1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/events.hpp"
  35 
  36 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  37 // is an abstract class: there may be many different kinds of heaps.  This
  38 // class defines the functions that a heap must implement, and contains
  39 // infrastructure common to all heaps.
  40 
  41 class AdaptiveSizePolicy;
  42 class BarrierSet;
  43 class CollectorPolicy;
  44 class GCHeapSummary;
  45 class GCTimer;
  46 class GCTracer;
  47 class MetaspaceSummary;
  48 class Thread;
  49 class ThreadClosure;
  50 class VirtualSpaceSummary;
  51 class nmethod;
  52 
  53 class GCMessage : public FormatBuffer<1024> {
  54  public:
  55   bool is_before;
  56 
  57  public:
  58   GCMessage() {}
  59 };
  60 
  61 class CollectedHeap;
  62 
  63 class GCHeapLog : public EventLogBase<GCMessage> {
  64  private:
  65   void log_heap(CollectedHeap* heap, bool before);
  66 
  67  public:
  68   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  69 
  70   void log_heap_before(CollectedHeap* heap) {
  71     log_heap(heap, true);
  72   }
  73   void log_heap_after(CollectedHeap* heap) {
  74     log_heap(heap, false);
  75   }
  76 };
  77 
  78 //
  79 // CollectedHeap
  80 //   GenCollectedHeap
  81 //   G1CollectedHeap
  82 //   ShenandoahHeap
  83 //   ParallelScavengeHeap
  84 //
  85 class CollectedHeap : public CHeapObj<mtInternal> {
  86   friend class VMStructs;
  87   friend class JVMCIVMStructs;
  88   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  89 
  90  private:
  91 #ifdef ASSERT
  92   static int       _fire_out_of_memory_count;
  93 #endif
  94 
  95   GCHeapLog* _gc_heap_log;
  96 
  97   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
  98   // or INCLUDE_JVMCI is being used
  99   bool _defer_initial_card_mark;
 100 
 101   MemRegion _reserved;
 102 
 103  protected:
 104   BarrierSet* _barrier_set;
 105   bool _is_gc_active;
 106 
 107   // Used for filler objects (static, but initialized in ctor).
 108   static size_t _filler_array_max_size;
 109 
 110   unsigned int _total_collections;          // ... started
 111   unsigned int _total_full_collections;     // ... started
 112   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 113   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 114 
 115   // Reason for current garbage collection.  Should be set to
 116   // a value reflecting no collection between collections.
 117   GCCause::Cause _gc_cause;
 118   GCCause::Cause _gc_lastcause;
 119   PerfStringVariable* _perf_gc_cause;
 120   PerfStringVariable* _perf_gc_lastcause;
 121 
 122   // Constructor
 123   CollectedHeap();
 124 
 125   // Do common initializations that must follow instance construction,
 126   // for example, those needing virtual calls.
 127   // This code could perhaps be moved into initialize() but would
 128   // be slightly more awkward because we want the latter to be a
 129   // pure virtual.
 130   void pre_initialize();
 131 
 132   // Create a new tlab. All TLAB allocations must go through this.
 133   virtual HeapWord* allocate_new_tlab(size_t size);
 134 
 135   // Accumulate statistics on all tlabs.
 136   virtual void accumulate_statistics_all_tlabs();
 137 
 138   // Reinitialize tlabs before resuming mutators.
 139   virtual void resize_all_tlabs();
 140 
 141   // Allocate from the current thread's TLAB, with broken-out slow path.
 142   inline static HeapWord* allocate_from_tlab(KlassHandle klass, Thread* thread, size_t size);
 143   static HeapWord* allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size);
 144 
 145   // Allocate an uninitialized block of the given size, or returns NULL if
 146   // this is impossible.
 147   inline static HeapWord* common_mem_allocate_noinit(KlassHandle klass, size_t size, TRAPS);
 148 
 149   // Like allocate_init, but the block returned by a successful allocation
 150   // is guaranteed initialized to zeros.
 151   inline static HeapWord* common_mem_allocate_init(KlassHandle klass, size_t size, TRAPS);
 152 
 153   // Helper functions for (VM) allocation.
 154   inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
 155   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
 156                                                             HeapWord* objPtr);
 157 
 158   inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, int size);
 159 
 160   inline static void post_allocation_setup_array(KlassHandle klass,
 161                                                  HeapWord* obj, int length);
 162 
 163   inline static void post_allocation_setup_class(KlassHandle klass, HeapWord* obj, int size);
 164 
 165   // Clears an allocated object.
 166   inline static void init_obj(HeapWord* obj, size_t size);
 167 
 168   // Filler object utilities.
 169   static inline size_t filler_array_hdr_size();
 170   static inline size_t filler_array_min_size();
 171 
 172   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 173   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 174 
 175   // Fill with a single array; caller must ensure filler_array_min_size() <=
 176   // words <= filler_array_max_size().
 177   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 178 
 179   // Fill with a single object (either an int array or a java.lang.Object).
 180   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 181 
 182   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 183 
 184   // Verification functions
 185   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 186     PRODUCT_RETURN;
 187   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 188     PRODUCT_RETURN;
 189   debug_only(static void check_for_valid_allocation_state();)
 190 
 191  public:
 192   enum Name {
 193     GenCollectedHeap,
 194     ParallelScavengeHeap,
 195     G1CollectedHeap,
 196     ShenandoahHeap
 197   };
 198 
 199   static inline size_t filler_array_max_size() {
 200     return _filler_array_max_size;
 201   }
 202 
 203   virtual Name kind() const = 0;
 204 
 205   virtual HeapWord* tlab_post_allocation_setup(HeapWord* obj);
 206 
 207   virtual const char* name() const = 0;
 208 
 209   /**
 210    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 211    * and JNI_OK on success.
 212    */
 213   virtual jint initialize() = 0;
 214 
 215   // In many heaps, there will be a need to perform some initialization activities
 216   // after the Universe is fully formed, but before general heap allocation is allowed.
 217   // This is the correct place to place such initialization methods.
 218   virtual void post_initialize() = 0;
 219 
 220   // Stop any onging concurrent work and prepare for exit.
 221   virtual void stop() {}
 222 
 223   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 224   MemRegion reserved_region() const { return _reserved; }
 225   address base() const { return (address)reserved_region().start(); }
 226 
 227   virtual size_t capacity() const = 0;
 228   virtual size_t used() const = 0;
 229 
 230   // Return "true" if the part of the heap that allocates Java
 231   // objects has reached the maximal committed limit that it can
 232   // reach, without a garbage collection.
 233   virtual bool is_maximal_no_gc() const = 0;
 234 
 235   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 236   // memory that the vm could make available for storing 'normal' java objects.
 237   // This is based on the reserved address space, but should not include space
 238   // that the vm uses internally for bookkeeping or temporary storage
 239   // (e.g., in the case of the young gen, one of the survivor
 240   // spaces).
 241   virtual size_t max_capacity() const = 0;
 242 
 243   // Returns "TRUE" if "p" points into the reserved area of the heap.
 244   bool is_in_reserved(const void* p) const {
 245     return _reserved.contains(p);
 246   }
 247 
 248   bool is_in_reserved_or_null(const void* p) const {
 249     return p == NULL || is_in_reserved(p);
 250   }
 251 
 252   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 253   // This method can be expensive so avoid using it in performance critical
 254   // code.
 255   virtual bool is_in(const void* p) const = 0;
 256 
 257   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 258 
 259   // Let's define some terms: a "closed" subset of a heap is one that
 260   //
 261   // 1) contains all currently-allocated objects, and
 262   //
 263   // 2) is closed under reference: no object in the closed subset
 264   //    references one outside the closed subset.
 265   //
 266   // Membership in a heap's closed subset is useful for assertions.
 267   // Clearly, the entire heap is a closed subset, so the default
 268   // implementation is to use "is_in_reserved".  But this may not be too
 269   // liberal to perform useful checking.  Also, the "is_in" predicate
 270   // defines a closed subset, but may be too expensive, since "is_in"
 271   // verifies that its argument points to an object head.  The
 272   // "closed_subset" method allows a heap to define an intermediate
 273   // predicate, allowing more precise checking than "is_in_reserved" at
 274   // lower cost than "is_in."
 275 
 276   // One important case is a heap composed of disjoint contiguous spaces,
 277   // such as the Garbage-First collector.  Such heaps have a convenient
 278   // closed subset consisting of the allocated portions of those
 279   // contiguous spaces.
 280 
 281   // Return "TRUE" iff the given pointer points into the heap's defined
 282   // closed subset (which defaults to the entire heap).
 283   virtual bool is_in_closed_subset(const void* p) const {
 284     return is_in_reserved(p);
 285   }
 286 
 287   bool is_in_closed_subset_or_null(const void* p) const {
 288     return p == NULL || is_in_closed_subset(p);
 289   }
 290 
 291   // An object is scavengable if its location may move during a scavenge.
 292   // (A scavenge is a GC which is not a full GC.)
 293   virtual bool is_scavengable(const void *p) = 0;
 294 
 295   void set_gc_cause(GCCause::Cause v) {
 296      if (UsePerfData) {
 297        _gc_lastcause = _gc_cause;
 298        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 299        _perf_gc_cause->set_value(GCCause::to_string(v));
 300      }
 301     _gc_cause = v;
 302   }
 303   GCCause::Cause gc_cause() { return _gc_cause; }
 304 
 305   // General obj/array allocation facilities.
 306   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
 307   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
 308   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
 309   inline static oop class_allocate(KlassHandle klass, int size, TRAPS);
 310 
 311   virtual uint oop_extra_words();
 312 
 313 #ifndef CC_INTERP
 314   virtual void compile_prepare_oop(MacroAssembler* masm, Register obj);
 315 #endif
 316 
 317   // Raw memory allocation facilities
 318   // The obj and array allocate methods are covers for these methods.
 319   // mem_allocate() should never be
 320   // called to allocate TLABs, only individual objects.
 321   virtual HeapWord* mem_allocate(size_t size,
 322                                  bool* gc_overhead_limit_was_exceeded) = 0;
 323 
 324   // Utilities for turning raw memory into filler objects.
 325   //
 326   // min_fill_size() is the smallest region that can be filled.
 327   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 328   // multiple objects.  fill_with_object() is for regions known to be smaller
 329   // than the largest array of integers; it uses a single object to fill the
 330   // region and has slightly less overhead.
 331   static size_t min_fill_size() {
 332     return size_t(align_object_size(oopDesc::header_size()));
 333   }
 334 
 335   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 336 
 337   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 338   static void fill_with_object(MemRegion region, bool zap = true) {
 339     fill_with_object(region.start(), region.word_size(), zap);
 340   }
 341   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 342     fill_with_object(start, pointer_delta(end, start), zap);
 343   }
 344 
 345   // Return the address "addr" aligned by "alignment_in_bytes" if such
 346   // an address is below "end".  Return NULL otherwise.
 347   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 348                                                    HeapWord* end,
 349                                                    unsigned short alignment_in_bytes);
 350 
 351   // Some heaps may offer a contiguous region for shared non-blocking
 352   // allocation, via inlined code (by exporting the address of the top and
 353   // end fields defining the extent of the contiguous allocation region.)
 354 
 355   // This function returns "true" iff the heap supports this kind of
 356   // allocation.  (Default is "no".)
 357   virtual bool supports_inline_contig_alloc() const {
 358     return false;
 359   }
 360   // These functions return the addresses of the fields that define the
 361   // boundaries of the contiguous allocation area.  (These fields should be
 362   // physically near to one another.)
 363   virtual HeapWord* volatile* top_addr() const {
 364     guarantee(false, "inline contiguous allocation not supported");
 365     return NULL;
 366   }
 367   virtual HeapWord** end_addr() const {
 368     guarantee(false, "inline contiguous allocation not supported");
 369     return NULL;
 370   }
 371 
 372   // Some heaps may be in an unparseable state at certain times between
 373   // collections. This may be necessary for efficient implementation of
 374   // certain allocation-related activities. Calling this function before
 375   // attempting to parse a heap ensures that the heap is in a parsable
 376   // state (provided other concurrent activity does not introduce
 377   // unparsability). It is normally expected, therefore, that this
 378   // method is invoked with the world stopped.
 379   // NOTE: if you override this method, make sure you call
 380   // super::ensure_parsability so that the non-generational
 381   // part of the work gets done. See implementation of
 382   // CollectedHeap::ensure_parsability and, for instance,
 383   // that of GenCollectedHeap::ensure_parsability().
 384   // The argument "retire_tlabs" controls whether existing TLABs
 385   // are merely filled or also retired, thus preventing further
 386   // allocation from them and necessitating allocation of new TLABs.
 387   virtual void ensure_parsability(bool retire_tlabs);
 388 
 389   // Section on thread-local allocation buffers (TLABs)
 390   // If the heap supports thread-local allocation buffers, it should override
 391   // the following methods:
 392   // Returns "true" iff the heap supports thread-local allocation buffers.
 393   // The default is "no".
 394   virtual bool supports_tlab_allocation() const = 0;
 395 
 396   // The amount of space available for thread-local allocation buffers.
 397   virtual size_t tlab_capacity(Thread *thr) const = 0;
 398 
 399   // The amount of used space for thread-local allocation buffers for the given thread.
 400   virtual size_t tlab_used(Thread *thr) const = 0;
 401 
 402   virtual size_t max_tlab_size() const;
 403 
 404   // An estimate of the maximum allocation that could be performed
 405   // for thread-local allocation buffers without triggering any
 406   // collection or expansion activity.
 407   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 408     guarantee(false, "thread-local allocation buffers not supported");
 409     return 0;
 410   }
 411 
 412   // Can a compiler initialize a new object without store barriers?
 413   // This permission only extends from the creation of a new object
 414   // via a TLAB up to the first subsequent safepoint. If such permission
 415   // is granted for this heap type, the compiler promises to call
 416   // defer_store_barrier() below on any slow path allocation of
 417   // a new object for which such initializing store barriers will
 418   // have been elided.
 419   virtual bool can_elide_tlab_store_barriers() const = 0;
 420 
 421   // If a compiler is eliding store barriers for TLAB-allocated objects,
 422   // there is probably a corresponding slow path which can produce
 423   // an object allocated anywhere.  The compiler's runtime support
 424   // promises to call this function on such a slow-path-allocated
 425   // object before performing initializations that have elided
 426   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 427   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 428 
 429   // Answers whether an initializing store to a new object currently
 430   // allocated at the given address doesn't need a store
 431   // barrier. Returns "true" if it doesn't need an initializing
 432   // store barrier; answers "false" if it does.
 433   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 434 
 435   // If a compiler is eliding store barriers for TLAB-allocated objects,
 436   // we will be informed of a slow-path allocation by a call
 437   // to new_store_pre_barrier() above. Such a call precedes the
 438   // initialization of the object itself, and no post-store-barriers will
 439   // be issued. Some heap types require that the barrier strictly follows
 440   // the initializing stores. (This is currently implemented by deferring the
 441   // barrier until the next slow-path allocation or gc-related safepoint.)
 442   // This interface answers whether a particular heap type needs the card
 443   // mark to be thus strictly sequenced after the stores.
 444   virtual bool card_mark_must_follow_store() const = 0;
 445 
 446   // If the CollectedHeap was asked to defer a store barrier above,
 447   // this informs it to flush such a deferred store barrier to the
 448   // remembered set.
 449   virtual void flush_deferred_store_barrier(JavaThread* thread);
 450 
 451   // Perform a collection of the heap; intended for use in implementing
 452   // "System.gc".  This probably implies as full a collection as the
 453   // "CollectedHeap" supports.
 454   virtual void collect(GCCause::Cause cause) = 0;
 455 
 456   // Perform a full collection
 457   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 458 
 459   // This interface assumes that it's being called by the
 460   // vm thread. It collects the heap assuming that the
 461   // heap lock is already held and that we are executing in
 462   // the context of the vm thread.
 463   virtual void collect_as_vm_thread(GCCause::Cause cause);
 464 
 465   // Returns the barrier set for this heap
 466   BarrierSet* barrier_set() { return _barrier_set; }
 467   void set_barrier_set(BarrierSet* barrier_set);
 468 
 469   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 470   // that it should answer "false" for the concurrent part of a concurrent
 471   // collector -- dld).
 472   bool is_gc_active() const { return _is_gc_active; }
 473 
 474   // Total number of GC collections (started)
 475   unsigned int total_collections() const { return _total_collections; }
 476   unsigned int total_full_collections() const { return _total_full_collections;}
 477 
 478   // Increment total number of GC collections (started)
 479   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 480   void increment_total_collections(bool full = false) {
 481     _total_collections++;
 482     if (full) {
 483       increment_total_full_collections();
 484     }
 485   }
 486 
 487   void increment_total_full_collections() { _total_full_collections++; }
 488 
 489   // Return the AdaptiveSizePolicy for the heap.
 490   virtual AdaptiveSizePolicy* size_policy() = 0;
 491 
 492   // Return the CollectorPolicy for the heap
 493   virtual CollectorPolicy* collector_policy() const = 0;
 494 
 495   // Iterate over all objects, calling "cl.do_object" on each.
 496   virtual void object_iterate(ObjectClosure* cl) = 0;
 497 
 498   // Similar to object_iterate() except iterates only
 499   // over live objects.
 500   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 501 
 502   // NOTE! There is no requirement that a collector implement these
 503   // functions.
 504   //
 505   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 506   // each address in the (reserved) heap is a member of exactly
 507   // one block.  The defining characteristic of a block is that it is
 508   // possible to find its size, and thus to progress forward to the next
 509   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 510   // represent Java objects, or they might be free blocks in a
 511   // free-list-based heap (or subheap), as long as the two kinds are
 512   // distinguishable and the size of each is determinable.
 513 
 514   // Returns the address of the start of the "block" that contains the
 515   // address "addr".  We say "blocks" instead of "object" since some heaps
 516   // may not pack objects densely; a chunk may either be an object or a
 517   // non-object.
 518   virtual HeapWord* block_start(const void* addr) const = 0;
 519 
 520   // Requires "addr" to be the start of a chunk, and returns its size.
 521   // "addr + size" is required to be the start of a new chunk, or the end
 522   // of the active area of the heap.
 523   virtual size_t block_size(const HeapWord* addr) const = 0;
 524 
 525   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 526   // the block is an object.
 527   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 528 
 529   // Returns the longest time (in ms) that has elapsed since the last
 530   // time that any part of the heap was examined by a garbage collection.
 531   virtual jlong millis_since_last_gc() = 0;
 532 
 533   // Perform any cleanup actions necessary before allowing a verification.
 534   virtual void prepare_for_verify() = 0;
 535 
 536   // Generate any dumps preceding or following a full gc
 537  private:
 538   void full_gc_dump(GCTimer* timer, bool before);
 539  public:
 540   void pre_full_gc_dump(GCTimer* timer);
 541   void post_full_gc_dump(GCTimer* timer);
 542 
 543   VirtualSpaceSummary create_heap_space_summary();
 544   GCHeapSummary create_heap_summary();
 545 
 546   MetaspaceSummary create_metaspace_summary();
 547 
 548   // Print heap information on the given outputStream.
 549   virtual void print_on(outputStream* st) const = 0;
 550   // The default behavior is to call print_on() on tty.
 551   virtual void print() const {
 552     print_on(tty);
 553   }
 554   // Print more detailed heap information on the given
 555   // outputStream. The default behavior is to call print_on(). It is
 556   // up to each subclass to override it and add any additional output
 557   // it needs.
 558   virtual void print_extended_on(outputStream* st) const {
 559     print_on(st);
 560   }
 561 
 562   virtual void print_on_error(outputStream* st) const;
 563 
 564   // Print all GC threads (other than the VM thread)
 565   // used by this heap.
 566   virtual void print_gc_threads_on(outputStream* st) const = 0;
 567   // The default behavior is to call print_gc_threads_on() on tty.
 568   void print_gc_threads() {
 569     print_gc_threads_on(tty);
 570   }
 571   // Iterator for all GC threads (other than VM thread)
 572   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 573 
 574   // Print any relevant tracing info that flags imply.
 575   // Default implementation does nothing.
 576   virtual void print_tracing_info() const = 0;
 577 
 578   void print_heap_before_gc();
 579   void print_heap_after_gc();
 580 
 581   // Registering and unregistering an nmethod (compiled code) with the heap.
 582   // Override with specific mechanism for each specialized heap type.
 583   virtual void register_nmethod(nmethod* nm);
 584   virtual void unregister_nmethod(nmethod* nm);
 585 
 586   // The following two methods are there to support object pinning for JNI critical
 587   // regions. They are called whenever a thread enters or leaves a JNI critical
 588   // region and requires an object not to move. Notice that there's another
 589   // mechanism for GCs to implement critical region (see gcLocker.hpp). The default
 590   // implementation does nothing.
 591   virtual void pin_object(oop o);
 592   virtual void unpin_object(oop o);
 593 
 594   void trace_heap_before_gc(const GCTracer* gc_tracer);
 595   void trace_heap_after_gc(const GCTracer* gc_tracer);
 596 
 597   // Heap verification
 598   virtual void verify(VerifyOption option) = 0;
 599 
 600   // Accumulate additional statistics from GCLABs.
 601   virtual void accumulate_statistics_all_gclabs();
 602 
 603   // Non product verification and debugging.
 604 #ifndef PRODUCT
 605   // Support for PromotionFailureALot.  Return true if it's time to cause a
 606   // promotion failure.  The no-argument version uses
 607   // this->_promotion_failure_alot_count as the counter.
 608   inline bool promotion_should_fail(volatile size_t* count);
 609   inline bool promotion_should_fail();
 610 
 611   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 612   // GC in which promotion failure occurred.
 613   inline void reset_promotion_should_fail(volatile size_t* count);
 614   inline void reset_promotion_should_fail();
 615 #endif  // #ifndef PRODUCT
 616 
 617 #ifdef ASSERT
 618   static int fired_fake_oom() {
 619     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 620   }
 621 #endif
 622 
 623  public:
 624   // Copy the current allocation context statistics for the specified contexts.
 625   // For each context in contexts, set the corresponding entries in the totals
 626   // and accuracy arrays to the current values held by the statistics.  Each
 627   // array should be of length len.
 628   // Returns true if there are more stats available.
 629   virtual bool copy_allocation_context_stats(const jint* contexts,
 630                                              jlong* totals,
 631                                              jbyte* accuracy,
 632                                              jint len) {
 633     return false;
 634   }
 635 
 636 };
 637 
 638 // Class to set and reset the GC cause for a CollectedHeap.
 639 
 640 class GCCauseSetter : StackObj {
 641   CollectedHeap* _heap;
 642   GCCause::Cause _previous_cause;
 643  public:
 644   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 645     assert(SafepointSynchronize::is_at_safepoint(),
 646            "This method manipulates heap state without locking");
 647     _heap = heap;
 648     _previous_cause = _heap->gc_cause();
 649     _heap->set_gc_cause(cause);
 650   }
 651 
 652   ~GCCauseSetter() {
 653     assert(SafepointSynchronize::is_at_safepoint(),
 654           "This method manipulates heap state without locking");
 655     _heap->set_gc_cause(_previous_cause);
 656   }
 657 };
 658 
 659 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP