1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/bytecode.hpp"
  44 #include "interpreter/interpreter.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/access.inline.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/atomic.hpp"
  53 #include "runtime/biasedLocking.hpp"
  54 #include "runtime/compilationPolicy.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vframeArray.hpp"
  61 #include "runtime/vm_version.hpp"
  62 #include "utilities/copy.hpp"
  63 #include "utilities/events.hpp"
  64 
  65 
  66 // Implementation of StubAssembler
  67 
  68 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  69   _name = name;
  70   _must_gc_arguments = false;
  71   _frame_size = no_frame_size;
  72   _num_rt_args = 0;
  73   _stub_id = stub_id;
  74 }
  75 
  76 
  77 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  78   _name = name;
  79   _must_gc_arguments = must_gc_arguments;
  80 }
  81 
  82 
  83 void StubAssembler::set_frame_size(int size) {
  84   if (_frame_size == no_frame_size) {
  85     _frame_size = size;
  86   }
  87   assert(_frame_size == size, "can't change the frame size");
  88 }
  89 
  90 
  91 void StubAssembler::set_num_rt_args(int args) {
  92   if (_num_rt_args == 0) {
  93     _num_rt_args = args;
  94   }
  95   assert(_num_rt_args == args, "can't change the number of args");
  96 }
  97 
  98 // Implementation of Runtime1
  99 
 100 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 101 const char *Runtime1::_blob_names[] = {
 102   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 103 };
 104 
 105 #ifndef PRODUCT
 106 // statistics
 107 int Runtime1::_generic_arraycopy_cnt = 0;
 108 int Runtime1::_generic_arraycopystub_cnt = 0;
 109 int Runtime1::_arraycopy_slowcase_cnt = 0;
 110 int Runtime1::_arraycopy_checkcast_cnt = 0;
 111 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 112 int Runtime1::_new_type_array_slowcase_cnt = 0;
 113 int Runtime1::_new_object_array_slowcase_cnt = 0;
 114 int Runtime1::_new_instance_slowcase_cnt = 0;
 115 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 116 int Runtime1::_monitorenter_slowcase_cnt = 0;
 117 int Runtime1::_monitorexit_slowcase_cnt = 0;
 118 int Runtime1::_patch_code_slowcase_cnt = 0;
 119 int Runtime1::_throw_range_check_exception_count = 0;
 120 int Runtime1::_throw_index_exception_count = 0;
 121 int Runtime1::_throw_div0_exception_count = 0;
 122 int Runtime1::_throw_null_pointer_exception_count = 0;
 123 int Runtime1::_throw_class_cast_exception_count = 0;
 124 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 125 int Runtime1::_throw_array_store_exception_count = 0;
 126 int Runtime1::_throw_count = 0;
 127 
 128 static int _byte_arraycopy_stub_cnt = 0;
 129 static int _short_arraycopy_stub_cnt = 0;
 130 static int _int_arraycopy_stub_cnt = 0;
 131 static int _long_arraycopy_stub_cnt = 0;
 132 static int _oop_arraycopy_stub_cnt = 0;
 133 
 134 address Runtime1::arraycopy_count_address(BasicType type) {
 135   switch (type) {
 136   case T_BOOLEAN:
 137   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 138   case T_CHAR:
 139   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 140   case T_FLOAT:
 141   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 142   case T_DOUBLE:
 143   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 144   case T_ARRAY:
 145   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 146   default:
 147     ShouldNotReachHere();
 148     return NULL;
 149   }
 150 }
 151 
 152 
 153 #endif
 154 
 155 // Simple helper to see if the caller of a runtime stub which
 156 // entered the VM has been deoptimized
 157 
 158 static bool caller_is_deopted() {
 159   JavaThread* thread = JavaThread::current();
 160   RegisterMap reg_map(thread, false);
 161   frame runtime_frame = thread->last_frame();
 162   frame caller_frame = runtime_frame.sender(&reg_map);
 163   assert(caller_frame.is_compiled_frame(), "must be compiled");
 164   return caller_frame.is_deoptimized_frame();
 165 }
 166 
 167 // Stress deoptimization
 168 static void deopt_caller() {
 169   if ( !caller_is_deopted()) {
 170     JavaThread* thread = JavaThread::current();
 171     RegisterMap reg_map(thread, false);
 172     frame runtime_frame = thread->last_frame();
 173     frame caller_frame = runtime_frame.sender(&reg_map);
 174     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 175     assert(caller_is_deopted(), "Must be deoptimized");
 176   }
 177 }
 178 
 179 
 180 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 181   assert(0 <= id && id < number_of_ids, "illegal stub id");
 182   ResourceMark rm;
 183   // create code buffer for code storage
 184   CodeBuffer code(buffer_blob);
 185 
 186   OopMapSet* oop_maps;
 187   int frame_size;
 188   bool must_gc_arguments;
 189 
 190   Compilation::setup_code_buffer(&code, 0);
 191 
 192   // create assembler for code generation
 193   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 194   // generate code for runtime stub
 195   oop_maps = generate_code_for(id, sasm);
 196   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 197          "if stub has an oop map it must have a valid frame size");
 198 
 199 #ifdef ASSERT
 200   // Make sure that stubs that need oopmaps have them
 201   switch (id) {
 202     // These stubs don't need to have an oopmap
 203   case dtrace_object_alloc_id:
 204   case g1_pre_barrier_slow_id:
 205   case g1_post_barrier_slow_id:
 206   case slow_subtype_check_id:
 207   case fpu2long_stub_id:
 208   case unwind_exception_id:
 209   case counter_overflow_id:
 210 #if defined(SPARC) || defined(PPC32)
 211   case handle_exception_nofpu_id:  // Unused on sparc
 212 #endif
 213     break;
 214 
 215     // All other stubs should have oopmaps
 216   default:
 217     assert(oop_maps != NULL, "must have an oopmap");
 218   }
 219 #endif
 220 
 221   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 222   sasm->align(BytesPerWord);
 223   // make sure all code is in code buffer
 224   sasm->flush();
 225 
 226   frame_size = sasm->frame_size();
 227   must_gc_arguments = sasm->must_gc_arguments();
 228   // create blob - distinguish a few special cases
 229   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 230                                                  &code,
 231                                                  CodeOffsets::frame_never_safe,
 232                                                  frame_size,
 233                                                  oop_maps,
 234                                                  must_gc_arguments);
 235   // install blob
 236   assert(blob != NULL, "blob must exist");
 237   _blobs[id] = blob;
 238 }
 239 
 240 
 241 void Runtime1::initialize(BufferBlob* blob) {
 242   // platform-dependent initialization
 243   initialize_pd();
 244   // generate stubs
 245   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 246   // printing
 247 #ifndef PRODUCT
 248   if (PrintSimpleStubs) {
 249     ResourceMark rm;
 250     for (int id = 0; id < number_of_ids; id++) {
 251       _blobs[id]->print();
 252       if (_blobs[id]->oop_maps() != NULL) {
 253         _blobs[id]->oop_maps()->print();
 254       }
 255     }
 256   }
 257 #endif
 258 }
 259 
 260 
 261 CodeBlob* Runtime1::blob_for(StubID id) {
 262   assert(0 <= id && id < number_of_ids, "illegal stub id");
 263   return _blobs[id];
 264 }
 265 
 266 
 267 const char* Runtime1::name_for(StubID id) {
 268   assert(0 <= id && id < number_of_ids, "illegal stub id");
 269   return _blob_names[id];
 270 }
 271 
 272 const char* Runtime1::name_for_address(address entry) {
 273   for (int id = 0; id < number_of_ids; id++) {
 274     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 275   }
 276 
 277 #define FUNCTION_CASE(a, f) \
 278   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 279 
 280   FUNCTION_CASE(entry, os::javaTimeMillis);
 281   FUNCTION_CASE(entry, os::javaTimeNanos);
 282   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 283   FUNCTION_CASE(entry, SharedRuntime::d2f);
 284   FUNCTION_CASE(entry, SharedRuntime::d2i);
 285   FUNCTION_CASE(entry, SharedRuntime::d2l);
 286   FUNCTION_CASE(entry, SharedRuntime::dcos);
 287   FUNCTION_CASE(entry, SharedRuntime::dexp);
 288   FUNCTION_CASE(entry, SharedRuntime::dlog);
 289   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 290   FUNCTION_CASE(entry, SharedRuntime::dpow);
 291   FUNCTION_CASE(entry, SharedRuntime::drem);
 292   FUNCTION_CASE(entry, SharedRuntime::dsin);
 293   FUNCTION_CASE(entry, SharedRuntime::dtan);
 294   FUNCTION_CASE(entry, SharedRuntime::f2i);
 295   FUNCTION_CASE(entry, SharedRuntime::f2l);
 296   FUNCTION_CASE(entry, SharedRuntime::frem);
 297   FUNCTION_CASE(entry, SharedRuntime::l2d);
 298   FUNCTION_CASE(entry, SharedRuntime::l2f);
 299   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 300   FUNCTION_CASE(entry, SharedRuntime::lmul);
 301   FUNCTION_CASE(entry, SharedRuntime::lrem);
 302   FUNCTION_CASE(entry, SharedRuntime::lrem);
 303   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 304   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 305   FUNCTION_CASE(entry, is_instance_of);
 306   FUNCTION_CASE(entry, trace_block_entry);
 307 #ifdef TRACE_HAVE_INTRINSICS
 308   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 309 #endif
 310   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 311   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 312   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 313   FUNCTION_CASE(entry, StubRoutines::dexp());
 314   FUNCTION_CASE(entry, StubRoutines::dlog());
 315   FUNCTION_CASE(entry, StubRoutines::dlog10());
 316   FUNCTION_CASE(entry, StubRoutines::dpow());
 317   FUNCTION_CASE(entry, StubRoutines::dsin());
 318   FUNCTION_CASE(entry, StubRoutines::dcos());
 319   FUNCTION_CASE(entry, StubRoutines::dtan());
 320 
 321 #undef FUNCTION_CASE
 322 
 323   // Soft float adds more runtime names.
 324   return pd_name_for_address(entry);
 325 }
 326 
 327 
 328 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 329   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 330 
 331   assert(klass->is_klass(), "not a class");
 332   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 333   InstanceKlass* h = InstanceKlass::cast(klass);
 334   h->check_valid_for_instantiation(true, CHECK);
 335   // make sure klass is initialized
 336   h->initialize(CHECK);
 337   // allocate instance and return via TLS
 338   oop obj = h->allocate_instance(CHECK);
 339   thread->set_vm_result(obj);
 340 JRT_END
 341 
 342 
 343 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 344   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 345   // Note: no handle for klass needed since they are not used
 346   //       anymore after new_typeArray() and no GC can happen before.
 347   //       (This may have to change if this code changes!)
 348   assert(klass->is_klass(), "not a class");
 349   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 350   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 351   thread->set_vm_result(obj);
 352   // This is pretty rare but this runtime patch is stressful to deoptimization
 353   // if we deoptimize here so force a deopt to stress the path.
 354   if (DeoptimizeALot) {
 355     deopt_caller();
 356   }
 357 
 358 JRT_END
 359 
 360 
 361 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 362   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 363 
 364   // Note: no handle for klass needed since they are not used
 365   //       anymore after new_objArray() and no GC can happen before.
 366   //       (This may have to change if this code changes!)
 367   assert(array_klass->is_klass(), "not a class");
 368   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 369   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 370   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 371   thread->set_vm_result(obj);
 372   // This is pretty rare but this runtime patch is stressful to deoptimization
 373   // if we deoptimize here so force a deopt to stress the path.
 374   if (DeoptimizeALot) {
 375     deopt_caller();
 376   }
 377 JRT_END
 378 
 379 
 380 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 381   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 382 
 383   assert(klass->is_klass(), "not a class");
 384   assert(rank >= 1, "rank must be nonzero");
 385   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 386   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 387   thread->set_vm_result(obj);
 388 JRT_END
 389 
 390 
 391 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 392   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 393 JRT_END
 394 
 395 
 396 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 397   ResourceMark rm(thread);
 398   const char* klass_name = obj->klass()->external_name();
 399   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 400 JRT_END
 401 
 402 
 403 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 404 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 405 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 406 // a constant.
 407 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 408   nmethod* osr_nm = NULL;
 409   methodHandle method(THREAD, m);
 410 
 411   RegisterMap map(THREAD, false);
 412   frame fr =  THREAD->last_frame().sender(&map);
 413   nmethod* nm = (nmethod*) fr.cb();
 414   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 415   methodHandle enclosing_method(THREAD, nm->method());
 416 
 417   CompLevel level = (CompLevel)nm->comp_level();
 418   int bci = InvocationEntryBci;
 419   if (branch_bci != InvocationEntryBci) {
 420     // Compute destination bci
 421     address pc = method()->code_base() + branch_bci;
 422     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 423     int offset = 0;
 424     switch (branch) {
 425       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 426       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 427       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 428       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 429       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 430       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 431       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 432         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 433         break;
 434       case Bytecodes::_goto_w:
 435         offset = Bytes::get_Java_u4(pc + 1);
 436         break;
 437       default: ;
 438     }
 439     bci = branch_bci + offset;
 440   }
 441   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 442   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 443   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 444   return osr_nm;
 445 }
 446 
 447 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 448   nmethod* osr_nm;
 449   JRT_BLOCK
 450     osr_nm = counter_overflow_helper(thread, bci, method);
 451     if (osr_nm != NULL) {
 452       RegisterMap map(thread, false);
 453       frame fr =  thread->last_frame().sender(&map);
 454       Deoptimization::deoptimize_frame(thread, fr.id());
 455     }
 456   JRT_BLOCK_END
 457   return NULL;
 458 JRT_END
 459 
 460 extern void vm_exit(int code);
 461 
 462 // Enter this method from compiled code handler below. This is where we transition
 463 // to VM mode. This is done as a helper routine so that the method called directly
 464 // from compiled code does not have to transition to VM. This allows the entry
 465 // method to see if the nmethod that we have just looked up a handler for has
 466 // been deoptimized while we were in the vm. This simplifies the assembly code
 467 // cpu directories.
 468 //
 469 // We are entering here from exception stub (via the entry method below)
 470 // If there is a compiled exception handler in this method, we will continue there;
 471 // otherwise we will unwind the stack and continue at the caller of top frame method
 472 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 473 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 474 // check to see if the handler we are going to return is now in a nmethod that has
 475 // been deoptimized. If that is the case we return the deopt blob
 476 // unpack_with_exception entry instead. This makes life for the exception blob easier
 477 // because making that same check and diverting is painful from assembly language.
 478 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 479   // Reset method handle flag.
 480   thread->set_is_method_handle_return(false);
 481 
 482   Handle exception(thread, ex);
 483   nm = CodeCache::find_nmethod(pc);
 484   assert(nm != NULL, "this is not an nmethod");
 485   // Adjust the pc as needed/
 486   if (nm->is_deopt_pc(pc)) {
 487     RegisterMap map(thread, false);
 488     frame exception_frame = thread->last_frame().sender(&map);
 489     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 490     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 491     pc = exception_frame.pc();
 492   }
 493 #ifdef ASSERT
 494   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 495   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 496   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 497     if (ExitVMOnVerifyError) vm_exit(-1);
 498     ShouldNotReachHere();
 499   }
 500 #endif
 501 
 502   // Check the stack guard pages and reenable them if necessary and there is
 503   // enough space on the stack to do so.  Use fast exceptions only if the guard
 504   // pages are enabled.
 505   bool guard_pages_enabled = thread->stack_guards_enabled();
 506   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 507 
 508   if (JvmtiExport::can_post_on_exceptions()) {
 509     // To ensure correct notification of exception catches and throws
 510     // we have to deoptimize here.  If we attempted to notify the
 511     // catches and throws during this exception lookup it's possible
 512     // we could deoptimize on the way out of the VM and end back in
 513     // the interpreter at the throw site.  This would result in double
 514     // notifications since the interpreter would also notify about
 515     // these same catches and throws as it unwound the frame.
 516 
 517     RegisterMap reg_map(thread);
 518     frame stub_frame = thread->last_frame();
 519     frame caller_frame = stub_frame.sender(&reg_map);
 520 
 521     // We don't really want to deoptimize the nmethod itself since we
 522     // can actually continue in the exception handler ourselves but I
 523     // don't see an easy way to have the desired effect.
 524     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 525     assert(caller_is_deopted(), "Must be deoptimized");
 526 
 527     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 528   }
 529 
 530   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 531   if (guard_pages_enabled) {
 532     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 533     if (fast_continuation != NULL) {
 534       // Set flag if return address is a method handle call site.
 535       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 536       return fast_continuation;
 537     }
 538   }
 539 
 540   // If the stack guard pages are enabled, check whether there is a handler in
 541   // the current method.  Otherwise (guard pages disabled), force an unwind and
 542   // skip the exception cache update (i.e., just leave continuation==NULL).
 543   address continuation = NULL;
 544   if (guard_pages_enabled) {
 545 
 546     // New exception handling mechanism can support inlined methods
 547     // with exception handlers since the mappings are from PC to PC
 548 
 549     // debugging support
 550     // tracing
 551     if (log_is_enabled(Info, exceptions)) {
 552       ResourceMark rm;
 553       stringStream tempst;
 554       tempst.print("compiled method <%s>\n"
 555                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 556                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 557       Exceptions::log_exception(exception, tempst);
 558     }
 559     // for AbortVMOnException flag
 560     Exceptions::debug_check_abort(exception);
 561 
 562     // Clear out the exception oop and pc since looking up an
 563     // exception handler can cause class loading, which might throw an
 564     // exception and those fields are expected to be clear during
 565     // normal bytecode execution.
 566     thread->clear_exception_oop_and_pc();
 567 
 568     bool recursive_exception = false;
 569     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 570     // If an exception was thrown during exception dispatch, the exception oop may have changed
 571     thread->set_exception_oop(exception());
 572     thread->set_exception_pc(pc);
 573 
 574     // the exception cache is used only by non-implicit exceptions
 575     // Update the exception cache only when there didn't happen
 576     // another exception during the computation of the compiled
 577     // exception handler. Checking for exception oop equality is not
 578     // sufficient because some exceptions are pre-allocated and reused.
 579     if (continuation != NULL && !recursive_exception) {
 580       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 581     }
 582   }
 583 
 584   thread->set_vm_result(exception());
 585   // Set flag if return address is a method handle call site.
 586   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 587 
 588   if (log_is_enabled(Info, exceptions)) {
 589     ResourceMark rm;
 590     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 591                          " for exception thrown at PC " PTR_FORMAT,
 592                          p2i(thread), p2i(continuation), p2i(pc));
 593   }
 594 
 595   return continuation;
 596 JRT_END
 597 
 598 // Enter this method from compiled code only if there is a Java exception handler
 599 // in the method handling the exception.
 600 // We are entering here from exception stub. We don't do a normal VM transition here.
 601 // We do it in a helper. This is so we can check to see if the nmethod we have just
 602 // searched for an exception handler has been deoptimized in the meantime.
 603 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 604   oop exception = thread->exception_oop();
 605   address pc = thread->exception_pc();
 606   // Still in Java mode
 607   DEBUG_ONLY(ResetNoHandleMark rnhm);
 608   nmethod* nm = NULL;
 609   address continuation = NULL;
 610   {
 611     // Enter VM mode by calling the helper
 612     ResetNoHandleMark rnhm;
 613     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 614   }
 615   // Back in JAVA, use no oops DON'T safepoint
 616 
 617   // Now check to see if the nmethod we were called from is now deoptimized.
 618   // If so we must return to the deopt blob and deoptimize the nmethod
 619   if (nm != NULL && caller_is_deopted()) {
 620     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 621   }
 622 
 623   assert(continuation != NULL, "no handler found");
 624   return continuation;
 625 }
 626 
 627 
 628 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 629   NOT_PRODUCT(_throw_range_check_exception_count++;)
 630   char message[jintAsStringSize];
 631   sprintf(message, "%d", index);
 632   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 633 JRT_END
 634 
 635 
 636 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 637   NOT_PRODUCT(_throw_index_exception_count++;)
 638   char message[16];
 639   sprintf(message, "%d", index);
 640   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 641 JRT_END
 642 
 643 
 644 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 645   NOT_PRODUCT(_throw_div0_exception_count++;)
 646   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 647 JRT_END
 648 
 649 
 650 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 651   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 652   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 653 JRT_END
 654 
 655 
 656 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 657   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 658   ResourceMark rm(thread);
 659   char* message = SharedRuntime::generate_class_cast_message(
 660     thread, object->klass());
 661   SharedRuntime::throw_and_post_jvmti_exception(
 662     thread, vmSymbols::java_lang_ClassCastException(), message);
 663 JRT_END
 664 
 665 
 666 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 667   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 668   ResourceMark rm(thread);
 669   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 670 JRT_END
 671 
 672 
 673 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 674   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 675   if (PrintBiasedLockingStatistics) {
 676     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 677   }
 678   Handle h_obj(thread, obj);
 679   if (UseBiasedLocking) {
 680     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 681     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 682   } else {
 683     if (UseFastLocking) {
 684       // When using fast locking, the compiled code has already tried the fast case
 685       assert(obj == lock->obj(), "must match");
 686       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 687     } else {
 688       lock->set_obj(obj);
 689       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 690     }
 691   }
 692 JRT_END
 693 
 694 
 695 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 696   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 697   assert(thread == JavaThread::current(), "threads must correspond");
 698   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 699   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 700   EXCEPTION_MARK;
 701 
 702   oop obj = lock->obj();
 703   assert(oopDesc::is_oop(obj), "must be NULL or an object");
 704   if (UseFastLocking) {
 705     // When using fast locking, the compiled code has already tried the fast case
 706     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 707   } else {
 708     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 709   }
 710 JRT_END
 711 
 712 // Cf. OptoRuntime::deoptimize_caller_frame
 713 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 714   // Called from within the owner thread, so no need for safepoint
 715   RegisterMap reg_map(thread, false);
 716   frame stub_frame = thread->last_frame();
 717   assert(stub_frame.is_runtime_frame(), "Sanity check");
 718   frame caller_frame = stub_frame.sender(&reg_map);
 719   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 720   assert(nm != NULL, "Sanity check");
 721   methodHandle method(thread, nm->method());
 722   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 723   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 724   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 725 
 726   if (action == Deoptimization::Action_make_not_entrant) {
 727     if (nm->make_not_entrant()) {
 728       if (reason == Deoptimization::Reason_tenured) {
 729         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 730         if (trap_mdo != NULL) {
 731           trap_mdo->inc_tenure_traps();
 732         }
 733       }
 734     }
 735   }
 736 
 737   // Deoptimize the caller frame.
 738   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 739   // Return to the now deoptimized frame.
 740 JRT_END
 741 
 742 
 743 #ifndef DEOPTIMIZE_WHEN_PATCHING
 744 
 745 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 746   Bytecode_field field_access(caller, bci);
 747   // This can be static or non-static field access
 748   Bytecodes::Code code       = field_access.code();
 749 
 750   // We must load class, initialize class and resolve the field
 751   fieldDescriptor result; // initialize class if needed
 752   constantPoolHandle constants(THREAD, caller->constants());
 753   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 754   return result.field_holder();
 755 }
 756 
 757 
 758 //
 759 // This routine patches sites where a class wasn't loaded or
 760 // initialized at the time the code was generated.  It handles
 761 // references to classes, fields and forcing of initialization.  Most
 762 // of the cases are straightforward and involving simply forcing
 763 // resolution of a class, rewriting the instruction stream with the
 764 // needed constant and replacing the call in this function with the
 765 // patched code.  The case for static field is more complicated since
 766 // the thread which is in the process of initializing a class can
 767 // access it's static fields but other threads can't so the code
 768 // either has to deoptimize when this case is detected or execute a
 769 // check that the current thread is the initializing thread.  The
 770 // current
 771 //
 772 // Patches basically look like this:
 773 //
 774 //
 775 // patch_site: jmp patch stub     ;; will be patched
 776 // continue:   ...
 777 //             ...
 778 //             ...
 779 //             ...
 780 //
 781 // They have a stub which looks like this:
 782 //
 783 //             ;; patch body
 784 //             movl <const>, reg           (for class constants)
 785 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 786 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 787 //             <being_init offset> <bytes to copy> <bytes to skip>
 788 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 789 //             jmp patch_site
 790 //
 791 //
 792 // A normal patch is done by rewriting the patch body, usually a move,
 793 // and then copying it into place over top of the jmp instruction
 794 // being careful to flush caches and doing it in an MP-safe way.  The
 795 // constants following the patch body are used to find various pieces
 796 // of the patch relative to the call site for Runtime1::patch_code.
 797 // The case for getstatic and putstatic is more complicated because
 798 // getstatic and putstatic have special semantics when executing while
 799 // the class is being initialized.  getstatic/putstatic on a class
 800 // which is being_initialized may be executed by the initializing
 801 // thread but other threads have to block when they execute it.  This
 802 // is accomplished in compiled code by executing a test of the current
 803 // thread against the initializing thread of the class.  It's emitted
 804 // as boilerplate in their stub which allows the patched code to be
 805 // executed before it's copied back into the main body of the nmethod.
 806 //
 807 // being_init: get_thread(<tmp reg>
 808 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 809 //             jne patch_stub
 810 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 811 //             movl reg, [reg1 + <const>]  (for field offsets)
 812 //             jmp continue
 813 //             <being_init offset> <bytes to copy> <bytes to skip>
 814 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 815 //             jmp patch_site
 816 //
 817 // If the class is being initialized the patch body is rewritten and
 818 // the patch site is rewritten to jump to being_init, instead of
 819 // patch_stub.  Whenever this code is executed it checks the current
 820 // thread against the intializing thread so other threads will enter
 821 // the runtime and end up blocked waiting the class to finish
 822 // initializing inside the calls to resolve_field below.  The
 823 // initializing class will continue on it's way.  Once the class is
 824 // fully_initialized, the intializing_thread of the class becomes
 825 // NULL, so the next thread to execute this code will fail the test,
 826 // call into patch_code and complete the patching process by copying
 827 // the patch body back into the main part of the nmethod and resume
 828 // executing.
 829 //
 830 //
 831 
 832 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 833   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 834 
 835   ResourceMark rm(thread);
 836   RegisterMap reg_map(thread, false);
 837   frame runtime_frame = thread->last_frame();
 838   frame caller_frame = runtime_frame.sender(&reg_map);
 839 
 840   // last java frame on stack
 841   vframeStream vfst(thread, true);
 842   assert(!vfst.at_end(), "Java frame must exist");
 843 
 844   methodHandle caller_method(THREAD, vfst.method());
 845   // Note that caller_method->code() may not be same as caller_code because of OSR's
 846   // Note also that in the presence of inlining it is not guaranteed
 847   // that caller_method() == caller_code->method()
 848 
 849   int bci = vfst.bci();
 850   Bytecodes::Code code = caller_method()->java_code_at(bci);
 851 
 852   // this is used by assertions in the access_field_patching_id
 853   BasicType patch_field_type = T_ILLEGAL;
 854   bool deoptimize_for_volatile = false;
 855   bool deoptimize_for_atomic = false;
 856   int patch_field_offset = -1;
 857   Klass* init_klass = NULL; // klass needed by load_klass_patching code
 858   Klass* load_klass = NULL; // klass needed by load_klass_patching code
 859   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 860   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 861   bool load_klass_or_mirror_patch_id =
 862     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 863 
 864   if (stub_id == Runtime1::access_field_patching_id) {
 865 
 866     Bytecode_field field_access(caller_method, bci);
 867     fieldDescriptor result; // initialize class if needed
 868     Bytecodes::Code code = field_access.code();
 869     constantPoolHandle constants(THREAD, caller_method->constants());
 870     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 871     patch_field_offset = result.offset();
 872 
 873     // If we're patching a field which is volatile then at compile it
 874     // must not have been know to be volatile, so the generated code
 875     // isn't correct for a volatile reference.  The nmethod has to be
 876     // deoptimized so that the code can be regenerated correctly.
 877     // This check is only needed for access_field_patching since this
 878     // is the path for patching field offsets.  load_klass is only
 879     // used for patching references to oops which don't need special
 880     // handling in the volatile case.
 881 
 882     deoptimize_for_volatile = result.access_flags().is_volatile();
 883 
 884     // If we are patching a field which should be atomic, then
 885     // the generated code is not correct either, force deoptimizing.
 886     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 887     // break access atomicity only for them.
 888 
 889     // Strictly speaking, the deoptimizaation on 64-bit platforms
 890     // is unnecessary, and T_LONG stores on 32-bit platforms need
 891     // to be handled by special patching code when AlwaysAtomicAccesses
 892     // becomes product feature. At this point, we are still going
 893     // for the deoptimization for consistency against volatile
 894     // accesses.
 895 
 896     patch_field_type = result.field_type();
 897     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 898 
 899   } else if (load_klass_or_mirror_patch_id) {
 900     Klass* k = NULL;
 901     switch (code) {
 902       case Bytecodes::_putstatic:
 903       case Bytecodes::_getstatic:
 904         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 905           init_klass = klass;
 906           mirror = Handle(THREAD, klass->java_mirror());
 907         }
 908         break;
 909       case Bytecodes::_new:
 910         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 911           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 912         }
 913         break;
 914       case Bytecodes::_multianewarray:
 915         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 916           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 917         }
 918         break;
 919       case Bytecodes::_instanceof:
 920         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 921           k = caller_method->constants()->klass_at(io.index(), CHECK);
 922         }
 923         break;
 924       case Bytecodes::_checkcast:
 925         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 926           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 927         }
 928         break;
 929       case Bytecodes::_anewarray:
 930         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 931           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 932           k = ek->array_klass(CHECK);
 933         }
 934         break;
 935       case Bytecodes::_ldc:
 936       case Bytecodes::_ldc_w:
 937         {
 938           Bytecode_loadconstant cc(caller_method, bci);
 939           oop m = cc.resolve_constant(CHECK);
 940           mirror = Handle(THREAD, m);
 941         }
 942         break;
 943       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 944     }
 945     load_klass = k;
 946   } else if (stub_id == load_appendix_patching_id) {
 947     Bytecode_invoke bytecode(caller_method, bci);
 948     Bytecodes::Code bc = bytecode.invoke_code();
 949 
 950     CallInfo info;
 951     constantPoolHandle pool(thread, caller_method->constants());
 952     int index = bytecode.index();
 953     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 954     switch (bc) {
 955       case Bytecodes::_invokehandle: {
 956         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 957         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 958         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
 959         cpce->set_method_handle(pool, info);
 960         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
 961         break;
 962       }
 963       case Bytecodes::_invokedynamic: {
 964         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
 965         cpce->set_dynamic_call(pool, info);
 966         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
 967         break;
 968       }
 969       default: fatal("unexpected bytecode for load_appendix_patching_id");
 970     }
 971   } else {
 972     ShouldNotReachHere();
 973   }
 974 
 975   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 976     // At compile time we assumed the field wasn't volatile/atomic but after
 977     // loading it turns out it was volatile/atomic so we have to throw the
 978     // compiled code out and let it be regenerated.
 979     if (TracePatching) {
 980       if (deoptimize_for_volatile) {
 981         tty->print_cr("Deoptimizing for patching volatile field reference");
 982       }
 983       if (deoptimize_for_atomic) {
 984         tty->print_cr("Deoptimizing for patching atomic field reference");
 985       }
 986     }
 987 
 988     // It's possible the nmethod was invalidated in the last
 989     // safepoint, but if it's still alive then make it not_entrant.
 990     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 991     if (nm != NULL) {
 992       nm->make_not_entrant();
 993     }
 994 
 995     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 996 
 997     // Return to the now deoptimized frame.
 998   }
 999 
1000   // Now copy code back
1001 
1002   {
1003     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1004     //
1005     // Deoptimization may have happened while we waited for the lock.
1006     // In that case we don't bother to do any patching we just return
1007     // and let the deopt happen
1008     if (!caller_is_deopted()) {
1009       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1010       address instr_pc = jump->jump_destination();
1011       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1012       if (ni->is_jump() ) {
1013         // the jump has not been patched yet
1014         // The jump destination is slow case and therefore not part of the stubs
1015         // (stubs are only for StaticCalls)
1016 
1017         // format of buffer
1018         //    ....
1019         //    instr byte 0     <-- copy_buff
1020         //    instr byte 1
1021         //    ..
1022         //    instr byte n-1
1023         //      n
1024         //    ....             <-- call destination
1025 
1026         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1027         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1028         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1029         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1030         address copy_buff = stub_location - *byte_skip - *byte_count;
1031         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1032         if (TracePatching) {
1033           ttyLocker ttyl;
1034           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1035                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1036           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1037           assert(caller_code != NULL, "nmethod not found");
1038 
1039           // NOTE we use pc() not original_pc() because we already know they are
1040           // identical otherwise we'd have never entered this block of code
1041 
1042           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1043           assert(map != NULL, "null check");
1044           map->print();
1045           tty->cr();
1046 
1047           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1048         }
1049         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1050         bool do_patch = true;
1051         if (stub_id == Runtime1::access_field_patching_id) {
1052           // The offset may not be correct if the class was not loaded at code generation time.
1053           // Set it now.
1054           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1055           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1056           assert(patch_field_offset >= 0, "illegal offset");
1057           n_move->add_offset_in_bytes(patch_field_offset);
1058         } else if (load_klass_or_mirror_patch_id) {
1059           // If a getstatic or putstatic is referencing a klass which
1060           // isn't fully initialized, the patch body isn't copied into
1061           // place until initialization is complete.  In this case the
1062           // patch site is setup so that any threads besides the
1063           // initializing thread are forced to come into the VM and
1064           // block.
1065           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1066                      InstanceKlass::cast(init_klass)->is_initialized();
1067           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1068           if (jump->jump_destination() == being_initialized_entry) {
1069             assert(do_patch == true, "initialization must be complete at this point");
1070           } else {
1071             // patch the instruction <move reg, klass>
1072             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1073 
1074             assert(n_copy->data() == 0 ||
1075                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1076                    "illegal init value");
1077             if (stub_id == Runtime1::load_klass_patching_id) {
1078               assert(load_klass != NULL, "klass not set");
1079               n_copy->set_data((intx) (load_klass));
1080             } else {
1081               assert(mirror() != NULL, "klass not set");
1082               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1083               n_copy->set_data(cast_from_oop<intx>(mirror()));
1084             }
1085 
1086             if (TracePatching) {
1087               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1088             }
1089           }
1090         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1091           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1092           assert(n_copy->data() == 0 ||
1093                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1094                  "illegal init value");
1095           n_copy->set_data(cast_from_oop<intx>(appendix()));
1096 
1097           if (TracePatching) {
1098             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1099           }
1100         } else {
1101           ShouldNotReachHere();
1102         }
1103 
1104 #if defined(SPARC) || defined(PPC32)
1105         if (load_klass_or_mirror_patch_id ||
1106             stub_id == Runtime1::load_appendix_patching_id) {
1107           // Update the location in the nmethod with the proper
1108           // metadata.  When the code was generated, a NULL was stuffed
1109           // in the metadata table and that table needs to be update to
1110           // have the right value.  On intel the value is kept
1111           // directly in the instruction instead of in the metadata
1112           // table, so set_data above effectively updated the value.
1113           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1114           assert(nm != NULL, "invalid nmethod_pc");
1115           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1116           bool found = false;
1117           while (mds.next() && !found) {
1118             if (mds.type() == relocInfo::oop_type) {
1119               assert(stub_id == Runtime1::load_mirror_patching_id ||
1120                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1121               oop_Relocation* r = mds.oop_reloc();
1122               oop* oop_adr = r->oop_addr();
1123               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1124               r->fix_oop_relocation();
1125               found = true;
1126             } else if (mds.type() == relocInfo::metadata_type) {
1127               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1128               metadata_Relocation* r = mds.metadata_reloc();
1129               Metadata** metadata_adr = r->metadata_addr();
1130               *metadata_adr = load_klass;
1131               r->fix_metadata_relocation();
1132               found = true;
1133             }
1134           }
1135           assert(found, "the metadata must exist!");
1136         }
1137 #endif
1138         if (do_patch) {
1139           // replace instructions
1140           // first replace the tail, then the call
1141 #ifdef ARM
1142           if((load_klass_or_mirror_patch_id ||
1143               stub_id == Runtime1::load_appendix_patching_id) &&
1144               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1145             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1146             address addr = NULL;
1147             assert(nm != NULL, "invalid nmethod_pc");
1148             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1149             while (mds.next()) {
1150               if (mds.type() == relocInfo::oop_type) {
1151                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1152                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1153                 oop_Relocation* r = mds.oop_reloc();
1154                 addr = (address)r->oop_addr();
1155                 break;
1156               } else if (mds.type() == relocInfo::metadata_type) {
1157                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1158                 metadata_Relocation* r = mds.metadata_reloc();
1159                 addr = (address)r->metadata_addr();
1160                 break;
1161               }
1162             }
1163             assert(addr != NULL, "metadata relocation must exist");
1164             copy_buff -= *byte_count;
1165             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1166             n_copy2->set_pc_relative_offset(addr, instr_pc);
1167           }
1168 #endif
1169 
1170           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1171             address ptr = copy_buff + i;
1172             int a_byte = (*ptr) & 0xFF;
1173             address dst = instr_pc + i;
1174             *(unsigned char*)dst = (unsigned char) a_byte;
1175           }
1176           ICache::invalidate_range(instr_pc, *byte_count);
1177           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1178 
1179           if (load_klass_or_mirror_patch_id ||
1180               stub_id == Runtime1::load_appendix_patching_id) {
1181             relocInfo::relocType rtype =
1182               (stub_id == Runtime1::load_klass_patching_id) ?
1183                                    relocInfo::metadata_type :
1184                                    relocInfo::oop_type;
1185             // update relocInfo to metadata
1186             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1187             assert(nm != NULL, "invalid nmethod_pc");
1188 
1189             // The old patch site is now a move instruction so update
1190             // the reloc info so that it will get updated during
1191             // future GCs.
1192             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1193             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1194                                                      relocInfo::none, rtype);
1195 #ifdef SPARC
1196             // Sparc takes two relocations for an metadata so update the second one.
1197             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1198             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1199             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1200                                                      relocInfo::none, rtype);
1201 #endif
1202 #ifdef PPC32
1203           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1204             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1205             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1206                                                      relocInfo::none, rtype);
1207           }
1208 #endif
1209           }
1210 
1211         } else {
1212           ICache::invalidate_range(copy_buff, *byte_count);
1213           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1214         }
1215       }
1216     }
1217   }
1218 
1219   // If we are patching in a non-perm oop, make sure the nmethod
1220   // is on the right list.
1221   if (ScavengeRootsInCode) {
1222     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1223     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1224     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1225 
1226     // Since we've patched some oops in the nmethod,
1227     // (re)register it with the heap.
1228     Universe::heap()->register_nmethod(nm);
1229   }
1230 JRT_END
1231 
1232 #else // DEOPTIMIZE_WHEN_PATCHING
1233 
1234 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1235   RegisterMap reg_map(thread, false);
1236 
1237   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1238   if (TracePatching) {
1239     tty->print_cr("Deoptimizing because patch is needed");
1240   }
1241 
1242   frame runtime_frame = thread->last_frame();
1243   frame caller_frame = runtime_frame.sender(&reg_map);
1244 
1245   // It's possible the nmethod was invalidated in the last
1246   // safepoint, but if it's still alive then make it not_entrant.
1247   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1248   if (nm != NULL) {
1249     nm->make_not_entrant();
1250   }
1251 
1252   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1253 
1254   // Return to the now deoptimized frame.
1255 JRT_END
1256 
1257 #endif // DEOPTIMIZE_WHEN_PATCHING
1258 
1259 //
1260 // Entry point for compiled code. We want to patch a nmethod.
1261 // We don't do a normal VM transition here because we want to
1262 // know after the patching is complete and any safepoint(s) are taken
1263 // if the calling nmethod was deoptimized. We do this by calling a
1264 // helper method which does the normal VM transition and when it
1265 // completes we can check for deoptimization. This simplifies the
1266 // assembly code in the cpu directories.
1267 //
1268 int Runtime1::move_klass_patching(JavaThread* thread) {
1269 //
1270 // NOTE: we are still in Java
1271 //
1272   Thread* THREAD = thread;
1273   debug_only(NoHandleMark nhm;)
1274   {
1275     // Enter VM mode
1276 
1277     ResetNoHandleMark rnhm;
1278     patch_code(thread, load_klass_patching_id);
1279   }
1280   // Back in JAVA, use no oops DON'T safepoint
1281 
1282   // Return true if calling code is deoptimized
1283 
1284   return caller_is_deopted();
1285 }
1286 
1287 int Runtime1::move_mirror_patching(JavaThread* thread) {
1288 //
1289 // NOTE: we are still in Java
1290 //
1291   Thread* THREAD = thread;
1292   debug_only(NoHandleMark nhm;)
1293   {
1294     // Enter VM mode
1295 
1296     ResetNoHandleMark rnhm;
1297     patch_code(thread, load_mirror_patching_id);
1298   }
1299   // Back in JAVA, use no oops DON'T safepoint
1300 
1301   // Return true if calling code is deoptimized
1302 
1303   return caller_is_deopted();
1304 }
1305 
1306 int Runtime1::move_appendix_patching(JavaThread* thread) {
1307 //
1308 // NOTE: we are still in Java
1309 //
1310   Thread* THREAD = thread;
1311   debug_only(NoHandleMark nhm;)
1312   {
1313     // Enter VM mode
1314 
1315     ResetNoHandleMark rnhm;
1316     patch_code(thread, load_appendix_patching_id);
1317   }
1318   // Back in JAVA, use no oops DON'T safepoint
1319 
1320   // Return true if calling code is deoptimized
1321 
1322   return caller_is_deopted();
1323 }
1324 //
1325 // Entry point for compiled code. We want to patch a nmethod.
1326 // We don't do a normal VM transition here because we want to
1327 // know after the patching is complete and any safepoint(s) are taken
1328 // if the calling nmethod was deoptimized. We do this by calling a
1329 // helper method which does the normal VM transition and when it
1330 // completes we can check for deoptimization. This simplifies the
1331 // assembly code in the cpu directories.
1332 //
1333 
1334 int Runtime1::access_field_patching(JavaThread* thread) {
1335 //
1336 // NOTE: we are still in Java
1337 //
1338   Thread* THREAD = thread;
1339   debug_only(NoHandleMark nhm;)
1340   {
1341     // Enter VM mode
1342 
1343     ResetNoHandleMark rnhm;
1344     patch_code(thread, access_field_patching_id);
1345   }
1346   // Back in JAVA, use no oops DON'T safepoint
1347 
1348   // Return true if calling code is deoptimized
1349 
1350   return caller_is_deopted();
1351 JRT_END
1352 
1353 
1354 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1355   // for now we just print out the block id
1356   tty->print("%d ", block_id);
1357 JRT_END
1358 
1359 
1360 // Array copy return codes.
1361 enum {
1362   ac_failed = -1, // arraycopy failed
1363   ac_ok = 0       // arraycopy succeeded
1364 };
1365 
1366 
1367 // Below length is the # elements copied.
1368 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1369                                           oopDesc* dst, T* dst_addr,
1370                                           int length) {
1371   if (src == dst) {
1372     // same object, no check
1373     HeapAccess<>::oop_arraycopy(arrayOop(src), arrayOop(dst), src_addr, dst_addr, length);
1374     return ac_ok;
1375   } else {
1376     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1377     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1378     if (stype == bound || stype->is_subtype_of(bound)) {
1379       // Elements are guaranteed to be subtypes, so no check necessary
1380       HeapAccess<ARRAYCOPY_DISJOINT>::oop_arraycopy(arrayOop(src), arrayOop(dst), src_addr, dst_addr, length);
1381       return ac_ok;
1382     }
1383   }
1384   return ac_failed;
1385 }
1386 
1387 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1388 // and we did not copy anything
1389 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1390 #ifndef PRODUCT
1391   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1392 #endif
1393 
1394   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1395   if (!dst->is_array() || !src->is_array()) return ac_failed;
1396   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1397   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1398 
1399   if (length == 0) return ac_ok;
1400 
1401   if (src->is_typeArray()) {
1402     Klass* klass_oop = src->klass();
1403     if (klass_oop != dst->klass()) return ac_failed;
1404     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1405     const int l2es = klass->log2_element_size();
1406     const int ihs = klass->array_header_in_bytes() / wordSize;
1407     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1408     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1409     // Potential problem: memmove is not guaranteed to be word atomic
1410     // Revisit in Merlin
1411     return HeapAccess<>::arraycopy(arrayOop(src), arrayOop(dst), src_addr, dst_addr, length << l2es) ? ac_ok : ac_failed;
1412   } else if (src->is_objArray() && dst->is_objArray()) {
1413     if (UseCompressedOops) {
1414       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1415       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1416       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1417     } else {
1418       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1419       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1420       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1421     }
1422   }
1423   return ac_failed;
1424 JRT_END
1425 
1426 
1427 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1428   // had to return int instead of bool, otherwise there may be a mismatch
1429   // between the C calling convention and the Java one.
1430   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1431   // JVM takes the whole %eax as the return value, which may misinterpret
1432   // the return value as a boolean true.
1433 
1434   assert(mirror != NULL, "should null-check on mirror before calling");
1435   Klass* k = java_lang_Class::as_Klass(mirror);
1436   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1437 JRT_END
1438 
1439 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1440   ResourceMark rm;
1441 
1442   assert(!TieredCompilation, "incompatible with tiered compilation");
1443 
1444   RegisterMap reg_map(thread, false);
1445   frame runtime_frame = thread->last_frame();
1446   frame caller_frame = runtime_frame.sender(&reg_map);
1447 
1448   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1449   assert (nm != NULL, "no more nmethod?");
1450   nm->make_not_entrant();
1451 
1452   methodHandle m(nm->method());
1453   MethodData* mdo = m->method_data();
1454 
1455   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1456     // Build an MDO.  Ignore errors like OutOfMemory;
1457     // that simply means we won't have an MDO to update.
1458     Method::build_interpreter_method_data(m, THREAD);
1459     if (HAS_PENDING_EXCEPTION) {
1460       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1461       CLEAR_PENDING_EXCEPTION;
1462     }
1463     mdo = m->method_data();
1464   }
1465 
1466   if (mdo != NULL) {
1467     mdo->inc_trap_count(Deoptimization::Reason_none);
1468   }
1469 
1470   if (TracePredicateFailedTraps) {
1471     stringStream ss1, ss2;
1472     vframeStream vfst(thread);
1473     methodHandle inlinee = methodHandle(vfst.method());
1474     inlinee->print_short_name(&ss1);
1475     m->print_short_name(&ss2);
1476     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1477   }
1478 
1479 
1480   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1481 
1482 JRT_END
1483 
1484 #ifndef PRODUCT
1485 void Runtime1::print_statistics() {
1486   tty->print_cr("C1 Runtime statistics:");
1487   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1488   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1489   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1490   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1491   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1492   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1493   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1494   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1495   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1496   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1497   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1498   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
1499   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1500   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1501   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1502 
1503   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1504   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1505   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1506   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1507   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1508   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1509   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1510 
1511   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1512   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1513   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1514   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1515   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1516   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1517   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1518   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1519 
1520   SharedRuntime::print_ic_miss_histogram();
1521   tty->cr();
1522 }
1523 #endif // PRODUCT