1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/privilegedStack.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/commandLineFlagConstraintList.hpp"
  61 #include "runtime/commandLineFlagWriteableList.hpp"
  62 #include "runtime/commandLineFlagRangeList.hpp"
  63 #include "runtime/deoptimization.hpp"
  64 #include "runtime/fprofiler.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/globals.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniPeriodicChecker.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/memprofiler.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/objectMonitor.hpp"
  76 #include "runtime/orderAccess.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/statSampler.hpp"
  81 #include "runtime/stubRoutines.hpp"
  82 #include "runtime/sweeper.hpp"
  83 #include "runtime/task.hpp"
  84 #include "runtime/thread.inline.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/vframe.hpp"
  87 #include "runtime/vframeArray.hpp"
  88 #include "runtime/vframe_hp.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "runtime/vm_operations.hpp"
  91 #include "runtime/vm_version.hpp"
  92 #include "services/attachListener.hpp"
  93 #include "services/management.hpp"
  94 #include "services/memTracker.hpp"
  95 #include "services/threadService.hpp"
  96 #include "trace/traceMacros.hpp"
  97 #include "trace/tracing.hpp"
  98 #include "utilities/defaultStream.hpp"
  99 #include "utilities/dtrace.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/macros.hpp"
 102 #include "utilities/preserveException.hpp"
 103 #if INCLUDE_ALL_GCS
 104 #include "gc/shenandoah/shenandoahConcurrentThread.hpp"
 105 #include "gc/cms/concurrentMarkSweepThread.hpp"
 106 #include "gc/g1/concurrentMarkThread.inline.hpp"
 107 #include "gc/parallel/pcTasks.hpp"
 108 #endif // INCLUDE_ALL_GCS
 109 #if INCLUDE_JVMCI
 110 #include "jvmci/jvmciCompiler.hpp"
 111 #include "jvmci/jvmciRuntime.hpp"
 112 #endif
 113 #ifdef COMPILER1
 114 #include "c1/c1_Compiler.hpp"
 115 #endif
 116 #ifdef COMPILER2
 117 #include "opto/c2compiler.hpp"
 118 #include "opto/idealGraphPrinter.hpp"
 119 #endif
 120 #if INCLUDE_RTM_OPT
 121 #include "runtime/rtmLocking.hpp"
 122 #endif
 123 
 124 // Initialization after module runtime initialization
 125 void universe_post_module_init();  // must happen after call_initPhase2
 126 
 127 #ifdef DTRACE_ENABLED
 128 
 129 // Only bother with this argument setup if dtrace is available
 130 
 131   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 132   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 133 
 134   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 135     {                                                                      \
 136       ResourceMark rm(this);                                               \
 137       int len = 0;                                                         \
 138       const char* name = (javathread)->get_thread_name();                  \
 139       len = strlen(name);                                                  \
 140       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 141         (char *) name, len,                                                \
 142         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 143         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 144         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 145     }
 146 
 147 #else //  ndef DTRACE_ENABLED
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)
 150 
 151 #endif // ndef DTRACE_ENABLED
 152 
 153 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 154 // Current thread is maintained as a thread-local variable
 155 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 156 #endif
 157 // Class hierarchy
 158 // - Thread
 159 //   - VMThread
 160 //   - WatcherThread
 161 //   - ConcurrentMarkSweepThread
 162 //   - JavaThread
 163 //     - CompilerThread
 164 
 165 // ======= Thread ========
 166 // Support for forcing alignment of thread objects for biased locking
 167 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 168   if (UseBiasedLocking) {
 169     const int alignment = markOopDesc::biased_lock_alignment;
 170     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 171     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 172                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 173                                                          AllocFailStrategy::RETURN_NULL);
 174     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 175     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 176            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 177            "JavaThread alignment code overflowed allocated storage");
 178     if (aligned_addr != real_malloc_addr) {
 179       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 180                               p2i(real_malloc_addr),
 181                               p2i(aligned_addr));
 182     }
 183     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 184     return aligned_addr;
 185   } else {
 186     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 187                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 188   }
 189 }
 190 
 191 void Thread::operator delete(void* p) {
 192   if (UseBiasedLocking) {
 193     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 194     FreeHeap(real_malloc_addr);
 195   } else {
 196     FreeHeap(p);
 197   }
 198 }
 199 
 200 
 201 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 202 // JavaThread
 203 
 204 
 205 Thread::Thread() {
 206   // stack and get_thread
 207   set_stack_base(NULL);
 208   set_stack_size(0);
 209   set_self_raw_id(0);
 210   set_lgrp_id(-1);
 211   DEBUG_ONLY(clear_suspendible_thread();)
 212 
 213   // allocated data structures
 214   set_osthread(NULL);
 215   set_resource_area(new (mtThread)ResourceArea());
 216   DEBUG_ONLY(_current_resource_mark = NULL;)
 217   set_handle_area(new (mtThread) HandleArea(NULL));
 218   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 219   set_active_handles(NULL);
 220   set_free_handle_block(NULL);
 221   set_last_handle_mark(NULL);
 222 
 223   // This initial value ==> never claimed.
 224   _oops_do_parity = 0;
 225 
 226   // the handle mark links itself to last_handle_mark
 227   new HandleMark(this);
 228 
 229   // plain initialization
 230   debug_only(_owned_locks = NULL;)
 231   debug_only(_allow_allocation_count = 0;)
 232   NOT_PRODUCT(_allow_safepoint_count = 0;)
 233   NOT_PRODUCT(_skip_gcalot = false;)
 234   _jvmti_env_iteration_count = 0;
 235   set_allocated_bytes(0);
 236   _vm_operation_started_count = 0;
 237   _vm_operation_completed_count = 0;
 238   _current_pending_monitor = NULL;
 239   _current_pending_monitor_is_from_java = true;
 240   _current_waiting_monitor = NULL;
 241   _num_nested_signal = 0;
 242   omFreeList = NULL;
 243   omFreeCount = 0;
 244   omFreeProvision = 32;
 245   omInUseList = NULL;
 246   omInUseCount = 0;
 247 
 248 #ifdef ASSERT
 249   _visited_for_critical_count = false;
 250 #endif
 251 
 252   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 253                          Monitor::_safepoint_check_sometimes);
 254   _suspend_flags = 0;
 255 
 256   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 257   _hashStateX = os::random();
 258   _hashStateY = 842502087;
 259   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 260   _hashStateW = 273326509;
 261 
 262   _OnTrap   = 0;
 263   _schedctl = NULL;
 264   _Stalled  = 0;
 265   _TypeTag  = 0x2BAD;
 266 
 267   // Many of the following fields are effectively final - immutable
 268   // Note that nascent threads can't use the Native Monitor-Mutex
 269   // construct until the _MutexEvent is initialized ...
 270   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 271   // we might instead use a stack of ParkEvents that we could provision on-demand.
 272   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 273   // and ::Release()
 274   _ParkEvent   = ParkEvent::Allocate(this);
 275   _SleepEvent  = ParkEvent::Allocate(this);
 276   _MutexEvent  = ParkEvent::Allocate(this);
 277   _MuxEvent    = ParkEvent::Allocate(this);
 278 
 279 #ifdef CHECK_UNHANDLED_OOPS
 280   if (CheckUnhandledOops) {
 281     _unhandled_oops = new UnhandledOops(this);
 282   }
 283 #endif // CHECK_UNHANDLED_OOPS
 284 #ifdef ASSERT
 285   if (UseBiasedLocking) {
 286     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 287     assert(this == _real_malloc_address ||
 288            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 289            "bug in forced alignment of thread objects");
 290   }
 291 #endif // ASSERT
 292 }
 293 
 294 void Thread::initialize_thread_current() {
 295 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 296   assert(_thr_current == NULL, "Thread::current already initialized");
 297   _thr_current = this;
 298 #endif
 299   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 300   ThreadLocalStorage::set_thread(this);
 301   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 302 }
 303 
 304 void Thread::clear_thread_current() {
 305   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 306 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 307   _thr_current = NULL;
 308 #endif
 309   ThreadLocalStorage::set_thread(NULL);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 316   // in initialize_thread(). Without the adjustment, stack size is
 317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 318   // So far, only Solaris has real implementation of initialize_thread().
 319   //
 320   // set up any platform-specific state.
 321   os::initialize_thread(this);
 322 
 323   // Set stack limits after thread is initialized.
 324   if (is_Java_thread()) {
 325     ((JavaThread*) this)->set_stack_overflow_limit();
 326     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 327   }
 328 #if INCLUDE_NMT
 329   // record thread's native stack, stack grows downward
 330   MemTracker::record_thread_stack(stack_end(), stack_size());
 331 #endif // INCLUDE_NMT
 332   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 333     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 334     os::current_thread_id(), p2i(stack_base() - stack_size()),
 335     p2i(stack_base()), stack_size()/1024);
 336 }
 337 
 338 
 339 Thread::~Thread() {
 340   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 341   ObjectSynchronizer::omFlush(this);
 342 
 343   EVENT_THREAD_DESTRUCT(this);
 344 
 345   // stack_base can be NULL if the thread is never started or exited before
 346   // record_stack_base_and_size called. Although, we would like to ensure
 347   // that all started threads do call record_stack_base_and_size(), there is
 348   // not proper way to enforce that.
 349 #if INCLUDE_NMT
 350   if (_stack_base != NULL) {
 351     MemTracker::release_thread_stack(stack_end(), stack_size());
 352 #ifdef ASSERT
 353     set_stack_base(NULL);
 354 #endif
 355   }
 356 #endif // INCLUDE_NMT
 357 
 358   // deallocate data structures
 359   delete resource_area();
 360   // since the handle marks are using the handle area, we have to deallocated the root
 361   // handle mark before deallocating the thread's handle area,
 362   assert(last_handle_mark() != NULL, "check we have an element");
 363   delete last_handle_mark();
 364   assert(last_handle_mark() == NULL, "check we have reached the end");
 365 
 366   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 367   // We NULL out the fields for good hygiene.
 368   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 369   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 370   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 371   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 372 
 373   delete handle_area();
 374   delete metadata_handles();
 375 
 376   // SR_handler uses this as a termination indicator -
 377   // needs to happen before os::free_thread()
 378   delete _SR_lock;
 379   _SR_lock = NULL;
 380 
 381   // osthread() can be NULL, if creation of thread failed.
 382   if (osthread() != NULL) os::free_thread(osthread());
 383 
 384   // clear Thread::current if thread is deleting itself.
 385   // Needed to ensure JNI correctly detects non-attached threads.
 386   if (this == Thread::current()) {
 387     clear_thread_current();
 388   }
 389 
 390   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 391 }
 392 
 393 // NOTE: dummy function for assertion purpose.
 394 void Thread::run() {
 395   ShouldNotReachHere();
 396 }
 397 
 398 #ifdef ASSERT
 399 // Private method to check for dangling thread pointer
 400 void check_for_dangling_thread_pointer(Thread *thread) {
 401   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 402          "possibility of dangling Thread pointer");
 403 }
 404 #endif
 405 
 406 ThreadPriority Thread::get_priority(const Thread* const thread) {
 407   ThreadPriority priority;
 408   // Can return an error!
 409   (void)os::get_priority(thread, priority);
 410   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 411   return priority;
 412 }
 413 
 414 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 415   debug_only(check_for_dangling_thread_pointer(thread);)
 416   // Can return an error!
 417   (void)os::set_priority(thread, priority);
 418 }
 419 
 420 
 421 void Thread::start(Thread* thread) {
 422   // Start is different from resume in that its safety is guaranteed by context or
 423   // being called from a Java method synchronized on the Thread object.
 424   if (!DisableStartThread) {
 425     if (thread->is_Java_thread()) {
 426       // Initialize the thread state to RUNNABLE before starting this thread.
 427       // Can not set it after the thread started because we do not know the
 428       // exact thread state at that time. It could be in MONITOR_WAIT or
 429       // in SLEEPING or some other state.
 430       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 431                                           java_lang_Thread::RUNNABLE);
 432     }
 433     os::start_thread(thread);
 434   }
 435 }
 436 
 437 // Enqueue a VM_Operation to do the job for us - sometime later
 438 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 439   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 440   VMThread::execute(vm_stop);
 441 }
 442 
 443 
 444 // Check if an external suspend request has completed (or has been
 445 // cancelled). Returns true if the thread is externally suspended and
 446 // false otherwise.
 447 //
 448 // The bits parameter returns information about the code path through
 449 // the routine. Useful for debugging:
 450 //
 451 // set in is_ext_suspend_completed():
 452 // 0x00000001 - routine was entered
 453 // 0x00000010 - routine return false at end
 454 // 0x00000100 - thread exited (return false)
 455 // 0x00000200 - suspend request cancelled (return false)
 456 // 0x00000400 - thread suspended (return true)
 457 // 0x00001000 - thread is in a suspend equivalent state (return true)
 458 // 0x00002000 - thread is native and walkable (return true)
 459 // 0x00004000 - thread is native_trans and walkable (needed retry)
 460 //
 461 // set in wait_for_ext_suspend_completion():
 462 // 0x00010000 - routine was entered
 463 // 0x00020000 - suspend request cancelled before loop (return false)
 464 // 0x00040000 - thread suspended before loop (return true)
 465 // 0x00080000 - suspend request cancelled in loop (return false)
 466 // 0x00100000 - thread suspended in loop (return true)
 467 // 0x00200000 - suspend not completed during retry loop (return false)
 468 
 469 // Helper class for tracing suspend wait debug bits.
 470 //
 471 // 0x00000100 indicates that the target thread exited before it could
 472 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 473 // 0x00080000 each indicate a cancelled suspend request so they don't
 474 // count as wait failures either.
 475 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 476 
 477 class TraceSuspendDebugBits : public StackObj {
 478  private:
 479   JavaThread * jt;
 480   bool         is_wait;
 481   bool         called_by_wait;  // meaningful when !is_wait
 482   uint32_t *   bits;
 483 
 484  public:
 485   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 486                         uint32_t *_bits) {
 487     jt             = _jt;
 488     is_wait        = _is_wait;
 489     called_by_wait = _called_by_wait;
 490     bits           = _bits;
 491   }
 492 
 493   ~TraceSuspendDebugBits() {
 494     if (!is_wait) {
 495 #if 1
 496       // By default, don't trace bits for is_ext_suspend_completed() calls.
 497       // That trace is very chatty.
 498       return;
 499 #else
 500       if (!called_by_wait) {
 501         // If tracing for is_ext_suspend_completed() is enabled, then only
 502         // trace calls to it from wait_for_ext_suspend_completion()
 503         return;
 504       }
 505 #endif
 506     }
 507 
 508     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 509       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 510         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 511         ResourceMark rm;
 512 
 513         tty->print_cr(
 514                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 515                       jt->get_thread_name(), *bits);
 516 
 517         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 518       }
 519     }
 520   }
 521 };
 522 #undef DEBUG_FALSE_BITS
 523 
 524 
 525 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 526                                           uint32_t *bits) {
 527   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 528 
 529   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 530   bool do_trans_retry;           // flag to force the retry
 531 
 532   *bits |= 0x00000001;
 533 
 534   do {
 535     do_trans_retry = false;
 536 
 537     if (is_exiting()) {
 538       // Thread is in the process of exiting. This is always checked
 539       // first to reduce the risk of dereferencing a freed JavaThread.
 540       *bits |= 0x00000100;
 541       return false;
 542     }
 543 
 544     if (!is_external_suspend()) {
 545       // Suspend request is cancelled. This is always checked before
 546       // is_ext_suspended() to reduce the risk of a rogue resume
 547       // confusing the thread that made the suspend request.
 548       *bits |= 0x00000200;
 549       return false;
 550     }
 551 
 552     if (is_ext_suspended()) {
 553       // thread is suspended
 554       *bits |= 0x00000400;
 555       return true;
 556     }
 557 
 558     // Now that we no longer do hard suspends of threads running
 559     // native code, the target thread can be changing thread state
 560     // while we are in this routine:
 561     //
 562     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 563     //
 564     // We save a copy of the thread state as observed at this moment
 565     // and make our decision about suspend completeness based on the
 566     // copy. This closes the race where the thread state is seen as
 567     // _thread_in_native_trans in the if-thread_blocked check, but is
 568     // seen as _thread_blocked in if-thread_in_native_trans check.
 569     JavaThreadState save_state = thread_state();
 570 
 571     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 572       // If the thread's state is _thread_blocked and this blocking
 573       // condition is known to be equivalent to a suspend, then we can
 574       // consider the thread to be externally suspended. This means that
 575       // the code that sets _thread_blocked has been modified to do
 576       // self-suspension if the blocking condition releases. We also
 577       // used to check for CONDVAR_WAIT here, but that is now covered by
 578       // the _thread_blocked with self-suspension check.
 579       //
 580       // Return true since we wouldn't be here unless there was still an
 581       // external suspend request.
 582       *bits |= 0x00001000;
 583       return true;
 584     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 585       // Threads running native code will self-suspend on native==>VM/Java
 586       // transitions. If its stack is walkable (should always be the case
 587       // unless this function is called before the actual java_suspend()
 588       // call), then the wait is done.
 589       *bits |= 0x00002000;
 590       return true;
 591     } else if (!called_by_wait && !did_trans_retry &&
 592                save_state == _thread_in_native_trans &&
 593                frame_anchor()->walkable()) {
 594       // The thread is transitioning from thread_in_native to another
 595       // thread state. check_safepoint_and_suspend_for_native_trans()
 596       // will force the thread to self-suspend. If it hasn't gotten
 597       // there yet we may have caught the thread in-between the native
 598       // code check above and the self-suspend. Lucky us. If we were
 599       // called by wait_for_ext_suspend_completion(), then it
 600       // will be doing the retries so we don't have to.
 601       //
 602       // Since we use the saved thread state in the if-statement above,
 603       // there is a chance that the thread has already transitioned to
 604       // _thread_blocked by the time we get here. In that case, we will
 605       // make a single unnecessary pass through the logic below. This
 606       // doesn't hurt anything since we still do the trans retry.
 607 
 608       *bits |= 0x00004000;
 609 
 610       // Once the thread leaves thread_in_native_trans for another
 611       // thread state, we break out of this retry loop. We shouldn't
 612       // need this flag to prevent us from getting back here, but
 613       // sometimes paranoia is good.
 614       did_trans_retry = true;
 615 
 616       // We wait for the thread to transition to a more usable state.
 617       for (int i = 1; i <= SuspendRetryCount; i++) {
 618         // We used to do an "os::yield_all(i)" call here with the intention
 619         // that yielding would increase on each retry. However, the parameter
 620         // is ignored on Linux which means the yield didn't scale up. Waiting
 621         // on the SR_lock below provides a much more predictable scale up for
 622         // the delay. It also provides a simple/direct point to check for any
 623         // safepoint requests from the VMThread
 624 
 625         // temporarily drops SR_lock while doing wait with safepoint check
 626         // (if we're a JavaThread - the WatcherThread can also call this)
 627         // and increase delay with each retry
 628         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 629 
 630         // check the actual thread state instead of what we saved above
 631         if (thread_state() != _thread_in_native_trans) {
 632           // the thread has transitioned to another thread state so
 633           // try all the checks (except this one) one more time.
 634           do_trans_retry = true;
 635           break;
 636         }
 637       } // end retry loop
 638 
 639 
 640     }
 641   } while (do_trans_retry);
 642 
 643   *bits |= 0x00000010;
 644   return false;
 645 }
 646 
 647 // Wait for an external suspend request to complete (or be cancelled).
 648 // Returns true if the thread is externally suspended and false otherwise.
 649 //
 650 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 651                                                  uint32_t *bits) {
 652   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 653                              false /* !called_by_wait */, bits);
 654 
 655   // local flag copies to minimize SR_lock hold time
 656   bool is_suspended;
 657   bool pending;
 658   uint32_t reset_bits;
 659 
 660   // set a marker so is_ext_suspend_completed() knows we are the caller
 661   *bits |= 0x00010000;
 662 
 663   // We use reset_bits to reinitialize the bits value at the top of
 664   // each retry loop. This allows the caller to make use of any
 665   // unused bits for their own marking purposes.
 666   reset_bits = *bits;
 667 
 668   {
 669     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 670     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 671                                             delay, bits);
 672     pending = is_external_suspend();
 673   }
 674   // must release SR_lock to allow suspension to complete
 675 
 676   if (!pending) {
 677     // A cancelled suspend request is the only false return from
 678     // is_ext_suspend_completed() that keeps us from entering the
 679     // retry loop.
 680     *bits |= 0x00020000;
 681     return false;
 682   }
 683 
 684   if (is_suspended) {
 685     *bits |= 0x00040000;
 686     return true;
 687   }
 688 
 689   for (int i = 1; i <= retries; i++) {
 690     *bits = reset_bits;  // reinit to only track last retry
 691 
 692     // We used to do an "os::yield_all(i)" call here with the intention
 693     // that yielding would increase on each retry. However, the parameter
 694     // is ignored on Linux which means the yield didn't scale up. Waiting
 695     // on the SR_lock below provides a much more predictable scale up for
 696     // the delay. It also provides a simple/direct point to check for any
 697     // safepoint requests from the VMThread
 698 
 699     {
 700       MutexLocker ml(SR_lock());
 701       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 702       // can also call this)  and increase delay with each retry
 703       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 704 
 705       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 706                                               delay, bits);
 707 
 708       // It is possible for the external suspend request to be cancelled
 709       // (by a resume) before the actual suspend operation is completed.
 710       // Refresh our local copy to see if we still need to wait.
 711       pending = is_external_suspend();
 712     }
 713 
 714     if (!pending) {
 715       // A cancelled suspend request is the only false return from
 716       // is_ext_suspend_completed() that keeps us from staying in the
 717       // retry loop.
 718       *bits |= 0x00080000;
 719       return false;
 720     }
 721 
 722     if (is_suspended) {
 723       *bits |= 0x00100000;
 724       return true;
 725     }
 726   } // end retry loop
 727 
 728   // thread did not suspend after all our retries
 729   *bits |= 0x00200000;
 730   return false;
 731 }
 732 
 733 #ifndef PRODUCT
 734 void JavaThread::record_jump(address target, address instr, const char* file,
 735                              int line) {
 736 
 737   // This should not need to be atomic as the only way for simultaneous
 738   // updates is via interrupts. Even then this should be rare or non-existent
 739   // and we don't care that much anyway.
 740 
 741   int index = _jmp_ring_index;
 742   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 743   _jmp_ring[index]._target = (intptr_t) target;
 744   _jmp_ring[index]._instruction = (intptr_t) instr;
 745   _jmp_ring[index]._file = file;
 746   _jmp_ring[index]._line = line;
 747 }
 748 #endif // PRODUCT
 749 
 750 // Called by flat profiler
 751 // Callers have already called wait_for_ext_suspend_completion
 752 // The assertion for that is currently too complex to put here:
 753 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 754   bool gotframe = false;
 755   // self suspension saves needed state.
 756   if (has_last_Java_frame() && _anchor.walkable()) {
 757     *_fr = pd_last_frame();
 758     gotframe = true;
 759   }
 760   return gotframe;
 761 }
 762 
 763 void Thread::interrupt(Thread* thread) {
 764   debug_only(check_for_dangling_thread_pointer(thread);)
 765   os::interrupt(thread);
 766 }
 767 
 768 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 769   debug_only(check_for_dangling_thread_pointer(thread);)
 770   // Note:  If clear_interrupted==false, this simply fetches and
 771   // returns the value of the field osthread()->interrupted().
 772   return os::is_interrupted(thread, clear_interrupted);
 773 }
 774 
 775 
 776 // GC Support
 777 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 778   jint thread_parity = _oops_do_parity;
 779   if (thread_parity != strong_roots_parity) {
 780     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 781     if (res == thread_parity) {
 782       return true;
 783     } else {
 784       guarantee(res == strong_roots_parity, "Or else what?");
 785       return false;
 786     }
 787   }
 788   return false;
 789 }
 790 
 791 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 792   active_handles()->oops_do(f);
 793   // Do oop for ThreadShadow
 794   f->do_oop((oop*)&_pending_exception);
 795   handle_area()->oops_do(f);
 796 }
 797 
 798 void Thread::metadata_handles_do(void f(Metadata*)) {
 799   // Only walk the Handles in Thread.
 800   if (metadata_handles() != NULL) {
 801     for (int i = 0; i< metadata_handles()->length(); i++) {
 802       f(metadata_handles()->at(i));
 803     }
 804   }
 805 }
 806 
 807 void Thread::print_on(outputStream* st) const {
 808   // get_priority assumes osthread initialized
 809   if (osthread() != NULL) {
 810     int os_prio;
 811     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 812       st->print("os_prio=%d ", os_prio);
 813     }
 814     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 815     ext().print_on(st);
 816     osthread()->print_on(st);
 817   }
 818   debug_only(if (WizardMode) print_owned_locks_on(st);)
 819 }
 820 
 821 // Thread::print_on_error() is called by fatal error handler. Don't use
 822 // any lock or allocate memory.
 823 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 824   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 825 
 826   if (is_VM_thread())                 { st->print("VMThread"); }
 827   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 828   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 829   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 830   else                                { st->print("Thread"); }
 831 
 832   if (is_Named_thread()) {
 833     st->print(" \"%s\"", name());
 834   }
 835 
 836   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 837             p2i(stack_end()), p2i(stack_base()));
 838 
 839   if (osthread()) {
 840     st->print(" [id=%d]", osthread()->thread_id());
 841   }
 842 }
 843 
 844 #ifdef ASSERT
 845 void Thread::print_owned_locks_on(outputStream* st) const {
 846   Monitor *cur = _owned_locks;
 847   if (cur == NULL) {
 848     st->print(" (no locks) ");
 849   } else {
 850     st->print_cr(" Locks owned:");
 851     while (cur) {
 852       cur->print_on(st);
 853       cur = cur->next();
 854     }
 855   }
 856 }
 857 
 858 static int ref_use_count  = 0;
 859 
 860 bool Thread::owns_locks_but_compiled_lock() const {
 861   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 862     if (cur != Compile_lock) return true;
 863   }
 864   return false;
 865 }
 866 
 867 
 868 #endif
 869 
 870 #ifndef PRODUCT
 871 
 872 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 873 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 874 // no threads which allow_vm_block's are held
 875 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 876   // Check if current thread is allowed to block at a safepoint
 877   if (!(_allow_safepoint_count == 0)) {
 878     fatal("Possible safepoint reached by thread that does not allow it");
 879   }
 880   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 881     fatal("LEAF method calling lock?");
 882   }
 883 
 884 #ifdef ASSERT
 885   if (potential_vm_operation && is_Java_thread()
 886       && !Universe::is_bootstrapping()) {
 887     // Make sure we do not hold any locks that the VM thread also uses.
 888     // This could potentially lead to deadlocks
 889     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 890       // Threads_lock is special, since the safepoint synchronization will not start before this is
 891       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 892       // since it is used to transfer control between JavaThreads and the VMThread
 893       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 894       if ((cur->allow_vm_block() &&
 895            cur != Threads_lock &&
 896            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 897            cur != VMOperationRequest_lock &&
 898            cur != VMOperationQueue_lock) ||
 899            cur->rank() == Mutex::special) {
 900         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 901       }
 902     }
 903   }
 904 
 905   if (GCALotAtAllSafepoints) {
 906     // We could enter a safepoint here and thus have a gc
 907     InterfaceSupport::check_gc_alot();
 908   }
 909 #endif
 910 }
 911 #endif
 912 
 913 bool Thread::is_in_stack(address adr) const {
 914   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 915   address end = os::current_stack_pointer();
 916   // Allow non Java threads to call this without stack_base
 917   if (_stack_base == NULL) return true;
 918   if (stack_base() >= adr && adr >= end) return true;
 919 
 920   return false;
 921 }
 922 
 923 bool Thread::is_in_usable_stack(address adr) const {
 924   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 925   size_t usable_stack_size = _stack_size - stack_guard_size;
 926 
 927   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 928 }
 929 
 930 
 931 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 932 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 933 // used for compilation in the future. If that change is made, the need for these methods
 934 // should be revisited, and they should be removed if possible.
 935 
 936 bool Thread::is_lock_owned(address adr) const {
 937   return on_local_stack(adr);
 938 }
 939 
 940 bool Thread::set_as_starting_thread() {
 941   // NOTE: this must be called inside the main thread.
 942   return os::create_main_thread((JavaThread*)this);
 943 }
 944 
 945 static void initialize_class(Symbol* class_name, TRAPS) {
 946   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 947   InstanceKlass::cast(klass)->initialize(CHECK);
 948 }
 949 
 950 
 951 // Creates the initial ThreadGroup
 952 static Handle create_initial_thread_group(TRAPS) {
 953   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 954   instanceKlassHandle klass (THREAD, k);
 955 
 956   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 957   {
 958     JavaValue result(T_VOID);
 959     JavaCalls::call_special(&result,
 960                             system_instance,
 961                             klass,
 962                             vmSymbols::object_initializer_name(),
 963                             vmSymbols::void_method_signature(),
 964                             CHECK_NH);
 965   }
 966   Universe::set_system_thread_group(system_instance());
 967 
 968   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 969   {
 970     JavaValue result(T_VOID);
 971     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 972     JavaCalls::call_special(&result,
 973                             main_instance,
 974                             klass,
 975                             vmSymbols::object_initializer_name(),
 976                             vmSymbols::threadgroup_string_void_signature(),
 977                             system_instance,
 978                             string,
 979                             CHECK_NH);
 980   }
 981   return main_instance;
 982 }
 983 
 984 // Creates the initial Thread
 985 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 986                                  TRAPS) {
 987   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 988   instanceKlassHandle klass (THREAD, k);
 989   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 990 
 991   java_lang_Thread::set_thread(thread_oop(), thread);
 992   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 993   thread->set_threadObj(thread_oop());
 994 
 995   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 996 
 997   JavaValue result(T_VOID);
 998   JavaCalls::call_special(&result, thread_oop,
 999                           klass,
1000                           vmSymbols::object_initializer_name(),
1001                           vmSymbols::threadgroup_string_void_signature(),
1002                           thread_group,
1003                           string,
1004                           CHECK_NULL);
1005   return thread_oop();
1006 }
1007 
1008 char java_runtime_name[128] = "";
1009 char java_runtime_version[128] = "";
1010 
1011 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1012 static const char* get_java_runtime_name(TRAPS) {
1013   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1014                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1015   fieldDescriptor fd;
1016   bool found = k != NULL &&
1017                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1018                                                         vmSymbols::string_signature(), &fd);
1019   if (found) {
1020     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1021     if (name_oop == NULL) {
1022       return NULL;
1023     }
1024     const char* name = java_lang_String::as_utf8_string(name_oop,
1025                                                         java_runtime_name,
1026                                                         sizeof(java_runtime_name));
1027     return name;
1028   } else {
1029     return NULL;
1030   }
1031 }
1032 
1033 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1034 static const char* get_java_runtime_version(TRAPS) {
1035   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1036                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1037   fieldDescriptor fd;
1038   bool found = k != NULL &&
1039                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1040                                                         vmSymbols::string_signature(), &fd);
1041   if (found) {
1042     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1043     if (name_oop == NULL) {
1044       return NULL;
1045     }
1046     const char* name = java_lang_String::as_utf8_string(name_oop,
1047                                                         java_runtime_version,
1048                                                         sizeof(java_runtime_version));
1049     return name;
1050   } else {
1051     return NULL;
1052   }
1053 }
1054 
1055 // General purpose hook into Java code, run once when the VM is initialized.
1056 // The Java library method itself may be changed independently from the VM.
1057 static void call_postVMInitHook(TRAPS) {
1058   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1059   instanceKlassHandle klass (THREAD, k);
1060   if (klass.not_null()) {
1061     JavaValue result(T_VOID);
1062     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1063                            vmSymbols::void_method_signature(),
1064                            CHECK);
1065   }
1066 }
1067 
1068 static void reset_vm_info_property(TRAPS) {
1069   // the vm info string
1070   ResourceMark rm(THREAD);
1071   const char *vm_info = VM_Version::vm_info_string();
1072 
1073   // java.lang.System class
1074   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1075   instanceKlassHandle klass (THREAD, k);
1076 
1077   // setProperty arguments
1078   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1079   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1080 
1081   // return value
1082   JavaValue r(T_OBJECT);
1083 
1084   // public static String setProperty(String key, String value);
1085   JavaCalls::call_static(&r,
1086                          klass,
1087                          vmSymbols::setProperty_name(),
1088                          vmSymbols::string_string_string_signature(),
1089                          key_str,
1090                          value_str,
1091                          CHECK);
1092 }
1093 
1094 
1095 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1096                                     bool daemon, TRAPS) {
1097   assert(thread_group.not_null(), "thread group should be specified");
1098   assert(threadObj() == NULL, "should only create Java thread object once");
1099 
1100   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1101   instanceKlassHandle klass (THREAD, k);
1102   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1103 
1104   java_lang_Thread::set_thread(thread_oop(), this);
1105   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1106   set_threadObj(thread_oop());
1107 
1108   JavaValue result(T_VOID);
1109   if (thread_name != NULL) {
1110     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1111     // Thread gets assigned specified name and null target
1112     JavaCalls::call_special(&result,
1113                             thread_oop,
1114                             klass,
1115                             vmSymbols::object_initializer_name(),
1116                             vmSymbols::threadgroup_string_void_signature(),
1117                             thread_group, // Argument 1
1118                             name,         // Argument 2
1119                             THREAD);
1120   } else {
1121     // Thread gets assigned name "Thread-nnn" and null target
1122     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1123     JavaCalls::call_special(&result,
1124                             thread_oop,
1125                             klass,
1126                             vmSymbols::object_initializer_name(),
1127                             vmSymbols::threadgroup_runnable_void_signature(),
1128                             thread_group, // Argument 1
1129                             Handle(),     // Argument 2
1130                             THREAD);
1131   }
1132 
1133 
1134   if (daemon) {
1135     java_lang_Thread::set_daemon(thread_oop());
1136   }
1137 
1138   if (HAS_PENDING_EXCEPTION) {
1139     return;
1140   }
1141 
1142   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1143   Handle threadObj(THREAD, this->threadObj());
1144 
1145   JavaCalls::call_special(&result,
1146                           thread_group,
1147                           group,
1148                           vmSymbols::add_method_name(),
1149                           vmSymbols::thread_void_signature(),
1150                           threadObj,          // Arg 1
1151                           THREAD);
1152 }
1153 
1154 // NamedThread --  non-JavaThread subclasses with multiple
1155 // uniquely named instances should derive from this.
1156 NamedThread::NamedThread() : Thread() {
1157   _name = NULL;
1158   _processed_thread = NULL;
1159   _gc_id = GCId::undefined();
1160 }
1161 
1162 NamedThread::~NamedThread() {
1163   if (_name != NULL) {
1164     FREE_C_HEAP_ARRAY(char, _name);
1165     _name = NULL;
1166   }
1167 }
1168 
1169 void NamedThread::set_name(const char* format, ...) {
1170   guarantee(_name == NULL, "Only get to set name once.");
1171   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1172   guarantee(_name != NULL, "alloc failure");
1173   va_list ap;
1174   va_start(ap, format);
1175   jio_vsnprintf(_name, max_name_len, format, ap);
1176   va_end(ap);
1177 }
1178 
1179 void NamedThread::initialize_named_thread() {
1180   set_native_thread_name(name());
1181 }
1182 
1183 void NamedThread::print_on(outputStream* st) const {
1184   st->print("\"%s\" ", name());
1185   Thread::print_on(st);
1186   st->cr();
1187 }
1188 
1189 
1190 // ======= WatcherThread ========
1191 
1192 // The watcher thread exists to simulate timer interrupts.  It should
1193 // be replaced by an abstraction over whatever native support for
1194 // timer interrupts exists on the platform.
1195 
1196 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1197 bool WatcherThread::_startable = false;
1198 volatile bool  WatcherThread::_should_terminate = false;
1199 
1200 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1201   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1202   if (os::create_thread(this, os::watcher_thread)) {
1203     _watcher_thread = this;
1204 
1205     // WatcherThread needs GCLAB for cases when it writes to Java heap,
1206     // and needs the space to evacuate. Have to initialize here, because
1207     // WatcherThread is initialized before the Universe.
1208     if (UseShenandoahGC && UseTLAB) {
1209       gclab().initialize(true);
1210     }
1211 
1212     // Set the watcher thread to the highest OS priority which should not be
1213     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1214     // is created. The only normal thread using this priority is the reference
1215     // handler thread, which runs for very short intervals only.
1216     // If the VMThread's priority is not lower than the WatcherThread profiling
1217     // will be inaccurate.
1218     os::set_priority(this, MaxPriority);
1219     if (!DisableStartThread) {
1220       os::start_thread(this);
1221     }
1222   }
1223 }
1224 
1225 int WatcherThread::sleep() const {
1226   // The WatcherThread does not participate in the safepoint protocol
1227   // for the PeriodicTask_lock because it is not a JavaThread.
1228   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1229 
1230   if (_should_terminate) {
1231     // check for termination before we do any housekeeping or wait
1232     return 0;  // we did not sleep.
1233   }
1234 
1235   // remaining will be zero if there are no tasks,
1236   // causing the WatcherThread to sleep until a task is
1237   // enrolled
1238   int remaining = PeriodicTask::time_to_wait();
1239   int time_slept = 0;
1240 
1241   // we expect this to timeout - we only ever get unparked when
1242   // we should terminate or when a new task has been enrolled
1243   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1244 
1245   jlong time_before_loop = os::javaTimeNanos();
1246 
1247   while (true) {
1248     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1249                                             remaining);
1250     jlong now = os::javaTimeNanos();
1251 
1252     if (remaining == 0) {
1253       // if we didn't have any tasks we could have waited for a long time
1254       // consider the time_slept zero and reset time_before_loop
1255       time_slept = 0;
1256       time_before_loop = now;
1257     } else {
1258       // need to recalculate since we might have new tasks in _tasks
1259       time_slept = (int) ((now - time_before_loop) / 1000000);
1260     }
1261 
1262     // Change to task list or spurious wakeup of some kind
1263     if (timedout || _should_terminate) {
1264       break;
1265     }
1266 
1267     remaining = PeriodicTask::time_to_wait();
1268     if (remaining == 0) {
1269       // Last task was just disenrolled so loop around and wait until
1270       // another task gets enrolled
1271       continue;
1272     }
1273 
1274     remaining -= time_slept;
1275     if (remaining <= 0) {
1276       break;
1277     }
1278   }
1279 
1280   return time_slept;
1281 }
1282 
1283 void WatcherThread::run() {
1284   assert(this == watcher_thread(), "just checking");
1285 
1286   this->record_stack_base_and_size();
1287   this->set_native_thread_name(this->name());
1288   this->set_active_handles(JNIHandleBlock::allocate_block());
1289   while (true) {
1290     assert(watcher_thread() == Thread::current(), "thread consistency check");
1291     assert(watcher_thread() == this, "thread consistency check");
1292 
1293     // Calculate how long it'll be until the next PeriodicTask work
1294     // should be done, and sleep that amount of time.
1295     int time_waited = sleep();
1296 
1297     if (is_error_reported()) {
1298       // A fatal error has happened, the error handler(VMError::report_and_die)
1299       // should abort JVM after creating an error log file. However in some
1300       // rare cases, the error handler itself might deadlock. Here we try to
1301       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1302       //
1303       // This code is in WatcherThread because WatcherThread wakes up
1304       // periodically so the fatal error handler doesn't need to do anything;
1305       // also because the WatcherThread is less likely to crash than other
1306       // threads.
1307 
1308       for (;;) {
1309         if (!ShowMessageBoxOnError
1310             && (OnError == NULL || OnError[0] == '\0')
1311             && Arguments::abort_hook() == NULL) {
1312           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1313           fdStream err(defaultStream::output_fd());
1314           err.print_raw_cr("# [ timer expired, abort... ]");
1315           // skip atexit/vm_exit/vm_abort hooks
1316           os::die();
1317         }
1318 
1319         // Wake up 5 seconds later, the fatal handler may reset OnError or
1320         // ShowMessageBoxOnError when it is ready to abort.
1321         os::sleep(this, 5 * 1000, false);
1322       }
1323     }
1324 
1325     if (_should_terminate) {
1326       // check for termination before posting the next tick
1327       break;
1328     }
1329 
1330     PeriodicTask::real_time_tick(time_waited);
1331   }
1332 
1333   // Signal that it is terminated
1334   {
1335     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1336     _watcher_thread = NULL;
1337     Terminator_lock->notify();
1338   }
1339 }
1340 
1341 void WatcherThread::start() {
1342   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1343 
1344   if (watcher_thread() == NULL && _startable) {
1345     _should_terminate = false;
1346     // Create the single instance of WatcherThread
1347     new WatcherThread();
1348   }
1349 }
1350 
1351 void WatcherThread::make_startable() {
1352   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1353   _startable = true;
1354 }
1355 
1356 void WatcherThread::stop() {
1357   {
1358     // Follow normal safepoint aware lock enter protocol since the
1359     // WatcherThread is stopped by another JavaThread.
1360     MutexLocker ml(PeriodicTask_lock);
1361     _should_terminate = true;
1362 
1363     WatcherThread* watcher = watcher_thread();
1364     if (watcher != NULL) {
1365       // unpark the WatcherThread so it can see that it should terminate
1366       watcher->unpark();
1367     }
1368   }
1369 
1370   MutexLocker mu(Terminator_lock);
1371 
1372   while (watcher_thread() != NULL) {
1373     // This wait should make safepoint checks, wait without a timeout,
1374     // and wait as a suspend-equivalent condition.
1375     //
1376     // Note: If the FlatProfiler is running, then this thread is waiting
1377     // for the WatcherThread to terminate and the WatcherThread, via the
1378     // FlatProfiler task, is waiting for the external suspend request on
1379     // this thread to complete. wait_for_ext_suspend_completion() will
1380     // eventually timeout, but that takes time. Making this wait a
1381     // suspend-equivalent condition solves that timeout problem.
1382     //
1383     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1384                           Mutex::_as_suspend_equivalent_flag);
1385   }
1386 }
1387 
1388 void WatcherThread::unpark() {
1389   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1390   PeriodicTask_lock->notify();
1391 }
1392 
1393 void WatcherThread::print_on(outputStream* st) const {
1394   st->print("\"%s\" ", name());
1395   Thread::print_on(st);
1396   st->cr();
1397 }
1398 
1399 // ======= JavaThread ========
1400 
1401 #if INCLUDE_JVMCI
1402 
1403 jlong* JavaThread::_jvmci_old_thread_counters;
1404 
1405 bool jvmci_counters_include(JavaThread* thread) {
1406   oop threadObj = thread->threadObj();
1407   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1408 }
1409 
1410 void JavaThread::collect_counters(typeArrayOop array) {
1411   if (JVMCICounterSize > 0) {
1412     MutexLocker tl(Threads_lock);
1413     for (int i = 0; i < array->length(); i++) {
1414       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1415     }
1416     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1417       if (jvmci_counters_include(tp)) {
1418         for (int i = 0; i < array->length(); i++) {
1419           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1420         }
1421       }
1422     }
1423   }
1424 }
1425 
1426 #endif // INCLUDE_JVMCI
1427 
1428 // A JavaThread is a normal Java thread
1429 
1430 void JavaThread::initialize() {
1431   // Initialize fields
1432 
1433   set_saved_exception_pc(NULL);
1434   set_threadObj(NULL);
1435   _anchor.clear();
1436   set_entry_point(NULL);
1437   set_jni_functions(jni_functions());
1438   set_callee_target(NULL);
1439   set_vm_result(NULL);
1440   set_vm_result_2(NULL);
1441   set_vframe_array_head(NULL);
1442   set_vframe_array_last(NULL);
1443   set_deferred_locals(NULL);
1444   set_deopt_mark(NULL);
1445   set_deopt_compiled_method(NULL);
1446   clear_must_deopt_id();
1447   set_monitor_chunks(NULL);
1448   set_next(NULL);
1449   set_thread_state(_thread_new);
1450   _terminated = _not_terminated;
1451   _privileged_stack_top = NULL;
1452   _array_for_gc = NULL;
1453   _suspend_equivalent = false;
1454   _in_deopt_handler = 0;
1455   _doing_unsafe_access = false;
1456   _stack_guard_state = stack_guard_unused;
1457 #if INCLUDE_JVMCI
1458   _pending_monitorenter = false;
1459   _pending_deoptimization = -1;
1460   _pending_failed_speculation = NULL;
1461   _pending_transfer_to_interpreter = false;
1462   _adjusting_comp_level = false;
1463   _jvmci._alternate_call_target = NULL;
1464   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1465   if (JVMCICounterSize > 0) {
1466     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1467     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1468   } else {
1469     _jvmci_counters = NULL;
1470   }
1471 #endif // INCLUDE_JVMCI
1472   _reserved_stack_activation = NULL;  // stack base not known yet
1473   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1474   _exception_pc  = 0;
1475   _exception_handler_pc = 0;
1476   _is_method_handle_return = 0;
1477   _jvmti_thread_state= NULL;
1478   _should_post_on_exceptions_flag = JNI_FALSE;
1479   _jvmti_get_loaded_classes_closure = NULL;
1480   _interp_only_mode    = 0;
1481   _special_runtime_exit_condition = _no_async_condition;
1482   _pending_async_exception = NULL;
1483   _thread_stat = NULL;
1484   _thread_stat = new ThreadStatistics();
1485   _blocked_on_compilation = false;
1486   _jni_active_critical = 0;
1487   _pending_jni_exception_check_fn = NULL;
1488   _do_not_unlock_if_synchronized = false;
1489   _cached_monitor_info = NULL;
1490   _parker = Parker::Allocate(this);
1491 
1492 #ifndef PRODUCT
1493   _jmp_ring_index = 0;
1494   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1495     record_jump(NULL, NULL, NULL, 0);
1496   }
1497 #endif // PRODUCT
1498 
1499   set_thread_profiler(NULL);
1500   if (FlatProfiler::is_active()) {
1501     // This is where we would decide to either give each thread it's own profiler
1502     // or use one global one from FlatProfiler,
1503     // or up to some count of the number of profiled threads, etc.
1504     ThreadProfiler* pp = new ThreadProfiler();
1505     pp->engage();
1506     set_thread_profiler(pp);
1507   }
1508 
1509   // Setup safepoint state info for this thread
1510   ThreadSafepointState::create(this);
1511 
1512   debug_only(_java_call_counter = 0);
1513 
1514   // JVMTI PopFrame support
1515   _popframe_condition = popframe_inactive;
1516   _popframe_preserved_args = NULL;
1517   _popframe_preserved_args_size = 0;
1518   _frames_to_pop_failed_realloc = 0;
1519 
1520   pd_initialize();
1521 }
1522 
1523 #if INCLUDE_ALL_GCS
1524 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1525 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1526 bool JavaThread::_evacuation_in_progress_global = false;
1527 #endif // INCLUDE_ALL_GCS
1528 
1529 JavaThread::JavaThread(bool is_attaching_via_jni) :
1530                        Thread()
1531 #if INCLUDE_ALL_GCS
1532                        , _satb_mark_queue(&_satb_mark_queue_set),
1533                        _dirty_card_queue(&_dirty_card_queue_set),
1534                        _evacuation_in_progress(_evacuation_in_progress_global)
1535 #endif // INCLUDE_ALL_GCS
1536 {
1537   initialize();
1538   if (is_attaching_via_jni) {
1539     _jni_attach_state = _attaching_via_jni;
1540   } else {
1541     _jni_attach_state = _not_attaching_via_jni;
1542   }
1543   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1544 }
1545 
1546 bool JavaThread::reguard_stack(address cur_sp) {
1547   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1548       && _stack_guard_state != stack_guard_reserved_disabled) {
1549     return true; // Stack already guarded or guard pages not needed.
1550   }
1551 
1552   if (register_stack_overflow()) {
1553     // For those architectures which have separate register and
1554     // memory stacks, we must check the register stack to see if
1555     // it has overflowed.
1556     return false;
1557   }
1558 
1559   // Java code never executes within the yellow zone: the latter is only
1560   // there to provoke an exception during stack banging.  If java code
1561   // is executing there, either StackShadowPages should be larger, or
1562   // some exception code in c1, c2 or the interpreter isn't unwinding
1563   // when it should.
1564   guarantee(cur_sp > stack_reserved_zone_base(),
1565             "not enough space to reguard - increase StackShadowPages");
1566   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1567     enable_stack_yellow_reserved_zone();
1568     if (reserved_stack_activation() != stack_base()) {
1569       set_reserved_stack_activation(stack_base());
1570     }
1571   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1572     set_reserved_stack_activation(stack_base());
1573     enable_stack_reserved_zone();
1574   }
1575   return true;
1576 }
1577 
1578 bool JavaThread::reguard_stack(void) {
1579   return reguard_stack(os::current_stack_pointer());
1580 }
1581 
1582 
1583 void JavaThread::block_if_vm_exited() {
1584   if (_terminated == _vm_exited) {
1585     // _vm_exited is set at safepoint, and Threads_lock is never released
1586     // we will block here forever
1587     Threads_lock->lock_without_safepoint_check();
1588     ShouldNotReachHere();
1589   }
1590 }
1591 
1592 
1593 // Remove this ifdef when C1 is ported to the compiler interface.
1594 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1595 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1596 
1597 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1598                        Thread()
1599 #if INCLUDE_ALL_GCS
1600                        , _satb_mark_queue(&_satb_mark_queue_set),
1601                        _dirty_card_queue(&_dirty_card_queue_set),
1602                        _evacuation_in_progress(_evacuation_in_progress_global)
1603 #endif // INCLUDE_ALL_GCS
1604 {
1605   initialize();
1606   _jni_attach_state = _not_attaching_via_jni;
1607   set_entry_point(entry_point);
1608   // Create the native thread itself.
1609   // %note runtime_23
1610   os::ThreadType thr_type = os::java_thread;
1611   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1612                                                      os::java_thread;
1613   os::create_thread(this, thr_type, stack_sz);
1614   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1615   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1616   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1617   // the exception consists of creating the exception object & initializing it, initialization
1618   // will leave the VM via a JavaCall and then all locks must be unlocked).
1619   //
1620   // The thread is still suspended when we reach here. Thread must be explicit started
1621   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1622   // by calling Threads:add. The reason why this is not done here, is because the thread
1623   // object must be fully initialized (take a look at JVM_Start)
1624 }
1625 
1626 JavaThread::~JavaThread() {
1627 
1628   // JSR166 -- return the parker to the free list
1629   Parker::Release(_parker);
1630   _parker = NULL;
1631 
1632   // Free any remaining  previous UnrollBlock
1633   vframeArray* old_array = vframe_array_last();
1634 
1635   if (old_array != NULL) {
1636     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1637     old_array->set_unroll_block(NULL);
1638     delete old_info;
1639     delete old_array;
1640   }
1641 
1642   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1643   if (deferred != NULL) {
1644     // This can only happen if thread is destroyed before deoptimization occurs.
1645     assert(deferred->length() != 0, "empty array!");
1646     do {
1647       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1648       deferred->remove_at(0);
1649       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1650       delete dlv;
1651     } while (deferred->length() != 0);
1652     delete deferred;
1653   }
1654 
1655   // All Java related clean up happens in exit
1656   ThreadSafepointState::destroy(this);
1657   if (_thread_profiler != NULL) delete _thread_profiler;
1658   if (_thread_stat != NULL) delete _thread_stat;
1659 
1660 #if INCLUDE_JVMCI
1661   if (JVMCICounterSize > 0) {
1662     if (jvmci_counters_include(this)) {
1663       for (int i = 0; i < JVMCICounterSize; i++) {
1664         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1665       }
1666     }
1667     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1668   }
1669 #endif // INCLUDE_JVMCI
1670 }
1671 
1672 
1673 // The first routine called by a new Java thread
1674 void JavaThread::run() {
1675   // initialize thread-local alloc buffer related fields
1676   this->initialize_tlab();
1677 
1678   // used to test validity of stack trace backs
1679   this->record_base_of_stack_pointer();
1680 
1681   // Record real stack base and size.
1682   this->record_stack_base_and_size();
1683 
1684   this->create_stack_guard_pages();
1685 
1686   this->cache_global_variables();
1687 
1688   // Thread is now sufficient initialized to be handled by the safepoint code as being
1689   // in the VM. Change thread state from _thread_new to _thread_in_vm
1690   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1691 
1692   assert(JavaThread::current() == this, "sanity check");
1693   assert(!Thread::current()->owns_locks(), "sanity check");
1694 
1695   DTRACE_THREAD_PROBE(start, this);
1696 
1697   // This operation might block. We call that after all safepoint checks for a new thread has
1698   // been completed.
1699   this->set_active_handles(JNIHandleBlock::allocate_block());
1700 
1701   if (JvmtiExport::should_post_thread_life()) {
1702     JvmtiExport::post_thread_start(this);
1703   }
1704 
1705   EventThreadStart event;
1706   if (event.should_commit()) {
1707     event.set_thread(THREAD_TRACE_ID(this));
1708     event.commit();
1709   }
1710 
1711   // We call another function to do the rest so we are sure that the stack addresses used
1712   // from there will be lower than the stack base just computed
1713   thread_main_inner();
1714 
1715   // Note, thread is no longer valid at this point!
1716 }
1717 
1718 
1719 void JavaThread::thread_main_inner() {
1720   assert(JavaThread::current() == this, "sanity check");
1721   assert(this->threadObj() != NULL, "just checking");
1722 
1723   // Execute thread entry point unless this thread has a pending exception
1724   // or has been stopped before starting.
1725   // Note: Due to JVM_StopThread we can have pending exceptions already!
1726   if (!this->has_pending_exception() &&
1727       !java_lang_Thread::is_stillborn(this->threadObj())) {
1728     {
1729       ResourceMark rm(this);
1730       this->set_native_thread_name(this->get_thread_name());
1731     }
1732     HandleMark hm(this);
1733     this->entry_point()(this, this);
1734   }
1735 
1736   DTRACE_THREAD_PROBE(stop, this);
1737 
1738   this->exit(false);
1739   delete this;
1740 }
1741 
1742 
1743 static void ensure_join(JavaThread* thread) {
1744   // We do not need to grap the Threads_lock, since we are operating on ourself.
1745   Handle threadObj(thread, thread->threadObj());
1746   assert(threadObj.not_null(), "java thread object must exist");
1747   ObjectLocker lock(threadObj, thread);
1748   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1749   thread->clear_pending_exception();
1750   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1751   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1752   // Clear the native thread instance - this makes isAlive return false and allows the join()
1753   // to complete once we've done the notify_all below
1754   java_lang_Thread::set_thread(threadObj(), NULL);
1755   lock.notify_all(thread);
1756   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1757   thread->clear_pending_exception();
1758 }
1759 
1760 
1761 // For any new cleanup additions, please check to see if they need to be applied to
1762 // cleanup_failed_attach_current_thread as well.
1763 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1764   assert(this == JavaThread::current(), "thread consistency check");
1765 
1766   HandleMark hm(this);
1767   Handle uncaught_exception(this, this->pending_exception());
1768   this->clear_pending_exception();
1769   Handle threadObj(this, this->threadObj());
1770   assert(threadObj.not_null(), "Java thread object should be created");
1771 
1772   if (get_thread_profiler() != NULL) {
1773     get_thread_profiler()->disengage();
1774     ResourceMark rm;
1775     get_thread_profiler()->print(get_thread_name());
1776   }
1777 
1778 
1779   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1780   {
1781     EXCEPTION_MARK;
1782 
1783     CLEAR_PENDING_EXCEPTION;
1784   }
1785   if (!destroy_vm) {
1786     if (uncaught_exception.not_null()) {
1787       EXCEPTION_MARK;
1788       // Call method Thread.dispatchUncaughtException().
1789       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1790       JavaValue result(T_VOID);
1791       JavaCalls::call_virtual(&result,
1792                               threadObj, thread_klass,
1793                               vmSymbols::dispatchUncaughtException_name(),
1794                               vmSymbols::throwable_void_signature(),
1795                               uncaught_exception,
1796                               THREAD);
1797       if (HAS_PENDING_EXCEPTION) {
1798         ResourceMark rm(this);
1799         jio_fprintf(defaultStream::error_stream(),
1800                     "\nException: %s thrown from the UncaughtExceptionHandler"
1801                     " in thread \"%s\"\n",
1802                     pending_exception()->klass()->external_name(),
1803                     get_thread_name());
1804         CLEAR_PENDING_EXCEPTION;
1805       }
1806     }
1807 
1808     // Called before the java thread exit since we want to read info
1809     // from java_lang_Thread object
1810     EventThreadEnd event;
1811     if (event.should_commit()) {
1812       event.set_thread(THREAD_TRACE_ID(this));
1813       event.commit();
1814     }
1815 
1816     // Call after last event on thread
1817     EVENT_THREAD_EXIT(this);
1818 
1819     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1820     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1821     // is deprecated anyhow.
1822     if (!is_Compiler_thread()) {
1823       int count = 3;
1824       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1825         EXCEPTION_MARK;
1826         JavaValue result(T_VOID);
1827         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1828         JavaCalls::call_virtual(&result,
1829                                 threadObj, thread_klass,
1830                                 vmSymbols::exit_method_name(),
1831                                 vmSymbols::void_method_signature(),
1832                                 THREAD);
1833         CLEAR_PENDING_EXCEPTION;
1834       }
1835     }
1836     // notify JVMTI
1837     if (JvmtiExport::should_post_thread_life()) {
1838       JvmtiExport::post_thread_end(this);
1839     }
1840 
1841     // We have notified the agents that we are exiting, before we go on,
1842     // we must check for a pending external suspend request and honor it
1843     // in order to not surprise the thread that made the suspend request.
1844     while (true) {
1845       {
1846         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1847         if (!is_external_suspend()) {
1848           set_terminated(_thread_exiting);
1849           ThreadService::current_thread_exiting(this);
1850           break;
1851         }
1852         // Implied else:
1853         // Things get a little tricky here. We have a pending external
1854         // suspend request, but we are holding the SR_lock so we
1855         // can't just self-suspend. So we temporarily drop the lock
1856         // and then self-suspend.
1857       }
1858 
1859       ThreadBlockInVM tbivm(this);
1860       java_suspend_self();
1861 
1862       // We're done with this suspend request, but we have to loop around
1863       // and check again. Eventually we will get SR_lock without a pending
1864       // external suspend request and will be able to mark ourselves as
1865       // exiting.
1866     }
1867     // no more external suspends are allowed at this point
1868   } else {
1869     // before_exit() has already posted JVMTI THREAD_END events
1870   }
1871 
1872   // Notify waiters on thread object. This has to be done after exit() is called
1873   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1874   // group should have the destroyed bit set before waiters are notified).
1875   ensure_join(this);
1876   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1877 
1878   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1879   // held by this thread must be released. The spec does not distinguish
1880   // between JNI-acquired and regular Java monitors. We can only see
1881   // regular Java monitors here if monitor enter-exit matching is broken.
1882   //
1883   // Optionally release any monitors for regular JavaThread exits. This
1884   // is provided as a work around for any bugs in monitor enter-exit
1885   // matching. This can be expensive so it is not enabled by default.
1886   //
1887   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1888   // ObjectSynchronizer::release_monitors_owned_by_thread().
1889   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1890     // Sanity check even though JNI DetachCurrentThread() would have
1891     // returned JNI_ERR if there was a Java frame. JavaThread exit
1892     // should be done executing Java code by the time we get here.
1893     assert(!this->has_last_Java_frame(),
1894            "should not have a Java frame when detaching or exiting");
1895     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1896     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1897   }
1898 
1899   // These things needs to be done while we are still a Java Thread. Make sure that thread
1900   // is in a consistent state, in case GC happens
1901   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1902 
1903   if (active_handles() != NULL) {
1904     JNIHandleBlock* block = active_handles();
1905     set_active_handles(NULL);
1906     JNIHandleBlock::release_block(block);
1907   }
1908 
1909   if (free_handle_block() != NULL) {
1910     JNIHandleBlock* block = free_handle_block();
1911     set_free_handle_block(NULL);
1912     JNIHandleBlock::release_block(block);
1913   }
1914 
1915   // These have to be removed while this is still a valid thread.
1916   remove_stack_guard_pages();
1917 
1918   if (UseTLAB) {
1919     tlab().make_parsable(true);  // retire TLAB
1920   }
1921 
1922   if (JvmtiEnv::environments_might_exist()) {
1923     JvmtiExport::cleanup_thread(this);
1924   }
1925 
1926   // We must flush any deferred card marks before removing a thread from
1927   // the list of active threads.
1928   Universe::heap()->flush_deferred_store_barrier(this);
1929   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1930 
1931 #if INCLUDE_ALL_GCS
1932   // We must flush the G1-related buffers before removing a thread
1933   // from the list of active threads. We must do this after any deferred
1934   // card marks have been flushed (above) so that any entries that are
1935   // added to the thread's dirty card queue as a result are not lost.
1936   if (UseG1GC || (UseShenandoahGC && ShenandoahWriteBarrier)) {
1937     flush_barrier_queues();
1938   }
1939   if (UseShenandoahGC && UseTLAB) {
1940     gclab().make_parsable(true);
1941   }
1942 #endif // INCLUDE_ALL_GCS
1943 
1944   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1945     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1946     os::current_thread_id());
1947 
1948   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1949   Threads::remove(this);
1950 }
1951 
1952 #if INCLUDE_ALL_GCS
1953 // Flush G1-related queues.
1954 void JavaThread::flush_barrier_queues() {
1955   satb_mark_queue().flush();
1956   dirty_card_queue().flush();
1957 }
1958 
1959 void JavaThread::initialize_queues() {
1960   assert(!SafepointSynchronize::is_at_safepoint(),
1961          "we should not be at a safepoint");
1962 
1963   SATBMarkQueue& satb_queue = satb_mark_queue();
1964   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1965   // The SATB queue should have been constructed with its active
1966   // field set to false.
1967   assert(!satb_queue.is_active(), "SATB queue should not be active");
1968   assert(satb_queue.is_empty(), "SATB queue should be empty");
1969   // If we are creating the thread during a marking cycle, we should
1970   // set the active field of the SATB queue to true.
1971   if (satb_queue_set.is_active()) {
1972     satb_queue.set_active(true);
1973   }
1974 
1975   DirtyCardQueue& dirty_queue = dirty_card_queue();
1976   // The dirty card queue should have been constructed with its
1977   // active field set to true.
1978   assert(dirty_queue.is_active(), "dirty card queue should be active");
1979 
1980   _evacuation_in_progress = _evacuation_in_progress_global;
1981 }
1982 
1983 bool JavaThread::evacuation_in_progress() const {
1984   return _evacuation_in_progress;
1985 }
1986 
1987 void JavaThread::set_evacuation_in_progress(bool in_prog) {
1988   _evacuation_in_progress = in_prog;
1989 }
1990 
1991 void JavaThread::set_evacuation_in_progress_all_threads(bool in_prog) {
1992   assert_locked_or_safepoint(Threads_lock);
1993   _evacuation_in_progress_global = in_prog;
1994   for (JavaThread* t = Threads::first(); t != NULL; t = t->next()) {
1995     t->set_evacuation_in_progress(in_prog);
1996   }
1997 }
1998 #endif // INCLUDE_ALL_GCS
1999 
2000 void JavaThread::cleanup_failed_attach_current_thread() {
2001   if (get_thread_profiler() != NULL) {
2002     get_thread_profiler()->disengage();
2003     ResourceMark rm;
2004     get_thread_profiler()->print(get_thread_name());
2005   }
2006 
2007   if (active_handles() != NULL) {
2008     JNIHandleBlock* block = active_handles();
2009     set_active_handles(NULL);
2010     JNIHandleBlock::release_block(block);
2011   }
2012 
2013   if (free_handle_block() != NULL) {
2014     JNIHandleBlock* block = free_handle_block();
2015     set_free_handle_block(NULL);
2016     JNIHandleBlock::release_block(block);
2017   }
2018 
2019   // These have to be removed while this is still a valid thread.
2020   remove_stack_guard_pages();
2021 
2022   if (UseTLAB) {
2023     tlab().make_parsable(true);  // retire TLAB, if any
2024   }
2025 
2026 #if INCLUDE_ALL_GCS
2027   if (UseG1GC || (UseShenandoahGC && ShenandoahWriteBarrier)) {
2028     flush_barrier_queues();
2029   }
2030   if (UseShenandoahGC && UseTLAB) {
2031     gclab().make_parsable(true);
2032   }
2033 #endif // INCLUDE_ALL_GCS
2034 
2035   Threads::remove(this);
2036   delete this;
2037 }
2038 
2039 
2040 
2041 
2042 JavaThread* JavaThread::active() {
2043   Thread* thread = Thread::current();
2044   if (thread->is_Java_thread()) {
2045     return (JavaThread*) thread;
2046   } else {
2047     assert(thread->is_VM_thread(), "this must be a vm thread");
2048     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2049     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2050     assert(ret->is_Java_thread(), "must be a Java thread");
2051     return ret;
2052   }
2053 }
2054 
2055 bool JavaThread::is_lock_owned(address adr) const {
2056   if (Thread::is_lock_owned(adr)) return true;
2057 
2058   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2059     if (chunk->contains(adr)) return true;
2060   }
2061 
2062   return false;
2063 }
2064 
2065 
2066 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2067   chunk->set_next(monitor_chunks());
2068   set_monitor_chunks(chunk);
2069 }
2070 
2071 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2072   guarantee(monitor_chunks() != NULL, "must be non empty");
2073   if (monitor_chunks() == chunk) {
2074     set_monitor_chunks(chunk->next());
2075   } else {
2076     MonitorChunk* prev = monitor_chunks();
2077     while (prev->next() != chunk) prev = prev->next();
2078     prev->set_next(chunk->next());
2079   }
2080 }
2081 
2082 // JVM support.
2083 
2084 // Note: this function shouldn't block if it's called in
2085 // _thread_in_native_trans state (such as from
2086 // check_special_condition_for_native_trans()).
2087 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2088 
2089   if (has_last_Java_frame() && has_async_condition()) {
2090     // If we are at a polling page safepoint (not a poll return)
2091     // then we must defer async exception because live registers
2092     // will be clobbered by the exception path. Poll return is
2093     // ok because the call we a returning from already collides
2094     // with exception handling registers and so there is no issue.
2095     // (The exception handling path kills call result registers but
2096     //  this is ok since the exception kills the result anyway).
2097 
2098     if (is_at_poll_safepoint()) {
2099       // if the code we are returning to has deoptimized we must defer
2100       // the exception otherwise live registers get clobbered on the
2101       // exception path before deoptimization is able to retrieve them.
2102       //
2103       RegisterMap map(this, false);
2104       frame caller_fr = last_frame().sender(&map);
2105       assert(caller_fr.is_compiled_frame(), "what?");
2106       if (caller_fr.is_deoptimized_frame()) {
2107         log_info(exceptions)("deferred async exception at compiled safepoint");
2108         return;
2109       }
2110     }
2111   }
2112 
2113   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2114   if (condition == _no_async_condition) {
2115     // Conditions have changed since has_special_runtime_exit_condition()
2116     // was called:
2117     // - if we were here only because of an external suspend request,
2118     //   then that was taken care of above (or cancelled) so we are done
2119     // - if we were here because of another async request, then it has
2120     //   been cleared between the has_special_runtime_exit_condition()
2121     //   and now so again we are done
2122     return;
2123   }
2124 
2125   // Check for pending async. exception
2126   if (_pending_async_exception != NULL) {
2127     // Only overwrite an already pending exception, if it is not a threadDeath.
2128     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2129 
2130       // We cannot call Exceptions::_throw(...) here because we cannot block
2131       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2132 
2133       if (log_is_enabled(Info, exceptions)) {
2134         ResourceMark rm;
2135         outputStream* logstream = Log(exceptions)::info_stream();
2136         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2137           if (has_last_Java_frame()) {
2138             frame f = last_frame();
2139            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2140           }
2141         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2142       }
2143       _pending_async_exception = NULL;
2144       clear_has_async_exception();
2145     }
2146   }
2147 
2148   if (check_unsafe_error &&
2149       condition == _async_unsafe_access_error && !has_pending_exception()) {
2150     condition = _no_async_condition;  // done
2151     switch (thread_state()) {
2152     case _thread_in_vm: {
2153       JavaThread* THREAD = this;
2154       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2155     }
2156     case _thread_in_native: {
2157       ThreadInVMfromNative tiv(this);
2158       JavaThread* THREAD = this;
2159       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2160     }
2161     case _thread_in_Java: {
2162       ThreadInVMfromJava tiv(this);
2163       JavaThread* THREAD = this;
2164       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2165     }
2166     default:
2167       ShouldNotReachHere();
2168     }
2169   }
2170 
2171   assert(condition == _no_async_condition || has_pending_exception() ||
2172          (!check_unsafe_error && condition == _async_unsafe_access_error),
2173          "must have handled the async condition, if no exception");
2174 }
2175 
2176 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2177   //
2178   // Check for pending external suspend. Internal suspend requests do
2179   // not use handle_special_runtime_exit_condition().
2180   // If JNIEnv proxies are allowed, don't self-suspend if the target
2181   // thread is not the current thread. In older versions of jdbx, jdbx
2182   // threads could call into the VM with another thread's JNIEnv so we
2183   // can be here operating on behalf of a suspended thread (4432884).
2184   bool do_self_suspend = is_external_suspend_with_lock();
2185   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2186     //
2187     // Because thread is external suspended the safepoint code will count
2188     // thread as at a safepoint. This can be odd because we can be here
2189     // as _thread_in_Java which would normally transition to _thread_blocked
2190     // at a safepoint. We would like to mark the thread as _thread_blocked
2191     // before calling java_suspend_self like all other callers of it but
2192     // we must then observe proper safepoint protocol. (We can't leave
2193     // _thread_blocked with a safepoint in progress). However we can be
2194     // here as _thread_in_native_trans so we can't use a normal transition
2195     // constructor/destructor pair because they assert on that type of
2196     // transition. We could do something like:
2197     //
2198     // JavaThreadState state = thread_state();
2199     // set_thread_state(_thread_in_vm);
2200     // {
2201     //   ThreadBlockInVM tbivm(this);
2202     //   java_suspend_self()
2203     // }
2204     // set_thread_state(_thread_in_vm_trans);
2205     // if (safepoint) block;
2206     // set_thread_state(state);
2207     //
2208     // but that is pretty messy. Instead we just go with the way the
2209     // code has worked before and note that this is the only path to
2210     // java_suspend_self that doesn't put the thread in _thread_blocked
2211     // mode.
2212 
2213     frame_anchor()->make_walkable(this);
2214     java_suspend_self();
2215 
2216     // We might be here for reasons in addition to the self-suspend request
2217     // so check for other async requests.
2218   }
2219 
2220   if (check_asyncs) {
2221     check_and_handle_async_exceptions();
2222   }
2223 }
2224 
2225 void JavaThread::send_thread_stop(oop java_throwable)  {
2226   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2227   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2228   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2229 
2230   // Do not throw asynchronous exceptions against the compiler thread
2231   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2232   if (!can_call_java()) return;
2233 
2234   {
2235     // Actually throw the Throwable against the target Thread - however
2236     // only if there is no thread death exception installed already.
2237     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2238       // If the topmost frame is a runtime stub, then we are calling into
2239       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2240       // must deoptimize the caller before continuing, as the compiled  exception handler table
2241       // may not be valid
2242       if (has_last_Java_frame()) {
2243         frame f = last_frame();
2244         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2245           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2246           RegisterMap reg_map(this, UseBiasedLocking);
2247           frame compiled_frame = f.sender(&reg_map);
2248           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2249             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2250           }
2251         }
2252       }
2253 
2254       // Set async. pending exception in thread.
2255       set_pending_async_exception(java_throwable);
2256 
2257       if (log_is_enabled(Info, exceptions)) {
2258          ResourceMark rm;
2259         log_info(exceptions)("Pending Async. exception installed of type: %s",
2260                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2261       }
2262       // for AbortVMOnException flag
2263       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2264     }
2265   }
2266 
2267 
2268   // Interrupt thread so it will wake up from a potential wait()
2269   Thread::interrupt(this);
2270 }
2271 
2272 // External suspension mechanism.
2273 //
2274 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2275 // to any VM_locks and it is at a transition
2276 // Self-suspension will happen on the transition out of the vm.
2277 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2278 //
2279 // Guarantees on return:
2280 //   + Target thread will not execute any new bytecode (that's why we need to
2281 //     force a safepoint)
2282 //   + Target thread will not enter any new monitors
2283 //
2284 void JavaThread::java_suspend() {
2285   { MutexLocker mu(Threads_lock);
2286     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2287       return;
2288     }
2289   }
2290 
2291   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2292     if (!is_external_suspend()) {
2293       // a racing resume has cancelled us; bail out now
2294       return;
2295     }
2296 
2297     // suspend is done
2298     uint32_t debug_bits = 0;
2299     // Warning: is_ext_suspend_completed() may temporarily drop the
2300     // SR_lock to allow the thread to reach a stable thread state if
2301     // it is currently in a transient thread state.
2302     if (is_ext_suspend_completed(false /* !called_by_wait */,
2303                                  SuspendRetryDelay, &debug_bits)) {
2304       return;
2305     }
2306   }
2307 
2308   VM_ForceSafepoint vm_suspend;
2309   VMThread::execute(&vm_suspend);
2310 }
2311 
2312 // Part II of external suspension.
2313 // A JavaThread self suspends when it detects a pending external suspend
2314 // request. This is usually on transitions. It is also done in places
2315 // where continuing to the next transition would surprise the caller,
2316 // e.g., monitor entry.
2317 //
2318 // Returns the number of times that the thread self-suspended.
2319 //
2320 // Note: DO NOT call java_suspend_self() when you just want to block current
2321 //       thread. java_suspend_self() is the second stage of cooperative
2322 //       suspension for external suspend requests and should only be used
2323 //       to complete an external suspend request.
2324 //
2325 int JavaThread::java_suspend_self() {
2326   int ret = 0;
2327 
2328   // we are in the process of exiting so don't suspend
2329   if (is_exiting()) {
2330     clear_external_suspend();
2331     return ret;
2332   }
2333 
2334   assert(_anchor.walkable() ||
2335          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2336          "must have walkable stack");
2337 
2338   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2339 
2340   assert(!this->is_ext_suspended(),
2341          "a thread trying to self-suspend should not already be suspended");
2342 
2343   if (this->is_suspend_equivalent()) {
2344     // If we are self-suspending as a result of the lifting of a
2345     // suspend equivalent condition, then the suspend_equivalent
2346     // flag is not cleared until we set the ext_suspended flag so
2347     // that wait_for_ext_suspend_completion() returns consistent
2348     // results.
2349     this->clear_suspend_equivalent();
2350   }
2351 
2352   // A racing resume may have cancelled us before we grabbed SR_lock
2353   // above. Or another external suspend request could be waiting for us
2354   // by the time we return from SR_lock()->wait(). The thread
2355   // that requested the suspension may already be trying to walk our
2356   // stack and if we return now, we can change the stack out from under
2357   // it. This would be a "bad thing (TM)" and cause the stack walker
2358   // to crash. We stay self-suspended until there are no more pending
2359   // external suspend requests.
2360   while (is_external_suspend()) {
2361     ret++;
2362     this->set_ext_suspended();
2363 
2364     // _ext_suspended flag is cleared by java_resume()
2365     while (is_ext_suspended()) {
2366       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2367     }
2368   }
2369 
2370   return ret;
2371 }
2372 
2373 #ifdef ASSERT
2374 // verify the JavaThread has not yet been published in the Threads::list, and
2375 // hence doesn't need protection from concurrent access at this stage
2376 void JavaThread::verify_not_published() {
2377   if (!Threads_lock->owned_by_self()) {
2378     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2379     assert(!Threads::includes(this),
2380            "java thread shouldn't have been published yet!");
2381   } else {
2382     assert(!Threads::includes(this),
2383            "java thread shouldn't have been published yet!");
2384   }
2385 }
2386 #endif
2387 
2388 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2389 // progress or when _suspend_flags is non-zero.
2390 // Current thread needs to self-suspend if there is a suspend request and/or
2391 // block if a safepoint is in progress.
2392 // Async exception ISN'T checked.
2393 // Note only the ThreadInVMfromNative transition can call this function
2394 // directly and when thread state is _thread_in_native_trans
2395 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2396   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2397 
2398   JavaThread *curJT = JavaThread::current();
2399   bool do_self_suspend = thread->is_external_suspend();
2400 
2401   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2402 
2403   // If JNIEnv proxies are allowed, don't self-suspend if the target
2404   // thread is not the current thread. In older versions of jdbx, jdbx
2405   // threads could call into the VM with another thread's JNIEnv so we
2406   // can be here operating on behalf of a suspended thread (4432884).
2407   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2408     JavaThreadState state = thread->thread_state();
2409 
2410     // We mark this thread_blocked state as a suspend-equivalent so
2411     // that a caller to is_ext_suspend_completed() won't be confused.
2412     // The suspend-equivalent state is cleared by java_suspend_self().
2413     thread->set_suspend_equivalent();
2414 
2415     // If the safepoint code sees the _thread_in_native_trans state, it will
2416     // wait until the thread changes to other thread state. There is no
2417     // guarantee on how soon we can obtain the SR_lock and complete the
2418     // self-suspend request. It would be a bad idea to let safepoint wait for
2419     // too long. Temporarily change the state to _thread_blocked to
2420     // let the VM thread know that this thread is ready for GC. The problem
2421     // of changing thread state is that safepoint could happen just after
2422     // java_suspend_self() returns after being resumed, and VM thread will
2423     // see the _thread_blocked state. We must check for safepoint
2424     // after restoring the state and make sure we won't leave while a safepoint
2425     // is in progress.
2426     thread->set_thread_state(_thread_blocked);
2427     thread->java_suspend_self();
2428     thread->set_thread_state(state);
2429     // Make sure new state is seen by VM thread
2430     if (os::is_MP()) {
2431       if (UseMembar) {
2432         // Force a fence between the write above and read below
2433         OrderAccess::fence();
2434       } else {
2435         // Must use this rather than serialization page in particular on Windows
2436         InterfaceSupport::serialize_memory(thread);
2437       }
2438     }
2439   }
2440 
2441   if (SafepointSynchronize::do_call_back()) {
2442     // If we are safepointing, then block the caller which may not be
2443     // the same as the target thread (see above).
2444     SafepointSynchronize::block(curJT);
2445   }
2446 
2447   if (thread->is_deopt_suspend()) {
2448     thread->clear_deopt_suspend();
2449     RegisterMap map(thread, false);
2450     frame f = thread->last_frame();
2451     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2452       f = f.sender(&map);
2453     }
2454     if (f.id() == thread->must_deopt_id()) {
2455       thread->clear_must_deopt_id();
2456       f.deoptimize(thread);
2457     } else {
2458       fatal("missed deoptimization!");
2459     }
2460   }
2461 }
2462 
2463 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2464 // progress or when _suspend_flags is non-zero.
2465 // Current thread needs to self-suspend if there is a suspend request and/or
2466 // block if a safepoint is in progress.
2467 // Also check for pending async exception (not including unsafe access error).
2468 // Note only the native==>VM/Java barriers can call this function and when
2469 // thread state is _thread_in_native_trans.
2470 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2471   check_safepoint_and_suspend_for_native_trans(thread);
2472 
2473   if (thread->has_async_exception()) {
2474     // We are in _thread_in_native_trans state, don't handle unsafe
2475     // access error since that may block.
2476     thread->check_and_handle_async_exceptions(false);
2477   }
2478 }
2479 
2480 // This is a variant of the normal
2481 // check_special_condition_for_native_trans with slightly different
2482 // semantics for use by critical native wrappers.  It does all the
2483 // normal checks but also performs the transition back into
2484 // thread_in_Java state.  This is required so that critical natives
2485 // can potentially block and perform a GC if they are the last thread
2486 // exiting the GCLocker.
2487 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2488   check_special_condition_for_native_trans(thread);
2489 
2490   // Finish the transition
2491   thread->set_thread_state(_thread_in_Java);
2492 
2493   if (thread->do_critical_native_unlock()) {
2494     ThreadInVMfromJavaNoAsyncException tiv(thread);
2495     GCLocker::unlock_critical(thread);
2496     thread->clear_critical_native_unlock();
2497   }
2498 }
2499 
2500 // We need to guarantee the Threads_lock here, since resumes are not
2501 // allowed during safepoint synchronization
2502 // Can only resume from an external suspension
2503 void JavaThread::java_resume() {
2504   assert_locked_or_safepoint(Threads_lock);
2505 
2506   // Sanity check: thread is gone, has started exiting or the thread
2507   // was not externally suspended.
2508   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2509     return;
2510   }
2511 
2512   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2513 
2514   clear_external_suspend();
2515 
2516   if (is_ext_suspended()) {
2517     clear_ext_suspended();
2518     SR_lock()->notify_all();
2519   }
2520 }
2521 
2522 size_t JavaThread::_stack_red_zone_size = 0;
2523 size_t JavaThread::_stack_yellow_zone_size = 0;
2524 size_t JavaThread::_stack_reserved_zone_size = 0;
2525 size_t JavaThread::_stack_shadow_zone_size = 0;
2526 
2527 void JavaThread::create_stack_guard_pages() {
2528   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2529   address low_addr = stack_end();
2530   size_t len = stack_guard_zone_size();
2531 
2532   int must_commit = os::must_commit_stack_guard_pages();
2533   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2534 
2535   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2536     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2537     return;
2538   }
2539 
2540   if (os::guard_memory((char *) low_addr, len)) {
2541     _stack_guard_state = stack_guard_enabled;
2542   } else {
2543     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2544       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2545     if (os::uncommit_memory((char *) low_addr, len)) {
2546       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2547     }
2548     return;
2549   }
2550 
2551   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2552     PTR_FORMAT "-" PTR_FORMAT ".",
2553     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2554 }
2555 
2556 void JavaThread::remove_stack_guard_pages() {
2557   assert(Thread::current() == this, "from different thread");
2558   if (_stack_guard_state == stack_guard_unused) return;
2559   address low_addr = stack_end();
2560   size_t len = stack_guard_zone_size();
2561 
2562   if (os::must_commit_stack_guard_pages()) {
2563     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2564       _stack_guard_state = stack_guard_unused;
2565     } else {
2566       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2567         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2568       return;
2569     }
2570   } else {
2571     if (_stack_guard_state == stack_guard_unused) return;
2572     if (os::unguard_memory((char *) low_addr, len)) {
2573       _stack_guard_state = stack_guard_unused;
2574     } else {
2575       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2576         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2577       return;
2578     }
2579   }
2580 
2581   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2582     PTR_FORMAT "-" PTR_FORMAT ".",
2583     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2584 }
2585 
2586 void JavaThread::enable_stack_reserved_zone() {
2587   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2588   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2589 
2590   // The base notation is from the stack's point of view, growing downward.
2591   // We need to adjust it to work correctly with guard_memory()
2592   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2593 
2594   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2595   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2596 
2597   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2598     _stack_guard_state = stack_guard_enabled;
2599   } else {
2600     warning("Attempt to guard stack reserved zone failed.");
2601   }
2602   enable_register_stack_guard();
2603 }
2604 
2605 void JavaThread::disable_stack_reserved_zone() {
2606   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2607   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2608 
2609   // Simply return if called for a thread that does not use guard pages.
2610   if (_stack_guard_state == stack_guard_unused) return;
2611 
2612   // The base notation is from the stack's point of view, growing downward.
2613   // We need to adjust it to work correctly with guard_memory()
2614   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2615 
2616   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2617     _stack_guard_state = stack_guard_reserved_disabled;
2618   } else {
2619     warning("Attempt to unguard stack reserved zone failed.");
2620   }
2621   disable_register_stack_guard();
2622 }
2623 
2624 void JavaThread::enable_stack_yellow_reserved_zone() {
2625   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2626   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2627 
2628   // The base notation is from the stacks point of view, growing downward.
2629   // We need to adjust it to work correctly with guard_memory()
2630   address base = stack_red_zone_base();
2631 
2632   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2633   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2634 
2635   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2636     _stack_guard_state = stack_guard_enabled;
2637   } else {
2638     warning("Attempt to guard stack yellow zone failed.");
2639   }
2640   enable_register_stack_guard();
2641 }
2642 
2643 void JavaThread::disable_stack_yellow_reserved_zone() {
2644   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2645   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2646 
2647   // Simply return if called for a thread that does not use guard pages.
2648   if (_stack_guard_state == stack_guard_unused) return;
2649 
2650   // The base notation is from the stacks point of view, growing downward.
2651   // We need to adjust it to work correctly with guard_memory()
2652   address base = stack_red_zone_base();
2653 
2654   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2655     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2656   } else {
2657     warning("Attempt to unguard stack yellow zone failed.");
2658   }
2659   disable_register_stack_guard();
2660 }
2661 
2662 void JavaThread::enable_stack_red_zone() {
2663   // The base notation is from the stacks point of view, growing downward.
2664   // We need to adjust it to work correctly with guard_memory()
2665   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2666   address base = stack_red_zone_base() - stack_red_zone_size();
2667 
2668   guarantee(base < stack_base(), "Error calculating stack red zone");
2669   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2670 
2671   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2672     warning("Attempt to guard stack red zone failed.");
2673   }
2674 }
2675 
2676 void JavaThread::disable_stack_red_zone() {
2677   // The base notation is from the stacks point of view, growing downward.
2678   // We need to adjust it to work correctly with guard_memory()
2679   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2680   address base = stack_red_zone_base() - stack_red_zone_size();
2681   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2682     warning("Attempt to unguard stack red zone failed.");
2683   }
2684 }
2685 
2686 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2687   // ignore is there is no stack
2688   if (!has_last_Java_frame()) return;
2689   // traverse the stack frames. Starts from top frame.
2690   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2691     frame* fr = fst.current();
2692     f(fr, fst.register_map());
2693   }
2694 }
2695 
2696 
2697 #ifndef PRODUCT
2698 // Deoptimization
2699 // Function for testing deoptimization
2700 void JavaThread::deoptimize() {
2701   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2702   StackFrameStream fst(this, UseBiasedLocking);
2703   bool deopt = false;           // Dump stack only if a deopt actually happens.
2704   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2705   // Iterate over all frames in the thread and deoptimize
2706   for (; !fst.is_done(); fst.next()) {
2707     if (fst.current()->can_be_deoptimized()) {
2708 
2709       if (only_at) {
2710         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2711         // consists of comma or carriage return separated numbers so
2712         // search for the current bci in that string.
2713         address pc = fst.current()->pc();
2714         nmethod* nm =  (nmethod*) fst.current()->cb();
2715         ScopeDesc* sd = nm->scope_desc_at(pc);
2716         char buffer[8];
2717         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2718         size_t len = strlen(buffer);
2719         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2720         while (found != NULL) {
2721           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2722               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2723             // Check that the bci found is bracketed by terminators.
2724             break;
2725           }
2726           found = strstr(found + 1, buffer);
2727         }
2728         if (!found) {
2729           continue;
2730         }
2731       }
2732 
2733       if (DebugDeoptimization && !deopt) {
2734         deopt = true; // One-time only print before deopt
2735         tty->print_cr("[BEFORE Deoptimization]");
2736         trace_frames();
2737         trace_stack();
2738       }
2739       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2740     }
2741   }
2742 
2743   if (DebugDeoptimization && deopt) {
2744     tty->print_cr("[AFTER Deoptimization]");
2745     trace_frames();
2746   }
2747 }
2748 
2749 
2750 // Make zombies
2751 void JavaThread::make_zombies() {
2752   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2753     if (fst.current()->can_be_deoptimized()) {
2754       // it is a Java nmethod
2755       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2756       nm->make_not_entrant();
2757     }
2758   }
2759 }
2760 #endif // PRODUCT
2761 
2762 
2763 void JavaThread::deoptimized_wrt_marked_nmethods() {
2764   if (!has_last_Java_frame()) return;
2765   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2766   StackFrameStream fst(this, UseBiasedLocking);
2767   for (; !fst.is_done(); fst.next()) {
2768     if (fst.current()->should_be_deoptimized()) {
2769       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2770     }
2771   }
2772 }
2773 
2774 
2775 // If the caller is a NamedThread, then remember, in the current scope,
2776 // the given JavaThread in its _processed_thread field.
2777 class RememberProcessedThread: public StackObj {
2778   NamedThread* _cur_thr;
2779  public:
2780   RememberProcessedThread(JavaThread* jthr) {
2781     Thread* thread = Thread::current();
2782     if (thread->is_Named_thread()) {
2783       _cur_thr = (NamedThread *)thread;
2784       _cur_thr->set_processed_thread(jthr);
2785     } else {
2786       _cur_thr = NULL;
2787     }
2788   }
2789 
2790   ~RememberProcessedThread() {
2791     if (_cur_thr) {
2792       _cur_thr->set_processed_thread(NULL);
2793     }
2794   }
2795 };
2796 
2797 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2798   // Verify that the deferred card marks have been flushed.
2799   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2800 
2801   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2802   // since there may be more than one thread using each ThreadProfiler.
2803 
2804   // Traverse the GCHandles
2805   Thread::oops_do(f, cf);
2806 
2807   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2808 
2809   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2810          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2811 
2812   if (has_last_Java_frame()) {
2813     // Record JavaThread to GC thread
2814     RememberProcessedThread rpt(this);
2815 
2816     // Traverse the privileged stack
2817     if (_privileged_stack_top != NULL) {
2818       _privileged_stack_top->oops_do(f);
2819     }
2820 
2821     // traverse the registered growable array
2822     if (_array_for_gc != NULL) {
2823       for (int index = 0; index < _array_for_gc->length(); index++) {
2824         f->do_oop(_array_for_gc->adr_at(index));
2825       }
2826     }
2827 
2828     // Traverse the monitor chunks
2829     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2830       chunk->oops_do(f);
2831     }
2832 
2833     // Traverse the execution stack
2834     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2835       fst.current()->oops_do(f, cf, fst.register_map());
2836     }
2837   }
2838 
2839   // callee_target is never live across a gc point so NULL it here should
2840   // it still contain a methdOop.
2841 
2842   set_callee_target(NULL);
2843 
2844   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2845   // If we have deferred set_locals there might be oops waiting to be
2846   // written
2847   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2848   if (list != NULL) {
2849     for (int i = 0; i < list->length(); i++) {
2850       list->at(i)->oops_do(f);
2851     }
2852   }
2853 
2854   // Traverse instance variables at the end since the GC may be moving things
2855   // around using this function
2856   f->do_oop((oop*) &_threadObj);
2857   f->do_oop((oop*) &_vm_result);
2858   f->do_oop((oop*) &_exception_oop);
2859   f->do_oop((oop*) &_pending_async_exception);
2860 
2861   if (jvmti_thread_state() != NULL) {
2862     jvmti_thread_state()->oops_do(f);
2863   }
2864 }
2865 
2866 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2867   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2868          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2869 
2870   if (has_last_Java_frame()) {
2871     // Traverse the execution stack
2872     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2873       fst.current()->nmethods_do(cf);
2874     }
2875   }
2876 }
2877 
2878 void JavaThread::metadata_do(void f(Metadata*)) {
2879   if (has_last_Java_frame()) {
2880     // Traverse the execution stack to call f() on the methods in the stack
2881     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2882       fst.current()->metadata_do(f);
2883     }
2884   } else if (is_Compiler_thread()) {
2885     // need to walk ciMetadata in current compile tasks to keep alive.
2886     CompilerThread* ct = (CompilerThread*)this;
2887     if (ct->env() != NULL) {
2888       ct->env()->metadata_do(f);
2889     }
2890     if (ct->task() != NULL) {
2891       ct->task()->metadata_do(f);
2892     }
2893   }
2894 }
2895 
2896 // Printing
2897 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2898   switch (_thread_state) {
2899   case _thread_uninitialized:     return "_thread_uninitialized";
2900   case _thread_new:               return "_thread_new";
2901   case _thread_new_trans:         return "_thread_new_trans";
2902   case _thread_in_native:         return "_thread_in_native";
2903   case _thread_in_native_trans:   return "_thread_in_native_trans";
2904   case _thread_in_vm:             return "_thread_in_vm";
2905   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2906   case _thread_in_Java:           return "_thread_in_Java";
2907   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2908   case _thread_blocked:           return "_thread_blocked";
2909   case _thread_blocked_trans:     return "_thread_blocked_trans";
2910   default:                        return "unknown thread state";
2911   }
2912 }
2913 
2914 #ifndef PRODUCT
2915 void JavaThread::print_thread_state_on(outputStream *st) const {
2916   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2917 };
2918 void JavaThread::print_thread_state() const {
2919   print_thread_state_on(tty);
2920 }
2921 #endif // PRODUCT
2922 
2923 // Called by Threads::print() for VM_PrintThreads operation
2924 void JavaThread::print_on(outputStream *st) const {
2925   st->print_raw("\"");
2926   st->print_raw(get_thread_name());
2927   st->print_raw("\" ");
2928   oop thread_oop = threadObj();
2929   if (thread_oop != NULL) {
2930     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2931     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2932     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2933   }
2934   Thread::print_on(st);
2935   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2936   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2937   if (thread_oop != NULL) {
2938     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2939   }
2940 #ifndef PRODUCT
2941   print_thread_state_on(st);
2942   _safepoint_state->print_on(st);
2943 #endif // PRODUCT
2944   if (is_Compiler_thread()) {
2945     CompilerThread* ct = (CompilerThread*)this;
2946     if (ct->task() != NULL) {
2947       st->print("   Compiling: ");
2948       ct->task()->print(st, NULL, true, false);
2949     } else {
2950       st->print("   No compile task");
2951     }
2952     st->cr();
2953   }
2954 }
2955 
2956 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2957   st->print("%s", get_thread_name_string(buf, buflen));
2958 }
2959 
2960 // Called by fatal error handler. The difference between this and
2961 // JavaThread::print() is that we can't grab lock or allocate memory.
2962 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2963   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2964   oop thread_obj = threadObj();
2965   if (thread_obj != NULL) {
2966     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2967   }
2968   st->print(" [");
2969   st->print("%s", _get_thread_state_name(_thread_state));
2970   if (osthread()) {
2971     st->print(", id=%d", osthread()->thread_id());
2972   }
2973   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2974             p2i(stack_end()), p2i(stack_base()));
2975   st->print("]");
2976   return;
2977 }
2978 
2979 // Verification
2980 
2981 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2982 
2983 void JavaThread::verify() {
2984   // Verify oops in the thread.
2985   oops_do(&VerifyOopClosure::verify_oop, NULL);
2986 
2987   // Verify the stack frames.
2988   frames_do(frame_verify);
2989 }
2990 
2991 // CR 6300358 (sub-CR 2137150)
2992 // Most callers of this method assume that it can't return NULL but a
2993 // thread may not have a name whilst it is in the process of attaching to
2994 // the VM - see CR 6412693, and there are places where a JavaThread can be
2995 // seen prior to having it's threadObj set (eg JNI attaching threads and
2996 // if vm exit occurs during initialization). These cases can all be accounted
2997 // for such that this method never returns NULL.
2998 const char* JavaThread::get_thread_name() const {
2999 #ifdef ASSERT
3000   // early safepoints can hit while current thread does not yet have TLS
3001   if (!SafepointSynchronize::is_at_safepoint()) {
3002     Thread *cur = Thread::current();
3003     if (!(cur->is_Java_thread() && cur == this)) {
3004       // Current JavaThreads are allowed to get their own name without
3005       // the Threads_lock.
3006       assert_locked_or_safepoint(Threads_lock);
3007     }
3008   }
3009 #endif // ASSERT
3010   return get_thread_name_string();
3011 }
3012 
3013 // Returns a non-NULL representation of this thread's name, or a suitable
3014 // descriptive string if there is no set name
3015 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3016   const char* name_str;
3017   oop thread_obj = threadObj();
3018   if (thread_obj != NULL) {
3019     oop name = java_lang_Thread::name(thread_obj);
3020     if (name != NULL) {
3021       if (buf == NULL) {
3022         name_str = java_lang_String::as_utf8_string(name);
3023       } else {
3024         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3025       }
3026     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3027       name_str = "<no-name - thread is attaching>";
3028     } else {
3029       name_str = Thread::name();
3030     }
3031   } else {
3032     name_str = Thread::name();
3033   }
3034   assert(name_str != NULL, "unexpected NULL thread name");
3035   return name_str;
3036 }
3037 
3038 
3039 const char* JavaThread::get_threadgroup_name() const {
3040   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3041   oop thread_obj = threadObj();
3042   if (thread_obj != NULL) {
3043     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3044     if (thread_group != NULL) {
3045       // ThreadGroup.name can be null
3046       return java_lang_ThreadGroup::name(thread_group);
3047     }
3048   }
3049   return NULL;
3050 }
3051 
3052 const char* JavaThread::get_parent_name() const {
3053   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3054   oop thread_obj = threadObj();
3055   if (thread_obj != NULL) {
3056     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3057     if (thread_group != NULL) {
3058       oop parent = java_lang_ThreadGroup::parent(thread_group);
3059       if (parent != NULL) {
3060         // ThreadGroup.name can be null
3061         return java_lang_ThreadGroup::name(parent);
3062       }
3063     }
3064   }
3065   return NULL;
3066 }
3067 
3068 ThreadPriority JavaThread::java_priority() const {
3069   oop thr_oop = threadObj();
3070   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3071   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3072   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3073   return priority;
3074 }
3075 
3076 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3077 
3078   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3079   // Link Java Thread object <-> C++ Thread
3080 
3081   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3082   // and put it into a new Handle.  The Handle "thread_oop" can then
3083   // be used to pass the C++ thread object to other methods.
3084 
3085   // Set the Java level thread object (jthread) field of the
3086   // new thread (a JavaThread *) to C++ thread object using the
3087   // "thread_oop" handle.
3088 
3089   // Set the thread field (a JavaThread *) of the
3090   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3091 
3092   Handle thread_oop(Thread::current(),
3093                     JNIHandles::resolve_non_null(jni_thread));
3094   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3095          "must be initialized");
3096   set_threadObj(thread_oop());
3097   java_lang_Thread::set_thread(thread_oop(), this);
3098 
3099   if (prio == NoPriority) {
3100     prio = java_lang_Thread::priority(thread_oop());
3101     assert(prio != NoPriority, "A valid priority should be present");
3102   }
3103 
3104   // Push the Java priority down to the native thread; needs Threads_lock
3105   Thread::set_priority(this, prio);
3106 
3107   prepare_ext();
3108 
3109   // Add the new thread to the Threads list and set it in motion.
3110   // We must have threads lock in order to call Threads::add.
3111   // It is crucial that we do not block before the thread is
3112   // added to the Threads list for if a GC happens, then the java_thread oop
3113   // will not be visited by GC.
3114   Threads::add(this);
3115 }
3116 
3117 oop JavaThread::current_park_blocker() {
3118   // Support for JSR-166 locks
3119   oop thread_oop = threadObj();
3120   if (thread_oop != NULL &&
3121       JDK_Version::current().supports_thread_park_blocker()) {
3122     return java_lang_Thread::park_blocker(thread_oop);
3123   }
3124   return NULL;
3125 }
3126 
3127 
3128 void JavaThread::print_stack_on(outputStream* st) {
3129   if (!has_last_Java_frame()) return;
3130   ResourceMark rm;
3131   HandleMark   hm;
3132 
3133   RegisterMap reg_map(this);
3134   vframe* start_vf = last_java_vframe(&reg_map);
3135   int count = 0;
3136   for (vframe* f = start_vf; f; f = f->sender()) {
3137     if (f->is_java_frame()) {
3138       javaVFrame* jvf = javaVFrame::cast(f);
3139       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3140 
3141       // Print out lock information
3142       if (JavaMonitorsInStackTrace) {
3143         jvf->print_lock_info_on(st, count);
3144       }
3145     } else {
3146       // Ignore non-Java frames
3147     }
3148 
3149     // Bail-out case for too deep stacks
3150     count++;
3151     if (MaxJavaStackTraceDepth == count) return;
3152   }
3153 }
3154 
3155 
3156 // JVMTI PopFrame support
3157 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3158   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3159   if (in_bytes(size_in_bytes) != 0) {
3160     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3161     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3162     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3163   }
3164 }
3165 
3166 void* JavaThread::popframe_preserved_args() {
3167   return _popframe_preserved_args;
3168 }
3169 
3170 ByteSize JavaThread::popframe_preserved_args_size() {
3171   return in_ByteSize(_popframe_preserved_args_size);
3172 }
3173 
3174 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3175   int sz = in_bytes(popframe_preserved_args_size());
3176   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3177   return in_WordSize(sz / wordSize);
3178 }
3179 
3180 void JavaThread::popframe_free_preserved_args() {
3181   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3182   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3183   _popframe_preserved_args = NULL;
3184   _popframe_preserved_args_size = 0;
3185 }
3186 
3187 #ifndef PRODUCT
3188 
3189 void JavaThread::trace_frames() {
3190   tty->print_cr("[Describe stack]");
3191   int frame_no = 1;
3192   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3193     tty->print("  %d. ", frame_no++);
3194     fst.current()->print_value_on(tty, this);
3195     tty->cr();
3196   }
3197 }
3198 
3199 class PrintAndVerifyOopClosure: public OopClosure {
3200  protected:
3201   template <class T> inline void do_oop_work(T* p) {
3202     oop obj = oopDesc::load_decode_heap_oop(p);
3203     if (obj == NULL) return;
3204     tty->print(INTPTR_FORMAT ": ", p2i(p));
3205     if (obj->is_oop_or_null()) {
3206       if (obj->is_objArray()) {
3207         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3208       } else {
3209         obj->print();
3210       }
3211     } else {
3212       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3213     }
3214     tty->cr();
3215   }
3216  public:
3217   virtual void do_oop(oop* p) { do_oop_work(p); }
3218   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3219 };
3220 
3221 
3222 static void oops_print(frame* f, const RegisterMap *map) {
3223   PrintAndVerifyOopClosure print;
3224   f->print_value();
3225   f->oops_do(&print, NULL, (RegisterMap*)map);
3226 }
3227 
3228 // Print our all the locations that contain oops and whether they are
3229 // valid or not.  This useful when trying to find the oldest frame
3230 // where an oop has gone bad since the frame walk is from youngest to
3231 // oldest.
3232 void JavaThread::trace_oops() {
3233   tty->print_cr("[Trace oops]");
3234   frames_do(oops_print);
3235 }
3236 
3237 
3238 #ifdef ASSERT
3239 // Print or validate the layout of stack frames
3240 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3241   ResourceMark rm;
3242   PRESERVE_EXCEPTION_MARK;
3243   FrameValues values;
3244   int frame_no = 0;
3245   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3246     fst.current()->describe(values, ++frame_no);
3247     if (depth == frame_no) break;
3248   }
3249   if (validate_only) {
3250     values.validate();
3251   } else {
3252     tty->print_cr("[Describe stack layout]");
3253     values.print(this);
3254   }
3255 }
3256 #endif
3257 
3258 void JavaThread::trace_stack_from(vframe* start_vf) {
3259   ResourceMark rm;
3260   int vframe_no = 1;
3261   for (vframe* f = start_vf; f; f = f->sender()) {
3262     if (f->is_java_frame()) {
3263       javaVFrame::cast(f)->print_activation(vframe_no++);
3264     } else {
3265       f->print();
3266     }
3267     if (vframe_no > StackPrintLimit) {
3268       tty->print_cr("...<more frames>...");
3269       return;
3270     }
3271   }
3272 }
3273 
3274 
3275 void JavaThread::trace_stack() {
3276   if (!has_last_Java_frame()) return;
3277   ResourceMark rm;
3278   HandleMark   hm;
3279   RegisterMap reg_map(this);
3280   trace_stack_from(last_java_vframe(&reg_map));
3281 }
3282 
3283 
3284 #endif // PRODUCT
3285 
3286 
3287 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3288   assert(reg_map != NULL, "a map must be given");
3289   frame f = last_frame();
3290   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3291     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3292   }
3293   return NULL;
3294 }
3295 
3296 
3297 Klass* JavaThread::security_get_caller_class(int depth) {
3298   vframeStream vfst(this);
3299   vfst.security_get_caller_frame(depth);
3300   if (!vfst.at_end()) {
3301     return vfst.method()->method_holder();
3302   }
3303   return NULL;
3304 }
3305 
3306 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3307   assert(thread->is_Compiler_thread(), "must be compiler thread");
3308   CompileBroker::compiler_thread_loop();
3309 }
3310 
3311 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3312   NMethodSweeper::sweeper_loop();
3313 }
3314 
3315 // Create a CompilerThread
3316 CompilerThread::CompilerThread(CompileQueue* queue,
3317                                CompilerCounters* counters)
3318                                : JavaThread(&compiler_thread_entry) {
3319   _env   = NULL;
3320   _log   = NULL;
3321   _task  = NULL;
3322   _queue = queue;
3323   _counters = counters;
3324   _buffer_blob = NULL;
3325   _compiler = NULL;
3326 
3327 #ifndef PRODUCT
3328   _ideal_graph_printer = NULL;
3329 #endif
3330 }
3331 
3332 bool CompilerThread::can_call_java() const {
3333   return _compiler != NULL && _compiler->is_jvmci();
3334 }
3335 
3336 // Create sweeper thread
3337 CodeCacheSweeperThread::CodeCacheSweeperThread()
3338 : JavaThread(&sweeper_thread_entry) {
3339   _scanned_compiled_method = NULL;
3340 }
3341 
3342 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3343   JavaThread::oops_do(f, cf);
3344   if (_scanned_compiled_method != NULL && cf != NULL) {
3345     // Safepoints can occur when the sweeper is scanning an nmethod so
3346     // process it here to make sure it isn't unloaded in the middle of
3347     // a scan.
3348     cf->do_code_blob(_scanned_compiled_method);
3349   }
3350 }
3351 
3352 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3353   JavaThread::nmethods_do(cf);
3354   if (_scanned_compiled_method != NULL && cf != NULL) {
3355     // Safepoints can occur when the sweeper is scanning an nmethod so
3356     // process it here to make sure it isn't unloaded in the middle of
3357     // a scan.
3358     cf->do_code_blob(_scanned_compiled_method);
3359   }
3360 }
3361 
3362 
3363 // ======= Threads ========
3364 
3365 // The Threads class links together all active threads, and provides
3366 // operations over all threads.  It is protected by its own Mutex
3367 // lock, which is also used in other contexts to protect thread
3368 // operations from having the thread being operated on from exiting
3369 // and going away unexpectedly (e.g., safepoint synchronization)
3370 
3371 JavaThread* Threads::_thread_list = NULL;
3372 int         Threads::_number_of_threads = 0;
3373 int         Threads::_number_of_non_daemon_threads = 0;
3374 int         Threads::_return_code = 0;
3375 int         Threads::_thread_claim_parity = 0;
3376 size_t      JavaThread::_stack_size_at_create = 0;
3377 #ifdef ASSERT
3378 bool        Threads::_vm_complete = false;
3379 #endif
3380 
3381 // All JavaThreads
3382 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3383 
3384 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3385 void Threads::threads_do(ThreadClosure* tc) {
3386   assert_locked_or_safepoint(Threads_lock);
3387   // ALL_JAVA_THREADS iterates through all JavaThreads
3388   ALL_JAVA_THREADS(p) {
3389     tc->do_thread(p);
3390   }
3391   // Someday we could have a table or list of all non-JavaThreads.
3392   // For now, just manually iterate through them.
3393   tc->do_thread(VMThread::vm_thread());
3394   Universe::heap()->gc_threads_do(tc);
3395   WatcherThread *wt = WatcherThread::watcher_thread();
3396   // Strictly speaking, the following NULL check isn't sufficient to make sure
3397   // the data for WatcherThread is still valid upon being examined. However,
3398   // considering that WatchThread terminates when the VM is on the way to
3399   // exit at safepoint, the chance of the above is extremely small. The right
3400   // way to prevent termination of WatcherThread would be to acquire
3401   // Terminator_lock, but we can't do that without violating the lock rank
3402   // checking in some cases.
3403   if (wt != NULL) {
3404     tc->do_thread(wt);
3405   }
3406 
3407   // If CompilerThreads ever become non-JavaThreads, add them here
3408 }
3409 
3410 // The system initialization in the library has three phases.
3411 //
3412 // Phase 1: java.lang.System class initialization
3413 //     java.lang.System is a primordial class loaded and initialized
3414 //     by the VM early during startup.  java.lang.System.<clinit>
3415 //     only does registerNatives and keeps the rest of the class
3416 //     initialization work later until thread initialization completes.
3417 //
3418 //     System.initPhase1 initializes the system properties, the static
3419 //     fields in, out, and err. Set up java signal handlers, OS-specific
3420 //     system settings, and thread group of the main thread.
3421 static void call_initPhase1(TRAPS) {
3422   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3423   instanceKlassHandle klass (THREAD, k);
3424 
3425   JavaValue result(T_VOID);
3426   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3427                                          vmSymbols::void_method_signature(), CHECK);
3428 }
3429 
3430 // Phase 2. Module system initialization
3431 //     This will initialize the module system.  Only java.base classes
3432 //     can be loaded until phase 2 completes.
3433 //
3434 //     Call System.initPhase2 after the compiler initialization and jsr292
3435 //     classes get initialized because module initialization runs a lot of java
3436 //     code, that for performance reasons, should be compiled.  Also, this will
3437 //     enable the startup code to use lambda and other language features in this
3438 //     phase and onward.
3439 //
3440 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3441 static void call_initPhase2(TRAPS) {
3442   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, module, startuptime));
3443 
3444   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3445   instanceKlassHandle klass (THREAD, k);
3446 
3447   JavaValue result(T_INT);
3448   JavaCallArguments args;
3449   args.push_int(DisplayVMOutputToStderr);
3450   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3451   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3452                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3453   if (result.get_jint() != JNI_OK) {
3454     vm_exit_during_initialization(); // no message or exception
3455   }
3456 
3457   universe_post_module_init();
3458 }
3459 
3460 // Phase 3. final setup - set security manager, system class loader and TCCL
3461 //
3462 //     This will instantiate and set the security manager, set the system class
3463 //     loader as well as the thread context class loader.  The security manager
3464 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3465 //     other modules or the application's classpath.
3466 static void call_initPhase3(TRAPS) {
3467   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3468   instanceKlassHandle klass (THREAD, k);
3469 
3470   JavaValue result(T_VOID);
3471   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3472                                          vmSymbols::void_method_signature(), CHECK);
3473 }
3474 
3475 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3476   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3477 
3478   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3479     create_vm_init_libraries();
3480   }
3481 
3482   initialize_class(vmSymbols::java_lang_String(), CHECK);
3483 
3484   // Inject CompactStrings value after the static initializers for String ran.
3485   java_lang_String::set_compact_strings(CompactStrings);
3486 
3487   // Initialize java_lang.System (needed before creating the thread)
3488   initialize_class(vmSymbols::java_lang_System(), CHECK);
3489   // The VM creates & returns objects of this class. Make sure it's initialized.
3490   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3491   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3492   Handle thread_group = create_initial_thread_group(CHECK);
3493   Universe::set_main_thread_group(thread_group());
3494   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3495   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3496   main_thread->set_threadObj(thread_object);
3497   // Set thread status to running since main thread has
3498   // been started and running.
3499   java_lang_Thread::set_thread_status(thread_object,
3500                                       java_lang_Thread::RUNNABLE);
3501 
3502   // The VM creates objects of this class.
3503   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3504 
3505   // The VM preresolves methods to these classes. Make sure that they get initialized
3506   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3507   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3508 
3509   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3510   call_initPhase1(CHECK);
3511 
3512   // get the Java runtime name after java.lang.System is initialized
3513   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3514   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3515 
3516   // an instance of OutOfMemory exception has been allocated earlier
3517   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3518   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3519   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3520   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3521   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3522   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3523   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3524   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3525 }
3526 
3527 void Threads::initialize_jsr292_core_classes(TRAPS) {
3528   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3529 
3530   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3531   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3532   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3533 }
3534 
3535 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3536   extern void JDK_Version_init();
3537 
3538   // Preinitialize version info.
3539   VM_Version::early_initialize();
3540 
3541   // Check version
3542   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3543 
3544   // Initialize library-based TLS
3545   ThreadLocalStorage::init();
3546 
3547   // Initialize the output stream module
3548   ostream_init();
3549 
3550   // Process java launcher properties.
3551   Arguments::process_sun_java_launcher_properties(args);
3552 
3553   // Initialize the os module
3554   os::init();
3555 
3556   // Record VM creation timing statistics
3557   TraceVmCreationTime create_vm_timer;
3558   create_vm_timer.start();
3559 
3560   // Initialize system properties.
3561   Arguments::init_system_properties();
3562 
3563   // So that JDK version can be used as a discriminator when parsing arguments
3564   JDK_Version_init();
3565 
3566   // Update/Initialize System properties after JDK version number is known
3567   Arguments::init_version_specific_system_properties();
3568 
3569   // Make sure to initialize log configuration *before* parsing arguments
3570   LogConfiguration::initialize(create_vm_timer.begin_time());
3571 
3572   // Parse arguments
3573   jint parse_result = Arguments::parse(args);
3574   if (parse_result != JNI_OK) return parse_result;
3575 
3576   os::init_before_ergo();
3577 
3578   jint ergo_result = Arguments::apply_ergo();
3579   if (ergo_result != JNI_OK) return ergo_result;
3580 
3581   // Final check of all ranges after ergonomics which may change values.
3582   if (!CommandLineFlagRangeList::check_ranges()) {
3583     return JNI_EINVAL;
3584   }
3585 
3586   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3587   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3588   if (!constraint_result) {
3589     return JNI_EINVAL;
3590   }
3591 
3592   CommandLineFlagWriteableList::mark_startup();
3593 
3594   if (PauseAtStartup) {
3595     os::pause();
3596   }
3597 
3598   HOTSPOT_VM_INIT_BEGIN();
3599 
3600   // Timing (must come after argument parsing)
3601   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3602 
3603   // Initialize the os module after parsing the args
3604   jint os_init_2_result = os::init_2();
3605   if (os_init_2_result != JNI_OK) return os_init_2_result;
3606 
3607   jint adjust_after_os_result = Arguments::adjust_after_os();
3608   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3609 
3610   // Initialize output stream logging
3611   ostream_init_log();
3612 
3613   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3614   // Must be before create_vm_init_agents()
3615   if (Arguments::init_libraries_at_startup()) {
3616     convert_vm_init_libraries_to_agents();
3617   }
3618 
3619   // Launch -agentlib/-agentpath and converted -Xrun agents
3620   if (Arguments::init_agents_at_startup()) {
3621     create_vm_init_agents();
3622   }
3623 
3624   // Initialize Threads state
3625   _thread_list = NULL;
3626   _number_of_threads = 0;
3627   _number_of_non_daemon_threads = 0;
3628 
3629   // Initialize global data structures and create system classes in heap
3630   vm_init_globals();
3631 
3632 #if INCLUDE_JVMCI
3633   if (JVMCICounterSize > 0) {
3634     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3635     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3636   } else {
3637     JavaThread::_jvmci_old_thread_counters = NULL;
3638   }
3639 #endif // INCLUDE_JVMCI
3640 
3641   // Attach the main thread to this os thread
3642   JavaThread* main_thread = new JavaThread();
3643   main_thread->set_thread_state(_thread_in_vm);
3644   main_thread->initialize_thread_current();
3645   // must do this before set_active_handles
3646   main_thread->record_stack_base_and_size();
3647   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3648 
3649   if (!main_thread->set_as_starting_thread()) {
3650     vm_shutdown_during_initialization(
3651                                       "Failed necessary internal allocation. Out of swap space");
3652     delete main_thread;
3653     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3654     return JNI_ENOMEM;
3655   }
3656 
3657   // Enable guard page *after* os::create_main_thread(), otherwise it would
3658   // crash Linux VM, see notes in os_linux.cpp.
3659   main_thread->create_stack_guard_pages();
3660 
3661   // Initialize Java-Level synchronization subsystem
3662   ObjectMonitor::Initialize();
3663 
3664   // Initialize global modules
3665   jint status = init_globals();
3666   if (status != JNI_OK) {
3667     delete main_thread;
3668     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3669     return status;
3670   }
3671 
3672   if (TRACE_INITIALIZE() != JNI_OK) {
3673     vm_exit_during_initialization("Failed to initialize tracing backend");
3674   }
3675 
3676   // Should be done after the heap is fully created
3677   main_thread->cache_global_variables();
3678 
3679   HandleMark hm;
3680 
3681   { MutexLocker mu(Threads_lock);
3682     Threads::add(main_thread);
3683   }
3684 
3685   // Any JVMTI raw monitors entered in onload will transition into
3686   // real raw monitor. VM is setup enough here for raw monitor enter.
3687   JvmtiExport::transition_pending_onload_raw_monitors();
3688 
3689   // Create the VMThread
3690   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3691 
3692   VMThread::create();
3693     Thread* vmthread = VMThread::vm_thread();
3694 
3695     if (!os::create_thread(vmthread, os::vm_thread)) {
3696       vm_exit_during_initialization("Cannot create VM thread. "
3697                                     "Out of system resources.");
3698     }
3699 
3700     // Wait for the VM thread to become ready, and VMThread::run to initialize
3701     // Monitors can have spurious returns, must always check another state flag
3702     {
3703       MutexLocker ml(Notify_lock);
3704       os::start_thread(vmthread);
3705       while (vmthread->active_handles() == NULL) {
3706         Notify_lock->wait();
3707       }
3708     }
3709   }
3710 
3711   assert(Universe::is_fully_initialized(), "not initialized");
3712   if (VerifyDuringStartup) {
3713     // Make sure we're starting with a clean slate.
3714     VM_Verify verify_op;
3715     VMThread::execute(&verify_op);
3716   }
3717 
3718   Thread* THREAD = Thread::current();
3719 
3720   // At this point, the Universe is initialized, but we have not executed
3721   // any byte code.  Now is a good time (the only time) to dump out the
3722   // internal state of the JVM for sharing.
3723   if (DumpSharedSpaces) {
3724     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3725     ShouldNotReachHere();
3726   }
3727 
3728   // Always call even when there are not JVMTI environments yet, since environments
3729   // may be attached late and JVMTI must track phases of VM execution
3730   JvmtiExport::enter_early_start_phase();
3731 
3732   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3733   JvmtiExport::post_early_vm_start();
3734 
3735   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3736 
3737   // We need this for ClassDataSharing - the initial vm.info property is set
3738   // with the default value of CDS "sharing" which may be reset through
3739   // command line options.
3740   reset_vm_info_property(CHECK_JNI_ERR);
3741 
3742   quicken_jni_functions();
3743 
3744   // No more stub generation allowed after that point.
3745   StubCodeDesc::freeze();
3746 
3747   // Set flag that basic initialization has completed. Used by exceptions and various
3748   // debug stuff, that does not work until all basic classes have been initialized.
3749   set_init_completed();
3750 
3751   LogConfiguration::post_initialize();
3752   Metaspace::post_initialize();
3753 
3754   HOTSPOT_VM_INIT_END();
3755 
3756   // record VM initialization completion time
3757 #if INCLUDE_MANAGEMENT
3758   Management::record_vm_init_completed();
3759 #endif // INCLUDE_MANAGEMENT
3760 
3761   // Signal Dispatcher needs to be started before VMInit event is posted
3762   os::signal_init();
3763 
3764   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3765   if (!DisableAttachMechanism) {
3766     AttachListener::vm_start();
3767     if (StartAttachListener || AttachListener::init_at_startup()) {
3768       AttachListener::init();
3769     }
3770   }
3771 
3772   // Launch -Xrun agents
3773   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3774   // back-end can launch with -Xdebug -Xrunjdwp.
3775   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3776     create_vm_init_libraries();
3777   }
3778 
3779   if (CleanChunkPoolAsync) {
3780     Chunk::start_chunk_pool_cleaner_task();
3781   }
3782 
3783   // initialize compiler(s)
3784 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3785   CompileBroker::compilation_init(CHECK_JNI_ERR);
3786 #endif
3787 
3788   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3789   // It is done after compilers are initialized, because otherwise compilations of
3790   // signature polymorphic MH intrinsics can be missed
3791   // (see SystemDictionary::find_method_handle_intrinsic).
3792   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3793 
3794   // This will initialize the module system.  Only java.base classes can be
3795   // loaded until phase 2 completes
3796   call_initPhase2(CHECK_JNI_ERR);
3797 
3798   // Always call even when there are not JVMTI environments yet, since environments
3799   // may be attached late and JVMTI must track phases of VM execution
3800   JvmtiExport::enter_start_phase();
3801 
3802   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3803   JvmtiExport::post_vm_start();
3804 
3805   // Final system initialization including security manager and system class loader
3806   call_initPhase3(CHECK_JNI_ERR);
3807 
3808   // cache the system class loader
3809   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3810 
3811 #if INCLUDE_JVMCI
3812   if (EnableJVMCI) {
3813     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3814     // The JVMCI Java initialization code will read this flag and
3815     // do the printing if it's set.
3816     bool init = JVMCIPrintProperties;
3817 
3818     if (!init) {
3819       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3820       // compilations via JVMCI will not actually block until JVMCI is initialized.
3821       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3822     }
3823 
3824     if (init) {
3825       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3826     }
3827   }
3828 #endif
3829 
3830   // Always call even when there are not JVMTI environments yet, since environments
3831   // may be attached late and JVMTI must track phases of VM execution
3832   JvmtiExport::enter_live_phase();
3833 
3834   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3835   JvmtiExport::post_vm_initialized();
3836 
3837   if (TRACE_START() != JNI_OK) {
3838     vm_exit_during_initialization("Failed to start tracing backend.");
3839   }
3840 
3841 #if INCLUDE_MANAGEMENT
3842   Management::initialize(THREAD);
3843 
3844   if (HAS_PENDING_EXCEPTION) {
3845     // management agent fails to start possibly due to
3846     // configuration problem and is responsible for printing
3847     // stack trace if appropriate. Simply exit VM.
3848     vm_exit(1);
3849   }
3850 #endif // INCLUDE_MANAGEMENT
3851 
3852   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3853   if (MemProfiling)                   MemProfiler::engage();
3854   StatSampler::engage();
3855   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3856 
3857   BiasedLocking::init();
3858 
3859 #if INCLUDE_RTM_OPT
3860   RTMLockingCounters::init();
3861 #endif
3862 
3863   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3864     call_postVMInitHook(THREAD);
3865     // The Java side of PostVMInitHook.run must deal with all
3866     // exceptions and provide means of diagnosis.
3867     if (HAS_PENDING_EXCEPTION) {
3868       CLEAR_PENDING_EXCEPTION;
3869     }
3870   }
3871 
3872   {
3873     MutexLocker ml(PeriodicTask_lock);
3874     // Make sure the WatcherThread can be started by WatcherThread::start()
3875     // or by dynamic enrollment.
3876     WatcherThread::make_startable();
3877     // Start up the WatcherThread if there are any periodic tasks
3878     // NOTE:  All PeriodicTasks should be registered by now. If they
3879     //   aren't, late joiners might appear to start slowly (we might
3880     //   take a while to process their first tick).
3881     if (PeriodicTask::num_tasks() > 0) {
3882       WatcherThread::start();
3883     }
3884   }
3885 
3886   create_vm_timer.end();
3887 #ifdef ASSERT
3888   _vm_complete = true;
3889 #endif
3890   return JNI_OK;
3891 }
3892 
3893 // type for the Agent_OnLoad and JVM_OnLoad entry points
3894 extern "C" {
3895   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3896 }
3897 // Find a command line agent library and return its entry point for
3898 //         -agentlib:  -agentpath:   -Xrun
3899 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3900 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3901                                     const char *on_load_symbols[],
3902                                     size_t num_symbol_entries) {
3903   OnLoadEntry_t on_load_entry = NULL;
3904   void *library = NULL;
3905 
3906   if (!agent->valid()) {
3907     char buffer[JVM_MAXPATHLEN];
3908     char ebuf[1024] = "";
3909     const char *name = agent->name();
3910     const char *msg = "Could not find agent library ";
3911 
3912     // First check to see if agent is statically linked into executable
3913     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3914       library = agent->os_lib();
3915     } else if (agent->is_absolute_path()) {
3916       library = os::dll_load(name, ebuf, sizeof ebuf);
3917       if (library == NULL) {
3918         const char *sub_msg = " in absolute path, with error: ";
3919         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3920         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3921         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3922         // If we can't find the agent, exit.
3923         vm_exit_during_initialization(buf, NULL);
3924         FREE_C_HEAP_ARRAY(char, buf);
3925       }
3926     } else {
3927       // Try to load the agent from the standard dll directory
3928       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3929                              name)) {
3930         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3931       }
3932       if (library == NULL) { // Try the local directory
3933         char ns[1] = {0};
3934         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3935           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3936         }
3937         if (library == NULL) {
3938           const char *sub_msg = " on the library path, with error: ";
3939           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3940           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3941           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3942           // If we can't find the agent, exit.
3943           vm_exit_during_initialization(buf, NULL);
3944           FREE_C_HEAP_ARRAY(char, buf);
3945         }
3946       }
3947     }
3948     agent->set_os_lib(library);
3949     agent->set_valid();
3950   }
3951 
3952   // Find the OnLoad function.
3953   on_load_entry =
3954     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3955                                                           false,
3956                                                           on_load_symbols,
3957                                                           num_symbol_entries));
3958   return on_load_entry;
3959 }
3960 
3961 // Find the JVM_OnLoad entry point
3962 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3963   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3964   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3965 }
3966 
3967 // Find the Agent_OnLoad entry point
3968 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3969   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3970   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3971 }
3972 
3973 // For backwards compatibility with -Xrun
3974 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3975 // treated like -agentpath:
3976 // Must be called before agent libraries are created
3977 void Threads::convert_vm_init_libraries_to_agents() {
3978   AgentLibrary* agent;
3979   AgentLibrary* next;
3980 
3981   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3982     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3983     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3984 
3985     // If there is an JVM_OnLoad function it will get called later,
3986     // otherwise see if there is an Agent_OnLoad
3987     if (on_load_entry == NULL) {
3988       on_load_entry = lookup_agent_on_load(agent);
3989       if (on_load_entry != NULL) {
3990         // switch it to the agent list -- so that Agent_OnLoad will be called,
3991         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3992         Arguments::convert_library_to_agent(agent);
3993       } else {
3994         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3995       }
3996     }
3997   }
3998 }
3999 
4000 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4001 // Invokes Agent_OnLoad
4002 // Called very early -- before JavaThreads exist
4003 void Threads::create_vm_init_agents() {
4004   extern struct JavaVM_ main_vm;
4005   AgentLibrary* agent;
4006 
4007   JvmtiExport::enter_onload_phase();
4008 
4009   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4010     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4011 
4012     if (on_load_entry != NULL) {
4013       // Invoke the Agent_OnLoad function
4014       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4015       if (err != JNI_OK) {
4016         vm_exit_during_initialization("agent library failed to init", agent->name());
4017       }
4018     } else {
4019       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4020     }
4021   }
4022   JvmtiExport::enter_primordial_phase();
4023 }
4024 
4025 extern "C" {
4026   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4027 }
4028 
4029 void Threads::shutdown_vm_agents() {
4030   // Send any Agent_OnUnload notifications
4031   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4032   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4033   extern struct JavaVM_ main_vm;
4034   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4035 
4036     // Find the Agent_OnUnload function.
4037     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4038                                                    os::find_agent_function(agent,
4039                                                    false,
4040                                                    on_unload_symbols,
4041                                                    num_symbol_entries));
4042 
4043     // Invoke the Agent_OnUnload function
4044     if (unload_entry != NULL) {
4045       JavaThread* thread = JavaThread::current();
4046       ThreadToNativeFromVM ttn(thread);
4047       HandleMark hm(thread);
4048       (*unload_entry)(&main_vm);
4049     }
4050   }
4051 }
4052 
4053 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4054 // Invokes JVM_OnLoad
4055 void Threads::create_vm_init_libraries() {
4056   extern struct JavaVM_ main_vm;
4057   AgentLibrary* agent;
4058 
4059   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4060     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4061 
4062     if (on_load_entry != NULL) {
4063       // Invoke the JVM_OnLoad function
4064       JavaThread* thread = JavaThread::current();
4065       ThreadToNativeFromVM ttn(thread);
4066       HandleMark hm(thread);
4067       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4068       if (err != JNI_OK) {
4069         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4070       }
4071     } else {
4072       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4073     }
4074   }
4075 }
4076 
4077 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4078   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4079 
4080   JavaThread* java_thread = NULL;
4081   // Sequential search for now.  Need to do better optimization later.
4082   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4083     oop tobj = thread->threadObj();
4084     if (!thread->is_exiting() &&
4085         tobj != NULL &&
4086         java_tid == java_lang_Thread::thread_id(tobj)) {
4087       java_thread = thread;
4088       break;
4089     }
4090   }
4091   return java_thread;
4092 }
4093 
4094 
4095 // Last thread running calls java.lang.Shutdown.shutdown()
4096 void JavaThread::invoke_shutdown_hooks() {
4097   HandleMark hm(this);
4098 
4099   // We could get here with a pending exception, if so clear it now.
4100   if (this->has_pending_exception()) {
4101     this->clear_pending_exception();
4102   }
4103 
4104   EXCEPTION_MARK;
4105   Klass* k =
4106     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4107                                       THREAD);
4108   if (k != NULL) {
4109     // SystemDictionary::resolve_or_null will return null if there was
4110     // an exception.  If we cannot load the Shutdown class, just don't
4111     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4112     // and finalizers (if runFinalizersOnExit is set) won't be run.
4113     // Note that if a shutdown hook was registered or runFinalizersOnExit
4114     // was called, the Shutdown class would have already been loaded
4115     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4116     instanceKlassHandle shutdown_klass (THREAD, k);
4117     JavaValue result(T_VOID);
4118     JavaCalls::call_static(&result,
4119                            shutdown_klass,
4120                            vmSymbols::shutdown_method_name(),
4121                            vmSymbols::void_method_signature(),
4122                            THREAD);
4123   }
4124   CLEAR_PENDING_EXCEPTION;
4125 }
4126 
4127 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4128 // the program falls off the end of main(). Another VM exit path is through
4129 // vm_exit() when the program calls System.exit() to return a value or when
4130 // there is a serious error in VM. The two shutdown paths are not exactly
4131 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4132 // and VM_Exit op at VM level.
4133 //
4134 // Shutdown sequence:
4135 //   + Shutdown native memory tracking if it is on
4136 //   + Wait until we are the last non-daemon thread to execute
4137 //     <-- every thing is still working at this moment -->
4138 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4139 //        shutdown hooks, run finalizers if finalization-on-exit
4140 //   + Call before_exit(), prepare for VM exit
4141 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4142 //        currently the only user of this mechanism is File.deleteOnExit())
4143 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4144 //        post thread end and vm death events to JVMTI,
4145 //        stop signal thread
4146 //   + Call JavaThread::exit(), it will:
4147 //      > release JNI handle blocks, remove stack guard pages
4148 //      > remove this thread from Threads list
4149 //     <-- no more Java code from this thread after this point -->
4150 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4151 //     the compiler threads at safepoint
4152 //     <-- do not use anything that could get blocked by Safepoint -->
4153 //   + Disable tracing at JNI/JVM barriers
4154 //   + Set _vm_exited flag for threads that are still running native code
4155 //   + Delete this thread
4156 //   + Call exit_globals()
4157 //      > deletes tty
4158 //      > deletes PerfMemory resources
4159 //   + Return to caller
4160 
4161 bool Threads::destroy_vm() {
4162   JavaThread* thread = JavaThread::current();
4163 
4164 #ifdef ASSERT
4165   _vm_complete = false;
4166 #endif
4167   // Wait until we are the last non-daemon thread to execute
4168   { MutexLocker nu(Threads_lock);
4169     while (Threads::number_of_non_daemon_threads() > 1)
4170       // This wait should make safepoint checks, wait without a timeout,
4171       // and wait as a suspend-equivalent condition.
4172       //
4173       // Note: If the FlatProfiler is running and this thread is waiting
4174       // for another non-daemon thread to finish, then the FlatProfiler
4175       // is waiting for the external suspend request on this thread to
4176       // complete. wait_for_ext_suspend_completion() will eventually
4177       // timeout, but that takes time. Making this wait a suspend-
4178       // equivalent condition solves that timeout problem.
4179       //
4180       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4181                          Mutex::_as_suspend_equivalent_flag);
4182   }
4183 
4184   // Hang forever on exit if we are reporting an error.
4185   if (ShowMessageBoxOnError && is_error_reported()) {
4186     os::infinite_sleep();
4187   }
4188   os::wait_for_keypress_at_exit();
4189 
4190   // run Java level shutdown hooks
4191   thread->invoke_shutdown_hooks();
4192 
4193   before_exit(thread);
4194 
4195   thread->exit(true);
4196 
4197   // Stop VM thread.
4198   {
4199     // 4945125 The vm thread comes to a safepoint during exit.
4200     // GC vm_operations can get caught at the safepoint, and the
4201     // heap is unparseable if they are caught. Grab the Heap_lock
4202     // to prevent this. The GC vm_operations will not be able to
4203     // queue until after the vm thread is dead. After this point,
4204     // we'll never emerge out of the safepoint before the VM exits.
4205 
4206     MutexLocker ml(Heap_lock);
4207 
4208     VMThread::wait_for_vm_thread_exit();
4209     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4210     VMThread::destroy();
4211   }
4212 
4213   // clean up ideal graph printers
4214 #if defined(COMPILER2) && !defined(PRODUCT)
4215   IdealGraphPrinter::clean_up();
4216 #endif
4217 
4218   // Now, all Java threads are gone except daemon threads. Daemon threads
4219   // running Java code or in VM are stopped by the Safepoint. However,
4220   // daemon threads executing native code are still running.  But they
4221   // will be stopped at native=>Java/VM barriers. Note that we can't
4222   // simply kill or suspend them, as it is inherently deadlock-prone.
4223 
4224   VM_Exit::set_vm_exited();
4225 
4226   notify_vm_shutdown();
4227 
4228   delete thread;
4229 
4230 #if INCLUDE_JVMCI
4231   if (JVMCICounterSize > 0) {
4232     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4233   }
4234 #endif
4235 
4236   // exit_globals() will delete tty
4237   exit_globals();
4238 
4239   LogConfiguration::finalize();
4240 
4241   return true;
4242 }
4243 
4244 
4245 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4246   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4247   return is_supported_jni_version(version);
4248 }
4249 
4250 
4251 jboolean Threads::is_supported_jni_version(jint version) {
4252   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4253   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4254   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4255   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4256   if (version == JNI_VERSION_9) return JNI_TRUE;
4257   return JNI_FALSE;
4258 }
4259 
4260 
4261 void Threads::add(JavaThread* p, bool force_daemon) {
4262   // The threads lock must be owned at this point
4263   assert_locked_or_safepoint(Threads_lock);
4264 
4265   // See the comment for this method in thread.hpp for its purpose and
4266   // why it is called here.
4267   p->initialize_queues();
4268   p->set_next(_thread_list);
4269   _thread_list = p;
4270   _number_of_threads++;
4271   oop threadObj = p->threadObj();
4272   bool daemon = true;
4273   // Bootstrapping problem: threadObj can be null for initial
4274   // JavaThread (or for threads attached via JNI)
4275   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4276     _number_of_non_daemon_threads++;
4277     daemon = false;
4278   }
4279 
4280   ThreadService::add_thread(p, daemon);
4281 
4282   // Possible GC point.
4283   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4284 }
4285 
4286 void Threads::remove(JavaThread* p) {
4287   // Extra scope needed for Thread_lock, so we can check
4288   // that we do not remove thread without safepoint code notice
4289   { MutexLocker ml(Threads_lock);
4290 
4291     assert(includes(p), "p must be present");
4292 
4293     JavaThread* current = _thread_list;
4294     JavaThread* prev    = NULL;
4295 
4296     while (current != p) {
4297       prev    = current;
4298       current = current->next();
4299     }
4300 
4301     if (prev) {
4302       prev->set_next(current->next());
4303     } else {
4304       _thread_list = p->next();
4305     }
4306     _number_of_threads--;
4307     oop threadObj = p->threadObj();
4308     bool daemon = true;
4309     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4310       _number_of_non_daemon_threads--;
4311       daemon = false;
4312 
4313       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4314       // on destroy_vm will wake up.
4315       if (number_of_non_daemon_threads() == 1) {
4316         Threads_lock->notify_all();
4317       }
4318     }
4319     ThreadService::remove_thread(p, daemon);
4320 
4321     // Make sure that safepoint code disregard this thread. This is needed since
4322     // the thread might mess around with locks after this point. This can cause it
4323     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4324     // of this thread since it is removed from the queue.
4325     p->set_terminated_value();
4326   } // unlock Threads_lock
4327 
4328   // Since Events::log uses a lock, we grab it outside the Threads_lock
4329   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4330 }
4331 
4332 // Threads_lock must be held when this is called (or must be called during a safepoint)
4333 bool Threads::includes(JavaThread* p) {
4334   assert(Threads_lock->is_locked(), "sanity check");
4335   ALL_JAVA_THREADS(q) {
4336     if (q == p) {
4337       return true;
4338     }
4339   }
4340   return false;
4341 }
4342 
4343 // Operations on the Threads list for GC.  These are not explicitly locked,
4344 // but the garbage collector must provide a safe context for them to run.
4345 // In particular, these things should never be called when the Threads_lock
4346 // is held by some other thread. (Note: the Safepoint abstraction also
4347 // uses the Threads_lock to guarantee this property. It also makes sure that
4348 // all threads gets blocked when exiting or starting).
4349 
4350 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4351   ALL_JAVA_THREADS(p) {
4352     p->oops_do(f, cf);
4353   }
4354   VMThread::vm_thread()->oops_do(f, cf);
4355 }
4356 
4357 void Threads::change_thread_claim_parity() {
4358   // Set the new claim parity.
4359   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4360          "Not in range.");
4361   _thread_claim_parity++;
4362   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4363   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4364          "Not in range.");
4365 }
4366 
4367 #ifdef ASSERT
4368 void Threads::assert_all_threads_claimed() {
4369   ALL_JAVA_THREADS(p) {
4370     const int thread_parity = p->oops_do_parity();
4371     assert((thread_parity == _thread_claim_parity),
4372            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4373   }
4374 }
4375 #endif // ASSERT
4376 
4377 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4378   int cp = Threads::thread_claim_parity();
4379   ALL_JAVA_THREADS(p) {
4380     if (p->claim_oops_do(is_par, cp)) {
4381       p->oops_do(f, cf);
4382     }
4383   }
4384   VMThread* vmt = VMThread::vm_thread();
4385   if (vmt->claim_oops_do(is_par, cp)) {
4386     vmt->oops_do(f, cf);
4387   }
4388 }
4389 
4390 #if INCLUDE_ALL_GCS
4391 // Used by ParallelScavenge
4392 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4393   ALL_JAVA_THREADS(p) {
4394     q->enqueue(new ThreadRootsTask(p));
4395   }
4396   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4397 }
4398 
4399 // Used by Parallel Old
4400 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4401   ALL_JAVA_THREADS(p) {
4402     q->enqueue(new ThreadRootsMarkingTask(p));
4403   }
4404   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4405 }
4406 #endif // INCLUDE_ALL_GCS
4407 
4408 void Threads::nmethods_do(CodeBlobClosure* cf) {
4409   ALL_JAVA_THREADS(p) {
4410     // This is used by the code cache sweeper to mark nmethods that are active
4411     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4412     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4413     if(!p->is_Code_cache_sweeper_thread()) {
4414       p->nmethods_do(cf);
4415     }
4416   }
4417 }
4418 
4419 void Threads::metadata_do(void f(Metadata*)) {
4420   ALL_JAVA_THREADS(p) {
4421     p->metadata_do(f);
4422   }
4423 }
4424 
4425 class ThreadHandlesClosure : public ThreadClosure {
4426   void (*_f)(Metadata*);
4427  public:
4428   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4429   virtual void do_thread(Thread* thread) {
4430     thread->metadata_handles_do(_f);
4431   }
4432 };
4433 
4434 void Threads::metadata_handles_do(void f(Metadata*)) {
4435   // Only walk the Handles in Thread.
4436   ThreadHandlesClosure handles_closure(f);
4437   threads_do(&handles_closure);
4438 }
4439 
4440 void Threads::deoptimized_wrt_marked_nmethods() {
4441   ALL_JAVA_THREADS(p) {
4442     p->deoptimized_wrt_marked_nmethods();
4443   }
4444 }
4445 
4446 
4447 // Get count Java threads that are waiting to enter the specified monitor.
4448 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4449                                                          address monitor,
4450                                                          bool doLock) {
4451   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4452          "must grab Threads_lock or be at safepoint");
4453   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4454 
4455   int i = 0;
4456   {
4457     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4458     ALL_JAVA_THREADS(p) {
4459       if (!p->can_call_java()) continue;
4460 
4461       address pending = (address)p->current_pending_monitor();
4462       if (pending == monitor) {             // found a match
4463         if (i < count) result->append(p);   // save the first count matches
4464         i++;
4465       }
4466     }
4467   }
4468   return result;
4469 }
4470 
4471 
4472 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4473                                                       bool doLock) {
4474   assert(doLock ||
4475          Threads_lock->owned_by_self() ||
4476          SafepointSynchronize::is_at_safepoint(),
4477          "must grab Threads_lock or be at safepoint");
4478 
4479   // NULL owner means not locked so we can skip the search
4480   if (owner == NULL) return NULL;
4481 
4482   {
4483     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4484     ALL_JAVA_THREADS(p) {
4485       // first, see if owner is the address of a Java thread
4486       if (owner == (address)p) return p;
4487     }
4488   }
4489   // Cannot assert on lack of success here since this function may be
4490   // used by code that is trying to report useful problem information
4491   // like deadlock detection.
4492   if (UseHeavyMonitors) return NULL;
4493 
4494   // If we didn't find a matching Java thread and we didn't force use of
4495   // heavyweight monitors, then the owner is the stack address of the
4496   // Lock Word in the owning Java thread's stack.
4497   //
4498   JavaThread* the_owner = NULL;
4499   {
4500     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4501     ALL_JAVA_THREADS(q) {
4502       if (q->is_lock_owned(owner)) {
4503         the_owner = q;
4504         break;
4505       }
4506     }
4507   }
4508   // cannot assert on lack of success here; see above comment
4509   return the_owner;
4510 }
4511 
4512 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4513 void Threads::print_on(outputStream* st, bool print_stacks,
4514                        bool internal_format, bool print_concurrent_locks) {
4515   char buf[32];
4516   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4517 
4518   st->print_cr("Full thread dump %s (%s %s):",
4519                Abstract_VM_Version::vm_name(),
4520                Abstract_VM_Version::vm_release(),
4521                Abstract_VM_Version::vm_info_string());
4522   st->cr();
4523 
4524 #if INCLUDE_SERVICES
4525   // Dump concurrent locks
4526   ConcurrentLocksDump concurrent_locks;
4527   if (print_concurrent_locks) {
4528     concurrent_locks.dump_at_safepoint();
4529   }
4530 #endif // INCLUDE_SERVICES
4531 
4532   ALL_JAVA_THREADS(p) {
4533     ResourceMark rm;
4534     p->print_on(st);
4535     if (print_stacks) {
4536       if (internal_format) {
4537         p->trace_stack();
4538       } else {
4539         p->print_stack_on(st);
4540       }
4541     }
4542     st->cr();
4543 #if INCLUDE_SERVICES
4544     if (print_concurrent_locks) {
4545       concurrent_locks.print_locks_on(p, st);
4546     }
4547 #endif // INCLUDE_SERVICES
4548   }
4549 
4550   VMThread::vm_thread()->print_on(st);
4551   st->cr();
4552   Universe::heap()->print_gc_threads_on(st);
4553   WatcherThread* wt = WatcherThread::watcher_thread();
4554   if (wt != NULL) {
4555     wt->print_on(st);
4556     st->cr();
4557   }
4558   st->flush();
4559 }
4560 
4561 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4562                              int buflen, bool* found_current) {
4563   if (this_thread != NULL) {
4564     bool is_current = (current == this_thread);
4565     *found_current = *found_current || is_current;
4566     st->print("%s", is_current ? "=>" : "  ");
4567 
4568     st->print(PTR_FORMAT, p2i(this_thread));
4569     st->print(" ");
4570     this_thread->print_on_error(st, buf, buflen);
4571     st->cr();
4572   }
4573 }
4574 
4575 class PrintOnErrorClosure : public ThreadClosure {
4576   outputStream* _st;
4577   Thread* _current;
4578   char* _buf;
4579   int _buflen;
4580   bool* _found_current;
4581  public:
4582   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4583                       int buflen, bool* found_current) :
4584    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4585 
4586   virtual void do_thread(Thread* thread) {
4587     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4588   }
4589 };
4590 
4591 // Threads::print_on_error() is called by fatal error handler. It's possible
4592 // that VM is not at safepoint and/or current thread is inside signal handler.
4593 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4594 // memory (even in resource area), it might deadlock the error handler.
4595 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4596                              int buflen) {
4597   bool found_current = false;
4598   st->print_cr("Java Threads: ( => current thread )");
4599   ALL_JAVA_THREADS(thread) {
4600     print_on_error(thread, st, current, buf, buflen, &found_current);
4601   }
4602   st->cr();
4603 
4604   st->print_cr("Other Threads:");
4605   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4606   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4607 
4608   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4609   Universe::heap()->gc_threads_do(&print_closure);
4610 
4611   if (!found_current) {
4612     st->cr();
4613     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4614     current->print_on_error(st, buf, buflen);
4615     st->cr();
4616   }
4617   st->cr();
4618   st->print_cr("Threads with active compile tasks:");
4619   print_threads_compiling(st, buf, buflen);
4620 }
4621 
4622 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4623   ALL_JAVA_THREADS(thread) {
4624     if (thread->is_Compiler_thread()) {
4625       CompilerThread* ct = (CompilerThread*) thread;
4626       if (ct->task() != NULL) {
4627         thread->print_name_on_error(st, buf, buflen);
4628         ct->task()->print(st, NULL, true, true);
4629       }
4630     }
4631   }
4632 }
4633 
4634 
4635 // Internal SpinLock and Mutex
4636 // Based on ParkEvent
4637 
4638 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4639 //
4640 // We employ SpinLocks _only for low-contention, fixed-length
4641 // short-duration critical sections where we're concerned
4642 // about native mutex_t or HotSpot Mutex:: latency.
4643 // The mux construct provides a spin-then-block mutual exclusion
4644 // mechanism.
4645 //
4646 // Testing has shown that contention on the ListLock guarding gFreeList
4647 // is common.  If we implement ListLock as a simple SpinLock it's common
4648 // for the JVM to devolve to yielding with little progress.  This is true
4649 // despite the fact that the critical sections protected by ListLock are
4650 // extremely short.
4651 //
4652 // TODO-FIXME: ListLock should be of type SpinLock.
4653 // We should make this a 1st-class type, integrated into the lock
4654 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4655 // should have sufficient padding to avoid false-sharing and excessive
4656 // cache-coherency traffic.
4657 
4658 
4659 typedef volatile int SpinLockT;
4660 
4661 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4662   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4663     return;   // normal fast-path return
4664   }
4665 
4666   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4667   TEVENT(SpinAcquire - ctx);
4668   int ctr = 0;
4669   int Yields = 0;
4670   for (;;) {
4671     while (*adr != 0) {
4672       ++ctr;
4673       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4674         if (Yields > 5) {
4675           os::naked_short_sleep(1);
4676         } else {
4677           os::naked_yield();
4678           ++Yields;
4679         }
4680       } else {
4681         SpinPause();
4682       }
4683     }
4684     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4685   }
4686 }
4687 
4688 void Thread::SpinRelease(volatile int * adr) {
4689   assert(*adr != 0, "invariant");
4690   OrderAccess::fence();      // guarantee at least release consistency.
4691   // Roach-motel semantics.
4692   // It's safe if subsequent LDs and STs float "up" into the critical section,
4693   // but prior LDs and STs within the critical section can't be allowed
4694   // to reorder or float past the ST that releases the lock.
4695   // Loads and stores in the critical section - which appear in program
4696   // order before the store that releases the lock - must also appear
4697   // before the store that releases the lock in memory visibility order.
4698   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4699   // the ST of 0 into the lock-word which releases the lock, so fence
4700   // more than covers this on all platforms.
4701   *adr = 0;
4702 }
4703 
4704 // muxAcquire and muxRelease:
4705 //
4706 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4707 //    The LSB of the word is set IFF the lock is held.
4708 //    The remainder of the word points to the head of a singly-linked list
4709 //    of threads blocked on the lock.
4710 //
4711 // *  The current implementation of muxAcquire-muxRelease uses its own
4712 //    dedicated Thread._MuxEvent instance.  If we're interested in
4713 //    minimizing the peak number of extant ParkEvent instances then
4714 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4715 //    as certain invariants were satisfied.  Specifically, care would need
4716 //    to be taken with regards to consuming unpark() "permits".
4717 //    A safe rule of thumb is that a thread would never call muxAcquire()
4718 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4719 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4720 //    consume an unpark() permit intended for monitorenter, for instance.
4721 //    One way around this would be to widen the restricted-range semaphore
4722 //    implemented in park().  Another alternative would be to provide
4723 //    multiple instances of the PlatformEvent() for each thread.  One
4724 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4725 //
4726 // *  Usage:
4727 //    -- Only as leaf locks
4728 //    -- for short-term locking only as muxAcquire does not perform
4729 //       thread state transitions.
4730 //
4731 // Alternatives:
4732 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4733 //    but with parking or spin-then-park instead of pure spinning.
4734 // *  Use Taura-Oyama-Yonenzawa locks.
4735 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4736 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4737 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4738 //    acquiring threads use timers (ParkTimed) to detect and recover from
4739 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4740 //    boundaries by using placement-new.
4741 // *  Augment MCS with advisory back-link fields maintained with CAS().
4742 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4743 //    The validity of the backlinks must be ratified before we trust the value.
4744 //    If the backlinks are invalid the exiting thread must back-track through the
4745 //    the forward links, which are always trustworthy.
4746 // *  Add a successor indication.  The LockWord is currently encoded as
4747 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4748 //    to provide the usual futile-wakeup optimization.
4749 //    See RTStt for details.
4750 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4751 //
4752 
4753 
4754 typedef volatile intptr_t MutexT;      // Mux Lock-word
4755 enum MuxBits { LOCKBIT = 1 };
4756 
4757 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4758   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4759   if (w == 0) return;
4760   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4761     return;
4762   }
4763 
4764   TEVENT(muxAcquire - Contention);
4765   ParkEvent * const Self = Thread::current()->_MuxEvent;
4766   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4767   for (;;) {
4768     int its = (os::is_MP() ? 100 : 0) + 1;
4769 
4770     // Optional spin phase: spin-then-park strategy
4771     while (--its >= 0) {
4772       w = *Lock;
4773       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4774         return;
4775       }
4776     }
4777 
4778     Self->reset();
4779     Self->OnList = intptr_t(Lock);
4780     // The following fence() isn't _strictly necessary as the subsequent
4781     // CAS() both serializes execution and ratifies the fetched *Lock value.
4782     OrderAccess::fence();
4783     for (;;) {
4784       w = *Lock;
4785       if ((w & LOCKBIT) == 0) {
4786         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4787           Self->OnList = 0;   // hygiene - allows stronger asserts
4788           return;
4789         }
4790         continue;      // Interference -- *Lock changed -- Just retry
4791       }
4792       assert(w & LOCKBIT, "invariant");
4793       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4794       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4795     }
4796 
4797     while (Self->OnList != 0) {
4798       Self->park();
4799     }
4800   }
4801 }
4802 
4803 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4804   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4805   if (w == 0) return;
4806   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4807     return;
4808   }
4809 
4810   TEVENT(muxAcquire - Contention);
4811   ParkEvent * ReleaseAfter = NULL;
4812   if (ev == NULL) {
4813     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4814   }
4815   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4816   for (;;) {
4817     guarantee(ev->OnList == 0, "invariant");
4818     int its = (os::is_MP() ? 100 : 0) + 1;
4819 
4820     // Optional spin phase: spin-then-park strategy
4821     while (--its >= 0) {
4822       w = *Lock;
4823       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4824         if (ReleaseAfter != NULL) {
4825           ParkEvent::Release(ReleaseAfter);
4826         }
4827         return;
4828       }
4829     }
4830 
4831     ev->reset();
4832     ev->OnList = intptr_t(Lock);
4833     // The following fence() isn't _strictly necessary as the subsequent
4834     // CAS() both serializes execution and ratifies the fetched *Lock value.
4835     OrderAccess::fence();
4836     for (;;) {
4837       w = *Lock;
4838       if ((w & LOCKBIT) == 0) {
4839         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4840           ev->OnList = 0;
4841           // We call ::Release while holding the outer lock, thus
4842           // artificially lengthening the critical section.
4843           // Consider deferring the ::Release() until the subsequent unlock(),
4844           // after we've dropped the outer lock.
4845           if (ReleaseAfter != NULL) {
4846             ParkEvent::Release(ReleaseAfter);
4847           }
4848           return;
4849         }
4850         continue;      // Interference -- *Lock changed -- Just retry
4851       }
4852       assert(w & LOCKBIT, "invariant");
4853       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4854       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4855     }
4856 
4857     while (ev->OnList != 0) {
4858       ev->park();
4859     }
4860   }
4861 }
4862 
4863 // Release() must extract a successor from the list and then wake that thread.
4864 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4865 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4866 // Release() would :
4867 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4868 // (B) Extract a successor from the private list "in-hand"
4869 // (C) attempt to CAS() the residual back into *Lock over null.
4870 //     If there were any newly arrived threads and the CAS() would fail.
4871 //     In that case Release() would detach the RATs, re-merge the list in-hand
4872 //     with the RATs and repeat as needed.  Alternately, Release() might
4873 //     detach and extract a successor, but then pass the residual list to the wakee.
4874 //     The wakee would be responsible for reattaching and remerging before it
4875 //     competed for the lock.
4876 //
4877 // Both "pop" and DMR are immune from ABA corruption -- there can be
4878 // multiple concurrent pushers, but only one popper or detacher.
4879 // This implementation pops from the head of the list.  This is unfair,
4880 // but tends to provide excellent throughput as hot threads remain hot.
4881 // (We wake recently run threads first).
4882 //
4883 // All paths through muxRelease() will execute a CAS.
4884 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4885 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4886 // executed within the critical section are complete and globally visible before the
4887 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4888 void Thread::muxRelease(volatile intptr_t * Lock)  {
4889   for (;;) {
4890     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4891     assert(w & LOCKBIT, "invariant");
4892     if (w == LOCKBIT) return;
4893     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4894     assert(List != NULL, "invariant");
4895     assert(List->OnList == intptr_t(Lock), "invariant");
4896     ParkEvent * const nxt = List->ListNext;
4897     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4898 
4899     // The following CAS() releases the lock and pops the head element.
4900     // The CAS() also ratifies the previously fetched lock-word value.
4901     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4902       continue;
4903     }
4904     List->OnList = 0;
4905     OrderAccess::fence();
4906     List->unpark();
4907     return;
4908   }
4909 }
4910 
4911 
4912 void Threads::verify() {
4913   ALL_JAVA_THREADS(p) {
4914     p->verify();
4915   }
4916   VMThread* thread = VMThread::vm_thread();
4917   if (thread != NULL) thread->verify();
4918 }