1 /*
   2  * Copyright (c) 2013, 2018, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "memory/allocation.hpp"
  26 
  27 #include "gc/shared/gcTimer.hpp"
  28 #include "gc/shared/gcTraceTime.inline.hpp"
  29 #include "gc/shared/memAllocator.hpp"
  30 #include "gc/shared/parallelCleaning.hpp"
  31 #include "gc/shared/plab.hpp"
  32 
  33 #include "gc/shenandoah/shenandoahAllocTracker.hpp"
  34 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  35 #include "gc/shenandoah/shenandoahBrooksPointer.hpp"
  36 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  37 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  38 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  39 #include "gc/shenandoah/shenandoahConcurrentMark.inline.hpp"
  40 #include "gc/shenandoah/shenandoahControlThread.hpp"
  41 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  42 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  43 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  44 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  45 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  46 #include "gc/shenandoah/shenandoahMarkCompact.hpp"
  47 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  48 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  49 #include "gc/shenandoah/shenandoahMetrics.hpp"
  50 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  51 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  52 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  53 #include "gc/shenandoah/shenandoahRootProcessor.hpp"
  54 #include "gc/shenandoah/shenandoahStringDedup.hpp"
  55 #include "gc/shenandoah/shenandoahUtils.hpp"
  56 #include "gc/shenandoah/shenandoahVerifier.hpp"
  57 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  58 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  59 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  60 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  61 #include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp"
  62 #include "gc/shenandoah/heuristics/shenandoahAggressiveHeuristics.hpp"
  63 #include "gc/shenandoah/heuristics/shenandoahCompactHeuristics.hpp"
  64 #include "gc/shenandoah/heuristics/shenandoahPassiveHeuristics.hpp"
  65 #include "gc/shenandoah/heuristics/shenandoahStaticHeuristics.hpp"
  66 #include "gc/shenandoah/heuristics/shenandoahTraversalHeuristics.hpp"
  67 
  68 #include "memory/metaspace.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "services/mallocTracker.hpp"
  71 
  72 #ifdef ASSERT
  73 template <class T>
  74 void ShenandoahAssertToSpaceClosure::do_oop_work(T* p) {
  75   T o = RawAccess<>::oop_load(p);
  76   if (! CompressedOops::is_null(o)) {
  77     oop obj = CompressedOops::decode_not_null(o);
  78     shenandoah_assert_not_forwarded(p, obj);
  79   }
  80 }
  81 
  82 void ShenandoahAssertToSpaceClosure::do_oop(narrowOop* p) { do_oop_work(p); }
  83 void ShenandoahAssertToSpaceClosure::do_oop(oop* p)       { do_oop_work(p); }
  84 #endif
  85 
  86 class ShenandoahPretouchHeapTask : public AbstractGangTask {
  87 private:
  88   ShenandoahRegionIterator _regions;
  89   const size_t _page_size;
  90 public:
  91   ShenandoahPretouchHeapTask(size_t page_size) :
  92     AbstractGangTask("Shenandoah Pretouch Heap"),
  93     _page_size(page_size) {}
  94 
  95   virtual void work(uint worker_id) {
  96     ShenandoahHeapRegion* r = _regions.next();
  97     while (r != NULL) {
  98       os::pretouch_memory(r->bottom(), r->end(), _page_size);
  99       r = _regions.next();
 100     }
 101   }
 102 };
 103 
 104 class ShenandoahPretouchBitmapTask : public AbstractGangTask {
 105 private:
 106   ShenandoahRegionIterator _regions;
 107   char* _bitmap_base;
 108   const size_t _bitmap_size;
 109   const size_t _page_size;
 110 public:
 111   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 112     AbstractGangTask("Shenandoah Pretouch Bitmap"),
 113     _bitmap_base(bitmap_base),
 114     _bitmap_size(bitmap_size),
 115     _page_size(page_size) {}
 116 
 117   virtual void work(uint worker_id) {
 118     ShenandoahHeapRegion* r = _regions.next();
 119     while (r != NULL) {
 120       size_t start = r->region_number()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 121       size_t end   = (r->region_number() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 122       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 123 
 124       os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 125 
 126       r = _regions.next();
 127     }
 128   }
 129 };
 130 
 131 jint ShenandoahHeap::initialize() {
 132   ShenandoahBrooksPointer::initial_checks();
 133 
 134   initialize_heuristics();
 135 
 136   //
 137   // Figure out heap sizing
 138   //
 139 
 140   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
 141   size_t min_byte_size  = collector_policy()->min_heap_byte_size();
 142   size_t max_byte_size  = collector_policy()->max_heap_byte_size();
 143   size_t heap_alignment = collector_policy()->heap_alignment();
 144 
 145   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 146 
 147   if (ShenandoahAlwaysPreTouch) {
 148     // Enabled pre-touch means the entire heap is committed right away.
 149     init_byte_size = max_byte_size;
 150   }
 151 
 152   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 153   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 154 
 155   _num_regions = ShenandoahHeapRegion::region_count();
 156 
 157   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 158   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 159   assert(num_committed_regions <= _num_regions, "sanity");
 160   _initial_size = num_committed_regions * reg_size_bytes;
 161 
 162   size_t num_min_regions = min_byte_size / reg_size_bytes;
 163   num_min_regions = MIN2(num_min_regions, _num_regions);
 164   assert(num_min_regions <= _num_regions, "sanity");
 165   _minimum_size = num_min_regions * reg_size_bytes;
 166 
 167   _committed = _initial_size;
 168 
 169   size_t heap_page_size   = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 170   size_t bitmap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 171 
 172   //
 173   // Reserve and commit memory for heap
 174   //
 175 
 176   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 177   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*) (heap_rs.base() + heap_rs.size()));
 178   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 179   _heap_region_special = heap_rs.special();
 180 
 181   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 182          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 183 
 184   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 185   if (!_heap_region_special) {
 186     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 187                               "Cannot commit heap memory");
 188   }
 189 
 190   //
 191   // Reserve and commit memory for bitmap(s)
 192   //
 193 
 194   _bitmap_size = MarkBitMap::compute_size(heap_rs.size());
 195   _bitmap_size = align_up(_bitmap_size, bitmap_page_size);
 196 
 197   size_t bitmap_bytes_per_region = reg_size_bytes / MarkBitMap::heap_map_factor();
 198 
 199   guarantee(bitmap_bytes_per_region != 0,
 200             "Bitmap bytes per region should not be zero");
 201   guarantee(is_power_of_2(bitmap_bytes_per_region),
 202             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 203 
 204   if (bitmap_page_size > bitmap_bytes_per_region) {
 205     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 206     _bitmap_bytes_per_slice = bitmap_page_size;
 207   } else {
 208     _bitmap_regions_per_slice = 1;
 209     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 210   }
 211 
 212   guarantee(_bitmap_regions_per_slice >= 1,
 213             "Should have at least one region per slice: " SIZE_FORMAT,
 214             _bitmap_regions_per_slice);
 215 
 216   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 217             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 218             _bitmap_bytes_per_slice, bitmap_page_size);
 219 
 220   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 221   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 222   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 223   _bitmap_region_special = bitmap.special();
 224 
 225   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 226                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 227   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 228   if (!_bitmap_region_special) {
 229     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 230                               "Cannot commit bitmap memory");
 231   }
 232 
 233   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions);
 234 
 235   if (ShenandoahVerify) {
 236     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 237     if (!verify_bitmap.special()) {
 238       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 239                                 "Cannot commit verification bitmap memory");
 240     }
 241     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 242     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 243     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 244     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 245   }
 246 
 247   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 248   ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size);
 249   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 250   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 251   _aux_bitmap_region_special = aux_bitmap.special();
 252   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 253 
 254   //
 255   // Create regions and region sets
 256   //
 257 
 258   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 259   _free_set = new ShenandoahFreeSet(this, _num_regions);
 260   _collection_set = new ShenandoahCollectionSet(this, sh_rs.base(), sh_rs.size());
 261 
 262   {
 263     ShenandoahHeapLocker locker(lock());
 264 
 265     size_t size_words = ShenandoahHeapRegion::region_size_words();
 266 
 267     for (size_t i = 0; i < _num_regions; i++) {
 268       HeapWord* start = (HeapWord*)sh_rs.base() + size_words * i;
 269       bool is_committed = i < num_committed_regions;
 270       ShenandoahHeapRegion* r = new ShenandoahHeapRegion(this, start, size_words, i, is_committed);
 271 
 272       _marking_context->initialize_top_at_mark_start(r);
 273       _regions[i] = r;
 274       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 275     }
 276 
 277     // Initialize to complete
 278     _marking_context->mark_complete();
 279 
 280     _free_set->rebuild();
 281   }
 282 
 283   if (ShenandoahAlwaysPreTouch) {
 284     assert(!AlwaysPreTouch, "Should have been overridden");
 285 
 286     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 287     // before initialize() below zeroes it with initializing thread. For any given region,
 288     // we touch the region and the corresponding bitmaps from the same thread.
 289     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 290 
 291     size_t pretouch_heap_page_size = heap_page_size;
 292     size_t pretouch_bitmap_page_size = bitmap_page_size;
 293 
 294 #ifdef LINUX
 295     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 296     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 297     // them into huge one. Therefore, we need to pretouch with smaller pages.
 298     if (UseTransparentHugePages) {
 299       pretouch_heap_page_size = (size_t)os::vm_page_size();
 300       pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 301     }
 302 #endif
 303 
 304     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 305     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 306 
 307     log_info(gc, init)("Pretouch bitmap: " SIZE_FORMAT " regions, " SIZE_FORMAT " bytes page",
 308                        _num_regions, pretouch_bitmap_page_size);
 309     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, pretouch_bitmap_page_size);
 310     _workers->run_task(&bcl);
 311 
 312     log_info(gc, init)("Pretouch heap: " SIZE_FORMAT " regions, " SIZE_FORMAT " bytes page",
 313                        _num_regions, pretouch_heap_page_size);
 314     ShenandoahPretouchHeapTask hcl(pretouch_heap_page_size);
 315     _workers->run_task(&hcl);
 316   }
 317 
 318   //
 319   // Initialize the rest of GC subsystems
 320   //
 321 
 322   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 323 
 324   _liveness_cache = NEW_C_HEAP_ARRAY(jushort*, _max_workers, mtGC);
 325   for (uint worker = 0; worker < _max_workers; worker++) {
 326     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(jushort, _num_regions, mtGC);
 327     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(jushort));
 328   }
 329 
 330   // The call below uses stuff (the SATB* things) that are in G1, but probably
 331   // belong into a shared location.
 332   ShenandoahBarrierSet::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
 333                                                SATB_Q_FL_lock,
 334                                                20 /*G1SATBProcessCompletedThreshold */,
 335                                                Shared_SATB_Q_lock);
 336 
 337   _monitoring_support = new ShenandoahMonitoringSupport(this);
 338   _phase_timings = new ShenandoahPhaseTimings();
 339   ShenandoahStringDedup::initialize();
 340   ShenandoahCodeRoots::initialize();
 341 
 342   if (ShenandoahAllocationTrace) {
 343     _alloc_tracker = new ShenandoahAllocTracker();
 344   }
 345 
 346   if (ShenandoahPacing) {
 347     _pacer = new ShenandoahPacer(this);
 348     _pacer->setup_for_idle();
 349   } else {
 350     _pacer = NULL;
 351   }
 352 
 353   _traversal_gc = heuristics()->can_do_traversal_gc() ?
 354                   new ShenandoahTraversalGC(this, _num_regions) :
 355                   NULL;
 356 
 357   _control_thread = new ShenandoahControlThread();
 358 
 359   log_info(gc, init)("Initialize Shenandoah heap: " SIZE_FORMAT "%s initial, " SIZE_FORMAT "%s min, " SIZE_FORMAT "%s max",
 360                      byte_size_in_proper_unit(_initial_size),  proper_unit_for_byte_size(_initial_size),
 361                      byte_size_in_proper_unit(_minimum_size),  proper_unit_for_byte_size(_minimum_size),
 362                      byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity())
 363   );
 364 
 365   log_info(gc, init)("Safepointing mechanism: %s",
 366                      SafepointMechanism::uses_thread_local_poll() ? "thread-local poll" :
 367                      (SafepointMechanism::uses_global_page_poll() ? "global-page poll" : "unknown"));
 368 
 369   return JNI_OK;
 370 }
 371 
 372 void ShenandoahHeap::initialize_heuristics() {
 373   if (ShenandoahGCHeuristics != NULL) {
 374     if (strcmp(ShenandoahGCHeuristics, "aggressive") == 0) {
 375       _heuristics = new ShenandoahAggressiveHeuristics();
 376     } else if (strcmp(ShenandoahGCHeuristics, "static") == 0) {
 377       _heuristics = new ShenandoahStaticHeuristics();
 378     } else if (strcmp(ShenandoahGCHeuristics, "adaptive") == 0) {
 379       _heuristics = new ShenandoahAdaptiveHeuristics();
 380     } else if (strcmp(ShenandoahGCHeuristics, "passive") == 0) {
 381       _heuristics = new ShenandoahPassiveHeuristics();
 382     } else if (strcmp(ShenandoahGCHeuristics, "compact") == 0) {
 383       _heuristics = new ShenandoahCompactHeuristics();
 384     } else if (strcmp(ShenandoahGCHeuristics, "traversal") == 0) {
 385       _heuristics = new ShenandoahTraversalHeuristics();
 386     } else {
 387       vm_exit_during_initialization("Unknown -XX:ShenandoahGCHeuristics option");
 388     }
 389 
 390     if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 391       vm_exit_during_initialization(
 392               err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 393                       _heuristics->name()));
 394     }
 395     if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 396       vm_exit_during_initialization(
 397               err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 398                       _heuristics->name()));
 399     }
 400 
 401     if (ShenandoahStoreValEnqueueBarrier && ShenandoahStoreValReadBarrier) {
 402       vm_exit_during_initialization("Cannot use both ShenandoahStoreValEnqueueBarrier and ShenandoahStoreValReadBarrier");
 403     }
 404     log_info(gc, init)("Shenandoah heuristics: %s",
 405                        _heuristics->name());
 406   } else {
 407       ShouldNotReachHere();
 408   }
 409 
 410 }
 411 
 412 #ifdef _MSC_VER
 413 #pragma warning( push )
 414 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 415 #endif
 416 
 417 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 418   CollectedHeap(),
 419   _initial_size(0),
 420   _used(0),
 421   _committed(0),
 422   _bytes_allocated_since_gc_start(0),
 423   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 424   _workers(NULL),
 425   _safepoint_workers(NULL),
 426   _heap_region_special(false),
 427   _num_regions(0),
 428   _regions(NULL),
 429   _update_refs_iterator(this),
 430   _control_thread(NULL),
 431   _shenandoah_policy(policy),
 432   _heuristics(NULL),
 433   _free_set(NULL),
 434   _scm(new ShenandoahConcurrentMark()),
 435   _traversal_gc(NULL),
 436   _full_gc(new ShenandoahMarkCompact()),
 437   _pacer(NULL),
 438   _verifier(NULL),
 439   _alloc_tracker(NULL),
 440   _phase_timings(NULL),
 441   _monitoring_support(NULL),
 442   _memory_pool(NULL),
 443   _stw_memory_manager("Shenandoah Pauses", "end of GC pause"),
 444   _cycle_memory_manager("Shenandoah Cycles", "end of GC cycle"),
 445   _gc_timer(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 446   _soft_ref_policy(),
 447   _ref_processor(NULL),
 448   _marking_context(NULL),
 449   _bitmap_size(0),
 450   _bitmap_regions_per_slice(0),
 451   _bitmap_bytes_per_slice(0),
 452   _bitmap_region_special(false),
 453   _aux_bitmap_region_special(false),
 454   _liveness_cache(NULL),
 455   _collection_set(NULL)
 456 {
 457   log_info(gc, init)("GC threads: " UINT32_FORMAT " parallel, " UINT32_FORMAT " concurrent", ParallelGCThreads, ConcGCThreads);
 458   log_info(gc, init)("Reference processing: %s", ParallelRefProcEnabled ? "parallel" : "serial");
 459 
 460   _max_workers = MAX2(_max_workers, 1U);
 461   _workers = new ShenandoahWorkGang("Shenandoah GC Threads", _max_workers,
 462                             /* are_GC_task_threads */true,
 463                             /* are_ConcurrentGC_threads */false);
 464   if (_workers == NULL) {
 465     vm_exit_during_initialization("Failed necessary allocation.");
 466   } else {
 467     _workers->initialize_workers();
 468   }
 469 
 470   if (ShenandoahParallelSafepointThreads > 1) {
 471     _safepoint_workers = new ShenandoahWorkGang("Safepoint Cleanup Thread",
 472                                                 ShenandoahParallelSafepointThreads,
 473                                                 false, false);
 474     _safepoint_workers->initialize_workers();
 475   }
 476 }
 477 
 478 #ifdef _MSC_VER
 479 #pragma warning( pop )
 480 #endif
 481 
 482 class ShenandoahResetBitmapTask : public AbstractGangTask {
 483 private:
 484   ShenandoahRegionIterator _regions;
 485 
 486 public:
 487   ShenandoahResetBitmapTask() :
 488     AbstractGangTask("Parallel Reset Bitmap Task") {}
 489 
 490   void work(uint worker_id) {
 491     ShenandoahHeapRegion* region = _regions.next();
 492     ShenandoahHeap* heap = ShenandoahHeap::heap();
 493     ShenandoahMarkingContext* const ctx = heap->marking_context();
 494     while (region != NULL) {
 495       if (heap->is_bitmap_slice_committed(region)) {
 496         ctx->clear_bitmap(region);
 497       }
 498       region = _regions.next();
 499     }
 500   }
 501 };
 502 
 503 void ShenandoahHeap::reset_mark_bitmap() {
 504   assert_gc_workers(_workers->active_workers());
 505   mark_incomplete_marking_context();
 506 
 507   ShenandoahResetBitmapTask task;
 508   _workers->run_task(&task);
 509 }
 510 
 511 void ShenandoahHeap::print_on(outputStream* st) const {
 512   st->print_cr("Shenandoah Heap");
 513   st->print_cr(" " SIZE_FORMAT "K total, " SIZE_FORMAT "K committed, " SIZE_FORMAT "K used",
 514                max_capacity() / K, committed() / K, used() / K);
 515   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"K regions",
 516                num_regions(), ShenandoahHeapRegion::region_size_bytes() / K);
 517 
 518   st->print("Status: ");
 519   if (has_forwarded_objects())               st->print("has forwarded objects, ");
 520   if (is_concurrent_mark_in_progress())      st->print("marking, ");
 521   if (is_evacuation_in_progress())           st->print("evacuating, ");
 522   if (is_update_refs_in_progress())          st->print("updating refs, ");
 523   if (is_concurrent_traversal_in_progress()) st->print("traversal, ");
 524   if (is_degenerated_gc_in_progress())       st->print("degenerated gc, ");
 525   if (is_full_gc_in_progress())              st->print("full gc, ");
 526   if (is_full_gc_move_in_progress())         st->print("full gc move, ");
 527 
 528   if (cancelled_gc()) {
 529     st->print("cancelled");
 530   } else {
 531     st->print("not cancelled");
 532   }
 533   st->cr();
 534 
 535   st->print_cr("Reserved region:");
 536   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 537                p2i(reserved_region().start()),
 538                p2i(reserved_region().end()));
 539 
 540   ShenandoahCollectionSet* cset = collection_set();
 541   st->print_cr("Collection set:");
 542   if (cset != NULL) {
 543     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 544     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 545   } else {
 546     st->print_cr(" (NULL)");
 547   }
 548 
 549   st->cr();
 550   MetaspaceUtils::print_on(st);
 551 
 552   if (Verbose) {
 553     print_heap_regions_on(st);
 554   }
 555 }
 556 
 557 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 558 public:
 559   void do_thread(Thread* thread) {
 560     assert(thread != NULL, "Sanity");
 561     assert(thread->is_Worker_thread(), "Only worker thread expected");
 562     ShenandoahThreadLocalData::initialize_gclab(thread);
 563   }
 564 };
 565 
 566 void ShenandoahHeap::post_initialize() {
 567   CollectedHeap::post_initialize();
 568   MutexLocker ml(Threads_lock);
 569 
 570   ShenandoahInitWorkerGCLABClosure init_gclabs;
 571   _workers->threads_do(&init_gclabs);
 572 
 573   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 574   // Now, we will let WorkGang to initialize gclab when new worker is created.
 575   _workers->set_initialize_gclab();
 576 
 577   _scm->initialize(_max_workers);
 578   _full_gc->initialize(_gc_timer);
 579 
 580   ref_processing_init();
 581 
 582   _heuristics->initialize();
 583 }
 584 
 585 size_t ShenandoahHeap::used() const {
 586   return OrderAccess::load_acquire(&_used);
 587 }
 588 
 589 size_t ShenandoahHeap::committed() const {
 590   OrderAccess::acquire();
 591   return _committed;
 592 }
 593 
 594 void ShenandoahHeap::increase_committed(size_t bytes) {
 595   assert_heaplock_or_safepoint();
 596   _committed += bytes;
 597 }
 598 
 599 void ShenandoahHeap::decrease_committed(size_t bytes) {
 600   assert_heaplock_or_safepoint();
 601   _committed -= bytes;
 602 }
 603 
 604 void ShenandoahHeap::increase_used(size_t bytes) {
 605   Atomic::add(bytes, &_used);
 606 }
 607 
 608 void ShenandoahHeap::set_used(size_t bytes) {
 609   OrderAccess::release_store_fence(&_used, bytes);
 610 }
 611 
 612 void ShenandoahHeap::decrease_used(size_t bytes) {
 613   assert(used() >= bytes, "never decrease heap size by more than we've left");
 614   Atomic::sub(bytes, &_used);
 615 }
 616 
 617 void ShenandoahHeap::increase_allocated(size_t bytes) {
 618   Atomic::add(bytes, &_bytes_allocated_since_gc_start);
 619 }
 620 
 621 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 622   size_t bytes = words * HeapWordSize;
 623   if (!waste) {
 624     increase_used(bytes);
 625   }
 626   increase_allocated(bytes);
 627   if (ShenandoahPacing) {
 628     control_thread()->pacing_notify_alloc(words);
 629     if (waste) {
 630       pacer()->claim_for_alloc(words, true);
 631     }
 632   }
 633 }
 634 
 635 size_t ShenandoahHeap::capacity() const {
 636   return committed();
 637 }
 638 
 639 size_t ShenandoahHeap::max_capacity() const {
 640   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 641 }
 642 
 643 size_t ShenandoahHeap::min_capacity() const {
 644   return _minimum_size;
 645 }
 646 
 647 size_t ShenandoahHeap::initial_capacity() const {
 648   return _initial_size;
 649 }
 650 
 651 bool ShenandoahHeap::is_in(const void* p) const {
 652   HeapWord* heap_base = (HeapWord*) base();
 653   HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
 654   return p >= heap_base && p < last_region_end;
 655 }
 656 
 657 void ShenandoahHeap::op_uncommit(double shrink_before) {
 658   assert (ShenandoahUncommit, "should be enabled");
 659 
 660   // Application allocates from the beginning of the heap, and GC allocates at
 661   // the end of it. It is more efficient to uncommit from the end, so that applications
 662   // could enjoy the near committed regions. GC allocations are much less frequent,
 663   // and therefore can accept the committing costs.
 664 
 665   size_t count = 0;
 666   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 667     ShenandoahHeapRegion* r = get_region(i - 1);
 668     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 669       ShenandoahHeapLocker locker(lock());
 670       if (r->is_empty_committed()) {
 671         // Do not uncommit below minimal capacity
 672         if (committed() < min_capacity() + ShenandoahHeapRegion::region_size_bytes()) {
 673           break;
 674         }
 675 
 676         r->make_uncommitted();
 677         count++;
 678       }
 679     }
 680     SpinPause(); // allow allocators to take the lock
 681   }
 682 
 683   if (count > 0) {
 684     control_thread()->notify_heap_changed();
 685   }
 686 }
 687 
 688 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 689   // New object should fit the GCLAB size
 690   size_t min_size = MAX2(size, PLAB::min_size());
 691 
 692   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 693   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 694   new_size = MIN2(new_size, PLAB::max_size());
 695   new_size = MAX2(new_size, PLAB::min_size());
 696 
 697   // Record new heuristic value even if we take any shortcut. This captures
 698   // the case when moderately-sized objects always take a shortcut. At some point,
 699   // heuristics should catch up with them.
 700   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 701 
 702   if (new_size < size) {
 703     // New size still does not fit the object. Fall back to shared allocation.
 704     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 705     return NULL;
 706   }
 707 
 708   // Retire current GCLAB, and allocate a new one.
 709   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 710   gclab->retire();
 711 
 712   size_t actual_size = 0;
 713   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 714   if (gclab_buf == NULL) {
 715     return NULL;
 716   }
 717 
 718   assert (size <= actual_size, "allocation should fit");
 719 
 720   if (ZeroTLAB) {
 721     // ..and clear it.
 722     Copy::zero_to_words(gclab_buf, actual_size);
 723   } else {
 724     // ...and zap just allocated object.
 725 #ifdef ASSERT
 726     // Skip mangling the space corresponding to the object header to
 727     // ensure that the returned space is not considered parsable by
 728     // any concurrent GC thread.
 729     size_t hdr_size = oopDesc::header_size();
 730     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 731 #endif // ASSERT
 732   }
 733   gclab->set_buf(gclab_buf, actual_size);
 734   return gclab->allocate(size);
 735 }
 736 
 737 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 738                                             size_t requested_size,
 739                                             size_t* actual_size) {
 740   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 741   HeapWord* res = allocate_memory(req);
 742   if (res != NULL) {
 743     *actual_size = req.actual_size();
 744   } else {
 745     *actual_size = 0;
 746   }
 747   return res;
 748 }
 749 
 750 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 751                                              size_t word_size,
 752                                              size_t* actual_size) {
 753   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 754   HeapWord* res = allocate_memory(req);
 755   if (res != NULL) {
 756     *actual_size = req.actual_size();
 757   } else {
 758     *actual_size = 0;
 759   }
 760   return res;
 761 }
 762 
 763 ShenandoahHeap* ShenandoahHeap::heap() {
 764   CollectedHeap* heap = Universe::heap();
 765   assert(heap != NULL, "Unitialized access to ShenandoahHeap::heap()");
 766   assert(heap->kind() == CollectedHeap::Shenandoah, "not a shenandoah heap");
 767   return (ShenandoahHeap*) heap;
 768 }
 769 
 770 ShenandoahHeap* ShenandoahHeap::heap_no_check() {
 771   CollectedHeap* heap = Universe::heap();
 772   return (ShenandoahHeap*) heap;
 773 }
 774 
 775 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 776   ShenandoahAllocTrace trace_alloc(req.size(), req.type());
 777 
 778   intptr_t pacer_epoch = 0;
 779   bool in_new_region = false;
 780   HeapWord* result = NULL;
 781 
 782   if (req.is_mutator_alloc()) {
 783     if (ShenandoahPacing) {
 784       pacer()->pace_for_alloc(req.size());
 785       pacer_epoch = pacer()->epoch();
 786     }
 787 
 788     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 789       result = allocate_memory_under_lock(req, in_new_region);
 790     }
 791 
 792     // Allocation failed, block until control thread reacted, then retry allocation.
 793     //
 794     // It might happen that one of the threads requesting allocation would unblock
 795     // way later after GC happened, only to fail the second allocation, because
 796     // other threads have already depleted the free storage. In this case, a better
 797     // strategy is to try again, as long as GC makes progress.
 798     //
 799     // Then, we need to make sure the allocation was retried after at least one
 800     // Full GC, which means we want to try more than ShenandoahFullGCThreshold times.
 801 
 802     size_t tries = 0;
 803 
 804     while (result == NULL && _progress_last_gc.is_set()) {
 805       tries++;
 806       control_thread()->handle_alloc_failure(req.size());
 807       result = allocate_memory_under_lock(req, in_new_region);
 808     }
 809 
 810     while (result == NULL && tries <= ShenandoahFullGCThreshold) {
 811       tries++;
 812       control_thread()->handle_alloc_failure(req.size());
 813       result = allocate_memory_under_lock(req, in_new_region);
 814     }
 815 
 816   } else {
 817     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 818     result = allocate_memory_under_lock(req, in_new_region);
 819     // Do not call handle_alloc_failure() here, because we cannot block.
 820     // The allocation failure would be handled by the WB slowpath with handle_alloc_failure_evac().
 821   }
 822 
 823   if (in_new_region) {
 824     control_thread()->notify_heap_changed();
 825   }
 826 
 827   if (result != NULL) {
 828     size_t requested = req.size();
 829     size_t actual = req.actual_size();
 830 
 831     assert (req.is_lab_alloc() || (requested == actual),
 832             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 833             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 834 
 835     if (req.is_mutator_alloc()) {
 836       notify_mutator_alloc_words(actual, false);
 837 
 838       // If we requested more than we were granted, give the rest back to pacer.
 839       // This only matters if we are in the same pacing epoch: do not try to unpace
 840       // over the budget for the other phase.
 841       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 842         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 843       }
 844     } else {
 845       increase_used(actual*HeapWordSize);
 846     }
 847   }
 848 
 849   return result;
 850 }
 851 
 852 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
 853   ShenandoahHeapLocker locker(lock());
 854   return _free_set->allocate(req, in_new_region);
 855 }
 856 
 857 class ShenandoahMemAllocator : public MemAllocator {
 858 private:
 859   MemAllocator& _initializer;
 860 public:
 861   ShenandoahMemAllocator(MemAllocator& initializer, Klass* klass, size_t word_size, Thread* thread) :
 862   MemAllocator(klass, word_size + ShenandoahBrooksPointer::word_size(), thread),
 863     _initializer(initializer) {}
 864 
 865 protected:
 866   virtual HeapWord* mem_allocate(Allocation& allocation) const {
 867     HeapWord* result = MemAllocator::mem_allocate(allocation);
 868     // Initialize brooks-pointer
 869     if (result != NULL) {
 870       result += ShenandoahBrooksPointer::word_size();
 871       ShenandoahBrooksPointer::initialize(oop(result));
 872       assert(! ShenandoahHeap::heap()->in_collection_set(result), "never allocate in targetted region");
 873     }
 874     return result;
 875   }
 876 
 877   virtual oop initialize(HeapWord* mem) const {
 878      return _initializer.initialize(mem);
 879   }
 880 };
 881 
 882 oop ShenandoahHeap::obj_allocate(Klass* klass, int size, TRAPS) {
 883   ObjAllocator initializer(klass, size, THREAD);
 884   ShenandoahMemAllocator allocator(initializer, klass, size, THREAD);
 885   return allocator.allocate();
 886 }
 887 
 888 oop ShenandoahHeap::array_allocate(Klass* klass, int size, int length, bool do_zero, TRAPS) {
 889   ObjArrayAllocator initializer(klass, size, length, do_zero, THREAD);
 890   ShenandoahMemAllocator allocator(initializer, klass, size, THREAD);
 891   return allocator.allocate();
 892 }
 893 
 894 oop ShenandoahHeap::class_allocate(Klass* klass, int size, TRAPS) {
 895   ClassAllocator initializer(klass, size, THREAD);
 896   ShenandoahMemAllocator allocator(initializer, klass, size, THREAD);
 897   return allocator.allocate();
 898 }
 899 
 900 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
 901                                         bool*  gc_overhead_limit_was_exceeded) {
 902   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
 903   return allocate_memory(req);
 904 }
 905 
 906 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 907                                                              size_t size,
 908                                                              Metaspace::MetadataType mdtype) {
 909   MetaWord* result;
 910 
 911   // Inform metaspace OOM to GC heuristics if class unloading is possible.
 912   if (heuristics()->can_unload_classes()) {
 913     ShenandoahHeuristics* h = heuristics();
 914     h->record_metaspace_oom();
 915   }
 916 
 917   // Expand and retry allocation
 918   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 919   if (result != NULL) {
 920     return result;
 921   }
 922 
 923   // Start full GC
 924   collect(GCCause::_metadata_GC_clear_soft_refs);
 925 
 926   // Retry allocation
 927   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
 928   if (result != NULL) {
 929     return result;
 930   }
 931 
 932   // Expand and retry allocation
 933   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 934   if (result != NULL) {
 935     return result;
 936   }
 937 
 938   // Out of memory
 939   return NULL;
 940 }
 941 
 942 void ShenandoahHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
 943   HeapWord* obj = tlab_post_allocation_setup(start);
 944   CollectedHeap::fill_with_object(obj, end);
 945 }
 946 
 947 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
 948 private:
 949   ShenandoahHeap* const _heap;
 950   Thread* const _thread;
 951 public:
 952   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
 953     _heap(heap), _thread(Thread::current()) {}
 954 
 955   void do_object(oop p) {
 956     shenandoah_assert_marked(NULL, p);
 957     if (oopDesc::unsafe_equals(p, ShenandoahBarrierSet::resolve_forwarded_not_null(p))) {
 958       _heap->evacuate_object(p, _thread);
 959     }
 960   }
 961 };
 962 
 963 class ShenandoahEvacuationTask : public AbstractGangTask {
 964 private:
 965   ShenandoahHeap* const _sh;
 966   ShenandoahCollectionSet* const _cs;
 967   bool _concurrent;
 968 public:
 969   ShenandoahEvacuationTask(ShenandoahHeap* sh,
 970                            ShenandoahCollectionSet* cs,
 971                            bool concurrent) :
 972     AbstractGangTask("Parallel Evacuation Task"),
 973     _sh(sh),
 974     _cs(cs),
 975     _concurrent(concurrent)
 976   {}
 977 
 978   void work(uint worker_id) {
 979     if (_concurrent) {
 980       ShenandoahConcurrentWorkerSession worker_session(worker_id);
 981       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
 982       ShenandoahEvacOOMScope oom_evac_scope;
 983       do_work();
 984     } else {
 985       ShenandoahParallelWorkerSession worker_session(worker_id);
 986       ShenandoahEvacOOMScope oom_evac_scope;
 987       do_work();
 988     }
 989   }
 990 
 991 private:
 992   void do_work() {
 993     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
 994     ShenandoahHeapRegion* r;
 995     while ((r =_cs->claim_next()) != NULL) {
 996       assert(r->has_live(), "all-garbage regions are reclaimed early");
 997       _sh->marked_object_iterate(r, &cl);
 998 
 999       if (ShenandoahPacing) {
1000         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1001       }
1002 
1003       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1004         break;
1005       }
1006     }
1007   }
1008 };
1009 
1010 void ShenandoahHeap::trash_cset_regions() {
1011   ShenandoahHeapLocker locker(lock());
1012 
1013   ShenandoahCollectionSet* set = collection_set();
1014   ShenandoahHeapRegion* r;
1015   set->clear_current_index();
1016   while ((r = set->next()) != NULL) {
1017     r->make_trash();
1018   }
1019   collection_set()->clear();
1020 }
1021 
1022 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1023   st->print_cr("Heap Regions:");
1024   st->print_cr("EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HC=humongous continuation, CS=collection set, T=trash, P=pinned");
1025   st->print_cr("BTE=bottom/top/end, U=used, T=TLAB allocs, G=GCLAB allocs, S=shared allocs, L=live data");
1026   st->print_cr("R=root, CP=critical pins, TAMS=top-at-mark-start (previous, next)");
1027   st->print_cr("SN=alloc sequence numbers (first mutator, last mutator, first gc, last gc)");
1028 
1029   for (size_t i = 0; i < num_regions(); i++) {
1030     get_region(i)->print_on(st);
1031   }
1032 }
1033 
1034 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1035   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1036 
1037   oop humongous_obj = oop(start->bottom() + ShenandoahBrooksPointer::word_size());
1038   size_t size = humongous_obj->size() + ShenandoahBrooksPointer::word_size();
1039   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1040   size_t index = start->region_number() + required_regions - 1;
1041 
1042   assert(!start->has_live(), "liveness must be zero");
1043 
1044   for(size_t i = 0; i < required_regions; i++) {
1045     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1046     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1047     ShenandoahHeapRegion* region = get_region(index --);
1048 
1049     assert(region->is_humongous(), "expect correct humongous start or continuation");
1050     assert(!region->is_cset(), "Humongous region should not be in collection set");
1051 
1052     region->make_trash_immediate();
1053   }
1054 }
1055 
1056 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1057 public:
1058   void do_thread(Thread* thread) {
1059     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1060     assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name());
1061     gclab->retire();
1062   }
1063 };
1064 
1065 void ShenandoahHeap::make_parsable(bool retire_tlabs) {
1066   if (UseTLAB) {
1067     CollectedHeap::ensure_parsability(retire_tlabs);
1068   }
1069   ShenandoahRetireGCLABClosure cl;
1070   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1071     cl.do_thread(t);
1072   }
1073   workers()->threads_do(&cl);
1074 }
1075 
1076 void ShenandoahHeap::resize_tlabs() {
1077   CollectedHeap::resize_all_tlabs();
1078 }
1079 
1080 void ShenandoahHeap::accumulate_statistics_tlabs() {
1081   CollectedHeap::accumulate_statistics_all_tlabs();
1082 }
1083 
1084 class ShenandoahEvacuateUpdateRootsTask : public AbstractGangTask {
1085 private:
1086   ShenandoahRootEvacuator* _rp;
1087 
1088 public:
1089   ShenandoahEvacuateUpdateRootsTask(ShenandoahRootEvacuator* rp) :
1090     AbstractGangTask("Shenandoah evacuate and update roots"),
1091     _rp(rp) {}
1092 
1093   void work(uint worker_id) {
1094     ShenandoahParallelWorkerSession worker_session(worker_id);
1095     ShenandoahEvacOOMScope oom_evac_scope;
1096     ShenandoahEvacuateUpdateRootsClosure cl;
1097 
1098     MarkingCodeBlobClosure blobsCl(&cl, CodeBlobToOopClosure::FixRelocations);
1099     _rp->process_evacuate_roots(&cl, &blobsCl, worker_id);
1100   }
1101 };
1102 
1103 void ShenandoahHeap::evacuate_and_update_roots() {
1104 #if defined(COMPILER2) || INCLUDE_JVMCI
1105   DerivedPointerTable::clear();
1106 #endif
1107   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only iterate roots while world is stopped");
1108 
1109   {
1110     ShenandoahRootEvacuator rp(this, workers()->active_workers(), ShenandoahPhaseTimings::init_evac);
1111     ShenandoahEvacuateUpdateRootsTask roots_task(&rp);
1112     workers()->run_task(&roots_task);
1113   }
1114 
1115 #if defined(COMPILER2) || INCLUDE_JVMCI
1116   DerivedPointerTable::update_pointers();
1117 #endif
1118 }
1119 
1120 // Returns size in bytes
1121 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1122   if (ShenandoahElasticTLAB) {
1123     // With Elastic TLABs, return the max allowed size, and let the allocation path
1124     // figure out the safe size for current allocation.
1125     return ShenandoahHeapRegion::max_tlab_size_bytes();
1126   } else {
1127     return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes());
1128   }
1129 }
1130 
1131 size_t ShenandoahHeap::max_tlab_size() const {
1132   // Returns size in words
1133   return ShenandoahHeapRegion::max_tlab_size_words();
1134 }
1135 
1136 class ShenandoahRetireAndResetGCLABClosure : public ThreadClosure {
1137 public:
1138   void do_thread(Thread* thread) {
1139     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1140     gclab->retire();
1141     if (ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1142       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1143     }
1144   }
1145 };
1146 
1147 void ShenandoahHeap::retire_and_reset_gclabs() {
1148   ShenandoahRetireAndResetGCLABClosure cl;
1149   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1150     cl.do_thread(t);
1151   }
1152   workers()->threads_do(&cl);
1153 }
1154 
1155 void ShenandoahHeap::collect(GCCause::Cause cause) {
1156   control_thread()->request_gc(cause);
1157 }
1158 
1159 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1160   //assert(false, "Shouldn't need to do full collections");
1161 }
1162 
1163 CollectorPolicy* ShenandoahHeap::collector_policy() const {
1164   return _shenandoah_policy;
1165 }
1166 
1167 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1168   Space* sp = heap_region_containing(addr);
1169   if (sp != NULL) {
1170     return sp->block_start(addr);
1171   }
1172   return NULL;
1173 }
1174 
1175 size_t ShenandoahHeap::block_size(const HeapWord* addr) const {
1176   Space* sp = heap_region_containing(addr);
1177   assert(sp != NULL, "block_size of address outside of heap");
1178   return sp->block_size(addr);
1179 }
1180 
1181 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1182   Space* sp = heap_region_containing(addr);
1183   return sp->block_is_obj(addr);
1184 }
1185 
1186 jlong ShenandoahHeap::millis_since_last_gc() {
1187   double v = heuristics()->time_since_last_gc() * 1000;
1188   assert(0 <= v && v <= max_jlong, "value should fit: %f", v);
1189   return (jlong)v;
1190 }
1191 
1192 void ShenandoahHeap::prepare_for_verify() {
1193   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
1194     make_parsable(false);
1195   }
1196 }
1197 
1198 void ShenandoahHeap::print_gc_threads_on(outputStream* st) const {
1199   workers()->print_worker_threads_on(st);
1200   if (ShenandoahStringDedup::is_enabled()) {
1201     ShenandoahStringDedup::print_worker_threads_on(st);
1202   }
1203 }
1204 
1205 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1206   workers()->threads_do(tcl);
1207   if (_safepoint_workers != NULL) {
1208     _safepoint_workers->threads_do(tcl);
1209   }
1210   if (ShenandoahStringDedup::is_enabled()) {
1211     ShenandoahStringDedup::threads_do(tcl);
1212   }
1213 }
1214 
1215 void ShenandoahHeap::print_tracing_info() const {
1216   LogTarget(Info, gc, stats) lt;
1217   if (lt.is_enabled()) {
1218     ResourceMark rm;
1219     LogStream ls(lt);
1220 
1221     phase_timings()->print_on(&ls);
1222 
1223     ls.cr();
1224     ls.cr();
1225 
1226     shenandoah_policy()->print_gc_stats(&ls);
1227 
1228     ls.cr();
1229     ls.cr();
1230 
1231     if (ShenandoahPacing) {
1232       pacer()->print_on(&ls);
1233     }
1234 
1235     ls.cr();
1236     ls.cr();
1237 
1238     if (ShenandoahAllocationTrace) {
1239       assert(alloc_tracker() != NULL, "Must be");
1240       alloc_tracker()->print_on(&ls);
1241     } else {
1242       ls.print_cr("  Allocation tracing is disabled, use -XX:+ShenandoahAllocationTrace to enable.");
1243     }
1244   }
1245 }
1246 
1247 void ShenandoahHeap::verify(VerifyOption vo) {
1248   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1249     if (ShenandoahVerify) {
1250       verifier()->verify_generic(vo);
1251     } else {
1252       // TODO: Consider allocating verification bitmaps on demand,
1253       // and turn this on unconditionally.
1254     }
1255   }
1256 }
1257 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1258   return _free_set->capacity();
1259 }
1260 
1261 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1262 private:
1263   MarkBitMap* _bitmap;
1264   Stack<oop,mtGC>* _oop_stack;
1265 
1266   template <class T>
1267   void do_oop_work(T* p) {
1268     T o = RawAccess<>::oop_load(p);
1269     if (!CompressedOops::is_null(o)) {
1270       oop obj = CompressedOops::decode_not_null(o);
1271       obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
1272       assert(oopDesc::is_oop(obj), "must be a valid oop");
1273       if (!_bitmap->isMarked((HeapWord*) obj)) {
1274         _bitmap->mark((HeapWord*) obj);
1275         _oop_stack->push(obj);
1276       }
1277     }
1278   }
1279 public:
1280   ObjectIterateScanRootClosure(MarkBitMap* bitmap, Stack<oop,mtGC>* oop_stack) :
1281     _bitmap(bitmap), _oop_stack(oop_stack) {}
1282   void do_oop(oop* p)       { do_oop_work(p); }
1283   void do_oop(narrowOop* p) { do_oop_work(p); }
1284 };
1285 
1286 /*
1287  * This is public API, used in preparation of object_iterate().
1288  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1289  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1290  * control, we call SH::make_tlabs_parsable().
1291  */
1292 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1293   // No-op.
1294 }
1295 
1296 /*
1297  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1298  *
1299  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1300  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1301  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1302  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1303  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1304  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1305  * wiped the bitmap in preparation for next marking).
1306  *
1307  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1308  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1309  * is allowed to report dead objects, but is not required to do so.
1310  */
1311 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1312   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1313   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1314     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1315     return;
1316   }
1317 
1318   // Reset bitmap
1319   _aux_bit_map.clear();
1320 
1321   Stack<oop,mtGC> oop_stack;
1322 
1323   // First, we process all GC roots. This populates the work stack with initial objects.
1324   ShenandoahRootProcessor rp(this, 1, ShenandoahPhaseTimings::_num_phases);
1325   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1326   CLDToOopClosure clds(&oops, false);
1327   CodeBlobToOopClosure blobs(&oops, false);
1328   rp.process_all_roots(&oops, &clds, &blobs, NULL, 0);
1329 
1330   // Work through the oop stack to traverse heap.
1331   while (! oop_stack.is_empty()) {
1332     oop obj = oop_stack.pop();
1333     assert(oopDesc::is_oop(obj), "must be a valid oop");
1334     cl->do_object(obj);
1335     obj->oop_iterate(&oops);
1336   }
1337 
1338   assert(oop_stack.is_empty(), "should be empty");
1339 
1340   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1341     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1342   }
1343 }
1344 
1345 void ShenandoahHeap::safe_object_iterate(ObjectClosure* cl) {
1346   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1347   object_iterate(cl);
1348 }
1349 
1350 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1351   for (size_t i = 0; i < num_regions(); i++) {
1352     ShenandoahHeapRegion* current = get_region(i);
1353     blk->heap_region_do(current);
1354   }
1355 }
1356 
1357 class ShenandoahParallelHeapRegionTask : public AbstractGangTask {
1358 private:
1359   ShenandoahHeap* const _heap;
1360   ShenandoahHeapRegionClosure* const _blk;
1361 
1362   DEFINE_PAD_MINUS_SIZE(0, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile size_t));
1363   volatile size_t _index;
1364   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, 0);
1365 
1366 public:
1367   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1368           AbstractGangTask("Parallel Region Task"),
1369           _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1370 
1371   void work(uint worker_id) {
1372     size_t stride = ShenandoahParallelRegionStride;
1373 
1374     size_t max = _heap->num_regions();
1375     while (_index < max) {
1376       size_t cur = Atomic::add(stride, &_index) - stride;
1377       size_t start = cur;
1378       size_t end = MIN2(cur + stride, max);
1379       if (start >= max) break;
1380 
1381       for (size_t i = cur; i < end; i++) {
1382         ShenandoahHeapRegion* current = _heap->get_region(i);
1383         _blk->heap_region_do(current);
1384       }
1385     }
1386   }
1387 };
1388 
1389 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1390   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1391   if (num_regions() > ShenandoahParallelRegionStride) {
1392     ShenandoahParallelHeapRegionTask task(blk);
1393     workers()->run_task(&task);
1394   } else {
1395     heap_region_iterate(blk);
1396   }
1397 }
1398 
1399 class ShenandoahClearLivenessClosure : public ShenandoahHeapRegionClosure {
1400 private:
1401   ShenandoahMarkingContext* const _ctx;
1402 public:
1403   ShenandoahClearLivenessClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1404 
1405   void heap_region_do(ShenandoahHeapRegion* r) {
1406     if (r->is_active()) {
1407       r->clear_live_data();
1408       _ctx->capture_top_at_mark_start(r);
1409     } else {
1410       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->region_number());
1411       assert(_ctx->top_at_mark_start(r) == r->top(),
1412              "Region " SIZE_FORMAT " should already have correct TAMS", r->region_number());
1413     }
1414   }
1415 
1416   bool is_thread_safe() { return true; }
1417 };
1418 
1419 void ShenandoahHeap::op_init_mark() {
1420   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should be at safepoint");
1421   assert(Thread::current()->is_VM_thread(), "can only do this in VMThread");
1422 
1423   assert(marking_context()->is_bitmap_clear(), "need clear marking bitmap");
1424   assert(!marking_context()->is_complete(), "should not be complete");
1425 
1426   if (ShenandoahVerify) {
1427     verifier()->verify_before_concmark();
1428   }
1429 
1430   {
1431     ShenandoahGCPhase phase(ShenandoahPhaseTimings::accumulate_stats);
1432     accumulate_statistics_tlabs();
1433   }
1434 
1435   if (VerifyBeforeGC) {
1436     Universe::verify();
1437   }
1438 
1439   set_concurrent_mark_in_progress(true);
1440   // We need to reset all TLABs because we'd lose marks on all objects allocated in them.
1441   {
1442     ShenandoahGCPhase phase(ShenandoahPhaseTimings::make_parsable);
1443     make_parsable(true);
1444   }
1445 
1446   {
1447     ShenandoahGCPhase phase(ShenandoahPhaseTimings::clear_liveness);
1448     ShenandoahClearLivenessClosure clc;
1449     parallel_heap_region_iterate(&clc);
1450   }
1451 
1452   // Make above changes visible to worker threads
1453   OrderAccess::fence();
1454 
1455   concurrent_mark()->mark_roots(ShenandoahPhaseTimings::scan_roots);
1456 
1457   if (UseTLAB) {
1458     ShenandoahGCPhase phase(ShenandoahPhaseTimings::resize_tlabs);
1459     resize_tlabs();
1460   }
1461 
1462   if (ShenandoahPacing) {
1463     pacer()->setup_for_mark();
1464   }
1465 }
1466 
1467 void ShenandoahHeap::op_mark() {
1468   concurrent_mark()->mark_from_roots();
1469 }
1470 
1471 class ShenandoahCompleteLivenessClosure : public ShenandoahHeapRegionClosure {
1472 private:
1473   ShenandoahMarkingContext* const _ctx;
1474 public:
1475   ShenandoahCompleteLivenessClosure() : _ctx(ShenandoahHeap::heap()->complete_marking_context()) {}
1476 
1477   void heap_region_do(ShenandoahHeapRegion* r) {
1478     if (r->is_active()) {
1479       HeapWord *tams = _ctx->top_at_mark_start(r);
1480       HeapWord *top = r->top();
1481       if (top > tams) {
1482         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1483       }
1484     } else {
1485       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->region_number());
1486       assert(_ctx->top_at_mark_start(r) == r->top(),
1487              "Region " SIZE_FORMAT " should have correct TAMS", r->region_number());
1488     }
1489   }
1490 
1491   bool is_thread_safe() { return true; }
1492 };
1493 
1494 void ShenandoahHeap::op_final_mark() {
1495   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should be at safepoint");
1496 
1497   // It is critical that we
1498   // evacuate roots right after finishing marking, so that we don't
1499   // get unmarked objects in the roots.
1500 
1501   if (!cancelled_gc()) {
1502     concurrent_mark()->finish_mark_from_roots(/* full_gc = */ false);
1503 
1504     if (has_forwarded_objects()) {
1505       concurrent_mark()->update_roots(ShenandoahPhaseTimings::update_roots);
1506     }
1507 
1508     stop_concurrent_marking();
1509 
1510     {
1511       ShenandoahGCPhase phase(ShenandoahPhaseTimings::complete_liveness);
1512 
1513       // All allocations past TAMS are implicitly live, adjust the region data.
1514       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1515       ShenandoahCompleteLivenessClosure cl;
1516       parallel_heap_region_iterate(&cl);
1517     }
1518 
1519     {
1520       ShenandoahGCPhase prepare_evac(ShenandoahPhaseTimings::prepare_evac);
1521 
1522       make_parsable(true);
1523 
1524       trash_cset_regions();
1525 
1526       {
1527         ShenandoahHeapLocker locker(lock());
1528         _collection_set->clear();
1529         _free_set->clear();
1530 
1531         heuristics()->choose_collection_set(_collection_set);
1532 
1533         _free_set->rebuild();
1534       }
1535     }
1536 
1537     // If collection set has candidates, start evacuation.
1538     // Otherwise, bypass the rest of the cycle.
1539     if (!collection_set()->is_empty()) {
1540       ShenandoahGCPhase init_evac(ShenandoahPhaseTimings::init_evac);
1541 
1542       if (ShenandoahVerify) {
1543         verifier()->verify_before_evacuation();
1544       }
1545 
1546       set_evacuation_in_progress(true);
1547       // From here on, we need to update references.
1548       set_has_forwarded_objects(true);
1549 
1550       evacuate_and_update_roots();
1551 
1552       if (ShenandoahPacing) {
1553         pacer()->setup_for_evac();
1554       }
1555 
1556       if (ShenandoahVerify) {
1557         verifier()->verify_during_evacuation();
1558       }
1559     } else {
1560       if (ShenandoahVerify) {
1561         verifier()->verify_after_concmark();
1562       }
1563 
1564       if (VerifyAfterGC) {
1565         Universe::verify();
1566       }
1567     }
1568 
1569   } else {
1570     concurrent_mark()->cancel();
1571     stop_concurrent_marking();
1572 
1573     if (process_references()) {
1574       // Abandon reference processing right away: pre-cleaning must have failed.
1575       ReferenceProcessor *rp = ref_processor();
1576       rp->disable_discovery();
1577       rp->abandon_partial_discovery();
1578       rp->verify_no_references_recorded();
1579     }
1580   }
1581 }
1582 
1583 void ShenandoahHeap::op_final_evac() {
1584   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should be at safepoint");
1585 
1586   set_evacuation_in_progress(false);
1587 
1588   retire_and_reset_gclabs();
1589 
1590   if (ShenandoahVerify) {
1591     verifier()->verify_after_evacuation();
1592   }
1593 
1594   if (VerifyAfterGC) {
1595     Universe::verify();
1596   }
1597 }
1598 
1599 void ShenandoahHeap::op_conc_evac() {
1600   ShenandoahEvacuationTask task(this, _collection_set, true);
1601   workers()->run_task(&task);
1602 }
1603 
1604 void ShenandoahHeap::op_stw_evac() {
1605   ShenandoahEvacuationTask task(this, _collection_set, false);
1606   workers()->run_task(&task);
1607 }
1608 
1609 void ShenandoahHeap::op_updaterefs() {
1610   update_heap_references(true);
1611 }
1612 
1613 void ShenandoahHeap::op_cleanup() {
1614   free_set()->recycle_trash();
1615 }
1616 
1617 void ShenandoahHeap::op_reset() {
1618   reset_mark_bitmap();
1619 }
1620 
1621 void ShenandoahHeap::op_preclean() {
1622   concurrent_mark()->preclean_weak_refs();
1623 }
1624 
1625 void ShenandoahHeap::op_init_traversal() {
1626   traversal_gc()->init_traversal_collection();
1627 }
1628 
1629 void ShenandoahHeap::op_traversal() {
1630   traversal_gc()->concurrent_traversal_collection();
1631 }
1632 
1633 void ShenandoahHeap::op_final_traversal() {
1634   traversal_gc()->final_traversal_collection();
1635 }
1636 
1637 void ShenandoahHeap::op_full(GCCause::Cause cause) {
1638   ShenandoahMetricsSnapshot metrics;
1639   metrics.snap_before();
1640 
1641   full_gc()->do_it(cause);
1642   if (UseTLAB) {
1643     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_resize_tlabs);
1644     resize_all_tlabs();
1645   }
1646 
1647   metrics.snap_after();
1648   metrics.print();
1649 
1650   if (metrics.is_good_progress("Full GC")) {
1651     _progress_last_gc.set();
1652   } else {
1653     // Nothing to do. Tell the allocation path that we have failed to make
1654     // progress, and it can finally fail.
1655     _progress_last_gc.unset();
1656   }
1657 }
1658 
1659 void ShenandoahHeap::op_degenerated(ShenandoahDegenPoint point) {
1660   // Degenerated GC is STW, but it can also fail. Current mechanics communicates
1661   // GC failure via cancelled_concgc() flag. So, if we detect the failure after
1662   // some phase, we have to upgrade the Degenerate GC to Full GC.
1663 
1664   clear_cancelled_gc();
1665 
1666   ShenandoahMetricsSnapshot metrics;
1667   metrics.snap_before();
1668 
1669   switch (point) {
1670     case _degenerated_traversal:
1671       {
1672         // Drop the collection set. Note: this leaves some already forwarded objects
1673         // behind, which may be problematic, see comments for ShenandoahEvacAssist
1674         // workarounds in ShenandoahTraversalHeuristics.
1675 
1676         ShenandoahHeapLocker locker(lock());
1677         collection_set()->clear_current_index();
1678         for (size_t i = 0; i < collection_set()->count(); i++) {
1679           ShenandoahHeapRegion* r = collection_set()->next();
1680           r->make_regular_bypass();
1681         }
1682         collection_set()->clear();
1683       }
1684       op_final_traversal();
1685       op_cleanup();
1686       return;
1687 
1688     // The cases below form the Duff's-like device: it describes the actual GC cycle,
1689     // but enters it at different points, depending on which concurrent phase had
1690     // degenerated.
1691 
1692     case _degenerated_outside_cycle:
1693       // We have degenerated from outside the cycle, which means something is bad with
1694       // the heap, most probably heavy humongous fragmentation, or we are very low on free
1695       // space. It makes little sense to wait for Full GC to reclaim as much as it can, when
1696       // we can do the most aggressive degen cycle, which includes processing references and
1697       // class unloading, unless those features are explicitly disabled.
1698       //
1699       // Note that we can only do this for "outside-cycle" degens, otherwise we would risk
1700       // changing the cycle parameters mid-cycle during concurrent -> degenerated handover.
1701       set_process_references(heuristics()->can_process_references());
1702       set_unload_classes(heuristics()->can_unload_classes());
1703 
1704       if (heuristics()->can_do_traversal_gc()) {
1705         // Not possible to degenerate from here, upgrade to Full GC right away.
1706         cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc);
1707         op_degenerated_fail();
1708         return;
1709       }
1710 
1711       op_reset();
1712 
1713       op_init_mark();
1714       if (cancelled_gc()) {
1715         op_degenerated_fail();
1716         return;
1717       }
1718 
1719     case _degenerated_mark:
1720       op_final_mark();
1721       if (cancelled_gc()) {
1722         op_degenerated_fail();
1723         return;
1724       }
1725 
1726       op_cleanup();
1727 
1728     case _degenerated_evac:
1729       // If heuristics thinks we should do the cycle, this flag would be set,
1730       // and we can do evacuation. Otherwise, it would be the shortcut cycle.
1731       if (is_evacuation_in_progress()) {
1732 
1733         // Degeneration under oom-evac protocol might have left some objects in
1734         // collection set un-evacuated. Restart evacuation from the beginning to
1735         // capture all objects. For all the objects that are already evacuated,
1736         // it would be a simple check, which is supposed to be fast. This is also
1737         // safe to do even without degeneration, as CSet iterator is at beginning
1738         // in preparation for evacuation anyway.
1739         collection_set()->clear_current_index();
1740 
1741         op_stw_evac();
1742         if (cancelled_gc()) {
1743           op_degenerated_fail();
1744           return;
1745         }
1746       }
1747 
1748       // If heuristics thinks we should do the cycle, this flag would be set,
1749       // and we need to do update-refs. Otherwise, it would be the shortcut cycle.
1750       if (has_forwarded_objects()) {
1751         op_init_updaterefs();
1752         if (cancelled_gc()) {
1753           op_degenerated_fail();
1754           return;
1755         }
1756       }
1757 
1758     case _degenerated_updaterefs:
1759       if (has_forwarded_objects()) {
1760         op_final_updaterefs();
1761         if (cancelled_gc()) {
1762           op_degenerated_fail();
1763           return;
1764         }
1765       }
1766 
1767       op_cleanup();
1768       break;
1769 
1770     default:
1771       ShouldNotReachHere();
1772   }
1773 
1774   if (ShenandoahVerify) {
1775     verifier()->verify_after_degenerated();
1776   }
1777 
1778   if (VerifyAfterGC) {
1779     Universe::verify();
1780   }
1781 
1782   metrics.snap_after();
1783   metrics.print();
1784 
1785   // Check for futility and fail. There is no reason to do several back-to-back Degenerated cycles,
1786   // because that probably means the heap is overloaded and/or fragmented.
1787   if (!metrics.is_good_progress("Degenerated GC")) {
1788     _progress_last_gc.unset();
1789     cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc);
1790     op_degenerated_futile();
1791   } else {
1792     _progress_last_gc.set();
1793   }
1794 }
1795 
1796 void ShenandoahHeap::op_degenerated_fail() {
1797   log_info(gc)("Cannot finish degeneration, upgrading to Full GC");
1798   shenandoah_policy()->record_degenerated_upgrade_to_full();
1799   op_full(GCCause::_shenandoah_upgrade_to_full_gc);
1800 }
1801 
1802 void ShenandoahHeap::op_degenerated_futile() {
1803   shenandoah_policy()->record_degenerated_upgrade_to_full();
1804   op_full(GCCause::_shenandoah_upgrade_to_full_gc);
1805 }
1806 
1807 void ShenandoahHeap::stop_concurrent_marking() {
1808   assert(is_concurrent_mark_in_progress(), "How else could we get here?");
1809   if (!cancelled_gc()) {
1810     // If we needed to update refs, and concurrent marking has been cancelled,
1811     // we need to finish updating references.
1812     set_has_forwarded_objects(false);
1813     mark_complete_marking_context();
1814   }
1815   set_concurrent_mark_in_progress(false);
1816 }
1817 
1818 void ShenandoahHeap::force_satb_flush_all_threads() {
1819   if (!is_concurrent_mark_in_progress() && !is_concurrent_traversal_in_progress()) {
1820     // No need to flush SATBs
1821     return;
1822   }
1823 
1824   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1825     ShenandoahThreadLocalData::set_force_satb_flush(t, true);
1826   }
1827   // The threads are not "acquiring" their thread-local data, but it does not
1828   // hurt to "release" the updates here anyway.
1829   OrderAccess::fence();
1830 }
1831 
1832 void ShenandoahHeap::set_gc_state_all_threads(char state) {
1833   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1834     ShenandoahThreadLocalData::set_gc_state(t, state);
1835   }
1836 }
1837 
1838 void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) {
1839   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should really be Shenandoah safepoint");
1840   _gc_state.set_cond(mask, value);
1841   set_gc_state_all_threads(_gc_state.raw_value());
1842 }
1843 
1844 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1845   set_gc_state_mask(MARKING, in_progress);
1846   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1847 }
1848 
1849 void ShenandoahHeap::set_concurrent_traversal_in_progress(bool in_progress) {
1850    set_gc_state_mask(TRAVERSAL | HAS_FORWARDED, in_progress);
1851    ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1852 }
1853 
1854 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1855   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1856   set_gc_state_mask(EVACUATION, in_progress);
1857 }
1858 
1859 HeapWord* ShenandoahHeap::tlab_post_allocation_setup(HeapWord* obj) {
1860   // Initialize Brooks pointer for the next object
1861   HeapWord* result = obj + ShenandoahBrooksPointer::word_size();
1862   ShenandoahBrooksPointer::initialize(oop(result));
1863   return result;
1864 }
1865 
1866 uint ShenandoahHeap::oop_extra_words() {
1867   return ShenandoahBrooksPointer::word_size();
1868 }
1869 
1870 void ShenandoahHeap::ref_processing_init() {
1871   assert(_max_workers > 0, "Sanity");
1872 
1873   _ref_processor =
1874     new ReferenceProcessor(&_subject_to_discovery,  // is_subject_to_discovery
1875                            ParallelRefProcEnabled,  // MT processing
1876                            _max_workers,            // Degree of MT processing
1877                            true,                    // MT discovery
1878                            _max_workers,            // Degree of MT discovery
1879                            false,                   // Reference discovery is not atomic
1880                            NULL,                    // No closure, should be installed before use
1881                            true);                   // Scale worker threads
1882 
1883   shenandoah_assert_rp_isalive_not_installed();
1884 }
1885 
1886 GCTracer* ShenandoahHeap::tracer() {
1887   return shenandoah_policy()->tracer();
1888 }
1889 
1890 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1891   return _free_set->used();
1892 }
1893 
1894 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1895   if (try_cancel_gc()) {
1896     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1897     log_info(gc)("%s", msg.buffer());
1898     Events::log(Thread::current(), "%s", msg.buffer());
1899   }
1900 }
1901 
1902 uint ShenandoahHeap::max_workers() {
1903   return _max_workers;
1904 }
1905 
1906 void ShenandoahHeap::stop() {
1907   // The shutdown sequence should be able to terminate when GC is running.
1908 
1909   // Step 0. Notify policy to disable event recording.
1910   _shenandoah_policy->record_shutdown();
1911 
1912   // Step 1. Notify control thread that we are in shutdown.
1913   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1914   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1915   control_thread()->prepare_for_graceful_shutdown();
1916 
1917   // Step 2. Notify GC workers that we are cancelling GC.
1918   cancel_gc(GCCause::_shenandoah_stop_vm);
1919 
1920   // Step 3. Wait until GC worker exits normally.
1921   control_thread()->stop();
1922 
1923   // Step 4. Stop String Dedup thread if it is active
1924   if (ShenandoahStringDedup::is_enabled()) {
1925     ShenandoahStringDedup::stop();
1926   }
1927 }
1928 
1929 void ShenandoahHeap::unload_classes_and_cleanup_tables(bool full_gc) {
1930   assert(heuristics()->can_unload_classes(), "Class unloading should be enabled");
1931 
1932   ShenandoahGCPhase root_phase(full_gc ?
1933                                ShenandoahPhaseTimings::full_gc_purge :
1934                                ShenandoahPhaseTimings::purge);
1935 
1936   ShenandoahIsAliveSelector alive;
1937   BoolObjectClosure* is_alive = alive.is_alive_closure();
1938 
1939   bool purged_class;
1940 
1941   // Unload classes and purge SystemDictionary.
1942   {
1943     ShenandoahGCPhase phase(full_gc ?
1944                             ShenandoahPhaseTimings::full_gc_purge_class_unload :
1945                             ShenandoahPhaseTimings::purge_class_unload);
1946     purged_class = SystemDictionary::do_unloading(gc_timer(),
1947                                                   full_gc /* do_cleaning*/ );
1948   }
1949 
1950   {
1951     ShenandoahGCPhase phase(full_gc ?
1952                             ShenandoahPhaseTimings::full_gc_purge_par :
1953                             ShenandoahPhaseTimings::purge_par);
1954     uint active = _workers->active_workers();
1955     ParallelCleaningTask unlink_task(is_alive, true, true, active, purged_class);
1956     _workers->run_task(&unlink_task);
1957   }
1958 
1959   if (ShenandoahStringDedup::is_enabled()) {
1960     ShenandoahGCPhase phase(full_gc ?
1961                             ShenandoahPhaseTimings::full_gc_purge_string_dedup :
1962                             ShenandoahPhaseTimings::purge_string_dedup);
1963     ShenandoahStringDedup::parallel_cleanup();
1964   }
1965 
1966   {
1967     ShenandoahGCPhase phase(full_gc ?
1968                             ShenandoahPhaseTimings::full_gc_purge_cldg :
1969                             ShenandoahPhaseTimings::purge_cldg);
1970     ClassLoaderDataGraph::purge();
1971   }
1972 }
1973 
1974 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1975   set_gc_state_mask(HAS_FORWARDED, cond);
1976 }
1977 
1978 void ShenandoahHeap::set_process_references(bool pr) {
1979   _process_references.set_cond(pr);
1980 }
1981 
1982 void ShenandoahHeap::set_unload_classes(bool uc) {
1983   _unload_classes.set_cond(uc);
1984 }
1985 
1986 bool ShenandoahHeap::process_references() const {
1987   return _process_references.is_set();
1988 }
1989 
1990 bool ShenandoahHeap::unload_classes() const {
1991   return _unload_classes.is_set();
1992 }
1993 
1994 address ShenandoahHeap::in_cset_fast_test_addr() {
1995   ShenandoahHeap* heap = ShenandoahHeap::heap();
1996   assert(heap->collection_set() != NULL, "Sanity");
1997   return (address) heap->collection_set()->biased_map_address();
1998 }
1999 
2000 address ShenandoahHeap::cancelled_gc_addr() {
2001   return (address) ShenandoahHeap::heap()->_cancelled_gc.addr_of();
2002 }
2003 
2004 address ShenandoahHeap::gc_state_addr() {
2005   return (address) ShenandoahHeap::heap()->_gc_state.addr_of();
2006 }
2007 
2008 size_t ShenandoahHeap::bytes_allocated_since_gc_start() {
2009   return OrderAccess::load_acquire(&_bytes_allocated_since_gc_start);
2010 }
2011 
2012 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
2013   OrderAccess::release_store_fence(&_bytes_allocated_since_gc_start, (size_t)0);
2014 }
2015 
2016 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2017   _degenerated_gc_in_progress.set_cond(in_progress);
2018 }
2019 
2020 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2021   _full_gc_in_progress.set_cond(in_progress);
2022 }
2023 
2024 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2025   assert (is_full_gc_in_progress(), "should be");
2026   _full_gc_move_in_progress.set_cond(in_progress);
2027 }
2028 
2029 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2030   set_gc_state_mask(UPDATEREFS, in_progress);
2031 }
2032 
2033 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2034   ShenandoahCodeRoots::add_nmethod(nm);
2035 }
2036 
2037 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2038   ShenandoahCodeRoots::remove_nmethod(nm);
2039 }
2040 
2041 oop ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2042   o = ShenandoahBarrierSet::barrier_set()->write_barrier(o);
2043   ShenandoahHeapLocker locker(lock());
2044   heap_region_containing(o)->make_pinned();
2045   return o;
2046 }
2047 
2048 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2049   o = ShenandoahBarrierSet::barrier_set()->read_barrier(o);
2050   ShenandoahHeapLocker locker(lock());
2051   heap_region_containing(o)->make_unpinned();
2052 }
2053 
2054 GCTimer* ShenandoahHeap::gc_timer() const {
2055   return _gc_timer;
2056 }
2057 
2058 #ifdef ASSERT
2059 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2060   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2061 
2062   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2063     if (UseDynamicNumberOfGCThreads ||
2064         (FLAG_IS_DEFAULT(ParallelGCThreads) && ForceDynamicNumberOfGCThreads)) {
2065       assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
2066     } else {
2067       // Use ParallelGCThreads inside safepoints
2068       assert(nworkers == ParallelGCThreads, "Use ParalleGCThreads within safepoints");
2069     }
2070   } else {
2071     if (UseDynamicNumberOfGCThreads ||
2072         (FLAG_IS_DEFAULT(ConcGCThreads) && ForceDynamicNumberOfGCThreads)) {
2073       assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
2074     } else {
2075       // Use ConcGCThreads outside safepoints
2076       assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
2077     }
2078   }
2079 }
2080 #endif
2081 
2082 ShenandoahVerifier* ShenandoahHeap::verifier() {
2083   guarantee(ShenandoahVerify, "Should be enabled");
2084   assert (_verifier != NULL, "sanity");
2085   return _verifier;
2086 }
2087 
2088 template<class T>
2089 class ShenandoahUpdateHeapRefsTask : public AbstractGangTask {
2090 private:
2091   T cl;
2092   ShenandoahHeap* _heap;
2093   ShenandoahRegionIterator* _regions;
2094   bool _concurrent;
2095 public:
2096   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions, bool concurrent) :
2097     AbstractGangTask("Concurrent Update References Task"),
2098     cl(T()),
2099     _heap(ShenandoahHeap::heap()),
2100     _regions(regions),
2101     _concurrent(concurrent) {
2102   }
2103 
2104   void work(uint worker_id) {
2105     if (_concurrent) {
2106       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2107       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
2108       do_work();
2109     } else {
2110       ShenandoahParallelWorkerSession worker_session(worker_id);
2111       do_work();
2112     }
2113   }
2114 
2115 private:
2116   void do_work() {
2117     ShenandoahHeapRegion* r = _regions->next();
2118     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2119     while (r != NULL) {
2120       HeapWord* top_at_start_ur = r->concurrent_iteration_safe_limit();
2121       assert (top_at_start_ur >= r->bottom(), "sanity");
2122       if (r->is_active() && !r->is_cset()) {
2123         _heap->marked_object_oop_iterate(r, &cl, top_at_start_ur);
2124       }
2125       if (ShenandoahPacing) {
2126         _heap->pacer()->report_updaterefs(pointer_delta(top_at_start_ur, r->bottom()));
2127       }
2128       if (_heap->check_cancelled_gc_and_yield(_concurrent)) {
2129         return;
2130       }
2131       r = _regions->next();
2132     }
2133   }
2134 };
2135 
2136 void ShenandoahHeap::update_heap_references(bool concurrent) {
2137   ShenandoahUpdateHeapRefsTask<ShenandoahUpdateHeapRefsClosure> task(&_update_refs_iterator, concurrent);
2138   workers()->run_task(&task);
2139 }
2140 
2141 void ShenandoahHeap::op_init_updaterefs() {
2142   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2143 
2144   set_evacuation_in_progress(false);
2145 
2146   retire_and_reset_gclabs();
2147 
2148   if (ShenandoahVerify) {
2149     verifier()->verify_before_updaterefs();
2150   }
2151 
2152   set_update_refs_in_progress(true);
2153   make_parsable(true);
2154   for (uint i = 0; i < num_regions(); i++) {
2155     ShenandoahHeapRegion* r = get_region(i);
2156     r->set_concurrent_iteration_safe_limit(r->top());
2157   }
2158 
2159   // Reset iterator.
2160   _update_refs_iterator.reset();
2161 
2162   if (ShenandoahPacing) {
2163     pacer()->setup_for_updaterefs();
2164   }
2165 }
2166 
2167 void ShenandoahHeap::op_final_updaterefs() {
2168   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2169 
2170   // Check if there is left-over work, and finish it
2171   if (_update_refs_iterator.has_next()) {
2172     ShenandoahGCPhase final_work(ShenandoahPhaseTimings::final_update_refs_finish_work);
2173 
2174     // Finish updating references where we left off.
2175     clear_cancelled_gc();
2176     update_heap_references(false);
2177   }
2178 
2179   // Clear cancelled GC, if set. On cancellation path, the block before would handle
2180   // everything. On degenerated paths, cancelled gc would not be set anyway.
2181   if (cancelled_gc()) {
2182     clear_cancelled_gc();
2183   }
2184   assert(!cancelled_gc(), "Should have been done right before");
2185 
2186   concurrent_mark()->update_roots(is_degenerated_gc_in_progress() ?
2187                                  ShenandoahPhaseTimings::degen_gc_update_roots:
2188                                  ShenandoahPhaseTimings::final_update_refs_roots);
2189 
2190   ShenandoahGCPhase final_update_refs(ShenandoahPhaseTimings::final_update_refs_recycle);
2191 
2192   trash_cset_regions();
2193   set_has_forwarded_objects(false);
2194   set_update_refs_in_progress(false);
2195 
2196   if (ShenandoahVerify) {
2197     verifier()->verify_after_updaterefs();
2198   }
2199 
2200   if (VerifyAfterGC) {
2201     Universe::verify();
2202   }
2203 
2204   {
2205     ShenandoahHeapLocker locker(lock());
2206     _free_set->rebuild();
2207   }
2208 }
2209 
2210 #ifdef ASSERT
2211 void ShenandoahHeap::assert_heaplock_owned_by_current_thread() {
2212   _lock.assert_owned_by_current_thread();
2213 }
2214 
2215 void ShenandoahHeap::assert_heaplock_not_owned_by_current_thread() {
2216   _lock.assert_not_owned_by_current_thread();
2217 }
2218 
2219 void ShenandoahHeap::assert_heaplock_or_safepoint() {
2220   _lock.assert_owned_by_current_thread_or_safepoint();
2221 }
2222 #endif
2223 
2224 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2225   print_on(st);
2226   print_heap_regions_on(st);
2227 }
2228 
2229 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2230   size_t slice = r->region_number() / _bitmap_regions_per_slice;
2231 
2232   size_t regions_from = _bitmap_regions_per_slice * slice;
2233   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2234   for (size_t g = regions_from; g < regions_to; g++) {
2235     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2236     if (skip_self && g == r->region_number()) continue;
2237     if (get_region(g)->is_committed()) {
2238       return true;
2239     }
2240   }
2241   return false;
2242 }
2243 
2244 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2245   assert_heaplock_owned_by_current_thread();
2246 
2247   // Bitmaps in special regions do not need commits
2248   if (_bitmap_region_special) {
2249     return true;
2250   }
2251 
2252   if (is_bitmap_slice_committed(r, true)) {
2253     // Some other region from the group is already committed, meaning the bitmap
2254     // slice is already committed, we exit right away.
2255     return true;
2256   }
2257 
2258   // Commit the bitmap slice:
2259   size_t slice = r->region_number() / _bitmap_regions_per_slice;
2260   size_t off = _bitmap_bytes_per_slice * slice;
2261   size_t len = _bitmap_bytes_per_slice;
2262   if (!os::commit_memory((char*)_bitmap_region.start() + off, len, false)) {
2263     return false;
2264   }
2265   return true;
2266 }
2267 
2268 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2269   assert_heaplock_owned_by_current_thread();
2270 
2271   // Bitmaps in special regions do not need uncommits
2272   if (_bitmap_region_special) {
2273     return true;
2274   }
2275 
2276   if (is_bitmap_slice_committed(r, true)) {
2277     // Some other region from the group is still committed, meaning the bitmap
2278     // slice is should stay committed, exit right away.
2279     return true;
2280   }
2281 
2282   // Uncommit the bitmap slice:
2283   size_t slice = r->region_number() / _bitmap_regions_per_slice;
2284   size_t off = _bitmap_bytes_per_slice * slice;
2285   size_t len = _bitmap_bytes_per_slice;
2286   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2287     return false;
2288   }
2289   return true;
2290 }
2291 
2292 void ShenandoahHeap::safepoint_synchronize_begin() {
2293   if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2294     SuspendibleThreadSet::synchronize();
2295   }
2296 }
2297 
2298 void ShenandoahHeap::safepoint_synchronize_end() {
2299   if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2300     SuspendibleThreadSet::desynchronize();
2301   }
2302 }
2303 
2304 void ShenandoahHeap::vmop_entry_init_mark() {
2305   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2306   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2307   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_mark_gross);
2308 
2309   try_inject_alloc_failure();
2310   VM_ShenandoahInitMark op;
2311   VMThread::execute(&op); // jump to entry_init_mark() under safepoint
2312 }
2313 
2314 void ShenandoahHeap::vmop_entry_final_mark() {
2315   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2316   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2317   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_mark_gross);
2318 
2319   try_inject_alloc_failure();
2320   VM_ShenandoahFinalMarkStartEvac op;
2321   VMThread::execute(&op); // jump to entry_final_mark under safepoint
2322 }
2323 
2324 void ShenandoahHeap::vmop_entry_final_evac() {
2325   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2326   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2327   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_evac_gross);
2328 
2329   VM_ShenandoahFinalEvac op;
2330   VMThread::execute(&op); // jump to entry_final_evac under safepoint
2331 }
2332 
2333 void ShenandoahHeap::vmop_entry_init_updaterefs() {
2334   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2335   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2336   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_update_refs_gross);
2337 
2338   try_inject_alloc_failure();
2339   VM_ShenandoahInitUpdateRefs op;
2340   VMThread::execute(&op);
2341 }
2342 
2343 void ShenandoahHeap::vmop_entry_final_updaterefs() {
2344   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2345   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2346   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_update_refs_gross);
2347 
2348   try_inject_alloc_failure();
2349   VM_ShenandoahFinalUpdateRefs op;
2350   VMThread::execute(&op);
2351 }
2352 
2353 void ShenandoahHeap::vmop_entry_init_traversal() {
2354   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2355   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2356   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_traversal_gc_gross);
2357 
2358   try_inject_alloc_failure();
2359   VM_ShenandoahInitTraversalGC op;
2360   VMThread::execute(&op);
2361 }
2362 
2363 void ShenandoahHeap::vmop_entry_final_traversal() {
2364   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2365   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2366   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_traversal_gc_gross);
2367 
2368   try_inject_alloc_failure();
2369   VM_ShenandoahFinalTraversalGC op;
2370   VMThread::execute(&op);
2371 }
2372 
2373 void ShenandoahHeap::vmop_entry_full(GCCause::Cause cause) {
2374   TraceCollectorStats tcs(monitoring_support()->full_stw_collection_counters());
2375   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2376   ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_gross);
2377 
2378   try_inject_alloc_failure();
2379   VM_ShenandoahFullGC op(cause);
2380   VMThread::execute(&op);
2381 }
2382 
2383 void ShenandoahHeap::vmop_degenerated(ShenandoahDegenPoint point) {
2384   TraceCollectorStats tcs(monitoring_support()->full_stw_collection_counters());
2385   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2386   ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_gross);
2387 
2388   VM_ShenandoahDegeneratedGC degenerated_gc((int)point);
2389   VMThread::execute(&degenerated_gc);
2390 }
2391 
2392 void ShenandoahHeap::entry_init_mark() {
2393   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2394   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_mark);
2395   const char* msg = init_mark_event_message();
2396   GCTraceTime(Info, gc) time(msg, gc_timer());
2397   EventMark em("%s", msg);
2398 
2399   ShenandoahWorkerScope scope(workers(),
2400                               ShenandoahWorkerPolicy::calc_workers_for_init_marking(),
2401                               "init marking");
2402 
2403   op_init_mark();
2404 }
2405 
2406 void ShenandoahHeap::entry_final_mark() {
2407   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2408   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_mark);
2409   const char* msg = final_mark_event_message();
2410   GCTraceTime(Info, gc) time(msg, gc_timer());
2411   EventMark em("%s", msg);
2412 
2413   ShenandoahWorkerScope scope(workers(),
2414                               ShenandoahWorkerPolicy::calc_workers_for_final_marking(),
2415                               "final marking");
2416 
2417   op_final_mark();
2418 }
2419 
2420 void ShenandoahHeap::entry_final_evac() {
2421   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2422   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_evac);
2423   static const char* msg = "Pause Final Evac";
2424   GCTraceTime(Info, gc) time(msg, gc_timer());
2425   EventMark em("%s", msg);
2426 
2427   op_final_evac();
2428 }
2429 
2430 void ShenandoahHeap::entry_init_updaterefs() {
2431   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2432   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_update_refs);
2433 
2434   static const char* msg = "Pause Init Update Refs";
2435   GCTraceTime(Info, gc) time(msg, gc_timer());
2436   EventMark em("%s", msg);
2437 
2438   // No workers used in this phase, no setup required
2439 
2440   op_init_updaterefs();
2441 }
2442 
2443 void ShenandoahHeap::entry_final_updaterefs() {
2444   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2445   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_update_refs);
2446 
2447   static const char* msg = "Pause Final Update Refs";
2448   GCTraceTime(Info, gc) time(msg, gc_timer());
2449   EventMark em("%s", msg);
2450 
2451   ShenandoahWorkerScope scope(workers(),
2452                               ShenandoahWorkerPolicy::calc_workers_for_final_update_ref(),
2453                               "final reference update");
2454 
2455   op_final_updaterefs();
2456 }
2457 
2458 void ShenandoahHeap::entry_init_traversal() {
2459   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2460   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_traversal_gc);
2461 
2462   static const char* msg = "Pause Init Traversal";
2463   GCTraceTime(Info, gc) time(msg, gc_timer());
2464   EventMark em("%s", msg);
2465 
2466   ShenandoahWorkerScope scope(workers(),
2467                               ShenandoahWorkerPolicy::calc_workers_for_stw_traversal(),
2468                               "init traversal");
2469 
2470   op_init_traversal();
2471 }
2472 
2473 void ShenandoahHeap::entry_final_traversal() {
2474   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2475   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_traversal_gc);
2476 
2477   static const char* msg = "Pause Final Traversal";
2478   GCTraceTime(Info, gc) time(msg, gc_timer());
2479   EventMark em("%s", msg);
2480 
2481   ShenandoahWorkerScope scope(workers(),
2482                               ShenandoahWorkerPolicy::calc_workers_for_stw_traversal(),
2483                               "final traversal");
2484 
2485   op_final_traversal();
2486 }
2487 
2488 void ShenandoahHeap::entry_full(GCCause::Cause cause) {
2489   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2490   ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc);
2491 
2492   static const char* msg = "Pause Full";
2493   GCTraceTime(Info, gc) time(msg, gc_timer(), cause, true);
2494   EventMark em("%s", msg);
2495 
2496   ShenandoahWorkerScope scope(workers(),
2497                               ShenandoahWorkerPolicy::calc_workers_for_fullgc(),
2498                               "full gc");
2499 
2500   op_full(cause);
2501 }
2502 
2503 void ShenandoahHeap::entry_degenerated(int point) {
2504   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2505   ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc);
2506 
2507   ShenandoahDegenPoint dpoint = (ShenandoahDegenPoint)point;
2508   const char* msg = degen_event_message(dpoint);
2509   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2510   EventMark em("%s", msg);
2511 
2512   ShenandoahWorkerScope scope(workers(),
2513                               ShenandoahWorkerPolicy::calc_workers_for_stw_degenerated(),
2514                               "stw degenerated gc");
2515 
2516   set_degenerated_gc_in_progress(true);
2517   op_degenerated(dpoint);
2518   set_degenerated_gc_in_progress(false);
2519 }
2520 
2521 void ShenandoahHeap::entry_mark() {
2522   TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
2523 
2524   const char* msg = conc_mark_event_message();
2525   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2526   EventMark em("%s", msg);
2527 
2528   ShenandoahWorkerScope scope(workers(),
2529                               ShenandoahWorkerPolicy::calc_workers_for_conc_marking(),
2530                               "concurrent marking");
2531 
2532   try_inject_alloc_failure();
2533   op_mark();
2534 }
2535 
2536 void ShenandoahHeap::entry_evac() {
2537   ShenandoahGCPhase conc_evac_phase(ShenandoahPhaseTimings::conc_evac);
2538   TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
2539 
2540   static const char* msg = "Concurrent evacuation";
2541   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2542   EventMark em("%s", msg);
2543 
2544   ShenandoahWorkerScope scope(workers(),
2545                               ShenandoahWorkerPolicy::calc_workers_for_conc_evac(),
2546                               "concurrent evacuation");
2547 
2548   try_inject_alloc_failure();
2549   op_conc_evac();
2550 }
2551 
2552 void ShenandoahHeap::entry_updaterefs() {
2553   ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_update_refs);
2554 
2555   static const char* msg = "Concurrent update references";
2556   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2557   EventMark em("%s", msg);
2558 
2559   ShenandoahWorkerScope scope(workers(),
2560                               ShenandoahWorkerPolicy::calc_workers_for_conc_update_ref(),
2561                               "concurrent reference update");
2562 
2563   try_inject_alloc_failure();
2564   op_updaterefs();
2565 }
2566 void ShenandoahHeap::entry_cleanup() {
2567   ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_cleanup);
2568 
2569   static const char* msg = "Concurrent cleanup";
2570   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2571   EventMark em("%s", msg);
2572 
2573   // This phase does not use workers, no need for setup
2574 
2575   try_inject_alloc_failure();
2576   op_cleanup();
2577 }
2578 
2579 void ShenandoahHeap::entry_reset() {
2580   ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_reset);
2581 
2582   static const char* msg = "Concurrent reset";
2583   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2584   EventMark em("%s", msg);
2585 
2586   ShenandoahWorkerScope scope(workers(),
2587                               ShenandoahWorkerPolicy::calc_workers_for_conc_reset(),
2588                               "concurrent reset");
2589 
2590   try_inject_alloc_failure();
2591   op_reset();
2592 }
2593 
2594 void ShenandoahHeap::entry_preclean() {
2595   if (ShenandoahPreclean && process_references()) {
2596     static const char* msg = "Concurrent precleaning";
2597     GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2598     EventMark em("%s", msg);
2599 
2600     ShenandoahGCPhase conc_preclean(ShenandoahPhaseTimings::conc_preclean);
2601 
2602     ShenandoahWorkerScope scope(workers(),
2603                                 ShenandoahWorkerPolicy::calc_workers_for_conc_preclean(),
2604                                 "concurrent preclean",
2605                                 /* check_workers = */ false);
2606 
2607     try_inject_alloc_failure();
2608     op_preclean();
2609   }
2610 }
2611 
2612 void ShenandoahHeap::entry_traversal() {
2613   static const char* msg = "Concurrent traversal";
2614   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2615   EventMark em("%s", msg);
2616 
2617   TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
2618 
2619   ShenandoahWorkerScope scope(workers(),
2620                               ShenandoahWorkerPolicy::calc_workers_for_conc_traversal(),
2621                               "concurrent traversal");
2622 
2623   try_inject_alloc_failure();
2624   op_traversal();
2625 }
2626 
2627 void ShenandoahHeap::entry_uncommit(double shrink_before) {
2628   static const char *msg = "Concurrent uncommit";
2629   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2630   EventMark em("%s", msg);
2631 
2632   ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_uncommit);
2633 
2634   op_uncommit(shrink_before);
2635 }
2636 
2637 void ShenandoahHeap::try_inject_alloc_failure() {
2638   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2639     _inject_alloc_failure.set();
2640     os::naked_short_sleep(1);
2641     if (cancelled_gc()) {
2642       log_info(gc)("Allocation failure was successfully injected");
2643     }
2644   }
2645 }
2646 
2647 bool ShenandoahHeap::should_inject_alloc_failure() {
2648   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2649 }
2650 
2651 void ShenandoahHeap::initialize_serviceability() {
2652   _memory_pool = new ShenandoahMemoryPool(this);
2653   _cycle_memory_manager.add_pool(_memory_pool);
2654   _stw_memory_manager.add_pool(_memory_pool);
2655 }
2656 
2657 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2658   GrowableArray<GCMemoryManager*> memory_managers(2);
2659   memory_managers.append(&_cycle_memory_manager);
2660   memory_managers.append(&_stw_memory_manager);
2661   return memory_managers;
2662 }
2663 
2664 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2665   GrowableArray<MemoryPool*> memory_pools(1);
2666   memory_pools.append(_memory_pool);
2667   return memory_pools;
2668 }
2669 
2670 MemoryUsage ShenandoahHeap::memory_usage() {
2671   return _memory_pool->get_memory_usage();
2672 }
2673 
2674 void ShenandoahHeap::enter_evacuation() {
2675   _oom_evac_handler.enter_evacuation();
2676 }
2677 
2678 void ShenandoahHeap::leave_evacuation() {
2679   _oom_evac_handler.leave_evacuation();
2680 }
2681 
2682 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2683   _heap(ShenandoahHeap::heap()),
2684   _index(0) {}
2685 
2686 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2687   _heap(heap),
2688   _index(0) {}
2689 
2690 void ShenandoahRegionIterator::reset() {
2691   _index = 0;
2692 }
2693 
2694 bool ShenandoahRegionIterator::has_next() const {
2695   return _index < _heap->num_regions();
2696 }
2697 
2698 char ShenandoahHeap::gc_state() const {
2699   return _gc_state.raw_value();
2700 }
2701 
2702 void ShenandoahHeap::deduplicate_string(oop str) {
2703   assert(java_lang_String::is_instance(str), "invariant");
2704 
2705   if (ShenandoahStringDedup::is_enabled()) {
2706     ShenandoahStringDedup::deduplicate(str);
2707   }
2708 }
2709 
2710 const char* ShenandoahHeap::init_mark_event_message() const {
2711   bool update_refs = has_forwarded_objects();
2712   bool proc_refs = process_references();
2713   bool unload_cls = unload_classes();
2714 
2715   if (update_refs && proc_refs && unload_cls) {
2716     return "Pause Init Mark (update refs) (process weakrefs) (unload classes)";
2717   } else if (update_refs && proc_refs) {
2718     return "Pause Init Mark (update refs) (process weakrefs)";
2719   } else if (update_refs && unload_cls) {
2720     return "Pause Init Mark (update refs) (unload classes)";
2721   } else if (proc_refs && unload_cls) {
2722     return "Pause Init Mark (process weakrefs) (unload classes)";
2723   } else if (update_refs) {
2724     return "Pause Init Mark (update refs)";
2725   } else if (proc_refs) {
2726     return "Pause Init Mark (process weakrefs)";
2727   } else if (unload_cls) {
2728     return "Pause Init Mark (unload classes)";
2729   } else {
2730     return "Pause Init Mark";
2731   }
2732 }
2733 
2734 const char* ShenandoahHeap::final_mark_event_message() const {
2735   bool update_refs = has_forwarded_objects();
2736   bool proc_refs = process_references();
2737   bool unload_cls = unload_classes();
2738 
2739   if (update_refs && proc_refs && unload_cls) {
2740     return "Pause Final Mark (update refs) (process weakrefs) (unload classes)";
2741   } else if (update_refs && proc_refs) {
2742     return "Pause Final Mark (update refs) (process weakrefs)";
2743   } else if (update_refs && unload_cls) {
2744     return "Pause Final Mark (update refs) (unload classes)";
2745   } else if (proc_refs && unload_cls) {
2746     return "Pause Final Mark (process weakrefs) (unload classes)";
2747   } else if (update_refs) {
2748     return "Pause Final Mark (update refs)";
2749   } else if (proc_refs) {
2750     return "Pause Final Mark (process weakrefs)";
2751   } else if (unload_cls) {
2752     return "Pause Final Mark (unload classes)";
2753   } else {
2754     return "Pause Final Mark";
2755   }
2756 }
2757 
2758 const char* ShenandoahHeap::conc_mark_event_message() const {
2759   bool update_refs = has_forwarded_objects();
2760   bool proc_refs = process_references();
2761   bool unload_cls = unload_classes();
2762 
2763   if (update_refs && proc_refs && unload_cls) {
2764     return "Concurrent marking (update refs) (process weakrefs) (unload classes)";
2765   } else if (update_refs && proc_refs) {
2766     return "Concurrent marking (update refs) (process weakrefs)";
2767   } else if (update_refs && unload_cls) {
2768     return "Concurrent marking (update refs) (unload classes)";
2769   } else if (proc_refs && unload_cls) {
2770     return "Concurrent marking (process weakrefs) (unload classes)";
2771   } else if (update_refs) {
2772     return "Concurrent marking (update refs)";
2773   } else if (proc_refs) {
2774     return "Concurrent marking (process weakrefs)";
2775   } else if (unload_cls) {
2776     return "Concurrent marking (unload classes)";
2777   } else {
2778     return "Concurrent marking";
2779   }
2780 }
2781 
2782 const char* ShenandoahHeap::degen_event_message(ShenandoahDegenPoint point) const {
2783   switch (point) {
2784     case _degenerated_unset:
2785       return "Pause Degenerated GC (<UNSET>)";
2786     case _degenerated_traversal:
2787       return "Pause Degenerated GC (Traversal)";
2788     case _degenerated_outside_cycle:
2789       return "Pause Degenerated GC (Outside of Cycle)";
2790     case _degenerated_mark:
2791       return "Pause Degenerated GC (Mark)";
2792     case _degenerated_evac:
2793       return "Pause Degenerated GC (Evacuation)";
2794     case _degenerated_updaterefs:
2795       return "Pause Degenerated GC (Update Refs)";
2796     default:
2797       ShouldNotReachHere();
2798       return "ERROR";
2799   }
2800 }
2801 
2802 jushort* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2803 #ifdef ASSERT
2804   assert(_liveness_cache != NULL, "sanity");
2805   assert(worker_id < _max_workers, "sanity");
2806   for (uint i = 0; i < num_regions(); i++) {
2807     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2808   }
2809 #endif
2810   return _liveness_cache[worker_id];
2811 }
2812 
2813 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2814   assert(worker_id < _max_workers, "sanity");
2815   assert(_liveness_cache != NULL, "sanity");
2816   jushort* ld = _liveness_cache[worker_id];
2817   for (uint i = 0; i < num_regions(); i++) {
2818     ShenandoahHeapRegion* r = get_region(i);
2819     jushort live = ld[i];
2820     if (live > 0) {
2821       r->increase_live_data_gc_words(live);
2822       ld[i] = 0;
2823     }
2824   }
2825 }