1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc/shared/adaptiveSizePolicy.hpp"
  34 #include "gc/shared/cardTableBarrierSet.hpp"
  35 #include "gc/shared/cardTableRS.hpp"
  36 #include "gc/shared/collectedHeap.inline.hpp"
  37 #include "gc/shared/collectorCounters.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.hpp"
  40 #include "gc/shared/gcPolicyCounters.hpp"
  41 #include "gc/shared/gcTrace.hpp"
  42 #include "gc/shared/gcTraceTime.inline.hpp"
  43 #include "gc/shared/genCollectedHeap.hpp"
  44 #include "gc/shared/genOopClosures.inline.hpp"
  45 #include "gc/shared/generationSpec.hpp"
  46 #include "gc/shared/space.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/vmGCOperations.hpp"
  49 #include "gc/shared/weakProcessor.hpp"
  50 #include "gc/shared/workgroup.hpp"
  51 #include "memory/filemap.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/handles.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/vmThread.hpp"
  59 #include "services/management.hpp"
  60 #include "services/memoryService.hpp"
  61 #include "utilities/debug.hpp"
  62 #include "utilities/formatBuffer.hpp"
  63 #include "utilities/macros.hpp"
  64 #include "utilities/stack.inline.hpp"
  65 #include "utilities/vmError.hpp"
  66 
  67 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy,
  68                                    Generation::Name young,
  69                                    Generation::Name old,
  70                                    const char* policy_counters_name) :
  71   CollectedHeap(),
  72   _rem_set(NULL),
  73   _young_gen_spec(new GenerationSpec(young,
  74                                      policy->initial_young_size(),
  75                                      policy->max_young_size(),
  76                                      policy->gen_alignment())),
  77   _old_gen_spec(new GenerationSpec(old,
  78                                    policy->initial_old_size(),
  79                                    policy->max_old_size(),
  80                                    policy->gen_alignment())),
  81   _gen_policy(policy),
  82   _soft_ref_gen_policy(),
  83   _gc_policy_counters(new GCPolicyCounters(policy_counters_name, 2, 2)),
  84   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  85   _full_collections_completed(0) {
  86 }
  87 
  88 jint GenCollectedHeap::initialize() {
  89   // While there are no constraints in the GC code that HeapWordSize
  90   // be any particular value, there are multiple other areas in the
  91   // system which believe this to be true (e.g. oop->object_size in some
  92   // cases incorrectly returns the size in wordSize units rather than
  93   // HeapWordSize).
  94   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  95 
  96   // Allocate space for the heap.
  97 
  98   char* heap_address;
  99   ReservedSpace heap_rs;
 100 
 101   size_t heap_alignment = collector_policy()->heap_alignment();
 102 
 103   heap_address = allocate(heap_alignment, &heap_rs);
 104 
 105   if (!heap_rs.is_reserved()) {
 106     vm_shutdown_during_initialization(
 107       "Could not reserve enough space for object heap");
 108     return JNI_ENOMEM;
 109   }
 110 
 111   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 112 
 113   _rem_set = create_rem_set(reserved_region());
 114   _rem_set->initialize();
 115   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
 116   bs->initialize();
 117   BarrierSet::set_barrier_set(bs);
 118 
 119   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size(), false, false);
 120   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 121   heap_rs = heap_rs.last_part(_young_gen_spec->max_size());
 122 
 123   ReservedSpace old_rs = heap_rs.first_part(_old_gen_spec->max_size(), false, false);
 124   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 125   clear_incremental_collection_failed();
 126 
 127   return JNI_OK;
 128 }
 129 
 130 CardTableRS* GenCollectedHeap::create_rem_set(const MemRegion& reserved_region) {
 131   return new CardTableRS(reserved_region, false /* scan_concurrently */);
 132 }
 133 
 134 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 135                                               size_t init_promo_size,
 136                                               size_t init_survivor_size) {
 137   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 138   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 139                                         init_promo_size,
 140                                         init_survivor_size,
 141                                         max_gc_pause_sec,
 142                                         GCTimeRatio);
 143 }
 144 
 145 char* GenCollectedHeap::allocate(size_t alignment,
 146                                  ReservedSpace* heap_rs){
 147   // Now figure out the total size.
 148   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 149   assert(alignment % pageSize == 0, "Must be");
 150 
 151   // Check for overflow.
 152   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 153   if (total_reserved < _young_gen_spec->max_size()) {
 154     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 155                                   "the maximum representable size");
 156   }
 157   assert(total_reserved % alignment == 0,
 158          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 159          SIZE_FORMAT, total_reserved, alignment);
 160 
 161   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 162 
 163   os::trace_page_sizes("Heap",
 164                        collector_policy()->min_heap_byte_size(),
 165                        total_reserved,
 166                        alignment,
 167                        heap_rs->base(),
 168                        heap_rs->size());
 169 
 170   return heap_rs->base();
 171 }
 172 
 173 void GenCollectedHeap::post_initialize() {
 174   CollectedHeap::post_initialize();
 175   ref_processing_init();
 176   check_gen_kinds();
 177   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 178 
 179   initialize_size_policy(def_new_gen->eden()->capacity(),
 180                          _old_gen->capacity(),
 181                          def_new_gen->from()->capacity());
 182 }
 183 
 184 void GenCollectedHeap::ref_processing_init() {
 185   _young_gen->ref_processor_init();
 186   _old_gen->ref_processor_init();
 187 }
 188 
 189 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 190   return _young_gen_spec;
 191 }
 192 
 193 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 194   return _old_gen_spec;
 195 }
 196 
 197 size_t GenCollectedHeap::capacity() const {
 198   return _young_gen->capacity() + _old_gen->capacity();
 199 }
 200 
 201 size_t GenCollectedHeap::used() const {
 202   return _young_gen->used() + _old_gen->used();
 203 }
 204 
 205 void GenCollectedHeap::save_used_regions() {
 206   _old_gen->save_used_region();
 207   _young_gen->save_used_region();
 208 }
 209 
 210 size_t GenCollectedHeap::max_capacity() const {
 211   return _young_gen->max_capacity() + _old_gen->max_capacity();
 212 }
 213 
 214 // Update the _full_collections_completed counter
 215 // at the end of a stop-world full GC.
 216 unsigned int GenCollectedHeap::update_full_collections_completed() {
 217   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 218   assert(_full_collections_completed <= _total_full_collections,
 219          "Can't complete more collections than were started");
 220   _full_collections_completed = _total_full_collections;
 221   ml.notify_all();
 222   return _full_collections_completed;
 223 }
 224 
 225 // Update the _full_collections_completed counter, as appropriate,
 226 // at the end of a concurrent GC cycle. Note the conditional update
 227 // below to allow this method to be called by a concurrent collector
 228 // without synchronizing in any manner with the VM thread (which
 229 // may already have initiated a STW full collection "concurrently").
 230 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 231   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 232   assert((_full_collections_completed <= _total_full_collections) &&
 233          (count <= _total_full_collections),
 234          "Can't complete more collections than were started");
 235   if (count > _full_collections_completed) {
 236     _full_collections_completed = count;
 237     ml.notify_all();
 238   }
 239   return _full_collections_completed;
 240 }
 241 
 242 // Return true if any of the following is true:
 243 // . the allocation won't fit into the current young gen heap
 244 // . gc locker is occupied (jni critical section)
 245 // . heap memory is tight -- the most recent previous collection
 246 //   was a full collection because a partial collection (would
 247 //   have) failed and is likely to fail again
 248 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 249   size_t young_capacity = young_gen()->capacity_before_gc();
 250   return    (word_size > heap_word_size(young_capacity))
 251          || GCLocker::is_active_and_needs_gc()
 252          || incremental_collection_failed();
 253 }
 254 
 255 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 256   HeapWord* result = NULL;
 257   if (old_gen()->should_allocate(size, is_tlab)) {
 258     result = old_gen()->expand_and_allocate(size, is_tlab);
 259   }
 260   if (result == NULL) {
 261     if (young_gen()->should_allocate(size, is_tlab)) {
 262       result = young_gen()->expand_and_allocate(size, is_tlab);
 263     }
 264   }
 265   assert(result == NULL || is_in_reserved(result), "result not in heap");
 266   return result;
 267 }
 268 
 269 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 270                                               bool is_tlab,
 271                                               bool* gc_overhead_limit_was_exceeded) {
 272   debug_only(check_for_valid_allocation_state());
 273   assert(no_gc_in_progress(), "Allocation during gc not allowed");
 274 
 275   // In general gc_overhead_limit_was_exceeded should be false so
 276   // set it so here and reset it to true only if the gc time
 277   // limit is being exceeded as checked below.
 278   *gc_overhead_limit_was_exceeded = false;
 279 
 280   HeapWord* result = NULL;
 281 
 282   // Loop until the allocation is satisfied, or unsatisfied after GC.
 283   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 284     HandleMark hm; // Discard any handles allocated in each iteration.
 285 
 286     // First allocation attempt is lock-free.
 287     Generation *young = young_gen();
 288     assert(young->supports_inline_contig_alloc(),
 289       "Otherwise, must do alloc within heap lock");
 290     if (young->should_allocate(size, is_tlab)) {
 291       result = young->par_allocate(size, is_tlab);
 292       if (result != NULL) {
 293         assert(is_in_reserved(result), "result not in heap");
 294         return result;
 295       }
 296     }
 297     uint gc_count_before;  // Read inside the Heap_lock locked region.
 298     {
 299       MutexLocker ml(Heap_lock);
 300       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 301       // Note that only large objects get a shot at being
 302       // allocated in later generations.
 303       bool first_only = !should_try_older_generation_allocation(size);
 304 
 305       result = attempt_allocation(size, is_tlab, first_only);
 306       if (result != NULL) {
 307         assert(is_in_reserved(result), "result not in heap");
 308         return result;
 309       }
 310 
 311       if (GCLocker::is_active_and_needs_gc()) {
 312         if (is_tlab) {
 313           return NULL;  // Caller will retry allocating individual object.
 314         }
 315         if (!is_maximal_no_gc()) {
 316           // Try and expand heap to satisfy request.
 317           result = expand_heap_and_allocate(size, is_tlab);
 318           // Result could be null if we are out of space.
 319           if (result != NULL) {
 320             return result;
 321           }
 322         }
 323 
 324         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 325           return NULL; // We didn't get to do a GC and we didn't get any memory.
 326         }
 327 
 328         // If this thread is not in a jni critical section, we stall
 329         // the requestor until the critical section has cleared and
 330         // GC allowed. When the critical section clears, a GC is
 331         // initiated by the last thread exiting the critical section; so
 332         // we retry the allocation sequence from the beginning of the loop,
 333         // rather than causing more, now probably unnecessary, GC attempts.
 334         JavaThread* jthr = JavaThread::current();
 335         if (!jthr->in_critical()) {
 336           MutexUnlocker mul(Heap_lock);
 337           // Wait for JNI critical section to be exited
 338           GCLocker::stall_until_clear();
 339           gclocker_stalled_count += 1;
 340           continue;
 341         } else {
 342           if (CheckJNICalls) {
 343             fatal("Possible deadlock due to allocating while"
 344                   " in jni critical section");
 345           }
 346           return NULL;
 347         }
 348       }
 349 
 350       // Read the gc count while the heap lock is held.
 351       gc_count_before = total_collections();
 352     }
 353 
 354     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 355     VMThread::execute(&op);
 356     if (op.prologue_succeeded()) {
 357       result = op.result();
 358       if (op.gc_locked()) {
 359          assert(result == NULL, "must be NULL if gc_locked() is true");
 360          continue;  // Retry and/or stall as necessary.
 361       }
 362 
 363       // Allocation has failed and a collection
 364       // has been done.  If the gc time limit was exceeded the
 365       // this time, return NULL so that an out-of-memory
 366       // will be thrown.  Clear gc_overhead_limit_exceeded
 367       // so that the overhead exceeded does not persist.
 368 
 369       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 370       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 371 
 372       if (limit_exceeded && softrefs_clear) {
 373         *gc_overhead_limit_was_exceeded = true;
 374         size_policy()->set_gc_overhead_limit_exceeded(false);
 375         if (op.result() != NULL) {
 376           CollectedHeap::fill_with_object(op.result(), size);
 377         }
 378         return NULL;
 379       }
 380       assert(result == NULL || is_in_reserved(result),
 381              "result not in heap");
 382       return result;
 383     }
 384 
 385     // Give a warning if we seem to be looping forever.
 386     if ((QueuedAllocationWarningCount > 0) &&
 387         (try_count % QueuedAllocationWarningCount == 0)) {
 388           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 389                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 390     }
 391   }
 392 }
 393 
 394 #ifndef PRODUCT
 395 // Override of memory state checking method in CollectedHeap:
 396 // Some collectors (CMS for example) can't have badHeapWordVal written
 397 // in the first two words of an object. (For instance , in the case of
 398 // CMS these words hold state used to synchronize between certain
 399 // (concurrent) GC steps and direct allocating mutators.)
 400 // The skip_header_HeapWords() method below, allows us to skip
 401 // over the requisite number of HeapWord's. Note that (for
 402 // generational collectors) this means that those many words are
 403 // skipped in each object, irrespective of the generation in which
 404 // that object lives. The resultant loss of precision seems to be
 405 // harmless and the pain of avoiding that imprecision appears somewhat
 406 // higher than we are prepared to pay for such rudimentary debugging
 407 // support.
 408 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 409                                                          size_t size) {
 410   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 411     // We are asked to check a size in HeapWords,
 412     // but the memory is mangled in juint words.
 413     juint* start = (juint*) (addr + skip_header_HeapWords());
 414     juint* end   = (juint*) (addr + size);
 415     for (juint* slot = start; slot < end; slot += 1) {
 416       assert(*slot == badHeapWordVal,
 417              "Found non badHeapWordValue in pre-allocation check");
 418     }
 419   }
 420 }
 421 #endif
 422 
 423 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 424                                                bool is_tlab,
 425                                                bool first_only) {
 426   HeapWord* res = NULL;
 427 
 428   if (_young_gen->should_allocate(size, is_tlab)) {
 429     res = _young_gen->allocate(size, is_tlab);
 430     if (res != NULL || first_only) {
 431       return res;
 432     }
 433   }
 434 
 435   if (_old_gen->should_allocate(size, is_tlab)) {
 436     res = _old_gen->allocate(size, is_tlab);
 437   }
 438 
 439   return res;
 440 }
 441 
 442 HeapWord* GenCollectedHeap::mem_allocate(size_t size, Klass* klass, Thread* thread,
 443                                          bool* gc_overhead_limit_was_exceeded) {
 444 
 445   HeapWord* obj = allocate_from_tlab(klass, thread, size);
 446   if (obj != NULL) {
 447     return obj;
 448   }
 449 
 450   return mem_allocate_work(size,
 451                            false /* is_tlab */,
 452                            gc_overhead_limit_was_exceeded);
 453 }
 454 
 455 bool GenCollectedHeap::must_clear_all_soft_refs() {
 456   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 457          _gc_cause == GCCause::_wb_full_gc;
 458 }
 459 
 460 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 461                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 462                                           bool restore_marks_for_biased_locking) {
 463   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 464   GCTraceTime(Trace, gc, phases) t1(title);
 465   TraceCollectorStats tcs(gen->counters());
 466   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 467 
 468   gen->stat_record()->invocations++;
 469   gen->stat_record()->accumulated_time.start();
 470 
 471   // Must be done anew before each collection because
 472   // a previous collection will do mangling and will
 473   // change top of some spaces.
 474   record_gen_tops_before_GC();
 475 
 476   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 477 
 478   if (run_verification && VerifyBeforeGC) {
 479     HandleMark hm;  // Discard invalid handles created during verification
 480     Universe::verify("Before GC");
 481   }
 482   COMPILER2_PRESENT(DerivedPointerTable::clear());
 483 
 484   if (restore_marks_for_biased_locking) {
 485     // We perform this mark word preservation work lazily
 486     // because it's only at this point that we know whether we
 487     // absolutely have to do it; we want to avoid doing it for
 488     // scavenge-only collections where it's unnecessary
 489     BiasedLocking::preserve_marks();
 490   }
 491 
 492   // Do collection work
 493   {
 494     // Note on ref discovery: For what appear to be historical reasons,
 495     // GCH enables and disabled (by enqueing) refs discovery.
 496     // In the future this should be moved into the generation's
 497     // collect method so that ref discovery and enqueueing concerns
 498     // are local to a generation. The collect method could return
 499     // an appropriate indication in the case that notification on
 500     // the ref lock was needed. This will make the treatment of
 501     // weak refs more uniform (and indeed remove such concerns
 502     // from GCH). XXX
 503 
 504     HandleMark hm;  // Discard invalid handles created during gc
 505     save_marks();   // save marks for all gens
 506     // We want to discover references, but not process them yet.
 507     // This mode is disabled in process_discovered_references if the
 508     // generation does some collection work, or in
 509     // enqueue_discovered_references if the generation returns
 510     // without doing any work.
 511     ReferenceProcessor* rp = gen->ref_processor();
 512     // If the discovery of ("weak") refs in this generation is
 513     // atomic wrt other collectors in this configuration, we
 514     // are guaranteed to have empty discovered ref lists.
 515     if (rp->discovery_is_atomic()) {
 516       rp->enable_discovery();
 517       rp->setup_policy(clear_soft_refs);
 518     } else {
 519       // collect() below will enable discovery as appropriate
 520     }
 521     gen->collect(full, clear_soft_refs, size, is_tlab);
 522     if (!rp->enqueuing_is_done()) {
 523       ReferenceProcessorPhaseTimes pt(NULL, rp->num_q());
 524       rp->enqueue_discovered_references(NULL, &pt);
 525       pt.print_enqueue_phase();
 526     } else {
 527       rp->set_enqueuing_is_done(false);
 528     }
 529     rp->verify_no_references_recorded();
 530   }
 531 
 532   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 533 
 534   gen->stat_record()->accumulated_time.stop();
 535 
 536   update_gc_stats(gen, full);
 537 
 538   if (run_verification && VerifyAfterGC) {
 539     HandleMark hm;  // Discard invalid handles created during verification
 540     Universe::verify("After GC");
 541   }
 542 }
 543 
 544 void GenCollectedHeap::do_collection(bool           full,
 545                                      bool           clear_all_soft_refs,
 546                                      size_t         size,
 547                                      bool           is_tlab,
 548                                      GenerationType max_generation) {
 549   ResourceMark rm;
 550   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 551 
 552   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 553   assert(my_thread->is_VM_thread() ||
 554          my_thread->is_ConcurrentGC_thread(),
 555          "incorrect thread type capability");
 556   assert(Heap_lock->is_locked(),
 557          "the requesting thread should have the Heap_lock");
 558   guarantee(!is_gc_active(), "collection is not reentrant");
 559 
 560   if (GCLocker::check_active_before_gc()) {
 561     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 562   }
 563 
 564   GCIdMark gc_id_mark;
 565 
 566   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 567                           soft_ref_policy()->should_clear_all_soft_refs();
 568 
 569   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 570 
 571   const size_t metadata_prev_used = MetaspaceUtils::used_bytes();
 572 
 573   print_heap_before_gc();
 574 
 575   {
 576     FlagSetting fl(_is_gc_active, true);
 577 
 578     bool complete = full && (max_generation == OldGen);
 579     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 580     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 581 
 582     FormatBuffer<> gc_string("%s", "Pause ");
 583     if (do_young_collection) {
 584       gc_string.append("Young");
 585     } else {
 586       gc_string.append("Full");
 587     }
 588 
 589     GCTraceCPUTime tcpu;
 590     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 591 
 592     gc_prologue(complete);
 593     increment_total_collections(complete);
 594 
 595     size_t young_prev_used = _young_gen->used();
 596     size_t old_prev_used = _old_gen->used();
 597 
 598     bool run_verification = total_collections() >= VerifyGCStartAt;
 599 
 600     bool prepared_for_verification = false;
 601     bool collected_old = false;
 602 
 603     if (do_young_collection) {
 604       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 605         prepare_for_verify();
 606         prepared_for_verification = true;
 607       }
 608 
 609       collect_generation(_young_gen,
 610                          full,
 611                          size,
 612                          is_tlab,
 613                          run_verification && VerifyGCLevel <= 0,
 614                          do_clear_all_soft_refs,
 615                          false);
 616 
 617       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 618           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 619         // Allocation request was met by young GC.
 620         size = 0;
 621       }
 622     }
 623 
 624     bool must_restore_marks_for_biased_locking = false;
 625 
 626     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 627       if (!complete) {
 628         // The full_collections increment was missed above.
 629         increment_total_full_collections();
 630       }
 631 
 632       if (!prepared_for_verification && run_verification &&
 633           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 634         prepare_for_verify();
 635       }
 636 
 637       if (do_young_collection) {
 638         // We did a young GC. Need a new GC id for the old GC.
 639         GCIdMark gc_id_mark;
 640         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 641         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 642       } else {
 643         // No young GC done. Use the same GC id as was set up earlier in this method.
 644         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 645       }
 646 
 647       must_restore_marks_for_biased_locking = true;
 648       collected_old = true;
 649     }
 650 
 651     // Update "complete" boolean wrt what actually transpired --
 652     // for instance, a promotion failure could have led to
 653     // a whole heap collection.
 654     complete = complete || collected_old;
 655 
 656     print_heap_change(young_prev_used, old_prev_used);
 657     MetaspaceUtils::print_metaspace_change(metadata_prev_used);
 658 
 659     // Adjust generation sizes.
 660     if (collected_old) {
 661       _old_gen->compute_new_size();
 662     }
 663     _young_gen->compute_new_size();
 664 
 665     if (complete) {
 666       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 667       ClassLoaderDataGraph::purge();
 668       MetaspaceUtils::verify_metrics();
 669       // Resize the metaspace capacity after full collections
 670       MetaspaceGC::compute_new_size();
 671       update_full_collections_completed();
 672     }
 673 
 674     // Track memory usage and detect low memory after GC finishes
 675     MemoryService::track_memory_usage();
 676 
 677     gc_epilogue(complete);
 678 
 679     if (must_restore_marks_for_biased_locking) {
 680       BiasedLocking::restore_marks();
 681     }
 682   }
 683 
 684   print_heap_after_gc();
 685 
 686 #ifdef TRACESPINNING
 687   ParallelTaskTerminator::print_termination_counts();
 688 #endif
 689 }
 690 
 691 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 692   CodeCache::register_scavenge_root_nmethod(nm);
 693 }
 694 
 695 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 696   CodeCache::verify_scavenge_root_nmethod(nm);
 697 }
 698 
 699 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 700   GCCauseSetter x(this, GCCause::_allocation_failure);
 701   HeapWord* result = NULL;
 702 
 703   assert(size != 0, "Precondition violated");
 704   if (GCLocker::is_active_and_needs_gc()) {
 705     // GC locker is active; instead of a collection we will attempt
 706     // to expand the heap, if there's room for expansion.
 707     if (!is_maximal_no_gc()) {
 708       result = expand_heap_and_allocate(size, is_tlab);
 709     }
 710     return result;   // Could be null if we are out of space.
 711   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 712     // Do an incremental collection.
 713     do_collection(false,                     // full
 714                   false,                     // clear_all_soft_refs
 715                   size,                      // size
 716                   is_tlab,                   // is_tlab
 717                   GenCollectedHeap::OldGen); // max_generation
 718   } else {
 719     log_trace(gc)(" :: Trying full because partial may fail :: ");
 720     // Try a full collection; see delta for bug id 6266275
 721     // for the original code and why this has been simplified
 722     // with from-space allocation criteria modified and
 723     // such allocation moved out of the safepoint path.
 724     do_collection(true,                      // full
 725                   false,                     // clear_all_soft_refs
 726                   size,                      // size
 727                   is_tlab,                   // is_tlab
 728                   GenCollectedHeap::OldGen); // max_generation
 729   }
 730 
 731   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 732 
 733   if (result != NULL) {
 734     assert(is_in_reserved(result), "result not in heap");
 735     return result;
 736   }
 737 
 738   // OK, collection failed, try expansion.
 739   result = expand_heap_and_allocate(size, is_tlab);
 740   if (result != NULL) {
 741     return result;
 742   }
 743 
 744   // If we reach this point, we're really out of memory. Try every trick
 745   // we can to reclaim memory. Force collection of soft references. Force
 746   // a complete compaction of the heap. Any additional methods for finding
 747   // free memory should be here, especially if they are expensive. If this
 748   // attempt fails, an OOM exception will be thrown.
 749   {
 750     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 751 
 752     do_collection(true,                      // full
 753                   true,                      // clear_all_soft_refs
 754                   size,                      // size
 755                   is_tlab,                   // is_tlab
 756                   GenCollectedHeap::OldGen); // max_generation
 757   }
 758 
 759   result = attempt_allocation(size, is_tlab, false /* first_only */);
 760   if (result != NULL) {
 761     assert(is_in_reserved(result), "result not in heap");
 762     return result;
 763   }
 764 
 765   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 766     "Flag should have been handled and cleared prior to this point");
 767 
 768   // What else?  We might try synchronous finalization later.  If the total
 769   // space available is large enough for the allocation, then a more
 770   // complete compaction phase than we've tried so far might be
 771   // appropriate.
 772   return NULL;
 773 }
 774 
 775 #ifdef ASSERT
 776 class AssertNonScavengableClosure: public OopClosure {
 777 public:
 778   virtual void do_oop(oop* p) {
 779     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 780       "Referent should not be scavengable.");  }
 781   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 782 };
 783 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 784 #endif
 785 
 786 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 787                                      ScanningOption so,
 788                                      OopClosure* strong_roots,
 789                                      OopClosure* weak_roots,
 790                                      CLDClosure* strong_cld_closure,
 791                                      CLDClosure* weak_cld_closure,
 792                                      CodeBlobToOopClosure* code_roots) {
 793   // General roots.
 794   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 795   assert(code_roots != NULL, "code root closure should always be set");
 796   // _n_termination for _process_strong_tasks should be set up stream
 797   // in a method not running in a GC worker.  Otherwise the GC worker
 798   // could be trying to change the termination condition while the task
 799   // is executing in another GC worker.
 800 
 801   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 802     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 803   }
 804 
 805   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 806   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 807 
 808   bool is_par = scope->n_threads() > 1;
 809   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 810 
 811   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 812     Universe::oops_do(strong_roots);
 813   }
 814   // Global (strong) JNI handles
 815   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 816     JNIHandles::oops_do(strong_roots);
 817   }
 818 
 819   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 820     ObjectSynchronizer::oops_do(strong_roots);
 821   }
 822   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 823     Management::oops_do(strong_roots);
 824   }
 825   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 826     JvmtiExport::oops_do(strong_roots);
 827   }
 828   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 829     AOTLoader::oops_do(strong_roots);
 830   }
 831 
 832   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 833     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 834   }
 835 
 836   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 837     if (so & SO_ScavengeCodeCache) {
 838       assert(code_roots != NULL, "must supply closure for code cache");
 839 
 840       // We only visit parts of the CodeCache when scavenging.
 841       CodeCache::scavenge_root_nmethods_do(code_roots);
 842     }
 843     if (so & SO_AllCodeCache) {
 844       assert(code_roots != NULL, "must supply closure for code cache");
 845 
 846       // CMSCollector uses this to do intermediate-strength collections.
 847       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 848       CodeCache::blobs_do(code_roots);
 849     }
 850     // Verify that the code cache contents are not subject to
 851     // movement by a scavenging collection.
 852     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 853     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 854   }
 855 }
 856 
 857 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 858                                                   OopClosure* root_closure) {
 859   assert(root_closure != NULL, "Must be set");
 860   // All threads execute the following. A specific chunk of buckets
 861   // from the StringTable are the individual tasks.
 862   if (scope->n_threads() > 1) {
 863     StringTable::possibly_parallel_oops_do(root_closure);
 864   } else {
 865     StringTable::oops_do(root_closure);
 866   }
 867 }
 868 
 869 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 870                                            OopsInGenClosure* root_closure,
 871                                            OopsInGenClosure* old_gen_closure,
 872                                            CLDClosure* cld_closure) {
 873   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 874 
 875   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 876                 cld_closure, cld_closure, &mark_code_closure);
 877   process_string_table_roots(scope, root_closure);
 878 
 879   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 880     root_closure->reset_generation();
 881   }
 882 
 883   // When collection is parallel, all threads get to cooperate to do
 884   // old generation scanning.
 885   old_gen_closure->set_generation(_old_gen);
 886   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 887   old_gen_closure->reset_generation();
 888 
 889   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 890 }
 891 
 892 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 893                                           bool is_adjust_phase,
 894                                           ScanningOption so,
 895                                           bool only_strong_roots,
 896                                           OopsInGenClosure* root_closure,
 897                                           CLDClosure* cld_closure) {
 898   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 899   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 900   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 901 
 902   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 903   if (is_adjust_phase) {
 904     // We never treat the string table as roots during marking
 905     // for the full gc, so we only need to process it during
 906     // the adjust phase.
 907     process_string_table_roots(scope, root_closure);
 908   }
 909 
 910   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 911 }
 912 
 913 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 914   WeakProcessor::oops_do(root_closure);
 915   _young_gen->ref_processor()->weak_oops_do(root_closure);
 916   _old_gen->ref_processor()->weak_oops_do(root_closure);
 917 }
 918 
 919 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 920 void GenCollectedHeap::                                                 \
 921 oop_since_save_marks_iterate(GenerationType gen,                        \
 922                              OopClosureType* cur,                       \
 923                              OopClosureType* older) {                   \
 924   if (gen == YoungGen) {                              \
 925     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 926     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 927   } else {                                                              \
 928     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 929   }                                                                     \
 930 }
 931 
 932 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 933 
 934 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 935 
 936 bool GenCollectedHeap::no_allocs_since_save_marks() {
 937   return _young_gen->no_allocs_since_save_marks() &&
 938          _old_gen->no_allocs_since_save_marks();
 939 }
 940 
 941 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 942   return _young_gen->supports_inline_contig_alloc();
 943 }
 944 
 945 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 946   return _young_gen->top_addr();
 947 }
 948 
 949 HeapWord** GenCollectedHeap::end_addr() const {
 950   return _young_gen->end_addr();
 951 }
 952 
 953 // public collection interfaces
 954 
 955 void GenCollectedHeap::collect(GCCause::Cause cause) {
 956   if (cause == GCCause::_wb_young_gc) {
 957     // Young collection for the WhiteBox API.
 958     collect(cause, YoungGen);
 959   } else {
 960 #ifdef ASSERT
 961   if (cause == GCCause::_scavenge_alot) {
 962     // Young collection only.
 963     collect(cause, YoungGen);
 964   } else {
 965     // Stop-the-world full collection.
 966     collect(cause, OldGen);
 967   }
 968 #else
 969     // Stop-the-world full collection.
 970     collect(cause, OldGen);
 971 #endif
 972   }
 973 }
 974 
 975 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 976   // The caller doesn't have the Heap_lock
 977   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 978   MutexLocker ml(Heap_lock);
 979   collect_locked(cause, max_generation);
 980 }
 981 
 982 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 983   // The caller has the Heap_lock
 984   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 985   collect_locked(cause, OldGen);
 986 }
 987 
 988 // this is the private collection interface
 989 // The Heap_lock is expected to be held on entry.
 990 
 991 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 992   // Read the GC count while holding the Heap_lock
 993   unsigned int gc_count_before      = total_collections();
 994   unsigned int full_gc_count_before = total_full_collections();
 995   {
 996     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 997     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 998                          cause, max_generation);
 999     VMThread::execute(&op);
1000   }
1001 }
1002 
1003 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1004    do_full_collection(clear_all_soft_refs, OldGen);
1005 }
1006 
1007 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
1008                                           GenerationType last_generation) {
1009   GenerationType local_last_generation;
1010   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
1011       gc_cause() == GCCause::_gc_locker) {
1012     local_last_generation = YoungGen;
1013   } else {
1014     local_last_generation = last_generation;
1015   }
1016 
1017   do_collection(true,                   // full
1018                 clear_all_soft_refs,    // clear_all_soft_refs
1019                 0,                      // size
1020                 false,                  // is_tlab
1021                 local_last_generation); // last_generation
1022   // Hack XXX FIX ME !!!
1023   // A scavenge may not have been attempted, or may have
1024   // been attempted and failed, because the old gen was too full
1025   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
1026       incremental_collection_will_fail(false /* don't consult_young */)) {
1027     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
1028     // This time allow the old gen to be collected as well
1029     do_collection(true,                // full
1030                   clear_all_soft_refs, // clear_all_soft_refs
1031                   0,                   // size
1032                   false,               // is_tlab
1033                   OldGen);             // last_generation
1034   }
1035 }
1036 
1037 bool GenCollectedHeap::is_in_young(oop p) {
1038   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
1039   assert(result == _young_gen->is_in_reserved(p),
1040          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1041   return result;
1042 }
1043 
1044 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1045 bool GenCollectedHeap::is_in(const void* p) const {
1046   return _young_gen->is_in(p) || _old_gen->is_in(p);
1047 }
1048 
1049 #ifdef ASSERT
1050 // Don't implement this by using is_in_young().  This method is used
1051 // in some cases to check that is_in_young() is correct.
1052 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1053   assert(is_in_reserved(p) || p == NULL,
1054     "Does not work if address is non-null and outside of the heap");
1055   return p < _young_gen->reserved().end() && p != NULL;
1056 }
1057 #endif
1058 
1059 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
1060   NoHeaderExtendedOopClosure no_header_cl(cl);
1061   oop_iterate(&no_header_cl);
1062 }
1063 
1064 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
1065   _young_gen->oop_iterate(cl);
1066   _old_gen->oop_iterate(cl);
1067 }
1068 
1069 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1070   _young_gen->object_iterate(cl);
1071   _old_gen->object_iterate(cl);
1072 }
1073 
1074 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
1075   _young_gen->safe_object_iterate(cl);
1076   _old_gen->safe_object_iterate(cl);
1077 }
1078 
1079 Space* GenCollectedHeap::space_containing(const void* addr) const {
1080   Space* res = _young_gen->space_containing(addr);
1081   if (res != NULL) {
1082     return res;
1083   }
1084   res = _old_gen->space_containing(addr);
1085   assert(res != NULL, "Could not find containing space");
1086   return res;
1087 }
1088 
1089 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1090   assert(is_in_reserved(addr), "block_start of address outside of heap");
1091   if (_young_gen->is_in_reserved(addr)) {
1092     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1093     return _young_gen->block_start(addr);
1094   }
1095 
1096   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1097   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1098   return _old_gen->block_start(addr);
1099 }
1100 
1101 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1102   assert(is_in_reserved(addr), "block_size of address outside of heap");
1103   if (_young_gen->is_in_reserved(addr)) {
1104     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1105     return _young_gen->block_size(addr);
1106   }
1107 
1108   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1109   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1110   return _old_gen->block_size(addr);
1111 }
1112 
1113 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1114   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1115   assert(block_start(addr) == addr, "addr must be a block start");
1116   if (_young_gen->is_in_reserved(addr)) {
1117     return _young_gen->block_is_obj(addr);
1118   }
1119 
1120   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1121   return _old_gen->block_is_obj(addr);
1122 }
1123 
1124 bool GenCollectedHeap::supports_tlab_allocation() const {
1125   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1126   return _young_gen->supports_tlab_allocation();
1127 }
1128 
1129 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1130   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1131   if (_young_gen->supports_tlab_allocation()) {
1132     return _young_gen->tlab_capacity();
1133   }
1134   return 0;
1135 }
1136 
1137 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1138   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1139   if (_young_gen->supports_tlab_allocation()) {
1140     return _young_gen->tlab_used();
1141   }
1142   return 0;
1143 }
1144 
1145 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1146   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1147   if (_young_gen->supports_tlab_allocation()) {
1148     return _young_gen->unsafe_max_tlab_alloc();
1149   }
1150   return 0;
1151 }
1152 
1153 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1154   bool gc_overhead_limit_was_exceeded;
1155   return mem_allocate_work(size /* size */,
1156                            true /* is_tlab */,
1157                            &gc_overhead_limit_was_exceeded);
1158 }
1159 
1160 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1161 // from the list headed by "*prev_ptr".
1162 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1163   bool first = true;
1164   size_t min_size = 0;   // "first" makes this conceptually infinite.
1165   ScratchBlock **smallest_ptr, *smallest;
1166   ScratchBlock  *cur = *prev_ptr;
1167   while (cur) {
1168     assert(*prev_ptr == cur, "just checking");
1169     if (first || cur->num_words < min_size) {
1170       smallest_ptr = prev_ptr;
1171       smallest     = cur;
1172       min_size     = smallest->num_words;
1173       first        = false;
1174     }
1175     prev_ptr = &cur->next;
1176     cur     =  cur->next;
1177   }
1178   smallest      = *smallest_ptr;
1179   *smallest_ptr = smallest->next;
1180   return smallest;
1181 }
1182 
1183 // Sort the scratch block list headed by res into decreasing size order,
1184 // and set "res" to the result.
1185 static void sort_scratch_list(ScratchBlock*& list) {
1186   ScratchBlock* sorted = NULL;
1187   ScratchBlock* unsorted = list;
1188   while (unsorted) {
1189     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1190     smallest->next  = sorted;
1191     sorted          = smallest;
1192   }
1193   list = sorted;
1194 }
1195 
1196 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1197                                                size_t max_alloc_words) {
1198   ScratchBlock* res = NULL;
1199   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1200   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1201   sort_scratch_list(res);
1202   return res;
1203 }
1204 
1205 void GenCollectedHeap::release_scratch() {
1206   _young_gen->reset_scratch();
1207   _old_gen->reset_scratch();
1208 }
1209 
1210 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1211   void do_generation(Generation* gen) {
1212     gen->prepare_for_verify();
1213   }
1214 };
1215 
1216 void GenCollectedHeap::prepare_for_verify() {
1217   ensure_parsability(false);        // no need to retire TLABs
1218   GenPrepareForVerifyClosure blk;
1219   generation_iterate(&blk, false);
1220 }
1221 
1222 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1223                                           bool old_to_young) {
1224   if (old_to_young) {
1225     cl->do_generation(_old_gen);
1226     cl->do_generation(_young_gen);
1227   } else {
1228     cl->do_generation(_young_gen);
1229     cl->do_generation(_old_gen);
1230   }
1231 }
1232 
1233 bool GenCollectedHeap::is_maximal_no_gc() const {
1234   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1235 }
1236 
1237 void GenCollectedHeap::save_marks() {
1238   _young_gen->save_marks();
1239   _old_gen->save_marks();
1240 }
1241 
1242 GenCollectedHeap* GenCollectedHeap::heap() {
1243   CollectedHeap* heap = Universe::heap();
1244   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1245   assert(heap->kind() == CollectedHeap::Serial ||
1246          heap->kind() == CollectedHeap::CMS, "Invalid name");
1247   return (GenCollectedHeap*) heap;
1248 }
1249 
1250 void GenCollectedHeap::prepare_for_compaction() {
1251   // Start by compacting into same gen.
1252   CompactPoint cp(_old_gen);
1253   _old_gen->prepare_for_compaction(&cp);
1254   _young_gen->prepare_for_compaction(&cp);
1255 }
1256 
1257 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1258   log_debug(gc, verify)("%s", _old_gen->name());
1259   _old_gen->verify();
1260 
1261   log_debug(gc, verify)("%s", _old_gen->name());
1262   _young_gen->verify();
1263 
1264   log_debug(gc, verify)("RemSet");
1265   rem_set()->verify();
1266 }
1267 
1268 void GenCollectedHeap::print_on(outputStream* st) const {
1269   _young_gen->print_on(st);
1270   _old_gen->print_on(st);
1271   MetaspaceUtils::print_on(st);
1272 }
1273 
1274 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1275 }
1276 
1277 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1278 }
1279 
1280 void GenCollectedHeap::print_tracing_info() const {
1281   if (log_is_enabled(Debug, gc, heap, exit)) {
1282     LogStreamHandle(Debug, gc, heap, exit) lsh;
1283     _young_gen->print_summary_info_on(&lsh);
1284     _old_gen->print_summary_info_on(&lsh);
1285   }
1286 }
1287 
1288 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1289   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1290                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1291   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1292                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1293 }
1294 
1295 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1296  private:
1297   bool _full;
1298  public:
1299   void do_generation(Generation* gen) {
1300     gen->gc_prologue(_full);
1301   }
1302   GenGCPrologueClosure(bool full) : _full(full) {};
1303 };
1304 
1305 void GenCollectedHeap::gc_prologue(bool full) {
1306   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1307 
1308   // Fill TLAB's and such
1309   CollectedHeap::accumulate_statistics_all_tlabs();
1310   ensure_parsability(true);   // retire TLABs
1311 
1312   // Walk generations
1313   GenGCPrologueClosure blk(full);
1314   generation_iterate(&blk, false);  // not old-to-young.
1315 };
1316 
1317 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1318  private:
1319   bool _full;
1320  public:
1321   void do_generation(Generation* gen) {
1322     gen->gc_epilogue(_full);
1323   }
1324   GenGCEpilogueClosure(bool full) : _full(full) {};
1325 };
1326 
1327 void GenCollectedHeap::gc_epilogue(bool full) {
1328 #if COMPILER2_OR_JVMCI
1329   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1330   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1331   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1332 #endif // COMPILER2_OR_JVMCI
1333 
1334   resize_all_tlabs();
1335 
1336   GenGCEpilogueClosure blk(full);
1337   generation_iterate(&blk, false);  // not old-to-young.
1338 
1339   if (!CleanChunkPoolAsync) {
1340     Chunk::clean_chunk_pool();
1341   }
1342 
1343   MetaspaceCounters::update_performance_counters();
1344   CompressedClassSpaceCounters::update_performance_counters();
1345 };
1346 
1347 #ifndef PRODUCT
1348 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1349  private:
1350  public:
1351   void do_generation(Generation* gen) {
1352     gen->record_spaces_top();
1353   }
1354 };
1355 
1356 void GenCollectedHeap::record_gen_tops_before_GC() {
1357   if (ZapUnusedHeapArea) {
1358     GenGCSaveTopsBeforeGCClosure blk;
1359     generation_iterate(&blk, false);  // not old-to-young.
1360   }
1361 }
1362 #endif  // not PRODUCT
1363 
1364 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1365  public:
1366   void do_generation(Generation* gen) {
1367     gen->ensure_parsability();
1368   }
1369 };
1370 
1371 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1372   CollectedHeap::ensure_parsability(retire_tlabs);
1373   GenEnsureParsabilityClosure ep_cl;
1374   generation_iterate(&ep_cl, false);
1375 }
1376 
1377 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1378                                               oop obj,
1379                                               size_t obj_size) {
1380   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1381   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1382   HeapWord* result = NULL;
1383 
1384   result = old_gen->expand_and_allocate(obj_size, false);
1385 
1386   if (result != NULL) {
1387     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1388   }
1389   return oop(result);
1390 }
1391 
1392 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1393   jlong _time;   // in ms
1394   jlong _now;    // in ms
1395 
1396  public:
1397   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1398 
1399   jlong time() { return _time; }
1400 
1401   void do_generation(Generation* gen) {
1402     _time = MIN2(_time, gen->time_of_last_gc(_now));
1403   }
1404 };
1405 
1406 jlong GenCollectedHeap::millis_since_last_gc() {
1407   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1408   // provided the underlying platform provides such a time source
1409   // (and it is bug free). So we still have to guard against getting
1410   // back a time later than 'now'.
1411   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1412   GenTimeOfLastGCClosure tolgc_cl(now);
1413   // iterate over generations getting the oldest
1414   // time that a generation was collected
1415   generation_iterate(&tolgc_cl, false);
1416 
1417   jlong retVal = now - tolgc_cl.time();
1418   if (retVal < 0) {
1419     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1420        ". returning zero instead.", retVal);
1421     return 0;
1422   }
1423   return retVal;
1424 }