1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/privilegedStack.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/commandLineFlagConstraintList.hpp"
  61 #include "runtime/commandLineFlagWriteableList.hpp"
  62 #include "runtime/commandLineFlagRangeList.hpp"
  63 #include "runtime/deoptimization.hpp"
  64 #include "runtime/fprofiler.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/globals.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniPeriodicChecker.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/memprofiler.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/objectMonitor.hpp"
  76 #include "runtime/orderAccess.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/statSampler.hpp"
  81 #include "runtime/stubRoutines.hpp"
  82 #include "runtime/sweeper.hpp"
  83 #include "runtime/task.hpp"
  84 #include "runtime/thread.inline.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/vframe.hpp"
  87 #include "runtime/vframeArray.hpp"
  88 #include "runtime/vframe_hp.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "runtime/vm_operations.hpp"
  91 #include "runtime/vm_version.hpp"
  92 #include "services/attachListener.hpp"
  93 #include "services/management.hpp"
  94 #include "services/memTracker.hpp"
  95 #include "services/threadService.hpp"
  96 #include "trace/traceMacros.hpp"
  97 #include "trace/tracing.hpp"
  98 #include "utilities/defaultStream.hpp"
  99 #include "utilities/dtrace.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/macros.hpp"
 102 #include "utilities/preserveException.hpp"
 103 #if INCLUDE_ALL_GCS
 104 #include "gc/shenandoah/shenandoahConcurrentThread.hpp"
 105 #include "gc/cms/concurrentMarkSweepThread.hpp"
 106 #include "gc/g1/concurrentMarkThread.inline.hpp"
 107 #include "gc/parallel/pcTasks.hpp"
 108 #endif // INCLUDE_ALL_GCS
 109 #if INCLUDE_JVMCI
 110 #include "jvmci/jvmciCompiler.hpp"
 111 #include "jvmci/jvmciRuntime.hpp"
 112 #endif
 113 #ifdef COMPILER1
 114 #include "c1/c1_Compiler.hpp"
 115 #endif
 116 #ifdef COMPILER2
 117 #include "opto/c2compiler.hpp"
 118 #include "opto/idealGraphPrinter.hpp"
 119 #endif
 120 #if INCLUDE_RTM_OPT
 121 #include "runtime/rtmLocking.hpp"
 122 #endif
 123 
 124 // Initialization after module runtime initialization
 125 void universe_post_module_init();  // must happen after call_initPhase2
 126 
 127 #ifdef DTRACE_ENABLED
 128 
 129 // Only bother with this argument setup if dtrace is available
 130 
 131   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 132   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 133 
 134   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 135     {                                                                      \
 136       ResourceMark rm(this);                                               \
 137       int len = 0;                                                         \
 138       const char* name = (javathread)->get_thread_name();                  \
 139       len = strlen(name);                                                  \
 140       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 141         (char *) name, len,                                                \
 142         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 143         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 144         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 145     }
 146 
 147 #else //  ndef DTRACE_ENABLED
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)
 150 
 151 #endif // ndef DTRACE_ENABLED
 152 
 153 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 154 // Current thread is maintained as a thread-local variable
 155 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 156 #endif
 157 // Class hierarchy
 158 // - Thread
 159 //   - VMThread
 160 //   - WatcherThread
 161 //   - ConcurrentMarkSweepThread
 162 //   - JavaThread
 163 //     - CompilerThread
 164 
 165 // ======= Thread ========
 166 // Support for forcing alignment of thread objects for biased locking
 167 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 168   if (UseBiasedLocking) {
 169     const int alignment = markOopDesc::biased_lock_alignment;
 170     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 171     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 172                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 173                                                          AllocFailStrategy::RETURN_NULL);
 174     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 175     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 176            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 177            "JavaThread alignment code overflowed allocated storage");
 178     if (aligned_addr != real_malloc_addr) {
 179       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 180                               p2i(real_malloc_addr),
 181                               p2i(aligned_addr));
 182     }
 183     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 184     return aligned_addr;
 185   } else {
 186     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 187                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 188   }
 189 }
 190 
 191 void Thread::operator delete(void* p) {
 192   if (UseBiasedLocking) {
 193     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 194     FreeHeap(real_malloc_addr);
 195   } else {
 196     FreeHeap(p);
 197   }
 198 }
 199 
 200 
 201 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 202 // JavaThread
 203 
 204 
 205 Thread::Thread() {
 206   // stack and get_thread
 207   set_stack_base(NULL);
 208   set_stack_size(0);
 209   set_self_raw_id(0);
 210   set_lgrp_id(-1);
 211   DEBUG_ONLY(clear_suspendible_thread();)
 212 
 213   // allocated data structures
 214   set_osthread(NULL);
 215   set_resource_area(new (mtThread)ResourceArea());
 216   DEBUG_ONLY(_current_resource_mark = NULL;)
 217   set_handle_area(new (mtThread) HandleArea(NULL));
 218   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 219   set_active_handles(NULL);
 220   set_free_handle_block(NULL);
 221   set_last_handle_mark(NULL);
 222 
 223   // This initial value ==> never claimed.
 224   _oops_do_parity = 0;
 225 
 226   // the handle mark links itself to last_handle_mark
 227   new HandleMark(this);
 228 
 229   // plain initialization
 230   debug_only(_owned_locks = NULL;)
 231   debug_only(_allow_allocation_count = 0;)
 232   NOT_PRODUCT(_allow_safepoint_count = 0;)
 233   NOT_PRODUCT(_skip_gcalot = false;)
 234   _jvmti_env_iteration_count = 0;
 235   set_allocated_bytes(0);
 236   _vm_operation_started_count = 0;
 237   _vm_operation_completed_count = 0;
 238   _current_pending_monitor = NULL;
 239   _current_pending_monitor_is_from_java = true;
 240   _current_waiting_monitor = NULL;
 241   _num_nested_signal = 0;
 242   omFreeList = NULL;
 243   omFreeCount = 0;
 244   omFreeProvision = 32;
 245   omInUseList = NULL;
 246   omInUseCount = 0;
 247 
 248 #ifdef ASSERT
 249   _visited_for_critical_count = false;
 250 #endif
 251 
 252   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 253                          Monitor::_safepoint_check_sometimes);
 254   _suspend_flags = 0;
 255 
 256   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 257   _hashStateX = os::random();
 258   _hashStateY = 842502087;
 259   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 260   _hashStateW = 273326509;
 261 
 262   _OnTrap   = 0;
 263   _schedctl = NULL;
 264   _Stalled  = 0;
 265   _TypeTag  = 0x2BAD;
 266 
 267   // Many of the following fields are effectively final - immutable
 268   // Note that nascent threads can't use the Native Monitor-Mutex
 269   // construct until the _MutexEvent is initialized ...
 270   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 271   // we might instead use a stack of ParkEvents that we could provision on-demand.
 272   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 273   // and ::Release()
 274   _ParkEvent   = ParkEvent::Allocate(this);
 275   _SleepEvent  = ParkEvent::Allocate(this);
 276   _MutexEvent  = ParkEvent::Allocate(this);
 277   _MuxEvent    = ParkEvent::Allocate(this);
 278 
 279 #ifdef CHECK_UNHANDLED_OOPS
 280   if (CheckUnhandledOops) {
 281     _unhandled_oops = new UnhandledOops(this);
 282   }
 283 #endif // CHECK_UNHANDLED_OOPS
 284 #ifdef ASSERT
 285   if (UseBiasedLocking) {
 286     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 287     assert(this == _real_malloc_address ||
 288            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 289            "bug in forced alignment of thread objects");
 290   }
 291 #endif // ASSERT
 292 }
 293 
 294 void Thread::initialize_thread_current() {
 295 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 296   assert(_thr_current == NULL, "Thread::current already initialized");
 297   _thr_current = this;
 298 #endif
 299   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 300   ThreadLocalStorage::set_thread(this);
 301   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 302 }
 303 
 304 void Thread::clear_thread_current() {
 305   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 306 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 307   _thr_current = NULL;
 308 #endif
 309   ThreadLocalStorage::set_thread(NULL);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 316   // in initialize_thread(). Without the adjustment, stack size is
 317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 318   // So far, only Solaris has real implementation of initialize_thread().
 319   //
 320   // set up any platform-specific state.
 321   os::initialize_thread(this);
 322 
 323   // Set stack limits after thread is initialized.
 324   if (is_Java_thread()) {
 325     ((JavaThread*) this)->set_stack_overflow_limit();
 326     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 327   }
 328 #if INCLUDE_NMT
 329   // record thread's native stack, stack grows downward
 330   MemTracker::record_thread_stack(stack_end(), stack_size());
 331 #endif // INCLUDE_NMT
 332   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 333     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 334     os::current_thread_id(), p2i(stack_base() - stack_size()),
 335     p2i(stack_base()), stack_size()/1024);
 336 }
 337 
 338 
 339 Thread::~Thread() {
 340   EVENT_THREAD_DESTRUCT(this);
 341 
 342   // stack_base can be NULL if the thread is never started or exited before
 343   // record_stack_base_and_size called. Although, we would like to ensure
 344   // that all started threads do call record_stack_base_and_size(), there is
 345   // not proper way to enforce that.
 346 #if INCLUDE_NMT
 347   if (_stack_base != NULL) {
 348     MemTracker::release_thread_stack(stack_end(), stack_size());
 349 #ifdef ASSERT
 350     set_stack_base(NULL);
 351 #endif
 352   }
 353 #endif // INCLUDE_NMT
 354 
 355   // deallocate data structures
 356   delete resource_area();
 357   // since the handle marks are using the handle area, we have to deallocated the root
 358   // handle mark before deallocating the thread's handle area,
 359   assert(last_handle_mark() != NULL, "check we have an element");
 360   delete last_handle_mark();
 361   assert(last_handle_mark() == NULL, "check we have reached the end");
 362 
 363   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 364   // We NULL out the fields for good hygiene.
 365   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 366   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 367   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 368   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 369 
 370   delete handle_area();
 371   delete metadata_handles();
 372 
 373   // SR_handler uses this as a termination indicator -
 374   // needs to happen before os::free_thread()
 375   delete _SR_lock;
 376   _SR_lock = NULL;
 377 
 378   // osthread() can be NULL, if creation of thread failed.
 379   if (osthread() != NULL) os::free_thread(osthread());
 380 
 381   // clear Thread::current if thread is deleting itself.
 382   // Needed to ensure JNI correctly detects non-attached threads.
 383   if (this == Thread::current()) {
 384     clear_thread_current();
 385   }
 386 
 387   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 388 }
 389 
 390 // NOTE: dummy function for assertion purpose.
 391 void Thread::run() {
 392   ShouldNotReachHere();
 393 }
 394 
 395 #ifdef ASSERT
 396 // Private method to check for dangling thread pointer
 397 void check_for_dangling_thread_pointer(Thread *thread) {
 398   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 399          "possibility of dangling Thread pointer");
 400 }
 401 #endif
 402 
 403 ThreadPriority Thread::get_priority(const Thread* const thread) {
 404   ThreadPriority priority;
 405   // Can return an error!
 406   (void)os::get_priority(thread, priority);
 407   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 408   return priority;
 409 }
 410 
 411 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 412   debug_only(check_for_dangling_thread_pointer(thread);)
 413   // Can return an error!
 414   (void)os::set_priority(thread, priority);
 415 }
 416 
 417 
 418 void Thread::start(Thread* thread) {
 419   // Start is different from resume in that its safety is guaranteed by context or
 420   // being called from a Java method synchronized on the Thread object.
 421   if (!DisableStartThread) {
 422     if (thread->is_Java_thread()) {
 423       // Initialize the thread state to RUNNABLE before starting this thread.
 424       // Can not set it after the thread started because we do not know the
 425       // exact thread state at that time. It could be in MONITOR_WAIT or
 426       // in SLEEPING or some other state.
 427       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 428                                           java_lang_Thread::RUNNABLE);
 429     }
 430     os::start_thread(thread);
 431   }
 432 }
 433 
 434 // Enqueue a VM_Operation to do the job for us - sometime later
 435 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 436   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 437   VMThread::execute(vm_stop);
 438 }
 439 
 440 
 441 // Check if an external suspend request has completed (or has been
 442 // cancelled). Returns true if the thread is externally suspended and
 443 // false otherwise.
 444 //
 445 // The bits parameter returns information about the code path through
 446 // the routine. Useful for debugging:
 447 //
 448 // set in is_ext_suspend_completed():
 449 // 0x00000001 - routine was entered
 450 // 0x00000010 - routine return false at end
 451 // 0x00000100 - thread exited (return false)
 452 // 0x00000200 - suspend request cancelled (return false)
 453 // 0x00000400 - thread suspended (return true)
 454 // 0x00001000 - thread is in a suspend equivalent state (return true)
 455 // 0x00002000 - thread is native and walkable (return true)
 456 // 0x00004000 - thread is native_trans and walkable (needed retry)
 457 //
 458 // set in wait_for_ext_suspend_completion():
 459 // 0x00010000 - routine was entered
 460 // 0x00020000 - suspend request cancelled before loop (return false)
 461 // 0x00040000 - thread suspended before loop (return true)
 462 // 0x00080000 - suspend request cancelled in loop (return false)
 463 // 0x00100000 - thread suspended in loop (return true)
 464 // 0x00200000 - suspend not completed during retry loop (return false)
 465 
 466 // Helper class for tracing suspend wait debug bits.
 467 //
 468 // 0x00000100 indicates that the target thread exited before it could
 469 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 470 // 0x00080000 each indicate a cancelled suspend request so they don't
 471 // count as wait failures either.
 472 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 473 
 474 class TraceSuspendDebugBits : public StackObj {
 475  private:
 476   JavaThread * jt;
 477   bool         is_wait;
 478   bool         called_by_wait;  // meaningful when !is_wait
 479   uint32_t *   bits;
 480 
 481  public:
 482   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 483                         uint32_t *_bits) {
 484     jt             = _jt;
 485     is_wait        = _is_wait;
 486     called_by_wait = _called_by_wait;
 487     bits           = _bits;
 488   }
 489 
 490   ~TraceSuspendDebugBits() {
 491     if (!is_wait) {
 492 #if 1
 493       // By default, don't trace bits for is_ext_suspend_completed() calls.
 494       // That trace is very chatty.
 495       return;
 496 #else
 497       if (!called_by_wait) {
 498         // If tracing for is_ext_suspend_completed() is enabled, then only
 499         // trace calls to it from wait_for_ext_suspend_completion()
 500         return;
 501       }
 502 #endif
 503     }
 504 
 505     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 506       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 507         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 508         ResourceMark rm;
 509 
 510         tty->print_cr(
 511                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 512                       jt->get_thread_name(), *bits);
 513 
 514         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 515       }
 516     }
 517   }
 518 };
 519 #undef DEBUG_FALSE_BITS
 520 
 521 
 522 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 523                                           uint32_t *bits) {
 524   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 525 
 526   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 527   bool do_trans_retry;           // flag to force the retry
 528 
 529   *bits |= 0x00000001;
 530 
 531   do {
 532     do_trans_retry = false;
 533 
 534     if (is_exiting()) {
 535       // Thread is in the process of exiting. This is always checked
 536       // first to reduce the risk of dereferencing a freed JavaThread.
 537       *bits |= 0x00000100;
 538       return false;
 539     }
 540 
 541     if (!is_external_suspend()) {
 542       // Suspend request is cancelled. This is always checked before
 543       // is_ext_suspended() to reduce the risk of a rogue resume
 544       // confusing the thread that made the suspend request.
 545       *bits |= 0x00000200;
 546       return false;
 547     }
 548 
 549     if (is_ext_suspended()) {
 550       // thread is suspended
 551       *bits |= 0x00000400;
 552       return true;
 553     }
 554 
 555     // Now that we no longer do hard suspends of threads running
 556     // native code, the target thread can be changing thread state
 557     // while we are in this routine:
 558     //
 559     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 560     //
 561     // We save a copy of the thread state as observed at this moment
 562     // and make our decision about suspend completeness based on the
 563     // copy. This closes the race where the thread state is seen as
 564     // _thread_in_native_trans in the if-thread_blocked check, but is
 565     // seen as _thread_blocked in if-thread_in_native_trans check.
 566     JavaThreadState save_state = thread_state();
 567 
 568     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 569       // If the thread's state is _thread_blocked and this blocking
 570       // condition is known to be equivalent to a suspend, then we can
 571       // consider the thread to be externally suspended. This means that
 572       // the code that sets _thread_blocked has been modified to do
 573       // self-suspension if the blocking condition releases. We also
 574       // used to check for CONDVAR_WAIT here, but that is now covered by
 575       // the _thread_blocked with self-suspension check.
 576       //
 577       // Return true since we wouldn't be here unless there was still an
 578       // external suspend request.
 579       *bits |= 0x00001000;
 580       return true;
 581     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 582       // Threads running native code will self-suspend on native==>VM/Java
 583       // transitions. If its stack is walkable (should always be the case
 584       // unless this function is called before the actual java_suspend()
 585       // call), then the wait is done.
 586       *bits |= 0x00002000;
 587       return true;
 588     } else if (!called_by_wait && !did_trans_retry &&
 589                save_state == _thread_in_native_trans &&
 590                frame_anchor()->walkable()) {
 591       // The thread is transitioning from thread_in_native to another
 592       // thread state. check_safepoint_and_suspend_for_native_trans()
 593       // will force the thread to self-suspend. If it hasn't gotten
 594       // there yet we may have caught the thread in-between the native
 595       // code check above and the self-suspend. Lucky us. If we were
 596       // called by wait_for_ext_suspend_completion(), then it
 597       // will be doing the retries so we don't have to.
 598       //
 599       // Since we use the saved thread state in the if-statement above,
 600       // there is a chance that the thread has already transitioned to
 601       // _thread_blocked by the time we get here. In that case, we will
 602       // make a single unnecessary pass through the logic below. This
 603       // doesn't hurt anything since we still do the trans retry.
 604 
 605       *bits |= 0x00004000;
 606 
 607       // Once the thread leaves thread_in_native_trans for another
 608       // thread state, we break out of this retry loop. We shouldn't
 609       // need this flag to prevent us from getting back here, but
 610       // sometimes paranoia is good.
 611       did_trans_retry = true;
 612 
 613       // We wait for the thread to transition to a more usable state.
 614       for (int i = 1; i <= SuspendRetryCount; i++) {
 615         // We used to do an "os::yield_all(i)" call here with the intention
 616         // that yielding would increase on each retry. However, the parameter
 617         // is ignored on Linux which means the yield didn't scale up. Waiting
 618         // on the SR_lock below provides a much more predictable scale up for
 619         // the delay. It also provides a simple/direct point to check for any
 620         // safepoint requests from the VMThread
 621 
 622         // temporarily drops SR_lock while doing wait with safepoint check
 623         // (if we're a JavaThread - the WatcherThread can also call this)
 624         // and increase delay with each retry
 625         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 626 
 627         // check the actual thread state instead of what we saved above
 628         if (thread_state() != _thread_in_native_trans) {
 629           // the thread has transitioned to another thread state so
 630           // try all the checks (except this one) one more time.
 631           do_trans_retry = true;
 632           break;
 633         }
 634       } // end retry loop
 635 
 636 
 637     }
 638   } while (do_trans_retry);
 639 
 640   *bits |= 0x00000010;
 641   return false;
 642 }
 643 
 644 // Wait for an external suspend request to complete (or be cancelled).
 645 // Returns true if the thread is externally suspended and false otherwise.
 646 //
 647 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 648                                                  uint32_t *bits) {
 649   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 650                              false /* !called_by_wait */, bits);
 651 
 652   // local flag copies to minimize SR_lock hold time
 653   bool is_suspended;
 654   bool pending;
 655   uint32_t reset_bits;
 656 
 657   // set a marker so is_ext_suspend_completed() knows we are the caller
 658   *bits |= 0x00010000;
 659 
 660   // We use reset_bits to reinitialize the bits value at the top of
 661   // each retry loop. This allows the caller to make use of any
 662   // unused bits for their own marking purposes.
 663   reset_bits = *bits;
 664 
 665   {
 666     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 667     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 668                                             delay, bits);
 669     pending = is_external_suspend();
 670   }
 671   // must release SR_lock to allow suspension to complete
 672 
 673   if (!pending) {
 674     // A cancelled suspend request is the only false return from
 675     // is_ext_suspend_completed() that keeps us from entering the
 676     // retry loop.
 677     *bits |= 0x00020000;
 678     return false;
 679   }
 680 
 681   if (is_suspended) {
 682     *bits |= 0x00040000;
 683     return true;
 684   }
 685 
 686   for (int i = 1; i <= retries; i++) {
 687     *bits = reset_bits;  // reinit to only track last retry
 688 
 689     // We used to do an "os::yield_all(i)" call here with the intention
 690     // that yielding would increase on each retry. However, the parameter
 691     // is ignored on Linux which means the yield didn't scale up. Waiting
 692     // on the SR_lock below provides a much more predictable scale up for
 693     // the delay. It also provides a simple/direct point to check for any
 694     // safepoint requests from the VMThread
 695 
 696     {
 697       MutexLocker ml(SR_lock());
 698       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 699       // can also call this)  and increase delay with each retry
 700       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 701 
 702       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 703                                               delay, bits);
 704 
 705       // It is possible for the external suspend request to be cancelled
 706       // (by a resume) before the actual suspend operation is completed.
 707       // Refresh our local copy to see if we still need to wait.
 708       pending = is_external_suspend();
 709     }
 710 
 711     if (!pending) {
 712       // A cancelled suspend request is the only false return from
 713       // is_ext_suspend_completed() that keeps us from staying in the
 714       // retry loop.
 715       *bits |= 0x00080000;
 716       return false;
 717     }
 718 
 719     if (is_suspended) {
 720       *bits |= 0x00100000;
 721       return true;
 722     }
 723   } // end retry loop
 724 
 725   // thread did not suspend after all our retries
 726   *bits |= 0x00200000;
 727   return false;
 728 }
 729 
 730 #ifndef PRODUCT
 731 void JavaThread::record_jump(address target, address instr, const char* file,
 732                              int line) {
 733 
 734   // This should not need to be atomic as the only way for simultaneous
 735   // updates is via interrupts. Even then this should be rare or non-existent
 736   // and we don't care that much anyway.
 737 
 738   int index = _jmp_ring_index;
 739   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 740   _jmp_ring[index]._target = (intptr_t) target;
 741   _jmp_ring[index]._instruction = (intptr_t) instr;
 742   _jmp_ring[index]._file = file;
 743   _jmp_ring[index]._line = line;
 744 }
 745 #endif // PRODUCT
 746 
 747 // Called by flat profiler
 748 // Callers have already called wait_for_ext_suspend_completion
 749 // The assertion for that is currently too complex to put here:
 750 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 751   bool gotframe = false;
 752   // self suspension saves needed state.
 753   if (has_last_Java_frame() && _anchor.walkable()) {
 754     *_fr = pd_last_frame();
 755     gotframe = true;
 756   }
 757   return gotframe;
 758 }
 759 
 760 void Thread::interrupt(Thread* thread) {
 761   debug_only(check_for_dangling_thread_pointer(thread);)
 762   os::interrupt(thread);
 763 }
 764 
 765 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 766   debug_only(check_for_dangling_thread_pointer(thread);)
 767   // Note:  If clear_interrupted==false, this simply fetches and
 768   // returns the value of the field osthread()->interrupted().
 769   return os::is_interrupted(thread, clear_interrupted);
 770 }
 771 
 772 
 773 // GC Support
 774 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 775   jint thread_parity = _oops_do_parity;
 776   if (thread_parity != strong_roots_parity) {
 777     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 778     if (res == thread_parity) {
 779       return true;
 780     } else {
 781       guarantee(res == strong_roots_parity, "Or else what?");
 782       return false;
 783     }
 784   }
 785   return false;
 786 }
 787 
 788 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 789   active_handles()->oops_do(f);
 790   // Do oop for ThreadShadow
 791   f->do_oop((oop*)&_pending_exception);
 792   handle_area()->oops_do(f);
 793   if (MonitorInUseLists) {
 794     VM_Operation* op = VMThread::vm_operation();
 795     if (op != NULL && op->deflates_idle_monitors()) {
 796       ObjectSynchronizer::deflate_idle_monitors_and_oops_do(this, f);
 797     } else {
 798       ObjectSynchronizer::thread_local_used_oops_do(this, f);
 799     }
 800   }
 801 }
 802 
 803 void Thread::metadata_handles_do(void f(Metadata*)) {
 804   // Only walk the Handles in Thread.
 805   if (metadata_handles() != NULL) {
 806     for (int i = 0; i< metadata_handles()->length(); i++) {
 807       f(metadata_handles()->at(i));
 808     }
 809   }
 810 }
 811 
 812 void Thread::print_on(outputStream* st) const {
 813   // get_priority assumes osthread initialized
 814   if (osthread() != NULL) {
 815     int os_prio;
 816     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 817       st->print("os_prio=%d ", os_prio);
 818     }
 819     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 820     ext().print_on(st);
 821     osthread()->print_on(st);
 822   }
 823   debug_only(if (WizardMode) print_owned_locks_on(st);)
 824 }
 825 
 826 // Thread::print_on_error() is called by fatal error handler. Don't use
 827 // any lock or allocate memory.
 828 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 829   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 830 
 831   if (is_VM_thread())                 { st->print("VMThread"); }
 832   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 833   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 834   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 835   else                                { st->print("Thread"); }
 836 
 837   if (is_Named_thread()) {
 838     st->print(" \"%s\"", name());
 839   }
 840 
 841   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 842             p2i(stack_end()), p2i(stack_base()));
 843 
 844   if (osthread()) {
 845     st->print(" [id=%d]", osthread()->thread_id());
 846   }
 847 }
 848 
 849 #ifdef ASSERT
 850 void Thread::print_owned_locks_on(outputStream* st) const {
 851   Monitor *cur = _owned_locks;
 852   if (cur == NULL) {
 853     st->print(" (no locks) ");
 854   } else {
 855     st->print_cr(" Locks owned:");
 856     while (cur) {
 857       cur->print_on(st);
 858       cur = cur->next();
 859     }
 860   }
 861 }
 862 
 863 static int ref_use_count  = 0;
 864 
 865 bool Thread::owns_locks_but_compiled_lock() const {
 866   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 867     if (cur != Compile_lock) return true;
 868   }
 869   return false;
 870 }
 871 
 872 
 873 #endif
 874 
 875 #ifndef PRODUCT
 876 
 877 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 878 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 879 // no threads which allow_vm_block's are held
 880 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 881   // Check if current thread is allowed to block at a safepoint
 882   if (!(_allow_safepoint_count == 0)) {
 883     fatal("Possible safepoint reached by thread that does not allow it");
 884   }
 885   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 886     fatal("LEAF method calling lock?");
 887   }
 888 
 889 #ifdef ASSERT
 890   if (potential_vm_operation && is_Java_thread()
 891       && !Universe::is_bootstrapping()) {
 892     // Make sure we do not hold any locks that the VM thread also uses.
 893     // This could potentially lead to deadlocks
 894     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 895       // Threads_lock is special, since the safepoint synchronization will not start before this is
 896       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 897       // since it is used to transfer control between JavaThreads and the VMThread
 898       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 899       if ((cur->allow_vm_block() &&
 900            cur != Threads_lock &&
 901            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 902            cur != VMOperationRequest_lock &&
 903            cur != VMOperationQueue_lock) ||
 904            cur->rank() == Mutex::special) {
 905         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 906       }
 907     }
 908   }
 909 
 910   if (GCALotAtAllSafepoints) {
 911     // We could enter a safepoint here and thus have a gc
 912     InterfaceSupport::check_gc_alot();
 913   }
 914 #endif
 915 }
 916 #endif
 917 
 918 bool Thread::is_in_stack(address adr) const {
 919   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 920   address end = os::current_stack_pointer();
 921   // Allow non Java threads to call this without stack_base
 922   if (_stack_base == NULL) return true;
 923   if (stack_base() >= adr && adr >= end) return true;
 924 
 925   return false;
 926 }
 927 
 928 bool Thread::is_in_usable_stack(address adr) const {
 929   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 930   size_t usable_stack_size = _stack_size - stack_guard_size;
 931 
 932   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 933 }
 934 
 935 
 936 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 937 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 938 // used for compilation in the future. If that change is made, the need for these methods
 939 // should be revisited, and they should be removed if possible.
 940 
 941 bool Thread::is_lock_owned(address adr) const {
 942   return on_local_stack(adr);
 943 }
 944 
 945 bool Thread::set_as_starting_thread() {
 946   // NOTE: this must be called inside the main thread.
 947   return os::create_main_thread((JavaThread*)this);
 948 }
 949 
 950 static void initialize_class(Symbol* class_name, TRAPS) {
 951   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 952   InstanceKlass::cast(klass)->initialize(CHECK);
 953 }
 954 
 955 
 956 // Creates the initial ThreadGroup
 957 static Handle create_initial_thread_group(TRAPS) {
 958   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 959   instanceKlassHandle klass (THREAD, k);
 960 
 961   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 962   {
 963     JavaValue result(T_VOID);
 964     JavaCalls::call_special(&result,
 965                             system_instance,
 966                             klass,
 967                             vmSymbols::object_initializer_name(),
 968                             vmSymbols::void_method_signature(),
 969                             CHECK_NH);
 970   }
 971   Universe::set_system_thread_group(system_instance());
 972 
 973   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 974   {
 975     JavaValue result(T_VOID);
 976     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 977     JavaCalls::call_special(&result,
 978                             main_instance,
 979                             klass,
 980                             vmSymbols::object_initializer_name(),
 981                             vmSymbols::threadgroup_string_void_signature(),
 982                             system_instance,
 983                             string,
 984                             CHECK_NH);
 985   }
 986   return main_instance;
 987 }
 988 
 989 // Creates the initial Thread
 990 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 991                                  TRAPS) {
 992   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 993   instanceKlassHandle klass (THREAD, k);
 994   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 995 
 996   java_lang_Thread::set_thread(thread_oop(), thread);
 997   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 998   thread->set_threadObj(thread_oop());
 999 
1000   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1001 
1002   JavaValue result(T_VOID);
1003   JavaCalls::call_special(&result, thread_oop,
1004                           klass,
1005                           vmSymbols::object_initializer_name(),
1006                           vmSymbols::threadgroup_string_void_signature(),
1007                           thread_group,
1008                           string,
1009                           CHECK_NULL);
1010   return thread_oop();
1011 }
1012 
1013 char java_runtime_name[128] = "";
1014 char java_runtime_version[128] = "";
1015 
1016 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1017 static const char* get_java_runtime_name(TRAPS) {
1018   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1019                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1020   fieldDescriptor fd;
1021   bool found = k != NULL &&
1022                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1023                                                         vmSymbols::string_signature(), &fd);
1024   if (found) {
1025     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1026     if (name_oop == NULL) {
1027       return NULL;
1028     }
1029     const char* name = java_lang_String::as_utf8_string(name_oop,
1030                                                         java_runtime_name,
1031                                                         sizeof(java_runtime_name));
1032     return name;
1033   } else {
1034     return NULL;
1035   }
1036 }
1037 
1038 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1039 static const char* get_java_runtime_version(TRAPS) {
1040   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1041                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1042   fieldDescriptor fd;
1043   bool found = k != NULL &&
1044                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1045                                                         vmSymbols::string_signature(), &fd);
1046   if (found) {
1047     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1048     if (name_oop == NULL) {
1049       return NULL;
1050     }
1051     const char* name = java_lang_String::as_utf8_string(name_oop,
1052                                                         java_runtime_version,
1053                                                         sizeof(java_runtime_version));
1054     return name;
1055   } else {
1056     return NULL;
1057   }
1058 }
1059 
1060 // General purpose hook into Java code, run once when the VM is initialized.
1061 // The Java library method itself may be changed independently from the VM.
1062 static void call_postVMInitHook(TRAPS) {
1063   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1064   instanceKlassHandle klass (THREAD, k);
1065   if (klass.not_null()) {
1066     JavaValue result(T_VOID);
1067     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1068                            vmSymbols::void_method_signature(),
1069                            CHECK);
1070   }
1071 }
1072 
1073 static void reset_vm_info_property(TRAPS) {
1074   // the vm info string
1075   ResourceMark rm(THREAD);
1076   const char *vm_info = VM_Version::vm_info_string();
1077 
1078   // java.lang.System class
1079   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1080   instanceKlassHandle klass (THREAD, k);
1081 
1082   // setProperty arguments
1083   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1084   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1085 
1086   // return value
1087   JavaValue r(T_OBJECT);
1088 
1089   // public static String setProperty(String key, String value);
1090   JavaCalls::call_static(&r,
1091                          klass,
1092                          vmSymbols::setProperty_name(),
1093                          vmSymbols::string_string_string_signature(),
1094                          key_str,
1095                          value_str,
1096                          CHECK);
1097 }
1098 
1099 
1100 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1101                                     bool daemon, TRAPS) {
1102   assert(thread_group.not_null(), "thread group should be specified");
1103   assert(threadObj() == NULL, "should only create Java thread object once");
1104 
1105   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1106   instanceKlassHandle klass (THREAD, k);
1107   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1108 
1109   java_lang_Thread::set_thread(thread_oop(), this);
1110   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1111   set_threadObj(thread_oop());
1112 
1113   JavaValue result(T_VOID);
1114   if (thread_name != NULL) {
1115     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1116     // Thread gets assigned specified name and null target
1117     JavaCalls::call_special(&result,
1118                             thread_oop,
1119                             klass,
1120                             vmSymbols::object_initializer_name(),
1121                             vmSymbols::threadgroup_string_void_signature(),
1122                             thread_group, // Argument 1
1123                             name,         // Argument 2
1124                             THREAD);
1125   } else {
1126     // Thread gets assigned name "Thread-nnn" and null target
1127     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1128     JavaCalls::call_special(&result,
1129                             thread_oop,
1130                             klass,
1131                             vmSymbols::object_initializer_name(),
1132                             vmSymbols::threadgroup_runnable_void_signature(),
1133                             thread_group, // Argument 1
1134                             Handle(),     // Argument 2
1135                             THREAD);
1136   }
1137 
1138 
1139   if (daemon) {
1140     java_lang_Thread::set_daemon(thread_oop());
1141   }
1142 
1143   if (HAS_PENDING_EXCEPTION) {
1144     return;
1145   }
1146 
1147   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1148   Handle threadObj(THREAD, this->threadObj());
1149 
1150   JavaCalls::call_special(&result,
1151                           thread_group,
1152                           group,
1153                           vmSymbols::add_method_name(),
1154                           vmSymbols::thread_void_signature(),
1155                           threadObj,          // Arg 1
1156                           THREAD);
1157 }
1158 
1159 // NamedThread --  non-JavaThread subclasses with multiple
1160 // uniquely named instances should derive from this.
1161 NamedThread::NamedThread() : Thread() {
1162   _name = NULL;
1163   _processed_thread = NULL;
1164   _gc_id = GCId::undefined();
1165 }
1166 
1167 NamedThread::~NamedThread() {
1168   if (_name != NULL) {
1169     FREE_C_HEAP_ARRAY(char, _name);
1170     _name = NULL;
1171   }
1172 }
1173 
1174 void NamedThread::set_name(const char* format, ...) {
1175   guarantee(_name == NULL, "Only get to set name once.");
1176   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1177   guarantee(_name != NULL, "alloc failure");
1178   va_list ap;
1179   va_start(ap, format);
1180   jio_vsnprintf(_name, max_name_len, format, ap);
1181   va_end(ap);
1182 }
1183 
1184 void NamedThread::initialize_named_thread() {
1185   set_native_thread_name(name());
1186 }
1187 
1188 void NamedThread::print_on(outputStream* st) const {
1189   st->print("\"%s\" ", name());
1190   Thread::print_on(st);
1191   st->cr();
1192 }
1193 
1194 
1195 // ======= WatcherThread ========
1196 
1197 // The watcher thread exists to simulate timer interrupts.  It should
1198 // be replaced by an abstraction over whatever native support for
1199 // timer interrupts exists on the platform.
1200 
1201 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1202 bool WatcherThread::_startable = false;
1203 volatile bool  WatcherThread::_should_terminate = false;
1204 
1205 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1206   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1207   if (os::create_thread(this, os::watcher_thread)) {
1208     _watcher_thread = this;
1209 
1210     // WatcherThread needs GCLAB for cases when it writes to Java heap,
1211     // and needs the space to evacuate. Have to initialize here, because
1212     // WatcherThread is initialized before the Universe.
1213     if (UseShenandoahGC && UseTLAB) {
1214       gclab().initialize(true);
1215     }
1216 
1217     // Set the watcher thread to the highest OS priority which should not be
1218     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1219     // is created. The only normal thread using this priority is the reference
1220     // handler thread, which runs for very short intervals only.
1221     // If the VMThread's priority is not lower than the WatcherThread profiling
1222     // will be inaccurate.
1223     os::set_priority(this, MaxPriority);
1224     if (!DisableStartThread) {
1225       os::start_thread(this);
1226     }
1227   }
1228 }
1229 
1230 int WatcherThread::sleep() const {
1231   // The WatcherThread does not participate in the safepoint protocol
1232   // for the PeriodicTask_lock because it is not a JavaThread.
1233   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1234 
1235   if (_should_terminate) {
1236     // check for termination before we do any housekeeping or wait
1237     return 0;  // we did not sleep.
1238   }
1239 
1240   // remaining will be zero if there are no tasks,
1241   // causing the WatcherThread to sleep until a task is
1242   // enrolled
1243   int remaining = PeriodicTask::time_to_wait();
1244   int time_slept = 0;
1245 
1246   // we expect this to timeout - we only ever get unparked when
1247   // we should terminate or when a new task has been enrolled
1248   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1249 
1250   jlong time_before_loop = os::javaTimeNanos();
1251 
1252   while (true) {
1253     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1254                                             remaining);
1255     jlong now = os::javaTimeNanos();
1256 
1257     if (remaining == 0) {
1258       // if we didn't have any tasks we could have waited for a long time
1259       // consider the time_slept zero and reset time_before_loop
1260       time_slept = 0;
1261       time_before_loop = now;
1262     } else {
1263       // need to recalculate since we might have new tasks in _tasks
1264       time_slept = (int) ((now - time_before_loop) / 1000000);
1265     }
1266 
1267     // Change to task list or spurious wakeup of some kind
1268     if (timedout || _should_terminate) {
1269       break;
1270     }
1271 
1272     remaining = PeriodicTask::time_to_wait();
1273     if (remaining == 0) {
1274       // Last task was just disenrolled so loop around and wait until
1275       // another task gets enrolled
1276       continue;
1277     }
1278 
1279     remaining -= time_slept;
1280     if (remaining <= 0) {
1281       break;
1282     }
1283   }
1284 
1285   return time_slept;
1286 }
1287 
1288 void WatcherThread::run() {
1289   assert(this == watcher_thread(), "just checking");
1290 
1291   this->record_stack_base_and_size();
1292   this->set_native_thread_name(this->name());
1293   this->set_active_handles(JNIHandleBlock::allocate_block());
1294   while (true) {
1295     assert(watcher_thread() == Thread::current(), "thread consistency check");
1296     assert(watcher_thread() == this, "thread consistency check");
1297 
1298     // Calculate how long it'll be until the next PeriodicTask work
1299     // should be done, and sleep that amount of time.
1300     int time_waited = sleep();
1301 
1302     if (is_error_reported()) {
1303       // A fatal error has happened, the error handler(VMError::report_and_die)
1304       // should abort JVM after creating an error log file. However in some
1305       // rare cases, the error handler itself might deadlock. Here we try to
1306       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1307       //
1308       // This code is in WatcherThread because WatcherThread wakes up
1309       // periodically so the fatal error handler doesn't need to do anything;
1310       // also because the WatcherThread is less likely to crash than other
1311       // threads.
1312 
1313       for (;;) {
1314         if (!ShowMessageBoxOnError
1315             && (OnError == NULL || OnError[0] == '\0')
1316             && Arguments::abort_hook() == NULL) {
1317           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1318           fdStream err(defaultStream::output_fd());
1319           err.print_raw_cr("# [ timer expired, abort... ]");
1320           // skip atexit/vm_exit/vm_abort hooks
1321           os::die();
1322         }
1323 
1324         // Wake up 5 seconds later, the fatal handler may reset OnError or
1325         // ShowMessageBoxOnError when it is ready to abort.
1326         os::sleep(this, 5 * 1000, false);
1327       }
1328     }
1329 
1330     if (_should_terminate) {
1331       // check for termination before posting the next tick
1332       break;
1333     }
1334 
1335     PeriodicTask::real_time_tick(time_waited);
1336   }
1337 
1338   // Signal that it is terminated
1339   {
1340     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1341     _watcher_thread = NULL;
1342     Terminator_lock->notify();
1343   }
1344 }
1345 
1346 void WatcherThread::start() {
1347   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1348 
1349   if (watcher_thread() == NULL && _startable) {
1350     _should_terminate = false;
1351     // Create the single instance of WatcherThread
1352     new WatcherThread();
1353   }
1354 }
1355 
1356 void WatcherThread::make_startable() {
1357   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1358   _startable = true;
1359 }
1360 
1361 void WatcherThread::stop() {
1362   {
1363     // Follow normal safepoint aware lock enter protocol since the
1364     // WatcherThread is stopped by another JavaThread.
1365     MutexLocker ml(PeriodicTask_lock);
1366     _should_terminate = true;
1367 
1368     WatcherThread* watcher = watcher_thread();
1369     if (watcher != NULL) {
1370       // unpark the WatcherThread so it can see that it should terminate
1371       watcher->unpark();
1372     }
1373   }
1374 
1375   MutexLocker mu(Terminator_lock);
1376 
1377   while (watcher_thread() != NULL) {
1378     // This wait should make safepoint checks, wait without a timeout,
1379     // and wait as a suspend-equivalent condition.
1380     //
1381     // Note: If the FlatProfiler is running, then this thread is waiting
1382     // for the WatcherThread to terminate and the WatcherThread, via the
1383     // FlatProfiler task, is waiting for the external suspend request on
1384     // this thread to complete. wait_for_ext_suspend_completion() will
1385     // eventually timeout, but that takes time. Making this wait a
1386     // suspend-equivalent condition solves that timeout problem.
1387     //
1388     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1389                           Mutex::_as_suspend_equivalent_flag);
1390   }
1391 }
1392 
1393 void WatcherThread::unpark() {
1394   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1395   PeriodicTask_lock->notify();
1396 }
1397 
1398 void WatcherThread::print_on(outputStream* st) const {
1399   st->print("\"%s\" ", name());
1400   Thread::print_on(st);
1401   st->cr();
1402 }
1403 
1404 // ======= JavaThread ========
1405 
1406 #if INCLUDE_JVMCI
1407 
1408 jlong* JavaThread::_jvmci_old_thread_counters;
1409 
1410 bool jvmci_counters_include(JavaThread* thread) {
1411   oop threadObj = thread->threadObj();
1412   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1413 }
1414 
1415 void JavaThread::collect_counters(typeArrayOop array) {
1416   if (JVMCICounterSize > 0) {
1417     MutexLocker tl(Threads_lock);
1418     for (int i = 0; i < array->length(); i++) {
1419       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1420     }
1421     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1422       if (jvmci_counters_include(tp)) {
1423         for (int i = 0; i < array->length(); i++) {
1424           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1425         }
1426       }
1427     }
1428   }
1429 }
1430 
1431 #endif // INCLUDE_JVMCI
1432 
1433 // A JavaThread is a normal Java thread
1434 
1435 void JavaThread::initialize() {
1436   // Initialize fields
1437 
1438   set_saved_exception_pc(NULL);
1439   set_threadObj(NULL);
1440   _anchor.clear();
1441   set_entry_point(NULL);
1442   set_jni_functions(jni_functions());
1443   set_callee_target(NULL);
1444   set_vm_result(NULL);
1445   set_vm_result_2(NULL);
1446   set_vframe_array_head(NULL);
1447   set_vframe_array_last(NULL);
1448   set_deferred_locals(NULL);
1449   set_deopt_mark(NULL);
1450   set_deopt_compiled_method(NULL);
1451   clear_must_deopt_id();
1452   set_monitor_chunks(NULL);
1453   set_next(NULL);
1454   set_thread_state(_thread_new);
1455   _terminated = _not_terminated;
1456   _privileged_stack_top = NULL;
1457   _array_for_gc = NULL;
1458   _suspend_equivalent = false;
1459   _in_deopt_handler = 0;
1460   _doing_unsafe_access = false;
1461   _stack_guard_state = stack_guard_unused;
1462 #if INCLUDE_JVMCI
1463   _pending_monitorenter = false;
1464   _pending_deoptimization = -1;
1465   _pending_failed_speculation = NULL;
1466   _pending_transfer_to_interpreter = false;
1467   _adjusting_comp_level = false;
1468   _jvmci._alternate_call_target = NULL;
1469   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1470   if (JVMCICounterSize > 0) {
1471     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1472     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1473   } else {
1474     _jvmci_counters = NULL;
1475   }
1476 #endif // INCLUDE_JVMCI
1477   _reserved_stack_activation = NULL;  // stack base not known yet
1478   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1479   _exception_pc  = 0;
1480   _exception_handler_pc = 0;
1481   _is_method_handle_return = 0;
1482   _jvmti_thread_state= NULL;
1483   _should_post_on_exceptions_flag = JNI_FALSE;
1484   _jvmti_get_loaded_classes_closure = NULL;
1485   _interp_only_mode    = 0;
1486   _special_runtime_exit_condition = _no_async_condition;
1487   _pending_async_exception = NULL;
1488   _thread_stat = NULL;
1489   _thread_stat = new ThreadStatistics();
1490   _blocked_on_compilation = false;
1491   _jni_active_critical = 0;
1492   _pending_jni_exception_check_fn = NULL;
1493   _do_not_unlock_if_synchronized = false;
1494   _cached_monitor_info = NULL;
1495   _parker = Parker::Allocate(this);
1496 
1497 #ifndef PRODUCT
1498   _jmp_ring_index = 0;
1499   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1500     record_jump(NULL, NULL, NULL, 0);
1501   }
1502 #endif // PRODUCT
1503 
1504   set_thread_profiler(NULL);
1505   if (FlatProfiler::is_active()) {
1506     // This is where we would decide to either give each thread it's own profiler
1507     // or use one global one from FlatProfiler,
1508     // or up to some count of the number of profiled threads, etc.
1509     ThreadProfiler* pp = new ThreadProfiler();
1510     pp->engage();
1511     set_thread_profiler(pp);
1512   }
1513 
1514   // Setup safepoint state info for this thread
1515   ThreadSafepointState::create(this);
1516 
1517   debug_only(_java_call_counter = 0);
1518 
1519   // JVMTI PopFrame support
1520   _popframe_condition = popframe_inactive;
1521   _popframe_preserved_args = NULL;
1522   _popframe_preserved_args_size = 0;
1523   _frames_to_pop_failed_realloc = 0;
1524 
1525   pd_initialize();
1526 }
1527 
1528 #if INCLUDE_ALL_GCS
1529 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1530 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1531 bool JavaThread::_evacuation_in_progress_global = false;
1532 #endif // INCLUDE_ALL_GCS
1533 
1534 JavaThread::JavaThread(bool is_attaching_via_jni) :
1535                        Thread()
1536 #if INCLUDE_ALL_GCS
1537                        , _satb_mark_queue(&_satb_mark_queue_set),
1538                        _dirty_card_queue(&_dirty_card_queue_set),
1539                        _evacuation_in_progress(_evacuation_in_progress_global)
1540 #endif // INCLUDE_ALL_GCS
1541 {
1542   initialize();
1543   if (is_attaching_via_jni) {
1544     _jni_attach_state = _attaching_via_jni;
1545   } else {
1546     _jni_attach_state = _not_attaching_via_jni;
1547   }
1548   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1549 }
1550 
1551 bool JavaThread::reguard_stack(address cur_sp) {
1552   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1553       && _stack_guard_state != stack_guard_reserved_disabled) {
1554     return true; // Stack already guarded or guard pages not needed.
1555   }
1556 
1557   if (register_stack_overflow()) {
1558     // For those architectures which have separate register and
1559     // memory stacks, we must check the register stack to see if
1560     // it has overflowed.
1561     return false;
1562   }
1563 
1564   // Java code never executes within the yellow zone: the latter is only
1565   // there to provoke an exception during stack banging.  If java code
1566   // is executing there, either StackShadowPages should be larger, or
1567   // some exception code in c1, c2 or the interpreter isn't unwinding
1568   // when it should.
1569   guarantee(cur_sp > stack_reserved_zone_base(),
1570             "not enough space to reguard - increase StackShadowPages");
1571   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1572     enable_stack_yellow_reserved_zone();
1573     if (reserved_stack_activation() != stack_base()) {
1574       set_reserved_stack_activation(stack_base());
1575     }
1576   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1577     set_reserved_stack_activation(stack_base());
1578     enable_stack_reserved_zone();
1579   }
1580   return true;
1581 }
1582 
1583 bool JavaThread::reguard_stack(void) {
1584   return reguard_stack(os::current_stack_pointer());
1585 }
1586 
1587 
1588 void JavaThread::block_if_vm_exited() {
1589   if (_terminated == _vm_exited) {
1590     // _vm_exited is set at safepoint, and Threads_lock is never released
1591     // we will block here forever
1592     Threads_lock->lock_without_safepoint_check();
1593     ShouldNotReachHere();
1594   }
1595 }
1596 
1597 
1598 // Remove this ifdef when C1 is ported to the compiler interface.
1599 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1600 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1601 
1602 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1603                        Thread()
1604 #if INCLUDE_ALL_GCS
1605                        , _satb_mark_queue(&_satb_mark_queue_set),
1606                        _dirty_card_queue(&_dirty_card_queue_set),
1607                        _evacuation_in_progress(_evacuation_in_progress_global)
1608 #endif // INCLUDE_ALL_GCS
1609 {
1610   initialize();
1611   _jni_attach_state = _not_attaching_via_jni;
1612   set_entry_point(entry_point);
1613   // Create the native thread itself.
1614   // %note runtime_23
1615   os::ThreadType thr_type = os::java_thread;
1616   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1617                                                      os::java_thread;
1618   os::create_thread(this, thr_type, stack_sz);
1619   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1620   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1621   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1622   // the exception consists of creating the exception object & initializing it, initialization
1623   // will leave the VM via a JavaCall and then all locks must be unlocked).
1624   //
1625   // The thread is still suspended when we reach here. Thread must be explicit started
1626   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1627   // by calling Threads:add. The reason why this is not done here, is because the thread
1628   // object must be fully initialized (take a look at JVM_Start)
1629 }
1630 
1631 JavaThread::~JavaThread() {
1632 
1633   // JSR166 -- return the parker to the free list
1634   Parker::Release(_parker);
1635   _parker = NULL;
1636 
1637   // Free any remaining  previous UnrollBlock
1638   vframeArray* old_array = vframe_array_last();
1639 
1640   if (old_array != NULL) {
1641     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1642     old_array->set_unroll_block(NULL);
1643     delete old_info;
1644     delete old_array;
1645   }
1646 
1647   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1648   if (deferred != NULL) {
1649     // This can only happen if thread is destroyed before deoptimization occurs.
1650     assert(deferred->length() != 0, "empty array!");
1651     do {
1652       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1653       deferred->remove_at(0);
1654       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1655       delete dlv;
1656     } while (deferred->length() != 0);
1657     delete deferred;
1658   }
1659 
1660   // All Java related clean up happens in exit
1661   ThreadSafepointState::destroy(this);
1662   if (_thread_profiler != NULL) delete _thread_profiler;
1663   if (_thread_stat != NULL) delete _thread_stat;
1664 
1665 #if INCLUDE_JVMCI
1666   if (JVMCICounterSize > 0) {
1667     if (jvmci_counters_include(this)) {
1668       for (int i = 0; i < JVMCICounterSize; i++) {
1669         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1670       }
1671     }
1672     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1673   }
1674 #endif // INCLUDE_JVMCI
1675 }
1676 
1677 
1678 // The first routine called by a new Java thread
1679 void JavaThread::run() {
1680   // initialize thread-local alloc buffer related fields
1681   this->initialize_tlab();
1682 
1683   // used to test validity of stack trace backs
1684   this->record_base_of_stack_pointer();
1685 
1686   // Record real stack base and size.
1687   this->record_stack_base_and_size();
1688 
1689   this->create_stack_guard_pages();
1690 
1691   this->cache_global_variables();
1692 
1693   // Thread is now sufficient initialized to be handled by the safepoint code as being
1694   // in the VM. Change thread state from _thread_new to _thread_in_vm
1695   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1696 
1697   assert(JavaThread::current() == this, "sanity check");
1698   assert(!Thread::current()->owns_locks(), "sanity check");
1699 
1700   DTRACE_THREAD_PROBE(start, this);
1701 
1702   // This operation might block. We call that after all safepoint checks for a new thread has
1703   // been completed.
1704   this->set_active_handles(JNIHandleBlock::allocate_block());
1705 
1706   if (JvmtiExport::should_post_thread_life()) {
1707     JvmtiExport::post_thread_start(this);
1708   }
1709 
1710   EventThreadStart event;
1711   if (event.should_commit()) {
1712     event.set_thread(THREAD_TRACE_ID(this));
1713     event.commit();
1714   }
1715 
1716   // We call another function to do the rest so we are sure that the stack addresses used
1717   // from there will be lower than the stack base just computed
1718   thread_main_inner();
1719 
1720   // Note, thread is no longer valid at this point!
1721 }
1722 
1723 
1724 void JavaThread::thread_main_inner() {
1725   assert(JavaThread::current() == this, "sanity check");
1726   assert(this->threadObj() != NULL, "just checking");
1727 
1728   // Execute thread entry point unless this thread has a pending exception
1729   // or has been stopped before starting.
1730   // Note: Due to JVM_StopThread we can have pending exceptions already!
1731   if (!this->has_pending_exception() &&
1732       !java_lang_Thread::is_stillborn(this->threadObj())) {
1733     {
1734       ResourceMark rm(this);
1735       this->set_native_thread_name(this->get_thread_name());
1736     }
1737     HandleMark hm(this);
1738     this->entry_point()(this, this);
1739   }
1740 
1741   DTRACE_THREAD_PROBE(stop, this);
1742 
1743   this->exit(false);
1744   delete this;
1745 }
1746 
1747 
1748 static void ensure_join(JavaThread* thread) {
1749   // We do not need to grap the Threads_lock, since we are operating on ourself.
1750   Handle threadObj(thread, thread->threadObj());
1751   assert(threadObj.not_null(), "java thread object must exist");
1752   ObjectLocker lock(threadObj, thread);
1753   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1754   thread->clear_pending_exception();
1755   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1756   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1757   // Clear the native thread instance - this makes isAlive return false and allows the join()
1758   // to complete once we've done the notify_all below
1759   java_lang_Thread::set_thread(threadObj(), NULL);
1760   lock.notify_all(thread);
1761   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1762   thread->clear_pending_exception();
1763 }
1764 
1765 
1766 // For any new cleanup additions, please check to see if they need to be applied to
1767 // cleanup_failed_attach_current_thread as well.
1768 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1769   assert(this == JavaThread::current(), "thread consistency check");
1770 
1771   HandleMark hm(this);
1772   Handle uncaught_exception(this, this->pending_exception());
1773   this->clear_pending_exception();
1774   Handle threadObj(this, this->threadObj());
1775   assert(threadObj.not_null(), "Java thread object should be created");
1776 
1777   if (get_thread_profiler() != NULL) {
1778     get_thread_profiler()->disengage();
1779     ResourceMark rm;
1780     get_thread_profiler()->print(get_thread_name());
1781   }
1782 
1783 
1784   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1785   {
1786     EXCEPTION_MARK;
1787 
1788     CLEAR_PENDING_EXCEPTION;
1789   }
1790   if (!destroy_vm) {
1791     if (uncaught_exception.not_null()) {
1792       EXCEPTION_MARK;
1793       // Call method Thread.dispatchUncaughtException().
1794       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1795       JavaValue result(T_VOID);
1796       JavaCalls::call_virtual(&result,
1797                               threadObj, thread_klass,
1798                               vmSymbols::dispatchUncaughtException_name(),
1799                               vmSymbols::throwable_void_signature(),
1800                               uncaught_exception,
1801                               THREAD);
1802       if (HAS_PENDING_EXCEPTION) {
1803         ResourceMark rm(this);
1804         jio_fprintf(defaultStream::error_stream(),
1805                     "\nException: %s thrown from the UncaughtExceptionHandler"
1806                     " in thread \"%s\"\n",
1807                     pending_exception()->klass()->external_name(),
1808                     get_thread_name());
1809         CLEAR_PENDING_EXCEPTION;
1810       }
1811     }
1812 
1813     // Called before the java thread exit since we want to read info
1814     // from java_lang_Thread object
1815     EventThreadEnd event;
1816     if (event.should_commit()) {
1817       event.set_thread(THREAD_TRACE_ID(this));
1818       event.commit();
1819     }
1820 
1821     // Call after last event on thread
1822     EVENT_THREAD_EXIT(this);
1823 
1824     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1825     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1826     // is deprecated anyhow.
1827     if (!is_Compiler_thread()) {
1828       int count = 3;
1829       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1830         EXCEPTION_MARK;
1831         JavaValue result(T_VOID);
1832         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1833         JavaCalls::call_virtual(&result,
1834                                 threadObj, thread_klass,
1835                                 vmSymbols::exit_method_name(),
1836                                 vmSymbols::void_method_signature(),
1837                                 THREAD);
1838         CLEAR_PENDING_EXCEPTION;
1839       }
1840     }
1841     // notify JVMTI
1842     if (JvmtiExport::should_post_thread_life()) {
1843       JvmtiExport::post_thread_end(this);
1844     }
1845 
1846     // We have notified the agents that we are exiting, before we go on,
1847     // we must check for a pending external suspend request and honor it
1848     // in order to not surprise the thread that made the suspend request.
1849     while (true) {
1850       {
1851         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1852         if (!is_external_suspend()) {
1853           set_terminated(_thread_exiting);
1854           ThreadService::current_thread_exiting(this);
1855           break;
1856         }
1857         // Implied else:
1858         // Things get a little tricky here. We have a pending external
1859         // suspend request, but we are holding the SR_lock so we
1860         // can't just self-suspend. So we temporarily drop the lock
1861         // and then self-suspend.
1862       }
1863 
1864       ThreadBlockInVM tbivm(this);
1865       java_suspend_self();
1866 
1867       // We're done with this suspend request, but we have to loop around
1868       // and check again. Eventually we will get SR_lock without a pending
1869       // external suspend request and will be able to mark ourselves as
1870       // exiting.
1871     }
1872     // no more external suspends are allowed at this point
1873   } else {
1874     // before_exit() has already posted JVMTI THREAD_END events
1875   }
1876 
1877   // Notify waiters on thread object. This has to be done after exit() is called
1878   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1879   // group should have the destroyed bit set before waiters are notified).
1880   ensure_join(this);
1881   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1882 
1883   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1884   // held by this thread must be released. The spec does not distinguish
1885   // between JNI-acquired and regular Java monitors. We can only see
1886   // regular Java monitors here if monitor enter-exit matching is broken.
1887   //
1888   // Optionally release any monitors for regular JavaThread exits. This
1889   // is provided as a work around for any bugs in monitor enter-exit
1890   // matching. This can be expensive so it is not enabled by default.
1891   //
1892   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1893   // ObjectSynchronizer::release_monitors_owned_by_thread().
1894   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1895     // Sanity check even though JNI DetachCurrentThread() would have
1896     // returned JNI_ERR if there was a Java frame. JavaThread exit
1897     // should be done executing Java code by the time we get here.
1898     assert(!this->has_last_Java_frame(),
1899            "should not have a Java frame when detaching or exiting");
1900     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1901     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1902   }
1903 
1904   // These things needs to be done while we are still a Java Thread. Make sure that thread
1905   // is in a consistent state, in case GC happens
1906   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1907 
1908   if (active_handles() != NULL) {
1909     JNIHandleBlock* block = active_handles();
1910     set_active_handles(NULL);
1911     JNIHandleBlock::release_block(block);
1912   }
1913 
1914   if (free_handle_block() != NULL) {
1915     JNIHandleBlock* block = free_handle_block();
1916     set_free_handle_block(NULL);
1917     JNIHandleBlock::release_block(block);
1918   }
1919 
1920   // These have to be removed while this is still a valid thread.
1921   remove_stack_guard_pages();
1922 
1923   if (UseTLAB) {
1924     tlab().make_parsable(true);  // retire TLAB
1925   }
1926 
1927   if (JvmtiEnv::environments_might_exist()) {
1928     JvmtiExport::cleanup_thread(this);
1929   }
1930 
1931   // We must flush any deferred card marks before removing a thread from
1932   // the list of active threads.
1933   Universe::heap()->flush_deferred_store_barrier(this);
1934   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1935 
1936 #if INCLUDE_ALL_GCS
1937   // We must flush the G1-related buffers before removing a thread
1938   // from the list of active threads. We must do this after any deferred
1939   // card marks have been flushed (above) so that any entries that are
1940   // added to the thread's dirty card queue as a result are not lost.
1941   if (UseG1GC || (UseShenandoahGC && ShenandoahWriteBarrier)) {
1942     flush_barrier_queues();
1943   }
1944   if (UseShenandoahGC && UseTLAB) {
1945     gclab().make_parsable(true);
1946   }
1947 #endif // INCLUDE_ALL_GCS
1948 
1949   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1950     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1951     os::current_thread_id());
1952 
1953   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1954   Threads::remove(this);
1955 }
1956 
1957 #if INCLUDE_ALL_GCS
1958 // Flush G1-related queues.
1959 void JavaThread::flush_barrier_queues() {
1960   satb_mark_queue().flush();
1961   dirty_card_queue().flush();
1962 }
1963 
1964 void JavaThread::initialize_queues() {
1965   assert(!SafepointSynchronize::is_at_safepoint(),
1966          "we should not be at a safepoint");
1967 
1968   SATBMarkQueue& satb_queue = satb_mark_queue();
1969   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1970   // The SATB queue should have been constructed with its active
1971   // field set to false.
1972   assert(!satb_queue.is_active(), "SATB queue should not be active");
1973   assert(satb_queue.is_empty(), "SATB queue should be empty");
1974   // If we are creating the thread during a marking cycle, we should
1975   // set the active field of the SATB queue to true.
1976   if (satb_queue_set.is_active()) {
1977     satb_queue.set_active(true);
1978   }
1979 
1980   DirtyCardQueue& dirty_queue = dirty_card_queue();
1981   // The dirty card queue should have been constructed with its
1982   // active field set to true.
1983   assert(dirty_queue.is_active(), "dirty card queue should be active");
1984 
1985   _evacuation_in_progress = _evacuation_in_progress_global;
1986 }
1987 
1988 bool JavaThread::evacuation_in_progress() const {
1989   return _evacuation_in_progress;
1990 }
1991 
1992 void JavaThread::set_evacuation_in_progress(bool in_prog) {
1993   _evacuation_in_progress = in_prog;
1994 }
1995 
1996 void JavaThread::set_evacuation_in_progress_all_threads(bool in_prog) {
1997   assert_locked_or_safepoint(Threads_lock);
1998   _evacuation_in_progress_global = in_prog;
1999   for (JavaThread* t = Threads::first(); t != NULL; t = t->next()) {
2000     t->set_evacuation_in_progress(in_prog);
2001   }
2002 }
2003 #endif // INCLUDE_ALL_GCS
2004 
2005 void JavaThread::cleanup_failed_attach_current_thread() {
2006   if (get_thread_profiler() != NULL) {
2007     get_thread_profiler()->disengage();
2008     ResourceMark rm;
2009     get_thread_profiler()->print(get_thread_name());
2010   }
2011 
2012   if (active_handles() != NULL) {
2013     JNIHandleBlock* block = active_handles();
2014     set_active_handles(NULL);
2015     JNIHandleBlock::release_block(block);
2016   }
2017 
2018   if (free_handle_block() != NULL) {
2019     JNIHandleBlock* block = free_handle_block();
2020     set_free_handle_block(NULL);
2021     JNIHandleBlock::release_block(block);
2022   }
2023 
2024   // These have to be removed while this is still a valid thread.
2025   remove_stack_guard_pages();
2026 
2027   if (UseTLAB) {
2028     tlab().make_parsable(true);  // retire TLAB, if any
2029   }
2030 
2031 #if INCLUDE_ALL_GCS
2032   if (UseG1GC || (UseShenandoahGC && ShenandoahWriteBarrier)) {
2033     flush_barrier_queues();
2034   }
2035   if (UseShenandoahGC && UseTLAB) {
2036     gclab().make_parsable(true);
2037   }
2038 #endif // INCLUDE_ALL_GCS
2039 
2040   Threads::remove(this);
2041   delete this;
2042 }
2043 
2044 
2045 
2046 
2047 JavaThread* JavaThread::active() {
2048   Thread* thread = Thread::current();
2049   if (thread->is_Java_thread()) {
2050     return (JavaThread*) thread;
2051   } else {
2052     assert(thread->is_VM_thread(), "this must be a vm thread");
2053     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2054     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2055     assert(ret->is_Java_thread(), "must be a Java thread");
2056     return ret;
2057   }
2058 }
2059 
2060 bool JavaThread::is_lock_owned(address adr) const {
2061   if (Thread::is_lock_owned(adr)) return true;
2062 
2063   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2064     if (chunk->contains(adr)) return true;
2065   }
2066 
2067   return false;
2068 }
2069 
2070 
2071 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2072   chunk->set_next(monitor_chunks());
2073   set_monitor_chunks(chunk);
2074 }
2075 
2076 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2077   guarantee(monitor_chunks() != NULL, "must be non empty");
2078   if (monitor_chunks() == chunk) {
2079     set_monitor_chunks(chunk->next());
2080   } else {
2081     MonitorChunk* prev = monitor_chunks();
2082     while (prev->next() != chunk) prev = prev->next();
2083     prev->set_next(chunk->next());
2084   }
2085 }
2086 
2087 // JVM support.
2088 
2089 // Note: this function shouldn't block if it's called in
2090 // _thread_in_native_trans state (such as from
2091 // check_special_condition_for_native_trans()).
2092 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2093 
2094   if (has_last_Java_frame() && has_async_condition()) {
2095     // If we are at a polling page safepoint (not a poll return)
2096     // then we must defer async exception because live registers
2097     // will be clobbered by the exception path. Poll return is
2098     // ok because the call we a returning from already collides
2099     // with exception handling registers and so there is no issue.
2100     // (The exception handling path kills call result registers but
2101     //  this is ok since the exception kills the result anyway).
2102 
2103     if (is_at_poll_safepoint()) {
2104       // if the code we are returning to has deoptimized we must defer
2105       // the exception otherwise live registers get clobbered on the
2106       // exception path before deoptimization is able to retrieve them.
2107       //
2108       RegisterMap map(this, false);
2109       frame caller_fr = last_frame().sender(&map);
2110       assert(caller_fr.is_compiled_frame(), "what?");
2111       if (caller_fr.is_deoptimized_frame()) {
2112         log_info(exceptions)("deferred async exception at compiled safepoint");
2113         return;
2114       }
2115     }
2116   }
2117 
2118   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2119   if (condition == _no_async_condition) {
2120     // Conditions have changed since has_special_runtime_exit_condition()
2121     // was called:
2122     // - if we were here only because of an external suspend request,
2123     //   then that was taken care of above (or cancelled) so we are done
2124     // - if we were here because of another async request, then it has
2125     //   been cleared between the has_special_runtime_exit_condition()
2126     //   and now so again we are done
2127     return;
2128   }
2129 
2130   // Check for pending async. exception
2131   if (_pending_async_exception != NULL) {
2132     // Only overwrite an already pending exception, if it is not a threadDeath.
2133     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2134 
2135       // We cannot call Exceptions::_throw(...) here because we cannot block
2136       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2137 
2138       if (log_is_enabled(Info, exceptions)) {
2139         ResourceMark rm;
2140         outputStream* logstream = Log(exceptions)::info_stream();
2141         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2142           if (has_last_Java_frame()) {
2143             frame f = last_frame();
2144            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2145           }
2146         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2147       }
2148       _pending_async_exception = NULL;
2149       clear_has_async_exception();
2150     }
2151   }
2152 
2153   if (check_unsafe_error &&
2154       condition == _async_unsafe_access_error && !has_pending_exception()) {
2155     condition = _no_async_condition;  // done
2156     switch (thread_state()) {
2157     case _thread_in_vm: {
2158       JavaThread* THREAD = this;
2159       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2160     }
2161     case _thread_in_native: {
2162       ThreadInVMfromNative tiv(this);
2163       JavaThread* THREAD = this;
2164       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2165     }
2166     case _thread_in_Java: {
2167       ThreadInVMfromJava tiv(this);
2168       JavaThread* THREAD = this;
2169       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2170     }
2171     default:
2172       ShouldNotReachHere();
2173     }
2174   }
2175 
2176   assert(condition == _no_async_condition || has_pending_exception() ||
2177          (!check_unsafe_error && condition == _async_unsafe_access_error),
2178          "must have handled the async condition, if no exception");
2179 }
2180 
2181 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2182   //
2183   // Check for pending external suspend. Internal suspend requests do
2184   // not use handle_special_runtime_exit_condition().
2185   // If JNIEnv proxies are allowed, don't self-suspend if the target
2186   // thread is not the current thread. In older versions of jdbx, jdbx
2187   // threads could call into the VM with another thread's JNIEnv so we
2188   // can be here operating on behalf of a suspended thread (4432884).
2189   bool do_self_suspend = is_external_suspend_with_lock();
2190   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2191     //
2192     // Because thread is external suspended the safepoint code will count
2193     // thread as at a safepoint. This can be odd because we can be here
2194     // as _thread_in_Java which would normally transition to _thread_blocked
2195     // at a safepoint. We would like to mark the thread as _thread_blocked
2196     // before calling java_suspend_self like all other callers of it but
2197     // we must then observe proper safepoint protocol. (We can't leave
2198     // _thread_blocked with a safepoint in progress). However we can be
2199     // here as _thread_in_native_trans so we can't use a normal transition
2200     // constructor/destructor pair because they assert on that type of
2201     // transition. We could do something like:
2202     //
2203     // JavaThreadState state = thread_state();
2204     // set_thread_state(_thread_in_vm);
2205     // {
2206     //   ThreadBlockInVM tbivm(this);
2207     //   java_suspend_self()
2208     // }
2209     // set_thread_state(_thread_in_vm_trans);
2210     // if (safepoint) block;
2211     // set_thread_state(state);
2212     //
2213     // but that is pretty messy. Instead we just go with the way the
2214     // code has worked before and note that this is the only path to
2215     // java_suspend_self that doesn't put the thread in _thread_blocked
2216     // mode.
2217 
2218     frame_anchor()->make_walkable(this);
2219     java_suspend_self();
2220 
2221     // We might be here for reasons in addition to the self-suspend request
2222     // so check for other async requests.
2223   }
2224 
2225   if (check_asyncs) {
2226     check_and_handle_async_exceptions();
2227   }
2228 }
2229 
2230 void JavaThread::send_thread_stop(oop java_throwable)  {
2231   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2232   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2233   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2234 
2235   // Do not throw asynchronous exceptions against the compiler thread
2236   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2237   if (!can_call_java()) return;
2238 
2239   {
2240     // Actually throw the Throwable against the target Thread - however
2241     // only if there is no thread death exception installed already.
2242     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2243       // If the topmost frame is a runtime stub, then we are calling into
2244       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2245       // must deoptimize the caller before continuing, as the compiled  exception handler table
2246       // may not be valid
2247       if (has_last_Java_frame()) {
2248         frame f = last_frame();
2249         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2250           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2251           RegisterMap reg_map(this, UseBiasedLocking);
2252           frame compiled_frame = f.sender(&reg_map);
2253           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2254             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2255           }
2256         }
2257       }
2258 
2259       // Set async. pending exception in thread.
2260       set_pending_async_exception(java_throwable);
2261 
2262       if (log_is_enabled(Info, exceptions)) {
2263          ResourceMark rm;
2264         log_info(exceptions)("Pending Async. exception installed of type: %s",
2265                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2266       }
2267       // for AbortVMOnException flag
2268       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2269     }
2270   }
2271 
2272 
2273   // Interrupt thread so it will wake up from a potential wait()
2274   Thread::interrupt(this);
2275 }
2276 
2277 // External suspension mechanism.
2278 //
2279 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2280 // to any VM_locks and it is at a transition
2281 // Self-suspension will happen on the transition out of the vm.
2282 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2283 //
2284 // Guarantees on return:
2285 //   + Target thread will not execute any new bytecode (that's why we need to
2286 //     force a safepoint)
2287 //   + Target thread will not enter any new monitors
2288 //
2289 void JavaThread::java_suspend() {
2290   { MutexLocker mu(Threads_lock);
2291     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2292       return;
2293     }
2294   }
2295 
2296   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2297     if (!is_external_suspend()) {
2298       // a racing resume has cancelled us; bail out now
2299       return;
2300     }
2301 
2302     // suspend is done
2303     uint32_t debug_bits = 0;
2304     // Warning: is_ext_suspend_completed() may temporarily drop the
2305     // SR_lock to allow the thread to reach a stable thread state if
2306     // it is currently in a transient thread state.
2307     if (is_ext_suspend_completed(false /* !called_by_wait */,
2308                                  SuspendRetryDelay, &debug_bits)) {
2309       return;
2310     }
2311   }
2312 
2313   VM_ForceSafepoint vm_suspend;
2314   VMThread::execute(&vm_suspend);
2315 }
2316 
2317 // Part II of external suspension.
2318 // A JavaThread self suspends when it detects a pending external suspend
2319 // request. This is usually on transitions. It is also done in places
2320 // where continuing to the next transition would surprise the caller,
2321 // e.g., monitor entry.
2322 //
2323 // Returns the number of times that the thread self-suspended.
2324 //
2325 // Note: DO NOT call java_suspend_self() when you just want to block current
2326 //       thread. java_suspend_self() is the second stage of cooperative
2327 //       suspension for external suspend requests and should only be used
2328 //       to complete an external suspend request.
2329 //
2330 int JavaThread::java_suspend_self() {
2331   int ret = 0;
2332 
2333   // we are in the process of exiting so don't suspend
2334   if (is_exiting()) {
2335     clear_external_suspend();
2336     return ret;
2337   }
2338 
2339   assert(_anchor.walkable() ||
2340          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2341          "must have walkable stack");
2342 
2343   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2344 
2345   assert(!this->is_ext_suspended(),
2346          "a thread trying to self-suspend should not already be suspended");
2347 
2348   if (this->is_suspend_equivalent()) {
2349     // If we are self-suspending as a result of the lifting of a
2350     // suspend equivalent condition, then the suspend_equivalent
2351     // flag is not cleared until we set the ext_suspended flag so
2352     // that wait_for_ext_suspend_completion() returns consistent
2353     // results.
2354     this->clear_suspend_equivalent();
2355   }
2356 
2357   // A racing resume may have cancelled us before we grabbed SR_lock
2358   // above. Or another external suspend request could be waiting for us
2359   // by the time we return from SR_lock()->wait(). The thread
2360   // that requested the suspension may already be trying to walk our
2361   // stack and if we return now, we can change the stack out from under
2362   // it. This would be a "bad thing (TM)" and cause the stack walker
2363   // to crash. We stay self-suspended until there are no more pending
2364   // external suspend requests.
2365   while (is_external_suspend()) {
2366     ret++;
2367     this->set_ext_suspended();
2368 
2369     // _ext_suspended flag is cleared by java_resume()
2370     while (is_ext_suspended()) {
2371       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2372     }
2373   }
2374 
2375   return ret;
2376 }
2377 
2378 #ifdef ASSERT
2379 // verify the JavaThread has not yet been published in the Threads::list, and
2380 // hence doesn't need protection from concurrent access at this stage
2381 void JavaThread::verify_not_published() {
2382   if (!Threads_lock->owned_by_self()) {
2383     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2384     assert(!Threads::includes(this),
2385            "java thread shouldn't have been published yet!");
2386   } else {
2387     assert(!Threads::includes(this),
2388            "java thread shouldn't have been published yet!");
2389   }
2390 }
2391 #endif
2392 
2393 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2394 // progress or when _suspend_flags is non-zero.
2395 // Current thread needs to self-suspend if there is a suspend request and/or
2396 // block if a safepoint is in progress.
2397 // Async exception ISN'T checked.
2398 // Note only the ThreadInVMfromNative transition can call this function
2399 // directly and when thread state is _thread_in_native_trans
2400 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2401   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2402 
2403   JavaThread *curJT = JavaThread::current();
2404   bool do_self_suspend = thread->is_external_suspend();
2405 
2406   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2407 
2408   // If JNIEnv proxies are allowed, don't self-suspend if the target
2409   // thread is not the current thread. In older versions of jdbx, jdbx
2410   // threads could call into the VM with another thread's JNIEnv so we
2411   // can be here operating on behalf of a suspended thread (4432884).
2412   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2413     JavaThreadState state = thread->thread_state();
2414 
2415     // We mark this thread_blocked state as a suspend-equivalent so
2416     // that a caller to is_ext_suspend_completed() won't be confused.
2417     // The suspend-equivalent state is cleared by java_suspend_self().
2418     thread->set_suspend_equivalent();
2419 
2420     // If the safepoint code sees the _thread_in_native_trans state, it will
2421     // wait until the thread changes to other thread state. There is no
2422     // guarantee on how soon we can obtain the SR_lock and complete the
2423     // self-suspend request. It would be a bad idea to let safepoint wait for
2424     // too long. Temporarily change the state to _thread_blocked to
2425     // let the VM thread know that this thread is ready for GC. The problem
2426     // of changing thread state is that safepoint could happen just after
2427     // java_suspend_self() returns after being resumed, and VM thread will
2428     // see the _thread_blocked state. We must check for safepoint
2429     // after restoring the state and make sure we won't leave while a safepoint
2430     // is in progress.
2431     thread->set_thread_state(_thread_blocked);
2432     thread->java_suspend_self();
2433     thread->set_thread_state(state);
2434     // Make sure new state is seen by VM thread
2435     if (os::is_MP()) {
2436       if (UseMembar) {
2437         // Force a fence between the write above and read below
2438         OrderAccess::fence();
2439       } else {
2440         // Must use this rather than serialization page in particular on Windows
2441         InterfaceSupport::serialize_memory(thread);
2442       }
2443     }
2444   }
2445 
2446   if (SafepointSynchronize::do_call_back()) {
2447     // If we are safepointing, then block the caller which may not be
2448     // the same as the target thread (see above).
2449     SafepointSynchronize::block(curJT);
2450   }
2451 
2452   if (thread->is_deopt_suspend()) {
2453     thread->clear_deopt_suspend();
2454     RegisterMap map(thread, false);
2455     frame f = thread->last_frame();
2456     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2457       f = f.sender(&map);
2458     }
2459     if (f.id() == thread->must_deopt_id()) {
2460       thread->clear_must_deopt_id();
2461       f.deoptimize(thread);
2462     } else {
2463       fatal("missed deoptimization!");
2464     }
2465   }
2466 }
2467 
2468 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2469 // progress or when _suspend_flags is non-zero.
2470 // Current thread needs to self-suspend if there is a suspend request and/or
2471 // block if a safepoint is in progress.
2472 // Also check for pending async exception (not including unsafe access error).
2473 // Note only the native==>VM/Java barriers can call this function and when
2474 // thread state is _thread_in_native_trans.
2475 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2476   check_safepoint_and_suspend_for_native_trans(thread);
2477 
2478   if (thread->has_async_exception()) {
2479     // We are in _thread_in_native_trans state, don't handle unsafe
2480     // access error since that may block.
2481     thread->check_and_handle_async_exceptions(false);
2482   }
2483 }
2484 
2485 // This is a variant of the normal
2486 // check_special_condition_for_native_trans with slightly different
2487 // semantics for use by critical native wrappers.  It does all the
2488 // normal checks but also performs the transition back into
2489 // thread_in_Java state.  This is required so that critical natives
2490 // can potentially block and perform a GC if they are the last thread
2491 // exiting the GCLocker.
2492 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2493   check_special_condition_for_native_trans(thread);
2494 
2495   // Finish the transition
2496   thread->set_thread_state(_thread_in_Java);
2497 
2498   if (thread->do_critical_native_unlock()) {
2499     ThreadInVMfromJavaNoAsyncException tiv(thread);
2500     GCLocker::unlock_critical(thread);
2501     thread->clear_critical_native_unlock();
2502   }
2503 }
2504 
2505 // We need to guarantee the Threads_lock here, since resumes are not
2506 // allowed during safepoint synchronization
2507 // Can only resume from an external suspension
2508 void JavaThread::java_resume() {
2509   assert_locked_or_safepoint(Threads_lock);
2510 
2511   // Sanity check: thread is gone, has started exiting or the thread
2512   // was not externally suspended.
2513   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2514     return;
2515   }
2516 
2517   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2518 
2519   clear_external_suspend();
2520 
2521   if (is_ext_suspended()) {
2522     clear_ext_suspended();
2523     SR_lock()->notify_all();
2524   }
2525 }
2526 
2527 size_t JavaThread::_stack_red_zone_size = 0;
2528 size_t JavaThread::_stack_yellow_zone_size = 0;
2529 size_t JavaThread::_stack_reserved_zone_size = 0;
2530 size_t JavaThread::_stack_shadow_zone_size = 0;
2531 
2532 void JavaThread::create_stack_guard_pages() {
2533   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2534   address low_addr = stack_end();
2535   size_t len = stack_guard_zone_size();
2536 
2537   int must_commit = os::must_commit_stack_guard_pages();
2538   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2539 
2540   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2541     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2542     return;
2543   }
2544 
2545   if (os::guard_memory((char *) low_addr, len)) {
2546     _stack_guard_state = stack_guard_enabled;
2547   } else {
2548     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2549       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2550     if (os::uncommit_memory((char *) low_addr, len)) {
2551       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2552     }
2553     return;
2554   }
2555 
2556   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2557     PTR_FORMAT "-" PTR_FORMAT ".",
2558     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2559 }
2560 
2561 void JavaThread::remove_stack_guard_pages() {
2562   assert(Thread::current() == this, "from different thread");
2563   if (_stack_guard_state == stack_guard_unused) return;
2564   address low_addr = stack_end();
2565   size_t len = stack_guard_zone_size();
2566 
2567   if (os::must_commit_stack_guard_pages()) {
2568     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2569       _stack_guard_state = stack_guard_unused;
2570     } else {
2571       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2572         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2573       return;
2574     }
2575   } else {
2576     if (_stack_guard_state == stack_guard_unused) return;
2577     if (os::unguard_memory((char *) low_addr, len)) {
2578       _stack_guard_state = stack_guard_unused;
2579     } else {
2580       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2581         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2582       return;
2583     }
2584   }
2585 
2586   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2587     PTR_FORMAT "-" PTR_FORMAT ".",
2588     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2589 }
2590 
2591 void JavaThread::enable_stack_reserved_zone() {
2592   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2593   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2594 
2595   // The base notation is from the stack's point of view, growing downward.
2596   // We need to adjust it to work correctly with guard_memory()
2597   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2598 
2599   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2600   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2601 
2602   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2603     _stack_guard_state = stack_guard_enabled;
2604   } else {
2605     warning("Attempt to guard stack reserved zone failed.");
2606   }
2607   enable_register_stack_guard();
2608 }
2609 
2610 void JavaThread::disable_stack_reserved_zone() {
2611   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2612   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2613 
2614   // Simply return if called for a thread that does not use guard pages.
2615   if (_stack_guard_state == stack_guard_unused) return;
2616 
2617   // The base notation is from the stack's point of view, growing downward.
2618   // We need to adjust it to work correctly with guard_memory()
2619   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2620 
2621   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2622     _stack_guard_state = stack_guard_reserved_disabled;
2623   } else {
2624     warning("Attempt to unguard stack reserved zone failed.");
2625   }
2626   disable_register_stack_guard();
2627 }
2628 
2629 void JavaThread::enable_stack_yellow_reserved_zone() {
2630   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2631   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2632 
2633   // The base notation is from the stacks point of view, growing downward.
2634   // We need to adjust it to work correctly with guard_memory()
2635   address base = stack_red_zone_base();
2636 
2637   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2638   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2639 
2640   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2641     _stack_guard_state = stack_guard_enabled;
2642   } else {
2643     warning("Attempt to guard stack yellow zone failed.");
2644   }
2645   enable_register_stack_guard();
2646 }
2647 
2648 void JavaThread::disable_stack_yellow_reserved_zone() {
2649   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2650   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2651 
2652   // Simply return if called for a thread that does not use guard pages.
2653   if (_stack_guard_state == stack_guard_unused) return;
2654 
2655   // The base notation is from the stacks point of view, growing downward.
2656   // We need to adjust it to work correctly with guard_memory()
2657   address base = stack_red_zone_base();
2658 
2659   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2660     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2661   } else {
2662     warning("Attempt to unguard stack yellow zone failed.");
2663   }
2664   disable_register_stack_guard();
2665 }
2666 
2667 void JavaThread::enable_stack_red_zone() {
2668   // The base notation is from the stacks point of view, growing downward.
2669   // We need to adjust it to work correctly with guard_memory()
2670   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2671   address base = stack_red_zone_base() - stack_red_zone_size();
2672 
2673   guarantee(base < stack_base(), "Error calculating stack red zone");
2674   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2675 
2676   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2677     warning("Attempt to guard stack red zone failed.");
2678   }
2679 }
2680 
2681 void JavaThread::disable_stack_red_zone() {
2682   // The base notation is from the stacks point of view, growing downward.
2683   // We need to adjust it to work correctly with guard_memory()
2684   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2685   address base = stack_red_zone_base() - stack_red_zone_size();
2686   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2687     warning("Attempt to unguard stack red zone failed.");
2688   }
2689 }
2690 
2691 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2692   // ignore is there is no stack
2693   if (!has_last_Java_frame()) return;
2694   // traverse the stack frames. Starts from top frame.
2695   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2696     frame* fr = fst.current();
2697     f(fr, fst.register_map());
2698   }
2699 }
2700 
2701 
2702 #ifndef PRODUCT
2703 // Deoptimization
2704 // Function for testing deoptimization
2705 void JavaThread::deoptimize() {
2706   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2707   StackFrameStream fst(this, UseBiasedLocking);
2708   bool deopt = false;           // Dump stack only if a deopt actually happens.
2709   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2710   // Iterate over all frames in the thread and deoptimize
2711   for (; !fst.is_done(); fst.next()) {
2712     if (fst.current()->can_be_deoptimized()) {
2713 
2714       if (only_at) {
2715         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2716         // consists of comma or carriage return separated numbers so
2717         // search for the current bci in that string.
2718         address pc = fst.current()->pc();
2719         nmethod* nm =  (nmethod*) fst.current()->cb();
2720         ScopeDesc* sd = nm->scope_desc_at(pc);
2721         char buffer[8];
2722         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2723         size_t len = strlen(buffer);
2724         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2725         while (found != NULL) {
2726           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2727               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2728             // Check that the bci found is bracketed by terminators.
2729             break;
2730           }
2731           found = strstr(found + 1, buffer);
2732         }
2733         if (!found) {
2734           continue;
2735         }
2736       }
2737 
2738       if (DebugDeoptimization && !deopt) {
2739         deopt = true; // One-time only print before deopt
2740         tty->print_cr("[BEFORE Deoptimization]");
2741         trace_frames();
2742         trace_stack();
2743       }
2744       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2745     }
2746   }
2747 
2748   if (DebugDeoptimization && deopt) {
2749     tty->print_cr("[AFTER Deoptimization]");
2750     trace_frames();
2751   }
2752 }
2753 
2754 
2755 // Make zombies
2756 void JavaThread::make_zombies() {
2757   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2758     if (fst.current()->can_be_deoptimized()) {
2759       // it is a Java nmethod
2760       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2761       nm->make_not_entrant();
2762     }
2763   }
2764 }
2765 #endif // PRODUCT
2766 
2767 
2768 void JavaThread::deoptimized_wrt_marked_nmethods() {
2769   if (!has_last_Java_frame()) return;
2770   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2771   StackFrameStream fst(this, UseBiasedLocking);
2772   for (; !fst.is_done(); fst.next()) {
2773     if (fst.current()->should_be_deoptimized()) {
2774       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2775     }
2776   }
2777 }
2778 
2779 
2780 // If the caller is a NamedThread, then remember, in the current scope,
2781 // the given JavaThread in its _processed_thread field.
2782 class RememberProcessedThread: public StackObj {
2783   NamedThread* _cur_thr;
2784  public:
2785   RememberProcessedThread(JavaThread* jthr) {
2786     Thread* thread = Thread::current();
2787     if (thread->is_Named_thread()) {
2788       _cur_thr = (NamedThread *)thread;
2789       _cur_thr->set_processed_thread(jthr);
2790     } else {
2791       _cur_thr = NULL;
2792     }
2793   }
2794 
2795   ~RememberProcessedThread() {
2796     if (_cur_thr) {
2797       _cur_thr->set_processed_thread(NULL);
2798     }
2799   }
2800 };
2801 
2802 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2803   // Verify that the deferred card marks have been flushed.
2804   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2805 
2806   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2807   // since there may be more than one thread using each ThreadProfiler.
2808 
2809   // Traverse the GCHandles
2810   Thread::oops_do(f, cf);
2811 
2812   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2813 
2814   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2815          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2816 
2817   if (has_last_Java_frame()) {
2818     // Record JavaThread to GC thread
2819     RememberProcessedThread rpt(this);
2820 
2821     // Traverse the privileged stack
2822     if (_privileged_stack_top != NULL) {
2823       _privileged_stack_top->oops_do(f);
2824     }
2825 
2826     // traverse the registered growable array
2827     if (_array_for_gc != NULL) {
2828       for (int index = 0; index < _array_for_gc->length(); index++) {
2829         f->do_oop(_array_for_gc->adr_at(index));
2830       }
2831     }
2832 
2833     // Traverse the monitor chunks
2834     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2835       chunk->oops_do(f);
2836     }
2837 
2838     // Traverse the execution stack
2839     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2840       fst.current()->oops_do(f, cf, fst.register_map());
2841     }
2842   }
2843 
2844   // callee_target is never live across a gc point so NULL it here should
2845   // it still contain a methdOop.
2846 
2847   set_callee_target(NULL);
2848 
2849   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2850   // If we have deferred set_locals there might be oops waiting to be
2851   // written
2852   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2853   if (list != NULL) {
2854     for (int i = 0; i < list->length(); i++) {
2855       list->at(i)->oops_do(f);
2856     }
2857   }
2858 
2859   // Traverse instance variables at the end since the GC may be moving things
2860   // around using this function
2861   f->do_oop((oop*) &_threadObj);
2862   f->do_oop((oop*) &_vm_result);
2863   f->do_oop((oop*) &_exception_oop);
2864   f->do_oop((oop*) &_pending_async_exception);
2865 
2866   if (jvmti_thread_state() != NULL) {
2867     jvmti_thread_state()->oops_do(f);
2868   }
2869 }
2870 
2871 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2872   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2873          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2874 
2875   if (has_last_Java_frame()) {
2876     // Traverse the execution stack
2877     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2878       fst.current()->nmethods_do(cf);
2879     }
2880   }
2881 }
2882 
2883 void JavaThread::metadata_do(void f(Metadata*)) {
2884   if (has_last_Java_frame()) {
2885     // Traverse the execution stack to call f() on the methods in the stack
2886     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2887       fst.current()->metadata_do(f);
2888     }
2889   } else if (is_Compiler_thread()) {
2890     // need to walk ciMetadata in current compile tasks to keep alive.
2891     CompilerThread* ct = (CompilerThread*)this;
2892     if (ct->env() != NULL) {
2893       ct->env()->metadata_do(f);
2894     }
2895     if (ct->task() != NULL) {
2896       ct->task()->metadata_do(f);
2897     }
2898   }
2899 }
2900 
2901 // Printing
2902 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2903   switch (_thread_state) {
2904   case _thread_uninitialized:     return "_thread_uninitialized";
2905   case _thread_new:               return "_thread_new";
2906   case _thread_new_trans:         return "_thread_new_trans";
2907   case _thread_in_native:         return "_thread_in_native";
2908   case _thread_in_native_trans:   return "_thread_in_native_trans";
2909   case _thread_in_vm:             return "_thread_in_vm";
2910   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2911   case _thread_in_Java:           return "_thread_in_Java";
2912   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2913   case _thread_blocked:           return "_thread_blocked";
2914   case _thread_blocked_trans:     return "_thread_blocked_trans";
2915   default:                        return "unknown thread state";
2916   }
2917 }
2918 
2919 #ifndef PRODUCT
2920 void JavaThread::print_thread_state_on(outputStream *st) const {
2921   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2922 };
2923 void JavaThread::print_thread_state() const {
2924   print_thread_state_on(tty);
2925 }
2926 #endif // PRODUCT
2927 
2928 // Called by Threads::print() for VM_PrintThreads operation
2929 void JavaThread::print_on(outputStream *st) const {
2930   st->print_raw("\"");
2931   st->print_raw(get_thread_name());
2932   st->print_raw("\" ");
2933   oop thread_oop = threadObj();
2934   if (thread_oop != NULL) {
2935     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2936     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2937     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2938   }
2939   Thread::print_on(st);
2940   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2941   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2942   if (thread_oop != NULL) {
2943     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2944   }
2945 #ifndef PRODUCT
2946   print_thread_state_on(st);
2947   _safepoint_state->print_on(st);
2948 #endif // PRODUCT
2949   if (is_Compiler_thread()) {
2950     CompilerThread* ct = (CompilerThread*)this;
2951     if (ct->task() != NULL) {
2952       st->print("   Compiling: ");
2953       ct->task()->print(st, NULL, true, false);
2954     } else {
2955       st->print("   No compile task");
2956     }
2957     st->cr();
2958   }
2959 }
2960 
2961 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2962   st->print("%s", get_thread_name_string(buf, buflen));
2963 }
2964 
2965 // Called by fatal error handler. The difference between this and
2966 // JavaThread::print() is that we can't grab lock or allocate memory.
2967 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2968   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2969   oop thread_obj = threadObj();
2970   if (thread_obj != NULL) {
2971     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2972   }
2973   st->print(" [");
2974   st->print("%s", _get_thread_state_name(_thread_state));
2975   if (osthread()) {
2976     st->print(", id=%d", osthread()->thread_id());
2977   }
2978   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2979             p2i(stack_end()), p2i(stack_base()));
2980   st->print("]");
2981   return;
2982 }
2983 
2984 // Verification
2985 
2986 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2987 
2988 void JavaThread::verify() {
2989   // Verify oops in the thread.
2990   oops_do(&VerifyOopClosure::verify_oop, NULL);
2991 
2992   // Verify the stack frames.
2993   frames_do(frame_verify);
2994 }
2995 
2996 // CR 6300358 (sub-CR 2137150)
2997 // Most callers of this method assume that it can't return NULL but a
2998 // thread may not have a name whilst it is in the process of attaching to
2999 // the VM - see CR 6412693, and there are places where a JavaThread can be
3000 // seen prior to having it's threadObj set (eg JNI attaching threads and
3001 // if vm exit occurs during initialization). These cases can all be accounted
3002 // for such that this method never returns NULL.
3003 const char* JavaThread::get_thread_name() const {
3004 #ifdef ASSERT
3005   // early safepoints can hit while current thread does not yet have TLS
3006   if (!SafepointSynchronize::is_at_safepoint()) {
3007     Thread *cur = Thread::current();
3008     if (!(cur->is_Java_thread() && cur == this)) {
3009       // Current JavaThreads are allowed to get their own name without
3010       // the Threads_lock.
3011       assert_locked_or_safepoint(Threads_lock);
3012     }
3013   }
3014 #endif // ASSERT
3015   return get_thread_name_string();
3016 }
3017 
3018 // Returns a non-NULL representation of this thread's name, or a suitable
3019 // descriptive string if there is no set name
3020 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3021   const char* name_str;
3022   oop thread_obj = threadObj();
3023   if (thread_obj != NULL) {
3024     oop name = java_lang_Thread::name(thread_obj);
3025     if (name != NULL) {
3026       if (buf == NULL) {
3027         name_str = java_lang_String::as_utf8_string(name);
3028       } else {
3029         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3030       }
3031     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3032       name_str = "<no-name - thread is attaching>";
3033     } else {
3034       name_str = Thread::name();
3035     }
3036   } else {
3037     name_str = Thread::name();
3038   }
3039   assert(name_str != NULL, "unexpected NULL thread name");
3040   return name_str;
3041 }
3042 
3043 
3044 const char* JavaThread::get_threadgroup_name() const {
3045   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3046   oop thread_obj = threadObj();
3047   if (thread_obj != NULL) {
3048     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3049     if (thread_group != NULL) {
3050       // ThreadGroup.name can be null
3051       return java_lang_ThreadGroup::name(thread_group);
3052     }
3053   }
3054   return NULL;
3055 }
3056 
3057 const char* JavaThread::get_parent_name() const {
3058   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3059   oop thread_obj = threadObj();
3060   if (thread_obj != NULL) {
3061     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3062     if (thread_group != NULL) {
3063       oop parent = java_lang_ThreadGroup::parent(thread_group);
3064       if (parent != NULL) {
3065         // ThreadGroup.name can be null
3066         return java_lang_ThreadGroup::name(parent);
3067       }
3068     }
3069   }
3070   return NULL;
3071 }
3072 
3073 ThreadPriority JavaThread::java_priority() const {
3074   oop thr_oop = threadObj();
3075   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3076   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3077   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3078   return priority;
3079 }
3080 
3081 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3082 
3083   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3084   // Link Java Thread object <-> C++ Thread
3085 
3086   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3087   // and put it into a new Handle.  The Handle "thread_oop" can then
3088   // be used to pass the C++ thread object to other methods.
3089 
3090   // Set the Java level thread object (jthread) field of the
3091   // new thread (a JavaThread *) to C++ thread object using the
3092   // "thread_oop" handle.
3093 
3094   // Set the thread field (a JavaThread *) of the
3095   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3096 
3097   Handle thread_oop(Thread::current(),
3098                     JNIHandles::resolve_non_null(jni_thread));
3099   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3100          "must be initialized");
3101   set_threadObj(thread_oop());
3102   java_lang_Thread::set_thread(thread_oop(), this);
3103 
3104   if (prio == NoPriority) {
3105     prio = java_lang_Thread::priority(thread_oop());
3106     assert(prio != NoPriority, "A valid priority should be present");
3107   }
3108 
3109   // Push the Java priority down to the native thread; needs Threads_lock
3110   Thread::set_priority(this, prio);
3111 
3112   prepare_ext();
3113 
3114   // Add the new thread to the Threads list and set it in motion.
3115   // We must have threads lock in order to call Threads::add.
3116   // It is crucial that we do not block before the thread is
3117   // added to the Threads list for if a GC happens, then the java_thread oop
3118   // will not be visited by GC.
3119   Threads::add(this);
3120 }
3121 
3122 oop JavaThread::current_park_blocker() {
3123   // Support for JSR-166 locks
3124   oop thread_oop = threadObj();
3125   if (thread_oop != NULL &&
3126       JDK_Version::current().supports_thread_park_blocker()) {
3127     return java_lang_Thread::park_blocker(thread_oop);
3128   }
3129   return NULL;
3130 }
3131 
3132 
3133 void JavaThread::print_stack_on(outputStream* st) {
3134   if (!has_last_Java_frame()) return;
3135   ResourceMark rm;
3136   HandleMark   hm;
3137 
3138   RegisterMap reg_map(this);
3139   vframe* start_vf = last_java_vframe(&reg_map);
3140   int count = 0;
3141   for (vframe* f = start_vf; f; f = f->sender()) {
3142     if (f->is_java_frame()) {
3143       javaVFrame* jvf = javaVFrame::cast(f);
3144       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3145 
3146       // Print out lock information
3147       if (JavaMonitorsInStackTrace) {
3148         jvf->print_lock_info_on(st, count);
3149       }
3150     } else {
3151       // Ignore non-Java frames
3152     }
3153 
3154     // Bail-out case for too deep stacks
3155     count++;
3156     if (MaxJavaStackTraceDepth == count) return;
3157   }
3158 }
3159 
3160 
3161 // JVMTI PopFrame support
3162 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3163   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3164   if (in_bytes(size_in_bytes) != 0) {
3165     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3166     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3167     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3168   }
3169 }
3170 
3171 void* JavaThread::popframe_preserved_args() {
3172   return _popframe_preserved_args;
3173 }
3174 
3175 ByteSize JavaThread::popframe_preserved_args_size() {
3176   return in_ByteSize(_popframe_preserved_args_size);
3177 }
3178 
3179 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3180   int sz = in_bytes(popframe_preserved_args_size());
3181   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3182   return in_WordSize(sz / wordSize);
3183 }
3184 
3185 void JavaThread::popframe_free_preserved_args() {
3186   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3187   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3188   _popframe_preserved_args = NULL;
3189   _popframe_preserved_args_size = 0;
3190 }
3191 
3192 #ifndef PRODUCT
3193 
3194 void JavaThread::trace_frames() {
3195   tty->print_cr("[Describe stack]");
3196   int frame_no = 1;
3197   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3198     tty->print("  %d. ", frame_no++);
3199     fst.current()->print_value_on(tty, this);
3200     tty->cr();
3201   }
3202 }
3203 
3204 class PrintAndVerifyOopClosure: public OopClosure {
3205  protected:
3206   template <class T> inline void do_oop_work(T* p) {
3207     oop obj = oopDesc::load_decode_heap_oop(p);
3208     if (obj == NULL) return;
3209     tty->print(INTPTR_FORMAT ": ", p2i(p));
3210     if (obj->is_oop_or_null()) {
3211       if (obj->is_objArray()) {
3212         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3213       } else {
3214         obj->print();
3215       }
3216     } else {
3217       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3218     }
3219     tty->cr();
3220   }
3221  public:
3222   virtual void do_oop(oop* p) { do_oop_work(p); }
3223   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3224 };
3225 
3226 
3227 static void oops_print(frame* f, const RegisterMap *map) {
3228   PrintAndVerifyOopClosure print;
3229   f->print_value();
3230   f->oops_do(&print, NULL, (RegisterMap*)map);
3231 }
3232 
3233 // Print our all the locations that contain oops and whether they are
3234 // valid or not.  This useful when trying to find the oldest frame
3235 // where an oop has gone bad since the frame walk is from youngest to
3236 // oldest.
3237 void JavaThread::trace_oops() {
3238   tty->print_cr("[Trace oops]");
3239   frames_do(oops_print);
3240 }
3241 
3242 
3243 #ifdef ASSERT
3244 // Print or validate the layout of stack frames
3245 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3246   ResourceMark rm;
3247   PRESERVE_EXCEPTION_MARK;
3248   FrameValues values;
3249   int frame_no = 0;
3250   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3251     fst.current()->describe(values, ++frame_no);
3252     if (depth == frame_no) break;
3253   }
3254   if (validate_only) {
3255     values.validate();
3256   } else {
3257     tty->print_cr("[Describe stack layout]");
3258     values.print(this);
3259   }
3260 }
3261 #endif
3262 
3263 void JavaThread::trace_stack_from(vframe* start_vf) {
3264   ResourceMark rm;
3265   int vframe_no = 1;
3266   for (vframe* f = start_vf; f; f = f->sender()) {
3267     if (f->is_java_frame()) {
3268       javaVFrame::cast(f)->print_activation(vframe_no++);
3269     } else {
3270       f->print();
3271     }
3272     if (vframe_no > StackPrintLimit) {
3273       tty->print_cr("...<more frames>...");
3274       return;
3275     }
3276   }
3277 }
3278 
3279 
3280 void JavaThread::trace_stack() {
3281   if (!has_last_Java_frame()) return;
3282   ResourceMark rm;
3283   HandleMark   hm;
3284   RegisterMap reg_map(this);
3285   trace_stack_from(last_java_vframe(&reg_map));
3286 }
3287 
3288 
3289 #endif // PRODUCT
3290 
3291 
3292 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3293   assert(reg_map != NULL, "a map must be given");
3294   frame f = last_frame();
3295   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3296     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3297   }
3298   return NULL;
3299 }
3300 
3301 
3302 Klass* JavaThread::security_get_caller_class(int depth) {
3303   vframeStream vfst(this);
3304   vfst.security_get_caller_frame(depth);
3305   if (!vfst.at_end()) {
3306     return vfst.method()->method_holder();
3307   }
3308   return NULL;
3309 }
3310 
3311 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3312   assert(thread->is_Compiler_thread(), "must be compiler thread");
3313   CompileBroker::compiler_thread_loop();
3314 }
3315 
3316 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3317   NMethodSweeper::sweeper_loop();
3318 }
3319 
3320 // Create a CompilerThread
3321 CompilerThread::CompilerThread(CompileQueue* queue,
3322                                CompilerCounters* counters)
3323                                : JavaThread(&compiler_thread_entry) {
3324   _env   = NULL;
3325   _log   = NULL;
3326   _task  = NULL;
3327   _queue = queue;
3328   _counters = counters;
3329   _buffer_blob = NULL;
3330   _compiler = NULL;
3331 
3332 #ifndef PRODUCT
3333   _ideal_graph_printer = NULL;
3334 #endif
3335 }
3336 
3337 bool CompilerThread::can_call_java() const {
3338   return _compiler != NULL && _compiler->is_jvmci();
3339 }
3340 
3341 // Create sweeper thread
3342 CodeCacheSweeperThread::CodeCacheSweeperThread()
3343 : JavaThread(&sweeper_thread_entry) {
3344   _scanned_compiled_method = NULL;
3345 }
3346 
3347 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3348   JavaThread::oops_do(f, cf);
3349   if (_scanned_compiled_method != NULL && cf != NULL) {
3350     // Safepoints can occur when the sweeper is scanning an nmethod so
3351     // process it here to make sure it isn't unloaded in the middle of
3352     // a scan.
3353     cf->do_code_blob(_scanned_compiled_method);
3354   }
3355 }
3356 
3357 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3358   JavaThread::nmethods_do(cf);
3359   if (_scanned_compiled_method != NULL && cf != NULL) {
3360     // Safepoints can occur when the sweeper is scanning an nmethod so
3361     // process it here to make sure it isn't unloaded in the middle of
3362     // a scan.
3363     cf->do_code_blob(_scanned_compiled_method);
3364   }
3365 }
3366 
3367 
3368 // ======= Threads ========
3369 
3370 // The Threads class links together all active threads, and provides
3371 // operations over all threads.  It is protected by its own Mutex
3372 // lock, which is also used in other contexts to protect thread
3373 // operations from having the thread being operated on from exiting
3374 // and going away unexpectedly (e.g., safepoint synchronization)
3375 
3376 JavaThread* Threads::_thread_list = NULL;
3377 int         Threads::_number_of_threads = 0;
3378 int         Threads::_number_of_non_daemon_threads = 0;
3379 int         Threads::_return_code = 0;
3380 int         Threads::_thread_claim_parity = 0;
3381 size_t      JavaThread::_stack_size_at_create = 0;
3382 #ifdef ASSERT
3383 bool        Threads::_vm_complete = false;
3384 #endif
3385 
3386 // All JavaThreads
3387 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3388 
3389 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3390 void Threads::threads_do(ThreadClosure* tc) {
3391   assert_locked_or_safepoint(Threads_lock);
3392   // ALL_JAVA_THREADS iterates through all JavaThreads
3393   ALL_JAVA_THREADS(p) {
3394     tc->do_thread(p);
3395   }
3396   // Someday we could have a table or list of all non-JavaThreads.
3397   // For now, just manually iterate through them.
3398   tc->do_thread(VMThread::vm_thread());
3399   Universe::heap()->gc_threads_do(tc);
3400   WatcherThread *wt = WatcherThread::watcher_thread();
3401   // Strictly speaking, the following NULL check isn't sufficient to make sure
3402   // the data for WatcherThread is still valid upon being examined. However,
3403   // considering that WatchThread terminates when the VM is on the way to
3404   // exit at safepoint, the chance of the above is extremely small. The right
3405   // way to prevent termination of WatcherThread would be to acquire
3406   // Terminator_lock, but we can't do that without violating the lock rank
3407   // checking in some cases.
3408   if (wt != NULL) {
3409     tc->do_thread(wt);
3410   }
3411 
3412   // If CompilerThreads ever become non-JavaThreads, add them here
3413 }
3414 
3415 void Threads::parallel_java_threads_do(ThreadClosure* tc) {
3416   int cp = Threads::thread_claim_parity();
3417   ALL_JAVA_THREADS(p) {
3418     if (p->claim_oops_do(true, cp)) {
3419       tc->do_thread(p);
3420     }
3421   }
3422 }
3423 
3424 // The system initialization in the library has three phases.
3425 //
3426 // Phase 1: java.lang.System class initialization
3427 //     java.lang.System is a primordial class loaded and initialized
3428 //     by the VM early during startup.  java.lang.System.<clinit>
3429 //     only does registerNatives and keeps the rest of the class
3430 //     initialization work later until thread initialization completes.
3431 //
3432 //     System.initPhase1 initializes the system properties, the static
3433 //     fields in, out, and err. Set up java signal handlers, OS-specific
3434 //     system settings, and thread group of the main thread.
3435 static void call_initPhase1(TRAPS) {
3436   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3437   instanceKlassHandle klass (THREAD, k);
3438 
3439   JavaValue result(T_VOID);
3440   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3441                                          vmSymbols::void_method_signature(), CHECK);
3442 }
3443 
3444 // Phase 2. Module system initialization
3445 //     This will initialize the module system.  Only java.base classes
3446 //     can be loaded until phase 2 completes.
3447 //
3448 //     Call System.initPhase2 after the compiler initialization and jsr292
3449 //     classes get initialized because module initialization runs a lot of java
3450 //     code, that for performance reasons, should be compiled.  Also, this will
3451 //     enable the startup code to use lambda and other language features in this
3452 //     phase and onward.
3453 //
3454 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3455 static void call_initPhase2(TRAPS) {
3456   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, module, startuptime));
3457 
3458   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3459   instanceKlassHandle klass (THREAD, k);
3460 
3461   JavaValue result(T_INT);
3462   JavaCallArguments args;
3463   args.push_int(DisplayVMOutputToStderr);
3464   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3465   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3466                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3467   if (result.get_jint() != JNI_OK) {
3468     vm_exit_during_initialization(); // no message or exception
3469   }
3470 
3471   universe_post_module_init();
3472 }
3473 
3474 // Phase 3. final setup - set security manager, system class loader and TCCL
3475 //
3476 //     This will instantiate and set the security manager, set the system class
3477 //     loader as well as the thread context class loader.  The security manager
3478 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3479 //     other modules or the application's classpath.
3480 static void call_initPhase3(TRAPS) {
3481   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3482   instanceKlassHandle klass (THREAD, k);
3483 
3484   JavaValue result(T_VOID);
3485   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3486                                          vmSymbols::void_method_signature(), CHECK);
3487 }
3488 
3489 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3490   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3491 
3492   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3493     create_vm_init_libraries();
3494   }
3495 
3496   initialize_class(vmSymbols::java_lang_String(), CHECK);
3497 
3498   // Inject CompactStrings value after the static initializers for String ran.
3499   java_lang_String::set_compact_strings(CompactStrings);
3500 
3501   // Initialize java_lang.System (needed before creating the thread)
3502   initialize_class(vmSymbols::java_lang_System(), CHECK);
3503   // The VM creates & returns objects of this class. Make sure it's initialized.
3504   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3505   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3506   Handle thread_group = create_initial_thread_group(CHECK);
3507   Universe::set_main_thread_group(thread_group());
3508   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3509   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3510   main_thread->set_threadObj(thread_object);
3511   // Set thread status to running since main thread has
3512   // been started and running.
3513   java_lang_Thread::set_thread_status(thread_object,
3514                                       java_lang_Thread::RUNNABLE);
3515 
3516   // The VM creates objects of this class.
3517   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3518 
3519   // The VM preresolves methods to these classes. Make sure that they get initialized
3520   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3521   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3522 
3523   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3524   call_initPhase1(CHECK);
3525 
3526   // get the Java runtime name after java.lang.System is initialized
3527   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3528   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3529 
3530   // an instance of OutOfMemory exception has been allocated earlier
3531   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3532   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3533   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3534   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3535   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3536   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3537   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3538   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3539 }
3540 
3541 void Threads::initialize_jsr292_core_classes(TRAPS) {
3542   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3543 
3544   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3545   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3546   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3547 }
3548 
3549 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3550   extern void JDK_Version_init();
3551 
3552   // Preinitialize version info.
3553   VM_Version::early_initialize();
3554 
3555   // Check version
3556   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3557 
3558   // Initialize library-based TLS
3559   ThreadLocalStorage::init();
3560 
3561   // Initialize the output stream module
3562   ostream_init();
3563 
3564   // Process java launcher properties.
3565   Arguments::process_sun_java_launcher_properties(args);
3566 
3567   // Initialize the os module
3568   os::init();
3569 
3570   // Record VM creation timing statistics
3571   TraceVmCreationTime create_vm_timer;
3572   create_vm_timer.start();
3573 
3574   // Initialize system properties.
3575   Arguments::init_system_properties();
3576 
3577   // So that JDK version can be used as a discriminator when parsing arguments
3578   JDK_Version_init();
3579 
3580   // Update/Initialize System properties after JDK version number is known
3581   Arguments::init_version_specific_system_properties();
3582 
3583   // Make sure to initialize log configuration *before* parsing arguments
3584   LogConfiguration::initialize(create_vm_timer.begin_time());
3585 
3586   // Parse arguments
3587   jint parse_result = Arguments::parse(args);
3588   if (parse_result != JNI_OK) return parse_result;
3589 
3590   os::init_before_ergo();
3591 
3592   jint ergo_result = Arguments::apply_ergo();
3593   if (ergo_result != JNI_OK) return ergo_result;
3594 
3595   // Final check of all ranges after ergonomics which may change values.
3596   if (!CommandLineFlagRangeList::check_ranges()) {
3597     return JNI_EINVAL;
3598   }
3599 
3600   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3601   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3602   if (!constraint_result) {
3603     return JNI_EINVAL;
3604   }
3605 
3606   CommandLineFlagWriteableList::mark_startup();
3607 
3608   if (PauseAtStartup) {
3609     os::pause();
3610   }
3611 
3612   HOTSPOT_VM_INIT_BEGIN();
3613 
3614   // Timing (must come after argument parsing)
3615   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3616 
3617   // Initialize the os module after parsing the args
3618   jint os_init_2_result = os::init_2();
3619   if (os_init_2_result != JNI_OK) return os_init_2_result;
3620 
3621   jint adjust_after_os_result = Arguments::adjust_after_os();
3622   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3623 
3624   // Initialize output stream logging
3625   ostream_init_log();
3626 
3627   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3628   // Must be before create_vm_init_agents()
3629   if (Arguments::init_libraries_at_startup()) {
3630     convert_vm_init_libraries_to_agents();
3631   }
3632 
3633   // Launch -agentlib/-agentpath and converted -Xrun agents
3634   if (Arguments::init_agents_at_startup()) {
3635     create_vm_init_agents();
3636   }
3637 
3638   // Initialize Threads state
3639   _thread_list = NULL;
3640   _number_of_threads = 0;
3641   _number_of_non_daemon_threads = 0;
3642 
3643   // Initialize global data structures and create system classes in heap
3644   vm_init_globals();
3645 
3646 #if INCLUDE_JVMCI
3647   if (JVMCICounterSize > 0) {
3648     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3649     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3650   } else {
3651     JavaThread::_jvmci_old_thread_counters = NULL;
3652   }
3653 #endif // INCLUDE_JVMCI
3654 
3655   // Attach the main thread to this os thread
3656   JavaThread* main_thread = new JavaThread();
3657   main_thread->set_thread_state(_thread_in_vm);
3658   main_thread->initialize_thread_current();
3659   // must do this before set_active_handles
3660   main_thread->record_stack_base_and_size();
3661   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3662 
3663   if (!main_thread->set_as_starting_thread()) {
3664     vm_shutdown_during_initialization(
3665                                       "Failed necessary internal allocation. Out of swap space");
3666     delete main_thread;
3667     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3668     return JNI_ENOMEM;
3669   }
3670 
3671   // Enable guard page *after* os::create_main_thread(), otherwise it would
3672   // crash Linux VM, see notes in os_linux.cpp.
3673   main_thread->create_stack_guard_pages();
3674 
3675   // Initialize Java-Level synchronization subsystem
3676   ObjectMonitor::Initialize();
3677 
3678   // Initialize global modules
3679   jint status = init_globals();
3680   if (status != JNI_OK) {
3681     delete main_thread;
3682     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3683     return status;
3684   }
3685 
3686   if (TRACE_INITIALIZE() != JNI_OK) {
3687     vm_exit_during_initialization("Failed to initialize tracing backend");
3688   }
3689 
3690   // Should be done after the heap is fully created
3691   main_thread->cache_global_variables();
3692 
3693   HandleMark hm;
3694 
3695   { MutexLocker mu(Threads_lock);
3696     Threads::add(main_thread);
3697   }
3698 
3699   // Any JVMTI raw monitors entered in onload will transition into
3700   // real raw monitor. VM is setup enough here for raw monitor enter.
3701   JvmtiExport::transition_pending_onload_raw_monitors();
3702 
3703   // Create the VMThread
3704   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3705 
3706   VMThread::create();
3707     Thread* vmthread = VMThread::vm_thread();
3708 
3709     if (!os::create_thread(vmthread, os::vm_thread)) {
3710       vm_exit_during_initialization("Cannot create VM thread. "
3711                                     "Out of system resources.");
3712     }
3713 
3714     // Wait for the VM thread to become ready, and VMThread::run to initialize
3715     // Monitors can have spurious returns, must always check another state flag
3716     {
3717       MutexLocker ml(Notify_lock);
3718       os::start_thread(vmthread);
3719       while (vmthread->active_handles() == NULL) {
3720         Notify_lock->wait();
3721       }
3722     }
3723   }
3724 
3725   assert(Universe::is_fully_initialized(), "not initialized");
3726   if (VerifyDuringStartup) {
3727     // Make sure we're starting with a clean slate.
3728     VM_Verify verify_op;
3729     VMThread::execute(&verify_op);
3730   }
3731 
3732   Thread* THREAD = Thread::current();
3733 
3734   // At this point, the Universe is initialized, but we have not executed
3735   // any byte code.  Now is a good time (the only time) to dump out the
3736   // internal state of the JVM for sharing.
3737   if (DumpSharedSpaces) {
3738     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3739     ShouldNotReachHere();
3740   }
3741 
3742   // Always call even when there are not JVMTI environments yet, since environments
3743   // may be attached late and JVMTI must track phases of VM execution
3744   JvmtiExport::enter_early_start_phase();
3745 
3746   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3747   JvmtiExport::post_early_vm_start();
3748 
3749   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3750 
3751   // We need this for ClassDataSharing - the initial vm.info property is set
3752   // with the default value of CDS "sharing" which may be reset through
3753   // command line options.
3754   reset_vm_info_property(CHECK_JNI_ERR);
3755 
3756   quicken_jni_functions();
3757 
3758   // No more stub generation allowed after that point.
3759   StubCodeDesc::freeze();
3760 
3761   // Set flag that basic initialization has completed. Used by exceptions and various
3762   // debug stuff, that does not work until all basic classes have been initialized.
3763   set_init_completed();
3764 
3765   LogConfiguration::post_initialize();
3766   Metaspace::post_initialize();
3767 
3768   HOTSPOT_VM_INIT_END();
3769 
3770   // record VM initialization completion time
3771 #if INCLUDE_MANAGEMENT
3772   Management::record_vm_init_completed();
3773 #endif // INCLUDE_MANAGEMENT
3774 
3775   // Signal Dispatcher needs to be started before VMInit event is posted
3776   os::signal_init();
3777 
3778   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3779   if (!DisableAttachMechanism) {
3780     AttachListener::vm_start();
3781     if (StartAttachListener || AttachListener::init_at_startup()) {
3782       AttachListener::init();
3783     }
3784   }
3785 
3786   // Launch -Xrun agents
3787   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3788   // back-end can launch with -Xdebug -Xrunjdwp.
3789   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3790     create_vm_init_libraries();
3791   }
3792 
3793   if (CleanChunkPoolAsync) {
3794     Chunk::start_chunk_pool_cleaner_task();
3795   }
3796 
3797   // initialize compiler(s)
3798 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3799   CompileBroker::compilation_init(CHECK_JNI_ERR);
3800 #endif
3801 
3802   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3803   // It is done after compilers are initialized, because otherwise compilations of
3804   // signature polymorphic MH intrinsics can be missed
3805   // (see SystemDictionary::find_method_handle_intrinsic).
3806   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3807 
3808   // This will initialize the module system.  Only java.base classes can be
3809   // loaded until phase 2 completes
3810   call_initPhase2(CHECK_JNI_ERR);
3811 
3812   // Always call even when there are not JVMTI environments yet, since environments
3813   // may be attached late and JVMTI must track phases of VM execution
3814   JvmtiExport::enter_start_phase();
3815 
3816   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3817   JvmtiExport::post_vm_start();
3818 
3819   // Final system initialization including security manager and system class loader
3820   call_initPhase3(CHECK_JNI_ERR);
3821 
3822   // cache the system class loader
3823   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3824 
3825 #if INCLUDE_JVMCI
3826   if (EnableJVMCI) {
3827     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3828     // The JVMCI Java initialization code will read this flag and
3829     // do the printing if it's set.
3830     bool init = JVMCIPrintProperties;
3831 
3832     if (!init) {
3833       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3834       // compilations via JVMCI will not actually block until JVMCI is initialized.
3835       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3836     }
3837 
3838     if (init) {
3839       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3840     }
3841   }
3842 #endif
3843 
3844   // Always call even when there are not JVMTI environments yet, since environments
3845   // may be attached late and JVMTI must track phases of VM execution
3846   JvmtiExport::enter_live_phase();
3847 
3848   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3849   JvmtiExport::post_vm_initialized();
3850 
3851   if (TRACE_START() != JNI_OK) {
3852     vm_exit_during_initialization("Failed to start tracing backend.");
3853   }
3854 
3855 #if INCLUDE_MANAGEMENT
3856   Management::initialize(THREAD);
3857 
3858   if (HAS_PENDING_EXCEPTION) {
3859     // management agent fails to start possibly due to
3860     // configuration problem and is responsible for printing
3861     // stack trace if appropriate. Simply exit VM.
3862     vm_exit(1);
3863   }
3864 #endif // INCLUDE_MANAGEMENT
3865 
3866   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3867   if (MemProfiling)                   MemProfiler::engage();
3868   StatSampler::engage();
3869   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3870 
3871   BiasedLocking::init();
3872 
3873 #if INCLUDE_RTM_OPT
3874   RTMLockingCounters::init();
3875 #endif
3876 
3877   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3878     call_postVMInitHook(THREAD);
3879     // The Java side of PostVMInitHook.run must deal with all
3880     // exceptions and provide means of diagnosis.
3881     if (HAS_PENDING_EXCEPTION) {
3882       CLEAR_PENDING_EXCEPTION;
3883     }
3884   }
3885 
3886   {
3887     MutexLocker ml(PeriodicTask_lock);
3888     // Make sure the WatcherThread can be started by WatcherThread::start()
3889     // or by dynamic enrollment.
3890     WatcherThread::make_startable();
3891     // Start up the WatcherThread if there are any periodic tasks
3892     // NOTE:  All PeriodicTasks should be registered by now. If they
3893     //   aren't, late joiners might appear to start slowly (we might
3894     //   take a while to process their first tick).
3895     if (PeriodicTask::num_tasks() > 0) {
3896       WatcherThread::start();
3897     }
3898   }
3899 
3900   create_vm_timer.end();
3901 #ifdef ASSERT
3902   _vm_complete = true;
3903 #endif
3904   return JNI_OK;
3905 }
3906 
3907 // type for the Agent_OnLoad and JVM_OnLoad entry points
3908 extern "C" {
3909   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3910 }
3911 // Find a command line agent library and return its entry point for
3912 //         -agentlib:  -agentpath:   -Xrun
3913 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3914 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3915                                     const char *on_load_symbols[],
3916                                     size_t num_symbol_entries) {
3917   OnLoadEntry_t on_load_entry = NULL;
3918   void *library = NULL;
3919 
3920   if (!agent->valid()) {
3921     char buffer[JVM_MAXPATHLEN];
3922     char ebuf[1024] = "";
3923     const char *name = agent->name();
3924     const char *msg = "Could not find agent library ";
3925 
3926     // First check to see if agent is statically linked into executable
3927     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3928       library = agent->os_lib();
3929     } else if (agent->is_absolute_path()) {
3930       library = os::dll_load(name, ebuf, sizeof ebuf);
3931       if (library == NULL) {
3932         const char *sub_msg = " in absolute path, with error: ";
3933         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3934         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3935         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3936         // If we can't find the agent, exit.
3937         vm_exit_during_initialization(buf, NULL);
3938         FREE_C_HEAP_ARRAY(char, buf);
3939       }
3940     } else {
3941       // Try to load the agent from the standard dll directory
3942       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3943                              name)) {
3944         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3945       }
3946       if (library == NULL) { // Try the local directory
3947         char ns[1] = {0};
3948         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3949           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3950         }
3951         if (library == NULL) {
3952           const char *sub_msg = " on the library path, with error: ";
3953           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3954           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3955           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3956           // If we can't find the agent, exit.
3957           vm_exit_during_initialization(buf, NULL);
3958           FREE_C_HEAP_ARRAY(char, buf);
3959         }
3960       }
3961     }
3962     agent->set_os_lib(library);
3963     agent->set_valid();
3964   }
3965 
3966   // Find the OnLoad function.
3967   on_load_entry =
3968     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3969                                                           false,
3970                                                           on_load_symbols,
3971                                                           num_symbol_entries));
3972   return on_load_entry;
3973 }
3974 
3975 // Find the JVM_OnLoad entry point
3976 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3977   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3978   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3979 }
3980 
3981 // Find the Agent_OnLoad entry point
3982 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3983   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3984   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3985 }
3986 
3987 // For backwards compatibility with -Xrun
3988 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3989 // treated like -agentpath:
3990 // Must be called before agent libraries are created
3991 void Threads::convert_vm_init_libraries_to_agents() {
3992   AgentLibrary* agent;
3993   AgentLibrary* next;
3994 
3995   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3996     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3997     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3998 
3999     // If there is an JVM_OnLoad function it will get called later,
4000     // otherwise see if there is an Agent_OnLoad
4001     if (on_load_entry == NULL) {
4002       on_load_entry = lookup_agent_on_load(agent);
4003       if (on_load_entry != NULL) {
4004         // switch it to the agent list -- so that Agent_OnLoad will be called,
4005         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4006         Arguments::convert_library_to_agent(agent);
4007       } else {
4008         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4009       }
4010     }
4011   }
4012 }
4013 
4014 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4015 // Invokes Agent_OnLoad
4016 // Called very early -- before JavaThreads exist
4017 void Threads::create_vm_init_agents() {
4018   extern struct JavaVM_ main_vm;
4019   AgentLibrary* agent;
4020 
4021   JvmtiExport::enter_onload_phase();
4022 
4023   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4024     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4025 
4026     if (on_load_entry != NULL) {
4027       // Invoke the Agent_OnLoad function
4028       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4029       if (err != JNI_OK) {
4030         vm_exit_during_initialization("agent library failed to init", agent->name());
4031       }
4032     } else {
4033       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4034     }
4035   }
4036   JvmtiExport::enter_primordial_phase();
4037 }
4038 
4039 extern "C" {
4040   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4041 }
4042 
4043 void Threads::shutdown_vm_agents() {
4044   // Send any Agent_OnUnload notifications
4045   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4046   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4047   extern struct JavaVM_ main_vm;
4048   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4049 
4050     // Find the Agent_OnUnload function.
4051     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4052                                                    os::find_agent_function(agent,
4053                                                    false,
4054                                                    on_unload_symbols,
4055                                                    num_symbol_entries));
4056 
4057     // Invoke the Agent_OnUnload function
4058     if (unload_entry != NULL) {
4059       JavaThread* thread = JavaThread::current();
4060       ThreadToNativeFromVM ttn(thread);
4061       HandleMark hm(thread);
4062       (*unload_entry)(&main_vm);
4063     }
4064   }
4065 }
4066 
4067 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4068 // Invokes JVM_OnLoad
4069 void Threads::create_vm_init_libraries() {
4070   extern struct JavaVM_ main_vm;
4071   AgentLibrary* agent;
4072 
4073   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4074     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4075 
4076     if (on_load_entry != NULL) {
4077       // Invoke the JVM_OnLoad function
4078       JavaThread* thread = JavaThread::current();
4079       ThreadToNativeFromVM ttn(thread);
4080       HandleMark hm(thread);
4081       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4082       if (err != JNI_OK) {
4083         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4084       }
4085     } else {
4086       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4087     }
4088   }
4089 }
4090 
4091 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4092   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4093 
4094   JavaThread* java_thread = NULL;
4095   // Sequential search for now.  Need to do better optimization later.
4096   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4097     oop tobj = thread->threadObj();
4098     if (!thread->is_exiting() &&
4099         tobj != NULL &&
4100         java_tid == java_lang_Thread::thread_id(tobj)) {
4101       java_thread = thread;
4102       break;
4103     }
4104   }
4105   return java_thread;
4106 }
4107 
4108 
4109 // Last thread running calls java.lang.Shutdown.shutdown()
4110 void JavaThread::invoke_shutdown_hooks() {
4111   HandleMark hm(this);
4112 
4113   // We could get here with a pending exception, if so clear it now.
4114   if (this->has_pending_exception()) {
4115     this->clear_pending_exception();
4116   }
4117 
4118   EXCEPTION_MARK;
4119   Klass* k =
4120     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4121                                       THREAD);
4122   if (k != NULL) {
4123     // SystemDictionary::resolve_or_null will return null if there was
4124     // an exception.  If we cannot load the Shutdown class, just don't
4125     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4126     // and finalizers (if runFinalizersOnExit is set) won't be run.
4127     // Note that if a shutdown hook was registered or runFinalizersOnExit
4128     // was called, the Shutdown class would have already been loaded
4129     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4130     instanceKlassHandle shutdown_klass (THREAD, k);
4131     JavaValue result(T_VOID);
4132     JavaCalls::call_static(&result,
4133                            shutdown_klass,
4134                            vmSymbols::shutdown_method_name(),
4135                            vmSymbols::void_method_signature(),
4136                            THREAD);
4137   }
4138   CLEAR_PENDING_EXCEPTION;
4139 }
4140 
4141 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4142 // the program falls off the end of main(). Another VM exit path is through
4143 // vm_exit() when the program calls System.exit() to return a value or when
4144 // there is a serious error in VM. The two shutdown paths are not exactly
4145 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4146 // and VM_Exit op at VM level.
4147 //
4148 // Shutdown sequence:
4149 //   + Shutdown native memory tracking if it is on
4150 //   + Wait until we are the last non-daemon thread to execute
4151 //     <-- every thing is still working at this moment -->
4152 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4153 //        shutdown hooks, run finalizers if finalization-on-exit
4154 //   + Call before_exit(), prepare for VM exit
4155 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4156 //        currently the only user of this mechanism is File.deleteOnExit())
4157 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4158 //        post thread end and vm death events to JVMTI,
4159 //        stop signal thread
4160 //   + Call JavaThread::exit(), it will:
4161 //      > release JNI handle blocks, remove stack guard pages
4162 //      > remove this thread from Threads list
4163 //     <-- no more Java code from this thread after this point -->
4164 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4165 //     the compiler threads at safepoint
4166 //     <-- do not use anything that could get blocked by Safepoint -->
4167 //   + Disable tracing at JNI/JVM barriers
4168 //   + Set _vm_exited flag for threads that are still running native code
4169 //   + Delete this thread
4170 //   + Call exit_globals()
4171 //      > deletes tty
4172 //      > deletes PerfMemory resources
4173 //   + Return to caller
4174 
4175 bool Threads::destroy_vm() {
4176   JavaThread* thread = JavaThread::current();
4177 
4178 #ifdef ASSERT
4179   _vm_complete = false;
4180 #endif
4181   // Wait until we are the last non-daemon thread to execute
4182   { MutexLocker nu(Threads_lock);
4183     while (Threads::number_of_non_daemon_threads() > 1)
4184       // This wait should make safepoint checks, wait without a timeout,
4185       // and wait as a suspend-equivalent condition.
4186       //
4187       // Note: If the FlatProfiler is running and this thread is waiting
4188       // for another non-daemon thread to finish, then the FlatProfiler
4189       // is waiting for the external suspend request on this thread to
4190       // complete. wait_for_ext_suspend_completion() will eventually
4191       // timeout, but that takes time. Making this wait a suspend-
4192       // equivalent condition solves that timeout problem.
4193       //
4194       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4195                          Mutex::_as_suspend_equivalent_flag);
4196   }
4197 
4198   // Hang forever on exit if we are reporting an error.
4199   if (ShowMessageBoxOnError && is_error_reported()) {
4200     os::infinite_sleep();
4201   }
4202   os::wait_for_keypress_at_exit();
4203 
4204   // run Java level shutdown hooks
4205   thread->invoke_shutdown_hooks();
4206 
4207   before_exit(thread);
4208 
4209   thread->exit(true);
4210 
4211   // Stop VM thread.
4212   {
4213     // 4945125 The vm thread comes to a safepoint during exit.
4214     // GC vm_operations can get caught at the safepoint, and the
4215     // heap is unparseable if they are caught. Grab the Heap_lock
4216     // to prevent this. The GC vm_operations will not be able to
4217     // queue until after the vm thread is dead. After this point,
4218     // we'll never emerge out of the safepoint before the VM exits.
4219 
4220     MutexLocker ml(Heap_lock);
4221 
4222     VMThread::wait_for_vm_thread_exit();
4223     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4224     VMThread::destroy();
4225   }
4226 
4227   // clean up ideal graph printers
4228 #if defined(COMPILER2) && !defined(PRODUCT)
4229   IdealGraphPrinter::clean_up();
4230 #endif
4231 
4232   // Now, all Java threads are gone except daemon threads. Daemon threads
4233   // running Java code or in VM are stopped by the Safepoint. However,
4234   // daemon threads executing native code are still running.  But they
4235   // will be stopped at native=>Java/VM barriers. Note that we can't
4236   // simply kill or suspend them, as it is inherently deadlock-prone.
4237 
4238   VM_Exit::set_vm_exited();
4239 
4240   notify_vm_shutdown();
4241 
4242   delete thread;
4243 
4244 #if INCLUDE_JVMCI
4245   if (JVMCICounterSize > 0) {
4246     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4247   }
4248 #endif
4249 
4250   // exit_globals() will delete tty
4251   exit_globals();
4252 
4253   LogConfiguration::finalize();
4254 
4255   return true;
4256 }
4257 
4258 
4259 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4260   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4261   return is_supported_jni_version(version);
4262 }
4263 
4264 
4265 jboolean Threads::is_supported_jni_version(jint version) {
4266   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4267   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4268   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4269   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4270   if (version == JNI_VERSION_9) return JNI_TRUE;
4271   return JNI_FALSE;
4272 }
4273 
4274 
4275 void Threads::add(JavaThread* p, bool force_daemon) {
4276   // The threads lock must be owned at this point
4277   assert_locked_or_safepoint(Threads_lock);
4278 
4279   // See the comment for this method in thread.hpp for its purpose and
4280   // why it is called here.
4281   p->initialize_queues();
4282   p->set_next(_thread_list);
4283   _thread_list = p;
4284   _number_of_threads++;
4285   oop threadObj = p->threadObj();
4286   bool daemon = true;
4287   // Bootstrapping problem: threadObj can be null for initial
4288   // JavaThread (or for threads attached via JNI)
4289   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4290     _number_of_non_daemon_threads++;
4291     daemon = false;
4292   }
4293 
4294   ThreadService::add_thread(p, daemon);
4295 
4296   // Possible GC point.
4297   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4298 }
4299 
4300 void Threads::remove(JavaThread* p) {
4301 
4302   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4303   ObjectSynchronizer::omFlush(p);
4304 
4305   // Extra scope needed for Thread_lock, so we can check
4306   // that we do not remove thread without safepoint code notice
4307   { MutexLocker ml(Threads_lock);
4308 
4309     assert(includes(p), "p must be present");
4310 
4311     JavaThread* current = _thread_list;
4312     JavaThread* prev    = NULL;
4313 
4314     while (current != p) {
4315       prev    = current;
4316       current = current->next();
4317     }
4318 
4319     if (prev) {
4320       prev->set_next(current->next());
4321     } else {
4322       _thread_list = p->next();
4323     }
4324     _number_of_threads--;
4325     oop threadObj = p->threadObj();
4326     bool daemon = true;
4327     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4328       _number_of_non_daemon_threads--;
4329       daemon = false;
4330 
4331       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4332       // on destroy_vm will wake up.
4333       if (number_of_non_daemon_threads() == 1) {
4334         Threads_lock->notify_all();
4335       }
4336     }
4337     ThreadService::remove_thread(p, daemon);
4338 
4339     // Make sure that safepoint code disregard this thread. This is needed since
4340     // the thread might mess around with locks after this point. This can cause it
4341     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4342     // of this thread since it is removed from the queue.
4343     p->set_terminated_value();
4344   } // unlock Threads_lock
4345 
4346   // Since Events::log uses a lock, we grab it outside the Threads_lock
4347   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4348 }
4349 
4350 // Threads_lock must be held when this is called (or must be called during a safepoint)
4351 bool Threads::includes(JavaThread* p) {
4352   assert(Threads_lock->is_locked(), "sanity check");
4353   ALL_JAVA_THREADS(q) {
4354     if (q == p) {
4355       return true;
4356     }
4357   }
4358   return false;
4359 }
4360 
4361 // Operations on the Threads list for GC.  These are not explicitly locked,
4362 // but the garbage collector must provide a safe context for them to run.
4363 // In particular, these things should never be called when the Threads_lock
4364 // is held by some other thread. (Note: the Safepoint abstraction also
4365 // uses the Threads_lock to guarantee this property. It also makes sure that
4366 // all threads gets blocked when exiting or starting).
4367 
4368 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4369   ALL_JAVA_THREADS(p) {
4370     p->oops_do(f, cf);
4371   }
4372   VMThread::vm_thread()->oops_do(f, cf);
4373 }
4374 
4375 void Threads::change_thread_claim_parity() {
4376   // Set the new claim parity.
4377   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4378          "Not in range.");
4379   _thread_claim_parity++;
4380   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4381   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4382          "Not in range.");
4383 }
4384 
4385 #ifdef ASSERT
4386 void Threads::assert_all_threads_claimed() {
4387   ALL_JAVA_THREADS(p) {
4388     const int thread_parity = p->oops_do_parity();
4389     assert((thread_parity == _thread_claim_parity),
4390            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4391   }
4392 }
4393 #endif // ASSERT
4394 
4395 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf, CodeBlobClosure* nmethods_cl) {
4396   int cp = Threads::thread_claim_parity();
4397   ALL_JAVA_THREADS(p) {
4398     if (p->claim_oops_do(is_par, cp)) {
4399       p->oops_do(f, cf);
4400       if (nmethods_cl != NULL && ! p->is_Code_cache_sweeper_thread()) {
4401         p->nmethods_do(nmethods_cl);
4402       }
4403     }
4404   }
4405   VMThread* vmt = VMThread::vm_thread();
4406   if (vmt->claim_oops_do(is_par, cp)) {
4407     vmt->oops_do(f, cf);
4408   }
4409 }
4410 
4411 #if INCLUDE_ALL_GCS
4412 // Used by ParallelScavenge
4413 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4414   ALL_JAVA_THREADS(p) {
4415     q->enqueue(new ThreadRootsTask(p));
4416   }
4417   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4418 }
4419 
4420 // Used by Parallel Old
4421 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4422   ALL_JAVA_THREADS(p) {
4423     q->enqueue(new ThreadRootsMarkingTask(p));
4424   }
4425   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4426 }
4427 #endif // INCLUDE_ALL_GCS
4428 
4429 void Threads::nmethods_do(CodeBlobClosure* cf) {
4430   ALL_JAVA_THREADS(p) {
4431     // This is used by the code cache sweeper to mark nmethods that are active
4432     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4433     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4434     if(!p->is_Code_cache_sweeper_thread()) {
4435       p->nmethods_do(cf);
4436     }
4437   }
4438 }
4439 
4440 void Threads::metadata_do(void f(Metadata*)) {
4441   ALL_JAVA_THREADS(p) {
4442     p->metadata_do(f);
4443   }
4444 }
4445 
4446 class ThreadHandlesClosure : public ThreadClosure {
4447   void (*_f)(Metadata*);
4448  public:
4449   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4450   virtual void do_thread(Thread* thread) {
4451     thread->metadata_handles_do(_f);
4452   }
4453 };
4454 
4455 void Threads::metadata_handles_do(void f(Metadata*)) {
4456   // Only walk the Handles in Thread.
4457   ThreadHandlesClosure handles_closure(f);
4458   threads_do(&handles_closure);
4459 }
4460 
4461 void Threads::deoptimized_wrt_marked_nmethods() {
4462   ALL_JAVA_THREADS(p) {
4463     p->deoptimized_wrt_marked_nmethods();
4464   }
4465 }
4466 
4467 
4468 // Get count Java threads that are waiting to enter the specified monitor.
4469 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4470                                                          address monitor,
4471                                                          bool doLock) {
4472   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4473          "must grab Threads_lock or be at safepoint");
4474   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4475 
4476   int i = 0;
4477   {
4478     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4479     ALL_JAVA_THREADS(p) {
4480       if (!p->can_call_java()) continue;
4481 
4482       address pending = (address)p->current_pending_monitor();
4483       if (pending == monitor) {             // found a match
4484         if (i < count) result->append(p);   // save the first count matches
4485         i++;
4486       }
4487     }
4488   }
4489   return result;
4490 }
4491 
4492 
4493 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4494                                                       bool doLock) {
4495   assert(doLock ||
4496          Threads_lock->owned_by_self() ||
4497          SafepointSynchronize::is_at_safepoint(),
4498          "must grab Threads_lock or be at safepoint");
4499 
4500   // NULL owner means not locked so we can skip the search
4501   if (owner == NULL) return NULL;
4502 
4503   {
4504     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4505     ALL_JAVA_THREADS(p) {
4506       // first, see if owner is the address of a Java thread
4507       if (owner == (address)p) return p;
4508     }
4509   }
4510   // Cannot assert on lack of success here since this function may be
4511   // used by code that is trying to report useful problem information
4512   // like deadlock detection.
4513   if (UseHeavyMonitors) return NULL;
4514 
4515   // If we didn't find a matching Java thread and we didn't force use of
4516   // heavyweight monitors, then the owner is the stack address of the
4517   // Lock Word in the owning Java thread's stack.
4518   //
4519   JavaThread* the_owner = NULL;
4520   {
4521     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4522     ALL_JAVA_THREADS(q) {
4523       if (q->is_lock_owned(owner)) {
4524         the_owner = q;
4525         break;
4526       }
4527     }
4528   }
4529   // cannot assert on lack of success here; see above comment
4530   return the_owner;
4531 }
4532 
4533 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4534 void Threads::print_on(outputStream* st, bool print_stacks,
4535                        bool internal_format, bool print_concurrent_locks) {
4536   char buf[32];
4537   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4538 
4539   st->print_cr("Full thread dump %s (%s %s):",
4540                Abstract_VM_Version::vm_name(),
4541                Abstract_VM_Version::vm_release(),
4542                Abstract_VM_Version::vm_info_string());
4543   st->cr();
4544 
4545 #if INCLUDE_SERVICES
4546   // Dump concurrent locks
4547   ConcurrentLocksDump concurrent_locks;
4548   if (print_concurrent_locks) {
4549     concurrent_locks.dump_at_safepoint();
4550   }
4551 #endif // INCLUDE_SERVICES
4552 
4553   ALL_JAVA_THREADS(p) {
4554     ResourceMark rm;
4555     p->print_on(st);
4556     if (print_stacks) {
4557       if (internal_format) {
4558         p->trace_stack();
4559       } else {
4560         p->print_stack_on(st);
4561       }
4562     }
4563     st->cr();
4564 #if INCLUDE_SERVICES
4565     if (print_concurrent_locks) {
4566       concurrent_locks.print_locks_on(p, st);
4567     }
4568 #endif // INCLUDE_SERVICES
4569   }
4570 
4571   VMThread::vm_thread()->print_on(st);
4572   st->cr();
4573   Universe::heap()->print_gc_threads_on(st);
4574   WatcherThread* wt = WatcherThread::watcher_thread();
4575   if (wt != NULL) {
4576     wt->print_on(st);
4577     st->cr();
4578   }
4579   st->flush();
4580 }
4581 
4582 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4583                              int buflen, bool* found_current) {
4584   if (this_thread != NULL) {
4585     bool is_current = (current == this_thread);
4586     *found_current = *found_current || is_current;
4587     st->print("%s", is_current ? "=>" : "  ");
4588 
4589     st->print(PTR_FORMAT, p2i(this_thread));
4590     st->print(" ");
4591     this_thread->print_on_error(st, buf, buflen);
4592     st->cr();
4593   }
4594 }
4595 
4596 class PrintOnErrorClosure : public ThreadClosure {
4597   outputStream* _st;
4598   Thread* _current;
4599   char* _buf;
4600   int _buflen;
4601   bool* _found_current;
4602  public:
4603   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4604                       int buflen, bool* found_current) :
4605    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4606 
4607   virtual void do_thread(Thread* thread) {
4608     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4609   }
4610 };
4611 
4612 // Threads::print_on_error() is called by fatal error handler. It's possible
4613 // that VM is not at safepoint and/or current thread is inside signal handler.
4614 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4615 // memory (even in resource area), it might deadlock the error handler.
4616 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4617                              int buflen) {
4618   bool found_current = false;
4619   st->print_cr("Java Threads: ( => current thread )");
4620   ALL_JAVA_THREADS(thread) {
4621     print_on_error(thread, st, current, buf, buflen, &found_current);
4622   }
4623   st->cr();
4624 
4625   st->print_cr("Other Threads:");
4626   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4627   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4628 
4629   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4630   Universe::heap()->gc_threads_do(&print_closure);
4631 
4632   if (!found_current) {
4633     st->cr();
4634     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4635     current->print_on_error(st, buf, buflen);
4636     st->cr();
4637   }
4638   st->cr();
4639   st->print_cr("Threads with active compile tasks:");
4640   print_threads_compiling(st, buf, buflen);
4641 }
4642 
4643 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4644   ALL_JAVA_THREADS(thread) {
4645     if (thread->is_Compiler_thread()) {
4646       CompilerThread* ct = (CompilerThread*) thread;
4647       if (ct->task() != NULL) {
4648         thread->print_name_on_error(st, buf, buflen);
4649         ct->task()->print(st, NULL, true, true);
4650       }
4651     }
4652   }
4653 }
4654 
4655 
4656 // Internal SpinLock and Mutex
4657 // Based on ParkEvent
4658 
4659 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4660 //
4661 // We employ SpinLocks _only for low-contention, fixed-length
4662 // short-duration critical sections where we're concerned
4663 // about native mutex_t or HotSpot Mutex:: latency.
4664 // The mux construct provides a spin-then-block mutual exclusion
4665 // mechanism.
4666 //
4667 // Testing has shown that contention on the ListLock guarding gFreeList
4668 // is common.  If we implement ListLock as a simple SpinLock it's common
4669 // for the JVM to devolve to yielding with little progress.  This is true
4670 // despite the fact that the critical sections protected by ListLock are
4671 // extremely short.
4672 //
4673 // TODO-FIXME: ListLock should be of type SpinLock.
4674 // We should make this a 1st-class type, integrated into the lock
4675 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4676 // should have sufficient padding to avoid false-sharing and excessive
4677 // cache-coherency traffic.
4678 
4679 
4680 typedef volatile int SpinLockT;
4681 
4682 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4683   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4684     return;   // normal fast-path return
4685   }
4686 
4687   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4688   TEVENT(SpinAcquire - ctx);
4689   int ctr = 0;
4690   int Yields = 0;
4691   for (;;) {
4692     while (*adr != 0) {
4693       ++ctr;
4694       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4695         if (Yields > 5) {
4696           os::naked_short_sleep(1);
4697         } else {
4698           os::naked_yield();
4699           ++Yields;
4700         }
4701       } else {
4702         SpinPause();
4703       }
4704     }
4705     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4706   }
4707 }
4708 
4709 void Thread::SpinRelease(volatile int * adr) {
4710   assert(*adr != 0, "invariant");
4711   OrderAccess::fence();      // guarantee at least release consistency.
4712   // Roach-motel semantics.
4713   // It's safe if subsequent LDs and STs float "up" into the critical section,
4714   // but prior LDs and STs within the critical section can't be allowed
4715   // to reorder or float past the ST that releases the lock.
4716   // Loads and stores in the critical section - which appear in program
4717   // order before the store that releases the lock - must also appear
4718   // before the store that releases the lock in memory visibility order.
4719   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4720   // the ST of 0 into the lock-word which releases the lock, so fence
4721   // more than covers this on all platforms.
4722   *adr = 0;
4723 }
4724 
4725 // muxAcquire and muxRelease:
4726 //
4727 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4728 //    The LSB of the word is set IFF the lock is held.
4729 //    The remainder of the word points to the head of a singly-linked list
4730 //    of threads blocked on the lock.
4731 //
4732 // *  The current implementation of muxAcquire-muxRelease uses its own
4733 //    dedicated Thread._MuxEvent instance.  If we're interested in
4734 //    minimizing the peak number of extant ParkEvent instances then
4735 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4736 //    as certain invariants were satisfied.  Specifically, care would need
4737 //    to be taken with regards to consuming unpark() "permits".
4738 //    A safe rule of thumb is that a thread would never call muxAcquire()
4739 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4740 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4741 //    consume an unpark() permit intended for monitorenter, for instance.
4742 //    One way around this would be to widen the restricted-range semaphore
4743 //    implemented in park().  Another alternative would be to provide
4744 //    multiple instances of the PlatformEvent() for each thread.  One
4745 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4746 //
4747 // *  Usage:
4748 //    -- Only as leaf locks
4749 //    -- for short-term locking only as muxAcquire does not perform
4750 //       thread state transitions.
4751 //
4752 // Alternatives:
4753 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4754 //    but with parking or spin-then-park instead of pure spinning.
4755 // *  Use Taura-Oyama-Yonenzawa locks.
4756 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4757 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4758 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4759 //    acquiring threads use timers (ParkTimed) to detect and recover from
4760 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4761 //    boundaries by using placement-new.
4762 // *  Augment MCS with advisory back-link fields maintained with CAS().
4763 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4764 //    The validity of the backlinks must be ratified before we trust the value.
4765 //    If the backlinks are invalid the exiting thread must back-track through the
4766 //    the forward links, which are always trustworthy.
4767 // *  Add a successor indication.  The LockWord is currently encoded as
4768 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4769 //    to provide the usual futile-wakeup optimization.
4770 //    See RTStt for details.
4771 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4772 //
4773 
4774 
4775 typedef volatile intptr_t MutexT;      // Mux Lock-word
4776 enum MuxBits { LOCKBIT = 1 };
4777 
4778 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4779   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4780   if (w == 0) return;
4781   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4782     return;
4783   }
4784 
4785   TEVENT(muxAcquire - Contention);
4786   ParkEvent * const Self = Thread::current()->_MuxEvent;
4787   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4788   for (;;) {
4789     int its = (os::is_MP() ? 100 : 0) + 1;
4790 
4791     // Optional spin phase: spin-then-park strategy
4792     while (--its >= 0) {
4793       w = *Lock;
4794       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4795         return;
4796       }
4797     }
4798 
4799     Self->reset();
4800     Self->OnList = intptr_t(Lock);
4801     // The following fence() isn't _strictly necessary as the subsequent
4802     // CAS() both serializes execution and ratifies the fetched *Lock value.
4803     OrderAccess::fence();
4804     for (;;) {
4805       w = *Lock;
4806       if ((w & LOCKBIT) == 0) {
4807         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4808           Self->OnList = 0;   // hygiene - allows stronger asserts
4809           return;
4810         }
4811         continue;      // Interference -- *Lock changed -- Just retry
4812       }
4813       assert(w & LOCKBIT, "invariant");
4814       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4815       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4816     }
4817 
4818     while (Self->OnList != 0) {
4819       Self->park();
4820     }
4821   }
4822 }
4823 
4824 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4825   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4826   if (w == 0) return;
4827   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4828     return;
4829   }
4830 
4831   TEVENT(muxAcquire - Contention);
4832   ParkEvent * ReleaseAfter = NULL;
4833   if (ev == NULL) {
4834     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4835   }
4836   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4837   for (;;) {
4838     guarantee(ev->OnList == 0, "invariant");
4839     int its = (os::is_MP() ? 100 : 0) + 1;
4840 
4841     // Optional spin phase: spin-then-park strategy
4842     while (--its >= 0) {
4843       w = *Lock;
4844       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4845         if (ReleaseAfter != NULL) {
4846           ParkEvent::Release(ReleaseAfter);
4847         }
4848         return;
4849       }
4850     }
4851 
4852     ev->reset();
4853     ev->OnList = intptr_t(Lock);
4854     // The following fence() isn't _strictly necessary as the subsequent
4855     // CAS() both serializes execution and ratifies the fetched *Lock value.
4856     OrderAccess::fence();
4857     for (;;) {
4858       w = *Lock;
4859       if ((w & LOCKBIT) == 0) {
4860         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4861           ev->OnList = 0;
4862           // We call ::Release while holding the outer lock, thus
4863           // artificially lengthening the critical section.
4864           // Consider deferring the ::Release() until the subsequent unlock(),
4865           // after we've dropped the outer lock.
4866           if (ReleaseAfter != NULL) {
4867             ParkEvent::Release(ReleaseAfter);
4868           }
4869           return;
4870         }
4871         continue;      // Interference -- *Lock changed -- Just retry
4872       }
4873       assert(w & LOCKBIT, "invariant");
4874       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4875       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4876     }
4877 
4878     while (ev->OnList != 0) {
4879       ev->park();
4880     }
4881   }
4882 }
4883 
4884 // Release() must extract a successor from the list and then wake that thread.
4885 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4886 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4887 // Release() would :
4888 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4889 // (B) Extract a successor from the private list "in-hand"
4890 // (C) attempt to CAS() the residual back into *Lock over null.
4891 //     If there were any newly arrived threads and the CAS() would fail.
4892 //     In that case Release() would detach the RATs, re-merge the list in-hand
4893 //     with the RATs and repeat as needed.  Alternately, Release() might
4894 //     detach and extract a successor, but then pass the residual list to the wakee.
4895 //     The wakee would be responsible for reattaching and remerging before it
4896 //     competed for the lock.
4897 //
4898 // Both "pop" and DMR are immune from ABA corruption -- there can be
4899 // multiple concurrent pushers, but only one popper or detacher.
4900 // This implementation pops from the head of the list.  This is unfair,
4901 // but tends to provide excellent throughput as hot threads remain hot.
4902 // (We wake recently run threads first).
4903 //
4904 // All paths through muxRelease() will execute a CAS.
4905 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4906 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4907 // executed within the critical section are complete and globally visible before the
4908 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4909 void Thread::muxRelease(volatile intptr_t * Lock)  {
4910   for (;;) {
4911     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4912     assert(w & LOCKBIT, "invariant");
4913     if (w == LOCKBIT) return;
4914     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4915     assert(List != NULL, "invariant");
4916     assert(List->OnList == intptr_t(Lock), "invariant");
4917     ParkEvent * const nxt = List->ListNext;
4918     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4919 
4920     // The following CAS() releases the lock and pops the head element.
4921     // The CAS() also ratifies the previously fetched lock-word value.
4922     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4923       continue;
4924     }
4925     List->OnList = 0;
4926     OrderAccess::fence();
4927     List->unpark();
4928     return;
4929   }
4930 }
4931 
4932 
4933 void Threads::verify() {
4934   ALL_JAVA_THREADS(p) {
4935     p->verify();
4936   }
4937   VMThread* thread = VMThread::vm_thread();
4938   if (thread != NULL) thread->verify();
4939 }