1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableBarrierSet.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifdef PRODUCT
  41 #define BLOCK_COMMENT(str) /* nothing */
  42 #define STOP(error) stop(error)
  43 #else
  44 #define BLOCK_COMMENT(str) block_comment(str)
  45 #define STOP(error) block_comment(error); stop(error)
  46 #endif
  47 
  48 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  49 // Implementation of AddressLiteral
  50 
  51 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  52 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  53   // -----------------Table 4.5 -------------------- //
  54   16, 32, 64,  // EVEX_FV(0)
  55   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  56   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  57   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  58   8,  16, 32,  // EVEX_HV(0)
  59   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  60   // -----------------Table 4.6 -------------------- //
  61   16, 32, 64,  // EVEX_FVM(0)
  62   1,  1,  1,   // EVEX_T1S(0)
  63   2,  2,  2,   // EVEX_T1S(1)
  64   4,  4,  4,   // EVEX_T1S(2)
  65   8,  8,  8,   // EVEX_T1S(3)
  66   4,  4,  4,   // EVEX_T1F(0)
  67   8,  8,  8,   // EVEX_T1F(1)
  68   8,  8,  8,   // EVEX_T2(0)
  69   0,  16, 16,  // EVEX_T2(1)
  70   0,  16, 16,  // EVEX_T4(0)
  71   0,  0,  32,  // EVEX_T4(1)
  72   0,  0,  32,  // EVEX_T8(0)
  73   8,  16, 32,  // EVEX_HVM(0)
  74   4,  8,  16,  // EVEX_QVM(0)
  75   2,  4,  8,   // EVEX_OVM(0)
  76   16, 16, 16,  // EVEX_M128(0)
  77   8,  32, 64,  // EVEX_DUP(0)
  78   0,  0,  0    // EVEX_NTUP
  79 };
  80 
  81 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  82   _is_lval = false;
  83   _target = target;
  84   switch (rtype) {
  85   case relocInfo::oop_type:
  86   case relocInfo::metadata_type:
  87     // Oops are a special case. Normally they would be their own section
  88     // but in cases like icBuffer they are literals in the code stream that
  89     // we don't have a section for. We use none so that we get a literal address
  90     // which is always patchable.
  91     break;
  92   case relocInfo::external_word_type:
  93     _rspec = external_word_Relocation::spec(target);
  94     break;
  95   case relocInfo::internal_word_type:
  96     _rspec = internal_word_Relocation::spec(target);
  97     break;
  98   case relocInfo::opt_virtual_call_type:
  99     _rspec = opt_virtual_call_Relocation::spec();
 100     break;
 101   case relocInfo::static_call_type:
 102     _rspec = static_call_Relocation::spec();
 103     break;
 104   case relocInfo::runtime_call_type:
 105     _rspec = runtime_call_Relocation::spec();
 106     break;
 107   case relocInfo::poll_type:
 108   case relocInfo::poll_return_type:
 109     _rspec = Relocation::spec_simple(rtype);
 110     break;
 111   case relocInfo::none:
 112     break;
 113   default:
 114     ShouldNotReachHere();
 115     break;
 116   }
 117 }
 118 
 119 // Implementation of Address
 120 
 121 #ifdef _LP64
 122 
 123 Address Address::make_array(ArrayAddress adr) {
 124   // Not implementable on 64bit machines
 125   // Should have been handled higher up the call chain.
 126   ShouldNotReachHere();
 127   return Address();
 128 }
 129 
 130 // exceedingly dangerous constructor
 131 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 132   _base  = noreg;
 133   _index = noreg;
 134   _scale = no_scale;
 135   _disp  = disp;
 136   switch (rtype) {
 137     case relocInfo::external_word_type:
 138       _rspec = external_word_Relocation::spec(loc);
 139       break;
 140     case relocInfo::internal_word_type:
 141       _rspec = internal_word_Relocation::spec(loc);
 142       break;
 143     case relocInfo::runtime_call_type:
 144       // HMM
 145       _rspec = runtime_call_Relocation::spec();
 146       break;
 147     case relocInfo::poll_type:
 148     case relocInfo::poll_return_type:
 149       _rspec = Relocation::spec_simple(rtype);
 150       break;
 151     case relocInfo::none:
 152       break;
 153     default:
 154       ShouldNotReachHere();
 155   }
 156 }
 157 #else // LP64
 158 
 159 Address Address::make_array(ArrayAddress adr) {
 160   AddressLiteral base = adr.base();
 161   Address index = adr.index();
 162   assert(index._disp == 0, "must not have disp"); // maybe it can?
 163   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 164   array._rspec = base._rspec;
 165   return array;
 166 }
 167 
 168 // exceedingly dangerous constructor
 169 Address::Address(address loc, RelocationHolder spec) {
 170   _base  = noreg;
 171   _index = noreg;
 172   _scale = no_scale;
 173   _disp  = (intptr_t) loc;
 174   _rspec = spec;
 175 }
 176 
 177 #endif // _LP64
 178 
 179 
 180 
 181 // Convert the raw encoding form into the form expected by the constructor for
 182 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 183 // that to noreg for the Address constructor.
 184 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 185   RelocationHolder rspec;
 186   if (disp_reloc != relocInfo::none) {
 187     rspec = Relocation::spec_simple(disp_reloc);
 188   }
 189   bool valid_index = index != rsp->encoding();
 190   if (valid_index) {
 191     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 192     madr._rspec = rspec;
 193     return madr;
 194   } else {
 195     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 196     madr._rspec = rspec;
 197     return madr;
 198   }
 199 }
 200 
 201 // Implementation of Assembler
 202 
 203 int AbstractAssembler::code_fill_byte() {
 204   return (u_char)'\xF4'; // hlt
 205 }
 206 
 207 // make this go away someday
 208 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 209   if (rtype == relocInfo::none)
 210     emit_int32(data);
 211   else
 212     emit_data(data, Relocation::spec_simple(rtype), format);
 213 }
 214 
 215 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 216   assert(imm_operand == 0, "default format must be immediate in this file");
 217   assert(inst_mark() != NULL, "must be inside InstructionMark");
 218   if (rspec.type() !=  relocInfo::none) {
 219     #ifdef ASSERT
 220       check_relocation(rspec, format);
 221     #endif
 222     // Do not use AbstractAssembler::relocate, which is not intended for
 223     // embedded words.  Instead, relocate to the enclosing instruction.
 224 
 225     // hack. call32 is too wide for mask so use disp32
 226     if (format == call32_operand)
 227       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 228     else
 229       code_section()->relocate(inst_mark(), rspec, format);
 230   }
 231   emit_int32(data);
 232 }
 233 
 234 static int encode(Register r) {
 235   int enc = r->encoding();
 236   if (enc >= 8) {
 237     enc -= 8;
 238   }
 239   return enc;
 240 }
 241 
 242 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 243   assert(dst->has_byte_register(), "must have byte register");
 244   assert(isByte(op1) && isByte(op2), "wrong opcode");
 245   assert(isByte(imm8), "not a byte");
 246   assert((op1 & 0x01) == 0, "should be 8bit operation");
 247   emit_int8(op1);
 248   emit_int8(op2 | encode(dst));
 249   emit_int8(imm8);
 250 }
 251 
 252 
 253 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 254   assert(isByte(op1) && isByte(op2), "wrong opcode");
 255   assert((op1 & 0x01) == 1, "should be 32bit operation");
 256   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 257   if (is8bit(imm32)) {
 258     emit_int8(op1 | 0x02); // set sign bit
 259     emit_int8(op2 | encode(dst));
 260     emit_int8(imm32 & 0xFF);
 261   } else {
 262     emit_int8(op1);
 263     emit_int8(op2 | encode(dst));
 264     emit_int32(imm32);
 265   }
 266 }
 267 
 268 // Force generation of a 4 byte immediate value even if it fits into 8bit
 269 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 270   assert(isByte(op1) && isByte(op2), "wrong opcode");
 271   assert((op1 & 0x01) == 1, "should be 32bit operation");
 272   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 273   emit_int8(op1);
 274   emit_int8(op2 | encode(dst));
 275   emit_int32(imm32);
 276 }
 277 
 278 // immediate-to-memory forms
 279 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 280   assert((op1 & 0x01) == 1, "should be 32bit operation");
 281   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 282   if (is8bit(imm32)) {
 283     emit_int8(op1 | 0x02); // set sign bit
 284     emit_operand(rm, adr, 1);
 285     emit_int8(imm32 & 0xFF);
 286   } else {
 287     emit_int8(op1);
 288     emit_operand(rm, adr, 4);
 289     emit_int32(imm32);
 290   }
 291 }
 292 
 293 
 294 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 295   assert(isByte(op1) && isByte(op2), "wrong opcode");
 296   emit_int8(op1);
 297   emit_int8(op2 | encode(dst) << 3 | encode(src));
 298 }
 299 
 300 
 301 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 302                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 303   int mod_idx = 0;
 304   // We will test if the displacement fits the compressed format and if so
 305   // apply the compression to the displacment iff the result is8bit.
 306   if (VM_Version::supports_evex() && is_evex_inst) {
 307     switch (cur_tuple_type) {
 308     case EVEX_FV:
 309       if ((cur_encoding & VEX_W) == VEX_W) {
 310         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 311       } else {
 312         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 313       }
 314       break;
 315 
 316     case EVEX_HV:
 317       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 318       break;
 319 
 320     case EVEX_FVM:
 321       break;
 322 
 323     case EVEX_T1S:
 324       switch (in_size_in_bits) {
 325       case EVEX_8bit:
 326         break;
 327 
 328       case EVEX_16bit:
 329         mod_idx = 1;
 330         break;
 331 
 332       case EVEX_32bit:
 333         mod_idx = 2;
 334         break;
 335 
 336       case EVEX_64bit:
 337         mod_idx = 3;
 338         break;
 339       }
 340       break;
 341 
 342     case EVEX_T1F:
 343     case EVEX_T2:
 344     case EVEX_T4:
 345       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 346       break;
 347 
 348     case EVEX_T8:
 349       break;
 350 
 351     case EVEX_HVM:
 352       break;
 353 
 354     case EVEX_QVM:
 355       break;
 356 
 357     case EVEX_OVM:
 358       break;
 359 
 360     case EVEX_M128:
 361       break;
 362 
 363     case EVEX_DUP:
 364       break;
 365 
 366     default:
 367       assert(0, "no valid evex tuple_table entry");
 368       break;
 369     }
 370 
 371     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 372       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 373       if ((disp % disp_factor) == 0) {
 374         int new_disp = disp / disp_factor;
 375         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 376           disp = new_disp;
 377         }
 378       } else {
 379         return false;
 380       }
 381     }
 382   }
 383   return (-0x80 <= disp && disp < 0x80);
 384 }
 385 
 386 
 387 bool Assembler::emit_compressed_disp_byte(int &disp) {
 388   int mod_idx = 0;
 389   // We will test if the displacement fits the compressed format and if so
 390   // apply the compression to the displacment iff the result is8bit.
 391   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 392     int evex_encoding = _attributes->get_evex_encoding();
 393     int tuple_type = _attributes->get_tuple_type();
 394     switch (tuple_type) {
 395     case EVEX_FV:
 396       if ((evex_encoding & VEX_W) == VEX_W) {
 397         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 398       } else {
 399         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 400       }
 401       break;
 402 
 403     case EVEX_HV:
 404       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 405       break;
 406 
 407     case EVEX_FVM:
 408       break;
 409 
 410     case EVEX_T1S:
 411       switch (_attributes->get_input_size()) {
 412       case EVEX_8bit:
 413         break;
 414 
 415       case EVEX_16bit:
 416         mod_idx = 1;
 417         break;
 418 
 419       case EVEX_32bit:
 420         mod_idx = 2;
 421         break;
 422 
 423       case EVEX_64bit:
 424         mod_idx = 3;
 425         break;
 426       }
 427       break;
 428 
 429     case EVEX_T1F:
 430     case EVEX_T2:
 431     case EVEX_T4:
 432       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 433       break;
 434 
 435     case EVEX_T8:
 436       break;
 437 
 438     case EVEX_HVM:
 439       break;
 440 
 441     case EVEX_QVM:
 442       break;
 443 
 444     case EVEX_OVM:
 445       break;
 446 
 447     case EVEX_M128:
 448       break;
 449 
 450     case EVEX_DUP:
 451       break;
 452 
 453     default:
 454       assert(0, "no valid evex tuple_table entry");
 455       break;
 456     }
 457 
 458     int vector_len = _attributes->get_vector_len();
 459     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 460       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 461       if ((disp % disp_factor) == 0) {
 462         int new_disp = disp / disp_factor;
 463         if (is8bit(new_disp)) {
 464           disp = new_disp;
 465         }
 466       } else {
 467         return false;
 468       }
 469     }
 470   }
 471   return is8bit(disp);
 472 }
 473 
 474 
 475 void Assembler::emit_operand(Register reg, Register base, Register index,
 476                              Address::ScaleFactor scale, int disp,
 477                              RelocationHolder const& rspec,
 478                              int rip_relative_correction) {
 479   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 480 
 481   // Encode the registers as needed in the fields they are used in
 482 
 483   int regenc = encode(reg) << 3;
 484   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 485   int baseenc = base->is_valid() ? encode(base) : 0;
 486 
 487   if (base->is_valid()) {
 488     if (index->is_valid()) {
 489       assert(scale != Address::no_scale, "inconsistent address");
 490       // [base + index*scale + disp]
 491       if (disp == 0 && rtype == relocInfo::none  &&
 492           base != rbp LP64_ONLY(&& base != r13)) {
 493         // [base + index*scale]
 494         // [00 reg 100][ss index base]
 495         assert(index != rsp, "illegal addressing mode");
 496         emit_int8(0x04 | regenc);
 497         emit_int8(scale << 6 | indexenc | baseenc);
 498       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 499         // [base + index*scale + imm8]
 500         // [01 reg 100][ss index base] imm8
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x44 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504         emit_int8(disp & 0xFF);
 505       } else {
 506         // [base + index*scale + disp32]
 507         // [10 reg 100][ss index base] disp32
 508         assert(index != rsp, "illegal addressing mode");
 509         emit_int8(0x84 | regenc);
 510         emit_int8(scale << 6 | indexenc | baseenc);
 511         emit_data(disp, rspec, disp32_operand);
 512       }
 513     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 514       // [rsp + disp]
 515       if (disp == 0 && rtype == relocInfo::none) {
 516         // [rsp]
 517         // [00 reg 100][00 100 100]
 518         emit_int8(0x04 | regenc);
 519         emit_int8(0x24);
 520       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 521         // [rsp + imm8]
 522         // [01 reg 100][00 100 100] disp8
 523         emit_int8(0x44 | regenc);
 524         emit_int8(0x24);
 525         emit_int8(disp & 0xFF);
 526       } else {
 527         // [rsp + imm32]
 528         // [10 reg 100][00 100 100] disp32
 529         emit_int8(0x84 | regenc);
 530         emit_int8(0x24);
 531         emit_data(disp, rspec, disp32_operand);
 532       }
 533     } else {
 534       // [base + disp]
 535       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 536       if (disp == 0 && rtype == relocInfo::none &&
 537           base != rbp LP64_ONLY(&& base != r13)) {
 538         // [base]
 539         // [00 reg base]
 540         emit_int8(0x00 | regenc | baseenc);
 541       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 542         // [base + disp8]
 543         // [01 reg base] disp8
 544         emit_int8(0x40 | regenc | baseenc);
 545         emit_int8(disp & 0xFF);
 546       } else {
 547         // [base + disp32]
 548         // [10 reg base] disp32
 549         emit_int8(0x80 | regenc | baseenc);
 550         emit_data(disp, rspec, disp32_operand);
 551       }
 552     }
 553   } else {
 554     if (index->is_valid()) {
 555       assert(scale != Address::no_scale, "inconsistent address");
 556       // [index*scale + disp]
 557       // [00 reg 100][ss index 101] disp32
 558       assert(index != rsp, "illegal addressing mode");
 559       emit_int8(0x04 | regenc);
 560       emit_int8(scale << 6 | indexenc | 0x05);
 561       emit_data(disp, rspec, disp32_operand);
 562     } else if (rtype != relocInfo::none ) {
 563       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 564       // [00 000 101] disp32
 565 
 566       emit_int8(0x05 | regenc);
 567       // Note that the RIP-rel. correction applies to the generated
 568       // disp field, but _not_ to the target address in the rspec.
 569 
 570       // disp was created by converting the target address minus the pc
 571       // at the start of the instruction. That needs more correction here.
 572       // intptr_t disp = target - next_ip;
 573       assert(inst_mark() != NULL, "must be inside InstructionMark");
 574       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 575       int64_t adjusted = disp;
 576       // Do rip-rel adjustment for 64bit
 577       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 578       assert(is_simm32(adjusted),
 579              "must be 32bit offset (RIP relative address)");
 580       emit_data((int32_t) adjusted, rspec, disp32_operand);
 581 
 582     } else {
 583       // 32bit never did this, did everything as the rip-rel/disp code above
 584       // [disp] ABSOLUTE
 585       // [00 reg 100][00 100 101] disp32
 586       emit_int8(0x04 | regenc);
 587       emit_int8(0x25);
 588       emit_data(disp, rspec, disp32_operand);
 589     }
 590   }
 591 }
 592 
 593 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 594                              Address::ScaleFactor scale, int disp,
 595                              RelocationHolder const& rspec) {
 596   if (UseAVX > 2) {
 597     int xreg_enc = reg->encoding();
 598     if (xreg_enc > 15) {
 599       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 600       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 601       return;
 602     }
 603   }
 604   emit_operand((Register)reg, base, index, scale, disp, rspec);
 605 }
 606 
 607 // Secret local extension to Assembler::WhichOperand:
 608 #define end_pc_operand (_WhichOperand_limit)
 609 
 610 address Assembler::locate_operand(address inst, WhichOperand which) {
 611   // Decode the given instruction, and return the address of
 612   // an embedded 32-bit operand word.
 613 
 614   // If "which" is disp32_operand, selects the displacement portion
 615   // of an effective address specifier.
 616   // If "which" is imm64_operand, selects the trailing immediate constant.
 617   // If "which" is call32_operand, selects the displacement of a call or jump.
 618   // Caller is responsible for ensuring that there is such an operand,
 619   // and that it is 32/64 bits wide.
 620 
 621   // If "which" is end_pc_operand, find the end of the instruction.
 622 
 623   address ip = inst;
 624   bool is_64bit = false;
 625 
 626   debug_only(bool has_disp32 = false);
 627   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 628 
 629   again_after_prefix:
 630   switch (0xFF & *ip++) {
 631 
 632   // These convenience macros generate groups of "case" labels for the switch.
 633 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 634 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 635              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 636 #define REP16(x) REP8((x)+0): \
 637               case REP8((x)+8)
 638 
 639   case CS_segment:
 640   case SS_segment:
 641   case DS_segment:
 642   case ES_segment:
 643   case FS_segment:
 644   case GS_segment:
 645     // Seems dubious
 646     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 647     assert(ip == inst+1, "only one prefix allowed");
 648     goto again_after_prefix;
 649 
 650   case 0x67:
 651   case REX:
 652   case REX_B:
 653   case REX_X:
 654   case REX_XB:
 655   case REX_R:
 656   case REX_RB:
 657   case REX_RX:
 658   case REX_RXB:
 659     NOT_LP64(assert(false, "64bit prefixes"));
 660     goto again_after_prefix;
 661 
 662   case REX_W:
 663   case REX_WB:
 664   case REX_WX:
 665   case REX_WXB:
 666   case REX_WR:
 667   case REX_WRB:
 668   case REX_WRX:
 669   case REX_WRXB:
 670     NOT_LP64(assert(false, "64bit prefixes"));
 671     is_64bit = true;
 672     goto again_after_prefix;
 673 
 674   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 675   case 0x88: // movb a, r
 676   case 0x89: // movl a, r
 677   case 0x8A: // movb r, a
 678   case 0x8B: // movl r, a
 679   case 0x8F: // popl a
 680     debug_only(has_disp32 = true);
 681     break;
 682 
 683   case 0x68: // pushq #32
 684     if (which == end_pc_operand) {
 685       return ip + 4;
 686     }
 687     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 688     return ip;                  // not produced by emit_operand
 689 
 690   case 0x66: // movw ... (size prefix)
 691     again_after_size_prefix2:
 692     switch (0xFF & *ip++) {
 693     case REX:
 694     case REX_B:
 695     case REX_X:
 696     case REX_XB:
 697     case REX_R:
 698     case REX_RB:
 699     case REX_RX:
 700     case REX_RXB:
 701     case REX_W:
 702     case REX_WB:
 703     case REX_WX:
 704     case REX_WXB:
 705     case REX_WR:
 706     case REX_WRB:
 707     case REX_WRX:
 708     case REX_WRXB:
 709       NOT_LP64(assert(false, "64bit prefix found"));
 710       goto again_after_size_prefix2;
 711     case 0x8B: // movw r, a
 712     case 0x89: // movw a, r
 713       debug_only(has_disp32 = true);
 714       break;
 715     case 0xC7: // movw a, #16
 716       debug_only(has_disp32 = true);
 717       tail_size = 2;  // the imm16
 718       break;
 719     case 0x0F: // several SSE/SSE2 variants
 720       ip--;    // reparse the 0x0F
 721       goto again_after_prefix;
 722     default:
 723       ShouldNotReachHere();
 724     }
 725     break;
 726 
 727   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 728     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 729     // these asserts are somewhat nonsensical
 730 #ifndef _LP64
 731     assert(which == imm_operand || which == disp32_operand,
 732            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 733 #else
 734     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 735            which == narrow_oop_operand && !is_64bit,
 736            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 737 #endif // _LP64
 738     return ip;
 739 
 740   case 0x69: // imul r, a, #32
 741   case 0xC7: // movl a, #32(oop?)
 742     tail_size = 4;
 743     debug_only(has_disp32 = true); // has both kinds of operands!
 744     break;
 745 
 746   case 0x0F: // movx..., etc.
 747     switch (0xFF & *ip++) {
 748     case 0x3A: // pcmpestri
 749       tail_size = 1;
 750     case 0x38: // ptest, pmovzxbw
 751       ip++; // skip opcode
 752       debug_only(has_disp32 = true); // has both kinds of operands!
 753       break;
 754 
 755     case 0x70: // pshufd r, r/a, #8
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757     case 0x73: // psrldq r, #8
 758       tail_size = 1;
 759       break;
 760 
 761     case 0x12: // movlps
 762     case 0x28: // movaps
 763     case 0x2E: // ucomiss
 764     case 0x2F: // comiss
 765     case 0x54: // andps
 766     case 0x55: // andnps
 767     case 0x56: // orps
 768     case 0x57: // xorps
 769     case 0x58: // addpd
 770     case 0x59: // mulpd
 771     case 0x6E: // movd
 772     case 0x7E: // movd
 773     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 774     case 0xFE: // paddd
 775       debug_only(has_disp32 = true);
 776       break;
 777 
 778     case 0xAD: // shrd r, a, %cl
 779     case 0xAF: // imul r, a
 780     case 0xBE: // movsbl r, a (movsxb)
 781     case 0xBF: // movswl r, a (movsxw)
 782     case 0xB6: // movzbl r, a (movzxb)
 783     case 0xB7: // movzwl r, a (movzxw)
 784     case REP16(0x40): // cmovl cc, r, a
 785     case 0xB0: // cmpxchgb
 786     case 0xB1: // cmpxchg
 787     case 0xC1: // xaddl
 788     case 0xC7: // cmpxchg8
 789     case REP16(0x90): // setcc a
 790       debug_only(has_disp32 = true);
 791       // fall out of the switch to decode the address
 792       break;
 793 
 794     case 0xC4: // pinsrw r, a, #8
 795       debug_only(has_disp32 = true);
 796     case 0xC5: // pextrw r, r, #8
 797       tail_size = 1;  // the imm8
 798       break;
 799 
 800     case 0xAC: // shrd r, a, #8
 801       debug_only(has_disp32 = true);
 802       tail_size = 1;  // the imm8
 803       break;
 804 
 805     case REP16(0x80): // jcc rdisp32
 806       if (which == end_pc_operand)  return ip + 4;
 807       assert(which == call32_operand, "jcc has no disp32 or imm");
 808       return ip;
 809     default:
 810       ShouldNotReachHere();
 811     }
 812     break;
 813 
 814   case 0x81: // addl a, #32; addl r, #32
 815     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 816     // on 32bit in the case of cmpl, the imm might be an oop
 817     tail_size = 4;
 818     debug_only(has_disp32 = true); // has both kinds of operands!
 819     break;
 820 
 821   case 0x83: // addl a, #8; addl r, #8
 822     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 823     debug_only(has_disp32 = true); // has both kinds of operands!
 824     tail_size = 1;
 825     break;
 826 
 827   case 0x9B:
 828     switch (0xFF & *ip++) {
 829     case 0xD9: // fnstcw a
 830       debug_only(has_disp32 = true);
 831       break;
 832     default:
 833       ShouldNotReachHere();
 834     }
 835     break;
 836 
 837   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 838   case REP4(0x10): // adc...
 839   case REP4(0x20): // and...
 840   case REP4(0x30): // xor...
 841   case REP4(0x08): // or...
 842   case REP4(0x18): // sbb...
 843   case REP4(0x28): // sub...
 844   case 0xF7: // mull a
 845   case 0x8D: // lea r, a
 846   case 0x87: // xchg r, a
 847   case REP4(0x38): // cmp...
 848   case 0x85: // test r, a
 849     debug_only(has_disp32 = true); // has both kinds of operands!
 850     break;
 851 
 852   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 853   case 0xC6: // movb a, #8
 854   case 0x80: // cmpb a, #8
 855   case 0x6B: // imul r, a, #8
 856     debug_only(has_disp32 = true); // has both kinds of operands!
 857     tail_size = 1; // the imm8
 858     break;
 859 
 860   case 0xC4: // VEX_3bytes
 861   case 0xC5: // VEX_2bytes
 862     assert((UseAVX > 0), "shouldn't have VEX prefix");
 863     assert(ip == inst+1, "no prefixes allowed");
 864     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 865     // but they have prefix 0x0F and processed when 0x0F processed above.
 866     //
 867     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 868     // instructions (these instructions are not supported in 64-bit mode).
 869     // To distinguish them bits [7:6] are set in the VEX second byte since
 870     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 871     // those VEX bits REX and vvvv bits are inverted.
 872     //
 873     // Fortunately C2 doesn't generate these instructions so we don't need
 874     // to check for them in product version.
 875 
 876     // Check second byte
 877     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 878 
 879     int vex_opcode;
 880     // First byte
 881     if ((0xFF & *inst) == VEX_3bytes) {
 882       vex_opcode = VEX_OPCODE_MASK & *ip;
 883       ip++; // third byte
 884       is_64bit = ((VEX_W & *ip) == VEX_W);
 885     } else {
 886       vex_opcode = VEX_OPCODE_0F;
 887     }
 888     ip++; // opcode
 889     // To find the end of instruction (which == end_pc_operand).
 890     switch (vex_opcode) {
 891       case VEX_OPCODE_0F:
 892         switch (0xFF & *ip) {
 893         case 0x70: // pshufd r, r/a, #8
 894         case 0x71: // ps[rl|ra|ll]w r, #8
 895         case 0x72: // ps[rl|ra|ll]d r, #8
 896         case 0x73: // ps[rl|ra|ll]q r, #8
 897         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 898         case 0xC4: // pinsrw r, r, r/a, #8
 899         case 0xC5: // pextrw r/a, r, #8
 900         case 0xC6: // shufp[s|d] r, r, r/a, #8
 901           tail_size = 1;  // the imm8
 902           break;
 903         }
 904         break;
 905       case VEX_OPCODE_0F_3A:
 906         tail_size = 1;
 907         break;
 908     }
 909     ip++; // skip opcode
 910     debug_only(has_disp32 = true); // has both kinds of operands!
 911     break;
 912 
 913   case 0x62: // EVEX_4bytes
 914     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
 915     assert(ip == inst+1, "no prefixes allowed");
 916     // no EVEX collisions, all instructions that have 0x62 opcodes
 917     // have EVEX versions and are subopcodes of 0x66
 918     ip++; // skip P0 and exmaine W in P1
 919     is_64bit = ((VEX_W & *ip) == VEX_W);
 920     ip++; // move to P2
 921     ip++; // skip P2, move to opcode
 922     // To find the end of instruction (which == end_pc_operand).
 923     switch (0xFF & *ip) {
 924     case 0x22: // pinsrd r, r/a, #8
 925     case 0x61: // pcmpestri r, r/a, #8
 926     case 0x70: // pshufd r, r/a, #8
 927     case 0x73: // psrldq r, #8
 928       tail_size = 1;  // the imm8
 929       break;
 930     default:
 931       break;
 932     }
 933     ip++; // skip opcode
 934     debug_only(has_disp32 = true); // has both kinds of operands!
 935     break;
 936 
 937   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 938   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 939   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 940   case 0xDD: // fld_d a; fst_d a; fstp_d a
 941   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 942   case 0xDF: // fild_d a; fistp_d a
 943   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 944   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 945   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 946     debug_only(has_disp32 = true);
 947     break;
 948 
 949   case 0xE8: // call rdisp32
 950   case 0xE9: // jmp  rdisp32
 951     if (which == end_pc_operand)  return ip + 4;
 952     assert(which == call32_operand, "call has no disp32 or imm");
 953     return ip;
 954 
 955   case 0xF0:                    // Lock
 956     assert(os::is_MP(), "only on MP");
 957     goto again_after_prefix;
 958 
 959   case 0xF3:                    // For SSE
 960   case 0xF2:                    // For SSE2
 961     switch (0xFF & *ip++) {
 962     case REX:
 963     case REX_B:
 964     case REX_X:
 965     case REX_XB:
 966     case REX_R:
 967     case REX_RB:
 968     case REX_RX:
 969     case REX_RXB:
 970     case REX_W:
 971     case REX_WB:
 972     case REX_WX:
 973     case REX_WXB:
 974     case REX_WR:
 975     case REX_WRB:
 976     case REX_WRX:
 977     case REX_WRXB:
 978       NOT_LP64(assert(false, "found 64bit prefix"));
 979       ip++;
 980     default:
 981       ip++;
 982     }
 983     debug_only(has_disp32 = true); // has both kinds of operands!
 984     break;
 985 
 986   default:
 987     ShouldNotReachHere();
 988 
 989 #undef REP8
 990 #undef REP16
 991   }
 992 
 993   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 994 #ifdef _LP64
 995   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 996 #else
 997   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 998   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 999 #endif // LP64
1000   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1001 
1002   // parse the output of emit_operand
1003   int op2 = 0xFF & *ip++;
1004   int base = op2 & 0x07;
1005   int op3 = -1;
1006   const int b100 = 4;
1007   const int b101 = 5;
1008   if (base == b100 && (op2 >> 6) != 3) {
1009     op3 = 0xFF & *ip++;
1010     base = op3 & 0x07;   // refetch the base
1011   }
1012   // now ip points at the disp (if any)
1013 
1014   switch (op2 >> 6) {
1015   case 0:
1016     // [00 reg  100][ss index base]
1017     // [00 reg  100][00   100  esp]
1018     // [00 reg base]
1019     // [00 reg  100][ss index  101][disp32]
1020     // [00 reg  101]               [disp32]
1021 
1022     if (base == b101) {
1023       if (which == disp32_operand)
1024         return ip;              // caller wants the disp32
1025       ip += 4;                  // skip the disp32
1026     }
1027     break;
1028 
1029   case 1:
1030     // [01 reg  100][ss index base][disp8]
1031     // [01 reg  100][00   100  esp][disp8]
1032     // [01 reg base]               [disp8]
1033     ip += 1;                    // skip the disp8
1034     break;
1035 
1036   case 2:
1037     // [10 reg  100][ss index base][disp32]
1038     // [10 reg  100][00   100  esp][disp32]
1039     // [10 reg base]               [disp32]
1040     if (which == disp32_operand)
1041       return ip;                // caller wants the disp32
1042     ip += 4;                    // skip the disp32
1043     break;
1044 
1045   case 3:
1046     // [11 reg base]  (not a memory addressing mode)
1047     break;
1048   }
1049 
1050   if (which == end_pc_operand) {
1051     return ip + tail_size;
1052   }
1053 
1054 #ifdef _LP64
1055   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1056 #else
1057   assert(which == imm_operand, "instruction has only an imm field");
1058 #endif // LP64
1059   return ip;
1060 }
1061 
1062 address Assembler::locate_next_instruction(address inst) {
1063   // Secretly share code with locate_operand:
1064   return locate_operand(inst, end_pc_operand);
1065 }
1066 
1067 
1068 #ifdef ASSERT
1069 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1070   address inst = inst_mark();
1071   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1072   address opnd;
1073 
1074   Relocation* r = rspec.reloc();
1075   if (r->type() == relocInfo::none) {
1076     return;
1077   } else if (r->is_call() || format == call32_operand) {
1078     // assert(format == imm32_operand, "cannot specify a nonzero format");
1079     opnd = locate_operand(inst, call32_operand);
1080   } else if (r->is_data()) {
1081     assert(format == imm_operand || format == disp32_operand
1082            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1083     opnd = locate_operand(inst, (WhichOperand)format);
1084   } else {
1085     assert(format == imm_operand, "cannot specify a format");
1086     return;
1087   }
1088   assert(opnd == pc(), "must put operand where relocs can find it");
1089 }
1090 #endif // ASSERT
1091 
1092 void Assembler::emit_operand32(Register reg, Address adr) {
1093   assert(reg->encoding() < 8, "no extended registers");
1094   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1095   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1096                adr._rspec);
1097 }
1098 
1099 void Assembler::emit_operand(Register reg, Address adr,
1100                              int rip_relative_correction) {
1101   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1102                adr._rspec,
1103                rip_relative_correction);
1104 }
1105 
1106 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1107   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1108                adr._rspec);
1109 }
1110 
1111 // MMX operations
1112 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1113   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1114   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1115 }
1116 
1117 // work around gcc (3.2.1-7a) bug
1118 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1119   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1120   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1121 }
1122 
1123 
1124 void Assembler::emit_farith(int b1, int b2, int i) {
1125   assert(isByte(b1) && isByte(b2), "wrong opcode");
1126   assert(0 <= i &&  i < 8, "illegal stack offset");
1127   emit_int8(b1);
1128   emit_int8(b2 + i);
1129 }
1130 
1131 
1132 // Now the Assembler instructions (identical for 32/64 bits)
1133 
1134 void Assembler::adcl(Address dst, int32_t imm32) {
1135   InstructionMark im(this);
1136   prefix(dst);
1137   emit_arith_operand(0x81, rdx, dst, imm32);
1138 }
1139 
1140 void Assembler::adcl(Address dst, Register src) {
1141   InstructionMark im(this);
1142   prefix(dst, src);
1143   emit_int8(0x11);
1144   emit_operand(src, dst);
1145 }
1146 
1147 void Assembler::adcl(Register dst, int32_t imm32) {
1148   prefix(dst);
1149   emit_arith(0x81, 0xD0, dst, imm32);
1150 }
1151 
1152 void Assembler::adcl(Register dst, Address src) {
1153   InstructionMark im(this);
1154   prefix(src, dst);
1155   emit_int8(0x13);
1156   emit_operand(dst, src);
1157 }
1158 
1159 void Assembler::adcl(Register dst, Register src) {
1160   (void) prefix_and_encode(dst->encoding(), src->encoding());
1161   emit_arith(0x13, 0xC0, dst, src);
1162 }
1163 
1164 void Assembler::addl(Address dst, int32_t imm32) {
1165   InstructionMark im(this);
1166   prefix(dst);
1167   emit_arith_operand(0x81, rax, dst, imm32);
1168 }
1169 
1170 void Assembler::addb(Address dst, int imm8) {
1171   InstructionMark im(this);
1172   prefix(dst);
1173   emit_int8((unsigned char)0x80);
1174   emit_operand(rax, dst, 1);
1175   emit_int8(imm8);
1176 }
1177 
1178 void Assembler::addw(Address dst, int imm16) {
1179   InstructionMark im(this);
1180   emit_int8(0x66);
1181   prefix(dst);
1182   emit_int8((unsigned char)0x81);
1183   emit_operand(rax, dst, 2);
1184   emit_int16(imm16);
1185 }
1186 
1187 void Assembler::addl(Address dst, Register src) {
1188   InstructionMark im(this);
1189   prefix(dst, src);
1190   emit_int8(0x01);
1191   emit_operand(src, dst);
1192 }
1193 
1194 void Assembler::addl(Register dst, int32_t imm32) {
1195   prefix(dst);
1196   emit_arith(0x81, 0xC0, dst, imm32);
1197 }
1198 
1199 void Assembler::addl(Register dst, Address src) {
1200   InstructionMark im(this);
1201   prefix(src, dst);
1202   emit_int8(0x03);
1203   emit_operand(dst, src);
1204 }
1205 
1206 void Assembler::addl(Register dst, Register src) {
1207   (void) prefix_and_encode(dst->encoding(), src->encoding());
1208   emit_arith(0x03, 0xC0, dst, src);
1209 }
1210 
1211 void Assembler::addr_nop_4() {
1212   assert(UseAddressNop, "no CPU support");
1213   // 4 bytes: NOP DWORD PTR [EAX+0]
1214   emit_int8(0x0F);
1215   emit_int8(0x1F);
1216   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1217   emit_int8(0);    // 8-bits offset (1 byte)
1218 }
1219 
1220 void Assembler::addr_nop_5() {
1221   assert(UseAddressNop, "no CPU support");
1222   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1223   emit_int8(0x0F);
1224   emit_int8(0x1F);
1225   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1226   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1227   emit_int8(0);    // 8-bits offset (1 byte)
1228 }
1229 
1230 void Assembler::addr_nop_7() {
1231   assert(UseAddressNop, "no CPU support");
1232   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1233   emit_int8(0x0F);
1234   emit_int8(0x1F);
1235   emit_int8((unsigned char)0x80);
1236                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1237   emit_int32(0);   // 32-bits offset (4 bytes)
1238 }
1239 
1240 void Assembler::addr_nop_8() {
1241   assert(UseAddressNop, "no CPU support");
1242   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1243   emit_int8(0x0F);
1244   emit_int8(0x1F);
1245   emit_int8((unsigned char)0x84);
1246                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1247   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1248   emit_int32(0);   // 32-bits offset (4 bytes)
1249 }
1250 
1251 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1252   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1253   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1254   attributes.set_rex_vex_w_reverted();
1255   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1256   emit_int8(0x58);
1257   emit_int8((unsigned char)(0xC0 | encode));
1258 }
1259 
1260 void Assembler::addsd(XMMRegister dst, Address src) {
1261   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1262   InstructionMark im(this);
1263   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1264   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1265   attributes.set_rex_vex_w_reverted();
1266   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1267   emit_int8(0x58);
1268   emit_operand(dst, src);
1269 }
1270 
1271 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1272   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1273   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1274   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1275   emit_int8(0x58);
1276   emit_int8((unsigned char)(0xC0 | encode));
1277 }
1278 
1279 void Assembler::addss(XMMRegister dst, Address src) {
1280   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1281   InstructionMark im(this);
1282   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1283   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1284   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1285   emit_int8(0x58);
1286   emit_operand(dst, src);
1287 }
1288 
1289 void Assembler::aesdec(XMMRegister dst, Address src) {
1290   assert(VM_Version::supports_aes(), "");
1291   InstructionMark im(this);
1292   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1293   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1294   emit_int8((unsigned char)0xDE);
1295   emit_operand(dst, src);
1296 }
1297 
1298 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1299   assert(VM_Version::supports_aes(), "");
1300   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1301   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1302   emit_int8((unsigned char)0xDE);
1303   emit_int8(0xC0 | encode);
1304 }
1305 
1306 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1307   assert(VM_Version::supports_aes(), "");
1308   InstructionMark im(this);
1309   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1310   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1311   emit_int8((unsigned char)0xDF);
1312   emit_operand(dst, src);
1313 }
1314 
1315 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1316   assert(VM_Version::supports_aes(), "");
1317   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1318   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1319   emit_int8((unsigned char)0xDF);
1320   emit_int8((unsigned char)(0xC0 | encode));
1321 }
1322 
1323 void Assembler::aesenc(XMMRegister dst, Address src) {
1324   assert(VM_Version::supports_aes(), "");
1325   InstructionMark im(this);
1326   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1327   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1328   emit_int8((unsigned char)0xDC);
1329   emit_operand(dst, src);
1330 }
1331 
1332 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1333   assert(VM_Version::supports_aes(), "");
1334   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1335   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1336   emit_int8((unsigned char)0xDC);
1337   emit_int8(0xC0 | encode);
1338 }
1339 
1340 void Assembler::aesenclast(XMMRegister dst, Address src) {
1341   assert(VM_Version::supports_aes(), "");
1342   InstructionMark im(this);
1343   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1344   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1345   emit_int8((unsigned char)0xDD);
1346   emit_operand(dst, src);
1347 }
1348 
1349 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1350   assert(VM_Version::supports_aes(), "");
1351   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1352   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1353   emit_int8((unsigned char)0xDD);
1354   emit_int8((unsigned char)(0xC0 | encode));
1355 }
1356 
1357 void Assembler::andl(Address dst, int32_t imm32) {
1358   InstructionMark im(this);
1359   prefix(dst);
1360   emit_int8((unsigned char)0x81);
1361   emit_operand(rsp, dst, 4);
1362   emit_int32(imm32);
1363 }
1364 
1365 void Assembler::andl(Register dst, int32_t imm32) {
1366   prefix(dst);
1367   emit_arith(0x81, 0xE0, dst, imm32);
1368 }
1369 
1370 void Assembler::andl(Register dst, Address src) {
1371   InstructionMark im(this);
1372   prefix(src, dst);
1373   emit_int8(0x23);
1374   emit_operand(dst, src);
1375 }
1376 
1377 void Assembler::andl(Register dst, Register src) {
1378   (void) prefix_and_encode(dst->encoding(), src->encoding());
1379   emit_arith(0x23, 0xC0, dst, src);
1380 }
1381 
1382 void Assembler::andnl(Register dst, Register src1, Register src2) {
1383   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1384   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1385   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1386   emit_int8((unsigned char)0xF2);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::andnl(Register dst, Register src1, Address src2) {
1391   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1392   InstructionMark im(this);
1393   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1394   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1395   emit_int8((unsigned char)0xF2);
1396   emit_operand(dst, src2);
1397 }
1398 
1399 void Assembler::bsfl(Register dst, Register src) {
1400   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1401   emit_int8(0x0F);
1402   emit_int8((unsigned char)0xBC);
1403   emit_int8((unsigned char)(0xC0 | encode));
1404 }
1405 
1406 void Assembler::bsrl(Register dst, Register src) {
1407   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1408   emit_int8(0x0F);
1409   emit_int8((unsigned char)0xBD);
1410   emit_int8((unsigned char)(0xC0 | encode));
1411 }
1412 
1413 void Assembler::bswapl(Register reg) { // bswap
1414   int encode = prefix_and_encode(reg->encoding());
1415   emit_int8(0x0F);
1416   emit_int8((unsigned char)(0xC8 | encode));
1417 }
1418 
1419 void Assembler::blsil(Register dst, Register src) {
1420   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1421   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1422   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1423   emit_int8((unsigned char)0xF3);
1424   emit_int8((unsigned char)(0xC0 | encode));
1425 }
1426 
1427 void Assembler::blsil(Register dst, Address src) {
1428   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1429   InstructionMark im(this);
1430   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1431   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1432   emit_int8((unsigned char)0xF3);
1433   emit_operand(rbx, src);
1434 }
1435 
1436 void Assembler::blsmskl(Register dst, Register src) {
1437   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1438   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1439   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1440   emit_int8((unsigned char)0xF3);
1441   emit_int8((unsigned char)(0xC0 | encode));
1442 }
1443 
1444 void Assembler::blsmskl(Register dst, Address src) {
1445   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1446   InstructionMark im(this);
1447   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1448   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1449   emit_int8((unsigned char)0xF3);
1450   emit_operand(rdx, src);
1451 }
1452 
1453 void Assembler::blsrl(Register dst, Register src) {
1454   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1455   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1456   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1457   emit_int8((unsigned char)0xF3);
1458   emit_int8((unsigned char)(0xC0 | encode));
1459 }
1460 
1461 void Assembler::blsrl(Register dst, Address src) {
1462   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1463   InstructionMark im(this);
1464   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1465   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1466   emit_int8((unsigned char)0xF3);
1467   emit_operand(rcx, src);
1468 }
1469 
1470 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1471   // suspect disp32 is always good
1472   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1473 
1474   if (L.is_bound()) {
1475     const int long_size = 5;
1476     int offs = (int)( target(L) - pc() );
1477     assert(offs <= 0, "assembler error");
1478     InstructionMark im(this);
1479     // 1110 1000 #32-bit disp
1480     emit_int8((unsigned char)0xE8);
1481     emit_data(offs - long_size, rtype, operand);
1482   } else {
1483     InstructionMark im(this);
1484     // 1110 1000 #32-bit disp
1485     L.add_patch_at(code(), locator());
1486 
1487     emit_int8((unsigned char)0xE8);
1488     emit_data(int(0), rtype, operand);
1489   }
1490 }
1491 
1492 void Assembler::call(Register dst) {
1493   int encode = prefix_and_encode(dst->encoding());
1494   emit_int8((unsigned char)0xFF);
1495   emit_int8((unsigned char)(0xD0 | encode));
1496 }
1497 
1498 
1499 void Assembler::call(Address adr) {
1500   InstructionMark im(this);
1501   prefix(adr);
1502   emit_int8((unsigned char)0xFF);
1503   emit_operand(rdx, adr);
1504 }
1505 
1506 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1507   InstructionMark im(this);
1508   emit_int8((unsigned char)0xE8);
1509   intptr_t disp = entry - (pc() + sizeof(int32_t));
1510   // Entry is NULL in case of a scratch emit.
1511   assert(entry == NULL || is_simm32(disp), "disp=" INTPTR_FORMAT " must be 32bit offset (call2)", disp);
1512   // Technically, should use call32_operand, but this format is
1513   // implied by the fact that we're emitting a call instruction.
1514 
1515   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1516   emit_data((int) disp, rspec, operand);
1517 }
1518 
1519 void Assembler::cdql() {
1520   emit_int8((unsigned char)0x99);
1521 }
1522 
1523 void Assembler::cld() {
1524   emit_int8((unsigned char)0xFC);
1525 }
1526 
1527 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1528   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1529   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1530   emit_int8(0x0F);
1531   emit_int8(0x40 | cc);
1532   emit_int8((unsigned char)(0xC0 | encode));
1533 }
1534 
1535 
1536 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1537   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1538   prefix(src, dst);
1539   emit_int8(0x0F);
1540   emit_int8(0x40 | cc);
1541   emit_operand(dst, src);
1542 }
1543 
1544 void Assembler::cmpb(Address dst, int imm8) {
1545   InstructionMark im(this);
1546   prefix(dst);
1547   emit_int8((unsigned char)0x80);
1548   emit_operand(rdi, dst, 1);
1549   emit_int8(imm8);
1550 }
1551 
1552 void Assembler::cmpl(Address dst, int32_t imm32) {
1553   InstructionMark im(this);
1554   prefix(dst);
1555   emit_int8((unsigned char)0x81);
1556   emit_operand(rdi, dst, 4);
1557   emit_int32(imm32);
1558 }
1559 
1560 void Assembler::cmpl(Register dst, int32_t imm32) {
1561   prefix(dst);
1562   emit_arith(0x81, 0xF8, dst, imm32);
1563 }
1564 
1565 void Assembler::cmpl(Register dst, Register src) {
1566   (void) prefix_and_encode(dst->encoding(), src->encoding());
1567   emit_arith(0x3B, 0xC0, dst, src);
1568 }
1569 
1570 void Assembler::cmpl(Register dst, Address  src) {
1571   InstructionMark im(this);
1572   prefix(src, dst);
1573   emit_int8((unsigned char)0x3B);
1574   emit_operand(dst, src);
1575 }
1576 
1577 void Assembler::cmpw(Address dst, int imm16) {
1578   InstructionMark im(this);
1579   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1580   emit_int8(0x66);
1581   emit_int8((unsigned char)0x81);
1582   emit_operand(rdi, dst, 2);
1583   emit_int16(imm16);
1584 }
1585 
1586 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1587 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1588 // The ZF is set if the compared values were equal, and cleared otherwise.
1589 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1590   InstructionMark im(this);
1591   prefix(adr, reg);
1592   emit_int8(0x0F);
1593   emit_int8((unsigned char)0xB1);
1594   emit_operand(reg, adr);
1595 }
1596 
1597 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1598 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1599 // The ZF is set if the compared values were equal, and cleared otherwise.
1600 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1601   InstructionMark im(this);
1602   prefix(adr, reg, true);
1603   emit_int8(0x0F);
1604   emit_int8((unsigned char)0xB0);
1605   emit_operand(reg, adr);
1606 }
1607 
1608 void Assembler::comisd(XMMRegister dst, Address src) {
1609   // NOTE: dbx seems to decode this as comiss even though the
1610   // 0x66 is there. Strangly ucomisd comes out correct
1611   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1612   InstructionMark im(this);
1613   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1614   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1615   attributes.set_rex_vex_w_reverted();
1616   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1617   emit_int8(0x2F);
1618   emit_operand(dst, src);
1619 }
1620 
1621 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1622   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1623   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1624   attributes.set_rex_vex_w_reverted();
1625   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1626   emit_int8(0x2F);
1627   emit_int8((unsigned char)(0xC0 | encode));
1628 }
1629 
1630 void Assembler::comiss(XMMRegister dst, Address src) {
1631   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1632   InstructionMark im(this);
1633   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1634   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1635   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1636   emit_int8(0x2F);
1637   emit_operand(dst, src);
1638 }
1639 
1640 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1641   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1642   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1643   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1644   emit_int8(0x2F);
1645   emit_int8((unsigned char)(0xC0 | encode));
1646 }
1647 
1648 void Assembler::cpuid() {
1649   emit_int8(0x0F);
1650   emit_int8((unsigned char)0xA2);
1651 }
1652 
1653 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1654 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1655 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1656 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1657 //
1658 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1659 //
1660 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1661 //
1662 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1663 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1664   assert(VM_Version::supports_sse4_2(), "");
1665   int8_t w = 0x01;
1666   Prefix p = Prefix_EMPTY;
1667 
1668   emit_int8((int8_t)0xF2);
1669   switch (sizeInBytes) {
1670   case 1:
1671     w = 0;
1672     break;
1673   case 2:
1674   case 4:
1675     break;
1676   LP64_ONLY(case 8:)
1677     // This instruction is not valid in 32 bits
1678     // Note:
1679     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1680     //
1681     // Page B - 72   Vol. 2C says
1682     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1683     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1684     //                                                                            F0!!!
1685     // while 3 - 208 Vol. 2A
1686     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1687     //
1688     // the 0 on a last bit is reserved for a different flavor of this instruction :
1689     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1690     p = REX_W;
1691     break;
1692   default:
1693     assert(0, "Unsupported value for a sizeInBytes argument");
1694     break;
1695   }
1696   LP64_ONLY(prefix(crc, v, p);)
1697   emit_int8((int8_t)0x0F);
1698   emit_int8(0x38);
1699   emit_int8((int8_t)(0xF0 | w));
1700   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1701 }
1702 
1703 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1704   assert(VM_Version::supports_sse4_2(), "");
1705   InstructionMark im(this);
1706   int8_t w = 0x01;
1707   Prefix p = Prefix_EMPTY;
1708 
1709   emit_int8((int8_t)0xF2);
1710   switch (sizeInBytes) {
1711   case 1:
1712     w = 0;
1713     break;
1714   case 2:
1715   case 4:
1716     break;
1717   LP64_ONLY(case 8:)
1718     // This instruction is not valid in 32 bits
1719     p = REX_W;
1720     break;
1721   default:
1722     assert(0, "Unsupported value for a sizeInBytes argument");
1723     break;
1724   }
1725   LP64_ONLY(prefix(crc, adr, p);)
1726   emit_int8((int8_t)0x0F);
1727   emit_int8(0x38);
1728   emit_int8((int8_t)(0xF0 | w));
1729   emit_operand(crc, adr);
1730 }
1731 
1732 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1733   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1734   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1735   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1736   emit_int8((unsigned char)0xE6);
1737   emit_int8((unsigned char)(0xC0 | encode));
1738 }
1739 
1740 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1742   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1743   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1744   emit_int8(0x5B);
1745   emit_int8((unsigned char)(0xC0 | encode));
1746 }
1747 
1748 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1749   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1750   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1751   attributes.set_rex_vex_w_reverted();
1752   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1753   emit_int8(0x5A);
1754   emit_int8((unsigned char)(0xC0 | encode));
1755 }
1756 
1757 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1758   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1759   InstructionMark im(this);
1760   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1761   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1762   attributes.set_rex_vex_w_reverted();
1763   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1764   emit_int8(0x5A);
1765   emit_operand(dst, src);
1766 }
1767 
1768 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1769   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1770   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1771   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1772   emit_int8(0x2A);
1773   emit_int8((unsigned char)(0xC0 | encode));
1774 }
1775 
1776 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1777   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1778   InstructionMark im(this);
1779   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1780   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1781   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1782   emit_int8(0x2A);
1783   emit_operand(dst, src);
1784 }
1785 
1786 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1787   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1788   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1789   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1790   emit_int8(0x2A);
1791   emit_int8((unsigned char)(0xC0 | encode));
1792 }
1793 
1794 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1795   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1796   InstructionMark im(this);
1797   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1798   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1799   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1800   emit_int8(0x2A);
1801   emit_operand(dst, src);
1802 }
1803 
1804 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1805   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1806   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1807   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1808   emit_int8(0x2A);
1809   emit_int8((unsigned char)(0xC0 | encode));
1810 }
1811 
1812 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1813   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1814   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1815   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1816   emit_int8(0x5A);
1817   emit_int8((unsigned char)(0xC0 | encode));
1818 }
1819 
1820 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1821   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1822   InstructionMark im(this);
1823   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1824   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1825   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1826   emit_int8(0x5A);
1827   emit_operand(dst, src);
1828 }
1829 
1830 
1831 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1832   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1833   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1834   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1835   emit_int8(0x2C);
1836   emit_int8((unsigned char)(0xC0 | encode));
1837 }
1838 
1839 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1840   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1841   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1842   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1843   emit_int8(0x2C);
1844   emit_int8((unsigned char)(0xC0 | encode));
1845 }
1846 
1847 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1848   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1849   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1850   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1851   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1852   emit_int8((unsigned char)0xE6);
1853   emit_int8((unsigned char)(0xC0 | encode));
1854 }
1855 
1856 void Assembler::decl(Address dst) {
1857   // Don't use it directly. Use MacroAssembler::decrement() instead.
1858   InstructionMark im(this);
1859   prefix(dst);
1860   emit_int8((unsigned char)0xFF);
1861   emit_operand(rcx, dst);
1862 }
1863 
1864 void Assembler::divsd(XMMRegister dst, Address src) {
1865   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1866   InstructionMark im(this);
1867   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1868   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1869   attributes.set_rex_vex_w_reverted();
1870   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1871   emit_int8(0x5E);
1872   emit_operand(dst, src);
1873 }
1874 
1875 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1876   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1877   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1878   attributes.set_rex_vex_w_reverted();
1879   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1880   emit_int8(0x5E);
1881   emit_int8((unsigned char)(0xC0 | encode));
1882 }
1883 
1884 void Assembler::divss(XMMRegister dst, Address src) {
1885   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1886   InstructionMark im(this);
1887   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1888   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1889   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1890   emit_int8(0x5E);
1891   emit_operand(dst, src);
1892 }
1893 
1894 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1895   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1896   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1897   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1898   emit_int8(0x5E);
1899   emit_int8((unsigned char)(0xC0 | encode));
1900 }
1901 
1902 void Assembler::emms() {
1903   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1904   emit_int8(0x0F);
1905   emit_int8(0x77);
1906 }
1907 
1908 void Assembler::hlt() {
1909   emit_int8((unsigned char)0xF4);
1910 }
1911 
1912 void Assembler::idivl(Register src) {
1913   int encode = prefix_and_encode(src->encoding());
1914   emit_int8((unsigned char)0xF7);
1915   emit_int8((unsigned char)(0xF8 | encode));
1916 }
1917 
1918 void Assembler::divl(Register src) { // Unsigned
1919   int encode = prefix_and_encode(src->encoding());
1920   emit_int8((unsigned char)0xF7);
1921   emit_int8((unsigned char)(0xF0 | encode));
1922 }
1923 
1924 void Assembler::imull(Register src) {
1925   int encode = prefix_and_encode(src->encoding());
1926   emit_int8((unsigned char)0xF7);
1927   emit_int8((unsigned char)(0xE8 | encode));
1928 }
1929 
1930 void Assembler::imull(Register dst, Register src) {
1931   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1932   emit_int8(0x0F);
1933   emit_int8((unsigned char)0xAF);
1934   emit_int8((unsigned char)(0xC0 | encode));
1935 }
1936 
1937 
1938 void Assembler::imull(Register dst, Register src, int value) {
1939   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1940   if (is8bit(value)) {
1941     emit_int8(0x6B);
1942     emit_int8((unsigned char)(0xC0 | encode));
1943     emit_int8(value & 0xFF);
1944   } else {
1945     emit_int8(0x69);
1946     emit_int8((unsigned char)(0xC0 | encode));
1947     emit_int32(value);
1948   }
1949 }
1950 
1951 void Assembler::imull(Register dst, Address src) {
1952   InstructionMark im(this);
1953   prefix(src, dst);
1954   emit_int8(0x0F);
1955   emit_int8((unsigned char) 0xAF);
1956   emit_operand(dst, src);
1957 }
1958 
1959 
1960 void Assembler::incl(Address dst) {
1961   // Don't use it directly. Use MacroAssembler::increment() instead.
1962   InstructionMark im(this);
1963   prefix(dst);
1964   emit_int8((unsigned char)0xFF);
1965   emit_operand(rax, dst);
1966 }
1967 
1968 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1969   InstructionMark im(this);
1970   assert((0 <= cc) && (cc < 16), "illegal cc");
1971   if (L.is_bound()) {
1972     address dst = target(L);
1973     assert(dst != NULL, "jcc most probably wrong");
1974 
1975     const int short_size = 2;
1976     const int long_size = 6;
1977     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1978     if (maybe_short && is8bit(offs - short_size)) {
1979       // 0111 tttn #8-bit disp
1980       emit_int8(0x70 | cc);
1981       emit_int8((offs - short_size) & 0xFF);
1982     } else {
1983       // 0000 1111 1000 tttn #32-bit disp
1984       assert(is_simm32(offs - long_size),
1985              "must be 32bit offset (call4)");
1986       emit_int8(0x0F);
1987       emit_int8((unsigned char)(0x80 | cc));
1988       emit_int32(offs - long_size);
1989     }
1990   } else {
1991     // Note: could eliminate cond. jumps to this jump if condition
1992     //       is the same however, seems to be rather unlikely case.
1993     // Note: use jccb() if label to be bound is very close to get
1994     //       an 8-bit displacement
1995     L.add_patch_at(code(), locator());
1996     emit_int8(0x0F);
1997     emit_int8((unsigned char)(0x80 | cc));
1998     emit_int32(0);
1999   }
2000 }
2001 
2002 void Assembler::jccb(Condition cc, Label& L) {
2003   if (L.is_bound()) {
2004     const int short_size = 2;
2005     address entry = target(L);
2006 #ifdef ASSERT
2007     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2008     intptr_t delta = short_branch_delta();
2009     if (delta != 0) {
2010       dist += (dist < 0 ? (-delta) :delta);
2011     }
2012     assert(is8bit(dist), "Dispacement too large for a short jmp");
2013 #endif
2014     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2015     // 0111 tttn #8-bit disp
2016     emit_int8(0x70 | cc);
2017     emit_int8((offs - short_size) & 0xFF);
2018   } else {
2019     InstructionMark im(this);
2020     L.add_patch_at(code(), locator());
2021     emit_int8(0x70 | cc);
2022     emit_int8(0);
2023   }
2024 }
2025 
2026 void Assembler::jccb_if_possible(Condition cc, Label& L) {
2027 
2028 #ifdef ASSERT
2029   if (UseShenandoahGC) {
2030     jcc(cc, L);
2031   } else
2032 #endif
2033     jccb(cc, L);
2034 }
2035 
2036 void Assembler::jmp(Address adr) {
2037   InstructionMark im(this);
2038   prefix(adr);
2039   emit_int8((unsigned char)0xFF);
2040   emit_operand(rsp, adr);
2041 }
2042 
2043 void Assembler::jmp(Label& L, bool maybe_short) {
2044   if (L.is_bound()) {
2045     address entry = target(L);
2046     assert(entry != NULL, "jmp most probably wrong");
2047     InstructionMark im(this);
2048     const int short_size = 2;
2049     const int long_size = 5;
2050     intptr_t offs = entry - pc();
2051     if (maybe_short && is8bit(offs - short_size)) {
2052       emit_int8((unsigned char)0xEB);
2053       emit_int8((offs - short_size) & 0xFF);
2054     } else {
2055       emit_int8((unsigned char)0xE9);
2056       emit_int32(offs - long_size);
2057     }
2058   } else {
2059     // By default, forward jumps are always 32-bit displacements, since
2060     // we can't yet know where the label will be bound.  If you're sure that
2061     // the forward jump will not run beyond 256 bytes, use jmpb to
2062     // force an 8-bit displacement.
2063     InstructionMark im(this);
2064     L.add_patch_at(code(), locator());
2065     emit_int8((unsigned char)0xE9);
2066     emit_int32(0);
2067   }
2068 }
2069 
2070 void Assembler::jmp(Register entry) {
2071   int encode = prefix_and_encode(entry->encoding());
2072   emit_int8((unsigned char)0xFF);
2073   emit_int8((unsigned char)(0xE0 | encode));
2074 }
2075 
2076 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2077   InstructionMark im(this);
2078   emit_int8((unsigned char)0xE9);
2079   assert(dest != NULL, "must have a target");
2080   intptr_t disp = dest - (pc() + sizeof(int32_t));
2081   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2082   emit_data(disp, rspec.reloc(), call32_operand);
2083 }
2084 
2085 void Assembler::jmpb(Label& L) {
2086   if (L.is_bound()) {
2087     const int short_size = 2;
2088     address entry = target(L);
2089     assert(entry != NULL, "jmp most probably wrong");
2090 #ifdef ASSERT
2091     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2092     intptr_t delta = short_branch_delta();
2093     if (delta != 0) {
2094       dist += (dist < 0 ? (-delta) :delta);
2095     }
2096     assert(is8bit(dist), "Dispacement too large for a short jmp");
2097 #endif
2098     intptr_t offs = entry - pc();
2099     emit_int8((unsigned char)0xEB);
2100     emit_int8((offs - short_size) & 0xFF);
2101   } else {
2102     InstructionMark im(this);
2103     L.add_patch_at(code(), locator());
2104     emit_int8((unsigned char)0xEB);
2105     emit_int8(0);
2106   }
2107 }
2108 
2109 void Assembler::jmpb_if_possible(Label& L) {
2110 
2111 #ifdef ASSERT
2112   if (UseShenandoahGC) {
2113     jmp(L);
2114   } else
2115 #endif
2116     jmpb(L);
2117 }
2118 
2119 void Assembler::ldmxcsr( Address src) {
2120   if (UseAVX > 0 ) {
2121     InstructionMark im(this);
2122     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2123     vex_prefix(src, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2124     emit_int8((unsigned char)0xAE);
2125     emit_operand(as_Register(2), src);
2126   } else {
2127     NOT_LP64(assert(VM_Version::supports_sse(), ""));
2128     InstructionMark im(this);
2129     prefix(src);
2130     emit_int8(0x0F);
2131     emit_int8((unsigned char)0xAE);
2132     emit_operand(as_Register(2), src);
2133   }
2134 }
2135 
2136 void Assembler::leal(Register dst, Address src) {
2137   InstructionMark im(this);
2138 #ifdef _LP64
2139   emit_int8(0x67); // addr32
2140   prefix(src, dst);
2141 #endif // LP64
2142   emit_int8((unsigned char)0x8D);
2143   emit_operand(dst, src);
2144 }
2145 
2146 void Assembler::lfence() {
2147   emit_int8(0x0F);
2148   emit_int8((unsigned char)0xAE);
2149   emit_int8((unsigned char)0xE8);
2150 }
2151 
2152 void Assembler::lock() {
2153   emit_int8((unsigned char)0xF0);
2154 }
2155 
2156 void Assembler::lzcntl(Register dst, Register src) {
2157   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2158   emit_int8((unsigned char)0xF3);
2159   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2160   emit_int8(0x0F);
2161   emit_int8((unsigned char)0xBD);
2162   emit_int8((unsigned char)(0xC0 | encode));
2163 }
2164 
2165 // Emit mfence instruction
2166 void Assembler::mfence() {
2167   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2168   emit_int8(0x0F);
2169   emit_int8((unsigned char)0xAE);
2170   emit_int8((unsigned char)0xF0);
2171 }
2172 
2173 void Assembler::mov(Register dst, Register src) {
2174   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2175 }
2176 
2177 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2178   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2179   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2180   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2181   attributes.set_rex_vex_w_reverted();
2182   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2183   emit_int8(0x28);
2184   emit_int8((unsigned char)(0xC0 | encode));
2185 }
2186 
2187 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2188   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2189   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2190   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2191   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2192   emit_int8(0x28);
2193   emit_int8((unsigned char)(0xC0 | encode));
2194 }
2195 
2196 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2197   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2198   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2199   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2200   emit_int8(0x16);
2201   emit_int8((unsigned char)(0xC0 | encode));
2202 }
2203 
2204 void Assembler::movb(Register dst, Address src) {
2205   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2206   InstructionMark im(this);
2207   prefix(src, dst, true);
2208   emit_int8((unsigned char)0x8A);
2209   emit_operand(dst, src);
2210 }
2211 
2212 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2213   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2214   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2215   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2216   attributes.set_rex_vex_w_reverted();
2217   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2218   emit_int8(0x12);
2219   emit_int8(0xC0 | encode);
2220 }
2221 
2222 void Assembler::kmovbl(KRegister dst, Register src) {
2223   assert(VM_Version::supports_avx512dq(), "");
2224   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2225   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2226   emit_int8((unsigned char)0x92);
2227   emit_int8((unsigned char)(0xC0 | encode));
2228 }
2229 
2230 void Assembler::kmovbl(Register dst, KRegister src) {
2231   assert(VM_Version::supports_avx512dq(), "");
2232   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2233   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2234   emit_int8((unsigned char)0x93);
2235   emit_int8((unsigned char)(0xC0 | encode));
2236 }
2237 
2238 void Assembler::kmovwl(KRegister dst, Register src) {
2239   assert(VM_Version::supports_evex(), "");
2240   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2241   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2242   emit_int8((unsigned char)0x92);
2243   emit_int8((unsigned char)(0xC0 | encode));
2244 }
2245 
2246 void Assembler::kmovwl(Register dst, KRegister src) {
2247   assert(VM_Version::supports_evex(), "");
2248   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2249   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2250   emit_int8((unsigned char)0x93);
2251   emit_int8((unsigned char)(0xC0 | encode));
2252 }
2253 
2254 void Assembler::kmovwl(KRegister dst, Address src) {
2255   assert(VM_Version::supports_evex(), "");
2256   InstructionMark im(this);
2257   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2258   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2259   emit_int8((unsigned char)0x90);
2260   emit_operand((Register)dst, src);
2261 }
2262 
2263 void Assembler::kmovdl(KRegister dst, Register src) {
2264   assert(VM_Version::supports_avx512bw(), "");
2265   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2266   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2267   emit_int8((unsigned char)0x92);
2268   emit_int8((unsigned char)(0xC0 | encode));
2269 }
2270 
2271 void Assembler::kmovdl(Register dst, KRegister src) {
2272   assert(VM_Version::supports_avx512bw(), "");
2273   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2274   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2275   emit_int8((unsigned char)0x93);
2276   emit_int8((unsigned char)(0xC0 | encode));
2277 }
2278 
2279 void Assembler::kmovql(KRegister dst, KRegister src) {
2280   assert(VM_Version::supports_avx512bw(), "");
2281   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2282   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2283   emit_int8((unsigned char)0x90);
2284   emit_int8((unsigned char)(0xC0 | encode));
2285 }
2286 
2287 void Assembler::kmovql(KRegister dst, Address src) {
2288   assert(VM_Version::supports_avx512bw(), "");
2289   InstructionMark im(this);
2290   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2291   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2292   emit_int8((unsigned char)0x90);
2293   emit_operand((Register)dst, src);
2294 }
2295 
2296 void Assembler::kmovql(Address dst, KRegister src) {
2297   assert(VM_Version::supports_avx512bw(), "");
2298   InstructionMark im(this);
2299   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2300   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2301   emit_int8((unsigned char)0x90);
2302   emit_operand((Register)src, dst);
2303 }
2304 
2305 void Assembler::kmovql(KRegister dst, Register src) {
2306   assert(VM_Version::supports_avx512bw(), "");
2307   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2308   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2309   emit_int8((unsigned char)0x92);
2310   emit_int8((unsigned char)(0xC0 | encode));
2311 }
2312 
2313 void Assembler::kmovql(Register dst, KRegister src) {
2314   assert(VM_Version::supports_avx512bw(), "");
2315   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2316   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2317   emit_int8((unsigned char)0x93);
2318   emit_int8((unsigned char)(0xC0 | encode));
2319 }
2320 
2321 void Assembler::knotwl(KRegister dst, KRegister src) {
2322   assert(VM_Version::supports_evex(), "");
2323   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2324   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2325   emit_int8((unsigned char)0x44);
2326   emit_int8((unsigned char)(0xC0 | encode));
2327 }
2328 
2329 // This instruction produces ZF or CF flags
2330 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2331   assert(VM_Version::supports_avx512dq(), "");
2332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2333   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2334   emit_int8((unsigned char)0x98);
2335   emit_int8((unsigned char)(0xC0 | encode));
2336 }
2337 
2338 // This instruction produces ZF or CF flags
2339 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2340   assert(VM_Version::supports_evex(), "");
2341   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2342   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2343   emit_int8((unsigned char)0x98);
2344   emit_int8((unsigned char)(0xC0 | encode));
2345 }
2346 
2347 // This instruction produces ZF or CF flags
2348 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2349   assert(VM_Version::supports_avx512bw(), "");
2350   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2351   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2352   emit_int8((unsigned char)0x98);
2353   emit_int8((unsigned char)(0xC0 | encode));
2354 }
2355 
2356 // This instruction produces ZF or CF flags
2357 void Assembler::kortestql(KRegister src1, KRegister src2) {
2358   assert(VM_Version::supports_avx512bw(), "");
2359   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2360   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2361   emit_int8((unsigned char)0x98);
2362   emit_int8((unsigned char)(0xC0 | encode));
2363 }
2364 
2365 // This instruction produces ZF or CF flags
2366 void Assembler::ktestql(KRegister src1, KRegister src2) {
2367   assert(VM_Version::supports_avx512bw(), "");
2368   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2369   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2370   emit_int8((unsigned char)0x99);
2371   emit_int8((unsigned char)(0xC0 | encode));
2372 }
2373 
2374 void Assembler::ktestq(KRegister src1, KRegister src2) {
2375   assert(VM_Version::supports_avx512bw(), "");
2376   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2377   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2378   emit_int8((unsigned char)0x99);
2379   emit_int8((unsigned char)(0xC0 | encode));
2380 }
2381 
2382 void Assembler::ktestd(KRegister src1, KRegister src2) {
2383   assert(VM_Version::supports_avx512bw(), "");
2384   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2385   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2386   emit_int8((unsigned char)0x99);
2387   emit_int8((unsigned char)(0xC0 | encode));
2388 }
2389 
2390 void Assembler::movb(Address dst, int imm8) {
2391   InstructionMark im(this);
2392    prefix(dst);
2393   emit_int8((unsigned char)0xC6);
2394   emit_operand(rax, dst, 1);
2395   emit_int8(imm8);
2396 }
2397 
2398 
2399 void Assembler::movb(Address dst, Register src) {
2400   assert(src->has_byte_register(), "must have byte register");
2401   InstructionMark im(this);
2402   prefix(dst, src, true);
2403   emit_int8((unsigned char)0x88);
2404   emit_operand(src, dst);
2405 }
2406 
2407 void Assembler::movdl(XMMRegister dst, Register src) {
2408   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2409   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2410   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2411   emit_int8(0x6E);
2412   emit_int8((unsigned char)(0xC0 | encode));
2413 }
2414 
2415 void Assembler::movdl(Register dst, XMMRegister src) {
2416   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2417   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2418   // swap src/dst to get correct prefix
2419   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2420   emit_int8(0x7E);
2421   emit_int8((unsigned char)(0xC0 | encode));
2422 }
2423 
2424 void Assembler::movdl(XMMRegister dst, Address src) {
2425   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2426   InstructionMark im(this);
2427   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2428   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2429   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2430   emit_int8(0x6E);
2431   emit_operand(dst, src);
2432 }
2433 
2434 void Assembler::movdl(Address dst, XMMRegister src) {
2435   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2436   InstructionMark im(this);
2437   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2438   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2439   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2440   emit_int8(0x7E);
2441   emit_operand(src, dst);
2442 }
2443 
2444 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2445   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2446   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2447   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2448   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2449   emit_int8(0x6F);
2450   emit_int8((unsigned char)(0xC0 | encode));
2451 }
2452 
2453 void Assembler::movdqa(XMMRegister dst, Address src) {
2454   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2455   InstructionMark im(this);
2456   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2457   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2458   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2459   emit_int8(0x6F);
2460   emit_operand(dst, src);
2461 }
2462 
2463 void Assembler::movdqu(XMMRegister dst, Address src) {
2464   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2465   InstructionMark im(this);
2466   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2467   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2468   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2469   emit_int8(0x6F);
2470   emit_operand(dst, src);
2471 }
2472 
2473 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2474   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2475   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2476   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2477   emit_int8(0x6F);
2478   emit_int8((unsigned char)(0xC0 | encode));
2479 }
2480 
2481 void Assembler::movdqu(Address dst, XMMRegister src) {
2482   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2483   InstructionMark im(this);
2484   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2485   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2486   attributes.reset_is_clear_context();
2487   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2488   emit_int8(0x7F);
2489   emit_operand(src, dst);
2490 }
2491 
2492 // Move Unaligned 256bit Vector
2493 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2494   assert(UseAVX > 0, "");
2495   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2496   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2497   emit_int8(0x6F);
2498   emit_int8((unsigned char)(0xC0 | encode));
2499 }
2500 
2501 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2502   assert(UseAVX > 0, "");
2503   InstructionMark im(this);
2504   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2505   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2506   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2507   emit_int8(0x6F);
2508   emit_operand(dst, src);
2509 }
2510 
2511 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2512   assert(UseAVX > 0, "");
2513   InstructionMark im(this);
2514   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2515   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2516   attributes.reset_is_clear_context();
2517   // swap src<->dst for encoding
2518   assert(src != xnoreg, "sanity");
2519   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2520   emit_int8(0x7F);
2521   emit_operand(src, dst);
2522 }
2523 
2524 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2525 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2526   assert(VM_Version::supports_evex(), "");
2527   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2528   attributes.set_is_evex_instruction();
2529   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2530   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2531   emit_int8(0x6F);
2532   emit_int8((unsigned char)(0xC0 | encode));
2533 }
2534 
2535 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2536   assert(VM_Version::supports_evex(), "");
2537   InstructionMark im(this);
2538   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2539   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2540   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2541   attributes.set_is_evex_instruction();
2542   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2543   emit_int8(0x6F);
2544   emit_operand(dst, src);
2545 }
2546 
2547 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2548   assert(VM_Version::supports_evex(), "");
2549   assert(src != xnoreg, "sanity");
2550   InstructionMark im(this);
2551   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2552   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2553   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2554   attributes.set_is_evex_instruction();
2555   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2556   emit_int8(0x7F);
2557   emit_operand(src, dst);
2558 }
2559 
2560 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2561   assert(VM_Version::supports_avx512vlbw(), "");
2562   assert(is_vector_masking(), "");    // For stub code use only
2563   InstructionMark im(this);
2564   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2565   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2566   attributes.set_embedded_opmask_register_specifier(mask);
2567   attributes.set_is_evex_instruction();
2568   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2569   emit_int8(0x6F);
2570   emit_operand(dst, src);
2571 }
2572 
2573 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2574   assert(VM_Version::supports_evex(), "");
2575   InstructionMark im(this);
2576   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2577   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2578   attributes.set_is_evex_instruction();
2579   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2580   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2581   emit_int8(0x6F);
2582   emit_operand(dst, src);
2583 }
2584 
2585 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2586   assert(is_vector_masking(), "");
2587   assert(VM_Version::supports_avx512vlbw(), "");
2588   InstructionMark im(this);
2589   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2590   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2591   attributes.set_embedded_opmask_register_specifier(mask);
2592   attributes.set_is_evex_instruction();
2593   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2594   emit_int8(0x6F);
2595   emit_operand(dst, src);
2596 }
2597 
2598 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2599   assert(VM_Version::supports_evex(), "");
2600   assert(src != xnoreg, "sanity");
2601   InstructionMark im(this);
2602   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2603   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2604   attributes.set_is_evex_instruction();
2605   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2606   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2607   emit_int8(0x7F);
2608   emit_operand(src, dst);
2609 }
2610 
2611 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len) {
2612   assert(VM_Version::supports_avx512vlbw(), "");
2613   assert(src != xnoreg, "sanity");
2614   InstructionMark im(this);
2615   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2616   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2617   attributes.reset_is_clear_context();
2618   attributes.set_embedded_opmask_register_specifier(mask);
2619   attributes.set_is_evex_instruction();
2620   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2621   emit_int8(0x7F);
2622   emit_operand(src, dst);
2623 }
2624 
2625 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2626   assert(VM_Version::supports_evex(), "");
2627   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2628   attributes.set_is_evex_instruction();
2629   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2630   emit_int8(0x6F);
2631   emit_int8((unsigned char)(0xC0 | encode));
2632 }
2633 
2634 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2635   assert(VM_Version::supports_evex(), "");
2636   InstructionMark im(this);
2637   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2638   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2639   attributes.set_is_evex_instruction();
2640   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2641   emit_int8(0x6F);
2642   emit_operand(dst, src);
2643 }
2644 
2645 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2646   assert(VM_Version::supports_evex(), "");
2647   assert(src != xnoreg, "sanity");
2648   InstructionMark im(this);
2649   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2650   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2651   attributes.reset_is_clear_context();
2652   attributes.set_is_evex_instruction();
2653   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2654   emit_int8(0x7F);
2655   emit_operand(src, dst);
2656 }
2657 
2658 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2659   assert(VM_Version::supports_evex(), "");
2660   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2661   attributes.set_is_evex_instruction();
2662   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2663   emit_int8(0x6F);
2664   emit_int8((unsigned char)(0xC0 | encode));
2665 }
2666 
2667 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2668   assert(VM_Version::supports_evex(), "");
2669   InstructionMark im(this);
2670   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2671   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2672   attributes.set_is_evex_instruction();
2673   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2674   emit_int8(0x6F);
2675   emit_operand(dst, src);
2676 }
2677 
2678 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2679   assert(VM_Version::supports_evex(), "");
2680   assert(src != xnoreg, "sanity");
2681   InstructionMark im(this);
2682   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2683   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2684   attributes.reset_is_clear_context();
2685   attributes.set_is_evex_instruction();
2686   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2687   emit_int8(0x7F);
2688   emit_operand(src, dst);
2689 }
2690 
2691 // Uses zero extension on 64bit
2692 
2693 void Assembler::movl(Register dst, int32_t imm32) {
2694   int encode = prefix_and_encode(dst->encoding());
2695   emit_int8((unsigned char)(0xB8 | encode));
2696   emit_int32(imm32);
2697 }
2698 
2699 void Assembler::movl(Register dst, Register src) {
2700   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2701   emit_int8((unsigned char)0x8B);
2702   emit_int8((unsigned char)(0xC0 | encode));
2703 }
2704 
2705 void Assembler::movl(Register dst, Address src) {
2706   InstructionMark im(this);
2707   prefix(src, dst);
2708   emit_int8((unsigned char)0x8B);
2709   emit_operand(dst, src);
2710 }
2711 
2712 void Assembler::movl(Address dst, int32_t imm32) {
2713   InstructionMark im(this);
2714   prefix(dst);
2715   emit_int8((unsigned char)0xC7);
2716   emit_operand(rax, dst, 4);
2717   emit_int32(imm32);
2718 }
2719 
2720 void Assembler::movl(Address dst, Register src) {
2721   InstructionMark im(this);
2722   prefix(dst, src);
2723   emit_int8((unsigned char)0x89);
2724   emit_operand(src, dst);
2725 }
2726 
2727 // New cpus require to use movsd and movss to avoid partial register stall
2728 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2729 // The selection is done in MacroAssembler::movdbl() and movflt().
2730 void Assembler::movlpd(XMMRegister dst, Address src) {
2731   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2732   InstructionMark im(this);
2733   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2734   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2735   attributes.set_rex_vex_w_reverted();
2736   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2737   emit_int8(0x12);
2738   emit_operand(dst, src);
2739 }
2740 
2741 void Assembler::movq( MMXRegister dst, Address src ) {
2742   assert( VM_Version::supports_mmx(), "" );
2743   emit_int8(0x0F);
2744   emit_int8(0x6F);
2745   emit_operand(dst, src);
2746 }
2747 
2748 void Assembler::movq( Address dst, MMXRegister src ) {
2749   assert( VM_Version::supports_mmx(), "" );
2750   emit_int8(0x0F);
2751   emit_int8(0x7F);
2752   // workaround gcc (3.2.1-7a) bug
2753   // In that version of gcc with only an emit_operand(MMX, Address)
2754   // gcc will tail jump and try and reverse the parameters completely
2755   // obliterating dst in the process. By having a version available
2756   // that doesn't need to swap the args at the tail jump the bug is
2757   // avoided.
2758   emit_operand(dst, src);
2759 }
2760 
2761 void Assembler::movq(XMMRegister dst, Address src) {
2762   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2763   InstructionMark im(this);
2764   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2765   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2766   attributes.set_rex_vex_w_reverted();
2767   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2768   emit_int8(0x7E);
2769   emit_operand(dst, src);
2770 }
2771 
2772 void Assembler::movq(Address dst, XMMRegister src) {
2773   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2774   InstructionMark im(this);
2775   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2776   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2777   attributes.set_rex_vex_w_reverted();
2778   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2779   emit_int8((unsigned char)0xD6);
2780   emit_operand(src, dst);
2781 }
2782 
2783 void Assembler::movsbl(Register dst, Address src) { // movsxb
2784   InstructionMark im(this);
2785   prefix(src, dst);
2786   emit_int8(0x0F);
2787   emit_int8((unsigned char)0xBE);
2788   emit_operand(dst, src);
2789 }
2790 
2791 void Assembler::movsbl(Register dst, Register src) { // movsxb
2792   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2793   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2794   emit_int8(0x0F);
2795   emit_int8((unsigned char)0xBE);
2796   emit_int8((unsigned char)(0xC0 | encode));
2797 }
2798 
2799 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2800   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2801   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2802   attributes.set_rex_vex_w_reverted();
2803   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2804   emit_int8(0x10);
2805   emit_int8((unsigned char)(0xC0 | encode));
2806 }
2807 
2808 void Assembler::movsd(XMMRegister dst, Address src) {
2809   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2810   InstructionMark im(this);
2811   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2812   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2813   attributes.set_rex_vex_w_reverted();
2814   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2815   emit_int8(0x10);
2816   emit_operand(dst, src);
2817 }
2818 
2819 void Assembler::movsd(Address dst, XMMRegister src) {
2820   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2821   InstructionMark im(this);
2822   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2823   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2824   attributes.reset_is_clear_context();
2825   attributes.set_rex_vex_w_reverted();
2826   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2827   emit_int8(0x11);
2828   emit_operand(src, dst);
2829 }
2830 
2831 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2832   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2833   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2834   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2835   emit_int8(0x10);
2836   emit_int8((unsigned char)(0xC0 | encode));
2837 }
2838 
2839 void Assembler::movss(XMMRegister dst, Address src) {
2840   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2841   InstructionMark im(this);
2842   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2843   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2844   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2845   emit_int8(0x10);
2846   emit_operand(dst, src);
2847 }
2848 
2849 void Assembler::movss(Address dst, XMMRegister src) {
2850   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2851   InstructionMark im(this);
2852   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2853   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2854   attributes.reset_is_clear_context();
2855   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2856   emit_int8(0x11);
2857   emit_operand(src, dst);
2858 }
2859 
2860 void Assembler::movswl(Register dst, Address src) { // movsxw
2861   InstructionMark im(this);
2862   prefix(src, dst);
2863   emit_int8(0x0F);
2864   emit_int8((unsigned char)0xBF);
2865   emit_operand(dst, src);
2866 }
2867 
2868 void Assembler::movswl(Register dst, Register src) { // movsxw
2869   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2870   emit_int8(0x0F);
2871   emit_int8((unsigned char)0xBF);
2872   emit_int8((unsigned char)(0xC0 | encode));
2873 }
2874 
2875 void Assembler::movw(Address dst, int imm16) {
2876   InstructionMark im(this);
2877 
2878   emit_int8(0x66); // switch to 16-bit mode
2879   prefix(dst);
2880   emit_int8((unsigned char)0xC7);
2881   emit_operand(rax, dst, 2);
2882   emit_int16(imm16);
2883 }
2884 
2885 void Assembler::movw(Register dst, Address src) {
2886   InstructionMark im(this);
2887   emit_int8(0x66);
2888   prefix(src, dst);
2889   emit_int8((unsigned char)0x8B);
2890   emit_operand(dst, src);
2891 }
2892 
2893 void Assembler::movw(Address dst, Register src) {
2894   InstructionMark im(this);
2895   emit_int8(0x66);
2896   prefix(dst, src);
2897   emit_int8((unsigned char)0x89);
2898   emit_operand(src, dst);
2899 }
2900 
2901 void Assembler::movzbl(Register dst, Address src) { // movzxb
2902   InstructionMark im(this);
2903   prefix(src, dst);
2904   emit_int8(0x0F);
2905   emit_int8((unsigned char)0xB6);
2906   emit_operand(dst, src);
2907 }
2908 
2909 void Assembler::movzbl(Register dst, Register src) { // movzxb
2910   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2911   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2912   emit_int8(0x0F);
2913   emit_int8((unsigned char)0xB6);
2914   emit_int8(0xC0 | encode);
2915 }
2916 
2917 void Assembler::movzwl(Register dst, Address src) { // movzxw
2918   InstructionMark im(this);
2919   prefix(src, dst);
2920   emit_int8(0x0F);
2921   emit_int8((unsigned char)0xB7);
2922   emit_operand(dst, src);
2923 }
2924 
2925 void Assembler::movzwl(Register dst, Register src) { // movzxw
2926   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2927   emit_int8(0x0F);
2928   emit_int8((unsigned char)0xB7);
2929   emit_int8(0xC0 | encode);
2930 }
2931 
2932 void Assembler::mull(Address src) {
2933   InstructionMark im(this);
2934   prefix(src);
2935   emit_int8((unsigned char)0xF7);
2936   emit_operand(rsp, src);
2937 }
2938 
2939 void Assembler::mull(Register src) {
2940   int encode = prefix_and_encode(src->encoding());
2941   emit_int8((unsigned char)0xF7);
2942   emit_int8((unsigned char)(0xE0 | encode));
2943 }
2944 
2945 void Assembler::mulsd(XMMRegister dst, Address src) {
2946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2947   InstructionMark im(this);
2948   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2949   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2950   attributes.set_rex_vex_w_reverted();
2951   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2952   emit_int8(0x59);
2953   emit_operand(dst, src);
2954 }
2955 
2956 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2957   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2958   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2959   attributes.set_rex_vex_w_reverted();
2960   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2961   emit_int8(0x59);
2962   emit_int8((unsigned char)(0xC0 | encode));
2963 }
2964 
2965 void Assembler::mulss(XMMRegister dst, Address src) {
2966   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2967   InstructionMark im(this);
2968   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2969   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2970   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2971   emit_int8(0x59);
2972   emit_operand(dst, src);
2973 }
2974 
2975 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2976   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2977   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2978   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2979   emit_int8(0x59);
2980   emit_int8((unsigned char)(0xC0 | encode));
2981 }
2982 
2983 void Assembler::negl(Register dst) {
2984   int encode = prefix_and_encode(dst->encoding());
2985   emit_int8((unsigned char)0xF7);
2986   emit_int8((unsigned char)(0xD8 | encode));
2987 }
2988 
2989 void Assembler::nop(int i) {
2990 #ifdef ASSERT
2991   assert(i > 0, " ");
2992   // The fancy nops aren't currently recognized by debuggers making it a
2993   // pain to disassemble code while debugging. If asserts are on clearly
2994   // speed is not an issue so simply use the single byte traditional nop
2995   // to do alignment.
2996 
2997   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2998   return;
2999 
3000 #endif // ASSERT
3001 
3002   if (UseAddressNop && VM_Version::is_intel()) {
3003     //
3004     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
3005     //  1: 0x90
3006     //  2: 0x66 0x90
3007     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3008     //  4: 0x0F 0x1F 0x40 0x00
3009     //  5: 0x0F 0x1F 0x44 0x00 0x00
3010     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3011     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3012     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3013     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3014     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3015     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3016 
3017     // The rest coding is Intel specific - don't use consecutive address nops
3018 
3019     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3020     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3021     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3022     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3023 
3024     while(i >= 15) {
3025       // For Intel don't generate consecutive addess nops (mix with regular nops)
3026       i -= 15;
3027       emit_int8(0x66);   // size prefix
3028       emit_int8(0x66);   // size prefix
3029       emit_int8(0x66);   // size prefix
3030       addr_nop_8();
3031       emit_int8(0x66);   // size prefix
3032       emit_int8(0x66);   // size prefix
3033       emit_int8(0x66);   // size prefix
3034       emit_int8((unsigned char)0x90);
3035                          // nop
3036     }
3037     switch (i) {
3038       case 14:
3039         emit_int8(0x66); // size prefix
3040       case 13:
3041         emit_int8(0x66); // size prefix
3042       case 12:
3043         addr_nop_8();
3044         emit_int8(0x66); // size prefix
3045         emit_int8(0x66); // size prefix
3046         emit_int8(0x66); // size prefix
3047         emit_int8((unsigned char)0x90);
3048                          // nop
3049         break;
3050       case 11:
3051         emit_int8(0x66); // size prefix
3052       case 10:
3053         emit_int8(0x66); // size prefix
3054       case 9:
3055         emit_int8(0x66); // size prefix
3056       case 8:
3057         addr_nop_8();
3058         break;
3059       case 7:
3060         addr_nop_7();
3061         break;
3062       case 6:
3063         emit_int8(0x66); // size prefix
3064       case 5:
3065         addr_nop_5();
3066         break;
3067       case 4:
3068         addr_nop_4();
3069         break;
3070       case 3:
3071         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3072         emit_int8(0x66); // size prefix
3073       case 2:
3074         emit_int8(0x66); // size prefix
3075       case 1:
3076         emit_int8((unsigned char)0x90);
3077                          // nop
3078         break;
3079       default:
3080         assert(i == 0, " ");
3081     }
3082     return;
3083   }
3084   if (UseAddressNop && VM_Version::is_amd()) {
3085     //
3086     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3087     //  1: 0x90
3088     //  2: 0x66 0x90
3089     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3090     //  4: 0x0F 0x1F 0x40 0x00
3091     //  5: 0x0F 0x1F 0x44 0x00 0x00
3092     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3093     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3094     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3095     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3096     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3097     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3098 
3099     // The rest coding is AMD specific - use consecutive address nops
3100 
3101     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3102     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3103     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3104     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3105     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3106     //     Size prefixes (0x66) are added for larger sizes
3107 
3108     while(i >= 22) {
3109       i -= 11;
3110       emit_int8(0x66); // size prefix
3111       emit_int8(0x66); // size prefix
3112       emit_int8(0x66); // size prefix
3113       addr_nop_8();
3114     }
3115     // Generate first nop for size between 21-12
3116     switch (i) {
3117       case 21:
3118         i -= 1;
3119         emit_int8(0x66); // size prefix
3120       case 20:
3121       case 19:
3122         i -= 1;
3123         emit_int8(0x66); // size prefix
3124       case 18:
3125       case 17:
3126         i -= 1;
3127         emit_int8(0x66); // size prefix
3128       case 16:
3129       case 15:
3130         i -= 8;
3131         addr_nop_8();
3132         break;
3133       case 14:
3134       case 13:
3135         i -= 7;
3136         addr_nop_7();
3137         break;
3138       case 12:
3139         i -= 6;
3140         emit_int8(0x66); // size prefix
3141         addr_nop_5();
3142         break;
3143       default:
3144         assert(i < 12, " ");
3145     }
3146 
3147     // Generate second nop for size between 11-1
3148     switch (i) {
3149       case 11:
3150         emit_int8(0x66); // size prefix
3151       case 10:
3152         emit_int8(0x66); // size prefix
3153       case 9:
3154         emit_int8(0x66); // size prefix
3155       case 8:
3156         addr_nop_8();
3157         break;
3158       case 7:
3159         addr_nop_7();
3160         break;
3161       case 6:
3162         emit_int8(0x66); // size prefix
3163       case 5:
3164         addr_nop_5();
3165         break;
3166       case 4:
3167         addr_nop_4();
3168         break;
3169       case 3:
3170         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3171         emit_int8(0x66); // size prefix
3172       case 2:
3173         emit_int8(0x66); // size prefix
3174       case 1:
3175         emit_int8((unsigned char)0x90);
3176                          // nop
3177         break;
3178       default:
3179         assert(i == 0, " ");
3180     }
3181     return;
3182   }
3183 
3184   if (UseAddressNop && VM_Version::is_zx()) {
3185     //
3186     // Using multi-bytes nops "0x0F 0x1F [address]" for ZX
3187     //  1: 0x90
3188     //  2: 0x66 0x90
3189     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3190     //  4: 0x0F 0x1F 0x40 0x00
3191     //  5: 0x0F 0x1F 0x44 0x00 0x00
3192     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3193     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3194     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3195     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3196     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3197     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3198 
3199     // The rest coding is ZX specific - don't use consecutive address nops
3200 
3201     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3202     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3203     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3204     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3205 
3206     while (i >= 15) {
3207       // For ZX don't generate consecutive addess nops (mix with regular nops)
3208       i -= 15;
3209       emit_int8(0x66);   // size prefix
3210       emit_int8(0x66);   // size prefix
3211       emit_int8(0x66);   // size prefix
3212       addr_nop_8();
3213       emit_int8(0x66);   // size prefix
3214       emit_int8(0x66);   // size prefix
3215       emit_int8(0x66);   // size prefix
3216       emit_int8((unsigned char)0x90);
3217                          // nop
3218     }
3219     switch (i) {
3220       case 14:
3221         emit_int8(0x66); // size prefix
3222       case 13:
3223         emit_int8(0x66); // size prefix
3224       case 12:
3225         addr_nop_8();
3226         emit_int8(0x66); // size prefix
3227         emit_int8(0x66); // size prefix
3228         emit_int8(0x66); // size prefix
3229         emit_int8((unsigned char)0x90);
3230                          // nop
3231         break;
3232       case 11:
3233         emit_int8(0x66); // size prefix
3234       case 10:
3235         emit_int8(0x66); // size prefix
3236       case 9:
3237         emit_int8(0x66); // size prefix
3238       case 8:
3239         addr_nop_8();
3240         break;
3241       case 7:
3242         addr_nop_7();
3243         break;
3244       case 6:
3245         emit_int8(0x66); // size prefix
3246       case 5:
3247         addr_nop_5();
3248         break;
3249       case 4:
3250         addr_nop_4();
3251         break;
3252       case 3:
3253         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3254         emit_int8(0x66); // size prefix
3255       case 2:
3256         emit_int8(0x66); // size prefix
3257       case 1:
3258         emit_int8((unsigned char)0x90);
3259                          // nop
3260         break;
3261       default:
3262         assert(i == 0, " ");
3263     }
3264     return;
3265   }
3266 
3267   // Using nops with size prefixes "0x66 0x90".
3268   // From AMD Optimization Guide:
3269   //  1: 0x90
3270   //  2: 0x66 0x90
3271   //  3: 0x66 0x66 0x90
3272   //  4: 0x66 0x66 0x66 0x90
3273   //  5: 0x66 0x66 0x90 0x66 0x90
3274   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3275   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3276   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3277   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3278   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3279   //
3280   while(i > 12) {
3281     i -= 4;
3282     emit_int8(0x66); // size prefix
3283     emit_int8(0x66);
3284     emit_int8(0x66);
3285     emit_int8((unsigned char)0x90);
3286                      // nop
3287   }
3288   // 1 - 12 nops
3289   if(i > 8) {
3290     if(i > 9) {
3291       i -= 1;
3292       emit_int8(0x66);
3293     }
3294     i -= 3;
3295     emit_int8(0x66);
3296     emit_int8(0x66);
3297     emit_int8((unsigned char)0x90);
3298   }
3299   // 1 - 8 nops
3300   if(i > 4) {
3301     if(i > 6) {
3302       i -= 1;
3303       emit_int8(0x66);
3304     }
3305     i -= 3;
3306     emit_int8(0x66);
3307     emit_int8(0x66);
3308     emit_int8((unsigned char)0x90);
3309   }
3310   switch (i) {
3311     case 4:
3312       emit_int8(0x66);
3313     case 3:
3314       emit_int8(0x66);
3315     case 2:
3316       emit_int8(0x66);
3317     case 1:
3318       emit_int8((unsigned char)0x90);
3319       break;
3320     default:
3321       assert(i == 0, " ");
3322   }
3323 }
3324 
3325 void Assembler::notl(Register dst) {
3326   int encode = prefix_and_encode(dst->encoding());
3327   emit_int8((unsigned char)0xF7);
3328   emit_int8((unsigned char)(0xD0 | encode));
3329 }
3330 
3331 void Assembler::orl(Address dst, int32_t imm32) {
3332   InstructionMark im(this);
3333   prefix(dst);
3334   emit_arith_operand(0x81, rcx, dst, imm32);
3335 }
3336 
3337 void Assembler::orl(Register dst, int32_t imm32) {
3338   prefix(dst);
3339   emit_arith(0x81, 0xC8, dst, imm32);
3340 }
3341 
3342 void Assembler::orl(Register dst, Address src) {
3343   InstructionMark im(this);
3344   prefix(src, dst);
3345   emit_int8(0x0B);
3346   emit_operand(dst, src);
3347 }
3348 
3349 void Assembler::orl(Register dst, Register src) {
3350   (void) prefix_and_encode(dst->encoding(), src->encoding());
3351   emit_arith(0x0B, 0xC0, dst, src);
3352 }
3353 
3354 void Assembler::orl(Address dst, Register src) {
3355   InstructionMark im(this);
3356   prefix(dst, src);
3357   emit_int8(0x09);
3358   emit_operand(src, dst);
3359 }
3360 
3361 void Assembler::orb(Address dst, int imm8) {
3362   InstructionMark im(this);
3363   prefix(dst);
3364   emit_int8((unsigned char)0x80);
3365   emit_operand(rcx, dst, 1);
3366   emit_int8(imm8);
3367 }
3368 
3369 void Assembler::packuswb(XMMRegister dst, Address src) {
3370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3371   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3372   InstructionMark im(this);
3373   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3374   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3375   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3376   emit_int8(0x67);
3377   emit_operand(dst, src);
3378 }
3379 
3380 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3381   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3382   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3383   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3384   emit_int8(0x67);
3385   emit_int8((unsigned char)(0xC0 | encode));
3386 }
3387 
3388 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3389   assert(UseAVX > 0, "some form of AVX must be enabled");
3390   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3391   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3392   emit_int8(0x67);
3393   emit_int8((unsigned char)(0xC0 | encode));
3394 }
3395 
3396 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3397   assert(VM_Version::supports_avx2(), "");
3398   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3399   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3400   emit_int8(0x00);
3401   emit_int8(0xC0 | encode);
3402   emit_int8(imm8);
3403 }
3404 
3405 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3406   assert(VM_Version::supports_avx2(), "");
3407   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3408   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3409   emit_int8(0x46);
3410   emit_int8(0xC0 | encode);
3411   emit_int8(imm8);
3412 }
3413 
3414 void Assembler::vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
3415   assert(VM_Version::supports_avx(), "");
3416   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3417   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3418   emit_int8(0x06);
3419   emit_int8(0xC0 | encode);
3420   emit_int8(imm8);
3421 }
3422 
3423 
3424 void Assembler::pause() {
3425   emit_int8((unsigned char)0xF3);
3426   emit_int8((unsigned char)0x90);
3427 }
3428 
3429 void Assembler::ud2() {
3430   emit_int8(0x0F);
3431   emit_int8(0x0B);
3432 }
3433 
3434 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3435   assert(VM_Version::supports_sse4_2(), "");
3436   InstructionMark im(this);
3437   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3438   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3439   emit_int8(0x61);
3440   emit_operand(dst, src);
3441   emit_int8(imm8);
3442 }
3443 
3444 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3445   assert(VM_Version::supports_sse4_2(), "");
3446   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3447   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3448   emit_int8(0x61);
3449   emit_int8((unsigned char)(0xC0 | encode));
3450   emit_int8(imm8);
3451 }
3452 
3453 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3454 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3455   assert(VM_Version::supports_sse2(), "");
3456   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3457   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3458   emit_int8(0x74);
3459   emit_int8((unsigned char)(0xC0 | encode));
3460 }
3461 
3462 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3463 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3464   assert(VM_Version::supports_avx(), "");
3465   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3466   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3467   emit_int8(0x74);
3468   emit_int8((unsigned char)(0xC0 | encode));
3469 }
3470 
3471 // In this context, kdst is written the mask used to process the equal components
3472 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3473   assert(VM_Version::supports_avx512bw(), "");
3474   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3475   attributes.set_is_evex_instruction();
3476   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3477   emit_int8(0x74);
3478   emit_int8((unsigned char)(0xC0 | encode));
3479 }
3480 
3481 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3482   assert(VM_Version::supports_avx512vlbw(), "");
3483   InstructionMark im(this);
3484   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3485   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3486   attributes.set_is_evex_instruction();
3487   int dst_enc = kdst->encoding();
3488   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3489   emit_int8(0x64);
3490   emit_operand(as_Register(dst_enc), src);
3491 }
3492 
3493 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3494   assert(is_vector_masking(), "");
3495   assert(VM_Version::supports_avx512vlbw(), "");
3496   InstructionMark im(this);
3497   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3498   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3499   attributes.reset_is_clear_context();
3500   attributes.set_embedded_opmask_register_specifier(mask);
3501   attributes.set_is_evex_instruction();
3502   int dst_enc = kdst->encoding();
3503   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3504   emit_int8(0x64);
3505   emit_operand(as_Register(dst_enc), src);
3506 }
3507 
3508 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3509   assert(VM_Version::supports_avx512vlbw(), "");
3510   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3511   attributes.set_is_evex_instruction();
3512   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3513   emit_int8(0x3E);
3514   emit_int8((unsigned char)(0xC0 | encode));
3515   emit_int8(vcc);
3516 }
3517 
3518 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3519   assert(is_vector_masking(), "");
3520   assert(VM_Version::supports_avx512vlbw(), "");
3521   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3522   attributes.reset_is_clear_context();
3523   attributes.set_embedded_opmask_register_specifier(mask);
3524   attributes.set_is_evex_instruction();
3525   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3526   emit_int8(0x3E);
3527   emit_int8((unsigned char)(0xC0 | encode));
3528   emit_int8(vcc);
3529 }
3530 
3531 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3532   assert(VM_Version::supports_avx512vlbw(), "");
3533   InstructionMark im(this);
3534   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3535   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3536   attributes.set_is_evex_instruction();
3537   int dst_enc = kdst->encoding();
3538   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3539   emit_int8(0x3E);
3540   emit_operand(as_Register(dst_enc), src);
3541   emit_int8(vcc);
3542 }
3543 
3544 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3545   assert(VM_Version::supports_avx512bw(), "");
3546   InstructionMark im(this);
3547   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3548   attributes.set_is_evex_instruction();
3549   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3550   int dst_enc = kdst->encoding();
3551   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3552   emit_int8(0x74);
3553   emit_operand(as_Register(dst_enc), src);
3554 }
3555 
3556 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3557   assert(VM_Version::supports_avx512vlbw(), "");
3558   assert(is_vector_masking(), "");    // For stub code use only
3559   InstructionMark im(this);
3560   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ false);
3561   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3562   attributes.reset_is_clear_context();
3563   attributes.set_embedded_opmask_register_specifier(mask);
3564   attributes.set_is_evex_instruction();
3565   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3566   emit_int8(0x74);
3567   emit_operand(as_Register(kdst->encoding()), src);
3568 }
3569 
3570 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3571 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3572   assert(VM_Version::supports_sse2(), "");
3573   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3574   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3575   emit_int8(0x75);
3576   emit_int8((unsigned char)(0xC0 | encode));
3577 }
3578 
3579 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3580 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3581   assert(VM_Version::supports_avx(), "");
3582   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3583   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3584   emit_int8(0x75);
3585   emit_int8((unsigned char)(0xC0 | encode));
3586 }
3587 
3588 // In this context, kdst is written the mask used to process the equal components
3589 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3590   assert(VM_Version::supports_avx512bw(), "");
3591   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3592   attributes.set_is_evex_instruction();
3593   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3594   emit_int8(0x75);
3595   emit_int8((unsigned char)(0xC0 | encode));
3596 }
3597 
3598 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3599   assert(VM_Version::supports_avx512bw(), "");
3600   InstructionMark im(this);
3601   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3602   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3603   attributes.set_is_evex_instruction();
3604   int dst_enc = kdst->encoding();
3605   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3606   emit_int8(0x75);
3607   emit_operand(as_Register(dst_enc), src);
3608 }
3609 
3610 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3611 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3612   assert(VM_Version::supports_sse2(), "");
3613   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3614   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3615   emit_int8(0x76);
3616   emit_int8((unsigned char)(0xC0 | encode));
3617 }
3618 
3619 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3620 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3621   assert(VM_Version::supports_avx(), "");
3622   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3623   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3624   emit_int8(0x76);
3625   emit_int8((unsigned char)(0xC0 | encode));
3626 }
3627 
3628 // In this context, kdst is written the mask used to process the equal components
3629 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3630   assert(VM_Version::supports_evex(), "");
3631   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3632   attributes.set_is_evex_instruction();
3633   attributes.reset_is_clear_context();
3634   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3635   emit_int8(0x76);
3636   emit_int8((unsigned char)(0xC0 | encode));
3637 }
3638 
3639 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3640   assert(VM_Version::supports_evex(), "");
3641   InstructionMark im(this);
3642   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3643   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3644   attributes.reset_is_clear_context();
3645   attributes.set_is_evex_instruction();
3646   int dst_enc = kdst->encoding();
3647   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3648   emit_int8(0x76);
3649   emit_operand(as_Register(dst_enc), src);
3650 }
3651 
3652 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3653 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3654   assert(VM_Version::supports_sse4_1(), "");
3655   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3656   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3657   emit_int8(0x29);
3658   emit_int8((unsigned char)(0xC0 | encode));
3659 }
3660 
3661 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3662 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3663   assert(VM_Version::supports_avx(), "");
3664   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3665   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3666   emit_int8(0x29);
3667   emit_int8((unsigned char)(0xC0 | encode));
3668 }
3669 
3670 // In this context, kdst is written the mask used to process the equal components
3671 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3672   assert(VM_Version::supports_evex(), "");
3673   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3674   attributes.reset_is_clear_context();
3675   attributes.set_is_evex_instruction();
3676   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3677   emit_int8(0x29);
3678   emit_int8((unsigned char)(0xC0 | encode));
3679 }
3680 
3681 // In this context, kdst is written the mask used to process the equal components
3682 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3683   assert(VM_Version::supports_evex(), "");
3684   InstructionMark im(this);
3685   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3686   attributes.reset_is_clear_context();
3687   attributes.set_is_evex_instruction();
3688   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3689   int dst_enc = kdst->encoding();
3690   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3691   emit_int8(0x29);
3692   emit_operand(as_Register(dst_enc), src);
3693 }
3694 
3695 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3696   assert(VM_Version::supports_sse2(), "");
3697   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3698   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3699   emit_int8((unsigned char)0xD7);
3700   emit_int8((unsigned char)(0xC0 | encode));
3701 }
3702 
3703 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3704   assert(VM_Version::supports_avx2(), "");
3705   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3706   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3707   emit_int8((unsigned char)0xD7);
3708   emit_int8((unsigned char)(0xC0 | encode));
3709 }
3710 
3711 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3712   assert(VM_Version::supports_sse4_1(), "");
3713   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3714   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3715   emit_int8(0x16);
3716   emit_int8((unsigned char)(0xC0 | encode));
3717   emit_int8(imm8);
3718 }
3719 
3720 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3721   assert(VM_Version::supports_sse4_1(), "");
3722   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3723   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3724   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3725   emit_int8(0x16);
3726   emit_operand(src, dst);
3727   emit_int8(imm8);
3728 }
3729 
3730 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3731   assert(VM_Version::supports_sse4_1(), "");
3732   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3733   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3734   emit_int8(0x16);
3735   emit_int8((unsigned char)(0xC0 | encode));
3736   emit_int8(imm8);
3737 }
3738 
3739 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3740   assert(VM_Version::supports_sse4_1(), "");
3741   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3742   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3743   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3744   emit_int8(0x16);
3745   emit_operand(src, dst);
3746   emit_int8(imm8);
3747 }
3748 
3749 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3750   assert(VM_Version::supports_sse2(), "");
3751   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3752   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3753   emit_int8((unsigned char)0xC5);
3754   emit_int8((unsigned char)(0xC0 | encode));
3755   emit_int8(imm8);
3756 }
3757 
3758 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3759   assert(VM_Version::supports_sse4_1(), "");
3760   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3761   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3762   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3763   emit_int8((unsigned char)0x15);
3764   emit_operand(src, dst);
3765   emit_int8(imm8);
3766 }
3767 
3768 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3769   assert(VM_Version::supports_sse4_1(), "");
3770   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3771   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3772   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3773   emit_int8(0x14);
3774   emit_operand(src, dst);
3775   emit_int8(imm8);
3776 }
3777 
3778 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3779   assert(VM_Version::supports_sse4_1(), "");
3780   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3781   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3782   emit_int8(0x22);
3783   emit_int8((unsigned char)(0xC0 | encode));
3784   emit_int8(imm8);
3785 }
3786 
3787 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3788   assert(VM_Version::supports_sse4_1(), "");
3789   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3790   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3791   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3792   emit_int8(0x22);
3793   emit_operand(dst,src);
3794   emit_int8(imm8);
3795 }
3796 
3797 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3798   assert(VM_Version::supports_sse4_1(), "");
3799   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3800   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3801   emit_int8(0x22);
3802   emit_int8((unsigned char)(0xC0 | encode));
3803   emit_int8(imm8);
3804 }
3805 
3806 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3807   assert(VM_Version::supports_sse4_1(), "");
3808   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3809   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3810   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3811   emit_int8(0x22);
3812   emit_operand(dst, src);
3813   emit_int8(imm8);
3814 }
3815 
3816 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3817   assert(VM_Version::supports_sse2(), "");
3818   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3819   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3820   emit_int8((unsigned char)0xC4);
3821   emit_int8((unsigned char)(0xC0 | encode));
3822   emit_int8(imm8);
3823 }
3824 
3825 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3826   assert(VM_Version::supports_sse2(), "");
3827   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3828   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3829   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3830   emit_int8((unsigned char)0xC4);
3831   emit_operand(dst, src);
3832   emit_int8(imm8);
3833 }
3834 
3835 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3836   assert(VM_Version::supports_sse4_1(), "");
3837   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3838   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3839   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3840   emit_int8(0x20);
3841   emit_operand(dst, src);
3842   emit_int8(imm8);
3843 }
3844 
3845 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3846   assert(VM_Version::supports_sse4_1(), "");
3847   InstructionMark im(this);
3848   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3849   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3850   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3851   emit_int8(0x30);
3852   emit_operand(dst, src);
3853 }
3854 
3855 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3856   assert(VM_Version::supports_sse4_1(), "");
3857   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3858   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3859   emit_int8(0x30);
3860   emit_int8((unsigned char)(0xC0 | encode));
3861 }
3862 
3863 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3864   assert(VM_Version::supports_avx(), "");
3865   InstructionMark im(this);
3866   assert(dst != xnoreg, "sanity");
3867   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3868   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3869   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3870   emit_int8(0x30);
3871   emit_operand(dst, src);
3872 }
3873 
3874 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
3875   assert(is_vector_masking(), "");
3876   assert(VM_Version::supports_avx512vlbw(), "");
3877   assert(dst != xnoreg, "sanity");
3878   InstructionMark im(this);
3879   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3880   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3881   attributes.set_embedded_opmask_register_specifier(mask);
3882   attributes.set_is_evex_instruction();
3883   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3884   emit_int8(0x30);
3885   emit_operand(dst, src);
3886 }
3887 
3888 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
3889   assert(VM_Version::supports_avx512vlbw(), "");
3890   assert(src != xnoreg, "sanity");
3891   InstructionMark im(this);
3892   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3893   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3894   attributes.set_is_evex_instruction();
3895   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3896   emit_int8(0x30);
3897   emit_operand(src, dst);
3898 }
3899 
3900 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
3901   assert(is_vector_masking(), "");
3902   assert(VM_Version::supports_avx512vlbw(), "");
3903   assert(src != xnoreg, "sanity");
3904   InstructionMark im(this);
3905   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3906   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3907   attributes.reset_is_clear_context();
3908   attributes.set_embedded_opmask_register_specifier(mask);
3909   attributes.set_is_evex_instruction();
3910   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3911   emit_int8(0x30);
3912   emit_operand(src, dst);
3913 }
3914 
3915 // generic
3916 void Assembler::pop(Register dst) {
3917   int encode = prefix_and_encode(dst->encoding());
3918   emit_int8(0x58 | encode);
3919 }
3920 
3921 void Assembler::popcntl(Register dst, Address src) {
3922   assert(VM_Version::supports_popcnt(), "must support");
3923   InstructionMark im(this);
3924   emit_int8((unsigned char)0xF3);
3925   prefix(src, dst);
3926   emit_int8(0x0F);
3927   emit_int8((unsigned char)0xB8);
3928   emit_operand(dst, src);
3929 }
3930 
3931 void Assembler::popcntl(Register dst, Register src) {
3932   assert(VM_Version::supports_popcnt(), "must support");
3933   emit_int8((unsigned char)0xF3);
3934   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3935   emit_int8(0x0F);
3936   emit_int8((unsigned char)0xB8);
3937   emit_int8((unsigned char)(0xC0 | encode));
3938 }
3939 
3940 void Assembler::vpopcntd(XMMRegister dst, XMMRegister src, int vector_len) {
3941   assert(VM_Version::supports_vpopcntdq(), "must support vpopcntdq feature");
3942   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3943   attributes.set_is_evex_instruction();
3944   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3945   emit_int8(0x55);
3946   emit_int8((unsigned char)(0xC0 | encode));
3947 }
3948 
3949 void Assembler::popf() {
3950   emit_int8((unsigned char)0x9D);
3951 }
3952 
3953 #ifndef _LP64 // no 32bit push/pop on amd64
3954 void Assembler::popl(Address dst) {
3955   // NOTE: this will adjust stack by 8byte on 64bits
3956   InstructionMark im(this);
3957   prefix(dst);
3958   emit_int8((unsigned char)0x8F);
3959   emit_operand(rax, dst);
3960 }
3961 #endif
3962 
3963 void Assembler::prefetch_prefix(Address src) {
3964   prefix(src);
3965   emit_int8(0x0F);
3966 }
3967 
3968 void Assembler::prefetchnta(Address src) {
3969   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3970   InstructionMark im(this);
3971   prefetch_prefix(src);
3972   emit_int8(0x18);
3973   emit_operand(rax, src); // 0, src
3974 }
3975 
3976 void Assembler::prefetchr(Address src) {
3977   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3978   InstructionMark im(this);
3979   prefetch_prefix(src);
3980   emit_int8(0x0D);
3981   emit_operand(rax, src); // 0, src
3982 }
3983 
3984 void Assembler::prefetcht0(Address src) {
3985   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3986   InstructionMark im(this);
3987   prefetch_prefix(src);
3988   emit_int8(0x18);
3989   emit_operand(rcx, src); // 1, src
3990 }
3991 
3992 void Assembler::prefetcht1(Address src) {
3993   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3994   InstructionMark im(this);
3995   prefetch_prefix(src);
3996   emit_int8(0x18);
3997   emit_operand(rdx, src); // 2, src
3998 }
3999 
4000 void Assembler::prefetcht2(Address src) {
4001   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4002   InstructionMark im(this);
4003   prefetch_prefix(src);
4004   emit_int8(0x18);
4005   emit_operand(rbx, src); // 3, src
4006 }
4007 
4008 void Assembler::prefetchw(Address src) {
4009   assert(VM_Version::supports_3dnow_prefetch(), "must support");
4010   InstructionMark im(this);
4011   prefetch_prefix(src);
4012   emit_int8(0x0D);
4013   emit_operand(rcx, src); // 1, src
4014 }
4015 
4016 void Assembler::prefix(Prefix p) {
4017   emit_int8(p);
4018 }
4019 
4020 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
4021   assert(VM_Version::supports_ssse3(), "");
4022   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4023   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4024   emit_int8(0x00);
4025   emit_int8((unsigned char)(0xC0 | encode));
4026 }
4027 
4028 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4029   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4030          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4031          0, "");
4032   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4033   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4034   emit_int8(0x00);
4035   emit_int8((unsigned char)(0xC0 | encode));
4036 }
4037 
4038 void Assembler::pshufb(XMMRegister dst, Address src) {
4039   assert(VM_Version::supports_ssse3(), "");
4040   InstructionMark im(this);
4041   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4042   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4043   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4044   emit_int8(0x00);
4045   emit_operand(dst, src);
4046 }
4047 
4048 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
4049   assert(isByte(mode), "invalid value");
4050   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4051   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
4052   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4053   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4054   emit_int8(0x70);
4055   emit_int8((unsigned char)(0xC0 | encode));
4056   emit_int8(mode & 0xFF);
4057 }
4058 
4059 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
4060   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4061          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4062          0, "");
4063   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4064   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4065   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4066   emit_int8(0x70);
4067   emit_int8((unsigned char)(0xC0 | encode));
4068   emit_int8(mode & 0xFF);
4069 }
4070 
4071 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
4072   assert(isByte(mode), "invalid value");
4073   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4074   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4075   InstructionMark im(this);
4076   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4077   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4078   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4079   emit_int8(0x70);
4080   emit_operand(dst, src);
4081   emit_int8(mode & 0xFF);
4082 }
4083 
4084 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4085   assert(isByte(mode), "invalid value");
4086   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4087   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4088   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4089   emit_int8(0x70);
4090   emit_int8((unsigned char)(0xC0 | encode));
4091   emit_int8(mode & 0xFF);
4092 }
4093 
4094 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
4095   assert(isByte(mode), "invalid value");
4096   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4097   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4098   InstructionMark im(this);
4099   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4100   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4101   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4102   emit_int8(0x70);
4103   emit_operand(dst, src);
4104   emit_int8(mode & 0xFF);
4105 }
4106 void Assembler::evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4107   assert(VM_Version::supports_evex(), "requires EVEX support");
4108   assert(vector_len == Assembler::AVX_256bit || vector_len == Assembler::AVX_512bit, "");
4109   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4110   attributes.set_is_evex_instruction();
4111   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4112   emit_int8(0x43);
4113   emit_int8((unsigned char)(0xC0 | encode));
4114   emit_int8(imm8 & 0xFF);
4115 }
4116 
4117 void Assembler::psrldq(XMMRegister dst, int shift) {
4118   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4119   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4120   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4121   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4122   emit_int8(0x73);
4123   emit_int8((unsigned char)(0xC0 | encode));
4124   emit_int8(shift);
4125 }
4126 
4127 void Assembler::pslldq(XMMRegister dst, int shift) {
4128   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4129   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4130   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4131   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
4132   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4133   emit_int8(0x73);
4134   emit_int8((unsigned char)(0xC0 | encode));
4135   emit_int8(shift);
4136 }
4137 
4138 void Assembler::ptest(XMMRegister dst, Address src) {
4139   assert(VM_Version::supports_sse4_1(), "");
4140   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4141   InstructionMark im(this);
4142   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4143   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4144   emit_int8(0x17);
4145   emit_operand(dst, src);
4146 }
4147 
4148 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
4149   assert(VM_Version::supports_sse4_1(), "");
4150   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4151   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4152   emit_int8(0x17);
4153   emit_int8((unsigned char)(0xC0 | encode));
4154 }
4155 
4156 void Assembler::vptest(XMMRegister dst, Address src) {
4157   assert(VM_Version::supports_avx(), "");
4158   InstructionMark im(this);
4159   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4160   assert(dst != xnoreg, "sanity");
4161   // swap src<->dst for encoding
4162   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4163   emit_int8(0x17);
4164   emit_operand(dst, src);
4165 }
4166 
4167 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
4168   assert(VM_Version::supports_avx(), "");
4169   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4170   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4171   emit_int8(0x17);
4172   emit_int8((unsigned char)(0xC0 | encode));
4173 }
4174 
4175 void Assembler::punpcklbw(XMMRegister dst, Address src) {
4176   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4177   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4178   InstructionMark im(this);
4179   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4180   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4181   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4182   emit_int8(0x60);
4183   emit_operand(dst, src);
4184 }
4185 
4186 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4187   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4188   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4189   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4190   emit_int8(0x60);
4191   emit_int8((unsigned char)(0xC0 | encode));
4192 }
4193 
4194 void Assembler::punpckldq(XMMRegister dst, Address src) {
4195   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4196   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4197   InstructionMark im(this);
4198   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4199   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4200   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4201   emit_int8(0x62);
4202   emit_operand(dst, src);
4203 }
4204 
4205 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4206   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4207   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4208   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4209   emit_int8(0x62);
4210   emit_int8((unsigned char)(0xC0 | encode));
4211 }
4212 
4213 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4214   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4215   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4216   attributes.set_rex_vex_w_reverted();
4217   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4218   emit_int8(0x6C);
4219   emit_int8((unsigned char)(0xC0 | encode));
4220 }
4221 
4222 void Assembler::push(int32_t imm32) {
4223   // in 64bits we push 64bits onto the stack but only
4224   // take a 32bit immediate
4225   emit_int8(0x68);
4226   emit_int32(imm32);
4227 }
4228 
4229 void Assembler::push(Register src) {
4230   int encode = prefix_and_encode(src->encoding());
4231 
4232   emit_int8(0x50 | encode);
4233 }
4234 
4235 void Assembler::pushf() {
4236   emit_int8((unsigned char)0x9C);
4237 }
4238 
4239 #ifndef _LP64 // no 32bit push/pop on amd64
4240 void Assembler::pushl(Address src) {
4241   // Note this will push 64bit on 64bit
4242   InstructionMark im(this);
4243   prefix(src);
4244   emit_int8((unsigned char)0xFF);
4245   emit_operand(rsi, src);
4246 }
4247 #endif
4248 
4249 void Assembler::rcll(Register dst, int imm8) {
4250   assert(isShiftCount(imm8), "illegal shift count");
4251   int encode = prefix_and_encode(dst->encoding());
4252   if (imm8 == 1) {
4253     emit_int8((unsigned char)0xD1);
4254     emit_int8((unsigned char)(0xD0 | encode));
4255   } else {
4256     emit_int8((unsigned char)0xC1);
4257     emit_int8((unsigned char)0xD0 | encode);
4258     emit_int8(imm8);
4259   }
4260 }
4261 
4262 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4263   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4264   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4265   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4266   emit_int8(0x53);
4267   emit_int8((unsigned char)(0xC0 | encode));
4268 }
4269 
4270 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4271   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4272   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4273   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4274   emit_int8(0x53);
4275   emit_int8((unsigned char)(0xC0 | encode));
4276 }
4277 
4278 void Assembler::rdtsc() {
4279   emit_int8((unsigned char)0x0F);
4280   emit_int8((unsigned char)0x31);
4281 }
4282 
4283 // copies data from [esi] to [edi] using rcx pointer sized words
4284 // generic
4285 void Assembler::rep_mov() {
4286   emit_int8((unsigned char)0xF3);
4287   // MOVSQ
4288   LP64_ONLY(prefix(REX_W));
4289   emit_int8((unsigned char)0xA5);
4290 }
4291 
4292 // sets rcx bytes with rax, value at [edi]
4293 void Assembler::rep_stosb() {
4294   emit_int8((unsigned char)0xF3); // REP
4295   LP64_ONLY(prefix(REX_W));
4296   emit_int8((unsigned char)0xAA); // STOSB
4297 }
4298 
4299 // sets rcx pointer sized words with rax, value at [edi]
4300 // generic
4301 void Assembler::rep_stos() {
4302   emit_int8((unsigned char)0xF3); // REP
4303   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
4304   emit_int8((unsigned char)0xAB);
4305 }
4306 
4307 // scans rcx pointer sized words at [edi] for occurance of rax,
4308 // generic
4309 void Assembler::repne_scan() { // repne_scan
4310   emit_int8((unsigned char)0xF2);
4311   // SCASQ
4312   LP64_ONLY(prefix(REX_W));
4313   emit_int8((unsigned char)0xAF);
4314 }
4315 
4316 #ifdef _LP64
4317 // scans rcx 4 byte words at [edi] for occurance of rax,
4318 // generic
4319 void Assembler::repne_scanl() { // repne_scan
4320   emit_int8((unsigned char)0xF2);
4321   // SCASL
4322   emit_int8((unsigned char)0xAF);
4323 }
4324 #endif
4325 
4326 void Assembler::ret(int imm16) {
4327   if (imm16 == 0) {
4328     emit_int8((unsigned char)0xC3);
4329   } else {
4330     emit_int8((unsigned char)0xC2);
4331     emit_int16(imm16);
4332   }
4333 }
4334 
4335 void Assembler::sahf() {
4336 #ifdef _LP64
4337   // Not supported in 64bit mode
4338   ShouldNotReachHere();
4339 #endif
4340   emit_int8((unsigned char)0x9E);
4341 }
4342 
4343 void Assembler::sarl(Register dst, int imm8) {
4344   int encode = prefix_and_encode(dst->encoding());
4345   assert(isShiftCount(imm8), "illegal shift count");
4346   if (imm8 == 1) {
4347     emit_int8((unsigned char)0xD1);
4348     emit_int8((unsigned char)(0xF8 | encode));
4349   } else {
4350     emit_int8((unsigned char)0xC1);
4351     emit_int8((unsigned char)(0xF8 | encode));
4352     emit_int8(imm8);
4353   }
4354 }
4355 
4356 void Assembler::sarl(Register dst) {
4357   int encode = prefix_and_encode(dst->encoding());
4358   emit_int8((unsigned char)0xD3);
4359   emit_int8((unsigned char)(0xF8 | encode));
4360 }
4361 
4362 void Assembler::sbbl(Address dst, int32_t imm32) {
4363   InstructionMark im(this);
4364   prefix(dst);
4365   emit_arith_operand(0x81, rbx, dst, imm32);
4366 }
4367 
4368 void Assembler::sbbl(Register dst, int32_t imm32) {
4369   prefix(dst);
4370   emit_arith(0x81, 0xD8, dst, imm32);
4371 }
4372 
4373 
4374 void Assembler::sbbl(Register dst, Address src) {
4375   InstructionMark im(this);
4376   prefix(src, dst);
4377   emit_int8(0x1B);
4378   emit_operand(dst, src);
4379 }
4380 
4381 void Assembler::sbbl(Register dst, Register src) {
4382   (void) prefix_and_encode(dst->encoding(), src->encoding());
4383   emit_arith(0x1B, 0xC0, dst, src);
4384 }
4385 
4386 void Assembler::setb(Condition cc, Register dst) {
4387   assert(0 <= cc && cc < 16, "illegal cc");
4388   int encode = prefix_and_encode(dst->encoding(), true);
4389   emit_int8(0x0F);
4390   emit_int8((unsigned char)0x90 | cc);
4391   emit_int8((unsigned char)(0xC0 | encode));
4392 }
4393 
4394 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4395   assert(VM_Version::supports_ssse3(), "");
4396   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
4397   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4398   emit_int8((unsigned char)0x0F);
4399   emit_int8((unsigned char)(0xC0 | encode));
4400   emit_int8(imm8);
4401 }
4402 
4403 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4404   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4405          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4406          0, "");
4407   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4408   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4409   emit_int8((unsigned char)0x0F);
4410   emit_int8((unsigned char)(0xC0 | encode));
4411   emit_int8(imm8);
4412 }
4413 
4414 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4415   assert(VM_Version::supports_sse4_1(), "");
4416   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4417   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4418   emit_int8((unsigned char)0x0E);
4419   emit_int8((unsigned char)(0xC0 | encode));
4420   emit_int8(imm8);
4421 }
4422 
4423 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4424   assert(VM_Version::supports_sha(), "");
4425   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_3A, /* rex_w */ false);
4426   emit_int8((unsigned char)0xCC);
4427   emit_int8((unsigned char)(0xC0 | encode));
4428   emit_int8((unsigned char)imm8);
4429 }
4430 
4431 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4432   assert(VM_Version::supports_sha(), "");
4433   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4434   emit_int8((unsigned char)0xC8);
4435   emit_int8((unsigned char)(0xC0 | encode));
4436 }
4437 
4438 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4439   assert(VM_Version::supports_sha(), "");
4440   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4441   emit_int8((unsigned char)0xC9);
4442   emit_int8((unsigned char)(0xC0 | encode));
4443 }
4444 
4445 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4446   assert(VM_Version::supports_sha(), "");
4447   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4448   emit_int8((unsigned char)0xCA);
4449   emit_int8((unsigned char)(0xC0 | encode));
4450 }
4451 
4452 // xmm0 is implicit additional source to this instruction.
4453 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4454   assert(VM_Version::supports_sha(), "");
4455   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4456   emit_int8((unsigned char)0xCB);
4457   emit_int8((unsigned char)(0xC0 | encode));
4458 }
4459 
4460 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4461   assert(VM_Version::supports_sha(), "");
4462   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4463   emit_int8((unsigned char)0xCC);
4464   emit_int8((unsigned char)(0xC0 | encode));
4465 }
4466 
4467 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4468   assert(VM_Version::supports_sha(), "");
4469   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4470   emit_int8((unsigned char)0xCD);
4471   emit_int8((unsigned char)(0xC0 | encode));
4472 }
4473 
4474 
4475 void Assembler::shll(Register dst, int imm8) {
4476   assert(isShiftCount(imm8), "illegal shift count");
4477   int encode = prefix_and_encode(dst->encoding());
4478   if (imm8 == 1 ) {
4479     emit_int8((unsigned char)0xD1);
4480     emit_int8((unsigned char)(0xE0 | encode));
4481   } else {
4482     emit_int8((unsigned char)0xC1);
4483     emit_int8((unsigned char)(0xE0 | encode));
4484     emit_int8(imm8);
4485   }
4486 }
4487 
4488 void Assembler::shll(Register dst) {
4489   int encode = prefix_and_encode(dst->encoding());
4490   emit_int8((unsigned char)0xD3);
4491   emit_int8((unsigned char)(0xE0 | encode));
4492 }
4493 
4494 void Assembler::shrl(Register dst, int imm8) {
4495   assert(isShiftCount(imm8), "illegal shift count");
4496   int encode = prefix_and_encode(dst->encoding());
4497   emit_int8((unsigned char)0xC1);
4498   emit_int8((unsigned char)(0xE8 | encode));
4499   emit_int8(imm8);
4500 }
4501 
4502 void Assembler::shrl(Register dst) {
4503   int encode = prefix_and_encode(dst->encoding());
4504   emit_int8((unsigned char)0xD3);
4505   emit_int8((unsigned char)(0xE8 | encode));
4506 }
4507 
4508 // copies a single word from [esi] to [edi]
4509 void Assembler::smovl() {
4510   emit_int8((unsigned char)0xA5);
4511 }
4512 
4513 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4514   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4515   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4516   attributes.set_rex_vex_w_reverted();
4517   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4518   emit_int8(0x51);
4519   emit_int8((unsigned char)(0xC0 | encode));
4520 }
4521 
4522 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4523   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4524   InstructionMark im(this);
4525   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4526   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4527   attributes.set_rex_vex_w_reverted();
4528   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4529   emit_int8(0x51);
4530   emit_operand(dst, src);
4531 }
4532 
4533 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4534   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4535   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4536   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4537   emit_int8(0x51);
4538   emit_int8((unsigned char)(0xC0 | encode));
4539 }
4540 
4541 void Assembler::std() {
4542   emit_int8((unsigned char)0xFD);
4543 }
4544 
4545 void Assembler::sqrtss(XMMRegister dst, Address src) {
4546   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4547   InstructionMark im(this);
4548   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4549   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4550   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4551   emit_int8(0x51);
4552   emit_operand(dst, src);
4553 }
4554 
4555 void Assembler::stmxcsr( Address dst) {
4556   if (UseAVX > 0 ) {
4557     assert(VM_Version::supports_avx(), "");
4558     InstructionMark im(this);
4559     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4560     vex_prefix(dst, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4561     emit_int8((unsigned char)0xAE);
4562     emit_operand(as_Register(3), dst);
4563   } else {
4564     NOT_LP64(assert(VM_Version::supports_sse(), ""));
4565     InstructionMark im(this);
4566     prefix(dst);
4567     emit_int8(0x0F);
4568     emit_int8((unsigned char)0xAE);
4569     emit_operand(as_Register(3), dst);
4570   }
4571 }
4572 
4573 void Assembler::subl(Address dst, int32_t imm32) {
4574   InstructionMark im(this);
4575   prefix(dst);
4576   emit_arith_operand(0x81, rbp, dst, imm32);
4577 }
4578 
4579 void Assembler::subl(Address dst, Register src) {
4580   InstructionMark im(this);
4581   prefix(dst, src);
4582   emit_int8(0x29);
4583   emit_operand(src, dst);
4584 }
4585 
4586 void Assembler::subl(Register dst, int32_t imm32) {
4587   prefix(dst);
4588   emit_arith(0x81, 0xE8, dst, imm32);
4589 }
4590 
4591 // Force generation of a 4 byte immediate value even if it fits into 8bit
4592 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4593   prefix(dst);
4594   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4595 }
4596 
4597 void Assembler::subl(Register dst, Address src) {
4598   InstructionMark im(this);
4599   prefix(src, dst);
4600   emit_int8(0x2B);
4601   emit_operand(dst, src);
4602 }
4603 
4604 void Assembler::subl(Register dst, Register src) {
4605   (void) prefix_and_encode(dst->encoding(), src->encoding());
4606   emit_arith(0x2B, 0xC0, dst, src);
4607 }
4608 
4609 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4610   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4611   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4612   attributes.set_rex_vex_w_reverted();
4613   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4614   emit_int8(0x5C);
4615   emit_int8((unsigned char)(0xC0 | encode));
4616 }
4617 
4618 void Assembler::subsd(XMMRegister dst, Address src) {
4619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4620   InstructionMark im(this);
4621   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4622   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4623   attributes.set_rex_vex_w_reverted();
4624   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4625   emit_int8(0x5C);
4626   emit_operand(dst, src);
4627 }
4628 
4629 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4630   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4631   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ false);
4632   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4633   emit_int8(0x5C);
4634   emit_int8((unsigned char)(0xC0 | encode));
4635 }
4636 
4637 void Assembler::subss(XMMRegister dst, Address src) {
4638   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4639   InstructionMark im(this);
4640   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4641   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4642   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4643   emit_int8(0x5C);
4644   emit_operand(dst, src);
4645 }
4646 
4647 void Assembler::testb(Register dst, int imm8) {
4648   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4649   (void) prefix_and_encode(dst->encoding(), true);
4650   emit_arith_b(0xF6, 0xC0, dst, imm8);
4651 }
4652 
4653 void Assembler::testb(Address dst, int imm8) {
4654   InstructionMark im(this);
4655   prefix(dst);
4656   emit_int8((unsigned char)0xF6);
4657   emit_operand(rax, dst, 1);
4658   emit_int8(imm8);
4659 }
4660 
4661 void Assembler::testl(Register dst, int32_t imm32) {
4662   // not using emit_arith because test
4663   // doesn't support sign-extension of
4664   // 8bit operands
4665   int encode = dst->encoding();
4666   if (encode == 0) {
4667     emit_int8((unsigned char)0xA9);
4668   } else {
4669     encode = prefix_and_encode(encode);
4670     emit_int8((unsigned char)0xF7);
4671     emit_int8((unsigned char)(0xC0 | encode));
4672   }
4673   emit_int32(imm32);
4674 }
4675 
4676 void Assembler::testl(Register dst, Register src) {
4677   (void) prefix_and_encode(dst->encoding(), src->encoding());
4678   emit_arith(0x85, 0xC0, dst, src);
4679 }
4680 
4681 void Assembler::testl(Register dst, Address src) {
4682   InstructionMark im(this);
4683   prefix(src, dst);
4684   emit_int8((unsigned char)0x85);
4685   emit_operand(dst, src);
4686 }
4687 
4688 void Assembler::tzcntl(Register dst, Register src) {
4689   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4690   emit_int8((unsigned char)0xF3);
4691   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4692   emit_int8(0x0F);
4693   emit_int8((unsigned char)0xBC);
4694   emit_int8((unsigned char)0xC0 | encode);
4695 }
4696 
4697 void Assembler::tzcntq(Register dst, Register src) {
4698   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4699   emit_int8((unsigned char)0xF3);
4700   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4701   emit_int8(0x0F);
4702   emit_int8((unsigned char)0xBC);
4703   emit_int8((unsigned char)(0xC0 | encode));
4704 }
4705 
4706 void Assembler::ucomisd(XMMRegister dst, Address src) {
4707   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4708   InstructionMark im(this);
4709   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4710   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4711   attributes.set_rex_vex_w_reverted();
4712   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4713   emit_int8(0x2E);
4714   emit_operand(dst, src);
4715 }
4716 
4717 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4718   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4719   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4720   attributes.set_rex_vex_w_reverted();
4721   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4722   emit_int8(0x2E);
4723   emit_int8((unsigned char)(0xC0 | encode));
4724 }
4725 
4726 void Assembler::ucomiss(XMMRegister dst, Address src) {
4727   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4728   InstructionMark im(this);
4729   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4730   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4731   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4732   emit_int8(0x2E);
4733   emit_operand(dst, src);
4734 }
4735 
4736 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4737   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4738   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4739   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4740   emit_int8(0x2E);
4741   emit_int8((unsigned char)(0xC0 | encode));
4742 }
4743 
4744 void Assembler::xabort(int8_t imm8) {
4745   emit_int8((unsigned char)0xC6);
4746   emit_int8((unsigned char)0xF8);
4747   emit_int8((unsigned char)(imm8 & 0xFF));
4748 }
4749 
4750 void Assembler::xaddb(Address dst, Register src) {
4751   InstructionMark im(this);
4752   prefix(dst, src, true);
4753   emit_int8(0x0F);
4754   emit_int8((unsigned char)0xC0);
4755   emit_operand(src, dst);
4756 }
4757 
4758 void Assembler::xaddw(Address dst, Register src) {
4759   InstructionMark im(this);
4760   emit_int8(0x66);
4761   prefix(dst, src);
4762   emit_int8(0x0F);
4763   emit_int8((unsigned char)0xC1);
4764   emit_operand(src, dst);
4765 }
4766 
4767 void Assembler::xaddl(Address dst, Register src) {
4768   InstructionMark im(this);
4769   prefix(dst, src);
4770   emit_int8(0x0F);
4771   emit_int8((unsigned char)0xC1);
4772   emit_operand(src, dst);
4773 }
4774 
4775 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4776   InstructionMark im(this);
4777   relocate(rtype);
4778   if (abort.is_bound()) {
4779     address entry = target(abort);
4780     assert(entry != NULL, "abort entry NULL");
4781     intptr_t offset = entry - pc();
4782     emit_int8((unsigned char)0xC7);
4783     emit_int8((unsigned char)0xF8);
4784     emit_int32(offset - 6); // 2 opcode + 4 address
4785   } else {
4786     abort.add_patch_at(code(), locator());
4787     emit_int8((unsigned char)0xC7);
4788     emit_int8((unsigned char)0xF8);
4789     emit_int32(0);
4790   }
4791 }
4792 
4793 void Assembler::xchgb(Register dst, Address src) { // xchg
4794   InstructionMark im(this);
4795   prefix(src, dst, true);
4796   emit_int8((unsigned char)0x86);
4797   emit_operand(dst, src);
4798 }
4799 
4800 void Assembler::xchgw(Register dst, Address src) { // xchg
4801   InstructionMark im(this);
4802   emit_int8(0x66);
4803   prefix(src, dst);
4804   emit_int8((unsigned char)0x87);
4805   emit_operand(dst, src);
4806 }
4807 
4808 void Assembler::xchgl(Register dst, Address src) { // xchg
4809   InstructionMark im(this);
4810   prefix(src, dst);
4811   emit_int8((unsigned char)0x87);
4812   emit_operand(dst, src);
4813 }
4814 
4815 void Assembler::xchgl(Register dst, Register src) {
4816   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4817   emit_int8((unsigned char)0x87);
4818   emit_int8((unsigned char)(0xC0 | encode));
4819 }
4820 
4821 void Assembler::xend() {
4822   emit_int8((unsigned char)0x0F);
4823   emit_int8((unsigned char)0x01);
4824   emit_int8((unsigned char)0xD5);
4825 }
4826 
4827 void Assembler::xgetbv() {
4828   emit_int8(0x0F);
4829   emit_int8(0x01);
4830   emit_int8((unsigned char)0xD0);
4831 }
4832 
4833 void Assembler::xorl(Register dst, int32_t imm32) {
4834   prefix(dst);
4835   emit_arith(0x81, 0xF0, dst, imm32);
4836 }
4837 
4838 void Assembler::xorl(Register dst, Address src) {
4839   InstructionMark im(this);
4840   prefix(src, dst);
4841   emit_int8(0x33);
4842   emit_operand(dst, src);
4843 }
4844 
4845 void Assembler::xorl(Register dst, Register src) {
4846   (void) prefix_and_encode(dst->encoding(), src->encoding());
4847   emit_arith(0x33, 0xC0, dst, src);
4848 }
4849 
4850 void Assembler::xorb(Register dst, Address src) {
4851   InstructionMark im(this);
4852   prefix(src, dst);
4853   emit_int8(0x32);
4854   emit_operand(dst, src);
4855 }
4856 
4857 // AVX 3-operands scalar float-point arithmetic instructions
4858 
4859 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4860   assert(VM_Version::supports_avx(), "");
4861   InstructionMark im(this);
4862   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4863   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4864   attributes.set_rex_vex_w_reverted();
4865   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4866   emit_int8(0x58);
4867   emit_operand(dst, src);
4868 }
4869 
4870 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4871   assert(VM_Version::supports_avx(), "");
4872   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4873   attributes.set_rex_vex_w_reverted();
4874   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4875   emit_int8(0x58);
4876   emit_int8((unsigned char)(0xC0 | encode));
4877 }
4878 
4879 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4880   assert(VM_Version::supports_avx(), "");
4881   InstructionMark im(this);
4882   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4883   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4884   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4885   emit_int8(0x58);
4886   emit_operand(dst, src);
4887 }
4888 
4889 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4890   assert(VM_Version::supports_avx(), "");
4891   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4892   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4893   emit_int8(0x58);
4894   emit_int8((unsigned char)(0xC0 | encode));
4895 }
4896 
4897 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4898   assert(VM_Version::supports_avx(), "");
4899   InstructionMark im(this);
4900   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4901   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4902   attributes.set_rex_vex_w_reverted();
4903   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4904   emit_int8(0x5E);
4905   emit_operand(dst, src);
4906 }
4907 
4908 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4909   assert(VM_Version::supports_avx(), "");
4910   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4911   attributes.set_rex_vex_w_reverted();
4912   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4913   emit_int8(0x5E);
4914   emit_int8((unsigned char)(0xC0 | encode));
4915 }
4916 
4917 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4918   assert(VM_Version::supports_avx(), "");
4919   InstructionMark im(this);
4920   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4921   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4922   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4923   emit_int8(0x5E);
4924   emit_operand(dst, src);
4925 }
4926 
4927 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4928   assert(VM_Version::supports_avx(), "");
4929   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4930   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4931   emit_int8(0x5E);
4932   emit_int8((unsigned char)(0xC0 | encode));
4933 }
4934 
4935 void Assembler::vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4936   assert(VM_Version::supports_fma(), "");
4937   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4938   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4939   emit_int8((unsigned char)0xB9);
4940   emit_int8((unsigned char)(0xC0 | encode));
4941 }
4942 
4943 void Assembler::vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4944   assert(VM_Version::supports_fma(), "");
4945   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4946   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4947   emit_int8((unsigned char)0xB9);
4948   emit_int8((unsigned char)(0xC0 | encode));
4949 }
4950 
4951 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4952   assert(VM_Version::supports_avx(), "");
4953   InstructionMark im(this);
4954   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4955   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4956   attributes.set_rex_vex_w_reverted();
4957   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4958   emit_int8(0x59);
4959   emit_operand(dst, src);
4960 }
4961 
4962 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4963   assert(VM_Version::supports_avx(), "");
4964   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4965   attributes.set_rex_vex_w_reverted();
4966   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4967   emit_int8(0x59);
4968   emit_int8((unsigned char)(0xC0 | encode));
4969 }
4970 
4971 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4972   assert(VM_Version::supports_avx(), "");
4973   InstructionMark im(this);
4974   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4975   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4976   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4977   emit_int8(0x59);
4978   emit_operand(dst, src);
4979 }
4980 
4981 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4982   assert(VM_Version::supports_avx(), "");
4983   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4984   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4985   emit_int8(0x59);
4986   emit_int8((unsigned char)(0xC0 | encode));
4987 }
4988 
4989 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4990   assert(VM_Version::supports_avx(), "");
4991   InstructionMark im(this);
4992   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4993   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4994   attributes.set_rex_vex_w_reverted();
4995   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4996   emit_int8(0x5C);
4997   emit_operand(dst, src);
4998 }
4999 
5000 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5001   assert(VM_Version::supports_avx(), "");
5002   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5003   attributes.set_rex_vex_w_reverted();
5004   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5005   emit_int8(0x5C);
5006   emit_int8((unsigned char)(0xC0 | encode));
5007 }
5008 
5009 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
5010   assert(VM_Version::supports_avx(), "");
5011   InstructionMark im(this);
5012   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5013   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5014   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5015   emit_int8(0x5C);
5016   emit_operand(dst, src);
5017 }
5018 
5019 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5020   assert(VM_Version::supports_avx(), "");
5021   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5022   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5023   emit_int8(0x5C);
5024   emit_int8((unsigned char)(0xC0 | encode));
5025 }
5026 
5027 //====================VECTOR ARITHMETIC=====================================
5028 
5029 // Float-point vector arithmetic
5030 
5031 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
5032   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5033   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5034   attributes.set_rex_vex_w_reverted();
5035   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5036   emit_int8(0x58);
5037   emit_int8((unsigned char)(0xC0 | encode));
5038 }
5039 
5040 void Assembler::addpd(XMMRegister dst, Address src) {
5041   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5042   InstructionMark im(this);
5043   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5044   attributes.set_rex_vex_w_reverted();
5045   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5046   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5047   emit_int8(0x58);
5048   emit_operand(dst, src);
5049 }
5050 
5051 
5052 void Assembler::addps(XMMRegister dst, XMMRegister src) {
5053   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5054   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5055   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5056   emit_int8(0x58);
5057   emit_int8((unsigned char)(0xC0 | encode));
5058 }
5059 
5060 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5061   assert(VM_Version::supports_avx(), "");
5062   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5063   attributes.set_rex_vex_w_reverted();
5064   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5065   emit_int8(0x58);
5066   emit_int8((unsigned char)(0xC0 | encode));
5067 }
5068 
5069 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5070   assert(VM_Version::supports_avx(), "");
5071   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5072   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5073   emit_int8(0x58);
5074   emit_int8((unsigned char)(0xC0 | encode));
5075 }
5076 
5077 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5078   assert(VM_Version::supports_avx(), "");
5079   InstructionMark im(this);
5080   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5081   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5082   attributes.set_rex_vex_w_reverted();
5083   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5084   emit_int8(0x58);
5085   emit_operand(dst, src);
5086 }
5087 
5088 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5089   assert(VM_Version::supports_avx(), "");
5090   InstructionMark im(this);
5091   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5092   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5093   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5094   emit_int8(0x58);
5095   emit_operand(dst, src);
5096 }
5097 
5098 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
5099   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5100   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5101   attributes.set_rex_vex_w_reverted();
5102   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5103   emit_int8(0x5C);
5104   emit_int8((unsigned char)(0xC0 | encode));
5105 }
5106 
5107 void Assembler::subps(XMMRegister dst, XMMRegister src) {
5108   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5109   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5110   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5111   emit_int8(0x5C);
5112   emit_int8((unsigned char)(0xC0 | encode));
5113 }
5114 
5115 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5116   assert(VM_Version::supports_avx(), "");
5117   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5118   attributes.set_rex_vex_w_reverted();
5119   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5120   emit_int8(0x5C);
5121   emit_int8((unsigned char)(0xC0 | encode));
5122 }
5123 
5124 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5125   assert(VM_Version::supports_avx(), "");
5126   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5127   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5128   emit_int8(0x5C);
5129   emit_int8((unsigned char)(0xC0 | encode));
5130 }
5131 
5132 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5133   assert(VM_Version::supports_avx(), "");
5134   InstructionMark im(this);
5135   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5136   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5137   attributes.set_rex_vex_w_reverted();
5138   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5139   emit_int8(0x5C);
5140   emit_operand(dst, src);
5141 }
5142 
5143 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5144   assert(VM_Version::supports_avx(), "");
5145   InstructionMark im(this);
5146   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5147   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5148   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5149   emit_int8(0x5C);
5150   emit_operand(dst, src);
5151 }
5152 
5153 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
5154   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5155   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5156   attributes.set_rex_vex_w_reverted();
5157   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5158   emit_int8(0x59);
5159   emit_int8((unsigned char)(0xC0 | encode));
5160 }
5161 
5162 void Assembler::mulpd(XMMRegister dst, Address src) {
5163   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5164   InstructionMark im(this);
5165   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5166   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5167   attributes.set_rex_vex_w_reverted();
5168   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5169   emit_int8(0x59);
5170   emit_operand(dst, src);
5171 }
5172 
5173 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
5174   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5175   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5176   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5177   emit_int8(0x59);
5178   emit_int8((unsigned char)(0xC0 | encode));
5179 }
5180 
5181 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5182   assert(VM_Version::supports_avx(), "");
5183   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5184   attributes.set_rex_vex_w_reverted();
5185   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5186   emit_int8(0x59);
5187   emit_int8((unsigned char)(0xC0 | encode));
5188 }
5189 
5190 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5191   assert(VM_Version::supports_avx(), "");
5192   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5193   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5194   emit_int8(0x59);
5195   emit_int8((unsigned char)(0xC0 | encode));
5196 }
5197 
5198 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5199   assert(VM_Version::supports_avx(), "");
5200   InstructionMark im(this);
5201   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5202   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5203   attributes.set_rex_vex_w_reverted();
5204   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5205   emit_int8(0x59);
5206   emit_operand(dst, src);
5207 }
5208 
5209 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5210   assert(VM_Version::supports_avx(), "");
5211   InstructionMark im(this);
5212   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5213   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5214   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5215   emit_int8(0x59);
5216   emit_operand(dst, src);
5217 }
5218 
5219 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5220   assert(VM_Version::supports_fma(), "");
5221   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5222   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5223   emit_int8((unsigned char)0xB8);
5224   emit_int8((unsigned char)(0xC0 | encode));
5225 }
5226 
5227 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5228   assert(VM_Version::supports_fma(), "");
5229   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5230   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5231   emit_int8((unsigned char)0xB8);
5232   emit_int8((unsigned char)(0xC0 | encode));
5233 }
5234 
5235 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5236   assert(VM_Version::supports_fma(), "");
5237   InstructionMark im(this);
5238   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5239   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5240   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5241   emit_int8((unsigned char)0xB8);
5242   emit_operand(dst, src2);
5243 }
5244 
5245 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5246   assert(VM_Version::supports_fma(), "");
5247   InstructionMark im(this);
5248   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5249   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5250   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5251   emit_int8((unsigned char)0xB8);
5252   emit_operand(dst, src2);
5253 }
5254 
5255 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
5256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5257   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5258   attributes.set_rex_vex_w_reverted();
5259   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5260   emit_int8(0x5E);
5261   emit_int8((unsigned char)(0xC0 | encode));
5262 }
5263 
5264 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5265   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5266   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5267   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5268   emit_int8(0x5E);
5269   emit_int8((unsigned char)(0xC0 | encode));
5270 }
5271 
5272 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5273   assert(VM_Version::supports_avx(), "");
5274   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5275   attributes.set_rex_vex_w_reverted();
5276   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5277   emit_int8(0x5E);
5278   emit_int8((unsigned char)(0xC0 | encode));
5279 }
5280 
5281 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5282   assert(VM_Version::supports_avx(), "");
5283   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5284   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5285   emit_int8(0x5E);
5286   emit_int8((unsigned char)(0xC0 | encode));
5287 }
5288 
5289 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5290   assert(VM_Version::supports_avx(), "");
5291   InstructionMark im(this);
5292   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5293   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5294   attributes.set_rex_vex_w_reverted();
5295   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5296   emit_int8(0x5E);
5297   emit_operand(dst, src);
5298 }
5299 
5300 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5301   assert(VM_Version::supports_avx(), "");
5302   InstructionMark im(this);
5303   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5304   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5305   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5306   emit_int8(0x5E);
5307   emit_operand(dst, src);
5308 }
5309 
5310 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5311   assert(VM_Version::supports_avx(), "");
5312   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5313   attributes.set_rex_vex_w_reverted();
5314   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5315   emit_int8(0x51);
5316   emit_int8((unsigned char)(0xC0 | encode));
5317 }
5318 
5319 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
5320   assert(VM_Version::supports_avx(), "");
5321   InstructionMark im(this);
5322   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5323   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5324   attributes.set_rex_vex_w_reverted();
5325   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5326   emit_int8(0x51);
5327   emit_operand(dst, src);
5328 }
5329 
5330 void Assembler::vsqrtps(XMMRegister dst, XMMRegister src, int vector_len) {
5331   assert(VM_Version::supports_avx(), "");
5332   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5333   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5334   emit_int8(0x51);
5335   emit_int8((unsigned char)(0xC0 | encode));
5336 }
5337 
5338 void Assembler::vsqrtps(XMMRegister dst, Address src, int vector_len) {
5339   assert(VM_Version::supports_avx(), "");
5340   InstructionMark im(this);
5341   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5342   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5343   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5344   emit_int8(0x51);
5345   emit_operand(dst, src);
5346 }
5347 
5348 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
5349   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5350   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5351   attributes.set_rex_vex_w_reverted();
5352   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5353   emit_int8(0x54);
5354   emit_int8((unsigned char)(0xC0 | encode));
5355 }
5356 
5357 void Assembler::andps(XMMRegister dst, XMMRegister src) {
5358   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5359   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5360   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5361   emit_int8(0x54);
5362   emit_int8((unsigned char)(0xC0 | encode));
5363 }
5364 
5365 void Assembler::andps(XMMRegister dst, Address src) {
5366   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5367   InstructionMark im(this);
5368   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5369   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5370   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5371   emit_int8(0x54);
5372   emit_operand(dst, src);
5373 }
5374 
5375 void Assembler::andpd(XMMRegister dst, Address src) {
5376   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5377   InstructionMark im(this);
5378   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5379   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5380   attributes.set_rex_vex_w_reverted();
5381   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5382   emit_int8(0x54);
5383   emit_operand(dst, src);
5384 }
5385 
5386 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5387   assert(VM_Version::supports_avx(), "");
5388   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5389   attributes.set_rex_vex_w_reverted();
5390   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5391   emit_int8(0x54);
5392   emit_int8((unsigned char)(0xC0 | encode));
5393 }
5394 
5395 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5396   assert(VM_Version::supports_avx(), "");
5397   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5398   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5399   emit_int8(0x54);
5400   emit_int8((unsigned char)(0xC0 | encode));
5401 }
5402 
5403 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5404   assert(VM_Version::supports_avx(), "");
5405   InstructionMark im(this);
5406   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5407   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5408   attributes.set_rex_vex_w_reverted();
5409   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5410   emit_int8(0x54);
5411   emit_operand(dst, src);
5412 }
5413 
5414 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5415   assert(VM_Version::supports_avx(), "");
5416   InstructionMark im(this);
5417   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5418   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5419   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5420   emit_int8(0x54);
5421   emit_operand(dst, src);
5422 }
5423 
5424 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
5425   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5426   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5427   attributes.set_rex_vex_w_reverted();
5428   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5429   emit_int8(0x15);
5430   emit_int8((unsigned char)(0xC0 | encode));
5431 }
5432 
5433 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
5434   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5435   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5436   attributes.set_rex_vex_w_reverted();
5437   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5438   emit_int8(0x14);
5439   emit_int8((unsigned char)(0xC0 | encode));
5440 }
5441 
5442 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
5443   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5444   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5445   attributes.set_rex_vex_w_reverted();
5446   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5447   emit_int8(0x57);
5448   emit_int8((unsigned char)(0xC0 | encode));
5449 }
5450 
5451 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5452   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5453   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5454   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5455   emit_int8(0x57);
5456   emit_int8((unsigned char)(0xC0 | encode));
5457 }
5458 
5459 void Assembler::xorpd(XMMRegister dst, Address src) {
5460   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5461   InstructionMark im(this);
5462   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5463   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5464   attributes.set_rex_vex_w_reverted();
5465   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5466   emit_int8(0x57);
5467   emit_operand(dst, src);
5468 }
5469 
5470 void Assembler::xorps(XMMRegister dst, Address src) {
5471   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5472   InstructionMark im(this);
5473   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5474   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5475   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5476   emit_int8(0x57);
5477   emit_operand(dst, src);
5478 }
5479 
5480 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5481   assert(VM_Version::supports_avx(), "");
5482   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5483   attributes.set_rex_vex_w_reverted();
5484   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5485   emit_int8(0x57);
5486   emit_int8((unsigned char)(0xC0 | encode));
5487 }
5488 
5489 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5490   assert(VM_Version::supports_avx(), "");
5491   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5492   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5493   emit_int8(0x57);
5494   emit_int8((unsigned char)(0xC0 | encode));
5495 }
5496 
5497 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5498   assert(VM_Version::supports_avx(), "");
5499   InstructionMark im(this);
5500   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5501   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5502   attributes.set_rex_vex_w_reverted();
5503   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5504   emit_int8(0x57);
5505   emit_operand(dst, src);
5506 }
5507 
5508 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5509   assert(VM_Version::supports_avx(), "");
5510   InstructionMark im(this);
5511   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5512   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5513   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5514   emit_int8(0x57);
5515   emit_operand(dst, src);
5516 }
5517 
5518 // Integer vector arithmetic
5519 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5520   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5521          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5522   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
5523   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5524   emit_int8(0x01);
5525   emit_int8((unsigned char)(0xC0 | encode));
5526 }
5527 
5528 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5529   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5530          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5531   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5532   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5533   emit_int8(0x02);
5534   emit_int8((unsigned char)(0xC0 | encode));
5535 }
5536 
5537 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5538   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5539   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5540   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5541   emit_int8((unsigned char)0xFC);
5542   emit_int8((unsigned char)(0xC0 | encode));
5543 }
5544 
5545 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5547   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5548   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5549   emit_int8((unsigned char)0xFD);
5550   emit_int8((unsigned char)(0xC0 | encode));
5551 }
5552 
5553 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5554   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5555   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5556   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5557   emit_int8((unsigned char)0xFE);
5558   emit_int8((unsigned char)(0xC0 | encode));
5559 }
5560 
5561 void Assembler::paddd(XMMRegister dst, Address src) {
5562   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5563   InstructionMark im(this);
5564   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5565   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5566   emit_int8((unsigned char)0xFE);
5567   emit_operand(dst, src);
5568 }
5569 
5570 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5571   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5572   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5573   attributes.set_rex_vex_w_reverted();
5574   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5575   emit_int8((unsigned char)0xD4);
5576   emit_int8((unsigned char)(0xC0 | encode));
5577 }
5578 
5579 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5580   assert(VM_Version::supports_sse3(), "");
5581   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
5582   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5583   emit_int8(0x01);
5584   emit_int8((unsigned char)(0xC0 | encode));
5585 }
5586 
5587 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5588   assert(VM_Version::supports_sse3(), "");
5589   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5590   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5591   emit_int8(0x02);
5592   emit_int8((unsigned char)(0xC0 | encode));
5593 }
5594 
5595 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5596   assert(UseAVX > 0, "requires some form of AVX");
5597   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5598   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5599   emit_int8((unsigned char)0xFC);
5600   emit_int8((unsigned char)(0xC0 | encode));
5601 }
5602 
5603 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5604   assert(UseAVX > 0, "requires some form of AVX");
5605   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5606   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5607   emit_int8((unsigned char)0xFD);
5608   emit_int8((unsigned char)(0xC0 | encode));
5609 }
5610 
5611 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5612   assert(UseAVX > 0, "requires some form of AVX");
5613   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5614   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5615   emit_int8((unsigned char)0xFE);
5616   emit_int8((unsigned char)(0xC0 | encode));
5617 }
5618 
5619 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5620   assert(UseAVX > 0, "requires some form of AVX");
5621   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5622   attributes.set_rex_vex_w_reverted();
5623   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5624   emit_int8((unsigned char)0xD4);
5625   emit_int8((unsigned char)(0xC0 | encode));
5626 }
5627 
5628 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5629   assert(UseAVX > 0, "requires some form of AVX");
5630   InstructionMark im(this);
5631   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5632   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5633   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5634   emit_int8((unsigned char)0xFC);
5635   emit_operand(dst, src);
5636 }
5637 
5638 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5639   assert(UseAVX > 0, "requires some form of AVX");
5640   InstructionMark im(this);
5641   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5642   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5643   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5644   emit_int8((unsigned char)0xFD);
5645   emit_operand(dst, src);
5646 }
5647 
5648 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5649   assert(UseAVX > 0, "requires some form of AVX");
5650   InstructionMark im(this);
5651   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5652   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5653   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5654   emit_int8((unsigned char)0xFE);
5655   emit_operand(dst, src);
5656 }
5657 
5658 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5659   assert(UseAVX > 0, "requires some form of AVX");
5660   InstructionMark im(this);
5661   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5662   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5663   attributes.set_rex_vex_w_reverted();
5664   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5665   emit_int8((unsigned char)0xD4);
5666   emit_operand(dst, src);
5667 }
5668 
5669 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5670   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5671   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5672   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5673   emit_int8((unsigned char)0xF8);
5674   emit_int8((unsigned char)(0xC0 | encode));
5675 }
5676 
5677 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5679   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5680   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5681   emit_int8((unsigned char)0xF9);
5682   emit_int8((unsigned char)(0xC0 | encode));
5683 }
5684 
5685 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5686   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5687   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5688   emit_int8((unsigned char)0xFA);
5689   emit_int8((unsigned char)(0xC0 | encode));
5690 }
5691 
5692 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5693   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5694   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5695   attributes.set_rex_vex_w_reverted();
5696   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5697   emit_int8((unsigned char)0xFB);
5698   emit_int8((unsigned char)(0xC0 | encode));
5699 }
5700 
5701 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5702   assert(UseAVX > 0, "requires some form of AVX");
5703   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5704   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5705   emit_int8((unsigned char)0xF8);
5706   emit_int8((unsigned char)(0xC0 | encode));
5707 }
5708 
5709 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5710   assert(UseAVX > 0, "requires some form of AVX");
5711   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5712   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5713   emit_int8((unsigned char)0xF9);
5714   emit_int8((unsigned char)(0xC0 | encode));
5715 }
5716 
5717 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5718   assert(UseAVX > 0, "requires some form of AVX");
5719   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5720   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5721   emit_int8((unsigned char)0xFA);
5722   emit_int8((unsigned char)(0xC0 | encode));
5723 }
5724 
5725 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5726   assert(UseAVX > 0, "requires some form of AVX");
5727   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5728   attributes.set_rex_vex_w_reverted();
5729   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5730   emit_int8((unsigned char)0xFB);
5731   emit_int8((unsigned char)(0xC0 | encode));
5732 }
5733 
5734 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5735   assert(UseAVX > 0, "requires some form of AVX");
5736   InstructionMark im(this);
5737   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5738   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5739   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5740   emit_int8((unsigned char)0xF8);
5741   emit_operand(dst, src);
5742 }
5743 
5744 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5745   assert(UseAVX > 0, "requires some form of AVX");
5746   InstructionMark im(this);
5747   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5748   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5749   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5750   emit_int8((unsigned char)0xF9);
5751   emit_operand(dst, src);
5752 }
5753 
5754 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5755   assert(UseAVX > 0, "requires some form of AVX");
5756   InstructionMark im(this);
5757   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5758   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5759   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5760   emit_int8((unsigned char)0xFA);
5761   emit_operand(dst, src);
5762 }
5763 
5764 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5765   assert(UseAVX > 0, "requires some form of AVX");
5766   InstructionMark im(this);
5767   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5768   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5769   attributes.set_rex_vex_w_reverted();
5770   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5771   emit_int8((unsigned char)0xFB);
5772   emit_operand(dst, src);
5773 }
5774 
5775 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5776   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5777   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5778   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5779   emit_int8((unsigned char)0xD5);
5780   emit_int8((unsigned char)(0xC0 | encode));
5781 }
5782 
5783 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5784   assert(VM_Version::supports_sse4_1(), "");
5785   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5786   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5787   emit_int8(0x40);
5788   emit_int8((unsigned char)(0xC0 | encode));
5789 }
5790 
5791 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5792   assert(UseAVX > 0, "requires some form of AVX");
5793   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5794   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5795   emit_int8((unsigned char)0xD5);
5796   emit_int8((unsigned char)(0xC0 | encode));
5797 }
5798 
5799 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5800   assert(UseAVX > 0, "requires some form of AVX");
5801   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5802   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5803   emit_int8(0x40);
5804   emit_int8((unsigned char)(0xC0 | encode));
5805 }
5806 
5807 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5808   assert(UseAVX > 2, "requires some form of EVEX");
5809   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5810   attributes.set_is_evex_instruction();
5811   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5812   emit_int8(0x40);
5813   emit_int8((unsigned char)(0xC0 | encode));
5814 }
5815 
5816 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5817   assert(UseAVX > 0, "requires some form of AVX");
5818   InstructionMark im(this);
5819   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5820   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5821   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5822   emit_int8((unsigned char)0xD5);
5823   emit_operand(dst, src);
5824 }
5825 
5826 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5827   assert(UseAVX > 0, "requires some form of AVX");
5828   InstructionMark im(this);
5829   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5830   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5831   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5832   emit_int8(0x40);
5833   emit_operand(dst, src);
5834 }
5835 
5836 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5837   assert(UseAVX > 2, "requires some form of EVEX");
5838   InstructionMark im(this);
5839   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5840   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5841   attributes.set_is_evex_instruction();
5842   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5843   emit_int8(0x40);
5844   emit_operand(dst, src);
5845 }
5846 
5847 // Shift packed integers left by specified number of bits.
5848 void Assembler::psllw(XMMRegister dst, int shift) {
5849   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5850   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5851   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5852   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5853   emit_int8(0x71);
5854   emit_int8((unsigned char)(0xC0 | encode));
5855   emit_int8(shift & 0xFF);
5856 }
5857 
5858 void Assembler::pslld(XMMRegister dst, int shift) {
5859   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5860   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5861   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5862   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5863   emit_int8(0x72);
5864   emit_int8((unsigned char)(0xC0 | encode));
5865   emit_int8(shift & 0xFF);
5866 }
5867 
5868 void Assembler::psllq(XMMRegister dst, int shift) {
5869   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5870   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5871   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5872   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5873   emit_int8(0x73);
5874   emit_int8((unsigned char)(0xC0 | encode));
5875   emit_int8(shift & 0xFF);
5876 }
5877 
5878 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5879   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5880   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5881   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5882   emit_int8((unsigned char)0xF1);
5883   emit_int8((unsigned char)(0xC0 | encode));
5884 }
5885 
5886 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5887   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5888   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5889   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5890   emit_int8((unsigned char)0xF2);
5891   emit_int8((unsigned char)(0xC0 | encode));
5892 }
5893 
5894 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5895   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5896   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5897   attributes.set_rex_vex_w_reverted();
5898   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5899   emit_int8((unsigned char)0xF3);
5900   emit_int8((unsigned char)(0xC0 | encode));
5901 }
5902 
5903 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5904   assert(UseAVX > 0, "requires some form of AVX");
5905   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5906   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5907   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5908   emit_int8(0x71);
5909   emit_int8((unsigned char)(0xC0 | encode));
5910   emit_int8(shift & 0xFF);
5911 }
5912 
5913 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5914   assert(UseAVX > 0, "requires some form of AVX");
5915   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5916   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5917   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5918   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5919   emit_int8(0x72);
5920   emit_int8((unsigned char)(0xC0 | encode));
5921   emit_int8(shift & 0xFF);
5922 }
5923 
5924 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5925   assert(UseAVX > 0, "requires some form of AVX");
5926   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5927   attributes.set_rex_vex_w_reverted();
5928   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5929   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5930   emit_int8(0x73);
5931   emit_int8((unsigned char)(0xC0 | encode));
5932   emit_int8(shift & 0xFF);
5933 }
5934 
5935 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5936   assert(UseAVX > 0, "requires some form of AVX");
5937   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5938   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5939   emit_int8((unsigned char)0xF1);
5940   emit_int8((unsigned char)(0xC0 | encode));
5941 }
5942 
5943 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5944   assert(UseAVX > 0, "requires some form of AVX");
5945   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5946   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5947   emit_int8((unsigned char)0xF2);
5948   emit_int8((unsigned char)(0xC0 | encode));
5949 }
5950 
5951 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5952   assert(UseAVX > 0, "requires some form of AVX");
5953   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5954   attributes.set_rex_vex_w_reverted();
5955   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5956   emit_int8((unsigned char)0xF3);
5957   emit_int8((unsigned char)(0xC0 | encode));
5958 }
5959 
5960 // Shift packed integers logically right by specified number of bits.
5961 void Assembler::psrlw(XMMRegister dst, int shift) {
5962   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5963   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5964   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5965   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5966   emit_int8(0x71);
5967   emit_int8((unsigned char)(0xC0 | encode));
5968   emit_int8(shift & 0xFF);
5969 }
5970 
5971 void Assembler::psrld(XMMRegister dst, int shift) {
5972   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5973   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5974   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5975   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5976   emit_int8(0x72);
5977   emit_int8((unsigned char)(0xC0 | encode));
5978   emit_int8(shift & 0xFF);
5979 }
5980 
5981 void Assembler::psrlq(XMMRegister dst, int shift) {
5982   // Do not confuse it with psrldq SSE2 instruction which
5983   // shifts 128 bit value in xmm register by number of bytes.
5984   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5985   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5986   attributes.set_rex_vex_w_reverted();
5987   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5988   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5989   emit_int8(0x73);
5990   emit_int8((unsigned char)(0xC0 | encode));
5991   emit_int8(shift & 0xFF);
5992 }
5993 
5994 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5995   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5996   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5997   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5998   emit_int8((unsigned char)0xD1);
5999   emit_int8((unsigned char)(0xC0 | encode));
6000 }
6001 
6002 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
6003   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6004   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6005   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6006   emit_int8((unsigned char)0xD2);
6007   emit_int8((unsigned char)(0xC0 | encode));
6008 }
6009 
6010 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
6011   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6012   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6013   attributes.set_rex_vex_w_reverted();
6014   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6015   emit_int8((unsigned char)0xD3);
6016   emit_int8((unsigned char)(0xC0 | encode));
6017 }
6018 
6019 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6020   assert(UseAVX > 0, "requires some form of AVX");
6021   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6022   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
6023   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6024   emit_int8(0x71);
6025   emit_int8((unsigned char)(0xC0 | encode));
6026   emit_int8(shift & 0xFF);
6027 }
6028 
6029 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6030   assert(UseAVX > 0, "requires some form of AVX");
6031   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6032   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
6033   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6034   emit_int8(0x72);
6035   emit_int8((unsigned char)(0xC0 | encode));
6036   emit_int8(shift & 0xFF);
6037 }
6038 
6039 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6040   assert(UseAVX > 0, "requires some form of AVX");
6041   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6042   attributes.set_rex_vex_w_reverted();
6043   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
6044   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6045   emit_int8(0x73);
6046   emit_int8((unsigned char)(0xC0 | encode));
6047   emit_int8(shift & 0xFF);
6048 }
6049 
6050 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6051   assert(UseAVX > 0, "requires some form of AVX");
6052   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6053   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6054   emit_int8((unsigned char)0xD1);
6055   emit_int8((unsigned char)(0xC0 | encode));
6056 }
6057 
6058 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6059   assert(UseAVX > 0, "requires some form of AVX");
6060   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6061   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6062   emit_int8((unsigned char)0xD2);
6063   emit_int8((unsigned char)(0xC0 | encode));
6064 }
6065 
6066 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6067   assert(UseAVX > 0, "requires some form of AVX");
6068   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6069   attributes.set_rex_vex_w_reverted();
6070   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6071   emit_int8((unsigned char)0xD3);
6072   emit_int8((unsigned char)(0xC0 | encode));
6073 }
6074 
6075 // Shift packed integers arithmetically right by specified number of bits.
6076 void Assembler::psraw(XMMRegister dst, int shift) {
6077   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6078   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6079   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6080   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6081   emit_int8(0x71);
6082   emit_int8((unsigned char)(0xC0 | encode));
6083   emit_int8(shift & 0xFF);
6084 }
6085 
6086 void Assembler::psrad(XMMRegister dst, int shift) {
6087   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6088   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6089   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
6090   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6091   emit_int8(0x72);
6092   emit_int8((unsigned char)(0xC0 | encode));
6093   emit_int8(shift & 0xFF);
6094 }
6095 
6096 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
6097   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6098   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6099   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6100   emit_int8((unsigned char)0xE1);
6101   emit_int8((unsigned char)(0xC0 | encode));
6102 }
6103 
6104 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
6105   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6106   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6107   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6108   emit_int8((unsigned char)0xE2);
6109   emit_int8((unsigned char)(0xC0 | encode));
6110 }
6111 
6112 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6113   assert(UseAVX > 0, "requires some form of AVX");
6114   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6115   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6116   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6117   emit_int8(0x71);
6118   emit_int8((unsigned char)(0xC0 | encode));
6119   emit_int8(shift & 0xFF);
6120 }
6121 
6122 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6123   assert(UseAVX > 0, "requires some form of AVX");
6124   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6125   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6126   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6127   emit_int8(0x72);
6128   emit_int8((unsigned char)(0xC0 | encode));
6129   emit_int8(shift & 0xFF);
6130 }
6131 
6132 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6133   assert(UseAVX > 0, "requires some form of AVX");
6134   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6135   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6136   emit_int8((unsigned char)0xE1);
6137   emit_int8((unsigned char)(0xC0 | encode));
6138 }
6139 
6140 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6141   assert(UseAVX > 0, "requires some form of AVX");
6142   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6143   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6144   emit_int8((unsigned char)0xE2);
6145   emit_int8((unsigned char)(0xC0 | encode));
6146 }
6147 
6148 
6149 // logical operations packed integers
6150 void Assembler::pand(XMMRegister dst, XMMRegister src) {
6151   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6152   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6153   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6154   emit_int8((unsigned char)0xDB);
6155   emit_int8((unsigned char)(0xC0 | encode));
6156 }
6157 
6158 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6159   assert(UseAVX > 0, "requires some form of AVX");
6160   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6161   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6162   emit_int8((unsigned char)0xDB);
6163   emit_int8((unsigned char)(0xC0 | encode));
6164 }
6165 
6166 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6167   assert(UseAVX > 0, "requires some form of AVX");
6168   InstructionMark im(this);
6169   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6170   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6171   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6172   emit_int8((unsigned char)0xDB);
6173   emit_operand(dst, src);
6174 }
6175 
6176 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
6177   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6178   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6179   attributes.set_rex_vex_w_reverted();
6180   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6181   emit_int8((unsigned char)0xDF);
6182   emit_int8((unsigned char)(0xC0 | encode));
6183 }
6184 
6185 void Assembler::por(XMMRegister dst, XMMRegister src) {
6186   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6187   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6188   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6189   emit_int8((unsigned char)0xEB);
6190   emit_int8((unsigned char)(0xC0 | encode));
6191 }
6192 
6193 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6194   assert(UseAVX > 0, "requires some form of AVX");
6195   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6196   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6197   emit_int8((unsigned char)0xEB);
6198   emit_int8((unsigned char)(0xC0 | encode));
6199 }
6200 
6201 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6202   assert(UseAVX > 0, "requires some form of AVX");
6203   InstructionMark im(this);
6204   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6205   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6206   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6207   emit_int8((unsigned char)0xEB);
6208   emit_operand(dst, src);
6209 }
6210 
6211 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
6212   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6213   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6214   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6215   emit_int8((unsigned char)0xEF);
6216   emit_int8((unsigned char)(0xC0 | encode));
6217 }
6218 
6219 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6220   assert(UseAVX > 0, "requires some form of AVX");
6221   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6222   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6223   emit_int8((unsigned char)0xEF);
6224   emit_int8((unsigned char)(0xC0 | encode));
6225 }
6226 
6227 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6228   assert(UseAVX > 0, "requires some form of AVX");
6229   InstructionMark im(this);
6230   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6231   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6232   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6233   emit_int8((unsigned char)0xEF);
6234   emit_operand(dst, src);
6235 }
6236 
6237 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6238   assert(VM_Version::supports_evex(), "requires EVEX support");
6239   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6240   attributes.set_is_evex_instruction();
6241   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6242   emit_int8((unsigned char)0xEF);
6243   emit_int8((unsigned char)(0xC0 | encode));
6244 }
6245 
6246 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6247   assert(VM_Version::supports_evex(), "requires EVEX support");
6248   assert(dst != xnoreg, "sanity");
6249   InstructionMark im(this);
6250   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6251   attributes.set_is_evex_instruction();
6252   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6253   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6254   emit_int8((unsigned char)0xEF);
6255   emit_operand(dst, src);
6256 }
6257 
6258 
6259 // vinserti forms
6260 
6261 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6262   assert(VM_Version::supports_avx2(), "");
6263   assert(imm8 <= 0x01, "imm8: %u", imm8);
6264   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6265   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6266   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6267   emit_int8(0x38);
6268   emit_int8((unsigned char)(0xC0 | encode));
6269   // 0x00 - insert into lower 128 bits
6270   // 0x01 - insert into upper 128 bits
6271   emit_int8(imm8 & 0x01);
6272 }
6273 
6274 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6275   assert(VM_Version::supports_avx2(), "");
6276   assert(dst != xnoreg, "sanity");
6277   assert(imm8 <= 0x01, "imm8: %u", imm8);
6278   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6279   InstructionMark im(this);
6280   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6281   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6282   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6283   emit_int8(0x38);
6284   emit_operand(dst, src);
6285   // 0x00 - insert into lower 128 bits
6286   // 0x01 - insert into upper 128 bits
6287   emit_int8(imm8 & 0x01);
6288 }
6289 
6290 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6291   assert(VM_Version::supports_evex(), "");
6292   assert(imm8 <= 0x03, "imm8: %u", imm8);
6293   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6294   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6295   emit_int8(0x38);
6296   emit_int8((unsigned char)(0xC0 | encode));
6297   // 0x00 - insert into q0 128 bits (0..127)
6298   // 0x01 - insert into q1 128 bits (128..255)
6299   // 0x02 - insert into q2 128 bits (256..383)
6300   // 0x03 - insert into q3 128 bits (384..511)
6301   emit_int8(imm8 & 0x03);
6302 }
6303 
6304 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6305   assert(VM_Version::supports_avx(), "");
6306   assert(dst != xnoreg, "sanity");
6307   assert(imm8 <= 0x03, "imm8: %u", imm8);
6308   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6309   InstructionMark im(this);
6310   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6311   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6312   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6313   emit_int8(0x18);
6314   emit_operand(dst, src);
6315   // 0x00 - insert into q0 128 bits (0..127)
6316   // 0x01 - insert into q1 128 bits (128..255)
6317   // 0x02 - insert into q2 128 bits (256..383)
6318   // 0x03 - insert into q3 128 bits (384..511)
6319   emit_int8(imm8 & 0x03);
6320 }
6321 
6322 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6323   assert(VM_Version::supports_evex(), "");
6324   assert(imm8 <= 0x01, "imm8: %u", imm8);
6325   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6326   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6327   emit_int8(0x38);
6328   emit_int8((unsigned char)(0xC0 | encode));
6329   // 0x00 - insert into lower 256 bits
6330   // 0x01 - insert into upper 256 bits
6331   emit_int8(imm8 & 0x01);
6332 }
6333 
6334 
6335 // vinsertf forms
6336 
6337 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6338   assert(VM_Version::supports_avx(), "");
6339   assert(imm8 <= 0x01, "imm8: %u", imm8);
6340   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6341   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6342   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6343   emit_int8(0x18);
6344   emit_int8((unsigned char)(0xC0 | encode));
6345   // 0x00 - insert into lower 128 bits
6346   // 0x01 - insert into upper 128 bits
6347   emit_int8(imm8 & 0x01);
6348 }
6349 
6350 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6351   assert(VM_Version::supports_avx(), "");
6352   assert(dst != xnoreg, "sanity");
6353   assert(imm8 <= 0x01, "imm8: %u", imm8);
6354   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6355   InstructionMark im(this);
6356   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6357   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6358   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6359   emit_int8(0x18);
6360   emit_operand(dst, src);
6361   // 0x00 - insert into lower 128 bits
6362   // 0x01 - insert into upper 128 bits
6363   emit_int8(imm8 & 0x01);
6364 }
6365 
6366 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6367   assert(VM_Version::supports_evex(), "");
6368   assert(imm8 <= 0x03, "imm8: %u", imm8);
6369   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6370   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6371   emit_int8(0x18);
6372   emit_int8((unsigned char)(0xC0 | encode));
6373   // 0x00 - insert into q0 128 bits (0..127)
6374   // 0x01 - insert into q1 128 bits (128..255)
6375   // 0x02 - insert into q2 128 bits (256..383)
6376   // 0x03 - insert into q3 128 bits (384..511)
6377   emit_int8(imm8 & 0x03);
6378 }
6379 
6380 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6381   assert(VM_Version::supports_avx(), "");
6382   assert(dst != xnoreg, "sanity");
6383   assert(imm8 <= 0x03, "imm8: %u", imm8);
6384   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6385   InstructionMark im(this);
6386   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6387   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6388   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6389   emit_int8(0x18);
6390   emit_operand(dst, src);
6391   // 0x00 - insert into q0 128 bits (0..127)
6392   // 0x01 - insert into q1 128 bits (128..255)
6393   // 0x02 - insert into q2 128 bits (256..383)
6394   // 0x03 - insert into q3 128 bits (384..511)
6395   emit_int8(imm8 & 0x03);
6396 }
6397 
6398 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6399   assert(VM_Version::supports_evex(), "");
6400   assert(imm8 <= 0x01, "imm8: %u", imm8);
6401   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6402   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6403   emit_int8(0x1A);
6404   emit_int8((unsigned char)(0xC0 | encode));
6405   // 0x00 - insert into lower 256 bits
6406   // 0x01 - insert into upper 256 bits
6407   emit_int8(imm8 & 0x01);
6408 }
6409 
6410 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6411   assert(VM_Version::supports_evex(), "");
6412   assert(dst != xnoreg, "sanity");
6413   assert(imm8 <= 0x01, "imm8: %u", imm8);
6414   InstructionMark im(this);
6415   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6416   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6417   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6418   emit_int8(0x1A);
6419   emit_operand(dst, src);
6420   // 0x00 - insert into lower 256 bits
6421   // 0x01 - insert into upper 256 bits
6422   emit_int8(imm8 & 0x01);
6423 }
6424 
6425 
6426 // vextracti forms
6427 
6428 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6429   assert(VM_Version::supports_avx(), "");
6430   assert(imm8 <= 0x01, "imm8: %u", imm8);
6431   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6432   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6433   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6434   emit_int8(0x39);
6435   emit_int8((unsigned char)(0xC0 | encode));
6436   // 0x00 - extract from lower 128 bits
6437   // 0x01 - extract from upper 128 bits
6438   emit_int8(imm8 & 0x01);
6439 }
6440 
6441 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
6442   assert(VM_Version::supports_avx2(), "");
6443   assert(src != xnoreg, "sanity");
6444   assert(imm8 <= 0x01, "imm8: %u", imm8);
6445   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6446   InstructionMark im(this);
6447   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6448   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6449   attributes.reset_is_clear_context();
6450   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6451   emit_int8(0x39);
6452   emit_operand(src, dst);
6453   // 0x00 - extract from lower 128 bits
6454   // 0x01 - extract from upper 128 bits
6455   emit_int8(imm8 & 0x01);
6456 }
6457 
6458 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6459   assert(VM_Version::supports_avx(), "");
6460   assert(imm8 <= 0x03, "imm8: %u", imm8);
6461   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6462   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6463   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6464   emit_int8(0x39);
6465   emit_int8((unsigned char)(0xC0 | encode));
6466   // 0x00 - extract from bits 127:0
6467   // 0x01 - extract from bits 255:128
6468   // 0x02 - extract from bits 383:256
6469   // 0x03 - extract from bits 511:384
6470   emit_int8(imm8 & 0x03);
6471 }
6472 
6473 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6474   assert(VM_Version::supports_evex(), "");
6475   assert(src != xnoreg, "sanity");
6476   assert(imm8 <= 0x03, "imm8: %u", imm8);
6477   InstructionMark im(this);
6478   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6479   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6480   attributes.reset_is_clear_context();
6481   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6482   emit_int8(0x39);
6483   emit_operand(src, dst);
6484   // 0x00 - extract from bits 127:0
6485   // 0x01 - extract from bits 255:128
6486   // 0x02 - extract from bits 383:256
6487   // 0x03 - extract from bits 511:384
6488   emit_int8(imm8 & 0x03);
6489 }
6490 
6491 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6492   assert(VM_Version::supports_avx512dq(), "");
6493   assert(imm8 <= 0x03, "imm8: %u", imm8);
6494   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6495   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6496   emit_int8(0x39);
6497   emit_int8((unsigned char)(0xC0 | encode));
6498   // 0x00 - extract from bits 127:0
6499   // 0x01 - extract from bits 255:128
6500   // 0x02 - extract from bits 383:256
6501   // 0x03 - extract from bits 511:384
6502   emit_int8(imm8 & 0x03);
6503 }
6504 
6505 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6506   assert(VM_Version::supports_evex(), "");
6507   assert(imm8 <= 0x01, "imm8: %u", imm8);
6508   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6509   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6510   emit_int8(0x3B);
6511   emit_int8((unsigned char)(0xC0 | encode));
6512   // 0x00 - extract from lower 256 bits
6513   // 0x01 - extract from upper 256 bits
6514   emit_int8(imm8 & 0x01);
6515 }
6516 
6517 
6518 // vextractf forms
6519 
6520 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6521   assert(VM_Version::supports_avx(), "");
6522   assert(imm8 <= 0x01, "imm8: %u", imm8);
6523   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6524   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6525   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6526   emit_int8(0x19);
6527   emit_int8((unsigned char)(0xC0 | encode));
6528   // 0x00 - extract from lower 128 bits
6529   // 0x01 - extract from upper 128 bits
6530   emit_int8(imm8 & 0x01);
6531 }
6532 
6533 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6534   assert(VM_Version::supports_avx(), "");
6535   assert(src != xnoreg, "sanity");
6536   assert(imm8 <= 0x01, "imm8: %u", imm8);
6537   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6538   InstructionMark im(this);
6539   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6540   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6541   attributes.reset_is_clear_context();
6542   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6543   emit_int8(0x19);
6544   emit_operand(src, dst);
6545   // 0x00 - extract from lower 128 bits
6546   // 0x01 - extract from upper 128 bits
6547   emit_int8(imm8 & 0x01);
6548 }
6549 
6550 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6551   assert(VM_Version::supports_avx(), "");
6552   assert(imm8 <= 0x03, "imm8: %u", imm8);
6553   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6554   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6555   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6556   emit_int8(0x19);
6557   emit_int8((unsigned char)(0xC0 | encode));
6558   // 0x00 - extract from bits 127:0
6559   // 0x01 - extract from bits 255:128
6560   // 0x02 - extract from bits 383:256
6561   // 0x03 - extract from bits 511:384
6562   emit_int8(imm8 & 0x03);
6563 }
6564 
6565 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6566   assert(VM_Version::supports_evex(), "");
6567   assert(src != xnoreg, "sanity");
6568   assert(imm8 <= 0x03, "imm8: %u", imm8);
6569   InstructionMark im(this);
6570   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6571   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6572   attributes.reset_is_clear_context();
6573   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6574   emit_int8(0x19);
6575   emit_operand(src, dst);
6576   // 0x00 - extract from bits 127:0
6577   // 0x01 - extract from bits 255:128
6578   // 0x02 - extract from bits 383:256
6579   // 0x03 - extract from bits 511:384
6580   emit_int8(imm8 & 0x03);
6581 }
6582 
6583 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6584   assert(VM_Version::supports_avx512dq(), "");
6585   assert(imm8 <= 0x03, "imm8: %u", imm8);
6586   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6587   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6588   emit_int8(0x19);
6589   emit_int8((unsigned char)(0xC0 | encode));
6590   // 0x00 - extract from bits 127:0
6591   // 0x01 - extract from bits 255:128
6592   // 0x02 - extract from bits 383:256
6593   // 0x03 - extract from bits 511:384
6594   emit_int8(imm8 & 0x03);
6595 }
6596 
6597 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6598   assert(VM_Version::supports_evex(), "");
6599   assert(imm8 <= 0x01, "imm8: %u", imm8);
6600   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6601   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6602   emit_int8(0x1B);
6603   emit_int8((unsigned char)(0xC0 | encode));
6604   // 0x00 - extract from lower 256 bits
6605   // 0x01 - extract from upper 256 bits
6606   emit_int8(imm8 & 0x01);
6607 }
6608 
6609 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6610   assert(VM_Version::supports_evex(), "");
6611   assert(src != xnoreg, "sanity");
6612   assert(imm8 <= 0x01, "imm8: %u", imm8);
6613   InstructionMark im(this);
6614   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6615   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6616   attributes.reset_is_clear_context();
6617   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6618   emit_int8(0x1B);
6619   emit_operand(src, dst);
6620   // 0x00 - extract from lower 256 bits
6621   // 0x01 - extract from upper 256 bits
6622   emit_int8(imm8 & 0x01);
6623 }
6624 
6625 
6626 // legacy word/dword replicate
6627 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
6628   assert(VM_Version::supports_avx2(), "");
6629   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6630   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6631   emit_int8(0x79);
6632   emit_int8((unsigned char)(0xC0 | encode));
6633 }
6634 
6635 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
6636   assert(VM_Version::supports_avx2(), "");
6637   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6638   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6639   emit_int8(0x58);
6640   emit_int8((unsigned char)(0xC0 | encode));
6641 }
6642 
6643 
6644 // xmm/mem sourced byte/word/dword/qword replicate
6645 
6646 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6647 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6648   assert(VM_Version::supports_evex(), "");
6649   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6650   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6651   emit_int8(0x78);
6652   emit_int8((unsigned char)(0xC0 | encode));
6653 }
6654 
6655 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6656   assert(VM_Version::supports_evex(), "");
6657   assert(dst != xnoreg, "sanity");
6658   InstructionMark im(this);
6659   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6660   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6661   // swap src<->dst for encoding
6662   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6663   emit_int8(0x78);
6664   emit_operand(dst, src);
6665 }
6666 
6667 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6668 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6669   assert(VM_Version::supports_evex(), "");
6670   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6671   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6672   emit_int8(0x79);
6673   emit_int8((unsigned char)(0xC0 | encode));
6674 }
6675 
6676 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6677   assert(VM_Version::supports_evex(), "");
6678   assert(dst != xnoreg, "sanity");
6679   InstructionMark im(this);
6680   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6681   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6682   // swap src<->dst for encoding
6683   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6684   emit_int8(0x79);
6685   emit_operand(dst, src);
6686 }
6687 
6688 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6689 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6690   assert(VM_Version::supports_evex(), "");
6691   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6692   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6693   emit_int8(0x58);
6694   emit_int8((unsigned char)(0xC0 | encode));
6695 }
6696 
6697 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6698   assert(VM_Version::supports_evex(), "");
6699   assert(dst != xnoreg, "sanity");
6700   InstructionMark im(this);
6701   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6702   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6703   // swap src<->dst for encoding
6704   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6705   emit_int8(0x58);
6706   emit_operand(dst, src);
6707 }
6708 
6709 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6710 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6711   assert(VM_Version::supports_evex(), "");
6712   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6713   attributes.set_rex_vex_w_reverted();
6714   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6715   emit_int8(0x59);
6716   emit_int8((unsigned char)(0xC0 | encode));
6717 }
6718 
6719 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6720   assert(VM_Version::supports_evex(), "");
6721   assert(dst != xnoreg, "sanity");
6722   InstructionMark im(this);
6723   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6724   attributes.set_rex_vex_w_reverted();
6725   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6726   // swap src<->dst for encoding
6727   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6728   emit_int8(0x59);
6729   emit_operand(dst, src);
6730 }
6731 
6732 
6733 // scalar single/double precision replicate
6734 
6735 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6736 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6737   assert(VM_Version::supports_evex(), "");
6738   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6739   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6740   emit_int8(0x18);
6741   emit_int8((unsigned char)(0xC0 | encode));
6742 }
6743 
6744 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6745   assert(VM_Version::supports_evex(), "");
6746   assert(dst != xnoreg, "sanity");
6747   InstructionMark im(this);
6748   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6749   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6750   // swap src<->dst for encoding
6751   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6752   emit_int8(0x18);
6753   emit_operand(dst, src);
6754 }
6755 
6756 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6757 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6758   assert(VM_Version::supports_evex(), "");
6759   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6760   attributes.set_rex_vex_w_reverted();
6761   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6762   emit_int8(0x19);
6763   emit_int8((unsigned char)(0xC0 | encode));
6764 }
6765 
6766 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6767   assert(VM_Version::supports_evex(), "");
6768   assert(dst != xnoreg, "sanity");
6769   InstructionMark im(this);
6770   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6771   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6772   attributes.set_rex_vex_w_reverted();
6773   // swap src<->dst for encoding
6774   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6775   emit_int8(0x19);
6776   emit_operand(dst, src);
6777 }
6778 
6779 
6780 // gpr source broadcast forms
6781 
6782 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6783 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6784   assert(VM_Version::supports_evex(), "");
6785   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6786   attributes.set_is_evex_instruction();
6787   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6788   emit_int8(0x7A);
6789   emit_int8((unsigned char)(0xC0 | encode));
6790 }
6791 
6792 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6793 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6794   assert(VM_Version::supports_evex(), "");
6795   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6796   attributes.set_is_evex_instruction();
6797   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6798   emit_int8(0x7B);
6799   emit_int8((unsigned char)(0xC0 | encode));
6800 }
6801 
6802 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6803 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6804   assert(VM_Version::supports_evex(), "");
6805   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6806   attributes.set_is_evex_instruction();
6807   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6808   emit_int8(0x7C);
6809   emit_int8((unsigned char)(0xC0 | encode));
6810 }
6811 
6812 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6813 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6814   assert(VM_Version::supports_evex(), "");
6815   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6816   attributes.set_is_evex_instruction();
6817   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6818   emit_int8(0x7C);
6819   emit_int8((unsigned char)(0xC0 | encode));
6820 }
6821 
6822 
6823 // Carry-Less Multiplication Quadword
6824 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6825   assert(VM_Version::supports_clmul(), "");
6826   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6827   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6828   emit_int8(0x44);
6829   emit_int8((unsigned char)(0xC0 | encode));
6830   emit_int8((unsigned char)mask);
6831 }
6832 
6833 // Carry-Less Multiplication Quadword
6834 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6835   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6836   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6837   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6838   emit_int8(0x44);
6839   emit_int8((unsigned char)(0xC0 | encode));
6840   emit_int8((unsigned char)mask);
6841 }
6842 
6843 void Assembler::evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len) {
6844   assert(VM_Version::supports_vpclmulqdq(), "Requires vector carryless multiplication support");
6845   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6846   attributes.set_is_evex_instruction();
6847   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6848   emit_int8(0x44);
6849   emit_int8((unsigned char)(0xC0 | encode));
6850   emit_int8((unsigned char)mask);
6851 }
6852 
6853 void Assembler::vzeroupper() {
6854   if (VM_Version::supports_vzeroupper()) {
6855     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
6856     (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6857     emit_int8(0x77);
6858   }
6859 }
6860 
6861 #ifndef _LP64
6862 // 32bit only pieces of the assembler
6863 
6864 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6865   // NO PREFIX AS NEVER 64BIT
6866   InstructionMark im(this);
6867   emit_int8((unsigned char)0x81);
6868   emit_int8((unsigned char)(0xF8 | src1->encoding()));
6869   emit_data(imm32, rspec, 0);
6870 }
6871 
6872 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6873   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6874   InstructionMark im(this);
6875   emit_int8((unsigned char)0x81);
6876   emit_operand(rdi, src1);
6877   emit_data(imm32, rspec, 0);
6878 }
6879 
6880 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6881 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6882 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6883 void Assembler::cmpxchg8(Address adr) {
6884   InstructionMark im(this);
6885   emit_int8(0x0F);
6886   emit_int8((unsigned char)0xC7);
6887   emit_operand(rcx, adr);
6888 }
6889 
6890 void Assembler::decl(Register dst) {
6891   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6892  emit_int8(0x48 | dst->encoding());
6893 }
6894 
6895 #endif // _LP64
6896 
6897 // 64bit typically doesn't use the x87 but needs to for the trig funcs
6898 
6899 void Assembler::fabs() {
6900   emit_int8((unsigned char)0xD9);
6901   emit_int8((unsigned char)0xE1);
6902 }
6903 
6904 void Assembler::fadd(int i) {
6905   emit_farith(0xD8, 0xC0, i);
6906 }
6907 
6908 void Assembler::fadd_d(Address src) {
6909   InstructionMark im(this);
6910   emit_int8((unsigned char)0xDC);
6911   emit_operand32(rax, src);
6912 }
6913 
6914 void Assembler::fadd_s(Address src) {
6915   InstructionMark im(this);
6916   emit_int8((unsigned char)0xD8);
6917   emit_operand32(rax, src);
6918 }
6919 
6920 void Assembler::fadda(int i) {
6921   emit_farith(0xDC, 0xC0, i);
6922 }
6923 
6924 void Assembler::faddp(int i) {
6925   emit_farith(0xDE, 0xC0, i);
6926 }
6927 
6928 void Assembler::fchs() {
6929   emit_int8((unsigned char)0xD9);
6930   emit_int8((unsigned char)0xE0);
6931 }
6932 
6933 void Assembler::fcom(int i) {
6934   emit_farith(0xD8, 0xD0, i);
6935 }
6936 
6937 void Assembler::fcomp(int i) {
6938   emit_farith(0xD8, 0xD8, i);
6939 }
6940 
6941 void Assembler::fcomp_d(Address src) {
6942   InstructionMark im(this);
6943   emit_int8((unsigned char)0xDC);
6944   emit_operand32(rbx, src);
6945 }
6946 
6947 void Assembler::fcomp_s(Address src) {
6948   InstructionMark im(this);
6949   emit_int8((unsigned char)0xD8);
6950   emit_operand32(rbx, src);
6951 }
6952 
6953 void Assembler::fcompp() {
6954   emit_int8((unsigned char)0xDE);
6955   emit_int8((unsigned char)0xD9);
6956 }
6957 
6958 void Assembler::fcos() {
6959   emit_int8((unsigned char)0xD9);
6960   emit_int8((unsigned char)0xFF);
6961 }
6962 
6963 void Assembler::fdecstp() {
6964   emit_int8((unsigned char)0xD9);
6965   emit_int8((unsigned char)0xF6);
6966 }
6967 
6968 void Assembler::fdiv(int i) {
6969   emit_farith(0xD8, 0xF0, i);
6970 }
6971 
6972 void Assembler::fdiv_d(Address src) {
6973   InstructionMark im(this);
6974   emit_int8((unsigned char)0xDC);
6975   emit_operand32(rsi, src);
6976 }
6977 
6978 void Assembler::fdiv_s(Address src) {
6979   InstructionMark im(this);
6980   emit_int8((unsigned char)0xD8);
6981   emit_operand32(rsi, src);
6982 }
6983 
6984 void Assembler::fdiva(int i) {
6985   emit_farith(0xDC, 0xF8, i);
6986 }
6987 
6988 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6989 //       is erroneous for some of the floating-point instructions below.
6990 
6991 void Assembler::fdivp(int i) {
6992   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6993 }
6994 
6995 void Assembler::fdivr(int i) {
6996   emit_farith(0xD8, 0xF8, i);
6997 }
6998 
6999 void Assembler::fdivr_d(Address src) {
7000   InstructionMark im(this);
7001   emit_int8((unsigned char)0xDC);
7002   emit_operand32(rdi, src);
7003 }
7004 
7005 void Assembler::fdivr_s(Address src) {
7006   InstructionMark im(this);
7007   emit_int8((unsigned char)0xD8);
7008   emit_operand32(rdi, src);
7009 }
7010 
7011 void Assembler::fdivra(int i) {
7012   emit_farith(0xDC, 0xF0, i);
7013 }
7014 
7015 void Assembler::fdivrp(int i) {
7016   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
7017 }
7018 
7019 void Assembler::ffree(int i) {
7020   emit_farith(0xDD, 0xC0, i);
7021 }
7022 
7023 void Assembler::fild_d(Address adr) {
7024   InstructionMark im(this);
7025   emit_int8((unsigned char)0xDF);
7026   emit_operand32(rbp, adr);
7027 }
7028 
7029 void Assembler::fild_s(Address adr) {
7030   InstructionMark im(this);
7031   emit_int8((unsigned char)0xDB);
7032   emit_operand32(rax, adr);
7033 }
7034 
7035 void Assembler::fincstp() {
7036   emit_int8((unsigned char)0xD9);
7037   emit_int8((unsigned char)0xF7);
7038 }
7039 
7040 void Assembler::finit() {
7041   emit_int8((unsigned char)0x9B);
7042   emit_int8((unsigned char)0xDB);
7043   emit_int8((unsigned char)0xE3);
7044 }
7045 
7046 void Assembler::fist_s(Address adr) {
7047   InstructionMark im(this);
7048   emit_int8((unsigned char)0xDB);
7049   emit_operand32(rdx, adr);
7050 }
7051 
7052 void Assembler::fistp_d(Address adr) {
7053   InstructionMark im(this);
7054   emit_int8((unsigned char)0xDF);
7055   emit_operand32(rdi, adr);
7056 }
7057 
7058 void Assembler::fistp_s(Address adr) {
7059   InstructionMark im(this);
7060   emit_int8((unsigned char)0xDB);
7061   emit_operand32(rbx, adr);
7062 }
7063 
7064 void Assembler::fld1() {
7065   emit_int8((unsigned char)0xD9);
7066   emit_int8((unsigned char)0xE8);
7067 }
7068 
7069 void Assembler::fld_d(Address adr) {
7070   InstructionMark im(this);
7071   emit_int8((unsigned char)0xDD);
7072   emit_operand32(rax, adr);
7073 }
7074 
7075 void Assembler::fld_s(Address adr) {
7076   InstructionMark im(this);
7077   emit_int8((unsigned char)0xD9);
7078   emit_operand32(rax, adr);
7079 }
7080 
7081 
7082 void Assembler::fld_s(int index) {
7083   emit_farith(0xD9, 0xC0, index);
7084 }
7085 
7086 void Assembler::fld_x(Address adr) {
7087   InstructionMark im(this);
7088   emit_int8((unsigned char)0xDB);
7089   emit_operand32(rbp, adr);
7090 }
7091 
7092 void Assembler::fldcw(Address src) {
7093   InstructionMark im(this);
7094   emit_int8((unsigned char)0xD9);
7095   emit_operand32(rbp, src);
7096 }
7097 
7098 void Assembler::fldenv(Address src) {
7099   InstructionMark im(this);
7100   emit_int8((unsigned char)0xD9);
7101   emit_operand32(rsp, src);
7102 }
7103 
7104 void Assembler::fldlg2() {
7105   emit_int8((unsigned char)0xD9);
7106   emit_int8((unsigned char)0xEC);
7107 }
7108 
7109 void Assembler::fldln2() {
7110   emit_int8((unsigned char)0xD9);
7111   emit_int8((unsigned char)0xED);
7112 }
7113 
7114 void Assembler::fldz() {
7115   emit_int8((unsigned char)0xD9);
7116   emit_int8((unsigned char)0xEE);
7117 }
7118 
7119 void Assembler::flog() {
7120   fldln2();
7121   fxch();
7122   fyl2x();
7123 }
7124 
7125 void Assembler::flog10() {
7126   fldlg2();
7127   fxch();
7128   fyl2x();
7129 }
7130 
7131 void Assembler::fmul(int i) {
7132   emit_farith(0xD8, 0xC8, i);
7133 }
7134 
7135 void Assembler::fmul_d(Address src) {
7136   InstructionMark im(this);
7137   emit_int8((unsigned char)0xDC);
7138   emit_operand32(rcx, src);
7139 }
7140 
7141 void Assembler::fmul_s(Address src) {
7142   InstructionMark im(this);
7143   emit_int8((unsigned char)0xD8);
7144   emit_operand32(rcx, src);
7145 }
7146 
7147 void Assembler::fmula(int i) {
7148   emit_farith(0xDC, 0xC8, i);
7149 }
7150 
7151 void Assembler::fmulp(int i) {
7152   emit_farith(0xDE, 0xC8, i);
7153 }
7154 
7155 void Assembler::fnsave(Address dst) {
7156   InstructionMark im(this);
7157   emit_int8((unsigned char)0xDD);
7158   emit_operand32(rsi, dst);
7159 }
7160 
7161 void Assembler::fnstcw(Address src) {
7162   InstructionMark im(this);
7163   emit_int8((unsigned char)0x9B);
7164   emit_int8((unsigned char)0xD9);
7165   emit_operand32(rdi, src);
7166 }
7167 
7168 void Assembler::fnstsw_ax() {
7169   emit_int8((unsigned char)0xDF);
7170   emit_int8((unsigned char)0xE0);
7171 }
7172 
7173 void Assembler::fprem() {
7174   emit_int8((unsigned char)0xD9);
7175   emit_int8((unsigned char)0xF8);
7176 }
7177 
7178 void Assembler::fprem1() {
7179   emit_int8((unsigned char)0xD9);
7180   emit_int8((unsigned char)0xF5);
7181 }
7182 
7183 void Assembler::frstor(Address src) {
7184   InstructionMark im(this);
7185   emit_int8((unsigned char)0xDD);
7186   emit_operand32(rsp, src);
7187 }
7188 
7189 void Assembler::fsin() {
7190   emit_int8((unsigned char)0xD9);
7191   emit_int8((unsigned char)0xFE);
7192 }
7193 
7194 void Assembler::fsqrt() {
7195   emit_int8((unsigned char)0xD9);
7196   emit_int8((unsigned char)0xFA);
7197 }
7198 
7199 void Assembler::fst_d(Address adr) {
7200   InstructionMark im(this);
7201   emit_int8((unsigned char)0xDD);
7202   emit_operand32(rdx, adr);
7203 }
7204 
7205 void Assembler::fst_s(Address adr) {
7206   InstructionMark im(this);
7207   emit_int8((unsigned char)0xD9);
7208   emit_operand32(rdx, adr);
7209 }
7210 
7211 void Assembler::fstp_d(Address adr) {
7212   InstructionMark im(this);
7213   emit_int8((unsigned char)0xDD);
7214   emit_operand32(rbx, adr);
7215 }
7216 
7217 void Assembler::fstp_d(int index) {
7218   emit_farith(0xDD, 0xD8, index);
7219 }
7220 
7221 void Assembler::fstp_s(Address adr) {
7222   InstructionMark im(this);
7223   emit_int8((unsigned char)0xD9);
7224   emit_operand32(rbx, adr);
7225 }
7226 
7227 void Assembler::fstp_x(Address adr) {
7228   InstructionMark im(this);
7229   emit_int8((unsigned char)0xDB);
7230   emit_operand32(rdi, adr);
7231 }
7232 
7233 void Assembler::fsub(int i) {
7234   emit_farith(0xD8, 0xE0, i);
7235 }
7236 
7237 void Assembler::fsub_d(Address src) {
7238   InstructionMark im(this);
7239   emit_int8((unsigned char)0xDC);
7240   emit_operand32(rsp, src);
7241 }
7242 
7243 void Assembler::fsub_s(Address src) {
7244   InstructionMark im(this);
7245   emit_int8((unsigned char)0xD8);
7246   emit_operand32(rsp, src);
7247 }
7248 
7249 void Assembler::fsuba(int i) {
7250   emit_farith(0xDC, 0xE8, i);
7251 }
7252 
7253 void Assembler::fsubp(int i) {
7254   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
7255 }
7256 
7257 void Assembler::fsubr(int i) {
7258   emit_farith(0xD8, 0xE8, i);
7259 }
7260 
7261 void Assembler::fsubr_d(Address src) {
7262   InstructionMark im(this);
7263   emit_int8((unsigned char)0xDC);
7264   emit_operand32(rbp, src);
7265 }
7266 
7267 void Assembler::fsubr_s(Address src) {
7268   InstructionMark im(this);
7269   emit_int8((unsigned char)0xD8);
7270   emit_operand32(rbp, src);
7271 }
7272 
7273 void Assembler::fsubra(int i) {
7274   emit_farith(0xDC, 0xE0, i);
7275 }
7276 
7277 void Assembler::fsubrp(int i) {
7278   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
7279 }
7280 
7281 void Assembler::ftan() {
7282   emit_int8((unsigned char)0xD9);
7283   emit_int8((unsigned char)0xF2);
7284   emit_int8((unsigned char)0xDD);
7285   emit_int8((unsigned char)0xD8);
7286 }
7287 
7288 void Assembler::ftst() {
7289   emit_int8((unsigned char)0xD9);
7290   emit_int8((unsigned char)0xE4);
7291 }
7292 
7293 void Assembler::fucomi(int i) {
7294   // make sure the instruction is supported (introduced for P6, together with cmov)
7295   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7296   emit_farith(0xDB, 0xE8, i);
7297 }
7298 
7299 void Assembler::fucomip(int i) {
7300   // make sure the instruction is supported (introduced for P6, together with cmov)
7301   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7302   emit_farith(0xDF, 0xE8, i);
7303 }
7304 
7305 void Assembler::fwait() {
7306   emit_int8((unsigned char)0x9B);
7307 }
7308 
7309 void Assembler::fxch(int i) {
7310   emit_farith(0xD9, 0xC8, i);
7311 }
7312 
7313 void Assembler::fyl2x() {
7314   emit_int8((unsigned char)0xD9);
7315   emit_int8((unsigned char)0xF1);
7316 }
7317 
7318 void Assembler::frndint() {
7319   emit_int8((unsigned char)0xD9);
7320   emit_int8((unsigned char)0xFC);
7321 }
7322 
7323 void Assembler::f2xm1() {
7324   emit_int8((unsigned char)0xD9);
7325   emit_int8((unsigned char)0xF0);
7326 }
7327 
7328 void Assembler::fldl2e() {
7329   emit_int8((unsigned char)0xD9);
7330   emit_int8((unsigned char)0xEA);
7331 }
7332 
7333 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
7334 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
7335 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
7336 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
7337 
7338 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
7339 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7340   if (pre > 0) {
7341     emit_int8(simd_pre[pre]);
7342   }
7343   if (rex_w) {
7344     prefixq(adr, xreg);
7345   } else {
7346     prefix(adr, xreg);
7347   }
7348   if (opc > 0) {
7349     emit_int8(0x0F);
7350     int opc2 = simd_opc[opc];
7351     if (opc2 > 0) {
7352       emit_int8(opc2);
7353     }
7354   }
7355 }
7356 
7357 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7358   if (pre > 0) {
7359     emit_int8(simd_pre[pre]);
7360   }
7361   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
7362   if (opc > 0) {
7363     emit_int8(0x0F);
7364     int opc2 = simd_opc[opc];
7365     if (opc2 > 0) {
7366       emit_int8(opc2);
7367     }
7368   }
7369   return encode;
7370 }
7371 
7372 
7373 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
7374   int vector_len = _attributes->get_vector_len();
7375   bool vex_w = _attributes->is_rex_vex_w();
7376   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
7377     prefix(VEX_3bytes);
7378 
7379     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
7380     byte1 = (~byte1) & 0xE0;
7381     byte1 |= opc;
7382     emit_int8(byte1);
7383 
7384     int byte2 = ((~nds_enc) & 0xf) << 3;
7385     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
7386     emit_int8(byte2);
7387   } else {
7388     prefix(VEX_2bytes);
7389 
7390     int byte1 = vex_r ? VEX_R : 0;
7391     byte1 = (~byte1) & 0x80;
7392     byte1 |= ((~nds_enc) & 0xf) << 3;
7393     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
7394     emit_int8(byte1);
7395   }
7396 }
7397 
7398 // This is a 4 byte encoding
7399 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
7400   // EVEX 0x62 prefix
7401   prefix(EVEX_4bytes);
7402   bool vex_w = _attributes->is_rex_vex_w();
7403   int evex_encoding = (vex_w ? VEX_W : 0);
7404   // EVEX.b is not currently used for broadcast of single element or data rounding modes
7405   _attributes->set_evex_encoding(evex_encoding);
7406 
7407   // P0: byte 2, initialized to RXBR`00mm
7408   // instead of not'd
7409   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
7410   byte2 = (~byte2) & 0xF0;
7411   // confine opc opcode extensions in mm bits to lower two bits
7412   // of form {0F, 0F_38, 0F_3A}
7413   byte2 |= opc;
7414   emit_int8(byte2);
7415 
7416   // P1: byte 3 as Wvvvv1pp
7417   int byte3 = ((~nds_enc) & 0xf) << 3;
7418   // p[10] is always 1
7419   byte3 |= EVEX_F;
7420   byte3 |= (vex_w & 1) << 7;
7421   // confine pre opcode extensions in pp bits to lower two bits
7422   // of form {66, F3, F2}
7423   byte3 |= pre;
7424   emit_int8(byte3);
7425 
7426   // P2: byte 4 as zL'Lbv'aaa
7427   // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
7428   int byte4 = (_attributes->is_no_reg_mask()) ?
7429               0 :
7430               _attributes->get_embedded_opmask_register_specifier();
7431   // EVEX.v` for extending EVEX.vvvv or VIDX
7432   byte4 |= (evex_v ? 0: EVEX_V);
7433   // third EXEC.b for broadcast actions
7434   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
7435   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
7436   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
7437   // last is EVEX.z for zero/merge actions
7438   if (_attributes->is_no_reg_mask() == false) {
7439     byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
7440   }
7441   emit_int8(byte4);
7442 }
7443 
7444 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7445   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
7446   bool vex_b = adr.base_needs_rex();
7447   bool vex_x = adr.index_needs_rex();
7448   set_attributes(attributes);
7449   attributes->set_current_assembler(this);
7450 
7451   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7452   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7453     switch (attributes->get_vector_len()) {
7454     case AVX_128bit:
7455     case AVX_256bit:
7456       attributes->set_is_legacy_mode();
7457       break;
7458     }
7459   }
7460 
7461   // For pure EVEX check and see if this instruction
7462   // is allowed in legacy mode and has resources which will
7463   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7464   // else that field is set when we encode to EVEX
7465   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7466       !_is_managed && !attributes->is_evex_instruction()) {
7467     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7468       bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7469       if (check_register_bank) {
7470         // check nds_enc and xreg_enc for upper bank usage
7471         if (nds_enc < 16 && xreg_enc < 16) {
7472           attributes->set_is_legacy_mode();
7473         }
7474       } else {
7475         attributes->set_is_legacy_mode();
7476       }
7477     }
7478   }
7479 
7480   _is_managed = false;
7481   if (UseAVX > 2 && !attributes->is_legacy_mode())
7482   {
7483     bool evex_r = (xreg_enc >= 16);
7484     bool evex_v = (nds_enc >= 16);
7485     attributes->set_is_evex_instruction();
7486     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7487   } else {
7488     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7489       attributes->set_rex_vex_w(false);
7490     }
7491     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7492   }
7493 }
7494 
7495 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7496   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
7497   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
7498   bool vex_x = false;
7499   set_attributes(attributes);
7500   attributes->set_current_assembler(this);
7501   bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7502 
7503   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7504   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7505     switch (attributes->get_vector_len()) {
7506     case AVX_128bit:
7507     case AVX_256bit:
7508       if (check_register_bank) {
7509         if (dst_enc >= 16 || nds_enc >= 16 || src_enc >= 16) {
7510           // up propagate arithmetic instructions to meet RA requirements
7511           attributes->set_vector_len(AVX_512bit);
7512         } else {
7513           attributes->set_is_legacy_mode();
7514         }
7515       } else {
7516         attributes->set_is_legacy_mode();
7517       }
7518       break;
7519     }
7520   }
7521 
7522   // For pure EVEX check and see if this instruction
7523   // is allowed in legacy mode and has resources which will
7524   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7525   // else that field is set when we encode to EVEX
7526   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7527       !_is_managed && !attributes->is_evex_instruction()) {
7528     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7529       if (check_register_bank) {
7530         // check dst_enc, nds_enc and src_enc for upper bank usage
7531         if (dst_enc < 16 && nds_enc < 16 && src_enc < 16) {
7532           attributes->set_is_legacy_mode();
7533         }
7534       } else {
7535         attributes->set_is_legacy_mode();
7536       }
7537     }
7538   }
7539 
7540   _is_managed = false;
7541   if (UseAVX > 2 && !attributes->is_legacy_mode())
7542   {
7543     bool evex_r = (dst_enc >= 16);
7544     bool evex_v = (nds_enc >= 16);
7545     // can use vex_x as bank extender on rm encoding
7546     vex_x = (src_enc >= 16);
7547     attributes->set_is_evex_instruction();
7548     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7549   } else {
7550     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7551       attributes->set_rex_vex_w(false);
7552     }
7553     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7554   }
7555 
7556   // return modrm byte components for operands
7557   return (((dst_enc & 7) << 3) | (src_enc & 7));
7558 }
7559 
7560 
7561 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7562                             VexOpcode opc, InstructionAttr *attributes) {
7563   if (UseAVX > 0) {
7564     int xreg_enc = xreg->encoding();
7565     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7566     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7567   } else {
7568     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7569     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7570   }
7571 }
7572 
7573 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7574                                       VexOpcode opc, InstructionAttr *attributes) {
7575   int dst_enc = dst->encoding();
7576   int src_enc = src->encoding();
7577   if (UseAVX > 0) {
7578     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7579     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7580   } else {
7581     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7582     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7583   }
7584 }
7585 
7586 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7587   assert(VM_Version::supports_avx(), "");
7588   assert(!VM_Version::supports_evex(), "");
7589   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7590   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7591   emit_int8((unsigned char)0xC2);
7592   emit_int8((unsigned char)(0xC0 | encode));
7593   emit_int8((unsigned char)(0xF & cop));
7594 }
7595 
7596 void Assembler::blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7597   assert(VM_Version::supports_avx(), "");
7598   assert(!VM_Version::supports_evex(), "");
7599   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7600   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7601   emit_int8((unsigned char)0x4B);
7602   emit_int8((unsigned char)(0xC0 | encode));
7603   int src2_enc = src2->encoding();
7604   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7605 }
7606 
7607 void Assembler::cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7608   assert(VM_Version::supports_avx(), "");
7609   assert(!VM_Version::supports_evex(), "");
7610   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7611   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
7612   emit_int8((unsigned char)0xC2);
7613   emit_int8((unsigned char)(0xC0 | encode));
7614   emit_int8((unsigned char)(0xF & cop));
7615 }
7616 
7617 void Assembler::blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7618   assert(VM_Version::supports_avx(), "");
7619   assert(!VM_Version::supports_evex(), "");
7620   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7621   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7622   emit_int8((unsigned char)0x4A);
7623   emit_int8((unsigned char)(0xC0 | encode));
7624   int src2_enc = src2->encoding();
7625   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7626 }
7627 
7628 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
7629   assert(VM_Version::supports_avx2(), "");
7630   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7631   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7632   emit_int8((unsigned char)0x02);
7633   emit_int8((unsigned char)(0xC0 | encode));
7634   emit_int8((unsigned char)imm8);
7635 }
7636 
7637 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7638   assert(VM_Version::supports_bmi2(), "");
7639   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
7640   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7641   emit_int8((unsigned char)0xF7);
7642   emit_int8((unsigned char)(0xC0 | encode));
7643 }
7644 
7645 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7646   assert(VM_Version::supports_bmi2(), "");
7647   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
7648   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7649   emit_int8((unsigned char)0xF7);
7650   emit_int8((unsigned char)(0xC0 | encode));
7651 }
7652 
7653 #ifndef _LP64
7654 
7655 void Assembler::incl(Register dst) {
7656   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7657   emit_int8(0x40 | dst->encoding());
7658 }
7659 
7660 void Assembler::lea(Register dst, Address src) {
7661   leal(dst, src);
7662 }
7663 
7664 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7665   InstructionMark im(this);
7666   emit_int8((unsigned char)0xC7);
7667   emit_operand(rax, dst);
7668   emit_data((int)imm32, rspec, 0);
7669 }
7670 
7671 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7672   InstructionMark im(this);
7673   int encode = prefix_and_encode(dst->encoding());
7674   emit_int8((unsigned char)(0xB8 | encode));
7675   emit_data((int)imm32, rspec, 0);
7676 }
7677 
7678 void Assembler::popa() { // 32bit
7679   emit_int8(0x61);
7680 }
7681 
7682 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7683   InstructionMark im(this);
7684   emit_int8(0x68);
7685   emit_data(imm32, rspec, 0);
7686 }
7687 
7688 void Assembler::pusha() { // 32bit
7689   emit_int8(0x60);
7690 }
7691 
7692 void Assembler::set_byte_if_not_zero(Register dst) {
7693   emit_int8(0x0F);
7694   emit_int8((unsigned char)0x95);
7695   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7696 }
7697 
7698 void Assembler::shldl(Register dst, Register src) {
7699   emit_int8(0x0F);
7700   emit_int8((unsigned char)0xA5);
7701   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7702 }
7703 
7704 // 0F A4 / r ib
7705 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7706   emit_int8(0x0F);
7707   emit_int8((unsigned char)0xA4);
7708   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7709   emit_int8(imm8);
7710 }
7711 
7712 void Assembler::shrdl(Register dst, Register src) {
7713   emit_int8(0x0F);
7714   emit_int8((unsigned char)0xAD);
7715   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7716 }
7717 
7718 #else // LP64
7719 
7720 void Assembler::set_byte_if_not_zero(Register dst) {
7721   int enc = prefix_and_encode(dst->encoding(), true);
7722   emit_int8(0x0F);
7723   emit_int8((unsigned char)0x95);
7724   emit_int8((unsigned char)(0xE0 | enc));
7725 }
7726 
7727 // 64bit only pieces of the assembler
7728 // This should only be used by 64bit instructions that can use rip-relative
7729 // it cannot be used by instructions that want an immediate value.
7730 
7731 bool Assembler::reachable(AddressLiteral adr) {
7732   int64_t disp;
7733   // None will force a 64bit literal to the code stream. Likely a placeholder
7734   // for something that will be patched later and we need to certain it will
7735   // always be reachable.
7736   if (adr.reloc() == relocInfo::none) {
7737     return false;
7738   }
7739   if (adr.reloc() == relocInfo::internal_word_type) {
7740     // This should be rip relative and easily reachable.
7741     return true;
7742   }
7743   if (adr.reloc() == relocInfo::virtual_call_type ||
7744       adr.reloc() == relocInfo::opt_virtual_call_type ||
7745       adr.reloc() == relocInfo::static_call_type ||
7746       adr.reloc() == relocInfo::static_stub_type ) {
7747     // This should be rip relative within the code cache and easily
7748     // reachable until we get huge code caches. (At which point
7749     // ic code is going to have issues).
7750     return true;
7751   }
7752   if (adr.reloc() != relocInfo::external_word_type &&
7753       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7754       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7755       adr.reloc() != relocInfo::runtime_call_type ) {
7756     return false;
7757   }
7758 
7759   // Stress the correction code
7760   if (ForceUnreachable) {
7761     // Must be runtimecall reloc, see if it is in the codecache
7762     // Flipping stuff in the codecache to be unreachable causes issues
7763     // with things like inline caches where the additional instructions
7764     // are not handled.
7765     if (CodeCache::find_blob(adr._target) == NULL) {
7766       return false;
7767     }
7768   }
7769   // For external_word_type/runtime_call_type if it is reachable from where we
7770   // are now (possibly a temp buffer) and where we might end up
7771   // anywhere in the codeCache then we are always reachable.
7772   // This would have to change if we ever save/restore shared code
7773   // to be more pessimistic.
7774   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7775   if (!is_simm32(disp)) return false;
7776   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7777   if (!is_simm32(disp)) return false;
7778 
7779   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7780 
7781   // Because rip relative is a disp + address_of_next_instruction and we
7782   // don't know the value of address_of_next_instruction we apply a fudge factor
7783   // to make sure we will be ok no matter the size of the instruction we get placed into.
7784   // We don't have to fudge the checks above here because they are already worst case.
7785 
7786   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7787   // + 4 because better safe than sorry.
7788   const int fudge = 12 + 4;
7789   if (disp < 0) {
7790     disp -= fudge;
7791   } else {
7792     disp += fudge;
7793   }
7794   return is_simm32(disp);
7795 }
7796 
7797 // Check if the polling page is not reachable from the code cache using rip-relative
7798 // addressing.
7799 bool Assembler::is_polling_page_far() {
7800   intptr_t addr = (intptr_t)os::get_polling_page();
7801   return ForceUnreachable ||
7802          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7803          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7804 }
7805 
7806 void Assembler::emit_data64(jlong data,
7807                             relocInfo::relocType rtype,
7808                             int format) {
7809   if (rtype == relocInfo::none) {
7810     emit_int64(data);
7811   } else {
7812     emit_data64(data, Relocation::spec_simple(rtype), format);
7813   }
7814 }
7815 
7816 void Assembler::emit_data64(jlong data,
7817                             RelocationHolder const& rspec,
7818                             int format) {
7819   assert(imm_operand == 0, "default format must be immediate in this file");
7820   assert(imm_operand == format, "must be immediate");
7821   assert(inst_mark() != NULL, "must be inside InstructionMark");
7822   // Do not use AbstractAssembler::relocate, which is not intended for
7823   // embedded words.  Instead, relocate to the enclosing instruction.
7824   code_section()->relocate(inst_mark(), rspec, format);
7825 #ifdef ASSERT
7826   check_relocation(rspec, format);
7827 #endif
7828   emit_int64(data);
7829 }
7830 
7831 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7832   if (reg_enc >= 8) {
7833     prefix(REX_B);
7834     reg_enc -= 8;
7835   } else if (byteinst && reg_enc >= 4) {
7836     prefix(REX);
7837   }
7838   return reg_enc;
7839 }
7840 
7841 int Assembler::prefixq_and_encode(int reg_enc) {
7842   if (reg_enc < 8) {
7843     prefix(REX_W);
7844   } else {
7845     prefix(REX_WB);
7846     reg_enc -= 8;
7847   }
7848   return reg_enc;
7849 }
7850 
7851 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7852   if (dst_enc < 8) {
7853     if (src_enc >= 8) {
7854       prefix(REX_B);
7855       src_enc -= 8;
7856     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7857       prefix(REX);
7858     }
7859   } else {
7860     if (src_enc < 8) {
7861       prefix(REX_R);
7862     } else {
7863       prefix(REX_RB);
7864       src_enc -= 8;
7865     }
7866     dst_enc -= 8;
7867   }
7868   return dst_enc << 3 | src_enc;
7869 }
7870 
7871 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
7872   if (dst_enc < 8) {
7873     if (src_enc < 8) {
7874       prefix(REX_W);
7875     } else {
7876       prefix(REX_WB);
7877       src_enc -= 8;
7878     }
7879   } else {
7880     if (src_enc < 8) {
7881       prefix(REX_WR);
7882     } else {
7883       prefix(REX_WRB);
7884       src_enc -= 8;
7885     }
7886     dst_enc -= 8;
7887   }
7888   return dst_enc << 3 | src_enc;
7889 }
7890 
7891 void Assembler::prefix(Register reg) {
7892   if (reg->encoding() >= 8) {
7893     prefix(REX_B);
7894   }
7895 }
7896 
7897 void Assembler::prefix(Register dst, Register src, Prefix p) {
7898   if (src->encoding() >= 8) {
7899     p = (Prefix)(p | REX_B);
7900   }
7901   if (dst->encoding() >= 8) {
7902     p = (Prefix)( p | REX_R);
7903   }
7904   if (p != Prefix_EMPTY) {
7905     // do not generate an empty prefix
7906     prefix(p);
7907   }
7908 }
7909 
7910 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7911   if (adr.base_needs_rex()) {
7912     if (adr.index_needs_rex()) {
7913       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7914     } else {
7915       prefix(REX_B);
7916     }
7917   } else {
7918     if (adr.index_needs_rex()) {
7919       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7920     }
7921   }
7922   if (dst->encoding() >= 8) {
7923     p = (Prefix)(p | REX_R);
7924   }
7925   if (p != Prefix_EMPTY) {
7926     // do not generate an empty prefix
7927     prefix(p);
7928   }
7929 }
7930 
7931 void Assembler::prefix(Address adr) {
7932   if (adr.base_needs_rex()) {
7933     if (adr.index_needs_rex()) {
7934       prefix(REX_XB);
7935     } else {
7936       prefix(REX_B);
7937     }
7938   } else {
7939     if (adr.index_needs_rex()) {
7940       prefix(REX_X);
7941     }
7942   }
7943 }
7944 
7945 void Assembler::prefixq(Address adr) {
7946   if (adr.base_needs_rex()) {
7947     if (adr.index_needs_rex()) {
7948       prefix(REX_WXB);
7949     } else {
7950       prefix(REX_WB);
7951     }
7952   } else {
7953     if (adr.index_needs_rex()) {
7954       prefix(REX_WX);
7955     } else {
7956       prefix(REX_W);
7957     }
7958   }
7959 }
7960 
7961 
7962 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7963   if (reg->encoding() < 8) {
7964     if (adr.base_needs_rex()) {
7965       if (adr.index_needs_rex()) {
7966         prefix(REX_XB);
7967       } else {
7968         prefix(REX_B);
7969       }
7970     } else {
7971       if (adr.index_needs_rex()) {
7972         prefix(REX_X);
7973       } else if (byteinst && reg->encoding() >= 4 ) {
7974         prefix(REX);
7975       }
7976     }
7977   } else {
7978     if (adr.base_needs_rex()) {
7979       if (adr.index_needs_rex()) {
7980         prefix(REX_RXB);
7981       } else {
7982         prefix(REX_RB);
7983       }
7984     } else {
7985       if (adr.index_needs_rex()) {
7986         prefix(REX_RX);
7987       } else {
7988         prefix(REX_R);
7989       }
7990     }
7991   }
7992 }
7993 
7994 void Assembler::prefixq(Address adr, Register src) {
7995   if (src->encoding() < 8) {
7996     if (adr.base_needs_rex()) {
7997       if (adr.index_needs_rex()) {
7998         prefix(REX_WXB);
7999       } else {
8000         prefix(REX_WB);
8001       }
8002     } else {
8003       if (adr.index_needs_rex()) {
8004         prefix(REX_WX);
8005       } else {
8006         prefix(REX_W);
8007       }
8008     }
8009   } else {
8010     if (adr.base_needs_rex()) {
8011       if (adr.index_needs_rex()) {
8012         prefix(REX_WRXB);
8013       } else {
8014         prefix(REX_WRB);
8015       }
8016     } else {
8017       if (adr.index_needs_rex()) {
8018         prefix(REX_WRX);
8019       } else {
8020         prefix(REX_WR);
8021       }
8022     }
8023   }
8024 }
8025 
8026 void Assembler::prefix(Address adr, XMMRegister reg) {
8027   if (reg->encoding() < 8) {
8028     if (adr.base_needs_rex()) {
8029       if (adr.index_needs_rex()) {
8030         prefix(REX_XB);
8031       } else {
8032         prefix(REX_B);
8033       }
8034     } else {
8035       if (adr.index_needs_rex()) {
8036         prefix(REX_X);
8037       }
8038     }
8039   } else {
8040     if (adr.base_needs_rex()) {
8041       if (adr.index_needs_rex()) {
8042         prefix(REX_RXB);
8043       } else {
8044         prefix(REX_RB);
8045       }
8046     } else {
8047       if (adr.index_needs_rex()) {
8048         prefix(REX_RX);
8049       } else {
8050         prefix(REX_R);
8051       }
8052     }
8053   }
8054 }
8055 
8056 void Assembler::prefixq(Address adr, XMMRegister src) {
8057   if (src->encoding() < 8) {
8058     if (adr.base_needs_rex()) {
8059       if (adr.index_needs_rex()) {
8060         prefix(REX_WXB);
8061       } else {
8062         prefix(REX_WB);
8063       }
8064     } else {
8065       if (adr.index_needs_rex()) {
8066         prefix(REX_WX);
8067       } else {
8068         prefix(REX_W);
8069       }
8070     }
8071   } else {
8072     if (adr.base_needs_rex()) {
8073       if (adr.index_needs_rex()) {
8074         prefix(REX_WRXB);
8075       } else {
8076         prefix(REX_WRB);
8077       }
8078     } else {
8079       if (adr.index_needs_rex()) {
8080         prefix(REX_WRX);
8081       } else {
8082         prefix(REX_WR);
8083       }
8084     }
8085   }
8086 }
8087 
8088 void Assembler::adcq(Register dst, int32_t imm32) {
8089   (void) prefixq_and_encode(dst->encoding());
8090   emit_arith(0x81, 0xD0, dst, imm32);
8091 }
8092 
8093 void Assembler::adcq(Register dst, Address src) {
8094   InstructionMark im(this);
8095   prefixq(src, dst);
8096   emit_int8(0x13);
8097   emit_operand(dst, src);
8098 }
8099 
8100 void Assembler::adcq(Register dst, Register src) {
8101   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8102   emit_arith(0x13, 0xC0, dst, src);
8103 }
8104 
8105 void Assembler::addq(Address dst, int32_t imm32) {
8106   InstructionMark im(this);
8107   prefixq(dst);
8108   emit_arith_operand(0x81, rax, dst,imm32);
8109 }
8110 
8111 void Assembler::addq(Address dst, Register src) {
8112   InstructionMark im(this);
8113   prefixq(dst, src);
8114   emit_int8(0x01);
8115   emit_operand(src, dst);
8116 }
8117 
8118 void Assembler::addq(Register dst, int32_t imm32) {
8119   (void) prefixq_and_encode(dst->encoding());
8120   emit_arith(0x81, 0xC0, dst, imm32);
8121 }
8122 
8123 void Assembler::addq(Register dst, Address src) {
8124   InstructionMark im(this);
8125   prefixq(src, dst);
8126   emit_int8(0x03);
8127   emit_operand(dst, src);
8128 }
8129 
8130 void Assembler::addq(Register dst, Register src) {
8131   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8132   emit_arith(0x03, 0xC0, dst, src);
8133 }
8134 
8135 void Assembler::adcxq(Register dst, Register src) {
8136   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8137   emit_int8((unsigned char)0x66);
8138   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8139   emit_int8(0x0F);
8140   emit_int8(0x38);
8141   emit_int8((unsigned char)0xF6);
8142   emit_int8((unsigned char)(0xC0 | encode));
8143 }
8144 
8145 void Assembler::adoxq(Register dst, Register src) {
8146   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8147   emit_int8((unsigned char)0xF3);
8148   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8149   emit_int8(0x0F);
8150   emit_int8(0x38);
8151   emit_int8((unsigned char)0xF6);
8152   emit_int8((unsigned char)(0xC0 | encode));
8153 }
8154 
8155 void Assembler::andq(Address dst, int32_t imm32) {
8156   InstructionMark im(this);
8157   prefixq(dst);
8158   emit_int8((unsigned char)0x81);
8159   emit_operand(rsp, dst, 4);
8160   emit_int32(imm32);
8161 }
8162 
8163 void Assembler::andq(Register dst, int32_t imm32) {
8164   (void) prefixq_and_encode(dst->encoding());
8165   emit_arith(0x81, 0xE0, dst, imm32);
8166 }
8167 
8168 void Assembler::andq(Register dst, Address src) {
8169   InstructionMark im(this);
8170   prefixq(src, dst);
8171   emit_int8(0x23);
8172   emit_operand(dst, src);
8173 }
8174 
8175 void Assembler::andq(Register dst, Register src) {
8176   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8177   emit_arith(0x23, 0xC0, dst, src);
8178 }
8179 
8180 void Assembler::andnq(Register dst, Register src1, Register src2) {
8181   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8182   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8183   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8184   emit_int8((unsigned char)0xF2);
8185   emit_int8((unsigned char)(0xC0 | encode));
8186 }
8187 
8188 void Assembler::andnq(Register dst, Register src1, Address src2) {
8189   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8190   InstructionMark im(this);
8191   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8192   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8193   emit_int8((unsigned char)0xF2);
8194   emit_operand(dst, src2);
8195 }
8196 
8197 void Assembler::bsfq(Register dst, Register src) {
8198   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8199   emit_int8(0x0F);
8200   emit_int8((unsigned char)0xBC);
8201   emit_int8((unsigned char)(0xC0 | encode));
8202 }
8203 
8204 void Assembler::bsrq(Register dst, Register src) {
8205   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8206   emit_int8(0x0F);
8207   emit_int8((unsigned char)0xBD);
8208   emit_int8((unsigned char)(0xC0 | encode));
8209 }
8210 
8211 void Assembler::bswapq(Register reg) {
8212   int encode = prefixq_and_encode(reg->encoding());
8213   emit_int8(0x0F);
8214   emit_int8((unsigned char)(0xC8 | encode));
8215 }
8216 
8217 void Assembler::blsiq(Register dst, Register src) {
8218   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8219   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8220   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8221   emit_int8((unsigned char)0xF3);
8222   emit_int8((unsigned char)(0xC0 | encode));
8223 }
8224 
8225 void Assembler::blsiq(Register dst, Address src) {
8226   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8227   InstructionMark im(this);
8228   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8229   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8230   emit_int8((unsigned char)0xF3);
8231   emit_operand(rbx, src);
8232 }
8233 
8234 void Assembler::blsmskq(Register dst, Register src) {
8235   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8236   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8237   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8238   emit_int8((unsigned char)0xF3);
8239   emit_int8((unsigned char)(0xC0 | encode));
8240 }
8241 
8242 void Assembler::blsmskq(Register dst, Address src) {
8243   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8244   InstructionMark im(this);
8245   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8246   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8247   emit_int8((unsigned char)0xF3);
8248   emit_operand(rdx, src);
8249 }
8250 
8251 void Assembler::blsrq(Register dst, Register src) {
8252   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8253   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8254   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8255   emit_int8((unsigned char)0xF3);
8256   emit_int8((unsigned char)(0xC0 | encode));
8257 }
8258 
8259 void Assembler::blsrq(Register dst, Address src) {
8260   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8261   InstructionMark im(this);
8262   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8263   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8264   emit_int8((unsigned char)0xF3);
8265   emit_operand(rcx, src);
8266 }
8267 
8268 void Assembler::cdqq() {
8269   prefix(REX_W);
8270   emit_int8((unsigned char)0x99);
8271 }
8272 
8273 void Assembler::clflush(Address adr) {
8274   prefix(adr);
8275   emit_int8(0x0F);
8276   emit_int8((unsigned char)0xAE);
8277   emit_operand(rdi, adr);
8278 }
8279 
8280 void Assembler::cmovq(Condition cc, Register dst, Register src) {
8281   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8282   emit_int8(0x0F);
8283   emit_int8(0x40 | cc);
8284   emit_int8((unsigned char)(0xC0 | encode));
8285 }
8286 
8287 void Assembler::cmovq(Condition cc, Register dst, Address src) {
8288   InstructionMark im(this);
8289   prefixq(src, dst);
8290   emit_int8(0x0F);
8291   emit_int8(0x40 | cc);
8292   emit_operand(dst, src);
8293 }
8294 
8295 void Assembler::cmpq(Address dst, int32_t imm32) {
8296   InstructionMark im(this);
8297   prefixq(dst);
8298   emit_int8((unsigned char)0x81);
8299   emit_operand(rdi, dst, 4);
8300   emit_int32(imm32);
8301 }
8302 
8303 void Assembler::cmpq(Register dst, int32_t imm32) {
8304   (void) prefixq_and_encode(dst->encoding());
8305   emit_arith(0x81, 0xF8, dst, imm32);
8306 }
8307 
8308 void Assembler::cmpq(Address dst, Register src) {
8309   InstructionMark im(this);
8310   prefixq(dst, src);
8311   emit_int8(0x3B);
8312   emit_operand(src, dst);
8313 }
8314 
8315 void Assembler::cmpq(Register dst, Register src) {
8316   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8317   emit_arith(0x3B, 0xC0, dst, src);
8318 }
8319 
8320 void Assembler::cmpq(Register dst, Address  src) {
8321   InstructionMark im(this);
8322   prefixq(src, dst);
8323   emit_int8(0x3B);
8324   emit_operand(dst, src);
8325 }
8326 
8327 void Assembler::cmpxchgq(Register reg, Address adr) {
8328   InstructionMark im(this);
8329   prefixq(adr, reg);
8330   emit_int8(0x0F);
8331   emit_int8((unsigned char)0xB1);
8332   emit_operand(reg, adr);
8333 }
8334 
8335 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
8336   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8337   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8338   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8339   emit_int8(0x2A);
8340   emit_int8((unsigned char)(0xC0 | encode));
8341 }
8342 
8343 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
8344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8345   InstructionMark im(this);
8346   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8347   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8348   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8349   emit_int8(0x2A);
8350   emit_operand(dst, src);
8351 }
8352 
8353 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
8354   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8355   InstructionMark im(this);
8356   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8357   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8358   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8359   emit_int8(0x2A);
8360   emit_operand(dst, src);
8361 }
8362 
8363 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
8364   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8365   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8366   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8367   emit_int8(0x2C);
8368   emit_int8((unsigned char)(0xC0 | encode));
8369 }
8370 
8371 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
8372   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8373   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8374   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8375   emit_int8(0x2C);
8376   emit_int8((unsigned char)(0xC0 | encode));
8377 }
8378 
8379 void Assembler::decl(Register dst) {
8380   // Don't use it directly. Use MacroAssembler::decrementl() instead.
8381   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
8382   int encode = prefix_and_encode(dst->encoding());
8383   emit_int8((unsigned char)0xFF);
8384   emit_int8((unsigned char)(0xC8 | encode));
8385 }
8386 
8387 void Assembler::decq(Register dst) {
8388   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8389   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8390   int encode = prefixq_and_encode(dst->encoding());
8391   emit_int8((unsigned char)0xFF);
8392   emit_int8(0xC8 | encode);
8393 }
8394 
8395 void Assembler::decq(Address dst) {
8396   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8397   InstructionMark im(this);
8398   prefixq(dst);
8399   emit_int8((unsigned char)0xFF);
8400   emit_operand(rcx, dst);
8401 }
8402 
8403 void Assembler::fxrstor(Address src) {
8404   prefixq(src);
8405   emit_int8(0x0F);
8406   emit_int8((unsigned char)0xAE);
8407   emit_operand(as_Register(1), src);
8408 }
8409 
8410 void Assembler::xrstor(Address src) {
8411   prefixq(src);
8412   emit_int8(0x0F);
8413   emit_int8((unsigned char)0xAE);
8414   emit_operand(as_Register(5), src);
8415 }
8416 
8417 void Assembler::fxsave(Address dst) {
8418   prefixq(dst);
8419   emit_int8(0x0F);
8420   emit_int8((unsigned char)0xAE);
8421   emit_operand(as_Register(0), dst);
8422 }
8423 
8424 void Assembler::xsave(Address dst) {
8425   prefixq(dst);
8426   emit_int8(0x0F);
8427   emit_int8((unsigned char)0xAE);
8428   emit_operand(as_Register(4), dst);
8429 }
8430 
8431 void Assembler::idivq(Register src) {
8432   int encode = prefixq_and_encode(src->encoding());
8433   emit_int8((unsigned char)0xF7);
8434   emit_int8((unsigned char)(0xF8 | encode));
8435 }
8436 
8437 void Assembler::imulq(Register dst, Register src) {
8438   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8439   emit_int8(0x0F);
8440   emit_int8((unsigned char)0xAF);
8441   emit_int8((unsigned char)(0xC0 | encode));
8442 }
8443 
8444 void Assembler::imulq(Register dst, Register src, int value) {
8445   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8446   if (is8bit(value)) {
8447     emit_int8(0x6B);
8448     emit_int8((unsigned char)(0xC0 | encode));
8449     emit_int8(value & 0xFF);
8450   } else {
8451     emit_int8(0x69);
8452     emit_int8((unsigned char)(0xC0 | encode));
8453     emit_int32(value);
8454   }
8455 }
8456 
8457 void Assembler::imulq(Register dst, Address src) {
8458   InstructionMark im(this);
8459   prefixq(src, dst);
8460   emit_int8(0x0F);
8461   emit_int8((unsigned char) 0xAF);
8462   emit_operand(dst, src);
8463 }
8464 
8465 void Assembler::incl(Register dst) {
8466   // Don't use it directly. Use MacroAssembler::incrementl() instead.
8467   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8468   int encode = prefix_and_encode(dst->encoding());
8469   emit_int8((unsigned char)0xFF);
8470   emit_int8((unsigned char)(0xC0 | encode));
8471 }
8472 
8473 void Assembler::incq(Register dst) {
8474   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8475   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8476   int encode = prefixq_and_encode(dst->encoding());
8477   emit_int8((unsigned char)0xFF);
8478   emit_int8((unsigned char)(0xC0 | encode));
8479 }
8480 
8481 void Assembler::incq(Address dst) {
8482   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8483   InstructionMark im(this);
8484   prefixq(dst);
8485   emit_int8((unsigned char)0xFF);
8486   emit_operand(rax, dst);
8487 }
8488 
8489 void Assembler::lea(Register dst, Address src) {
8490   leaq(dst, src);
8491 }
8492 
8493 void Assembler::leaq(Register dst, Address src) {
8494   InstructionMark im(this);
8495   prefixq(src, dst);
8496   emit_int8((unsigned char)0x8D);
8497   emit_operand(dst, src);
8498 }
8499 
8500 void Assembler::mov64(Register dst, int64_t imm64) {
8501   InstructionMark im(this);
8502   int encode = prefixq_and_encode(dst->encoding());
8503   emit_int8((unsigned char)(0xB8 | encode));
8504   emit_int64(imm64);
8505 }
8506 
8507 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
8508   InstructionMark im(this);
8509   int encode = prefixq_and_encode(dst->encoding());
8510   emit_int8(0xB8 | encode);
8511   emit_data64(imm64, rspec);
8512 }
8513 
8514 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
8515   InstructionMark im(this);
8516   int encode = prefix_and_encode(dst->encoding());
8517   emit_int8((unsigned char)(0xB8 | encode));
8518   emit_data((int)imm32, rspec, narrow_oop_operand);
8519 }
8520 
8521 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
8522   InstructionMark im(this);
8523   prefix(dst);
8524   emit_int8((unsigned char)0xC7);
8525   emit_operand(rax, dst, 4);
8526   emit_data((int)imm32, rspec, narrow_oop_operand);
8527 }
8528 
8529 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8530   InstructionMark im(this);
8531   int encode = prefix_and_encode(src1->encoding());
8532   emit_int8((unsigned char)0x81);
8533   emit_int8((unsigned char)(0xF8 | encode));
8534   emit_data((int)imm32, rspec, narrow_oop_operand);
8535 }
8536 
8537 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8538   InstructionMark im(this);
8539   prefix(src1);
8540   emit_int8((unsigned char)0x81);
8541   emit_operand(rax, src1, 4);
8542   emit_data((int)imm32, rspec, narrow_oop_operand);
8543 }
8544 
8545 void Assembler::lzcntq(Register dst, Register src) {
8546   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8547   emit_int8((unsigned char)0xF3);
8548   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8549   emit_int8(0x0F);
8550   emit_int8((unsigned char)0xBD);
8551   emit_int8((unsigned char)(0xC0 | encode));
8552 }
8553 
8554 void Assembler::movdq(XMMRegister dst, Register src) {
8555   // table D-1 says MMX/SSE2
8556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8557   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8558   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8559   emit_int8(0x6E);
8560   emit_int8((unsigned char)(0xC0 | encode));
8561 }
8562 
8563 void Assembler::movdq(Register dst, XMMRegister src) {
8564   // table D-1 says MMX/SSE2
8565   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8566   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8567   // swap src/dst to get correct prefix
8568   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8569   emit_int8(0x7E);
8570   emit_int8((unsigned char)(0xC0 | encode));
8571 }
8572 
8573 void Assembler::movq(Register dst, Register src) {
8574   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8575   emit_int8((unsigned char)0x8B);
8576   emit_int8((unsigned char)(0xC0 | encode));
8577 }
8578 
8579 void Assembler::movq(Register dst, Address src) {
8580   InstructionMark im(this);
8581   prefixq(src, dst);
8582   emit_int8((unsigned char)0x8B);
8583   emit_operand(dst, src);
8584 }
8585 
8586 void Assembler::movq(Address dst, Register src) {
8587   InstructionMark im(this);
8588   prefixq(dst, src);
8589   emit_int8((unsigned char)0x89);
8590   emit_operand(src, dst);
8591 }
8592 
8593 void Assembler::movsbq(Register dst, Address src) {
8594   InstructionMark im(this);
8595   prefixq(src, dst);
8596   emit_int8(0x0F);
8597   emit_int8((unsigned char)0xBE);
8598   emit_operand(dst, src);
8599 }
8600 
8601 void Assembler::movsbq(Register dst, Register src) {
8602   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8603   emit_int8(0x0F);
8604   emit_int8((unsigned char)0xBE);
8605   emit_int8((unsigned char)(0xC0 | encode));
8606 }
8607 
8608 void Assembler::movslq(Register dst, int32_t imm32) {
8609   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8610   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8611   // as a result we shouldn't use until tested at runtime...
8612   ShouldNotReachHere();
8613   InstructionMark im(this);
8614   int encode = prefixq_and_encode(dst->encoding());
8615   emit_int8((unsigned char)(0xC7 | encode));
8616   emit_int32(imm32);
8617 }
8618 
8619 void Assembler::movslq(Address dst, int32_t imm32) {
8620   assert(is_simm32(imm32), "lost bits");
8621   InstructionMark im(this);
8622   prefixq(dst);
8623   emit_int8((unsigned char)0xC7);
8624   emit_operand(rax, dst, 4);
8625   emit_int32(imm32);
8626 }
8627 
8628 void Assembler::movslq(Register dst, Address src) {
8629   InstructionMark im(this);
8630   prefixq(src, dst);
8631   emit_int8(0x63);
8632   emit_operand(dst, src);
8633 }
8634 
8635 void Assembler::movslq(Register dst, Register src) {
8636   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8637   emit_int8(0x63);
8638   emit_int8((unsigned char)(0xC0 | encode));
8639 }
8640 
8641 void Assembler::movswq(Register dst, Address src) {
8642   InstructionMark im(this);
8643   prefixq(src, dst);
8644   emit_int8(0x0F);
8645   emit_int8((unsigned char)0xBF);
8646   emit_operand(dst, src);
8647 }
8648 
8649 void Assembler::movswq(Register dst, Register src) {
8650   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8651   emit_int8((unsigned char)0x0F);
8652   emit_int8((unsigned char)0xBF);
8653   emit_int8((unsigned char)(0xC0 | encode));
8654 }
8655 
8656 void Assembler::movzbq(Register dst, Address src) {
8657   InstructionMark im(this);
8658   prefixq(src, dst);
8659   emit_int8((unsigned char)0x0F);
8660   emit_int8((unsigned char)0xB6);
8661   emit_operand(dst, src);
8662 }
8663 
8664 void Assembler::movzbq(Register dst, Register src) {
8665   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8666   emit_int8(0x0F);
8667   emit_int8((unsigned char)0xB6);
8668   emit_int8(0xC0 | encode);
8669 }
8670 
8671 void Assembler::movzwq(Register dst, Address src) {
8672   InstructionMark im(this);
8673   prefixq(src, dst);
8674   emit_int8((unsigned char)0x0F);
8675   emit_int8((unsigned char)0xB7);
8676   emit_operand(dst, src);
8677 }
8678 
8679 void Assembler::movzwq(Register dst, Register src) {
8680   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8681   emit_int8((unsigned char)0x0F);
8682   emit_int8((unsigned char)0xB7);
8683   emit_int8((unsigned char)(0xC0 | encode));
8684 }
8685 
8686 void Assembler::mulq(Address src) {
8687   InstructionMark im(this);
8688   prefixq(src);
8689   emit_int8((unsigned char)0xF7);
8690   emit_operand(rsp, src);
8691 }
8692 
8693 void Assembler::mulq(Register src) {
8694   int encode = prefixq_and_encode(src->encoding());
8695   emit_int8((unsigned char)0xF7);
8696   emit_int8((unsigned char)(0xE0 | encode));
8697 }
8698 
8699 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8700   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8701   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8702   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8703   emit_int8((unsigned char)0xF6);
8704   emit_int8((unsigned char)(0xC0 | encode));
8705 }
8706 
8707 void Assembler::negq(Register dst) {
8708   int encode = prefixq_and_encode(dst->encoding());
8709   emit_int8((unsigned char)0xF7);
8710   emit_int8((unsigned char)(0xD8 | encode));
8711 }
8712 
8713 void Assembler::notq(Register dst) {
8714   int encode = prefixq_and_encode(dst->encoding());
8715   emit_int8((unsigned char)0xF7);
8716   emit_int8((unsigned char)(0xD0 | encode));
8717 }
8718 
8719 void Assembler::orq(Address dst, int32_t imm32) {
8720   InstructionMark im(this);
8721   prefixq(dst);
8722   emit_int8((unsigned char)0x81);
8723   emit_operand(rcx, dst, 4);
8724   emit_int32(imm32);
8725 }
8726 
8727 void Assembler::orq(Register dst, int32_t imm32) {
8728   (void) prefixq_and_encode(dst->encoding());
8729   emit_arith(0x81, 0xC8, dst, imm32);
8730 }
8731 
8732 void Assembler::orq(Register dst, Address src) {
8733   InstructionMark im(this);
8734   prefixq(src, dst);
8735   emit_int8(0x0B);
8736   emit_operand(dst, src);
8737 }
8738 
8739 void Assembler::orq(Register dst, Register src) {
8740   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8741   emit_arith(0x0B, 0xC0, dst, src);
8742 }
8743 
8744 void Assembler::popa() { // 64bit
8745   movq(r15, Address(rsp, 0));
8746   movq(r14, Address(rsp, wordSize));
8747   movq(r13, Address(rsp, 2 * wordSize));
8748   movq(r12, Address(rsp, 3 * wordSize));
8749   movq(r11, Address(rsp, 4 * wordSize));
8750   movq(r10, Address(rsp, 5 * wordSize));
8751   movq(r9,  Address(rsp, 6 * wordSize));
8752   movq(r8,  Address(rsp, 7 * wordSize));
8753   movq(rdi, Address(rsp, 8 * wordSize));
8754   movq(rsi, Address(rsp, 9 * wordSize));
8755   movq(rbp, Address(rsp, 10 * wordSize));
8756   // skip rsp
8757   movq(rbx, Address(rsp, 12 * wordSize));
8758   movq(rdx, Address(rsp, 13 * wordSize));
8759   movq(rcx, Address(rsp, 14 * wordSize));
8760   movq(rax, Address(rsp, 15 * wordSize));
8761 
8762   addq(rsp, 16 * wordSize);
8763 }
8764 
8765 void Assembler::popcntq(Register dst, Address src) {
8766   assert(VM_Version::supports_popcnt(), "must support");
8767   InstructionMark im(this);
8768   emit_int8((unsigned char)0xF3);
8769   prefixq(src, dst);
8770   emit_int8((unsigned char)0x0F);
8771   emit_int8((unsigned char)0xB8);
8772   emit_operand(dst, src);
8773 }
8774 
8775 void Assembler::popcntq(Register dst, Register src) {
8776   assert(VM_Version::supports_popcnt(), "must support");
8777   emit_int8((unsigned char)0xF3);
8778   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8779   emit_int8((unsigned char)0x0F);
8780   emit_int8((unsigned char)0xB8);
8781   emit_int8((unsigned char)(0xC0 | encode));
8782 }
8783 
8784 void Assembler::popq(Address dst) {
8785   InstructionMark im(this);
8786   prefixq(dst);
8787   emit_int8((unsigned char)0x8F);
8788   emit_operand(rax, dst);
8789 }
8790 
8791 void Assembler::pusha() { // 64bit
8792   // we have to store original rsp.  ABI says that 128 bytes
8793   // below rsp are local scratch.
8794   movq(Address(rsp, -5 * wordSize), rsp);
8795 
8796   subq(rsp, 16 * wordSize);
8797 
8798   movq(Address(rsp, 15 * wordSize), rax);
8799   movq(Address(rsp, 14 * wordSize), rcx);
8800   movq(Address(rsp, 13 * wordSize), rdx);
8801   movq(Address(rsp, 12 * wordSize), rbx);
8802   // skip rsp
8803   movq(Address(rsp, 10 * wordSize), rbp);
8804   movq(Address(rsp, 9 * wordSize), rsi);
8805   movq(Address(rsp, 8 * wordSize), rdi);
8806   movq(Address(rsp, 7 * wordSize), r8);
8807   movq(Address(rsp, 6 * wordSize), r9);
8808   movq(Address(rsp, 5 * wordSize), r10);
8809   movq(Address(rsp, 4 * wordSize), r11);
8810   movq(Address(rsp, 3 * wordSize), r12);
8811   movq(Address(rsp, 2 * wordSize), r13);
8812   movq(Address(rsp, wordSize), r14);
8813   movq(Address(rsp, 0), r15);
8814 }
8815 
8816 void Assembler::pushq(Address src) {
8817   InstructionMark im(this);
8818   prefixq(src);
8819   emit_int8((unsigned char)0xFF);
8820   emit_operand(rsi, src);
8821 }
8822 
8823 void Assembler::rclq(Register dst, int imm8) {
8824   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8825   int encode = prefixq_and_encode(dst->encoding());
8826   if (imm8 == 1) {
8827     emit_int8((unsigned char)0xD1);
8828     emit_int8((unsigned char)(0xD0 | encode));
8829   } else {
8830     emit_int8((unsigned char)0xC1);
8831     emit_int8((unsigned char)(0xD0 | encode));
8832     emit_int8(imm8);
8833   }
8834 }
8835 
8836 void Assembler::rcrq(Register dst, int imm8) {
8837   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8838   int encode = prefixq_and_encode(dst->encoding());
8839   if (imm8 == 1) {
8840     emit_int8((unsigned char)0xD1);
8841     emit_int8((unsigned char)(0xD8 | encode));
8842   } else {
8843     emit_int8((unsigned char)0xC1);
8844     emit_int8((unsigned char)(0xD8 | encode));
8845     emit_int8(imm8);
8846   }
8847 }
8848 
8849 void Assembler::rorq(Register dst, int imm8) {
8850   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8851   int encode = prefixq_and_encode(dst->encoding());
8852   if (imm8 == 1) {
8853     emit_int8((unsigned char)0xD1);
8854     emit_int8((unsigned char)(0xC8 | encode));
8855   } else {
8856     emit_int8((unsigned char)0xC1);
8857     emit_int8((unsigned char)(0xc8 | encode));
8858     emit_int8(imm8);
8859   }
8860 }
8861 
8862 void Assembler::rorxq(Register dst, Register src, int imm8) {
8863   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8864   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8865   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8866   emit_int8((unsigned char)0xF0);
8867   emit_int8((unsigned char)(0xC0 | encode));
8868   emit_int8(imm8);
8869 }
8870 
8871 void Assembler::rorxd(Register dst, Register src, int imm8) {
8872   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8873   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8874   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8875   emit_int8((unsigned char)0xF0);
8876   emit_int8((unsigned char)(0xC0 | encode));
8877   emit_int8(imm8);
8878 }
8879 
8880 void Assembler::sarq(Register dst, int imm8) {
8881   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8882   int encode = prefixq_and_encode(dst->encoding());
8883   if (imm8 == 1) {
8884     emit_int8((unsigned char)0xD1);
8885     emit_int8((unsigned char)(0xF8 | encode));
8886   } else {
8887     emit_int8((unsigned char)0xC1);
8888     emit_int8((unsigned char)(0xF8 | encode));
8889     emit_int8(imm8);
8890   }
8891 }
8892 
8893 void Assembler::sarq(Register dst) {
8894   int encode = prefixq_and_encode(dst->encoding());
8895   emit_int8((unsigned char)0xD3);
8896   emit_int8((unsigned char)(0xF8 | encode));
8897 }
8898 
8899 void Assembler::sbbq(Address dst, int32_t imm32) {
8900   InstructionMark im(this);
8901   prefixq(dst);
8902   emit_arith_operand(0x81, rbx, dst, imm32);
8903 }
8904 
8905 void Assembler::sbbq(Register dst, int32_t imm32) {
8906   (void) prefixq_and_encode(dst->encoding());
8907   emit_arith(0x81, 0xD8, dst, imm32);
8908 }
8909 
8910 void Assembler::sbbq(Register dst, Address src) {
8911   InstructionMark im(this);
8912   prefixq(src, dst);
8913   emit_int8(0x1B);
8914   emit_operand(dst, src);
8915 }
8916 
8917 void Assembler::sbbq(Register dst, Register src) {
8918   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8919   emit_arith(0x1B, 0xC0, dst, src);
8920 }
8921 
8922 void Assembler::shlq(Register dst, int imm8) {
8923   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8924   int encode = prefixq_and_encode(dst->encoding());
8925   if (imm8 == 1) {
8926     emit_int8((unsigned char)0xD1);
8927     emit_int8((unsigned char)(0xE0 | encode));
8928   } else {
8929     emit_int8((unsigned char)0xC1);
8930     emit_int8((unsigned char)(0xE0 | encode));
8931     emit_int8(imm8);
8932   }
8933 }
8934 
8935 void Assembler::shlq(Register dst) {
8936   int encode = prefixq_and_encode(dst->encoding());
8937   emit_int8((unsigned char)0xD3);
8938   emit_int8((unsigned char)(0xE0 | encode));
8939 }
8940 
8941 void Assembler::shrq(Register dst, int imm8) {
8942   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8943   int encode = prefixq_and_encode(dst->encoding());
8944   emit_int8((unsigned char)0xC1);
8945   emit_int8((unsigned char)(0xE8 | encode));
8946   emit_int8(imm8);
8947 }
8948 
8949 void Assembler::shrq(Register dst) {
8950   int encode = prefixq_and_encode(dst->encoding());
8951   emit_int8((unsigned char)0xD3);
8952   emit_int8(0xE8 | encode);
8953 }
8954 
8955 void Assembler::subq(Address dst, int32_t imm32) {
8956   InstructionMark im(this);
8957   prefixq(dst);
8958   emit_arith_operand(0x81, rbp, dst, imm32);
8959 }
8960 
8961 void Assembler::subq(Address dst, Register src) {
8962   InstructionMark im(this);
8963   prefixq(dst, src);
8964   emit_int8(0x29);
8965   emit_operand(src, dst);
8966 }
8967 
8968 void Assembler::subq(Register dst, int32_t imm32) {
8969   (void) prefixq_and_encode(dst->encoding());
8970   emit_arith(0x81, 0xE8, dst, imm32);
8971 }
8972 
8973 // Force generation of a 4 byte immediate value even if it fits into 8bit
8974 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8975   (void) prefixq_and_encode(dst->encoding());
8976   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8977 }
8978 
8979 void Assembler::subq(Register dst, Address src) {
8980   InstructionMark im(this);
8981   prefixq(src, dst);
8982   emit_int8(0x2B);
8983   emit_operand(dst, src);
8984 }
8985 
8986 void Assembler::subq(Register dst, Register src) {
8987   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8988   emit_arith(0x2B, 0xC0, dst, src);
8989 }
8990 
8991 void Assembler::testq(Register dst, int32_t imm32) {
8992   // not using emit_arith because test
8993   // doesn't support sign-extension of
8994   // 8bit operands
8995   int encode = dst->encoding();
8996   if (encode == 0) {
8997     prefix(REX_W);
8998     emit_int8((unsigned char)0xA9);
8999   } else {
9000     encode = prefixq_and_encode(encode);
9001     emit_int8((unsigned char)0xF7);
9002     emit_int8((unsigned char)(0xC0 | encode));
9003   }
9004   emit_int32(imm32);
9005 }
9006 
9007 void Assembler::testq(Register dst, Register src) {
9008   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9009   emit_arith(0x85, 0xC0, dst, src);
9010 }
9011 
9012 void Assembler::testq(Register dst, Address src) {
9013   InstructionMark im(this);
9014   prefixq(src, dst);
9015   emit_int8((unsigned char)0x85);
9016   emit_operand(dst, src);
9017 }
9018 
9019 void Assembler::xaddq(Address dst, Register src) {
9020   InstructionMark im(this);
9021   prefixq(dst, src);
9022   emit_int8(0x0F);
9023   emit_int8((unsigned char)0xC1);
9024   emit_operand(src, dst);
9025 }
9026 
9027 void Assembler::xchgq(Register dst, Address src) {
9028   InstructionMark im(this);
9029   prefixq(src, dst);
9030   emit_int8((unsigned char)0x87);
9031   emit_operand(dst, src);
9032 }
9033 
9034 void Assembler::xchgq(Register dst, Register src) {
9035   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9036   emit_int8((unsigned char)0x87);
9037   emit_int8((unsigned char)(0xc0 | encode));
9038 }
9039 
9040 void Assembler::xorq(Register dst, Register src) {
9041   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9042   emit_arith(0x33, 0xC0, dst, src);
9043 }
9044 
9045 void Assembler::xorq(Register dst, Address src) {
9046   InstructionMark im(this);
9047   prefixq(src, dst);
9048   emit_int8(0x33);
9049   emit_operand(dst, src);
9050 }
9051 
9052 #endif // !LP64