1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.inline.hpp"
  49 #include "oops/instanceKlass.hpp"
  50 #include "oops/objArrayOop.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/symbol.hpp"
  53 #include "oops/verifyOopClosure.hpp"
  54 #include "prims/jvm.h"
  55 #include "prims/jvm_misc.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/privilegedStack.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/commandLineFlagConstraintList.hpp"
  63 #include "runtime/commandLineFlagWriteableList.hpp"
  64 #include "runtime/commandLineFlagRangeList.hpp"
  65 #include "runtime/deoptimization.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/jniPeriodicChecker.hpp"
  73 #include "runtime/timerTrace.hpp"
  74 #include "runtime/memprofiler.hpp"
  75 #include "runtime/mutexLocker.hpp"
  76 #include "runtime/objectMonitor.hpp"
  77 #include "runtime/orderAccess.inline.hpp"
  78 #include "runtime/osThread.hpp"
  79 #include "runtime/safepoint.hpp"
  80 #include "runtime/sharedRuntime.hpp"
  81 #include "runtime/statSampler.hpp"
  82 #include "runtime/stubRoutines.hpp"
  83 #include "runtime/sweeper.hpp"
  84 #include "runtime/task.hpp"
  85 #include "runtime/thread.inline.hpp"
  86 #include "runtime/threadCritical.hpp"
  87 #include "runtime/vframe.hpp"
  88 #include "runtime/vframeArray.hpp"
  89 #include "runtime/vframe_hp.hpp"
  90 #include "runtime/vmThread.hpp"
  91 #include "runtime/vm_operations.hpp"
  92 #include "runtime/vm_version.hpp"
  93 #include "services/attachListener.hpp"
  94 #include "services/management.hpp"
  95 #include "services/memTracker.hpp"
  96 #include "services/threadService.hpp"
  97 #include "trace/traceMacros.hpp"
  98 #include "trace/tracing.hpp"
  99 #include "utilities/align.hpp"
 100 #include "utilities/defaultStream.hpp"
 101 #include "utilities/dtrace.hpp"
 102 #include "utilities/events.hpp"
 103 #include "utilities/macros.hpp"
 104 #include "utilities/preserveException.hpp"
 105 #include "utilities/vmError.hpp"
 106 #if INCLUDE_ALL_GCS
 107 #include "gc/shenandoah/shenandoahConcurrentThread.hpp"
 108 #include "gc/cms/concurrentMarkSweepThread.hpp"
 109 #include "gc/g1/concurrentMarkThread.inline.hpp"
 110 #include "gc/parallel/pcTasks.hpp"
 111 #endif // INCLUDE_ALL_GCS
 112 #if INCLUDE_JVMCI
 113 #include "jvmci/jvmciCompiler.hpp"
 114 #include "jvmci/jvmciRuntime.hpp"
 115 #include "logging/logHandle.hpp"
 116 #endif
 117 #ifdef COMPILER1
 118 #include "c1/c1_Compiler.hpp"
 119 #endif
 120 #ifdef COMPILER2
 121 #include "opto/c2compiler.hpp"
 122 #include "opto/idealGraphPrinter.hpp"
 123 #endif
 124 #if INCLUDE_RTM_OPT
 125 #include "runtime/rtmLocking.hpp"
 126 #endif
 127 
 128 // Initialization after module runtime initialization
 129 void universe_post_module_init();  // must happen after call_initPhase2
 130 
 131 #ifdef DTRACE_ENABLED
 132 
 133 // Only bother with this argument setup if dtrace is available
 134 
 135   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 136   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 137 
 138   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 139     {                                                                      \
 140       ResourceMark rm(this);                                               \
 141       int len = 0;                                                         \
 142       const char* name = (javathread)->get_thread_name();                  \
 143       len = strlen(name);                                                  \
 144       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 145         (char *) name, len,                                                \
 146         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 147         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 148         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 149     }
 150 
 151 #else //  ndef DTRACE_ENABLED
 152 
 153   #define DTRACE_THREAD_PROBE(probe, javathread)
 154 
 155 #endif // ndef DTRACE_ENABLED
 156 
 157 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 158 // Current thread is maintained as a thread-local variable
 159 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 160 #endif
 161 // Class hierarchy
 162 // - Thread
 163 //   - VMThread
 164 //   - WatcherThread
 165 //   - ConcurrentMarkSweepThread
 166 //   - JavaThread
 167 //     - CompilerThread
 168 
 169 // ======= Thread ========
 170 // Support for forcing alignment of thread objects for biased locking
 171 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 172   if (UseBiasedLocking) {
 173     const int alignment = markOopDesc::biased_lock_alignment;
 174     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 175     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 176                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 177                                                          AllocFailStrategy::RETURN_NULL);
 178     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 179     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 180            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 181            "JavaThread alignment code overflowed allocated storage");
 182     if (aligned_addr != real_malloc_addr) {
 183       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 184                               p2i(real_malloc_addr),
 185                               p2i(aligned_addr));
 186     }
 187     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 188     return aligned_addr;
 189   } else {
 190     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 191                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 192   }
 193 }
 194 
 195 void Thread::operator delete(void* p) {
 196   if (UseBiasedLocking) {
 197     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 198     FreeHeap(real_malloc_addr);
 199   } else {
 200     FreeHeap(p);
 201   }
 202 }
 203 
 204 
 205 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 206 // JavaThread
 207 
 208 
 209 Thread::Thread() {
 210   // stack and get_thread
 211   set_stack_base(NULL);
 212   set_stack_size(0);
 213   set_self_raw_id(0);
 214   set_lgrp_id(-1);
 215   DEBUG_ONLY(clear_suspendible_thread();)
 216 
 217   // allocated data structures
 218   set_osthread(NULL);
 219   set_resource_area(new (mtThread)ResourceArea());
 220   DEBUG_ONLY(_current_resource_mark = NULL;)
 221   set_handle_area(new (mtThread) HandleArea(NULL));
 222   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 223   set_active_handles(NULL);
 224   set_free_handle_block(NULL);
 225   set_last_handle_mark(NULL);
 226 
 227   // This initial value ==> never claimed.
 228   _oops_do_parity = 0;
 229 
 230   // the handle mark links itself to last_handle_mark
 231   new HandleMark(this);
 232 
 233   // plain initialization
 234   debug_only(_owned_locks = NULL;)
 235   debug_only(_allow_allocation_count = 0;)
 236   NOT_PRODUCT(_allow_safepoint_count = 0;)
 237   NOT_PRODUCT(_skip_gcalot = false;)
 238   _jvmti_env_iteration_count = 0;
 239   set_allocated_bytes(0);
 240   _vm_operation_started_count = 0;
 241   _vm_operation_completed_count = 0;
 242   _current_pending_monitor = NULL;
 243   _current_pending_monitor_is_from_java = true;
 244   _current_waiting_monitor = NULL;
 245   _num_nested_signal = 0;
 246   omFreeList = NULL;
 247   omFreeCount = 0;
 248   omFreeProvision = 32;
 249   omInUseList = NULL;
 250   omInUseCount = 0;
 251 
 252 #ifdef ASSERT
 253   _visited_for_critical_count = false;
 254 #endif
 255 
 256   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 257                          Monitor::_safepoint_check_sometimes);
 258   _suspend_flags = 0;
 259 
 260   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 261   _hashStateX = os::random();
 262   _hashStateY = 842502087;
 263   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 264   _hashStateW = 273326509;
 265 
 266   _OnTrap   = 0;
 267   _schedctl = NULL;
 268   _Stalled  = 0;
 269   _TypeTag  = 0x2BAD;
 270 
 271   // Many of the following fields are effectively final - immutable
 272   // Note that nascent threads can't use the Native Monitor-Mutex
 273   // construct until the _MutexEvent is initialized ...
 274   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 275   // we might instead use a stack of ParkEvents that we could provision on-demand.
 276   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 277   // and ::Release()
 278   _ParkEvent   = ParkEvent::Allocate(this);
 279   _SleepEvent  = ParkEvent::Allocate(this);
 280   _MutexEvent  = ParkEvent::Allocate(this);
 281   _MuxEvent    = ParkEvent::Allocate(this);
 282 
 283 #ifdef CHECK_UNHANDLED_OOPS
 284   if (CheckUnhandledOops) {
 285     _unhandled_oops = new UnhandledOops(this);
 286   }
 287 #endif // CHECK_UNHANDLED_OOPS
 288 #ifdef ASSERT
 289   if (UseBiasedLocking) {
 290     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 291     assert(this == _real_malloc_address ||
 292            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 293            "bug in forced alignment of thread objects");
 294   }
 295 #endif // ASSERT
 296 }
 297 
 298 void Thread::initialize_thread_current() {
 299 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 300   assert(_thr_current == NULL, "Thread::current already initialized");
 301   _thr_current = this;
 302 #endif
 303   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 304   ThreadLocalStorage::set_thread(this);
 305   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 306 }
 307 
 308 void Thread::clear_thread_current() {
 309   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 310 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 311   _thr_current = NULL;
 312 #endif
 313   ThreadLocalStorage::set_thread(NULL);
 314 }
 315 
 316 void Thread::record_stack_base_and_size() {
 317   set_stack_base(os::current_stack_base());
 318   set_stack_size(os::current_stack_size());
 319   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 320   // in initialize_thread(). Without the adjustment, stack size is
 321   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 322   // So far, only Solaris has real implementation of initialize_thread().
 323   //
 324   // set up any platform-specific state.
 325   os::initialize_thread(this);
 326 
 327   // Set stack limits after thread is initialized.
 328   if (is_Java_thread()) {
 329     ((JavaThread*) this)->set_stack_overflow_limit();
 330     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 331   }
 332 #if INCLUDE_NMT
 333   // record thread's native stack, stack grows downward
 334   MemTracker::record_thread_stack(stack_end(), stack_size());
 335 #endif // INCLUDE_NMT
 336   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 337     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 338     os::current_thread_id(), p2i(stack_base() - stack_size()),
 339     p2i(stack_base()), stack_size()/1024);
 340 }
 341 
 342 
 343 Thread::~Thread() {
 344   EVENT_THREAD_DESTRUCT(this);
 345 
 346   // stack_base can be NULL if the thread is never started or exited before
 347   // record_stack_base_and_size called. Although, we would like to ensure
 348   // that all started threads do call record_stack_base_and_size(), there is
 349   // not proper way to enforce that.
 350 #if INCLUDE_NMT
 351   if (_stack_base != NULL) {
 352     MemTracker::release_thread_stack(stack_end(), stack_size());
 353 #ifdef ASSERT
 354     set_stack_base(NULL);
 355 #endif
 356   }
 357 #endif // INCLUDE_NMT
 358 
 359   // deallocate data structures
 360   delete resource_area();
 361   // since the handle marks are using the handle area, we have to deallocated the root
 362   // handle mark before deallocating the thread's handle area,
 363   assert(last_handle_mark() != NULL, "check we have an element");
 364   delete last_handle_mark();
 365   assert(last_handle_mark() == NULL, "check we have reached the end");
 366 
 367   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 368   // We NULL out the fields for good hygiene.
 369   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 370   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 371   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 372   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 373 
 374   delete handle_area();
 375   delete metadata_handles();
 376 
 377   // SR_handler uses this as a termination indicator -
 378   // needs to happen before os::free_thread()
 379   delete _SR_lock;
 380   _SR_lock = NULL;
 381 
 382   // osthread() can be NULL, if creation of thread failed.
 383   if (osthread() != NULL) os::free_thread(osthread());
 384 
 385   // clear Thread::current if thread is deleting itself.
 386   // Needed to ensure JNI correctly detects non-attached threads.
 387   if (this == Thread::current()) {
 388     clear_thread_current();
 389   }
 390 
 391   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 392 }
 393 
 394 // NOTE: dummy function for assertion purpose.
 395 void Thread::run() {
 396   ShouldNotReachHere();
 397 }
 398 
 399 #ifdef ASSERT
 400 // Private method to check for dangling thread pointer
 401 void check_for_dangling_thread_pointer(Thread *thread) {
 402   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 403          "possibility of dangling Thread pointer");
 404 }
 405 #endif
 406 
 407 ThreadPriority Thread::get_priority(const Thread* const thread) {
 408   ThreadPriority priority;
 409   // Can return an error!
 410   (void)os::get_priority(thread, priority);
 411   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 412   return priority;
 413 }
 414 
 415 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 416   debug_only(check_for_dangling_thread_pointer(thread);)
 417   // Can return an error!
 418   (void)os::set_priority(thread, priority);
 419 }
 420 
 421 
 422 void Thread::start(Thread* thread) {
 423   // Start is different from resume in that its safety is guaranteed by context or
 424   // being called from a Java method synchronized on the Thread object.
 425   if (!DisableStartThread) {
 426     if (thread->is_Java_thread()) {
 427       // Initialize the thread state to RUNNABLE before starting this thread.
 428       // Can not set it after the thread started because we do not know the
 429       // exact thread state at that time. It could be in MONITOR_WAIT or
 430       // in SLEEPING or some other state.
 431       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 432                                           java_lang_Thread::RUNNABLE);
 433     }
 434     os::start_thread(thread);
 435   }
 436 }
 437 
 438 // Enqueue a VM_Operation to do the job for us - sometime later
 439 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 440   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 441   VMThread::execute(vm_stop);
 442 }
 443 
 444 
 445 // Check if an external suspend request has completed (or has been
 446 // cancelled). Returns true if the thread is externally suspended and
 447 // false otherwise.
 448 //
 449 // The bits parameter returns information about the code path through
 450 // the routine. Useful for debugging:
 451 //
 452 // set in is_ext_suspend_completed():
 453 // 0x00000001 - routine was entered
 454 // 0x00000010 - routine return false at end
 455 // 0x00000100 - thread exited (return false)
 456 // 0x00000200 - suspend request cancelled (return false)
 457 // 0x00000400 - thread suspended (return true)
 458 // 0x00001000 - thread is in a suspend equivalent state (return true)
 459 // 0x00002000 - thread is native and walkable (return true)
 460 // 0x00004000 - thread is native_trans and walkable (needed retry)
 461 //
 462 // set in wait_for_ext_suspend_completion():
 463 // 0x00010000 - routine was entered
 464 // 0x00020000 - suspend request cancelled before loop (return false)
 465 // 0x00040000 - thread suspended before loop (return true)
 466 // 0x00080000 - suspend request cancelled in loop (return false)
 467 // 0x00100000 - thread suspended in loop (return true)
 468 // 0x00200000 - suspend not completed during retry loop (return false)
 469 
 470 // Helper class for tracing suspend wait debug bits.
 471 //
 472 // 0x00000100 indicates that the target thread exited before it could
 473 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 474 // 0x00080000 each indicate a cancelled suspend request so they don't
 475 // count as wait failures either.
 476 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 477 
 478 class TraceSuspendDebugBits : public StackObj {
 479  private:
 480   JavaThread * jt;
 481   bool         is_wait;
 482   bool         called_by_wait;  // meaningful when !is_wait
 483   uint32_t *   bits;
 484 
 485  public:
 486   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 487                         uint32_t *_bits) {
 488     jt             = _jt;
 489     is_wait        = _is_wait;
 490     called_by_wait = _called_by_wait;
 491     bits           = _bits;
 492   }
 493 
 494   ~TraceSuspendDebugBits() {
 495     if (!is_wait) {
 496 #if 1
 497       // By default, don't trace bits for is_ext_suspend_completed() calls.
 498       // That trace is very chatty.
 499       return;
 500 #else
 501       if (!called_by_wait) {
 502         // If tracing for is_ext_suspend_completed() is enabled, then only
 503         // trace calls to it from wait_for_ext_suspend_completion()
 504         return;
 505       }
 506 #endif
 507     }
 508 
 509     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 510       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 511         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 512         ResourceMark rm;
 513 
 514         tty->print_cr(
 515                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 516                       jt->get_thread_name(), *bits);
 517 
 518         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 519       }
 520     }
 521   }
 522 };
 523 #undef DEBUG_FALSE_BITS
 524 
 525 
 526 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 527                                           uint32_t *bits) {
 528   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 529 
 530   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 531   bool do_trans_retry;           // flag to force the retry
 532 
 533   *bits |= 0x00000001;
 534 
 535   do {
 536     do_trans_retry = false;
 537 
 538     if (is_exiting()) {
 539       // Thread is in the process of exiting. This is always checked
 540       // first to reduce the risk of dereferencing a freed JavaThread.
 541       *bits |= 0x00000100;
 542       return false;
 543     }
 544 
 545     if (!is_external_suspend()) {
 546       // Suspend request is cancelled. This is always checked before
 547       // is_ext_suspended() to reduce the risk of a rogue resume
 548       // confusing the thread that made the suspend request.
 549       *bits |= 0x00000200;
 550       return false;
 551     }
 552 
 553     if (is_ext_suspended()) {
 554       // thread is suspended
 555       *bits |= 0x00000400;
 556       return true;
 557     }
 558 
 559     // Now that we no longer do hard suspends of threads running
 560     // native code, the target thread can be changing thread state
 561     // while we are in this routine:
 562     //
 563     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 564     //
 565     // We save a copy of the thread state as observed at this moment
 566     // and make our decision about suspend completeness based on the
 567     // copy. This closes the race where the thread state is seen as
 568     // _thread_in_native_trans in the if-thread_blocked check, but is
 569     // seen as _thread_blocked in if-thread_in_native_trans check.
 570     JavaThreadState save_state = thread_state();
 571 
 572     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 573       // If the thread's state is _thread_blocked and this blocking
 574       // condition is known to be equivalent to a suspend, then we can
 575       // consider the thread to be externally suspended. This means that
 576       // the code that sets _thread_blocked has been modified to do
 577       // self-suspension if the blocking condition releases. We also
 578       // used to check for CONDVAR_WAIT here, but that is now covered by
 579       // the _thread_blocked with self-suspension check.
 580       //
 581       // Return true since we wouldn't be here unless there was still an
 582       // external suspend request.
 583       *bits |= 0x00001000;
 584       return true;
 585     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 586       // Threads running native code will self-suspend on native==>VM/Java
 587       // transitions. If its stack is walkable (should always be the case
 588       // unless this function is called before the actual java_suspend()
 589       // call), then the wait is done.
 590       *bits |= 0x00002000;
 591       return true;
 592     } else if (!called_by_wait && !did_trans_retry &&
 593                save_state == _thread_in_native_trans &&
 594                frame_anchor()->walkable()) {
 595       // The thread is transitioning from thread_in_native to another
 596       // thread state. check_safepoint_and_suspend_for_native_trans()
 597       // will force the thread to self-suspend. If it hasn't gotten
 598       // there yet we may have caught the thread in-between the native
 599       // code check above and the self-suspend. Lucky us. If we were
 600       // called by wait_for_ext_suspend_completion(), then it
 601       // will be doing the retries so we don't have to.
 602       //
 603       // Since we use the saved thread state in the if-statement above,
 604       // there is a chance that the thread has already transitioned to
 605       // _thread_blocked by the time we get here. In that case, we will
 606       // make a single unnecessary pass through the logic below. This
 607       // doesn't hurt anything since we still do the trans retry.
 608 
 609       *bits |= 0x00004000;
 610 
 611       // Once the thread leaves thread_in_native_trans for another
 612       // thread state, we break out of this retry loop. We shouldn't
 613       // need this flag to prevent us from getting back here, but
 614       // sometimes paranoia is good.
 615       did_trans_retry = true;
 616 
 617       // We wait for the thread to transition to a more usable state.
 618       for (int i = 1; i <= SuspendRetryCount; i++) {
 619         // We used to do an "os::yield_all(i)" call here with the intention
 620         // that yielding would increase on each retry. However, the parameter
 621         // is ignored on Linux which means the yield didn't scale up. Waiting
 622         // on the SR_lock below provides a much more predictable scale up for
 623         // the delay. It also provides a simple/direct point to check for any
 624         // safepoint requests from the VMThread
 625 
 626         // temporarily drops SR_lock while doing wait with safepoint check
 627         // (if we're a JavaThread - the WatcherThread can also call this)
 628         // and increase delay with each retry
 629         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 630 
 631         // check the actual thread state instead of what we saved above
 632         if (thread_state() != _thread_in_native_trans) {
 633           // the thread has transitioned to another thread state so
 634           // try all the checks (except this one) one more time.
 635           do_trans_retry = true;
 636           break;
 637         }
 638       } // end retry loop
 639 
 640 
 641     }
 642   } while (do_trans_retry);
 643 
 644   *bits |= 0x00000010;
 645   return false;
 646 }
 647 
 648 // Wait for an external suspend request to complete (or be cancelled).
 649 // Returns true if the thread is externally suspended and false otherwise.
 650 //
 651 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 652                                                  uint32_t *bits) {
 653   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 654                              false /* !called_by_wait */, bits);
 655 
 656   // local flag copies to minimize SR_lock hold time
 657   bool is_suspended;
 658   bool pending;
 659   uint32_t reset_bits;
 660 
 661   // set a marker so is_ext_suspend_completed() knows we are the caller
 662   *bits |= 0x00010000;
 663 
 664   // We use reset_bits to reinitialize the bits value at the top of
 665   // each retry loop. This allows the caller to make use of any
 666   // unused bits for their own marking purposes.
 667   reset_bits = *bits;
 668 
 669   {
 670     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 671     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 672                                             delay, bits);
 673     pending = is_external_suspend();
 674   }
 675   // must release SR_lock to allow suspension to complete
 676 
 677   if (!pending) {
 678     // A cancelled suspend request is the only false return from
 679     // is_ext_suspend_completed() that keeps us from entering the
 680     // retry loop.
 681     *bits |= 0x00020000;
 682     return false;
 683   }
 684 
 685   if (is_suspended) {
 686     *bits |= 0x00040000;
 687     return true;
 688   }
 689 
 690   for (int i = 1; i <= retries; i++) {
 691     *bits = reset_bits;  // reinit to only track last retry
 692 
 693     // We used to do an "os::yield_all(i)" call here with the intention
 694     // that yielding would increase on each retry. However, the parameter
 695     // is ignored on Linux which means the yield didn't scale up. Waiting
 696     // on the SR_lock below provides a much more predictable scale up for
 697     // the delay. It also provides a simple/direct point to check for any
 698     // safepoint requests from the VMThread
 699 
 700     {
 701       MutexLocker ml(SR_lock());
 702       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 703       // can also call this)  and increase delay with each retry
 704       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 705 
 706       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 707                                               delay, bits);
 708 
 709       // It is possible for the external suspend request to be cancelled
 710       // (by a resume) before the actual suspend operation is completed.
 711       // Refresh our local copy to see if we still need to wait.
 712       pending = is_external_suspend();
 713     }
 714 
 715     if (!pending) {
 716       // A cancelled suspend request is the only false return from
 717       // is_ext_suspend_completed() that keeps us from staying in the
 718       // retry loop.
 719       *bits |= 0x00080000;
 720       return false;
 721     }
 722 
 723     if (is_suspended) {
 724       *bits |= 0x00100000;
 725       return true;
 726     }
 727   } // end retry loop
 728 
 729   // thread did not suspend after all our retries
 730   *bits |= 0x00200000;
 731   return false;
 732 }
 733 
 734 #ifndef PRODUCT
 735 void JavaThread::record_jump(address target, address instr, const char* file,
 736                              int line) {
 737 
 738   // This should not need to be atomic as the only way for simultaneous
 739   // updates is via interrupts. Even then this should be rare or non-existent
 740   // and we don't care that much anyway.
 741 
 742   int index = _jmp_ring_index;
 743   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 744   _jmp_ring[index]._target = (intptr_t) target;
 745   _jmp_ring[index]._instruction = (intptr_t) instr;
 746   _jmp_ring[index]._file = file;
 747   _jmp_ring[index]._line = line;
 748 }
 749 #endif // PRODUCT
 750 
 751 void Thread::interrupt(Thread* thread) {
 752   debug_only(check_for_dangling_thread_pointer(thread);)
 753   os::interrupt(thread);
 754 }
 755 
 756 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 757   debug_only(check_for_dangling_thread_pointer(thread);)
 758   // Note:  If clear_interrupted==false, this simply fetches and
 759   // returns the value of the field osthread()->interrupted().
 760   return os::is_interrupted(thread, clear_interrupted);
 761 }
 762 
 763 
 764 // GC Support
 765 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 766   jint thread_parity = _oops_do_parity;
 767   if (thread_parity != strong_roots_parity) {
 768     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 769     if (res == thread_parity) {
 770       return true;
 771     } else {
 772       guarantee(res == strong_roots_parity, "Or else what?");
 773       return false;
 774     }
 775   }
 776   return false;
 777 }
 778 
 779 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 780   active_handles()->oops_do(f);
 781   // Do oop for ThreadShadow
 782   f->do_oop((oop*)&_pending_exception);
 783   handle_area()->oops_do(f);
 784 
 785   if (MonitorInUseLists) {
 786     // When using thread local monitor lists, we scan them here,
 787     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 788     VM_Operation* op = VMThread::vm_operation();
 789     if (op != NULL && op->deflates_idle_monitors()) {
 790       DeflateMonitorCounters counters; // Dummy for now.
 791       ObjectSynchronizer::deflate_thread_local_monitors(this, &counters, f);
 792     } else {
 793       ObjectSynchronizer::thread_local_used_oops_do(this, f);
 794     }
 795   }
 796 }
 797 
 798 void Thread::metadata_handles_do(void f(Metadata*)) {
 799   // Only walk the Handles in Thread.
 800   if (metadata_handles() != NULL) {
 801     for (int i = 0; i< metadata_handles()->length(); i++) {
 802       f(metadata_handles()->at(i));
 803     }
 804   }
 805 }
 806 
 807 void Thread::print_on(outputStream* st) const {
 808   // get_priority assumes osthread initialized
 809   if (osthread() != NULL) {
 810     int os_prio;
 811     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 812       st->print("os_prio=%d ", os_prio);
 813     }
 814     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 815     ext().print_on(st);
 816     osthread()->print_on(st);
 817   }
 818   debug_only(if (WizardMode) print_owned_locks_on(st);)
 819 }
 820 
 821 // Thread::print_on_error() is called by fatal error handler. Don't use
 822 // any lock or allocate memory.
 823 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 824   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 825 
 826   if (is_VM_thread())                 { st->print("VMThread"); }
 827   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 828   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 829   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 830   else                                { st->print("Thread"); }
 831 
 832   if (is_Named_thread()) {
 833     st->print(" \"%s\"", name());
 834   }
 835 
 836   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 837             p2i(stack_end()), p2i(stack_base()));
 838 
 839   if (osthread()) {
 840     st->print(" [id=%d]", osthread()->thread_id());
 841   }
 842 }
 843 
 844 void Thread::print_value_on(outputStream* st) const {
 845   if (is_Named_thread()) {
 846     st->print(" \"%s\" ", name());
 847   }
 848   st->print(INTPTR_FORMAT, p2i(this));   // print address
 849 }
 850 
 851 #ifdef ASSERT
 852 void Thread::print_owned_locks_on(outputStream* st) const {
 853   Monitor *cur = _owned_locks;
 854   if (cur == NULL) {
 855     st->print(" (no locks) ");
 856   } else {
 857     st->print_cr(" Locks owned:");
 858     while (cur) {
 859       cur->print_on(st);
 860       cur = cur->next();
 861     }
 862   }
 863 }
 864 
 865 static int ref_use_count  = 0;
 866 
 867 bool Thread::owns_locks_but_compiled_lock() const {
 868   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 869     if (cur != Compile_lock) return true;
 870   }
 871   return false;
 872 }
 873 
 874 
 875 #endif
 876 
 877 #ifndef PRODUCT
 878 
 879 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 880 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 881 // no threads which allow_vm_block's are held
 882 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 883   // Check if current thread is allowed to block at a safepoint
 884   if (!(_allow_safepoint_count == 0)) {
 885     fatal("Possible safepoint reached by thread that does not allow it");
 886   }
 887   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 888     fatal("LEAF method calling lock?");
 889   }
 890 
 891 #ifdef ASSERT
 892   if (potential_vm_operation && is_Java_thread()
 893       && !Universe::is_bootstrapping()) {
 894     // Make sure we do not hold any locks that the VM thread also uses.
 895     // This could potentially lead to deadlocks
 896     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 897       // Threads_lock is special, since the safepoint synchronization will not start before this is
 898       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 899       // since it is used to transfer control between JavaThreads and the VMThread
 900       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 901       if ((cur->allow_vm_block() &&
 902            cur != Threads_lock &&
 903            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 904            cur != VMOperationRequest_lock &&
 905            cur != VMOperationQueue_lock) ||
 906            cur->rank() == Mutex::special) {
 907         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 908       }
 909     }
 910   }
 911 
 912   if (GCALotAtAllSafepoints) {
 913     // We could enter a safepoint here and thus have a gc
 914     InterfaceSupport::check_gc_alot();
 915   }
 916 #endif
 917 }
 918 #endif
 919 
 920 bool Thread::is_in_stack(address adr) const {
 921   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 922   address end = os::current_stack_pointer();
 923   // Allow non Java threads to call this without stack_base
 924   if (_stack_base == NULL) return true;
 925   if (stack_base() >= adr && adr >= end) return true;
 926 
 927   return false;
 928 }
 929 
 930 bool Thread::is_in_usable_stack(address adr) const {
 931   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 932   size_t usable_stack_size = _stack_size - stack_guard_size;
 933 
 934   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 935 }
 936 
 937 
 938 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 939 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 940 // used for compilation in the future. If that change is made, the need for these methods
 941 // should be revisited, and they should be removed if possible.
 942 
 943 bool Thread::is_lock_owned(address adr) const {
 944   return on_local_stack(adr);
 945 }
 946 
 947 bool Thread::set_as_starting_thread() {
 948   // NOTE: this must be called inside the main thread.
 949   return os::create_main_thread((JavaThread*)this);
 950 }
 951 
 952 static void initialize_class(Symbol* class_name, TRAPS) {
 953   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 954   InstanceKlass::cast(klass)->initialize(CHECK);
 955 }
 956 
 957 
 958 // Creates the initial ThreadGroup
 959 static Handle create_initial_thread_group(TRAPS) {
 960   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 961   InstanceKlass* ik = InstanceKlass::cast(k);
 962 
 963   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
 964   {
 965     JavaValue result(T_VOID);
 966     JavaCalls::call_special(&result,
 967                             system_instance,
 968                             ik,
 969                             vmSymbols::object_initializer_name(),
 970                             vmSymbols::void_method_signature(),
 971                             CHECK_NH);
 972   }
 973   Universe::set_system_thread_group(system_instance());
 974 
 975   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
 976   {
 977     JavaValue result(T_VOID);
 978     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 979     JavaCalls::call_special(&result,
 980                             main_instance,
 981                             ik,
 982                             vmSymbols::object_initializer_name(),
 983                             vmSymbols::threadgroup_string_void_signature(),
 984                             system_instance,
 985                             string,
 986                             CHECK_NH);
 987   }
 988   return main_instance;
 989 }
 990 
 991 // Creates the initial Thread
 992 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 993                                  TRAPS) {
 994   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 995   InstanceKlass* ik = InstanceKlass::cast(k);
 996   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
 997 
 998   java_lang_Thread::set_thread(thread_oop(), thread);
 999   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1000   thread->set_threadObj(thread_oop());
1001 
1002   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1003 
1004   JavaValue result(T_VOID);
1005   JavaCalls::call_special(&result, thread_oop,
1006                           ik,
1007                           vmSymbols::object_initializer_name(),
1008                           vmSymbols::threadgroup_string_void_signature(),
1009                           thread_group,
1010                           string,
1011                           CHECK_NULL);
1012   return thread_oop();
1013 }
1014 
1015 char java_runtime_name[128] = "";
1016 char java_runtime_version[128] = "";
1017 
1018 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1019 static const char* get_java_runtime_name(TRAPS) {
1020   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1021                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1022   fieldDescriptor fd;
1023   bool found = k != NULL &&
1024                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1025                                                         vmSymbols::string_signature(), &fd);
1026   if (found) {
1027     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1028     if (name_oop == NULL) {
1029       return NULL;
1030     }
1031     const char* name = java_lang_String::as_utf8_string(name_oop,
1032                                                         java_runtime_name,
1033                                                         sizeof(java_runtime_name));
1034     return name;
1035   } else {
1036     return NULL;
1037   }
1038 }
1039 
1040 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1041 static const char* get_java_runtime_version(TRAPS) {
1042   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1043                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1044   fieldDescriptor fd;
1045   bool found = k != NULL &&
1046                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1047                                                         vmSymbols::string_signature(), &fd);
1048   if (found) {
1049     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1050     if (name_oop == NULL) {
1051       return NULL;
1052     }
1053     const char* name = java_lang_String::as_utf8_string(name_oop,
1054                                                         java_runtime_version,
1055                                                         sizeof(java_runtime_version));
1056     return name;
1057   } else {
1058     return NULL;
1059   }
1060 }
1061 
1062 // General purpose hook into Java code, run once when the VM is initialized.
1063 // The Java library method itself may be changed independently from the VM.
1064 static void call_postVMInitHook(TRAPS) {
1065   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1066   if (klass != NULL) {
1067     JavaValue result(T_VOID);
1068     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1069                            vmSymbols::void_method_signature(),
1070                            CHECK);
1071   }
1072 }
1073 
1074 static void reset_vm_info_property(TRAPS) {
1075   // the vm info string
1076   ResourceMark rm(THREAD);
1077   const char *vm_info = VM_Version::vm_info_string();
1078 
1079   // java.lang.System class
1080   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1081 
1082   // setProperty arguments
1083   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1084   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1085 
1086   // return value
1087   JavaValue r(T_OBJECT);
1088 
1089   // public static String setProperty(String key, String value);
1090   JavaCalls::call_static(&r,
1091                          klass,
1092                          vmSymbols::setProperty_name(),
1093                          vmSymbols::string_string_string_signature(),
1094                          key_str,
1095                          value_str,
1096                          CHECK);
1097 }
1098 
1099 
1100 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1101                                     bool daemon, TRAPS) {
1102   assert(thread_group.not_null(), "thread group should be specified");
1103   assert(threadObj() == NULL, "should only create Java thread object once");
1104 
1105   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1106   InstanceKlass* ik = InstanceKlass::cast(k);
1107   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1108 
1109   java_lang_Thread::set_thread(thread_oop(), this);
1110   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1111   set_threadObj(thread_oop());
1112 
1113   JavaValue result(T_VOID);
1114   if (thread_name != NULL) {
1115     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1116     // Thread gets assigned specified name and null target
1117     JavaCalls::call_special(&result,
1118                             thread_oop,
1119                             ik,
1120                             vmSymbols::object_initializer_name(),
1121                             vmSymbols::threadgroup_string_void_signature(),
1122                             thread_group, // Argument 1
1123                             name,         // Argument 2
1124                             THREAD);
1125   } else {
1126     // Thread gets assigned name "Thread-nnn" and null target
1127     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1128     JavaCalls::call_special(&result,
1129                             thread_oop,
1130                             ik,
1131                             vmSymbols::object_initializer_name(),
1132                             vmSymbols::threadgroup_runnable_void_signature(),
1133                             thread_group, // Argument 1
1134                             Handle(),     // Argument 2
1135                             THREAD);
1136   }
1137 
1138 
1139   if (daemon) {
1140     java_lang_Thread::set_daemon(thread_oop());
1141   }
1142 
1143   if (HAS_PENDING_EXCEPTION) {
1144     return;
1145   }
1146 
1147   Klass* group =  SystemDictionary::ThreadGroup_klass();
1148   Handle threadObj(THREAD, this->threadObj());
1149 
1150   JavaCalls::call_special(&result,
1151                           thread_group,
1152                           group,
1153                           vmSymbols::add_method_name(),
1154                           vmSymbols::thread_void_signature(),
1155                           threadObj,          // Arg 1
1156                           THREAD);
1157 }
1158 
1159 // NamedThread --  non-JavaThread subclasses with multiple
1160 // uniquely named instances should derive from this.
1161 NamedThread::NamedThread() : Thread() {
1162   _name = NULL;
1163   _processed_thread = NULL;
1164   _gc_id = GCId::undefined();
1165 }
1166 
1167 NamedThread::~NamedThread() {
1168   if (_name != NULL) {
1169     FREE_C_HEAP_ARRAY(char, _name);
1170     _name = NULL;
1171   }
1172 }
1173 
1174 void NamedThread::set_name(const char* format, ...) {
1175   guarantee(_name == NULL, "Only get to set name once.");
1176   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1177   guarantee(_name != NULL, "alloc failure");
1178   va_list ap;
1179   va_start(ap, format);
1180   jio_vsnprintf(_name, max_name_len, format, ap);
1181   va_end(ap);
1182 }
1183 
1184 void NamedThread::initialize_named_thread() {
1185   set_native_thread_name(name());
1186 }
1187 
1188 void NamedThread::print_on(outputStream* st) const {
1189   st->print("\"%s\" ", name());
1190   Thread::print_on(st);
1191   st->cr();
1192 }
1193 
1194 
1195 // ======= WatcherThread ========
1196 
1197 // The watcher thread exists to simulate timer interrupts.  It should
1198 // be replaced by an abstraction over whatever native support for
1199 // timer interrupts exists on the platform.
1200 
1201 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1202 bool WatcherThread::_startable = false;
1203 volatile bool  WatcherThread::_should_terminate = false;
1204 
1205 WatcherThread::WatcherThread() : Thread() {
1206   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1207   if (os::create_thread(this, os::watcher_thread)) {
1208     _watcher_thread = this;
1209 
1210     // Set the watcher thread to the highest OS priority which should not be
1211     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1212     // is created. The only normal thread using this priority is the reference
1213     // handler thread, which runs for very short intervals only.
1214     // If the VMThread's priority is not lower than the WatcherThread profiling
1215     // will be inaccurate.
1216     os::set_priority(this, MaxPriority);
1217     if (!DisableStartThread) {
1218       os::start_thread(this);
1219     }
1220   }
1221 }
1222 
1223 int WatcherThread::sleep() const {
1224   // The WatcherThread does not participate in the safepoint protocol
1225   // for the PeriodicTask_lock because it is not a JavaThread.
1226   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1227 
1228   if (_should_terminate) {
1229     // check for termination before we do any housekeeping or wait
1230     return 0;  // we did not sleep.
1231   }
1232 
1233   // remaining will be zero if there are no tasks,
1234   // causing the WatcherThread to sleep until a task is
1235   // enrolled
1236   int remaining = PeriodicTask::time_to_wait();
1237   int time_slept = 0;
1238 
1239   // we expect this to timeout - we only ever get unparked when
1240   // we should terminate or when a new task has been enrolled
1241   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1242 
1243   jlong time_before_loop = os::javaTimeNanos();
1244 
1245   while (true) {
1246     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1247                                             remaining);
1248     jlong now = os::javaTimeNanos();
1249 
1250     if (remaining == 0) {
1251       // if we didn't have any tasks we could have waited for a long time
1252       // consider the time_slept zero and reset time_before_loop
1253       time_slept = 0;
1254       time_before_loop = now;
1255     } else {
1256       // need to recalculate since we might have new tasks in _tasks
1257       time_slept = (int) ((now - time_before_loop) / 1000000);
1258     }
1259 
1260     // Change to task list or spurious wakeup of some kind
1261     if (timedout || _should_terminate) {
1262       break;
1263     }
1264 
1265     remaining = PeriodicTask::time_to_wait();
1266     if (remaining == 0) {
1267       // Last task was just disenrolled so loop around and wait until
1268       // another task gets enrolled
1269       continue;
1270     }
1271 
1272     remaining -= time_slept;
1273     if (remaining <= 0) {
1274       break;
1275     }
1276   }
1277 
1278   return time_slept;
1279 }
1280 
1281 void WatcherThread::run() {
1282   assert(this == watcher_thread(), "just checking");
1283 
1284   this->record_stack_base_and_size();
1285   this->set_native_thread_name(this->name());
1286   this->set_active_handles(JNIHandleBlock::allocate_block());
1287   while (true) {
1288     assert(watcher_thread() == Thread::current(), "thread consistency check");
1289     assert(watcher_thread() == this, "thread consistency check");
1290 
1291     // Calculate how long it'll be until the next PeriodicTask work
1292     // should be done, and sleep that amount of time.
1293     int time_waited = sleep();
1294 
1295     if (VMError::is_error_reported()) {
1296       // A fatal error has happened, the error handler(VMError::report_and_die)
1297       // should abort JVM after creating an error log file. However in some
1298       // rare cases, the error handler itself might deadlock. Here periodically
1299       // check for error reporting timeouts, and if it happens, just proceed to
1300       // abort the VM.
1301 
1302       // This code is in WatcherThread because WatcherThread wakes up
1303       // periodically so the fatal error handler doesn't need to do anything;
1304       // also because the WatcherThread is less likely to crash than other
1305       // threads.
1306 
1307       for (;;) {
1308         // Note: we use naked sleep in this loop because we want to avoid using
1309         // any kind of VM infrastructure which may be broken at this point.
1310         if (VMError::check_timeout()) {
1311           // We hit error reporting timeout. Error reporting was interrupted and
1312           // will be wrapping things up now (closing files etc). Give it some more
1313           // time, then quit the VM.
1314           os::naked_short_sleep(200);
1315           // Print a message to stderr.
1316           fdStream err(defaultStream::output_fd());
1317           err.print_raw_cr("# [ timer expired, abort... ]");
1318           // skip atexit/vm_exit/vm_abort hooks
1319           os::die();
1320         }
1321 
1322         // Wait a second, then recheck for timeout.
1323         os::naked_short_sleep(999);
1324       }
1325     }
1326 
1327     if (_should_terminate) {
1328       // check for termination before posting the next tick
1329       break;
1330     }
1331 
1332     PeriodicTask::real_time_tick(time_waited);
1333   }
1334 
1335   // Signal that it is terminated
1336   {
1337     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1338     _watcher_thread = NULL;
1339     Terminator_lock->notify();
1340   }
1341 }
1342 
1343 void WatcherThread::start() {
1344   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1345 
1346   if (watcher_thread() == NULL && _startable) {
1347     _should_terminate = false;
1348     // Create the single instance of WatcherThread
1349     new WatcherThread();
1350   }
1351 }
1352 
1353 void WatcherThread::make_startable() {
1354   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1355   _startable = true;
1356 }
1357 
1358 void WatcherThread::stop() {
1359   {
1360     // Follow normal safepoint aware lock enter protocol since the
1361     // WatcherThread is stopped by another JavaThread.
1362     MutexLocker ml(PeriodicTask_lock);
1363     _should_terminate = true;
1364 
1365     WatcherThread* watcher = watcher_thread();
1366     if (watcher != NULL) {
1367       // unpark the WatcherThread so it can see that it should terminate
1368       watcher->unpark();
1369     }
1370   }
1371 
1372   MutexLocker mu(Terminator_lock);
1373 
1374   while (watcher_thread() != NULL) {
1375     // This wait should make safepoint checks, wait without a timeout,
1376     // and wait as a suspend-equivalent condition.
1377     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1378                           Mutex::_as_suspend_equivalent_flag);
1379   }
1380 }
1381 
1382 void WatcherThread::unpark() {
1383   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1384   PeriodicTask_lock->notify();
1385 }
1386 
1387 void WatcherThread::print_on(outputStream* st) const {
1388   st->print("\"%s\" ", name());
1389   Thread::print_on(st);
1390   st->cr();
1391 }
1392 
1393 // ======= JavaThread ========
1394 
1395 #if INCLUDE_JVMCI
1396 
1397 jlong* JavaThread::_jvmci_old_thread_counters;
1398 
1399 bool jvmci_counters_include(JavaThread* thread) {
1400   oop threadObj = thread->threadObj();
1401   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1402 }
1403 
1404 void JavaThread::collect_counters(typeArrayOop array) {
1405   if (JVMCICounterSize > 0) {
1406     MutexLocker tl(Threads_lock);
1407     for (int i = 0; i < array->length(); i++) {
1408       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1409     }
1410     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1411       if (jvmci_counters_include(tp)) {
1412         for (int i = 0; i < array->length(); i++) {
1413           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1414         }
1415       }
1416     }
1417   }
1418 }
1419 
1420 #endif // INCLUDE_JVMCI
1421 
1422 // A JavaThread is a normal Java thread
1423 
1424 void JavaThread::initialize() {
1425   // Initialize fields
1426 
1427   set_saved_exception_pc(NULL);
1428   set_threadObj(NULL);
1429   _anchor.clear();
1430   set_entry_point(NULL);
1431   set_jni_functions(jni_functions());
1432   set_callee_target(NULL);
1433   set_vm_result(NULL);
1434   set_vm_result_2(NULL);
1435   set_vframe_array_head(NULL);
1436   set_vframe_array_last(NULL);
1437   set_deferred_locals(NULL);
1438   set_deopt_mark(NULL);
1439   set_deopt_compiled_method(NULL);
1440   clear_must_deopt_id();
1441   set_monitor_chunks(NULL);
1442   set_next(NULL);
1443   set_thread_state(_thread_new);
1444   _terminated = _not_terminated;
1445   _privileged_stack_top = NULL;
1446   _array_for_gc = NULL;
1447   _suspend_equivalent = false;
1448   _in_deopt_handler = 0;
1449   _doing_unsafe_access = false;
1450   _stack_guard_state = stack_guard_unused;
1451 #if INCLUDE_JVMCI
1452   _pending_monitorenter = false;
1453   _pending_deoptimization = -1;
1454   _pending_failed_speculation = NULL;
1455   _pending_transfer_to_interpreter = false;
1456   _adjusting_comp_level = false;
1457   _jvmci._alternate_call_target = NULL;
1458   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1459   if (JVMCICounterSize > 0) {
1460     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1461     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1462   } else {
1463     _jvmci_counters = NULL;
1464   }
1465 #endif // INCLUDE_JVMCI
1466   _reserved_stack_activation = NULL;  // stack base not known yet
1467   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1468   _exception_pc  = 0;
1469   _exception_handler_pc = 0;
1470   _is_method_handle_return = 0;
1471   _jvmti_thread_state= NULL;
1472   _should_post_on_exceptions_flag = JNI_FALSE;
1473   _jvmti_get_loaded_classes_closure = NULL;
1474   _interp_only_mode    = 0;
1475   _special_runtime_exit_condition = _no_async_condition;
1476   _pending_async_exception = NULL;
1477   _thread_stat = NULL;
1478   _thread_stat = new ThreadStatistics();
1479   _blocked_on_compilation = false;
1480   _jni_active_critical = 0;
1481   _pending_jni_exception_check_fn = NULL;
1482   _do_not_unlock_if_synchronized = false;
1483   _cached_monitor_info = NULL;
1484   _parker = Parker::Allocate(this);
1485 
1486 #ifndef PRODUCT
1487   _jmp_ring_index = 0;
1488   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1489     record_jump(NULL, NULL, NULL, 0);
1490   }
1491 #endif // PRODUCT
1492 
1493   // Setup safepoint state info for this thread
1494   ThreadSafepointState::create(this);
1495 
1496   debug_only(_java_call_counter = 0);
1497 
1498   // JVMTI PopFrame support
1499   _popframe_condition = popframe_inactive;
1500   _popframe_preserved_args = NULL;
1501   _popframe_preserved_args_size = 0;
1502   _frames_to_pop_failed_realloc = 0;
1503 
1504   pd_initialize();
1505 }
1506 
1507 #if INCLUDE_ALL_GCS
1508 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1509 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1510 bool JavaThread::_evacuation_in_progress_global = false;
1511 #endif // INCLUDE_ALL_GCS
1512 
1513 JavaThread::JavaThread(bool is_attaching_via_jni) :
1514                        Thread()
1515 #if INCLUDE_ALL_GCS
1516                        , _satb_mark_queue(&_satb_mark_queue_set),
1517                        _dirty_card_queue(&_dirty_card_queue_set),
1518                        _evacuation_in_progress(_evacuation_in_progress_global)
1519 #endif // INCLUDE_ALL_GCS
1520 {
1521   initialize();
1522   if (is_attaching_via_jni) {
1523     _jni_attach_state = _attaching_via_jni;
1524   } else {
1525     _jni_attach_state = _not_attaching_via_jni;
1526   }
1527   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1528 }
1529 
1530 bool JavaThread::reguard_stack(address cur_sp) {
1531   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1532       && _stack_guard_state != stack_guard_reserved_disabled) {
1533     return true; // Stack already guarded or guard pages not needed.
1534   }
1535 
1536   if (register_stack_overflow()) {
1537     // For those architectures which have separate register and
1538     // memory stacks, we must check the register stack to see if
1539     // it has overflowed.
1540     return false;
1541   }
1542 
1543   // Java code never executes within the yellow zone: the latter is only
1544   // there to provoke an exception during stack banging.  If java code
1545   // is executing there, either StackShadowPages should be larger, or
1546   // some exception code in c1, c2 or the interpreter isn't unwinding
1547   // when it should.
1548   guarantee(cur_sp > stack_reserved_zone_base(),
1549             "not enough space to reguard - increase StackShadowPages");
1550   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1551     enable_stack_yellow_reserved_zone();
1552     if (reserved_stack_activation() != stack_base()) {
1553       set_reserved_stack_activation(stack_base());
1554     }
1555   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1556     set_reserved_stack_activation(stack_base());
1557     enable_stack_reserved_zone();
1558   }
1559   return true;
1560 }
1561 
1562 bool JavaThread::reguard_stack(void) {
1563   return reguard_stack(os::current_stack_pointer());
1564 }
1565 
1566 
1567 void JavaThread::block_if_vm_exited() {
1568   if (_terminated == _vm_exited) {
1569     // _vm_exited is set at safepoint, and Threads_lock is never released
1570     // we will block here forever
1571     Threads_lock->lock_without_safepoint_check();
1572     ShouldNotReachHere();
1573   }
1574 }
1575 
1576 
1577 // Remove this ifdef when C1 is ported to the compiler interface.
1578 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1579 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1580 
1581 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1582                        Thread()
1583 #if INCLUDE_ALL_GCS
1584                        , _satb_mark_queue(&_satb_mark_queue_set),
1585                        _dirty_card_queue(&_dirty_card_queue_set),
1586                        _evacuation_in_progress(_evacuation_in_progress_global)
1587 #endif // INCLUDE_ALL_GCS
1588 {
1589   initialize();
1590   _jni_attach_state = _not_attaching_via_jni;
1591   set_entry_point(entry_point);
1592   // Create the native thread itself.
1593   // %note runtime_23
1594   os::ThreadType thr_type = os::java_thread;
1595   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1596                                                      os::java_thread;
1597   os::create_thread(this, thr_type, stack_sz);
1598   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1599   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1600   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1601   // the exception consists of creating the exception object & initializing it, initialization
1602   // will leave the VM via a JavaCall and then all locks must be unlocked).
1603   //
1604   // The thread is still suspended when we reach here. Thread must be explicit started
1605   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1606   // by calling Threads:add. The reason why this is not done here, is because the thread
1607   // object must be fully initialized (take a look at JVM_Start)
1608 }
1609 
1610 JavaThread::~JavaThread() {
1611 
1612   // JSR166 -- return the parker to the free list
1613   Parker::Release(_parker);
1614   _parker = NULL;
1615 
1616   // Free any remaining  previous UnrollBlock
1617   vframeArray* old_array = vframe_array_last();
1618 
1619   if (old_array != NULL) {
1620     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1621     old_array->set_unroll_block(NULL);
1622     delete old_info;
1623     delete old_array;
1624   }
1625 
1626   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1627   if (deferred != NULL) {
1628     // This can only happen if thread is destroyed before deoptimization occurs.
1629     assert(deferred->length() != 0, "empty array!");
1630     do {
1631       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1632       deferred->remove_at(0);
1633       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1634       delete dlv;
1635     } while (deferred->length() != 0);
1636     delete deferred;
1637   }
1638 
1639   // All Java related clean up happens in exit
1640   ThreadSafepointState::destroy(this);
1641   if (_thread_stat != NULL) delete _thread_stat;
1642 
1643 #if INCLUDE_JVMCI
1644   if (JVMCICounterSize > 0) {
1645     if (jvmci_counters_include(this)) {
1646       for (int i = 0; i < JVMCICounterSize; i++) {
1647         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1648       }
1649     }
1650     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1651   }
1652 #endif // INCLUDE_JVMCI
1653 }
1654 
1655 
1656 // The first routine called by a new Java thread
1657 void JavaThread::run() {
1658   // initialize thread-local alloc buffer related fields
1659   this->initialize_tlab();
1660 
1661   // used to test validity of stack trace backs
1662   this->record_base_of_stack_pointer();
1663 
1664   // Record real stack base and size.
1665   this->record_stack_base_and_size();
1666 
1667   this->create_stack_guard_pages();
1668 
1669   this->cache_global_variables();
1670 
1671   // Thread is now sufficient initialized to be handled by the safepoint code as being
1672   // in the VM. Change thread state from _thread_new to _thread_in_vm
1673   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1674 
1675   assert(JavaThread::current() == this, "sanity check");
1676   assert(!Thread::current()->owns_locks(), "sanity check");
1677 
1678   DTRACE_THREAD_PROBE(start, this);
1679 
1680   // This operation might block. We call that after all safepoint checks for a new thread has
1681   // been completed.
1682   this->set_active_handles(JNIHandleBlock::allocate_block());
1683 
1684   if (JvmtiExport::should_post_thread_life()) {
1685     JvmtiExport::post_thread_start(this);
1686   }
1687 
1688   EventThreadStart event;
1689   if (event.should_commit()) {
1690     event.set_thread(THREAD_TRACE_ID(this));
1691     event.commit();
1692   }
1693 
1694   // We call another function to do the rest so we are sure that the stack addresses used
1695   // from there will be lower than the stack base just computed
1696   thread_main_inner();
1697 
1698   // Note, thread is no longer valid at this point!
1699 }
1700 
1701 
1702 void JavaThread::thread_main_inner() {
1703   assert(JavaThread::current() == this, "sanity check");
1704   assert(this->threadObj() != NULL, "just checking");
1705 
1706   // Execute thread entry point unless this thread has a pending exception
1707   // or has been stopped before starting.
1708   // Note: Due to JVM_StopThread we can have pending exceptions already!
1709   if (!this->has_pending_exception() &&
1710       !java_lang_Thread::is_stillborn(this->threadObj())) {
1711     {
1712       ResourceMark rm(this);
1713       this->set_native_thread_name(this->get_thread_name());
1714     }
1715     HandleMark hm(this);
1716     this->entry_point()(this, this);
1717   }
1718 
1719   DTRACE_THREAD_PROBE(stop, this);
1720 
1721   this->exit(false);
1722   delete this;
1723 }
1724 
1725 
1726 static void ensure_join(JavaThread* thread) {
1727   // We do not need to grap the Threads_lock, since we are operating on ourself.
1728   Handle threadObj(thread, thread->threadObj());
1729   assert(threadObj.not_null(), "java thread object must exist");
1730   ObjectLocker lock(threadObj, thread);
1731   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1732   thread->clear_pending_exception();
1733   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1734   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1735   // Clear the native thread instance - this makes isAlive return false and allows the join()
1736   // to complete once we've done the notify_all below
1737   java_lang_Thread::set_thread(threadObj(), NULL);
1738   lock.notify_all(thread);
1739   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1740   thread->clear_pending_exception();
1741 }
1742 
1743 
1744 // For any new cleanup additions, please check to see if they need to be applied to
1745 // cleanup_failed_attach_current_thread as well.
1746 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1747   assert(this == JavaThread::current(), "thread consistency check");
1748 
1749   HandleMark hm(this);
1750   Handle uncaught_exception(this, this->pending_exception());
1751   this->clear_pending_exception();
1752   Handle threadObj(this, this->threadObj());
1753   assert(threadObj.not_null(), "Java thread object should be created");
1754 
1755   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1756   {
1757     EXCEPTION_MARK;
1758 
1759     CLEAR_PENDING_EXCEPTION;
1760   }
1761   if (!destroy_vm) {
1762     if (uncaught_exception.not_null()) {
1763       EXCEPTION_MARK;
1764       // Call method Thread.dispatchUncaughtException().
1765       Klass* thread_klass = SystemDictionary::Thread_klass();
1766       JavaValue result(T_VOID);
1767       JavaCalls::call_virtual(&result,
1768                               threadObj, thread_klass,
1769                               vmSymbols::dispatchUncaughtException_name(),
1770                               vmSymbols::throwable_void_signature(),
1771                               uncaught_exception,
1772                               THREAD);
1773       if (HAS_PENDING_EXCEPTION) {
1774         ResourceMark rm(this);
1775         jio_fprintf(defaultStream::error_stream(),
1776                     "\nException: %s thrown from the UncaughtExceptionHandler"
1777                     " in thread \"%s\"\n",
1778                     pending_exception()->klass()->external_name(),
1779                     get_thread_name());
1780         CLEAR_PENDING_EXCEPTION;
1781       }
1782     }
1783 
1784     // Called before the java thread exit since we want to read info
1785     // from java_lang_Thread object
1786     EventThreadEnd event;
1787     if (event.should_commit()) {
1788       event.set_thread(THREAD_TRACE_ID(this));
1789       event.commit();
1790     }
1791 
1792     // Call after last event on thread
1793     EVENT_THREAD_EXIT(this);
1794 
1795     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1796     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1797     // is deprecated anyhow.
1798     if (!is_Compiler_thread()) {
1799       int count = 3;
1800       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1801         EXCEPTION_MARK;
1802         JavaValue result(T_VOID);
1803         Klass* thread_klass = SystemDictionary::Thread_klass();
1804         JavaCalls::call_virtual(&result,
1805                                 threadObj, thread_klass,
1806                                 vmSymbols::exit_method_name(),
1807                                 vmSymbols::void_method_signature(),
1808                                 THREAD);
1809         CLEAR_PENDING_EXCEPTION;
1810       }
1811     }
1812     // notify JVMTI
1813     if (JvmtiExport::should_post_thread_life()) {
1814       JvmtiExport::post_thread_end(this);
1815     }
1816 
1817     // We have notified the agents that we are exiting, before we go on,
1818     // we must check for a pending external suspend request and honor it
1819     // in order to not surprise the thread that made the suspend request.
1820     while (true) {
1821       {
1822         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1823         if (!is_external_suspend()) {
1824           set_terminated(_thread_exiting);
1825           ThreadService::current_thread_exiting(this);
1826           break;
1827         }
1828         // Implied else:
1829         // Things get a little tricky here. We have a pending external
1830         // suspend request, but we are holding the SR_lock so we
1831         // can't just self-suspend. So we temporarily drop the lock
1832         // and then self-suspend.
1833       }
1834 
1835       ThreadBlockInVM tbivm(this);
1836       java_suspend_self();
1837 
1838       // We're done with this suspend request, but we have to loop around
1839       // and check again. Eventually we will get SR_lock without a pending
1840       // external suspend request and will be able to mark ourselves as
1841       // exiting.
1842     }
1843     // no more external suspends are allowed at this point
1844   } else {
1845     // before_exit() has already posted JVMTI THREAD_END events
1846   }
1847 
1848   // Notify waiters on thread object. This has to be done after exit() is called
1849   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1850   // group should have the destroyed bit set before waiters are notified).
1851   ensure_join(this);
1852   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1853 
1854   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1855   // held by this thread must be released. The spec does not distinguish
1856   // between JNI-acquired and regular Java monitors. We can only see
1857   // regular Java monitors here if monitor enter-exit matching is broken.
1858   //
1859   // Optionally release any monitors for regular JavaThread exits. This
1860   // is provided as a work around for any bugs in monitor enter-exit
1861   // matching. This can be expensive so it is not enabled by default.
1862   //
1863   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1864   // ObjectSynchronizer::release_monitors_owned_by_thread().
1865   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1866     // Sanity check even though JNI DetachCurrentThread() would have
1867     // returned JNI_ERR if there was a Java frame. JavaThread exit
1868     // should be done executing Java code by the time we get here.
1869     assert(!this->has_last_Java_frame(),
1870            "should not have a Java frame when detaching or exiting");
1871     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1872     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1873   }
1874 
1875   // These things needs to be done while we are still a Java Thread. Make sure that thread
1876   // is in a consistent state, in case GC happens
1877   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1878 
1879   if (active_handles() != NULL) {
1880     JNIHandleBlock* block = active_handles();
1881     set_active_handles(NULL);
1882     JNIHandleBlock::release_block(block);
1883   }
1884 
1885   if (free_handle_block() != NULL) {
1886     JNIHandleBlock* block = free_handle_block();
1887     set_free_handle_block(NULL);
1888     JNIHandleBlock::release_block(block);
1889   }
1890 
1891   // These have to be removed while this is still a valid thread.
1892   remove_stack_guard_pages();
1893 
1894   if (UseTLAB) {
1895     tlab().make_parsable(true);  // retire TLAB
1896   }
1897 
1898   if (JvmtiEnv::environments_might_exist()) {
1899     JvmtiExport::cleanup_thread(this);
1900   }
1901 
1902   // We must flush any deferred card marks before removing a thread from
1903   // the list of active threads.
1904   Universe::heap()->flush_deferred_store_barrier(this);
1905   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1906 
1907 #if INCLUDE_ALL_GCS
1908   // We must flush the G1-related buffers before removing a thread
1909   // from the list of active threads. We must do this after any deferred
1910   // card marks have been flushed (above) so that any entries that are
1911   // added to the thread's dirty card queue as a result are not lost.
1912   if (UseG1GC || (UseShenandoahGC && ShenandoahWriteBarrier)) {
1913     flush_barrier_queues();
1914   }
1915   if (UseShenandoahGC && UseTLAB && gclab().is_initialized()) {
1916     gclab().make_parsable(true);
1917   }
1918 #endif // INCLUDE_ALL_GCS
1919 
1920   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1921     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1922     os::current_thread_id());
1923 
1924   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1925   Threads::remove(this);
1926 }
1927 
1928 #if INCLUDE_ALL_GCS
1929 // Flush G1-related queues.
1930 void JavaThread::flush_barrier_queues() {
1931   satb_mark_queue().flush();
1932   dirty_card_queue().flush();
1933 }
1934 
1935 void JavaThread::initialize_queues() {
1936   assert(!SafepointSynchronize::is_at_safepoint(),
1937          "we should not be at a safepoint");
1938 
1939   SATBMarkQueue& satb_queue = satb_mark_queue();
1940   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1941   // The SATB queue should have been constructed with its active
1942   // field set to false.
1943   assert(!satb_queue.is_active(), "SATB queue should not be active");
1944   assert(satb_queue.is_empty(), "SATB queue should be empty");
1945   // If we are creating the thread during a marking cycle, we should
1946   // set the active field of the SATB queue to true.
1947   if (satb_queue_set.is_active()) {
1948     satb_queue.set_active(true);
1949   }
1950 
1951   DirtyCardQueue& dirty_queue = dirty_card_queue();
1952   // The dirty card queue should have been constructed with its
1953   // active field set to true.
1954   assert(dirty_queue.is_active(), "dirty card queue should be active");
1955 
1956   _evacuation_in_progress = _evacuation_in_progress_global;
1957 }
1958 
1959 bool JavaThread::evacuation_in_progress() const {
1960   return _evacuation_in_progress;
1961 }
1962 
1963 void JavaThread::set_evacuation_in_progress(bool in_prog) {
1964   _evacuation_in_progress = in_prog;
1965 }
1966 
1967 void JavaThread::set_evacuation_in_progress_all_threads(bool in_prog) {
1968   assert_locked_or_safepoint(Threads_lock);
1969   _evacuation_in_progress_global = in_prog;
1970   for (JavaThread* t = Threads::first(); t != NULL; t = t->next()) {
1971     t->set_evacuation_in_progress(in_prog);
1972   }
1973 }
1974 #endif // INCLUDE_ALL_GCS
1975 
1976 void JavaThread::cleanup_failed_attach_current_thread() {
1977   if (active_handles() != NULL) {
1978     JNIHandleBlock* block = active_handles();
1979     set_active_handles(NULL);
1980     JNIHandleBlock::release_block(block);
1981   }
1982 
1983   if (free_handle_block() != NULL) {
1984     JNIHandleBlock* block = free_handle_block();
1985     set_free_handle_block(NULL);
1986     JNIHandleBlock::release_block(block);
1987   }
1988 
1989   // These have to be removed while this is still a valid thread.
1990   remove_stack_guard_pages();
1991 
1992   if (UseTLAB) {
1993     tlab().make_parsable(true);  // retire TLAB, if any
1994   }
1995 
1996 #if INCLUDE_ALL_GCS
1997   if (UseG1GC || (UseShenandoahGC && ShenandoahWriteBarrier)) {
1998     flush_barrier_queues();
1999   }
2000   if (UseShenandoahGC && UseTLAB && gclab().is_initialized()) {
2001     gclab().make_parsable(true);
2002   }
2003 #endif // INCLUDE_ALL_GCS
2004 
2005   Threads::remove(this);
2006   delete this;
2007 }
2008 
2009 
2010 
2011 
2012 JavaThread* JavaThread::active() {
2013   Thread* thread = Thread::current();
2014   if (thread->is_Java_thread()) {
2015     return (JavaThread*) thread;
2016   } else {
2017     assert(thread->is_VM_thread(), "this must be a vm thread");
2018     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2019     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2020     assert(ret->is_Java_thread(), "must be a Java thread");
2021     return ret;
2022   }
2023 }
2024 
2025 bool JavaThread::is_lock_owned(address adr) const {
2026   if (Thread::is_lock_owned(adr)) return true;
2027 
2028   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2029     if (chunk->contains(adr)) return true;
2030   }
2031 
2032   return false;
2033 }
2034 
2035 
2036 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2037   chunk->set_next(monitor_chunks());
2038   set_monitor_chunks(chunk);
2039 }
2040 
2041 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2042   guarantee(monitor_chunks() != NULL, "must be non empty");
2043   if (monitor_chunks() == chunk) {
2044     set_monitor_chunks(chunk->next());
2045   } else {
2046     MonitorChunk* prev = monitor_chunks();
2047     while (prev->next() != chunk) prev = prev->next();
2048     prev->set_next(chunk->next());
2049   }
2050 }
2051 
2052 // JVM support.
2053 
2054 // Note: this function shouldn't block if it's called in
2055 // _thread_in_native_trans state (such as from
2056 // check_special_condition_for_native_trans()).
2057 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2058 
2059   if (has_last_Java_frame() && has_async_condition()) {
2060     // If we are at a polling page safepoint (not a poll return)
2061     // then we must defer async exception because live registers
2062     // will be clobbered by the exception path. Poll return is
2063     // ok because the call we a returning from already collides
2064     // with exception handling registers and so there is no issue.
2065     // (The exception handling path kills call result registers but
2066     //  this is ok since the exception kills the result anyway).
2067 
2068     if (is_at_poll_safepoint()) {
2069       // if the code we are returning to has deoptimized we must defer
2070       // the exception otherwise live registers get clobbered on the
2071       // exception path before deoptimization is able to retrieve them.
2072       //
2073       RegisterMap map(this, false);
2074       frame caller_fr = last_frame().sender(&map);
2075       assert(caller_fr.is_compiled_frame(), "what?");
2076       if (caller_fr.is_deoptimized_frame()) {
2077         log_info(exceptions)("deferred async exception at compiled safepoint");
2078         return;
2079       }
2080     }
2081   }
2082 
2083   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2084   if (condition == _no_async_condition) {
2085     // Conditions have changed since has_special_runtime_exit_condition()
2086     // was called:
2087     // - if we were here only because of an external suspend request,
2088     //   then that was taken care of above (or cancelled) so we are done
2089     // - if we were here because of another async request, then it has
2090     //   been cleared between the has_special_runtime_exit_condition()
2091     //   and now so again we are done
2092     return;
2093   }
2094 
2095   // Check for pending async. exception
2096   if (_pending_async_exception != NULL) {
2097     // Only overwrite an already pending exception, if it is not a threadDeath.
2098     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2099 
2100       // We cannot call Exceptions::_throw(...) here because we cannot block
2101       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2102 
2103       LogTarget(Info, exceptions) lt;
2104       if (lt.is_enabled()) {
2105         ResourceMark rm;
2106         LogStream ls(lt);
2107         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2108           if (has_last_Java_frame()) {
2109             frame f = last_frame();
2110            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2111           }
2112         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2113       }
2114       _pending_async_exception = NULL;
2115       clear_has_async_exception();
2116     }
2117   }
2118 
2119   if (check_unsafe_error &&
2120       condition == _async_unsafe_access_error && !has_pending_exception()) {
2121     condition = _no_async_condition;  // done
2122     switch (thread_state()) {
2123     case _thread_in_vm: {
2124       JavaThread* THREAD = this;
2125       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2126     }
2127     case _thread_in_native: {
2128       ThreadInVMfromNative tiv(this);
2129       JavaThread* THREAD = this;
2130       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2131     }
2132     case _thread_in_Java: {
2133       ThreadInVMfromJava tiv(this);
2134       JavaThread* THREAD = this;
2135       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2136     }
2137     default:
2138       ShouldNotReachHere();
2139     }
2140   }
2141 
2142   assert(condition == _no_async_condition || has_pending_exception() ||
2143          (!check_unsafe_error && condition == _async_unsafe_access_error),
2144          "must have handled the async condition, if no exception");
2145 }
2146 
2147 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2148   //
2149   // Check for pending external suspend. Internal suspend requests do
2150   // not use handle_special_runtime_exit_condition().
2151   // If JNIEnv proxies are allowed, don't self-suspend if the target
2152   // thread is not the current thread. In older versions of jdbx, jdbx
2153   // threads could call into the VM with another thread's JNIEnv so we
2154   // can be here operating on behalf of a suspended thread (4432884).
2155   bool do_self_suspend = is_external_suspend_with_lock();
2156   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2157     //
2158     // Because thread is external suspended the safepoint code will count
2159     // thread as at a safepoint. This can be odd because we can be here
2160     // as _thread_in_Java which would normally transition to _thread_blocked
2161     // at a safepoint. We would like to mark the thread as _thread_blocked
2162     // before calling java_suspend_self like all other callers of it but
2163     // we must then observe proper safepoint protocol. (We can't leave
2164     // _thread_blocked with a safepoint in progress). However we can be
2165     // here as _thread_in_native_trans so we can't use a normal transition
2166     // constructor/destructor pair because they assert on that type of
2167     // transition. We could do something like:
2168     //
2169     // JavaThreadState state = thread_state();
2170     // set_thread_state(_thread_in_vm);
2171     // {
2172     //   ThreadBlockInVM tbivm(this);
2173     //   java_suspend_self()
2174     // }
2175     // set_thread_state(_thread_in_vm_trans);
2176     // if (safepoint) block;
2177     // set_thread_state(state);
2178     //
2179     // but that is pretty messy. Instead we just go with the way the
2180     // code has worked before and note that this is the only path to
2181     // java_suspend_self that doesn't put the thread in _thread_blocked
2182     // mode.
2183 
2184     frame_anchor()->make_walkable(this);
2185     java_suspend_self();
2186 
2187     // We might be here for reasons in addition to the self-suspend request
2188     // so check for other async requests.
2189   }
2190 
2191   if (check_asyncs) {
2192     check_and_handle_async_exceptions();
2193   }
2194 #if INCLUDE_TRACE
2195   if (is_trace_suspend()) {
2196     TRACE_SUSPEND_THREAD(this);
2197   }
2198 #endif
2199 }
2200 
2201 void JavaThread::send_thread_stop(oop java_throwable)  {
2202   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2203   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2204   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2205 
2206   // Do not throw asynchronous exceptions against the compiler thread
2207   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2208   if (!can_call_java()) return;
2209 
2210   {
2211     // Actually throw the Throwable against the target Thread - however
2212     // only if there is no thread death exception installed already.
2213     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2214       // If the topmost frame is a runtime stub, then we are calling into
2215       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2216       // must deoptimize the caller before continuing, as the compiled  exception handler table
2217       // may not be valid
2218       if (has_last_Java_frame()) {
2219         frame f = last_frame();
2220         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2221           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2222           RegisterMap reg_map(this, UseBiasedLocking);
2223           frame compiled_frame = f.sender(&reg_map);
2224           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2225             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2226           }
2227         }
2228       }
2229 
2230       // Set async. pending exception in thread.
2231       set_pending_async_exception(java_throwable);
2232 
2233       if (log_is_enabled(Info, exceptions)) {
2234          ResourceMark rm;
2235         log_info(exceptions)("Pending Async. exception installed of type: %s",
2236                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2237       }
2238       // for AbortVMOnException flag
2239       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2240     }
2241   }
2242 
2243 
2244   // Interrupt thread so it will wake up from a potential wait()
2245   Thread::interrupt(this);
2246 }
2247 
2248 // External suspension mechanism.
2249 //
2250 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2251 // to any VM_locks and it is at a transition
2252 // Self-suspension will happen on the transition out of the vm.
2253 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2254 //
2255 // Guarantees on return:
2256 //   + Target thread will not execute any new bytecode (that's why we need to
2257 //     force a safepoint)
2258 //   + Target thread will not enter any new monitors
2259 //
2260 void JavaThread::java_suspend() {
2261   { MutexLocker mu(Threads_lock);
2262     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2263       return;
2264     }
2265   }
2266 
2267   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2268     if (!is_external_suspend()) {
2269       // a racing resume has cancelled us; bail out now
2270       return;
2271     }
2272 
2273     // suspend is done
2274     uint32_t debug_bits = 0;
2275     // Warning: is_ext_suspend_completed() may temporarily drop the
2276     // SR_lock to allow the thread to reach a stable thread state if
2277     // it is currently in a transient thread state.
2278     if (is_ext_suspend_completed(false /* !called_by_wait */,
2279                                  SuspendRetryDelay, &debug_bits)) {
2280       return;
2281     }
2282   }
2283 
2284   VM_ThreadSuspend vm_suspend;
2285   VMThread::execute(&vm_suspend);
2286 }
2287 
2288 // Part II of external suspension.
2289 // A JavaThread self suspends when it detects a pending external suspend
2290 // request. This is usually on transitions. It is also done in places
2291 // where continuing to the next transition would surprise the caller,
2292 // e.g., monitor entry.
2293 //
2294 // Returns the number of times that the thread self-suspended.
2295 //
2296 // Note: DO NOT call java_suspend_self() when you just want to block current
2297 //       thread. java_suspend_self() is the second stage of cooperative
2298 //       suspension for external suspend requests and should only be used
2299 //       to complete an external suspend request.
2300 //
2301 int JavaThread::java_suspend_self() {
2302   int ret = 0;
2303 
2304   // we are in the process of exiting so don't suspend
2305   if (is_exiting()) {
2306     clear_external_suspend();
2307     return ret;
2308   }
2309 
2310   assert(_anchor.walkable() ||
2311          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2312          "must have walkable stack");
2313 
2314   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2315 
2316   assert(!this->is_ext_suspended(),
2317          "a thread trying to self-suspend should not already be suspended");
2318 
2319   if (this->is_suspend_equivalent()) {
2320     // If we are self-suspending as a result of the lifting of a
2321     // suspend equivalent condition, then the suspend_equivalent
2322     // flag is not cleared until we set the ext_suspended flag so
2323     // that wait_for_ext_suspend_completion() returns consistent
2324     // results.
2325     this->clear_suspend_equivalent();
2326   }
2327 
2328   // A racing resume may have cancelled us before we grabbed SR_lock
2329   // above. Or another external suspend request could be waiting for us
2330   // by the time we return from SR_lock()->wait(). The thread
2331   // that requested the suspension may already be trying to walk our
2332   // stack and if we return now, we can change the stack out from under
2333   // it. This would be a "bad thing (TM)" and cause the stack walker
2334   // to crash. We stay self-suspended until there are no more pending
2335   // external suspend requests.
2336   while (is_external_suspend()) {
2337     ret++;
2338     this->set_ext_suspended();
2339 
2340     // _ext_suspended flag is cleared by java_resume()
2341     while (is_ext_suspended()) {
2342       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2343     }
2344   }
2345 
2346   return ret;
2347 }
2348 
2349 #ifdef ASSERT
2350 // verify the JavaThread has not yet been published in the Threads::list, and
2351 // hence doesn't need protection from concurrent access at this stage
2352 void JavaThread::verify_not_published() {
2353   if (!Threads_lock->owned_by_self()) {
2354     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2355     assert(!Threads::includes(this),
2356            "java thread shouldn't have been published yet!");
2357   } else {
2358     assert(!Threads::includes(this),
2359            "java thread shouldn't have been published yet!");
2360   }
2361 }
2362 #endif
2363 
2364 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2365 // progress or when _suspend_flags is non-zero.
2366 // Current thread needs to self-suspend if there is a suspend request and/or
2367 // block if a safepoint is in progress.
2368 // Async exception ISN'T checked.
2369 // Note only the ThreadInVMfromNative transition can call this function
2370 // directly and when thread state is _thread_in_native_trans
2371 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2372   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2373 
2374   JavaThread *curJT = JavaThread::current();
2375   bool do_self_suspend = thread->is_external_suspend();
2376 
2377   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2378 
2379   // If JNIEnv proxies are allowed, don't self-suspend if the target
2380   // thread is not the current thread. In older versions of jdbx, jdbx
2381   // threads could call into the VM with another thread's JNIEnv so we
2382   // can be here operating on behalf of a suspended thread (4432884).
2383   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2384     JavaThreadState state = thread->thread_state();
2385 
2386     // We mark this thread_blocked state as a suspend-equivalent so
2387     // that a caller to is_ext_suspend_completed() won't be confused.
2388     // The suspend-equivalent state is cleared by java_suspend_self().
2389     thread->set_suspend_equivalent();
2390 
2391     // If the safepoint code sees the _thread_in_native_trans state, it will
2392     // wait until the thread changes to other thread state. There is no
2393     // guarantee on how soon we can obtain the SR_lock and complete the
2394     // self-suspend request. It would be a bad idea to let safepoint wait for
2395     // too long. Temporarily change the state to _thread_blocked to
2396     // let the VM thread know that this thread is ready for GC. The problem
2397     // of changing thread state is that safepoint could happen just after
2398     // java_suspend_self() returns after being resumed, and VM thread will
2399     // see the _thread_blocked state. We must check for safepoint
2400     // after restoring the state and make sure we won't leave while a safepoint
2401     // is in progress.
2402     thread->set_thread_state(_thread_blocked);
2403     thread->java_suspend_self();
2404     thread->set_thread_state(state);
2405 
2406     InterfaceSupport::serialize_thread_state_with_handler(thread);
2407   }
2408 
2409   if (SafepointSynchronize::do_call_back()) {
2410     // If we are safepointing, then block the caller which may not be
2411     // the same as the target thread (see above).
2412     SafepointSynchronize::block(curJT);
2413   }
2414 
2415   if (thread->is_deopt_suspend()) {
2416     thread->clear_deopt_suspend();
2417     RegisterMap map(thread, false);
2418     frame f = thread->last_frame();
2419     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2420       f = f.sender(&map);
2421     }
2422     if (f.id() == thread->must_deopt_id()) {
2423       thread->clear_must_deopt_id();
2424       f.deoptimize(thread);
2425     } else {
2426       fatal("missed deoptimization!");
2427     }
2428   }
2429 #if INCLUDE_TRACE
2430   if (thread->is_trace_suspend()) {
2431     TRACE_SUSPEND_THREAD(thread);
2432   }
2433 #endif
2434 }
2435 
2436 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2437 // progress or when _suspend_flags is non-zero.
2438 // Current thread needs to self-suspend if there is a suspend request and/or
2439 // block if a safepoint is in progress.
2440 // Also check for pending async exception (not including unsafe access error).
2441 // Note only the native==>VM/Java barriers can call this function and when
2442 // thread state is _thread_in_native_trans.
2443 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2444   check_safepoint_and_suspend_for_native_trans(thread);
2445 
2446   if (thread->has_async_exception()) {
2447     // We are in _thread_in_native_trans state, don't handle unsafe
2448     // access error since that may block.
2449     thread->check_and_handle_async_exceptions(false);
2450   }
2451 }
2452 
2453 // This is a variant of the normal
2454 // check_special_condition_for_native_trans with slightly different
2455 // semantics for use by critical native wrappers.  It does all the
2456 // normal checks but also performs the transition back into
2457 // thread_in_Java state.  This is required so that critical natives
2458 // can potentially block and perform a GC if they are the last thread
2459 // exiting the GCLocker.
2460 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2461   check_special_condition_for_native_trans(thread);
2462 
2463   // Finish the transition
2464   thread->set_thread_state(_thread_in_Java);
2465 
2466   if (thread->do_critical_native_unlock()) {
2467     ThreadInVMfromJavaNoAsyncException tiv(thread);
2468     GCLocker::unlock_critical(thread);
2469     thread->clear_critical_native_unlock();
2470   }
2471 }
2472 
2473 // We need to guarantee the Threads_lock here, since resumes are not
2474 // allowed during safepoint synchronization
2475 // Can only resume from an external suspension
2476 void JavaThread::java_resume() {
2477   assert_locked_or_safepoint(Threads_lock);
2478 
2479   // Sanity check: thread is gone, has started exiting or the thread
2480   // was not externally suspended.
2481   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2482     return;
2483   }
2484 
2485   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2486 
2487   clear_external_suspend();
2488 
2489   if (is_ext_suspended()) {
2490     clear_ext_suspended();
2491     SR_lock()->notify_all();
2492   }
2493 }
2494 
2495 size_t JavaThread::_stack_red_zone_size = 0;
2496 size_t JavaThread::_stack_yellow_zone_size = 0;
2497 size_t JavaThread::_stack_reserved_zone_size = 0;
2498 size_t JavaThread::_stack_shadow_zone_size = 0;
2499 
2500 void JavaThread::create_stack_guard_pages() {
2501   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2502   address low_addr = stack_end();
2503   size_t len = stack_guard_zone_size();
2504 
2505   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2506   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2507 
2508   int must_commit = os::must_commit_stack_guard_pages();
2509   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2510 
2511   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2512     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2513     return;
2514   }
2515 
2516   if (os::guard_memory((char *) low_addr, len)) {
2517     _stack_guard_state = stack_guard_enabled;
2518   } else {
2519     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2520       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2521     if (os::uncommit_memory((char *) low_addr, len)) {
2522       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2523     }
2524     return;
2525   }
2526 
2527   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2528     PTR_FORMAT "-" PTR_FORMAT ".",
2529     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2530 }
2531 
2532 void JavaThread::remove_stack_guard_pages() {
2533   assert(Thread::current() == this, "from different thread");
2534   if (_stack_guard_state == stack_guard_unused) return;
2535   address low_addr = stack_end();
2536   size_t len = stack_guard_zone_size();
2537 
2538   if (os::must_commit_stack_guard_pages()) {
2539     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2540       _stack_guard_state = stack_guard_unused;
2541     } else {
2542       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2543         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2544       return;
2545     }
2546   } else {
2547     if (_stack_guard_state == stack_guard_unused) return;
2548     if (os::unguard_memory((char *) low_addr, len)) {
2549       _stack_guard_state = stack_guard_unused;
2550     } else {
2551       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2552         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2553       return;
2554     }
2555   }
2556 
2557   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2558     PTR_FORMAT "-" PTR_FORMAT ".",
2559     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2560 }
2561 
2562 void JavaThread::enable_stack_reserved_zone() {
2563   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2564   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2565 
2566   // The base notation is from the stack's point of view, growing downward.
2567   // We need to adjust it to work correctly with guard_memory()
2568   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2569 
2570   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2571   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2572 
2573   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2574     _stack_guard_state = stack_guard_enabled;
2575   } else {
2576     warning("Attempt to guard stack reserved zone failed.");
2577   }
2578   enable_register_stack_guard();
2579 }
2580 
2581 void JavaThread::disable_stack_reserved_zone() {
2582   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2583   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2584 
2585   // Simply return if called for a thread that does not use guard pages.
2586   if (_stack_guard_state == stack_guard_unused) return;
2587 
2588   // The base notation is from the stack's point of view, growing downward.
2589   // We need to adjust it to work correctly with guard_memory()
2590   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2591 
2592   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2593     _stack_guard_state = stack_guard_reserved_disabled;
2594   } else {
2595     warning("Attempt to unguard stack reserved zone failed.");
2596   }
2597   disable_register_stack_guard();
2598 }
2599 
2600 void JavaThread::enable_stack_yellow_reserved_zone() {
2601   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2602   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2603 
2604   // The base notation is from the stacks point of view, growing downward.
2605   // We need to adjust it to work correctly with guard_memory()
2606   address base = stack_red_zone_base();
2607 
2608   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2609   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2610 
2611   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2612     _stack_guard_state = stack_guard_enabled;
2613   } else {
2614     warning("Attempt to guard stack yellow zone failed.");
2615   }
2616   enable_register_stack_guard();
2617 }
2618 
2619 void JavaThread::disable_stack_yellow_reserved_zone() {
2620   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2621   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2622 
2623   // Simply return if called for a thread that does not use guard pages.
2624   if (_stack_guard_state == stack_guard_unused) return;
2625 
2626   // The base notation is from the stacks point of view, growing downward.
2627   // We need to adjust it to work correctly with guard_memory()
2628   address base = stack_red_zone_base();
2629 
2630   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2631     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2632   } else {
2633     warning("Attempt to unguard stack yellow zone failed.");
2634   }
2635   disable_register_stack_guard();
2636 }
2637 
2638 void JavaThread::enable_stack_red_zone() {
2639   // The base notation is from the stacks point of view, growing downward.
2640   // We need to adjust it to work correctly with guard_memory()
2641   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2642   address base = stack_red_zone_base() - stack_red_zone_size();
2643 
2644   guarantee(base < stack_base(), "Error calculating stack red zone");
2645   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2646 
2647   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2648     warning("Attempt to guard stack red zone failed.");
2649   }
2650 }
2651 
2652 void JavaThread::disable_stack_red_zone() {
2653   // The base notation is from the stacks point of view, growing downward.
2654   // We need to adjust it to work correctly with guard_memory()
2655   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2656   address base = stack_red_zone_base() - stack_red_zone_size();
2657   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2658     warning("Attempt to unguard stack red zone failed.");
2659   }
2660 }
2661 
2662 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2663   // ignore is there is no stack
2664   if (!has_last_Java_frame()) return;
2665   // traverse the stack frames. Starts from top frame.
2666   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2667     frame* fr = fst.current();
2668     f(fr, fst.register_map());
2669   }
2670 }
2671 
2672 
2673 #ifndef PRODUCT
2674 // Deoptimization
2675 // Function for testing deoptimization
2676 void JavaThread::deoptimize() {
2677   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2678   StackFrameStream fst(this, UseBiasedLocking);
2679   bool deopt = false;           // Dump stack only if a deopt actually happens.
2680   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2681   // Iterate over all frames in the thread and deoptimize
2682   for (; !fst.is_done(); fst.next()) {
2683     if (fst.current()->can_be_deoptimized()) {
2684 
2685       if (only_at) {
2686         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2687         // consists of comma or carriage return separated numbers so
2688         // search for the current bci in that string.
2689         address pc = fst.current()->pc();
2690         nmethod* nm =  (nmethod*) fst.current()->cb();
2691         ScopeDesc* sd = nm->scope_desc_at(pc);
2692         char buffer[8];
2693         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2694         size_t len = strlen(buffer);
2695         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2696         while (found != NULL) {
2697           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2698               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2699             // Check that the bci found is bracketed by terminators.
2700             break;
2701           }
2702           found = strstr(found + 1, buffer);
2703         }
2704         if (!found) {
2705           continue;
2706         }
2707       }
2708 
2709       if (DebugDeoptimization && !deopt) {
2710         deopt = true; // One-time only print before deopt
2711         tty->print_cr("[BEFORE Deoptimization]");
2712         trace_frames();
2713         trace_stack();
2714       }
2715       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2716     }
2717   }
2718 
2719   if (DebugDeoptimization && deopt) {
2720     tty->print_cr("[AFTER Deoptimization]");
2721     trace_frames();
2722   }
2723 }
2724 
2725 
2726 // Make zombies
2727 void JavaThread::make_zombies() {
2728   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2729     if (fst.current()->can_be_deoptimized()) {
2730       // it is a Java nmethod
2731       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2732       nm->make_not_entrant();
2733     }
2734   }
2735 }
2736 #endif // PRODUCT
2737 
2738 
2739 void JavaThread::deoptimized_wrt_marked_nmethods() {
2740   if (!has_last_Java_frame()) return;
2741   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2742   StackFrameStream fst(this, UseBiasedLocking);
2743   for (; !fst.is_done(); fst.next()) {
2744     if (fst.current()->should_be_deoptimized()) {
2745       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2746     }
2747   }
2748 }
2749 
2750 
2751 // If the caller is a NamedThread, then remember, in the current scope,
2752 // the given JavaThread in its _processed_thread field.
2753 class RememberProcessedThread: public StackObj {
2754   NamedThread* _cur_thr;
2755  public:
2756   RememberProcessedThread(JavaThread* jthr) {
2757     Thread* thread = Thread::current();
2758     if (thread->is_Named_thread()) {
2759       _cur_thr = (NamedThread *)thread;
2760       _cur_thr->set_processed_thread(jthr);
2761     } else {
2762       _cur_thr = NULL;
2763     }
2764   }
2765 
2766   ~RememberProcessedThread() {
2767     if (_cur_thr) {
2768       _cur_thr->set_processed_thread(NULL);
2769     }
2770   }
2771 };
2772 
2773 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2774   // Verify that the deferred card marks have been flushed.
2775   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2776 
2777   // Traverse the GCHandles
2778   Thread::oops_do(f, cf);
2779 
2780   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2781 
2782   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2783          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2784 
2785   if (has_last_Java_frame()) {
2786     // Record JavaThread to GC thread
2787     RememberProcessedThread rpt(this);
2788 
2789     // Traverse the privileged stack
2790     if (_privileged_stack_top != NULL) {
2791       _privileged_stack_top->oops_do(f);
2792     }
2793 
2794     // traverse the registered growable array
2795     if (_array_for_gc != NULL) {
2796       for (int index = 0; index < _array_for_gc->length(); index++) {
2797         f->do_oop(_array_for_gc->adr_at(index));
2798       }
2799     }
2800 
2801     // Traverse the monitor chunks
2802     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2803       chunk->oops_do(f);
2804     }
2805 
2806     // Traverse the execution stack
2807     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2808       fst.current()->oops_do(f, cf, fst.register_map());
2809     }
2810   }
2811 
2812   // callee_target is never live across a gc point so NULL it here should
2813   // it still contain a methdOop.
2814 
2815   set_callee_target(NULL);
2816 
2817   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2818   // If we have deferred set_locals there might be oops waiting to be
2819   // written
2820   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2821   if (list != NULL) {
2822     for (int i = 0; i < list->length(); i++) {
2823       list->at(i)->oops_do(f);
2824     }
2825   }
2826 
2827   // Traverse instance variables at the end since the GC may be moving things
2828   // around using this function
2829   f->do_oop((oop*) &_threadObj);
2830   f->do_oop((oop*) &_vm_result);
2831   f->do_oop((oop*) &_exception_oop);
2832   f->do_oop((oop*) &_pending_async_exception);
2833 
2834   if (jvmti_thread_state() != NULL) {
2835     jvmti_thread_state()->oops_do(f);
2836   }
2837 }
2838 
2839 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2840   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2841          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2842 
2843   if (has_last_Java_frame()) {
2844     // Traverse the execution stack
2845     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2846       fst.current()->nmethods_do(cf);
2847     }
2848   }
2849 }
2850 
2851 void JavaThread::metadata_do(void f(Metadata*)) {
2852   if (has_last_Java_frame()) {
2853     // Traverse the execution stack to call f() on the methods in the stack
2854     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2855       fst.current()->metadata_do(f);
2856     }
2857   } else if (is_Compiler_thread()) {
2858     // need to walk ciMetadata in current compile tasks to keep alive.
2859     CompilerThread* ct = (CompilerThread*)this;
2860     if (ct->env() != NULL) {
2861       ct->env()->metadata_do(f);
2862     }
2863     if (ct->task() != NULL) {
2864       ct->task()->metadata_do(f);
2865     }
2866   }
2867 }
2868 
2869 // Printing
2870 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2871   switch (_thread_state) {
2872   case _thread_uninitialized:     return "_thread_uninitialized";
2873   case _thread_new:               return "_thread_new";
2874   case _thread_new_trans:         return "_thread_new_trans";
2875   case _thread_in_native:         return "_thread_in_native";
2876   case _thread_in_native_trans:   return "_thread_in_native_trans";
2877   case _thread_in_vm:             return "_thread_in_vm";
2878   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2879   case _thread_in_Java:           return "_thread_in_Java";
2880   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2881   case _thread_blocked:           return "_thread_blocked";
2882   case _thread_blocked_trans:     return "_thread_blocked_trans";
2883   default:                        return "unknown thread state";
2884   }
2885 }
2886 
2887 #ifndef PRODUCT
2888 void JavaThread::print_thread_state_on(outputStream *st) const {
2889   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2890 };
2891 void JavaThread::print_thread_state() const {
2892   print_thread_state_on(tty);
2893 }
2894 #endif // PRODUCT
2895 
2896 // Called by Threads::print() for VM_PrintThreads operation
2897 void JavaThread::print_on(outputStream *st) const {
2898   st->print_raw("\"");
2899   st->print_raw(get_thread_name());
2900   st->print_raw("\" ");
2901   oop thread_oop = threadObj();
2902   if (thread_oop != NULL) {
2903     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2904     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2905     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2906   }
2907   Thread::print_on(st);
2908   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2909   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2910   if (thread_oop != NULL) {
2911     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2912   }
2913 #ifndef PRODUCT
2914   print_thread_state_on(st);
2915   _safepoint_state->print_on(st);
2916 #endif // PRODUCT
2917   if (is_Compiler_thread()) {
2918     CompilerThread* ct = (CompilerThread*)this;
2919     if (ct->task() != NULL) {
2920       st->print("   Compiling: ");
2921       ct->task()->print(st, NULL, true, false);
2922     } else {
2923       st->print("   No compile task");
2924     }
2925     st->cr();
2926   }
2927 }
2928 
2929 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2930   st->print("%s", get_thread_name_string(buf, buflen));
2931 }
2932 
2933 // Called by fatal error handler. The difference between this and
2934 // JavaThread::print() is that we can't grab lock or allocate memory.
2935 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2936   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2937   oop thread_obj = threadObj();
2938   if (thread_obj != NULL) {
2939     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2940   }
2941   st->print(" [");
2942   st->print("%s", _get_thread_state_name(_thread_state));
2943   if (osthread()) {
2944     st->print(", id=%d", osthread()->thread_id());
2945   }
2946   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2947             p2i(stack_end()), p2i(stack_base()));
2948   st->print("]");
2949   return;
2950 }
2951 
2952 // Verification
2953 
2954 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2955 
2956 void JavaThread::verify() {
2957   // Verify oops in the thread.
2958   oops_do(&VerifyOopClosure::verify_oop, NULL);
2959 
2960   // Verify the stack frames.
2961   frames_do(frame_verify);
2962 }
2963 
2964 // CR 6300358 (sub-CR 2137150)
2965 // Most callers of this method assume that it can't return NULL but a
2966 // thread may not have a name whilst it is in the process of attaching to
2967 // the VM - see CR 6412693, and there are places where a JavaThread can be
2968 // seen prior to having it's threadObj set (eg JNI attaching threads and
2969 // if vm exit occurs during initialization). These cases can all be accounted
2970 // for such that this method never returns NULL.
2971 const char* JavaThread::get_thread_name() const {
2972 #ifdef ASSERT
2973   // early safepoints can hit while current thread does not yet have TLS
2974   if (!SafepointSynchronize::is_at_safepoint()) {
2975     Thread *cur = Thread::current();
2976     if (!(cur->is_Java_thread() && cur == this)) {
2977       // Current JavaThreads are allowed to get their own name without
2978       // the Threads_lock.
2979       assert_locked_or_safepoint(Threads_lock);
2980     }
2981   }
2982 #endif // ASSERT
2983   return get_thread_name_string();
2984 }
2985 
2986 // Returns a non-NULL representation of this thread's name, or a suitable
2987 // descriptive string if there is no set name
2988 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2989   const char* name_str;
2990   oop thread_obj = threadObj();
2991   if (thread_obj != NULL) {
2992     oop name = java_lang_Thread::name(thread_obj);
2993     if (name != NULL) {
2994       if (buf == NULL) {
2995         name_str = java_lang_String::as_utf8_string(name);
2996       } else {
2997         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2998       }
2999     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3000       name_str = "<no-name - thread is attaching>";
3001     } else {
3002       name_str = Thread::name();
3003     }
3004   } else {
3005     name_str = Thread::name();
3006   }
3007   assert(name_str != NULL, "unexpected NULL thread name");
3008   return name_str;
3009 }
3010 
3011 
3012 const char* JavaThread::get_threadgroup_name() const {
3013   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3014   oop thread_obj = threadObj();
3015   if (thread_obj != NULL) {
3016     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3017     if (thread_group != NULL) {
3018       // ThreadGroup.name can be null
3019       return java_lang_ThreadGroup::name(thread_group);
3020     }
3021   }
3022   return NULL;
3023 }
3024 
3025 const char* JavaThread::get_parent_name() const {
3026   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3027   oop thread_obj = threadObj();
3028   if (thread_obj != NULL) {
3029     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3030     if (thread_group != NULL) {
3031       oop parent = java_lang_ThreadGroup::parent(thread_group);
3032       if (parent != NULL) {
3033         // ThreadGroup.name can be null
3034         return java_lang_ThreadGroup::name(parent);
3035       }
3036     }
3037   }
3038   return NULL;
3039 }
3040 
3041 ThreadPriority JavaThread::java_priority() const {
3042   oop thr_oop = threadObj();
3043   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3044   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3045   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3046   return priority;
3047 }
3048 
3049 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3050 
3051   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3052   // Link Java Thread object <-> C++ Thread
3053 
3054   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3055   // and put it into a new Handle.  The Handle "thread_oop" can then
3056   // be used to pass the C++ thread object to other methods.
3057 
3058   // Set the Java level thread object (jthread) field of the
3059   // new thread (a JavaThread *) to C++ thread object using the
3060   // "thread_oop" handle.
3061 
3062   // Set the thread field (a JavaThread *) of the
3063   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3064 
3065   Handle thread_oop(Thread::current(),
3066                     JNIHandles::resolve_non_null(jni_thread));
3067   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3068          "must be initialized");
3069   set_threadObj(thread_oop());
3070   java_lang_Thread::set_thread(thread_oop(), this);
3071 
3072   if (prio == NoPriority) {
3073     prio = java_lang_Thread::priority(thread_oop());
3074     assert(prio != NoPriority, "A valid priority should be present");
3075   }
3076 
3077   // Push the Java priority down to the native thread; needs Threads_lock
3078   Thread::set_priority(this, prio);
3079 
3080   prepare_ext();
3081 
3082   // Add the new thread to the Threads list and set it in motion.
3083   // We must have threads lock in order to call Threads::add.
3084   // It is crucial that we do not block before the thread is
3085   // added to the Threads list for if a GC happens, then the java_thread oop
3086   // will not be visited by GC.
3087   Threads::add(this);
3088 }
3089 
3090 oop JavaThread::current_park_blocker() {
3091   // Support for JSR-166 locks
3092   oop thread_oop = threadObj();
3093   if (thread_oop != NULL &&
3094       JDK_Version::current().supports_thread_park_blocker()) {
3095     return java_lang_Thread::park_blocker(thread_oop);
3096   }
3097   return NULL;
3098 }
3099 
3100 
3101 void JavaThread::print_stack_on(outputStream* st) {
3102   if (!has_last_Java_frame()) return;
3103   ResourceMark rm;
3104   HandleMark   hm;
3105 
3106   RegisterMap reg_map(this);
3107   vframe* start_vf = last_java_vframe(&reg_map);
3108   int count = 0;
3109   for (vframe* f = start_vf; f; f = f->sender()) {
3110     if (f->is_java_frame()) {
3111       javaVFrame* jvf = javaVFrame::cast(f);
3112       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3113 
3114       // Print out lock information
3115       if (JavaMonitorsInStackTrace) {
3116         jvf->print_lock_info_on(st, count);
3117       }
3118     } else {
3119       // Ignore non-Java frames
3120     }
3121 
3122     // Bail-out case for too deep stacks
3123     count++;
3124     if (MaxJavaStackTraceDepth == count) return;
3125   }
3126 }
3127 
3128 
3129 // JVMTI PopFrame support
3130 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3131   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3132   if (in_bytes(size_in_bytes) != 0) {
3133     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3134     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3135     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3136   }
3137 }
3138 
3139 void* JavaThread::popframe_preserved_args() {
3140   return _popframe_preserved_args;
3141 }
3142 
3143 ByteSize JavaThread::popframe_preserved_args_size() {
3144   return in_ByteSize(_popframe_preserved_args_size);
3145 }
3146 
3147 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3148   int sz = in_bytes(popframe_preserved_args_size());
3149   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3150   return in_WordSize(sz / wordSize);
3151 }
3152 
3153 void JavaThread::popframe_free_preserved_args() {
3154   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3155   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3156   _popframe_preserved_args = NULL;
3157   _popframe_preserved_args_size = 0;
3158 }
3159 
3160 #ifndef PRODUCT
3161 
3162 void JavaThread::trace_frames() {
3163   tty->print_cr("[Describe stack]");
3164   int frame_no = 1;
3165   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3166     tty->print("  %d. ", frame_no++);
3167     fst.current()->print_value_on(tty, this);
3168     tty->cr();
3169   }
3170 }
3171 
3172 class PrintAndVerifyOopClosure: public OopClosure {
3173  protected:
3174   template <class T> inline void do_oop_work(T* p) {
3175     oop obj = oopDesc::load_decode_heap_oop(p);
3176     if (obj == NULL) return;
3177     tty->print(INTPTR_FORMAT ": ", p2i(p));
3178     if (oopDesc::is_oop_or_null(obj)) {
3179       if (obj->is_objArray()) {
3180         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3181       } else {
3182         obj->print();
3183       }
3184     } else {
3185       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3186     }
3187     tty->cr();
3188   }
3189  public:
3190   virtual void do_oop(oop* p) { do_oop_work(p); }
3191   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3192 };
3193 
3194 
3195 static void oops_print(frame* f, const RegisterMap *map) {
3196   PrintAndVerifyOopClosure print;
3197   f->print_value();
3198   f->oops_do(&print, NULL, (RegisterMap*)map);
3199 }
3200 
3201 // Print our all the locations that contain oops and whether they are
3202 // valid or not.  This useful when trying to find the oldest frame
3203 // where an oop has gone bad since the frame walk is from youngest to
3204 // oldest.
3205 void JavaThread::trace_oops() {
3206   tty->print_cr("[Trace oops]");
3207   frames_do(oops_print);
3208 }
3209 
3210 
3211 #ifdef ASSERT
3212 // Print or validate the layout of stack frames
3213 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3214   ResourceMark rm;
3215   PRESERVE_EXCEPTION_MARK;
3216   FrameValues values;
3217   int frame_no = 0;
3218   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3219     fst.current()->describe(values, ++frame_no);
3220     if (depth == frame_no) break;
3221   }
3222   if (validate_only) {
3223     values.validate();
3224   } else {
3225     tty->print_cr("[Describe stack layout]");
3226     values.print(this);
3227   }
3228 }
3229 #endif
3230 
3231 void JavaThread::trace_stack_from(vframe* start_vf) {
3232   ResourceMark rm;
3233   int vframe_no = 1;
3234   for (vframe* f = start_vf; f; f = f->sender()) {
3235     if (f->is_java_frame()) {
3236       javaVFrame::cast(f)->print_activation(vframe_no++);
3237     } else {
3238       f->print();
3239     }
3240     if (vframe_no > StackPrintLimit) {
3241       tty->print_cr("...<more frames>...");
3242       return;
3243     }
3244   }
3245 }
3246 
3247 
3248 void JavaThread::trace_stack() {
3249   if (!has_last_Java_frame()) return;
3250   ResourceMark rm;
3251   HandleMark   hm;
3252   RegisterMap reg_map(this);
3253   trace_stack_from(last_java_vframe(&reg_map));
3254 }
3255 
3256 
3257 #endif // PRODUCT
3258 
3259 
3260 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3261   assert(reg_map != NULL, "a map must be given");
3262   frame f = last_frame();
3263   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3264     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3265   }
3266   return NULL;
3267 }
3268 
3269 
3270 Klass* JavaThread::security_get_caller_class(int depth) {
3271   vframeStream vfst(this);
3272   vfst.security_get_caller_frame(depth);
3273   if (!vfst.at_end()) {
3274     return vfst.method()->method_holder();
3275   }
3276   return NULL;
3277 }
3278 
3279 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3280   assert(thread->is_Compiler_thread(), "must be compiler thread");
3281   CompileBroker::compiler_thread_loop();
3282 }
3283 
3284 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3285   NMethodSweeper::sweeper_loop();
3286 }
3287 
3288 // Create a CompilerThread
3289 CompilerThread::CompilerThread(CompileQueue* queue,
3290                                CompilerCounters* counters)
3291                                : JavaThread(&compiler_thread_entry) {
3292   _env   = NULL;
3293   _log   = NULL;
3294   _task  = NULL;
3295   _queue = queue;
3296   _counters = counters;
3297   _buffer_blob = NULL;
3298   _compiler = NULL;
3299 
3300 #ifndef PRODUCT
3301   _ideal_graph_printer = NULL;
3302 #endif
3303 }
3304 
3305 bool CompilerThread::can_call_java() const {
3306   return _compiler != NULL && _compiler->is_jvmci();
3307 }
3308 
3309 // Create sweeper thread
3310 CodeCacheSweeperThread::CodeCacheSweeperThread()
3311 : JavaThread(&sweeper_thread_entry) {
3312   _scanned_compiled_method = NULL;
3313 }
3314 
3315 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3316   JavaThread::oops_do(f, cf);
3317   if (_scanned_compiled_method != NULL && cf != NULL) {
3318     // Safepoints can occur when the sweeper is scanning an nmethod so
3319     // process it here to make sure it isn't unloaded in the middle of
3320     // a scan.
3321     cf->do_code_blob(_scanned_compiled_method);
3322   }
3323 }
3324 
3325 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3326   JavaThread::nmethods_do(cf);
3327   if (_scanned_compiled_method != NULL && cf != NULL) {
3328     // Safepoints can occur when the sweeper is scanning an nmethod so
3329     // process it here to make sure it isn't unloaded in the middle of
3330     // a scan.
3331     cf->do_code_blob(_scanned_compiled_method);
3332   }
3333 }
3334 
3335 
3336 // ======= Threads ========
3337 
3338 // The Threads class links together all active threads, and provides
3339 // operations over all threads.  It is protected by its own Mutex
3340 // lock, which is also used in other contexts to protect thread
3341 // operations from having the thread being operated on from exiting
3342 // and going away unexpectedly (e.g., safepoint synchronization)
3343 
3344 JavaThread* Threads::_thread_list = NULL;
3345 int         Threads::_number_of_threads = 0;
3346 int         Threads::_number_of_non_daemon_threads = 0;
3347 int         Threads::_return_code = 0;
3348 int         Threads::_thread_claim_parity = 0;
3349 size_t      JavaThread::_stack_size_at_create = 0;
3350 #ifdef ASSERT
3351 bool        Threads::_vm_complete = false;
3352 #endif
3353 
3354 // All JavaThreads
3355 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3356 
3357 void Threads::java_threads_do(ThreadClosure* tc) {
3358   assert_locked_or_safepoint(Threads_lock);
3359   ALL_JAVA_THREADS(p) {
3360     tc->do_thread(p);
3361   }
3362 }
3363 
3364 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3365 void Threads::threads_do(ThreadClosure* tc) {
3366   assert_locked_or_safepoint(Threads_lock);
3367   // ALL_JAVA_THREADS iterates through all JavaThreads
3368   ALL_JAVA_THREADS(p) {
3369     tc->do_thread(p);
3370   }
3371   // Someday we could have a table or list of all non-JavaThreads.
3372   // For now, just manually iterate through them.
3373   tc->do_thread(VMThread::vm_thread());
3374   Universe::heap()->gc_threads_do(tc);
3375   WatcherThread *wt = WatcherThread::watcher_thread();
3376   // Strictly speaking, the following NULL check isn't sufficient to make sure
3377   // the data for WatcherThread is still valid upon being examined. However,
3378   // considering that WatchThread terminates when the VM is on the way to
3379   // exit at safepoint, the chance of the above is extremely small. The right
3380   // way to prevent termination of WatcherThread would be to acquire
3381   // Terminator_lock, but we can't do that without violating the lock rank
3382   // checking in some cases.
3383   if (wt != NULL) {
3384     tc->do_thread(wt);
3385   }
3386 
3387   // If CompilerThreads ever become non-JavaThreads, add them here
3388 }
3389 
3390 void Threads::parallel_java_threads_do(ThreadClosure* tc) {
3391   int cp = Threads::thread_claim_parity();
3392   ALL_JAVA_THREADS(p) {
3393     if (p->claim_oops_do(true, cp)) {
3394       tc->do_thread(p);
3395     }
3396   }
3397   // Thread claiming protocol requires us to claim the same interesting
3398   // threads on all paths. Notably, Threads::possibly_parallel_threads_do
3399   // claims all Java threads *and* the VMThread. To avoid breaking the
3400   // claiming protocol, we have to claim VMThread on this path too, even
3401   // if we do not apply the closure to the VMThread.
3402   VMThread* vmt = VMThread::vm_thread();
3403   (void)vmt->claim_oops_do(true, cp);
3404 }
3405 
3406 // The system initialization in the library has three phases.
3407 //
3408 // Phase 1: java.lang.System class initialization
3409 //     java.lang.System is a primordial class loaded and initialized
3410 //     by the VM early during startup.  java.lang.System.<clinit>
3411 //     only does registerNatives and keeps the rest of the class
3412 //     initialization work later until thread initialization completes.
3413 //
3414 //     System.initPhase1 initializes the system properties, the static
3415 //     fields in, out, and err. Set up java signal handlers, OS-specific
3416 //     system settings, and thread group of the main thread.
3417 static void call_initPhase1(TRAPS) {
3418   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3419   JavaValue result(T_VOID);
3420   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3421                                          vmSymbols::void_method_signature(), CHECK);
3422 }
3423 
3424 // Phase 2. Module system initialization
3425 //     This will initialize the module system.  Only java.base classes
3426 //     can be loaded until phase 2 completes.
3427 //
3428 //     Call System.initPhase2 after the compiler initialization and jsr292
3429 //     classes get initialized because module initialization runs a lot of java
3430 //     code, that for performance reasons, should be compiled.  Also, this will
3431 //     enable the startup code to use lambda and other language features in this
3432 //     phase and onward.
3433 //
3434 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3435 static void call_initPhase2(TRAPS) {
3436   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3437 
3438   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3439 
3440   JavaValue result(T_INT);
3441   JavaCallArguments args;
3442   args.push_int(DisplayVMOutputToStderr);
3443   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3444   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3445                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3446   if (result.get_jint() != JNI_OK) {
3447     vm_exit_during_initialization(); // no message or exception
3448   }
3449 
3450   universe_post_module_init();
3451 }
3452 
3453 // Phase 3. final setup - set security manager, system class loader and TCCL
3454 //
3455 //     This will instantiate and set the security manager, set the system class
3456 //     loader as well as the thread context class loader.  The security manager
3457 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3458 //     other modules or the application's classpath.
3459 static void call_initPhase3(TRAPS) {
3460   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3461   JavaValue result(T_VOID);
3462   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3463                                          vmSymbols::void_method_signature(), CHECK);
3464 }
3465 
3466 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3467   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3468 
3469   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3470     create_vm_init_libraries();
3471   }
3472 
3473   initialize_class(vmSymbols::java_lang_String(), CHECK);
3474 
3475   // Inject CompactStrings value after the static initializers for String ran.
3476   java_lang_String::set_compact_strings(CompactStrings);
3477 
3478   // Initialize java_lang.System (needed before creating the thread)
3479   initialize_class(vmSymbols::java_lang_System(), CHECK);
3480   // The VM creates & returns objects of this class. Make sure it's initialized.
3481   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3482   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3483   Handle thread_group = create_initial_thread_group(CHECK);
3484   Universe::set_main_thread_group(thread_group());
3485   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3486   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3487   main_thread->set_threadObj(thread_object);
3488   // Set thread status to running since main thread has
3489   // been started and running.
3490   java_lang_Thread::set_thread_status(thread_object,
3491                                       java_lang_Thread::RUNNABLE);
3492 
3493   // The VM creates objects of this class.
3494   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3495 
3496   // The VM preresolves methods to these classes. Make sure that they get initialized
3497   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3498   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3499 
3500   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3501   call_initPhase1(CHECK);
3502 
3503   // get the Java runtime name after java.lang.System is initialized
3504   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3505   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3506 
3507   // an instance of OutOfMemory exception has been allocated earlier
3508   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3509   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3510   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3511   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3512   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3513   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3514   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3515   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3516 }
3517 
3518 void Threads::initialize_jsr292_core_classes(TRAPS) {
3519   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3520 
3521   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3522   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3523   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3524   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3525 }
3526 
3527 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3528   extern void JDK_Version_init();
3529 
3530   // Preinitialize version info.
3531   VM_Version::early_initialize();
3532 
3533   // Check version
3534   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3535 
3536   // Initialize library-based TLS
3537   ThreadLocalStorage::init();
3538 
3539   // Initialize the output stream module
3540   ostream_init();
3541 
3542   // Process java launcher properties.
3543   Arguments::process_sun_java_launcher_properties(args);
3544 
3545   // Initialize the os module
3546   os::init();
3547 
3548   // Record VM creation timing statistics
3549   TraceVmCreationTime create_vm_timer;
3550   create_vm_timer.start();
3551 
3552   // Initialize system properties.
3553   Arguments::init_system_properties();
3554 
3555   // So that JDK version can be used as a discriminator when parsing arguments
3556   JDK_Version_init();
3557 
3558   // Update/Initialize System properties after JDK version number is known
3559   Arguments::init_version_specific_system_properties();
3560 
3561   // Make sure to initialize log configuration *before* parsing arguments
3562   LogConfiguration::initialize(create_vm_timer.begin_time());
3563 
3564   // Parse arguments
3565   jint parse_result = Arguments::parse(args);
3566   if (parse_result != JNI_OK) return parse_result;
3567 
3568   os::init_before_ergo();
3569 
3570   jint ergo_result = Arguments::apply_ergo();
3571   if (ergo_result != JNI_OK) return ergo_result;
3572 
3573   // Final check of all ranges after ergonomics which may change values.
3574   if (!CommandLineFlagRangeList::check_ranges()) {
3575     return JNI_EINVAL;
3576   }
3577 
3578   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3579   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3580   if (!constraint_result) {
3581     return JNI_EINVAL;
3582   }
3583 
3584   CommandLineFlagWriteableList::mark_startup();
3585 
3586   if (PauseAtStartup) {
3587     os::pause();
3588   }
3589 
3590   HOTSPOT_VM_INIT_BEGIN();
3591 
3592   // Timing (must come after argument parsing)
3593   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3594 
3595   // Initialize the os module after parsing the args
3596   jint os_init_2_result = os::init_2();
3597   if (os_init_2_result != JNI_OK) return os_init_2_result;
3598 
3599   jint adjust_after_os_result = Arguments::adjust_after_os();
3600   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3601 
3602   // Initialize output stream logging
3603   ostream_init_log();
3604 
3605   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3606   // Must be before create_vm_init_agents()
3607   if (Arguments::init_libraries_at_startup()) {
3608     convert_vm_init_libraries_to_agents();
3609   }
3610 
3611   // Launch -agentlib/-agentpath and converted -Xrun agents
3612   if (Arguments::init_agents_at_startup()) {
3613     create_vm_init_agents();
3614   }
3615 
3616   // Initialize Threads state
3617   _thread_list = NULL;
3618   _number_of_threads = 0;
3619   _number_of_non_daemon_threads = 0;
3620 
3621   // Initialize global data structures and create system classes in heap
3622   vm_init_globals();
3623 
3624 #if INCLUDE_JVMCI
3625   if (JVMCICounterSize > 0) {
3626     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3627     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3628   } else {
3629     JavaThread::_jvmci_old_thread_counters = NULL;
3630   }
3631 #endif // INCLUDE_JVMCI
3632 
3633   // Attach the main thread to this os thread
3634   JavaThread* main_thread = new JavaThread();
3635   main_thread->set_thread_state(_thread_in_vm);
3636   main_thread->initialize_thread_current();
3637   // must do this before set_active_handles
3638   main_thread->record_stack_base_and_size();
3639   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3640 
3641   if (!main_thread->set_as_starting_thread()) {
3642     vm_shutdown_during_initialization(
3643                                       "Failed necessary internal allocation. Out of swap space");
3644     delete main_thread;
3645     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3646     return JNI_ENOMEM;
3647   }
3648 
3649   // Enable guard page *after* os::create_main_thread(), otherwise it would
3650   // crash Linux VM, see notes in os_linux.cpp.
3651   main_thread->create_stack_guard_pages();
3652 
3653   // Initialize Java-Level synchronization subsystem
3654   ObjectMonitor::Initialize();
3655 
3656   // Initialize global modules
3657   jint status = init_globals();
3658   if (status != JNI_OK) {
3659     delete main_thread;
3660     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3661     return status;
3662   }
3663 
3664   if (TRACE_INITIALIZE() != JNI_OK) {
3665     vm_exit_during_initialization("Failed to initialize tracing backend");
3666   }
3667 
3668   // Should be done after the heap is fully created
3669   main_thread->cache_global_variables();
3670 
3671   HandleMark hm;
3672 
3673   { MutexLocker mu(Threads_lock);
3674     Threads::add(main_thread);
3675   }
3676 
3677   // Any JVMTI raw monitors entered in onload will transition into
3678   // real raw monitor. VM is setup enough here for raw monitor enter.
3679   JvmtiExport::transition_pending_onload_raw_monitors();
3680 
3681   // Create the VMThread
3682   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3683 
3684   VMThread::create();
3685     Thread* vmthread = VMThread::vm_thread();
3686 
3687     if (!os::create_thread(vmthread, os::vm_thread)) {
3688       vm_exit_during_initialization("Cannot create VM thread. "
3689                                     "Out of system resources.");
3690     }
3691 
3692     // Wait for the VM thread to become ready, and VMThread::run to initialize
3693     // Monitors can have spurious returns, must always check another state flag
3694     {
3695       MutexLocker ml(Notify_lock);
3696       os::start_thread(vmthread);
3697       while (vmthread->active_handles() == NULL) {
3698         Notify_lock->wait();
3699       }
3700     }
3701   }
3702 
3703   assert(Universe::is_fully_initialized(), "not initialized");
3704   if (VerifyDuringStartup) {
3705     // Make sure we're starting with a clean slate.
3706     VM_Verify verify_op;
3707     VMThread::execute(&verify_op);
3708   }
3709 
3710   Thread* THREAD = Thread::current();
3711 
3712   // Always call even when there are not JVMTI environments yet, since environments
3713   // may be attached late and JVMTI must track phases of VM execution
3714   JvmtiExport::enter_early_start_phase();
3715 
3716   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3717   JvmtiExport::post_early_vm_start();
3718 
3719   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3720 
3721   // We need this for ClassDataSharing - the initial vm.info property is set
3722   // with the default value of CDS "sharing" which may be reset through
3723   // command line options.
3724   reset_vm_info_property(CHECK_JNI_ERR);
3725 
3726   quicken_jni_functions();
3727 
3728   // No more stub generation allowed after that point.
3729   StubCodeDesc::freeze();
3730 
3731   // Set flag that basic initialization has completed. Used by exceptions and various
3732   // debug stuff, that does not work until all basic classes have been initialized.
3733   set_init_completed();
3734 
3735   LogConfiguration::post_initialize();
3736   Metaspace::post_initialize();
3737 
3738   HOTSPOT_VM_INIT_END();
3739 
3740   // record VM initialization completion time
3741 #if INCLUDE_MANAGEMENT
3742   Management::record_vm_init_completed();
3743 #endif // INCLUDE_MANAGEMENT
3744 
3745   // Signal Dispatcher needs to be started before VMInit event is posted
3746   os::signal_init(CHECK_JNI_ERR);
3747 
3748   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3749   if (!DisableAttachMechanism) {
3750     AttachListener::vm_start();
3751     if (StartAttachListener || AttachListener::init_at_startup()) {
3752       AttachListener::init();
3753     }
3754   }
3755 
3756   // Launch -Xrun agents
3757   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3758   // back-end can launch with -Xdebug -Xrunjdwp.
3759   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3760     create_vm_init_libraries();
3761   }
3762 
3763   if (CleanChunkPoolAsync) {
3764     Chunk::start_chunk_pool_cleaner_task();
3765   }
3766 
3767   // initialize compiler(s)
3768 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3769   CompileBroker::compilation_init(CHECK_JNI_ERR);
3770 #endif
3771 
3772   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3773   // It is done after compilers are initialized, because otherwise compilations of
3774   // signature polymorphic MH intrinsics can be missed
3775   // (see SystemDictionary::find_method_handle_intrinsic).
3776   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3777 
3778   // This will initialize the module system.  Only java.base classes can be
3779   // loaded until phase 2 completes
3780   call_initPhase2(CHECK_JNI_ERR);
3781 
3782   // Always call even when there are not JVMTI environments yet, since environments
3783   // may be attached late and JVMTI must track phases of VM execution
3784   JvmtiExport::enter_start_phase();
3785 
3786   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3787   JvmtiExport::post_vm_start();
3788 
3789   // Final system initialization including security manager and system class loader
3790   call_initPhase3(CHECK_JNI_ERR);
3791 
3792   // cache the system class loader
3793   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3794 
3795 #if INCLUDE_JVMCI
3796   if (EnableJVMCI) {
3797     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3798     // The JVMCI Java initialization code will read this flag and
3799     // do the printing if it's set.
3800     bool init = JVMCIPrintProperties;
3801 
3802     if (!init) {
3803       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3804       // compilations via JVMCI will not actually block until JVMCI is initialized.
3805       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3806     }
3807 
3808     if (init) {
3809       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3810     }
3811   }
3812 #endif
3813 
3814   // Always call even when there are not JVMTI environments yet, since environments
3815   // may be attached late and JVMTI must track phases of VM execution
3816   JvmtiExport::enter_live_phase();
3817 
3818   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3819   JvmtiExport::post_vm_initialized();
3820 
3821   if (TRACE_START() != JNI_OK) {
3822     vm_exit_during_initialization("Failed to start tracing backend.");
3823   }
3824 
3825 #if INCLUDE_MANAGEMENT
3826   Management::initialize(THREAD);
3827 
3828   if (HAS_PENDING_EXCEPTION) {
3829     // management agent fails to start possibly due to
3830     // configuration problem and is responsible for printing
3831     // stack trace if appropriate. Simply exit VM.
3832     vm_exit(1);
3833   }
3834 #endif // INCLUDE_MANAGEMENT
3835 
3836   if (MemProfiling)                   MemProfiler::engage();
3837   StatSampler::engage();
3838   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3839 
3840   BiasedLocking::init();
3841 
3842 #if INCLUDE_RTM_OPT
3843   RTMLockingCounters::init();
3844 #endif
3845 
3846   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3847     call_postVMInitHook(THREAD);
3848     // The Java side of PostVMInitHook.run must deal with all
3849     // exceptions and provide means of diagnosis.
3850     if (HAS_PENDING_EXCEPTION) {
3851       CLEAR_PENDING_EXCEPTION;
3852     }
3853   }
3854 
3855   {
3856     MutexLocker ml(PeriodicTask_lock);
3857     // Make sure the WatcherThread can be started by WatcherThread::start()
3858     // or by dynamic enrollment.
3859     WatcherThread::make_startable();
3860     // Start up the WatcherThread if there are any periodic tasks
3861     // NOTE:  All PeriodicTasks should be registered by now. If they
3862     //   aren't, late joiners might appear to start slowly (we might
3863     //   take a while to process their first tick).
3864     if (PeriodicTask::num_tasks() > 0) {
3865       WatcherThread::start();
3866     }
3867   }
3868 
3869   create_vm_timer.end();
3870 #ifdef ASSERT
3871   _vm_complete = true;
3872 #endif
3873 
3874   if (DumpSharedSpaces) {
3875     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3876     ShouldNotReachHere();
3877   }
3878 
3879   return JNI_OK;
3880 }
3881 
3882 // type for the Agent_OnLoad and JVM_OnLoad entry points
3883 extern "C" {
3884   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3885 }
3886 // Find a command line agent library and return its entry point for
3887 //         -agentlib:  -agentpath:   -Xrun
3888 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3889 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3890                                     const char *on_load_symbols[],
3891                                     size_t num_symbol_entries) {
3892   OnLoadEntry_t on_load_entry = NULL;
3893   void *library = NULL;
3894 
3895   if (!agent->valid()) {
3896     char buffer[JVM_MAXPATHLEN];
3897     char ebuf[1024] = "";
3898     const char *name = agent->name();
3899     const char *msg = "Could not find agent library ";
3900 
3901     // First check to see if agent is statically linked into executable
3902     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3903       library = agent->os_lib();
3904     } else if (agent->is_absolute_path()) {
3905       library = os::dll_load(name, ebuf, sizeof ebuf);
3906       if (library == NULL) {
3907         const char *sub_msg = " in absolute path, with error: ";
3908         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3909         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3910         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3911         // If we can't find the agent, exit.
3912         vm_exit_during_initialization(buf, NULL);
3913         FREE_C_HEAP_ARRAY(char, buf);
3914       }
3915     } else {
3916       // Try to load the agent from the standard dll directory
3917       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3918                              name)) {
3919         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3920       }
3921       if (library == NULL) { // Try the library path directory.
3922         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
3923           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3924         }
3925         if (library == NULL) {
3926           const char *sub_msg = " on the library path, with error: ";
3927           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3928           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3929           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3930           // If we can't find the agent, exit.
3931           vm_exit_during_initialization(buf, NULL);
3932           FREE_C_HEAP_ARRAY(char, buf);
3933         }
3934       }
3935     }
3936     agent->set_os_lib(library);
3937     agent->set_valid();
3938   }
3939 
3940   // Find the OnLoad function.
3941   on_load_entry =
3942     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3943                                                           false,
3944                                                           on_load_symbols,
3945                                                           num_symbol_entries));
3946   return on_load_entry;
3947 }
3948 
3949 // Find the JVM_OnLoad entry point
3950 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3951   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3952   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3953 }
3954 
3955 // Find the Agent_OnLoad entry point
3956 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3957   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3958   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3959 }
3960 
3961 // For backwards compatibility with -Xrun
3962 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3963 // treated like -agentpath:
3964 // Must be called before agent libraries are created
3965 void Threads::convert_vm_init_libraries_to_agents() {
3966   AgentLibrary* agent;
3967   AgentLibrary* next;
3968 
3969   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3970     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3971     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3972 
3973     // If there is an JVM_OnLoad function it will get called later,
3974     // otherwise see if there is an Agent_OnLoad
3975     if (on_load_entry == NULL) {
3976       on_load_entry = lookup_agent_on_load(agent);
3977       if (on_load_entry != NULL) {
3978         // switch it to the agent list -- so that Agent_OnLoad will be called,
3979         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3980         Arguments::convert_library_to_agent(agent);
3981       } else {
3982         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3983       }
3984     }
3985   }
3986 }
3987 
3988 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3989 // Invokes Agent_OnLoad
3990 // Called very early -- before JavaThreads exist
3991 void Threads::create_vm_init_agents() {
3992   extern struct JavaVM_ main_vm;
3993   AgentLibrary* agent;
3994 
3995   JvmtiExport::enter_onload_phase();
3996 
3997   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3998     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3999 
4000     if (on_load_entry != NULL) {
4001       // Invoke the Agent_OnLoad function
4002       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4003       if (err != JNI_OK) {
4004         vm_exit_during_initialization("agent library failed to init", agent->name());
4005       }
4006     } else {
4007       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4008     }
4009   }
4010   JvmtiExport::enter_primordial_phase();
4011 }
4012 
4013 extern "C" {
4014   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4015 }
4016 
4017 void Threads::shutdown_vm_agents() {
4018   // Send any Agent_OnUnload notifications
4019   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4020   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4021   extern struct JavaVM_ main_vm;
4022   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4023 
4024     // Find the Agent_OnUnload function.
4025     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4026                                                    os::find_agent_function(agent,
4027                                                    false,
4028                                                    on_unload_symbols,
4029                                                    num_symbol_entries));
4030 
4031     // Invoke the Agent_OnUnload function
4032     if (unload_entry != NULL) {
4033       JavaThread* thread = JavaThread::current();
4034       ThreadToNativeFromVM ttn(thread);
4035       HandleMark hm(thread);
4036       (*unload_entry)(&main_vm);
4037     }
4038   }
4039 }
4040 
4041 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4042 // Invokes JVM_OnLoad
4043 void Threads::create_vm_init_libraries() {
4044   extern struct JavaVM_ main_vm;
4045   AgentLibrary* agent;
4046 
4047   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4048     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4049 
4050     if (on_load_entry != NULL) {
4051       // Invoke the JVM_OnLoad function
4052       JavaThread* thread = JavaThread::current();
4053       ThreadToNativeFromVM ttn(thread);
4054       HandleMark hm(thread);
4055       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4056       if (err != JNI_OK) {
4057         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4058       }
4059     } else {
4060       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4061     }
4062   }
4063 }
4064 
4065 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4066   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4067 
4068   JavaThread* java_thread = NULL;
4069   // Sequential search for now.  Need to do better optimization later.
4070   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4071     oop tobj = thread->threadObj();
4072     if (!thread->is_exiting() &&
4073         tobj != NULL &&
4074         java_tid == java_lang_Thread::thread_id(tobj)) {
4075       java_thread = thread;
4076       break;
4077     }
4078   }
4079   return java_thread;
4080 }
4081 
4082 
4083 // Last thread running calls java.lang.Shutdown.shutdown()
4084 void JavaThread::invoke_shutdown_hooks() {
4085   HandleMark hm(this);
4086 
4087   // We could get here with a pending exception, if so clear it now.
4088   if (this->has_pending_exception()) {
4089     this->clear_pending_exception();
4090   }
4091 
4092   EXCEPTION_MARK;
4093   Klass* shutdown_klass =
4094     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4095                                       THREAD);
4096   if (shutdown_klass != NULL) {
4097     // SystemDictionary::resolve_or_null will return null if there was
4098     // an exception.  If we cannot load the Shutdown class, just don't
4099     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4100     // and finalizers (if runFinalizersOnExit is set) won't be run.
4101     // Note that if a shutdown hook was registered or runFinalizersOnExit
4102     // was called, the Shutdown class would have already been loaded
4103     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4104     JavaValue result(T_VOID);
4105     JavaCalls::call_static(&result,
4106                            shutdown_klass,
4107                            vmSymbols::shutdown_method_name(),
4108                            vmSymbols::void_method_signature(),
4109                            THREAD);
4110   }
4111   CLEAR_PENDING_EXCEPTION;
4112 }
4113 
4114 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4115 // the program falls off the end of main(). Another VM exit path is through
4116 // vm_exit() when the program calls System.exit() to return a value or when
4117 // there is a serious error in VM. The two shutdown paths are not exactly
4118 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4119 // and VM_Exit op at VM level.
4120 //
4121 // Shutdown sequence:
4122 //   + Shutdown native memory tracking if it is on
4123 //   + Wait until we are the last non-daemon thread to execute
4124 //     <-- every thing is still working at this moment -->
4125 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4126 //        shutdown hooks, run finalizers if finalization-on-exit
4127 //   + Call before_exit(), prepare for VM exit
4128 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4129 //        currently the only user of this mechanism is File.deleteOnExit())
4130 //      > stop StatSampler, watcher thread, CMS threads,
4131 //        post thread end and vm death events to JVMTI,
4132 //        stop signal thread
4133 //   + Call JavaThread::exit(), it will:
4134 //      > release JNI handle blocks, remove stack guard pages
4135 //      > remove this thread from Threads list
4136 //     <-- no more Java code from this thread after this point -->
4137 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4138 //     the compiler threads at safepoint
4139 //     <-- do not use anything that could get blocked by Safepoint -->
4140 //   + Disable tracing at JNI/JVM barriers
4141 //   + Set _vm_exited flag for threads that are still running native code
4142 //   + Delete this thread
4143 //   + Call exit_globals()
4144 //      > deletes tty
4145 //      > deletes PerfMemory resources
4146 //   + Return to caller
4147 
4148 bool Threads::destroy_vm() {
4149   JavaThread* thread = JavaThread::current();
4150 
4151 #ifdef ASSERT
4152   _vm_complete = false;
4153 #endif
4154   // Wait until we are the last non-daemon thread to execute
4155   { MutexLocker nu(Threads_lock);
4156     while (Threads::number_of_non_daemon_threads() > 1)
4157       // This wait should make safepoint checks, wait without a timeout,
4158       // and wait as a suspend-equivalent condition.
4159       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4160                          Mutex::_as_suspend_equivalent_flag);
4161   }
4162 
4163   // Hang forever on exit if we are reporting an error.
4164   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4165     os::infinite_sleep();
4166   }
4167   os::wait_for_keypress_at_exit();
4168 
4169   // run Java level shutdown hooks
4170   thread->invoke_shutdown_hooks();
4171 
4172   before_exit(thread);
4173 
4174   thread->exit(true);
4175 
4176   // Stop VM thread.
4177   {
4178     // 4945125 The vm thread comes to a safepoint during exit.
4179     // GC vm_operations can get caught at the safepoint, and the
4180     // heap is unparseable if they are caught. Grab the Heap_lock
4181     // to prevent this. The GC vm_operations will not be able to
4182     // queue until after the vm thread is dead. After this point,
4183     // we'll never emerge out of the safepoint before the VM exits.
4184 
4185     MutexLocker ml(Heap_lock);
4186 
4187     VMThread::wait_for_vm_thread_exit();
4188     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4189     VMThread::destroy();
4190   }
4191 
4192   // clean up ideal graph printers
4193 #if defined(COMPILER2) && !defined(PRODUCT)
4194   IdealGraphPrinter::clean_up();
4195 #endif
4196 
4197   // Now, all Java threads are gone except daemon threads. Daemon threads
4198   // running Java code or in VM are stopped by the Safepoint. However,
4199   // daemon threads executing native code are still running.  But they
4200   // will be stopped at native=>Java/VM barriers. Note that we can't
4201   // simply kill or suspend them, as it is inherently deadlock-prone.
4202 
4203   VM_Exit::set_vm_exited();
4204 
4205   notify_vm_shutdown();
4206 
4207   delete thread;
4208 
4209 #if INCLUDE_JVMCI
4210   if (JVMCICounterSize > 0) {
4211     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4212   }
4213 #endif
4214 
4215   // exit_globals() will delete tty
4216   exit_globals();
4217 
4218   LogConfiguration::finalize();
4219 
4220   return true;
4221 }
4222 
4223 
4224 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4225   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4226   return is_supported_jni_version(version);
4227 }
4228 
4229 
4230 jboolean Threads::is_supported_jni_version(jint version) {
4231   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4232   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4233   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4234   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4235   if (version == JNI_VERSION_9) return JNI_TRUE;
4236   return JNI_FALSE;
4237 }
4238 
4239 
4240 void Threads::add(JavaThread* p, bool force_daemon) {
4241   // The threads lock must be owned at this point
4242   assert_locked_or_safepoint(Threads_lock);
4243 
4244   // See the comment for this method in thread.hpp for its purpose and
4245   // why it is called here.
4246   p->initialize_queues();
4247   p->set_next(_thread_list);
4248   _thread_list = p;
4249   _number_of_threads++;
4250   oop threadObj = p->threadObj();
4251   bool daemon = true;
4252   // Bootstrapping problem: threadObj can be null for initial
4253   // JavaThread (or for threads attached via JNI)
4254   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4255     _number_of_non_daemon_threads++;
4256     daemon = false;
4257   }
4258 
4259   ThreadService::add_thread(p, daemon);
4260 
4261   // Possible GC point.
4262   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4263 }
4264 
4265 void Threads::remove(JavaThread* p) {
4266 
4267   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4268   ObjectSynchronizer::omFlush(p);
4269 
4270   // Extra scope needed for Thread_lock, so we can check
4271   // that we do not remove thread without safepoint code notice
4272   { MutexLocker ml(Threads_lock);
4273 
4274     assert(includes(p), "p must be present");
4275 
4276     JavaThread* current = _thread_list;
4277     JavaThread* prev    = NULL;
4278 
4279     while (current != p) {
4280       prev    = current;
4281       current = current->next();
4282     }
4283 
4284     if (prev) {
4285       prev->set_next(current->next());
4286     } else {
4287       _thread_list = p->next();
4288     }
4289     _number_of_threads--;
4290     oop threadObj = p->threadObj();
4291     bool daemon = true;
4292     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4293       _number_of_non_daemon_threads--;
4294       daemon = false;
4295 
4296       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4297       // on destroy_vm will wake up.
4298       if (number_of_non_daemon_threads() == 1) {
4299         Threads_lock->notify_all();
4300       }
4301     }
4302     ThreadService::remove_thread(p, daemon);
4303 
4304     // Make sure that safepoint code disregard this thread. This is needed since
4305     // the thread might mess around with locks after this point. This can cause it
4306     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4307     // of this thread since it is removed from the queue.
4308     p->set_terminated_value();
4309   } // unlock Threads_lock
4310 
4311   // Since Events::log uses a lock, we grab it outside the Threads_lock
4312   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4313 }
4314 
4315 // Threads_lock must be held when this is called (or must be called during a safepoint)
4316 bool Threads::includes(JavaThread* p) {
4317   assert(Threads_lock->is_locked(), "sanity check");
4318   ALL_JAVA_THREADS(q) {
4319     if (q == p) {
4320       return true;
4321     }
4322   }
4323   return false;
4324 }
4325 
4326 // Operations on the Threads list for GC.  These are not explicitly locked,
4327 // but the garbage collector must provide a safe context for them to run.
4328 // In particular, these things should never be called when the Threads_lock
4329 // is held by some other thread. (Note: the Safepoint abstraction also
4330 // uses the Threads_lock to guarantee this property. It also makes sure that
4331 // all threads gets blocked when exiting or starting).
4332 
4333 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4334   ALL_JAVA_THREADS(p) {
4335     p->oops_do(f, cf);
4336   }
4337   VMThread::vm_thread()->oops_do(f, cf);
4338 }
4339 
4340 void Threads::change_thread_claim_parity() {
4341   // Set the new claim parity.
4342   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4343          "Not in range.");
4344   _thread_claim_parity++;
4345   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4346   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4347          "Not in range.");
4348 }
4349 
4350 #ifdef ASSERT
4351 void Threads::assert_all_threads_claimed() {
4352   ALL_JAVA_THREADS(p) {
4353     const int thread_parity = p->oops_do_parity();
4354     assert((thread_parity == _thread_claim_parity),
4355            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4356   }
4357   VMThread* vmt = VMThread::vm_thread();
4358   const int thread_parity = vmt->oops_do_parity();
4359   assert((thread_parity == _thread_claim_parity),
4360          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4361 }
4362 #endif // ASSERT
4363 
4364 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf, CodeBlobClosure* nmethods_cl) {
4365   int cp = Threads::thread_claim_parity();
4366   ALL_JAVA_THREADS(p) {
4367     if (p->claim_oops_do(is_par, cp)) {
4368       p->oops_do(f, cf);
4369       if (nmethods_cl != NULL && ! p->is_Code_cache_sweeper_thread()) {
4370         p->nmethods_do(nmethods_cl);
4371       }
4372     }
4373   }
4374   VMThread* vmt = VMThread::vm_thread();
4375   if (vmt->claim_oops_do(is_par, cp)) {
4376     vmt->oops_do(f, cf);
4377   }
4378 }
4379 
4380 #if INCLUDE_ALL_GCS
4381 // Used by ParallelScavenge
4382 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4383   ALL_JAVA_THREADS(p) {
4384     q->enqueue(new ThreadRootsTask(p));
4385   }
4386   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4387 }
4388 
4389 // Used by Parallel Old
4390 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4391   ALL_JAVA_THREADS(p) {
4392     q->enqueue(new ThreadRootsMarkingTask(p));
4393   }
4394   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4395 }
4396 #endif // INCLUDE_ALL_GCS
4397 
4398 void Threads::nmethods_do(CodeBlobClosure* cf) {
4399   ALL_JAVA_THREADS(p) {
4400     // This is used by the code cache sweeper to mark nmethods that are active
4401     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4402     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4403     if(!p->is_Code_cache_sweeper_thread()) {
4404       p->nmethods_do(cf);
4405     }
4406   }
4407 }
4408 
4409 void Threads::metadata_do(void f(Metadata*)) {
4410   ALL_JAVA_THREADS(p) {
4411     p->metadata_do(f);
4412   }
4413 }
4414 
4415 class ThreadHandlesClosure : public ThreadClosure {
4416   void (*_f)(Metadata*);
4417  public:
4418   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4419   virtual void do_thread(Thread* thread) {
4420     thread->metadata_handles_do(_f);
4421   }
4422 };
4423 
4424 void Threads::metadata_handles_do(void f(Metadata*)) {
4425   // Only walk the Handles in Thread.
4426   ThreadHandlesClosure handles_closure(f);
4427   threads_do(&handles_closure);
4428 }
4429 
4430 void Threads::deoptimized_wrt_marked_nmethods() {
4431   ALL_JAVA_THREADS(p) {
4432     p->deoptimized_wrt_marked_nmethods();
4433   }
4434 }
4435 
4436 
4437 // Get count Java threads that are waiting to enter the specified monitor.
4438 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4439                                                          address monitor,
4440                                                          bool doLock) {
4441   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4442          "must grab Threads_lock or be at safepoint");
4443   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4444 
4445   int i = 0;
4446   {
4447     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4448     ALL_JAVA_THREADS(p) {
4449       if (!p->can_call_java()) continue;
4450 
4451       address pending = (address)p->current_pending_monitor();
4452       if (pending == monitor) {             // found a match
4453         if (i < count) result->append(p);   // save the first count matches
4454         i++;
4455       }
4456     }
4457   }
4458   return result;
4459 }
4460 
4461 
4462 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4463                                                       bool doLock) {
4464   assert(doLock ||
4465          Threads_lock->owned_by_self() ||
4466          SafepointSynchronize::is_at_safepoint(),
4467          "must grab Threads_lock or be at safepoint");
4468 
4469   // NULL owner means not locked so we can skip the search
4470   if (owner == NULL) return NULL;
4471 
4472   {
4473     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4474     ALL_JAVA_THREADS(p) {
4475       // first, see if owner is the address of a Java thread
4476       if (owner == (address)p) return p;
4477     }
4478   }
4479   // Cannot assert on lack of success here since this function may be
4480   // used by code that is trying to report useful problem information
4481   // like deadlock detection.
4482   if (UseHeavyMonitors) return NULL;
4483 
4484   // If we didn't find a matching Java thread and we didn't force use of
4485   // heavyweight monitors, then the owner is the stack address of the
4486   // Lock Word in the owning Java thread's stack.
4487   //
4488   JavaThread* the_owner = NULL;
4489   {
4490     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4491     ALL_JAVA_THREADS(q) {
4492       if (q->is_lock_owned(owner)) {
4493         the_owner = q;
4494         break;
4495       }
4496     }
4497   }
4498   // cannot assert on lack of success here; see above comment
4499   return the_owner;
4500 }
4501 
4502 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4503 void Threads::print_on(outputStream* st, bool print_stacks,
4504                        bool internal_format, bool print_concurrent_locks) {
4505   char buf[32];
4506   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4507 
4508   st->print_cr("Full thread dump %s (%s %s):",
4509                Abstract_VM_Version::vm_name(),
4510                Abstract_VM_Version::vm_release(),
4511                Abstract_VM_Version::vm_info_string());
4512   st->cr();
4513 
4514 #if INCLUDE_SERVICES
4515   // Dump concurrent locks
4516   ConcurrentLocksDump concurrent_locks;
4517   if (print_concurrent_locks) {
4518     concurrent_locks.dump_at_safepoint();
4519   }
4520 #endif // INCLUDE_SERVICES
4521 
4522   ALL_JAVA_THREADS(p) {
4523     ResourceMark rm;
4524     p->print_on(st);
4525     if (print_stacks) {
4526       if (internal_format) {
4527         p->trace_stack();
4528       } else {
4529         p->print_stack_on(st);
4530       }
4531     }
4532     st->cr();
4533 #if INCLUDE_SERVICES
4534     if (print_concurrent_locks) {
4535       concurrent_locks.print_locks_on(p, st);
4536     }
4537 #endif // INCLUDE_SERVICES
4538   }
4539 
4540   VMThread::vm_thread()->print_on(st);
4541   st->cr();
4542   Universe::heap()->print_gc_threads_on(st);
4543   WatcherThread* wt = WatcherThread::watcher_thread();
4544   if (wt != NULL) {
4545     wt->print_on(st);
4546     st->cr();
4547   }
4548   st->flush();
4549 }
4550 
4551 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4552                              int buflen, bool* found_current) {
4553   if (this_thread != NULL) {
4554     bool is_current = (current == this_thread);
4555     *found_current = *found_current || is_current;
4556     st->print("%s", is_current ? "=>" : "  ");
4557 
4558     st->print(PTR_FORMAT, p2i(this_thread));
4559     st->print(" ");
4560     this_thread->print_on_error(st, buf, buflen);
4561     st->cr();
4562   }
4563 }
4564 
4565 class PrintOnErrorClosure : public ThreadClosure {
4566   outputStream* _st;
4567   Thread* _current;
4568   char* _buf;
4569   int _buflen;
4570   bool* _found_current;
4571  public:
4572   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4573                       int buflen, bool* found_current) :
4574    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4575 
4576   virtual void do_thread(Thread* thread) {
4577     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4578   }
4579 };
4580 
4581 // Threads::print_on_error() is called by fatal error handler. It's possible
4582 // that VM is not at safepoint and/or current thread is inside signal handler.
4583 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4584 // memory (even in resource area), it might deadlock the error handler.
4585 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4586                              int buflen) {
4587   bool found_current = false;
4588   st->print_cr("Java Threads: ( => current thread )");
4589   ALL_JAVA_THREADS(thread) {
4590     print_on_error(thread, st, current, buf, buflen, &found_current);
4591   }
4592   st->cr();
4593 
4594   st->print_cr("Other Threads:");
4595   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4596   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4597 
4598   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4599   Universe::heap()->gc_threads_do(&print_closure);
4600 
4601   if (!found_current) {
4602     st->cr();
4603     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4604     current->print_on_error(st, buf, buflen);
4605     st->cr();
4606   }
4607   st->cr();
4608   st->print_cr("Threads with active compile tasks:");
4609   print_threads_compiling(st, buf, buflen);
4610 }
4611 
4612 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4613   ALL_JAVA_THREADS(thread) {
4614     if (thread->is_Compiler_thread()) {
4615       CompilerThread* ct = (CompilerThread*) thread;
4616       if (ct->task() != NULL) {
4617         thread->print_name_on_error(st, buf, buflen);
4618         ct->task()->print(st, NULL, true, true);
4619       }
4620     }
4621   }
4622 }
4623 
4624 
4625 // Internal SpinLock and Mutex
4626 // Based on ParkEvent
4627 
4628 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4629 //
4630 // We employ SpinLocks _only for low-contention, fixed-length
4631 // short-duration critical sections where we're concerned
4632 // about native mutex_t or HotSpot Mutex:: latency.
4633 // The mux construct provides a spin-then-block mutual exclusion
4634 // mechanism.
4635 //
4636 // Testing has shown that contention on the ListLock guarding gFreeList
4637 // is common.  If we implement ListLock as a simple SpinLock it's common
4638 // for the JVM to devolve to yielding with little progress.  This is true
4639 // despite the fact that the critical sections protected by ListLock are
4640 // extremely short.
4641 //
4642 // TODO-FIXME: ListLock should be of type SpinLock.
4643 // We should make this a 1st-class type, integrated into the lock
4644 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4645 // should have sufficient padding to avoid false-sharing and excessive
4646 // cache-coherency traffic.
4647 
4648 
4649 typedef volatile int SpinLockT;
4650 
4651 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4652   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4653     return;   // normal fast-path return
4654   }
4655 
4656   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4657   TEVENT(SpinAcquire - ctx);
4658   int ctr = 0;
4659   int Yields = 0;
4660   for (;;) {
4661     while (*adr != 0) {
4662       ++ctr;
4663       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4664         if (Yields > 5) {
4665           os::naked_short_sleep(1);
4666         } else {
4667           os::naked_yield();
4668           ++Yields;
4669         }
4670       } else {
4671         SpinPause();
4672       }
4673     }
4674     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4675   }
4676 }
4677 
4678 void Thread::SpinRelease(volatile int * adr) {
4679   assert(*adr != 0, "invariant");
4680   OrderAccess::fence();      // guarantee at least release consistency.
4681   // Roach-motel semantics.
4682   // It's safe if subsequent LDs and STs float "up" into the critical section,
4683   // but prior LDs and STs within the critical section can't be allowed
4684   // to reorder or float past the ST that releases the lock.
4685   // Loads and stores in the critical section - which appear in program
4686   // order before the store that releases the lock - must also appear
4687   // before the store that releases the lock in memory visibility order.
4688   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4689   // the ST of 0 into the lock-word which releases the lock, so fence
4690   // more than covers this on all platforms.
4691   *adr = 0;
4692 }
4693 
4694 // muxAcquire and muxRelease:
4695 //
4696 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4697 //    The LSB of the word is set IFF the lock is held.
4698 //    The remainder of the word points to the head of a singly-linked list
4699 //    of threads blocked on the lock.
4700 //
4701 // *  The current implementation of muxAcquire-muxRelease uses its own
4702 //    dedicated Thread._MuxEvent instance.  If we're interested in
4703 //    minimizing the peak number of extant ParkEvent instances then
4704 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4705 //    as certain invariants were satisfied.  Specifically, care would need
4706 //    to be taken with regards to consuming unpark() "permits".
4707 //    A safe rule of thumb is that a thread would never call muxAcquire()
4708 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4709 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4710 //    consume an unpark() permit intended for monitorenter, for instance.
4711 //    One way around this would be to widen the restricted-range semaphore
4712 //    implemented in park().  Another alternative would be to provide
4713 //    multiple instances of the PlatformEvent() for each thread.  One
4714 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4715 //
4716 // *  Usage:
4717 //    -- Only as leaf locks
4718 //    -- for short-term locking only as muxAcquire does not perform
4719 //       thread state transitions.
4720 //
4721 // Alternatives:
4722 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4723 //    but with parking or spin-then-park instead of pure spinning.
4724 // *  Use Taura-Oyama-Yonenzawa locks.
4725 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4726 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4727 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4728 //    acquiring threads use timers (ParkTimed) to detect and recover from
4729 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4730 //    boundaries by using placement-new.
4731 // *  Augment MCS with advisory back-link fields maintained with CAS().
4732 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4733 //    The validity of the backlinks must be ratified before we trust the value.
4734 //    If the backlinks are invalid the exiting thread must back-track through the
4735 //    the forward links, which are always trustworthy.
4736 // *  Add a successor indication.  The LockWord is currently encoded as
4737 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4738 //    to provide the usual futile-wakeup optimization.
4739 //    See RTStt for details.
4740 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4741 //
4742 
4743 
4744 typedef volatile intptr_t MutexT;      // Mux Lock-word
4745 enum MuxBits { LOCKBIT = 1 };
4746 
4747 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4748   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4749   if (w == 0) return;
4750   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4751     return;
4752   }
4753 
4754   TEVENT(muxAcquire - Contention);
4755   ParkEvent * const Self = Thread::current()->_MuxEvent;
4756   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4757   for (;;) {
4758     int its = (os::is_MP() ? 100 : 0) + 1;
4759 
4760     // Optional spin phase: spin-then-park strategy
4761     while (--its >= 0) {
4762       w = *Lock;
4763       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4764         return;
4765       }
4766     }
4767 
4768     Self->reset();
4769     Self->OnList = intptr_t(Lock);
4770     // The following fence() isn't _strictly necessary as the subsequent
4771     // CAS() both serializes execution and ratifies the fetched *Lock value.
4772     OrderAccess::fence();
4773     for (;;) {
4774       w = *Lock;
4775       if ((w & LOCKBIT) == 0) {
4776         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4777           Self->OnList = 0;   // hygiene - allows stronger asserts
4778           return;
4779         }
4780         continue;      // Interference -- *Lock changed -- Just retry
4781       }
4782       assert(w & LOCKBIT, "invariant");
4783       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4784       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4785     }
4786 
4787     while (Self->OnList != 0) {
4788       Self->park();
4789     }
4790   }
4791 }
4792 
4793 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4794   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4795   if (w == 0) return;
4796   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4797     return;
4798   }
4799 
4800   TEVENT(muxAcquire - Contention);
4801   ParkEvent * ReleaseAfter = NULL;
4802   if (ev == NULL) {
4803     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4804   }
4805   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4806   for (;;) {
4807     guarantee(ev->OnList == 0, "invariant");
4808     int its = (os::is_MP() ? 100 : 0) + 1;
4809 
4810     // Optional spin phase: spin-then-park strategy
4811     while (--its >= 0) {
4812       w = *Lock;
4813       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4814         if (ReleaseAfter != NULL) {
4815           ParkEvent::Release(ReleaseAfter);
4816         }
4817         return;
4818       }
4819     }
4820 
4821     ev->reset();
4822     ev->OnList = intptr_t(Lock);
4823     // The following fence() isn't _strictly necessary as the subsequent
4824     // CAS() both serializes execution and ratifies the fetched *Lock value.
4825     OrderAccess::fence();
4826     for (;;) {
4827       w = *Lock;
4828       if ((w & LOCKBIT) == 0) {
4829         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4830           ev->OnList = 0;
4831           // We call ::Release while holding the outer lock, thus
4832           // artificially lengthening the critical section.
4833           // Consider deferring the ::Release() until the subsequent unlock(),
4834           // after we've dropped the outer lock.
4835           if (ReleaseAfter != NULL) {
4836             ParkEvent::Release(ReleaseAfter);
4837           }
4838           return;
4839         }
4840         continue;      // Interference -- *Lock changed -- Just retry
4841       }
4842       assert(w & LOCKBIT, "invariant");
4843       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4844       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4845     }
4846 
4847     while (ev->OnList != 0) {
4848       ev->park();
4849     }
4850   }
4851 }
4852 
4853 // Release() must extract a successor from the list and then wake that thread.
4854 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4855 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4856 // Release() would :
4857 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4858 // (B) Extract a successor from the private list "in-hand"
4859 // (C) attempt to CAS() the residual back into *Lock over null.
4860 //     If there were any newly arrived threads and the CAS() would fail.
4861 //     In that case Release() would detach the RATs, re-merge the list in-hand
4862 //     with the RATs and repeat as needed.  Alternately, Release() might
4863 //     detach and extract a successor, but then pass the residual list to the wakee.
4864 //     The wakee would be responsible for reattaching and remerging before it
4865 //     competed for the lock.
4866 //
4867 // Both "pop" and DMR are immune from ABA corruption -- there can be
4868 // multiple concurrent pushers, but only one popper or detacher.
4869 // This implementation pops from the head of the list.  This is unfair,
4870 // but tends to provide excellent throughput as hot threads remain hot.
4871 // (We wake recently run threads first).
4872 //
4873 // All paths through muxRelease() will execute a CAS.
4874 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4875 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4876 // executed within the critical section are complete and globally visible before the
4877 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4878 void Thread::muxRelease(volatile intptr_t * Lock)  {
4879   for (;;) {
4880     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4881     assert(w & LOCKBIT, "invariant");
4882     if (w == LOCKBIT) return;
4883     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4884     assert(List != NULL, "invariant");
4885     assert(List->OnList == intptr_t(Lock), "invariant");
4886     ParkEvent * const nxt = List->ListNext;
4887     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4888 
4889     // The following CAS() releases the lock and pops the head element.
4890     // The CAS() also ratifies the previously fetched lock-word value.
4891     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4892       continue;
4893     }
4894     List->OnList = 0;
4895     OrderAccess::fence();
4896     List->unpark();
4897     return;
4898   }
4899 }
4900 
4901 
4902 void Threads::verify() {
4903   ALL_JAVA_THREADS(p) {
4904     p->verify();
4905   }
4906   VMThread* thread = VMThread::vm_thread();
4907   if (thread != NULL) thread->verify();
4908 }