4991 
4992   if (!has_more_regions(dest)) {
4993     return NULL;
4994   }
4995 
4996   const bool is_survivor = dest.is_young();
4997 
4998   HeapRegion* new_alloc_region = new_region(word_size,
4999                                             !is_survivor,
5000                                             true /* do_expand */);
5001   if (new_alloc_region != NULL) {
5002     if (is_survivor) {
5003       new_alloc_region->set_survivor();
5004       _survivor.add(new_alloc_region);
5005       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5006     } else {
5007       new_alloc_region->set_old();
5008       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5009     }
5010     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
5011     _hr_printer.alloc(new_alloc_region);
5012     bool during_im = collector_state()->in_initial_mark_gc();
5013     new_alloc_region->note_start_of_copying(during_im);
5014     return new_alloc_region;
5015   }
5016   return NULL;
5017 }
5018 
5019 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5020                                              size_t allocated_bytes,
5021                                              InCSetState dest) {
5022   bool during_im = collector_state()->in_initial_mark_gc();
5023   alloc_region->note_end_of_copying(during_im);
5024   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5025   if (dest.is_old()) {
5026     _old_set.add(alloc_region);
5027   }
5028   _hr_printer.retire(alloc_region);
5029 }
5030 
5031 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5032   bool expanded = false;
5033   uint index = _hrm.find_highest_free(&expanded);
5034 
5035   if (index != G1_NO_HRM_INDEX) {
5036     if (expanded) {
5037       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5038                                 HeapRegion::GrainWords * HeapWordSize);
5039     }
5040     _hrm.allocate_free_regions_starting_at(index, 1);
5041     return region_at(index);
5042   }
5043   return NULL;
5044 }
5045 
5046 // Optimized nmethod scanning
5047 
5048 class RegisterNMethodOopClosure: public OopClosure {
5049   G1CollectedHeap* _g1h;
5050   nmethod* _nm;
5051 
5052   template <class T> void do_oop_work(T* p) {
5053     T heap_oop = RawAccess<>::oop_load(p);
5054     if (!CompressedOops::is_null(heap_oop)) {
5055       oop obj = CompressedOops::decode_not_null(heap_oop);
5056       HeapRegion* hr = _g1h->heap_region_containing(obj);
5057       assert(!hr->is_continues_humongous(),
5058              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5059              " starting at " HR_FORMAT,
5060              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5061 
5062       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5063       hr->add_strong_code_root_locked(_nm);
5064     }
5065   }
5066 
5067 public:
5068   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5069     _g1h(g1h), _nm(nm) {}
5070 
5071   void do_oop(oop* p)       { do_oop_work(p); }
5072   void do_oop(narrowOop* p) { do_oop_work(p); }
5073 };
5074 
5075 class UnregisterNMethodOopClosure: public OopClosure {
5076   G1CollectedHeap* _g1h;
5077   nmethod* _nm;
5078 
5079   template <class T> void do_oop_work(T* p) {
5080     T heap_oop = RawAccess<>::oop_load(p);
5081     if (!CompressedOops::is_null(heap_oop)) {
5082       oop obj = CompressedOops::decode_not_null(heap_oop);
5083       HeapRegion* hr = _g1h->heap_region_containing(obj);
5084       assert(!hr->is_continues_humongous(),
5085              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5086              " starting at " HR_FORMAT,
5087              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5088 
5089       hr->remove_strong_code_root(_nm);
5090     }
5091   }
5092 
5093 public:
5094   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5095     _g1h(g1h), _nm(nm) {}
5096 
5097   void do_oop(oop* p)       { do_oop_work(p); }
5098   void do_oop(narrowOop* p) { do_oop_work(p); }
5099 };
5100 
5101 // Returns true if the reference points to an object that
5102 // can move in an incremental collection.
5103 bool G1CollectedHeap::is_scavengable(oop obj) {
5104   HeapRegion* hr = heap_region_containing(obj);
5105   return !hr->is_pinned();
5106 }
5107 
5108 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5109   guarantee(nm != NULL, "sanity");
5110   RegisterNMethodOopClosure reg_cl(this, nm);
5111   nm->oops_do(&reg_cl);
5112 }
5113 
5114 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5115   guarantee(nm != NULL, "sanity");
5116   UnregisterNMethodOopClosure reg_cl(this, nm);
5117   nm->oops_do(&reg_cl, true);
5118 }
5119 
5120 void G1CollectedHeap::purge_code_root_memory() {
5121   double purge_start = os::elapsedTime();
5122   G1CodeRootSet::purge();
5123   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5124   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5125 }
5126 
5127 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5128   G1CollectedHeap* _g1h;
5129 
5130 public:
5131   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5132     _g1h(g1h) {}
5133 
5134   void do_code_blob(CodeBlob* cb) {
5135     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5136     if (nm == NULL) {
5137       return;
5138     }
5139 
5140     if (ScavengeRootsInCode) {
5141       _g1h->register_nmethod(nm);
5142     }
5143   }
5144 };
5145 
5146 void G1CollectedHeap::rebuild_strong_code_roots() {
5147   RebuildStrongCodeRootClosure blob_cl(this);
5148   CodeCache::blobs_do(&blob_cl);
5149 }
5150 
5151 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
5152   GrowableArray<GCMemoryManager*> memory_managers(2);
5153   memory_managers.append(&_memory_manager);
5154   memory_managers.append(&_full_gc_memory_manager);
5155   return memory_managers;
5156 }
5157 
5158 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
5159   GrowableArray<MemoryPool*> memory_pools(3);
5160   memory_pools.append(_eden_pool);
5161   memory_pools.append(_survivor_pool);
5162   memory_pools.append(_old_pool);
5163   return memory_pools;
5164 }