1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvmtifiles/jvmtiEnv.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logConfiguration.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.inline.hpp"
  50 #include "oops/instanceKlass.hpp"
  51 #include "oops/objArrayOop.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/symbol.hpp"
  54 #include "oops/verifyOopClosure.hpp"
  55 #include "prims/jvm_misc.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/privilegedStack.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/commandLineFlagConstraintList.hpp"
  63 #include "runtime/commandLineFlagWriteableList.hpp"
  64 #include "runtime/commandLineFlagRangeList.hpp"
  65 #include "runtime/deoptimization.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/handshake.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/interfaceSupport.hpp"
  71 #include "runtime/java.hpp"
  72 #include "runtime/javaCalls.hpp"
  73 #include "runtime/jniPeriodicChecker.hpp"
  74 #include "runtime/memprofiler.hpp"
  75 #include "runtime/mutexLocker.hpp"
  76 #include "runtime/objectMonitor.hpp"
  77 #include "runtime/orderAccess.inline.hpp"
  78 #include "runtime/osThread.hpp"
  79 #include "runtime/prefetch.inline.hpp"
  80 #include "runtime/safepoint.hpp"
  81 #include "runtime/safepointMechanism.inline.hpp"
  82 #include "runtime/sharedRuntime.hpp"
  83 #include "runtime/statSampler.hpp"
  84 #include "runtime/stubRoutines.hpp"
  85 #include "runtime/sweeper.hpp"
  86 #include "runtime/task.hpp"
  87 #include "runtime/thread.inline.hpp"
  88 #include "runtime/threadCritical.hpp"
  89 #include "runtime/threadSMR.inline.hpp"
  90 #include "runtime/timer.hpp"
  91 #include "runtime/timerTrace.hpp"
  92 #include "runtime/vframe.hpp"
  93 #include "runtime/vframeArray.hpp"
  94 #include "runtime/vframe_hp.hpp"
  95 #include "runtime/vmThread.hpp"
  96 #include "runtime/vm_operations.hpp"
  97 #include "runtime/vm_version.hpp"
  98 #include "services/attachListener.hpp"
  99 #include "services/management.hpp"
 100 #include "services/memTracker.hpp"
 101 #include "services/threadService.hpp"
 102 #include "trace/traceMacros.hpp"
 103 #include "trace/tracing.hpp"
 104 #include "utilities/align.hpp"
 105 #include "utilities/defaultStream.hpp"
 106 #include "utilities/dtrace.hpp"
 107 #include "utilities/events.hpp"
 108 #include "utilities/macros.hpp"
 109 #include "utilities/preserveException.hpp"
 110 #include "utilities/vmError.hpp"
 111 #if INCLUDE_ALL_GCS
 112 #include "gc/cms/concurrentMarkSweepThread.hpp"
 113 #include "gc/g1/concurrentMarkThread.inline.hpp"
 114 #include "gc/parallel/pcTasks.hpp"
 115 #endif // INCLUDE_ALL_GCS
 116 #if INCLUDE_JVMCI
 117 #include "jvmci/jvmciCompiler.hpp"
 118 #include "jvmci/jvmciRuntime.hpp"
 119 #include "logging/logHandle.hpp"
 120 #endif
 121 #ifdef COMPILER1
 122 #include "c1/c1_Compiler.hpp"
 123 #endif
 124 #ifdef COMPILER2
 125 #include "opto/c2compiler.hpp"
 126 #include "opto/idealGraphPrinter.hpp"
 127 #endif
 128 #if INCLUDE_RTM_OPT
 129 #include "runtime/rtmLocking.hpp"
 130 #endif
 131 
 132 // Initialization after module runtime initialization
 133 void universe_post_module_init();  // must happen after call_initPhase2
 134 
 135 #ifdef DTRACE_ENABLED
 136 
 137 // Only bother with this argument setup if dtrace is available
 138 
 139   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 140   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 141 
 142   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 143     {                                                                      \
 144       ResourceMark rm(this);                                               \
 145       int len = 0;                                                         \
 146       const char* name = (javathread)->get_thread_name();                  \
 147       len = strlen(name);                                                  \
 148       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 149         (char *) name, len,                                                \
 150         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 151         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 152         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 153     }
 154 
 155 #else //  ndef DTRACE_ENABLED
 156 
 157   #define DTRACE_THREAD_PROBE(probe, javathread)
 158 
 159 #endif // ndef DTRACE_ENABLED
 160 
 161 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 162 // Current thread is maintained as a thread-local variable
 163 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 164 #endif
 165 // Class hierarchy
 166 // - Thread
 167 //   - VMThread
 168 //   - WatcherThread
 169 //   - ConcurrentMarkSweepThread
 170 //   - JavaThread
 171 //     - CompilerThread
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const int alignment = markOopDesc::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                                          AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (aligned_addr != real_malloc_addr) {
 187       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                               p2i(real_malloc_addr),
 189                               p2i(aligned_addr));
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     FreeHeap(((Thread*) p)->_real_malloc_address);
 202   } else {
 203     FreeHeap(p);
 204   }
 205 }
 206 
 207 void JavaThread::smr_delete() {
 208   if (_on_thread_list) {
 209     ThreadsSMRSupport::smr_delete(this);
 210   } else {
 211     delete this;
 212   }
 213 }
 214 
 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 216 // JavaThread
 217 
 218 
 219 Thread::Thread() {
 220   // stack and get_thread
 221   set_stack_base(NULL);
 222   set_stack_size(0);
 223   set_self_raw_id(0);
 224   set_lgrp_id(-1);
 225   DEBUG_ONLY(clear_suspendible_thread();)
 226 
 227   // allocated data structures
 228   set_osthread(NULL);
 229   set_resource_area(new (mtThread)ResourceArea());
 230   DEBUG_ONLY(_current_resource_mark = NULL;)
 231   set_handle_area(new (mtThread) HandleArea(NULL));
 232   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 233   set_active_handles(NULL);
 234   set_free_handle_block(NULL);
 235   set_last_handle_mark(NULL);
 236 
 237   // This initial value ==> never claimed.
 238   _oops_do_parity = 0;
 239   _threads_hazard_ptr = NULL;
 240   _nested_threads_hazard_ptr = NULL;
 241   _nested_threads_hazard_ptr_cnt = 0;
 242 
 243   // the handle mark links itself to last_handle_mark
 244   new HandleMark(this);
 245 
 246   // plain initialization
 247   debug_only(_owned_locks = NULL;)
 248   debug_only(_allow_allocation_count = 0;)
 249   NOT_PRODUCT(_allow_safepoint_count = 0;)
 250   NOT_PRODUCT(_skip_gcalot = false;)
 251   _jvmti_env_iteration_count = 0;
 252   set_allocated_bytes(0);
 253   _vm_operation_started_count = 0;
 254   _vm_operation_completed_count = 0;
 255   _current_pending_monitor = NULL;
 256   _current_pending_monitor_is_from_java = true;
 257   _current_waiting_monitor = NULL;
 258   _num_nested_signal = 0;
 259   omFreeList = NULL;
 260   omFreeCount = 0;
 261   omFreeProvision = 32;
 262   omInUseList = NULL;
 263   omInUseCount = 0;
 264 
 265 #ifdef ASSERT
 266   _visited_for_critical_count = false;
 267 #endif
 268 
 269   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 270                          Monitor::_safepoint_check_sometimes);
 271   _suspend_flags = 0;
 272 
 273   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 274   _hashStateX = os::random();
 275   _hashStateY = 842502087;
 276   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 277   _hashStateW = 273326509;
 278 
 279   _OnTrap   = 0;
 280   _schedctl = NULL;
 281   _Stalled  = 0;
 282   _TypeTag  = 0x2BAD;
 283 
 284   // Many of the following fields are effectively final - immutable
 285   // Note that nascent threads can't use the Native Monitor-Mutex
 286   // construct until the _MutexEvent is initialized ...
 287   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 288   // we might instead use a stack of ParkEvents that we could provision on-demand.
 289   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 290   // and ::Release()
 291   _ParkEvent   = ParkEvent::Allocate(this);
 292   _SleepEvent  = ParkEvent::Allocate(this);
 293   _MutexEvent  = ParkEvent::Allocate(this);
 294   _MuxEvent    = ParkEvent::Allocate(this);
 295 
 296 #ifdef CHECK_UNHANDLED_OOPS
 297   if (CheckUnhandledOops) {
 298     _unhandled_oops = new UnhandledOops(this);
 299   }
 300 #endif // CHECK_UNHANDLED_OOPS
 301 #ifdef ASSERT
 302   if (UseBiasedLocking) {
 303     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 304     assert(this == _real_malloc_address ||
 305            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 306            "bug in forced alignment of thread objects");
 307   }
 308 #endif // ASSERT
 309 
 310   _oom_during_evac = 0;
 311 #ifdef INCLUDE_ALL_GCS
 312   _gclab = NULL;
 313 #endif
 314 }
 315 
 316 void Thread::set_oom_during_evac(bool oom) {
 317   if (oom) {
 318     _oom_during_evac |= 1;
 319   } else {
 320     _oom_during_evac &= ~1;
 321   }
 322 }
 323 
 324 bool Thread::is_oom_during_evac() const {
 325   return (_oom_during_evac & 1) == 1;
 326 }
 327 
 328 #ifdef ASSERT
 329 void Thread::set_evac_allowed(bool evac_allowed) {
 330   if (evac_allowed) {
 331     _oom_during_evac |= 2;
 332   } else {
 333     _oom_during_evac &= ~2;
 334   }
 335 }
 336 
 337 bool Thread::is_evac_allowed() const {
 338   return (_oom_during_evac & 2) == 2;
 339 }
 340 #endif
 341 
 342 void Thread::initialize_thread_current() {
 343 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 344   assert(_thr_current == NULL, "Thread::current already initialized");
 345   _thr_current = this;
 346 #endif
 347   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 348   ThreadLocalStorage::set_thread(this);
 349   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 350 }
 351 
 352 void Thread::clear_thread_current() {
 353   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 354 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 355   _thr_current = NULL;
 356 #endif
 357   ThreadLocalStorage::set_thread(NULL);
 358 }
 359 
 360 void Thread::record_stack_base_and_size() {
 361   set_stack_base(os::current_stack_base());
 362   set_stack_size(os::current_stack_size());
 363   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 364   // in initialize_thread(). Without the adjustment, stack size is
 365   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 366   // So far, only Solaris has real implementation of initialize_thread().
 367   //
 368   // set up any platform-specific state.
 369   os::initialize_thread(this);
 370 
 371   // Set stack limits after thread is initialized.
 372   if (is_Java_thread()) {
 373     ((JavaThread*) this)->set_stack_overflow_limit();
 374     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 375   }
 376 #if INCLUDE_NMT
 377   // record thread's native stack, stack grows downward
 378   MemTracker::record_thread_stack(stack_end(), stack_size());
 379 #endif // INCLUDE_NMT
 380   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 381     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 382     os::current_thread_id(), p2i(stack_base() - stack_size()),
 383     p2i(stack_base()), stack_size()/1024);
 384 }
 385 
 386 
 387 Thread::~Thread() {
 388   EVENT_THREAD_DESTRUCT(this);
 389 
 390   // stack_base can be NULL if the thread is never started or exited before
 391   // record_stack_base_and_size called. Although, we would like to ensure
 392   // that all started threads do call record_stack_base_and_size(), there is
 393   // not proper way to enforce that.
 394 #if INCLUDE_NMT
 395   if (_stack_base != NULL) {
 396     MemTracker::release_thread_stack(stack_end(), stack_size());
 397 #ifdef ASSERT
 398     set_stack_base(NULL);
 399 #endif
 400   }
 401 #endif // INCLUDE_NMT
 402 
 403   // deallocate data structures
 404   delete resource_area();
 405   // since the handle marks are using the handle area, we have to deallocated the root
 406   // handle mark before deallocating the thread's handle area,
 407   assert(last_handle_mark() != NULL, "check we have an element");
 408   delete last_handle_mark();
 409   assert(last_handle_mark() == NULL, "check we have reached the end");
 410 
 411   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 412   // We NULL out the fields for good hygiene.
 413   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 414   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 415   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 416   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 417 
 418   delete handle_area();
 419   delete metadata_handles();
 420 
 421   // SR_handler uses this as a termination indicator -
 422   // needs to happen before os::free_thread()
 423   delete _SR_lock;
 424   _SR_lock = NULL;
 425 
 426   // osthread() can be NULL, if creation of thread failed.
 427   if (osthread() != NULL) os::free_thread(osthread());
 428 
 429   // clear Thread::current if thread is deleting itself.
 430   // Needed to ensure JNI correctly detects non-attached threads.
 431   if (this == Thread::current()) {
 432     clear_thread_current();
 433   }
 434 
 435   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 436 }
 437 
 438 // NOTE: dummy function for assertion purpose.
 439 void Thread::run() {
 440   ShouldNotReachHere();
 441 }
 442 
 443 #ifdef ASSERT
 444 // A JavaThread is considered "dangling" if it is not the current
 445 // thread, has been added the Threads list, the system is not at a
 446 // safepoint and the Thread is not "protected".
 447 //
 448 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 449   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 450          !((JavaThread *) thread)->on_thread_list() ||
 451          SafepointSynchronize::is_at_safepoint() ||
 452          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 453          "possibility of dangling Thread pointer");
 454 }
 455 #endif
 456 
 457 ThreadPriority Thread::get_priority(const Thread* const thread) {
 458   ThreadPriority priority;
 459   // Can return an error!
 460   (void)os::get_priority(thread, priority);
 461   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 462   return priority;
 463 }
 464 
 465 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 466   debug_only(check_for_dangling_thread_pointer(thread);)
 467   // Can return an error!
 468   (void)os::set_priority(thread, priority);
 469 }
 470 
 471 
 472 void Thread::start(Thread* thread) {
 473   // Start is different from resume in that its safety is guaranteed by context or
 474   // being called from a Java method synchronized on the Thread object.
 475   if (!DisableStartThread) {
 476     if (thread->is_Java_thread()) {
 477       // Initialize the thread state to RUNNABLE before starting this thread.
 478       // Can not set it after the thread started because we do not know the
 479       // exact thread state at that time. It could be in MONITOR_WAIT or
 480       // in SLEEPING or some other state.
 481       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 482                                           java_lang_Thread::RUNNABLE);
 483     }
 484     os::start_thread(thread);
 485   }
 486 }
 487 
 488 // Enqueue a VM_Operation to do the job for us - sometime later
 489 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 490   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 491   VMThread::execute(vm_stop);
 492 }
 493 
 494 
 495 // Check if an external suspend request has completed (or has been
 496 // cancelled). Returns true if the thread is externally suspended and
 497 // false otherwise.
 498 //
 499 // The bits parameter returns information about the code path through
 500 // the routine. Useful for debugging:
 501 //
 502 // set in is_ext_suspend_completed():
 503 // 0x00000001 - routine was entered
 504 // 0x00000010 - routine return false at end
 505 // 0x00000100 - thread exited (return false)
 506 // 0x00000200 - suspend request cancelled (return false)
 507 // 0x00000400 - thread suspended (return true)
 508 // 0x00001000 - thread is in a suspend equivalent state (return true)
 509 // 0x00002000 - thread is native and walkable (return true)
 510 // 0x00004000 - thread is native_trans and walkable (needed retry)
 511 //
 512 // set in wait_for_ext_suspend_completion():
 513 // 0x00010000 - routine was entered
 514 // 0x00020000 - suspend request cancelled before loop (return false)
 515 // 0x00040000 - thread suspended before loop (return true)
 516 // 0x00080000 - suspend request cancelled in loop (return false)
 517 // 0x00100000 - thread suspended in loop (return true)
 518 // 0x00200000 - suspend not completed during retry loop (return false)
 519 
 520 // Helper class for tracing suspend wait debug bits.
 521 //
 522 // 0x00000100 indicates that the target thread exited before it could
 523 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 524 // 0x00080000 each indicate a cancelled suspend request so they don't
 525 // count as wait failures either.
 526 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 527 
 528 class TraceSuspendDebugBits : public StackObj {
 529  private:
 530   JavaThread * jt;
 531   bool         is_wait;
 532   bool         called_by_wait;  // meaningful when !is_wait
 533   uint32_t *   bits;
 534 
 535  public:
 536   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 537                         uint32_t *_bits) {
 538     jt             = _jt;
 539     is_wait        = _is_wait;
 540     called_by_wait = _called_by_wait;
 541     bits           = _bits;
 542   }
 543 
 544   ~TraceSuspendDebugBits() {
 545     if (!is_wait) {
 546 #if 1
 547       // By default, don't trace bits for is_ext_suspend_completed() calls.
 548       // That trace is very chatty.
 549       return;
 550 #else
 551       if (!called_by_wait) {
 552         // If tracing for is_ext_suspend_completed() is enabled, then only
 553         // trace calls to it from wait_for_ext_suspend_completion()
 554         return;
 555       }
 556 #endif
 557     }
 558 
 559     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 560       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 561         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 562         ResourceMark rm;
 563 
 564         tty->print_cr(
 565                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 566                       jt->get_thread_name(), *bits);
 567 
 568         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 569       }
 570     }
 571   }
 572 };
 573 #undef DEBUG_FALSE_BITS
 574 
 575 
 576 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 577                                           uint32_t *bits) {
 578   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 579 
 580   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 581   bool do_trans_retry;           // flag to force the retry
 582 
 583   *bits |= 0x00000001;
 584 
 585   do {
 586     do_trans_retry = false;
 587 
 588     if (is_exiting()) {
 589       // Thread is in the process of exiting. This is always checked
 590       // first to reduce the risk of dereferencing a freed JavaThread.
 591       *bits |= 0x00000100;
 592       return false;
 593     }
 594 
 595     if (!is_external_suspend()) {
 596       // Suspend request is cancelled. This is always checked before
 597       // is_ext_suspended() to reduce the risk of a rogue resume
 598       // confusing the thread that made the suspend request.
 599       *bits |= 0x00000200;
 600       return false;
 601     }
 602 
 603     if (is_ext_suspended()) {
 604       // thread is suspended
 605       *bits |= 0x00000400;
 606       return true;
 607     }
 608 
 609     // Now that we no longer do hard suspends of threads running
 610     // native code, the target thread can be changing thread state
 611     // while we are in this routine:
 612     //
 613     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 614     //
 615     // We save a copy of the thread state as observed at this moment
 616     // and make our decision about suspend completeness based on the
 617     // copy. This closes the race where the thread state is seen as
 618     // _thread_in_native_trans in the if-thread_blocked check, but is
 619     // seen as _thread_blocked in if-thread_in_native_trans check.
 620     JavaThreadState save_state = thread_state();
 621 
 622     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 623       // If the thread's state is _thread_blocked and this blocking
 624       // condition is known to be equivalent to a suspend, then we can
 625       // consider the thread to be externally suspended. This means that
 626       // the code that sets _thread_blocked has been modified to do
 627       // self-suspension if the blocking condition releases. We also
 628       // used to check for CONDVAR_WAIT here, but that is now covered by
 629       // the _thread_blocked with self-suspension check.
 630       //
 631       // Return true since we wouldn't be here unless there was still an
 632       // external suspend request.
 633       *bits |= 0x00001000;
 634       return true;
 635     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 636       // Threads running native code will self-suspend on native==>VM/Java
 637       // transitions. If its stack is walkable (should always be the case
 638       // unless this function is called before the actual java_suspend()
 639       // call), then the wait is done.
 640       *bits |= 0x00002000;
 641       return true;
 642     } else if (!called_by_wait && !did_trans_retry &&
 643                save_state == _thread_in_native_trans &&
 644                frame_anchor()->walkable()) {
 645       // The thread is transitioning from thread_in_native to another
 646       // thread state. check_safepoint_and_suspend_for_native_trans()
 647       // will force the thread to self-suspend. If it hasn't gotten
 648       // there yet we may have caught the thread in-between the native
 649       // code check above and the self-suspend. Lucky us. If we were
 650       // called by wait_for_ext_suspend_completion(), then it
 651       // will be doing the retries so we don't have to.
 652       //
 653       // Since we use the saved thread state in the if-statement above,
 654       // there is a chance that the thread has already transitioned to
 655       // _thread_blocked by the time we get here. In that case, we will
 656       // make a single unnecessary pass through the logic below. This
 657       // doesn't hurt anything since we still do the trans retry.
 658 
 659       *bits |= 0x00004000;
 660 
 661       // Once the thread leaves thread_in_native_trans for another
 662       // thread state, we break out of this retry loop. We shouldn't
 663       // need this flag to prevent us from getting back here, but
 664       // sometimes paranoia is good.
 665       did_trans_retry = true;
 666 
 667       // We wait for the thread to transition to a more usable state.
 668       for (int i = 1; i <= SuspendRetryCount; i++) {
 669         // We used to do an "os::yield_all(i)" call here with the intention
 670         // that yielding would increase on each retry. However, the parameter
 671         // is ignored on Linux which means the yield didn't scale up. Waiting
 672         // on the SR_lock below provides a much more predictable scale up for
 673         // the delay. It also provides a simple/direct point to check for any
 674         // safepoint requests from the VMThread
 675 
 676         // temporarily drops SR_lock while doing wait with safepoint check
 677         // (if we're a JavaThread - the WatcherThread can also call this)
 678         // and increase delay with each retry
 679         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 680 
 681         // check the actual thread state instead of what we saved above
 682         if (thread_state() != _thread_in_native_trans) {
 683           // the thread has transitioned to another thread state so
 684           // try all the checks (except this one) one more time.
 685           do_trans_retry = true;
 686           break;
 687         }
 688       } // end retry loop
 689 
 690 
 691     }
 692   } while (do_trans_retry);
 693 
 694   *bits |= 0x00000010;
 695   return false;
 696 }
 697 
 698 // Wait for an external suspend request to complete (or be cancelled).
 699 // Returns true if the thread is externally suspended and false otherwise.
 700 //
 701 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 702                                                  uint32_t *bits) {
 703   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 704                              false /* !called_by_wait */, bits);
 705 
 706   // local flag copies to minimize SR_lock hold time
 707   bool is_suspended;
 708   bool pending;
 709   uint32_t reset_bits;
 710 
 711   // set a marker so is_ext_suspend_completed() knows we are the caller
 712   *bits |= 0x00010000;
 713 
 714   // We use reset_bits to reinitialize the bits value at the top of
 715   // each retry loop. This allows the caller to make use of any
 716   // unused bits for their own marking purposes.
 717   reset_bits = *bits;
 718 
 719   {
 720     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 721     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 722                                             delay, bits);
 723     pending = is_external_suspend();
 724   }
 725   // must release SR_lock to allow suspension to complete
 726 
 727   if (!pending) {
 728     // A cancelled suspend request is the only false return from
 729     // is_ext_suspend_completed() that keeps us from entering the
 730     // retry loop.
 731     *bits |= 0x00020000;
 732     return false;
 733   }
 734 
 735   if (is_suspended) {
 736     *bits |= 0x00040000;
 737     return true;
 738   }
 739 
 740   for (int i = 1; i <= retries; i++) {
 741     *bits = reset_bits;  // reinit to only track last retry
 742 
 743     // We used to do an "os::yield_all(i)" call here with the intention
 744     // that yielding would increase on each retry. However, the parameter
 745     // is ignored on Linux which means the yield didn't scale up. Waiting
 746     // on the SR_lock below provides a much more predictable scale up for
 747     // the delay. It also provides a simple/direct point to check for any
 748     // safepoint requests from the VMThread
 749 
 750     {
 751       MutexLocker ml(SR_lock());
 752       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 753       // can also call this)  and increase delay with each retry
 754       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 755 
 756       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 757                                               delay, bits);
 758 
 759       // It is possible for the external suspend request to be cancelled
 760       // (by a resume) before the actual suspend operation is completed.
 761       // Refresh our local copy to see if we still need to wait.
 762       pending = is_external_suspend();
 763     }
 764 
 765     if (!pending) {
 766       // A cancelled suspend request is the only false return from
 767       // is_ext_suspend_completed() that keeps us from staying in the
 768       // retry loop.
 769       *bits |= 0x00080000;
 770       return false;
 771     }
 772 
 773     if (is_suspended) {
 774       *bits |= 0x00100000;
 775       return true;
 776     }
 777   } // end retry loop
 778 
 779   // thread did not suspend after all our retries
 780   *bits |= 0x00200000;
 781   return false;
 782 }
 783 
 784 // Called from API entry points which perform stack walking. If the
 785 // associated JavaThread is the current thread, then wait_for_suspend
 786 // is not used. Otherwise, it determines if we should wait for the
 787 // "other" thread to complete external suspension. (NOTE: in future
 788 // releases the suspension mechanism should be reimplemented so this
 789 // is not necessary.)
 790 //
 791 bool
 792 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 793   if (this != JavaThread::current()) {
 794     // "other" threads require special handling.
 795     if (wait_for_suspend) {
 796       // We are allowed to wait for the external suspend to complete
 797       // so give the other thread a chance to get suspended.
 798       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 799                                            SuspendRetryDelay, bits)) {
 800         // Didn't make it so let the caller know.
 801         return false;
 802       }
 803     }
 804     // We aren't allowed to wait for the external suspend to complete
 805     // so if the other thread isn't externally suspended we need to
 806     // let the caller know.
 807     else if (!is_ext_suspend_completed_with_lock(bits)) {
 808       return false;
 809     }
 810   }
 811 
 812   return true;
 813 }
 814 
 815 #ifndef PRODUCT
 816 void JavaThread::record_jump(address target, address instr, const char* file,
 817                              int line) {
 818 
 819   // This should not need to be atomic as the only way for simultaneous
 820   // updates is via interrupts. Even then this should be rare or non-existent
 821   // and we don't care that much anyway.
 822 
 823   int index = _jmp_ring_index;
 824   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 825   _jmp_ring[index]._target = (intptr_t) target;
 826   _jmp_ring[index]._instruction = (intptr_t) instr;
 827   _jmp_ring[index]._file = file;
 828   _jmp_ring[index]._line = line;
 829 }
 830 #endif // PRODUCT
 831 
 832 void Thread::interrupt(Thread* thread) {
 833   debug_only(check_for_dangling_thread_pointer(thread);)
 834   os::interrupt(thread);
 835 }
 836 
 837 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 838   debug_only(check_for_dangling_thread_pointer(thread);)
 839   // Note:  If clear_interrupted==false, this simply fetches and
 840   // returns the value of the field osthread()->interrupted().
 841   return os::is_interrupted(thread, clear_interrupted);
 842 }
 843 
 844 
 845 // GC Support
 846 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 847   int thread_parity = _oops_do_parity;
 848   if (thread_parity != strong_roots_parity) {
 849     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 850     if (res == thread_parity) {
 851       return true;
 852     } else {
 853       guarantee(res == strong_roots_parity, "Or else what?");
 854       return false;
 855     }
 856   }
 857   return false;
 858 }
 859 
 860 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 861   active_handles()->oops_do(f);
 862   // Do oop for ThreadShadow
 863   f->do_oop((oop*)&_pending_exception);
 864   handle_area()->oops_do(f);
 865 
 866   if (MonitorInUseLists) {
 867     // When using thread local monitor lists, we scan them here,
 868     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 869     VM_Operation* op = VMThread::vm_operation();
 870     if (op != NULL && op->deflates_idle_monitors()) {
 871       DeflateMonitorCounters counters; // Dummy for now.
 872       ObjectSynchronizer::deflate_thread_local_monitors(this, &counters, f);
 873     } else {
 874       ObjectSynchronizer::thread_local_used_oops_do(this, f);
 875     }
 876   }
 877 }
 878 
 879 void Thread::metadata_handles_do(void f(Metadata*)) {
 880   // Only walk the Handles in Thread.
 881   if (metadata_handles() != NULL) {
 882     for (int i = 0; i< metadata_handles()->length(); i++) {
 883       f(metadata_handles()->at(i));
 884     }
 885   }
 886 }
 887 
 888 void Thread::print_on(outputStream* st) const {
 889   // get_priority assumes osthread initialized
 890   if (osthread() != NULL) {
 891     int os_prio;
 892     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 893       st->print("os_prio=%d ", os_prio);
 894     }
 895     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 896     ext().print_on(st);
 897     osthread()->print_on(st);
 898   }
 899   if (_threads_hazard_ptr != NULL) {
 900     st->print("_threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 901   }
 902   if (_nested_threads_hazard_ptr != NULL) {
 903     print_nested_threads_hazard_ptrs_on(st);
 904   }
 905   st->print(" ");
 906   debug_only(if (WizardMode) print_owned_locks_on(st);)
 907 }
 908 
 909 void Thread::print_nested_threads_hazard_ptrs_on(outputStream* st) const {
 910   assert(_nested_threads_hazard_ptr != NULL, "must be set to print");
 911 
 912   if (EnableThreadSMRStatistics) {
 913     st->print(", _nested_threads_hazard_ptr_cnt=%u", _nested_threads_hazard_ptr_cnt);
 914   }
 915   st->print(", _nested_threads_hazard_ptrs=");
 916   for (NestedThreadsList* node = _nested_threads_hazard_ptr; node != NULL;
 917        node = node->next()) {
 918     if (node != _nested_threads_hazard_ptr) {
 919       // First node does not need a comma-space separator.
 920       st->print(", ");
 921     }
 922     st->print(INTPTR_FORMAT, p2i(node->t_list()));
 923   }
 924 }
 925 
 926 // Thread::print_on_error() is called by fatal error handler. Don't use
 927 // any lock or allocate memory.
 928 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 929   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 930 
 931   if (is_VM_thread())                 { st->print("VMThread"); }
 932   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 933   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 934   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 935   else                                { st->print("Thread"); }
 936 
 937   if (is_Named_thread()) {
 938     st->print(" \"%s\"", name());
 939   }
 940 
 941   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 942             p2i(stack_end()), p2i(stack_base()));
 943 
 944   if (osthread()) {
 945     st->print(" [id=%d]", osthread()->thread_id());
 946   }
 947 
 948   if (_threads_hazard_ptr != NULL) {
 949     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 950   }
 951   if (_nested_threads_hazard_ptr != NULL) {
 952     print_nested_threads_hazard_ptrs_on(st);
 953   }
 954 }
 955 
 956 void Thread::print_value_on(outputStream* st) const {
 957   if (is_Named_thread()) {
 958     st->print(" \"%s\" ", name());
 959   }
 960   st->print(INTPTR_FORMAT, p2i(this));   // print address
 961 }
 962 
 963 #ifdef ASSERT
 964 void Thread::print_owned_locks_on(outputStream* st) const {
 965   Monitor *cur = _owned_locks;
 966   if (cur == NULL) {
 967     st->print(" (no locks) ");
 968   } else {
 969     st->print_cr(" Locks owned:");
 970     while (cur) {
 971       cur->print_on(st);
 972       cur = cur->next();
 973     }
 974   }
 975 }
 976 
 977 static int ref_use_count  = 0;
 978 
 979 bool Thread::owns_locks_but_compiled_lock() const {
 980   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 981     if (cur != Compile_lock) return true;
 982   }
 983   return false;
 984 }
 985 
 986 
 987 #endif
 988 
 989 #ifndef PRODUCT
 990 
 991 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
 992 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
 993 // no threads which allow_vm_block's are held
 994 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 995   // Check if current thread is allowed to block at a safepoint
 996   if (!(_allow_safepoint_count == 0)) {
 997     fatal("Possible safepoint reached by thread that does not allow it");
 998   }
 999   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
1000     fatal("LEAF method calling lock?");
1001   }
1002 
1003 #ifdef ASSERT
1004   if (potential_vm_operation && is_Java_thread()
1005       && !Universe::is_bootstrapping()) {
1006     // Make sure we do not hold any locks that the VM thread also uses.
1007     // This could potentially lead to deadlocks
1008     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1009       // Threads_lock is special, since the safepoint synchronization will not start before this is
1010       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1011       // since it is used to transfer control between JavaThreads and the VMThread
1012       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1013       if ((cur->allow_vm_block() &&
1014            cur != Threads_lock &&
1015            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1016            cur != VMOperationRequest_lock &&
1017            cur != VMOperationQueue_lock) ||
1018            cur->rank() == Mutex::special) {
1019         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1020       }
1021     }
1022   }
1023 
1024   if (GCALotAtAllSafepoints) {
1025     // We could enter a safepoint here and thus have a gc
1026     InterfaceSupport::check_gc_alot();
1027   }
1028 #endif
1029 }
1030 #endif
1031 
1032 bool Thread::is_in_stack(address adr) const {
1033   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1034   address end = os::current_stack_pointer();
1035   // Allow non Java threads to call this without stack_base
1036   if (_stack_base == NULL) return true;
1037   if (stack_base() >= adr && adr >= end) return true;
1038 
1039   return false;
1040 }
1041 
1042 bool Thread::is_in_usable_stack(address adr) const {
1043   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1044   size_t usable_stack_size = _stack_size - stack_guard_size;
1045 
1046   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1047 }
1048 
1049 
1050 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1051 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1052 // used for compilation in the future. If that change is made, the need for these methods
1053 // should be revisited, and they should be removed if possible.
1054 
1055 bool Thread::is_lock_owned(address adr) const {
1056   return on_local_stack(adr);
1057 }
1058 
1059 bool Thread::set_as_starting_thread() {
1060   // NOTE: this must be called inside the main thread.
1061   return os::create_main_thread((JavaThread*)this);
1062 }
1063 
1064 static void initialize_class(Symbol* class_name, TRAPS) {
1065   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1066   InstanceKlass::cast(klass)->initialize(CHECK);
1067 }
1068 
1069 
1070 // Creates the initial ThreadGroup
1071 static Handle create_initial_thread_group(TRAPS) {
1072   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1073   InstanceKlass* ik = InstanceKlass::cast(k);
1074 
1075   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
1076   {
1077     JavaValue result(T_VOID);
1078     JavaCalls::call_special(&result,
1079                             system_instance,
1080                             ik,
1081                             vmSymbols::object_initializer_name(),
1082                             vmSymbols::void_method_signature(),
1083                             CHECK_NH);
1084   }
1085   Universe::set_system_thread_group(system_instance());
1086 
1087   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
1088   {
1089     JavaValue result(T_VOID);
1090     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1091     JavaCalls::call_special(&result,
1092                             main_instance,
1093                             ik,
1094                             vmSymbols::object_initializer_name(),
1095                             vmSymbols::threadgroup_string_void_signature(),
1096                             system_instance,
1097                             string,
1098                             CHECK_NH);
1099   }
1100   return main_instance;
1101 }
1102 
1103 // Creates the initial Thread
1104 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1105                                  TRAPS) {
1106   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1107   InstanceKlass* ik = InstanceKlass::cast(k);
1108   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1109 
1110   java_lang_Thread::set_thread(thread_oop(), thread);
1111   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1112   thread->set_threadObj(thread_oop());
1113 
1114   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1115 
1116   JavaValue result(T_VOID);
1117   JavaCalls::call_special(&result, thread_oop,
1118                           ik,
1119                           vmSymbols::object_initializer_name(),
1120                           vmSymbols::threadgroup_string_void_signature(),
1121                           thread_group,
1122                           string,
1123                           CHECK_NULL);
1124   return thread_oop();
1125 }
1126 
1127 char java_runtime_name[128] = "";
1128 char java_runtime_version[128] = "";
1129 
1130 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1131 static const char* get_java_runtime_name(TRAPS) {
1132   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1133                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1134   fieldDescriptor fd;
1135   bool found = k != NULL &&
1136                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1137                                                         vmSymbols::string_signature(), &fd);
1138   if (found) {
1139     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1140     if (name_oop == NULL) {
1141       return NULL;
1142     }
1143     const char* name = java_lang_String::as_utf8_string(name_oop,
1144                                                         java_runtime_name,
1145                                                         sizeof(java_runtime_name));
1146     return name;
1147   } else {
1148     return NULL;
1149   }
1150 }
1151 
1152 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1153 static const char* get_java_runtime_version(TRAPS) {
1154   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1155                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1156   fieldDescriptor fd;
1157   bool found = k != NULL &&
1158                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1159                                                         vmSymbols::string_signature(), &fd);
1160   if (found) {
1161     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1162     if (name_oop == NULL) {
1163       return NULL;
1164     }
1165     const char* name = java_lang_String::as_utf8_string(name_oop,
1166                                                         java_runtime_version,
1167                                                         sizeof(java_runtime_version));
1168     return name;
1169   } else {
1170     return NULL;
1171   }
1172 }
1173 
1174 // General purpose hook into Java code, run once when the VM is initialized.
1175 // The Java library method itself may be changed independently from the VM.
1176 static void call_postVMInitHook(TRAPS) {
1177   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1178   if (klass != NULL) {
1179     JavaValue result(T_VOID);
1180     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1181                            vmSymbols::void_method_signature(),
1182                            CHECK);
1183   }
1184 }
1185 
1186 static void reset_vm_info_property(TRAPS) {
1187   // the vm info string
1188   ResourceMark rm(THREAD);
1189   const char *vm_info = VM_Version::vm_info_string();
1190 
1191   // java.lang.System class
1192   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1193 
1194   // setProperty arguments
1195   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1196   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1197 
1198   // return value
1199   JavaValue r(T_OBJECT);
1200 
1201   // public static String setProperty(String key, String value);
1202   JavaCalls::call_static(&r,
1203                          klass,
1204                          vmSymbols::setProperty_name(),
1205                          vmSymbols::string_string_string_signature(),
1206                          key_str,
1207                          value_str,
1208                          CHECK);
1209 }
1210 
1211 
1212 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1213                                     bool daemon, TRAPS) {
1214   assert(thread_group.not_null(), "thread group should be specified");
1215   assert(threadObj() == NULL, "should only create Java thread object once");
1216 
1217   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1218   InstanceKlass* ik = InstanceKlass::cast(k);
1219   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1220 
1221   java_lang_Thread::set_thread(thread_oop(), this);
1222   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1223   set_threadObj(thread_oop());
1224 
1225   JavaValue result(T_VOID);
1226   if (thread_name != NULL) {
1227     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1228     // Thread gets assigned specified name and null target
1229     JavaCalls::call_special(&result,
1230                             thread_oop,
1231                             ik,
1232                             vmSymbols::object_initializer_name(),
1233                             vmSymbols::threadgroup_string_void_signature(),
1234                             thread_group, // Argument 1
1235                             name,         // Argument 2
1236                             THREAD);
1237   } else {
1238     // Thread gets assigned name "Thread-nnn" and null target
1239     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1240     JavaCalls::call_special(&result,
1241                             thread_oop,
1242                             ik,
1243                             vmSymbols::object_initializer_name(),
1244                             vmSymbols::threadgroup_runnable_void_signature(),
1245                             thread_group, // Argument 1
1246                             Handle(),     // Argument 2
1247                             THREAD);
1248   }
1249 
1250 
1251   if (daemon) {
1252     java_lang_Thread::set_daemon(thread_oop());
1253   }
1254 
1255   if (HAS_PENDING_EXCEPTION) {
1256     return;
1257   }
1258 
1259   Klass* group =  SystemDictionary::ThreadGroup_klass();
1260   Handle threadObj(THREAD, this->threadObj());
1261 
1262   JavaCalls::call_special(&result,
1263                           thread_group,
1264                           group,
1265                           vmSymbols::add_method_name(),
1266                           vmSymbols::thread_void_signature(),
1267                           threadObj,          // Arg 1
1268                           THREAD);
1269 }
1270 
1271 // NamedThread --  non-JavaThread subclasses with multiple
1272 // uniquely named instances should derive from this.
1273 NamedThread::NamedThread() : Thread() {
1274   _name = NULL;
1275   _processed_thread = NULL;
1276   _gc_id = GCId::undefined();
1277 }
1278 
1279 NamedThread::~NamedThread() {
1280   if (_name != NULL) {
1281     FREE_C_HEAP_ARRAY(char, _name);
1282     _name = NULL;
1283   }
1284 }
1285 
1286 void NamedThread::set_name(const char* format, ...) {
1287   guarantee(_name == NULL, "Only get to set name once.");
1288   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1289   guarantee(_name != NULL, "alloc failure");
1290   va_list ap;
1291   va_start(ap, format);
1292   jio_vsnprintf(_name, max_name_len, format, ap);
1293   va_end(ap);
1294 }
1295 
1296 void NamedThread::initialize_named_thread() {
1297   set_native_thread_name(name());
1298 }
1299 
1300 void NamedThread::print_on(outputStream* st) const {
1301   st->print("\"%s\" ", name());
1302   Thread::print_on(st);
1303   st->cr();
1304 }
1305 
1306 
1307 // ======= WatcherThread ========
1308 
1309 // The watcher thread exists to simulate timer interrupts.  It should
1310 // be replaced by an abstraction over whatever native support for
1311 // timer interrupts exists on the platform.
1312 
1313 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1314 bool WatcherThread::_startable = false;
1315 volatile bool  WatcherThread::_should_terminate = false;
1316 
1317 WatcherThread::WatcherThread() : Thread() {
1318   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1319   if (os::create_thread(this, os::watcher_thread)) {
1320     _watcher_thread = this;
1321 
1322     // Set the watcher thread to the highest OS priority which should not be
1323     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1324     // is created. The only normal thread using this priority is the reference
1325     // handler thread, which runs for very short intervals only.
1326     // If the VMThread's priority is not lower than the WatcherThread profiling
1327     // will be inaccurate.
1328     os::set_priority(this, MaxPriority);
1329     if (!DisableStartThread) {
1330       os::start_thread(this);
1331     }
1332   }
1333 }
1334 
1335 int WatcherThread::sleep() const {
1336   // The WatcherThread does not participate in the safepoint protocol
1337   // for the PeriodicTask_lock because it is not a JavaThread.
1338   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1339 
1340   if (_should_terminate) {
1341     // check for termination before we do any housekeeping or wait
1342     return 0;  // we did not sleep.
1343   }
1344 
1345   // remaining will be zero if there are no tasks,
1346   // causing the WatcherThread to sleep until a task is
1347   // enrolled
1348   int remaining = PeriodicTask::time_to_wait();
1349   int time_slept = 0;
1350 
1351   // we expect this to timeout - we only ever get unparked when
1352   // we should terminate or when a new task has been enrolled
1353   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1354 
1355   jlong time_before_loop = os::javaTimeNanos();
1356 
1357   while (true) {
1358     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1359                                             remaining);
1360     jlong now = os::javaTimeNanos();
1361 
1362     if (remaining == 0) {
1363       // if we didn't have any tasks we could have waited for a long time
1364       // consider the time_slept zero and reset time_before_loop
1365       time_slept = 0;
1366       time_before_loop = now;
1367     } else {
1368       // need to recalculate since we might have new tasks in _tasks
1369       time_slept = (int) ((now - time_before_loop) / 1000000);
1370     }
1371 
1372     // Change to task list or spurious wakeup of some kind
1373     if (timedout || _should_terminate) {
1374       break;
1375     }
1376 
1377     remaining = PeriodicTask::time_to_wait();
1378     if (remaining == 0) {
1379       // Last task was just disenrolled so loop around and wait until
1380       // another task gets enrolled
1381       continue;
1382     }
1383 
1384     remaining -= time_slept;
1385     if (remaining <= 0) {
1386       break;
1387     }
1388   }
1389 
1390   return time_slept;
1391 }
1392 
1393 void WatcherThread::run() {
1394   assert(this == watcher_thread(), "just checking");
1395 
1396   this->record_stack_base_and_size();
1397   this->set_native_thread_name(this->name());
1398   this->set_active_handles(JNIHandleBlock::allocate_block());
1399   while (true) {
1400     assert(watcher_thread() == Thread::current(), "thread consistency check");
1401     assert(watcher_thread() == this, "thread consistency check");
1402 
1403     // Calculate how long it'll be until the next PeriodicTask work
1404     // should be done, and sleep that amount of time.
1405     int time_waited = sleep();
1406 
1407     if (VMError::is_error_reported()) {
1408       // A fatal error has happened, the error handler(VMError::report_and_die)
1409       // should abort JVM after creating an error log file. However in some
1410       // rare cases, the error handler itself might deadlock. Here periodically
1411       // check for error reporting timeouts, and if it happens, just proceed to
1412       // abort the VM.
1413 
1414       // This code is in WatcherThread because WatcherThread wakes up
1415       // periodically so the fatal error handler doesn't need to do anything;
1416       // also because the WatcherThread is less likely to crash than other
1417       // threads.
1418 
1419       for (;;) {
1420         // Note: we use naked sleep in this loop because we want to avoid using
1421         // any kind of VM infrastructure which may be broken at this point.
1422         if (VMError::check_timeout()) {
1423           // We hit error reporting timeout. Error reporting was interrupted and
1424           // will be wrapping things up now (closing files etc). Give it some more
1425           // time, then quit the VM.
1426           os::naked_short_sleep(200);
1427           // Print a message to stderr.
1428           fdStream err(defaultStream::output_fd());
1429           err.print_raw_cr("# [ timer expired, abort... ]");
1430           // skip atexit/vm_exit/vm_abort hooks
1431           os::die();
1432         }
1433 
1434         // Wait a second, then recheck for timeout.
1435         os::naked_short_sleep(999);
1436       }
1437     }
1438 
1439     if (_should_terminate) {
1440       // check for termination before posting the next tick
1441       break;
1442     }
1443 
1444     PeriodicTask::real_time_tick(time_waited);
1445   }
1446 
1447   // Signal that it is terminated
1448   {
1449     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1450     _watcher_thread = NULL;
1451     Terminator_lock->notify();
1452   }
1453 }
1454 
1455 void WatcherThread::start() {
1456   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1457 
1458   if (watcher_thread() == NULL && _startable) {
1459     _should_terminate = false;
1460     // Create the single instance of WatcherThread
1461     new WatcherThread();
1462   }
1463 }
1464 
1465 void WatcherThread::make_startable() {
1466   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1467   _startable = true;
1468 }
1469 
1470 void WatcherThread::stop() {
1471   {
1472     // Follow normal safepoint aware lock enter protocol since the
1473     // WatcherThread is stopped by another JavaThread.
1474     MutexLocker ml(PeriodicTask_lock);
1475     _should_terminate = true;
1476 
1477     WatcherThread* watcher = watcher_thread();
1478     if (watcher != NULL) {
1479       // unpark the WatcherThread so it can see that it should terminate
1480       watcher->unpark();
1481     }
1482   }
1483 
1484   MutexLocker mu(Terminator_lock);
1485 
1486   while (watcher_thread() != NULL) {
1487     // This wait should make safepoint checks, wait without a timeout,
1488     // and wait as a suspend-equivalent condition.
1489     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1490                           Mutex::_as_suspend_equivalent_flag);
1491   }
1492 }
1493 
1494 void WatcherThread::unpark() {
1495   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1496   PeriodicTask_lock->notify();
1497 }
1498 
1499 void WatcherThread::print_on(outputStream* st) const {
1500   st->print("\"%s\" ", name());
1501   Thread::print_on(st);
1502   st->cr();
1503 }
1504 
1505 // ======= JavaThread ========
1506 
1507 #if INCLUDE_JVMCI
1508 
1509 jlong* JavaThread::_jvmci_old_thread_counters;
1510 
1511 bool jvmci_counters_include(JavaThread* thread) {
1512   oop threadObj = thread->threadObj();
1513   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1514 }
1515 
1516 void JavaThread::collect_counters(typeArrayOop array) {
1517   if (JVMCICounterSize > 0) {
1518     MutexLocker tl(Threads_lock);
1519     JavaThreadIteratorWithHandle jtiwh;
1520     for (int i = 0; i < array->length(); i++) {
1521       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1522     }
1523     for (; JavaThread *tp = jtiwh.next(); ) {
1524       if (jvmci_counters_include(tp)) {
1525         for (int i = 0; i < array->length(); i++) {
1526           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1527         }
1528       }
1529     }
1530   }
1531 }
1532 
1533 #endif // INCLUDE_JVMCI
1534 
1535 // A JavaThread is a normal Java thread
1536 
1537 void JavaThread::initialize() {
1538   // Initialize fields
1539 
1540   set_saved_exception_pc(NULL);
1541   set_threadObj(NULL);
1542   _anchor.clear();
1543   set_entry_point(NULL);
1544   set_jni_functions(jni_functions());
1545   set_callee_target(NULL);
1546   set_vm_result(NULL);
1547   set_vm_result_2(NULL);
1548   set_vframe_array_head(NULL);
1549   set_vframe_array_last(NULL);
1550   set_deferred_locals(NULL);
1551   set_deopt_mark(NULL);
1552   set_deopt_compiled_method(NULL);
1553   clear_must_deopt_id();
1554   set_monitor_chunks(NULL);
1555   set_next(NULL);
1556   _on_thread_list = false;
1557   set_thread_state(_thread_new);
1558   _terminated = _not_terminated;
1559   _privileged_stack_top = NULL;
1560   _array_for_gc = NULL;
1561   _suspend_equivalent = false;
1562   _in_deopt_handler = 0;
1563   _doing_unsafe_access = false;
1564   _stack_guard_state = stack_guard_unused;
1565 #if INCLUDE_JVMCI
1566   _pending_monitorenter = false;
1567   _pending_deoptimization = -1;
1568   _pending_failed_speculation = NULL;
1569   _pending_transfer_to_interpreter = false;
1570   _adjusting_comp_level = false;
1571   _jvmci._alternate_call_target = NULL;
1572   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1573   if (JVMCICounterSize > 0) {
1574     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1575     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1576   } else {
1577     _jvmci_counters = NULL;
1578   }
1579 #endif // INCLUDE_JVMCI
1580   _reserved_stack_activation = NULL;  // stack base not known yet
1581   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1582   _exception_pc  = 0;
1583   _exception_handler_pc = 0;
1584   _is_method_handle_return = 0;
1585   _jvmti_thread_state= NULL;
1586   _should_post_on_exceptions_flag = JNI_FALSE;
1587   _jvmti_get_loaded_classes_closure = NULL;
1588   _interp_only_mode    = 0;
1589   _special_runtime_exit_condition = _no_async_condition;
1590   _pending_async_exception = NULL;
1591   _thread_stat = NULL;
1592   _thread_stat = new ThreadStatistics();
1593   _blocked_on_compilation = false;
1594   _jni_active_critical = 0;
1595   _pending_jni_exception_check_fn = NULL;
1596   _do_not_unlock_if_synchronized = false;
1597   _cached_monitor_info = NULL;
1598   _parker = Parker::Allocate(this);
1599 
1600 #ifndef PRODUCT
1601   _jmp_ring_index = 0;
1602   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1603     record_jump(NULL, NULL, NULL, 0);
1604   }
1605 #endif // PRODUCT
1606 
1607   // Setup safepoint state info for this thread
1608   ThreadSafepointState::create(this);
1609 
1610   debug_only(_java_call_counter = 0);
1611 
1612   // JVMTI PopFrame support
1613   _popframe_condition = popframe_inactive;
1614   _popframe_preserved_args = NULL;
1615   _popframe_preserved_args_size = 0;
1616   _frames_to_pop_failed_realloc = 0;
1617 
1618   if (SafepointMechanism::uses_thread_local_poll()) {
1619     SafepointMechanism::initialize_header(this);
1620   }
1621 
1622   pd_initialize();
1623 }
1624 
1625 #if INCLUDE_ALL_GCS
1626 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1627 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1628 char JavaThread::_gc_state_global = 0;
1629 #endif // INCLUDE_ALL_GCS
1630 
1631 JavaThread::JavaThread(bool is_attaching_via_jni) :
1632                        Thread()
1633 #if INCLUDE_ALL_GCS
1634                        , _satb_mark_queue(&_satb_mark_queue_set),
1635                        _dirty_card_queue(&_dirty_card_queue_set),
1636                        _gc_state(_gc_state_global)
1637 #endif // INCLUDE_ALL_GCS
1638 {
1639   initialize();
1640   if (is_attaching_via_jni) {
1641     _jni_attach_state = _attaching_via_jni;
1642   } else {
1643     _jni_attach_state = _not_attaching_via_jni;
1644   }
1645   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1646 }
1647 
1648 bool JavaThread::reguard_stack(address cur_sp) {
1649   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1650       && _stack_guard_state != stack_guard_reserved_disabled) {
1651     return true; // Stack already guarded or guard pages not needed.
1652   }
1653 
1654   if (register_stack_overflow()) {
1655     // For those architectures which have separate register and
1656     // memory stacks, we must check the register stack to see if
1657     // it has overflowed.
1658     return false;
1659   }
1660 
1661   // Java code never executes within the yellow zone: the latter is only
1662   // there to provoke an exception during stack banging.  If java code
1663   // is executing there, either StackShadowPages should be larger, or
1664   // some exception code in c1, c2 or the interpreter isn't unwinding
1665   // when it should.
1666   guarantee(cur_sp > stack_reserved_zone_base(),
1667             "not enough space to reguard - increase StackShadowPages");
1668   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1669     enable_stack_yellow_reserved_zone();
1670     if (reserved_stack_activation() != stack_base()) {
1671       set_reserved_stack_activation(stack_base());
1672     }
1673   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1674     set_reserved_stack_activation(stack_base());
1675     enable_stack_reserved_zone();
1676   }
1677   return true;
1678 }
1679 
1680 bool JavaThread::reguard_stack(void) {
1681   return reguard_stack(os::current_stack_pointer());
1682 }
1683 
1684 
1685 void JavaThread::block_if_vm_exited() {
1686   if (_terminated == _vm_exited) {
1687     // _vm_exited is set at safepoint, and Threads_lock is never released
1688     // we will block here forever
1689     Threads_lock->lock_without_safepoint_check();
1690     ShouldNotReachHere();
1691   }
1692 }
1693 
1694 
1695 // Remove this ifdef when C1 is ported to the compiler interface.
1696 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1697 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1698 
1699 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1700                        Thread()
1701 #if INCLUDE_ALL_GCS
1702                        , _satb_mark_queue(&_satb_mark_queue_set),
1703                        _dirty_card_queue(&_dirty_card_queue_set),
1704                        _gc_state(_gc_state_global)
1705 #endif // INCLUDE_ALL_GCS
1706 {
1707   initialize();
1708   _jni_attach_state = _not_attaching_via_jni;
1709   set_entry_point(entry_point);
1710   // Create the native thread itself.
1711   // %note runtime_23
1712   os::ThreadType thr_type = os::java_thread;
1713   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1714                                                      os::java_thread;
1715   os::create_thread(this, thr_type, stack_sz);
1716   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1717   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1718   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1719   // the exception consists of creating the exception object & initializing it, initialization
1720   // will leave the VM via a JavaCall and then all locks must be unlocked).
1721   //
1722   // The thread is still suspended when we reach here. Thread must be explicit started
1723   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1724   // by calling Threads:add. The reason why this is not done here, is because the thread
1725   // object must be fully initialized (take a look at JVM_Start)
1726 }
1727 
1728 JavaThread::~JavaThread() {
1729 
1730   // JSR166 -- return the parker to the free list
1731   Parker::Release(_parker);
1732   _parker = NULL;
1733 
1734   // Free any remaining  previous UnrollBlock
1735   vframeArray* old_array = vframe_array_last();
1736 
1737   if (old_array != NULL) {
1738     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1739     old_array->set_unroll_block(NULL);
1740     delete old_info;
1741     delete old_array;
1742   }
1743 
1744   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1745   if (deferred != NULL) {
1746     // This can only happen if thread is destroyed before deoptimization occurs.
1747     assert(deferred->length() != 0, "empty array!");
1748     do {
1749       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1750       deferred->remove_at(0);
1751       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1752       delete dlv;
1753     } while (deferred->length() != 0);
1754     delete deferred;
1755   }
1756 
1757   // All Java related clean up happens in exit
1758   ThreadSafepointState::destroy(this);
1759   if (_thread_stat != NULL) delete _thread_stat;
1760 
1761 #if INCLUDE_JVMCI
1762   if (JVMCICounterSize > 0) {
1763     if (jvmci_counters_include(this)) {
1764       for (int i = 0; i < JVMCICounterSize; i++) {
1765         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1766       }
1767     }
1768     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1769   }
1770 #endif // INCLUDE_JVMCI
1771 }
1772 
1773 
1774 // The first routine called by a new Java thread
1775 void JavaThread::run() {
1776   // initialize thread-local alloc buffer related fields
1777   this->initialize_tlab();
1778 
1779   // used to test validity of stack trace backs
1780   this->record_base_of_stack_pointer();
1781 
1782   // Record real stack base and size.
1783   this->record_stack_base_and_size();
1784 
1785   this->create_stack_guard_pages();
1786 
1787   this->cache_global_variables();
1788 
1789   // Thread is now sufficient initialized to be handled by the safepoint code as being
1790   // in the VM. Change thread state from _thread_new to _thread_in_vm
1791   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1792 
1793   assert(JavaThread::current() == this, "sanity check");
1794   assert(!Thread::current()->owns_locks(), "sanity check");
1795 
1796   DTRACE_THREAD_PROBE(start, this);
1797 
1798   // This operation might block. We call that after all safepoint checks for a new thread has
1799   // been completed.
1800   this->set_active_handles(JNIHandleBlock::allocate_block());
1801 
1802   if (JvmtiExport::should_post_thread_life()) {
1803     JvmtiExport::post_thread_start(this);
1804   }
1805 
1806   EventThreadStart event;
1807   if (event.should_commit()) {
1808     event.set_thread(THREAD_TRACE_ID(this));
1809     event.commit();
1810   }
1811 
1812   // We call another function to do the rest so we are sure that the stack addresses used
1813   // from there will be lower than the stack base just computed
1814   thread_main_inner();
1815 
1816   // Note, thread is no longer valid at this point!
1817 }
1818 
1819 
1820 void JavaThread::thread_main_inner() {
1821   assert(JavaThread::current() == this, "sanity check");
1822   assert(this->threadObj() != NULL, "just checking");
1823 
1824   // Execute thread entry point unless this thread has a pending exception
1825   // or has been stopped before starting.
1826   // Note: Due to JVM_StopThread we can have pending exceptions already!
1827   if (!this->has_pending_exception() &&
1828       !java_lang_Thread::is_stillborn(this->threadObj())) {
1829     {
1830       ResourceMark rm(this);
1831       this->set_native_thread_name(this->get_thread_name());
1832     }
1833     HandleMark hm(this);
1834     this->entry_point()(this, this);
1835   }
1836 
1837   DTRACE_THREAD_PROBE(stop, this);
1838 
1839   this->exit(false);
1840   this->smr_delete();
1841 }
1842 
1843 
1844 static void ensure_join(JavaThread* thread) {
1845   // We do not need to grab the Threads_lock, since we are operating on ourself.
1846   Handle threadObj(thread, thread->threadObj());
1847   assert(threadObj.not_null(), "java thread object must exist");
1848   ObjectLocker lock(threadObj, thread);
1849   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1850   thread->clear_pending_exception();
1851   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1852   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1853   // Clear the native thread instance - this makes isAlive return false and allows the join()
1854   // to complete once we've done the notify_all below
1855   java_lang_Thread::set_thread(threadObj(), NULL);
1856   lock.notify_all(thread);
1857   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1858   thread->clear_pending_exception();
1859 }
1860 
1861 
1862 // For any new cleanup additions, please check to see if they need to be applied to
1863 // cleanup_failed_attach_current_thread as well.
1864 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1865   assert(this == JavaThread::current(), "thread consistency check");
1866 
1867   elapsedTimer _timer_exit_phase1;
1868   elapsedTimer _timer_exit_phase2;
1869   elapsedTimer _timer_exit_phase3;
1870   elapsedTimer _timer_exit_phase4;
1871 
1872   if (log_is_enabled(Debug, os, thread, timer)) {
1873     _timer_exit_phase1.start();
1874   }
1875 
1876   HandleMark hm(this);
1877   Handle uncaught_exception(this, this->pending_exception());
1878   this->clear_pending_exception();
1879   Handle threadObj(this, this->threadObj());
1880   assert(threadObj.not_null(), "Java thread object should be created");
1881 
1882   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1883   {
1884     EXCEPTION_MARK;
1885 
1886     CLEAR_PENDING_EXCEPTION;
1887   }
1888   if (!destroy_vm) {
1889     if (uncaught_exception.not_null()) {
1890       EXCEPTION_MARK;
1891       // Call method Thread.dispatchUncaughtException().
1892       Klass* thread_klass = SystemDictionary::Thread_klass();
1893       JavaValue result(T_VOID);
1894       JavaCalls::call_virtual(&result,
1895                               threadObj, thread_klass,
1896                               vmSymbols::dispatchUncaughtException_name(),
1897                               vmSymbols::throwable_void_signature(),
1898                               uncaught_exception,
1899                               THREAD);
1900       if (HAS_PENDING_EXCEPTION) {
1901         ResourceMark rm(this);
1902         jio_fprintf(defaultStream::error_stream(),
1903                     "\nException: %s thrown from the UncaughtExceptionHandler"
1904                     " in thread \"%s\"\n",
1905                     pending_exception()->klass()->external_name(),
1906                     get_thread_name());
1907         CLEAR_PENDING_EXCEPTION;
1908       }
1909     }
1910 
1911     // Called before the java thread exit since we want to read info
1912     // from java_lang_Thread object
1913     EventThreadEnd event;
1914     if (event.should_commit()) {
1915       event.set_thread(THREAD_TRACE_ID(this));
1916       event.commit();
1917     }
1918 
1919     // Call after last event on thread
1920     EVENT_THREAD_EXIT(this);
1921 
1922     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1923     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1924     // is deprecated anyhow.
1925     if (!is_Compiler_thread()) {
1926       int count = 3;
1927       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1928         EXCEPTION_MARK;
1929         JavaValue result(T_VOID);
1930         Klass* thread_klass = SystemDictionary::Thread_klass();
1931         JavaCalls::call_virtual(&result,
1932                                 threadObj, thread_klass,
1933                                 vmSymbols::exit_method_name(),
1934                                 vmSymbols::void_method_signature(),
1935                                 THREAD);
1936         CLEAR_PENDING_EXCEPTION;
1937       }
1938     }
1939     // notify JVMTI
1940     if (JvmtiExport::should_post_thread_life()) {
1941       JvmtiExport::post_thread_end(this);
1942     }
1943 
1944     // We have notified the agents that we are exiting, before we go on,
1945     // we must check for a pending external suspend request and honor it
1946     // in order to not surprise the thread that made the suspend request.
1947     while (true) {
1948       {
1949         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1950         if (!is_external_suspend()) {
1951           set_terminated(_thread_exiting);
1952           ThreadService::current_thread_exiting(this);
1953           break;
1954         }
1955         // Implied else:
1956         // Things get a little tricky here. We have a pending external
1957         // suspend request, but we are holding the SR_lock so we
1958         // can't just self-suspend. So we temporarily drop the lock
1959         // and then self-suspend.
1960       }
1961 
1962       ThreadBlockInVM tbivm(this);
1963       java_suspend_self();
1964 
1965       // We're done with this suspend request, but we have to loop around
1966       // and check again. Eventually we will get SR_lock without a pending
1967       // external suspend request and will be able to mark ourselves as
1968       // exiting.
1969     }
1970     // no more external suspends are allowed at this point
1971   } else {
1972     // before_exit() has already posted JVMTI THREAD_END events
1973   }
1974 
1975   if (log_is_enabled(Debug, os, thread, timer)) {
1976     _timer_exit_phase1.stop();
1977     _timer_exit_phase2.start();
1978   }
1979   // Notify waiters on thread object. This has to be done after exit() is called
1980   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1981   // group should have the destroyed bit set before waiters are notified).
1982   ensure_join(this);
1983   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1984 
1985   if (log_is_enabled(Debug, os, thread, timer)) {
1986     _timer_exit_phase2.stop();
1987     _timer_exit_phase3.start();
1988   }
1989   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1990   // held by this thread must be released. The spec does not distinguish
1991   // between JNI-acquired and regular Java monitors. We can only see
1992   // regular Java monitors here if monitor enter-exit matching is broken.
1993   //
1994   // Optionally release any monitors for regular JavaThread exits. This
1995   // is provided as a work around for any bugs in monitor enter-exit
1996   // matching. This can be expensive so it is not enabled by default.
1997   //
1998   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1999   // ObjectSynchronizer::release_monitors_owned_by_thread().
2000   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
2001     // Sanity check even though JNI DetachCurrentThread() would have
2002     // returned JNI_ERR if there was a Java frame. JavaThread exit
2003     // should be done executing Java code by the time we get here.
2004     assert(!this->has_last_Java_frame(),
2005            "should not have a Java frame when detaching or exiting");
2006     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2007     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2008   }
2009 
2010   // These things needs to be done while we are still a Java Thread. Make sure that thread
2011   // is in a consistent state, in case GC happens
2012   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
2013 
2014   if (active_handles() != NULL) {
2015     JNIHandleBlock* block = active_handles();
2016     set_active_handles(NULL);
2017     JNIHandleBlock::release_block(block);
2018   }
2019 
2020   if (free_handle_block() != NULL) {
2021     JNIHandleBlock* block = free_handle_block();
2022     set_free_handle_block(NULL);
2023     JNIHandleBlock::release_block(block);
2024   }
2025 
2026   // These have to be removed while this is still a valid thread.
2027   remove_stack_guard_pages();
2028 
2029   if (UseTLAB) {
2030     tlab().make_parsable(true);  // retire TLAB
2031   }
2032 
2033   if (JvmtiEnv::environments_might_exist()) {
2034     JvmtiExport::cleanup_thread(this);
2035   }
2036 
2037   // We must flush any deferred card marks before removing a thread from
2038   // the list of active threads.
2039   Universe::heap()->flush_deferred_store_barrier(this);
2040   assert(deferred_card_mark().is_empty(), "Should have been flushed");
2041 
2042 #if INCLUDE_ALL_GCS
2043   // We must flush the G1-related buffers before removing a thread
2044   // from the list of active threads. We must do this after any deferred
2045   // card marks have been flushed (above) so that any entries that are
2046   // added to the thread's dirty card queue as a result are not lost.
2047   if (UseG1GC || (UseShenandoahGC && (ShenandoahSATBBarrier || ShenandoahKeepAliveBarrier || ShenandoahStoreValEnqueueBarrier))) {
2048     flush_barrier_queues();
2049   }
2050   if (UseShenandoahGC && gclab() != NULL) {
2051     ShenandoahHeap::heap()->finalize_mutator_gclab(this);
2052   }
2053 #endif // INCLUDE_ALL_GCS
2054 
2055   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2056     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2057     os::current_thread_id());
2058 
2059   if (log_is_enabled(Debug, os, thread, timer)) {
2060     _timer_exit_phase3.stop();
2061     _timer_exit_phase4.start();
2062   }
2063   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2064   Threads::remove(this);
2065 
2066   if (log_is_enabled(Debug, os, thread, timer)) {
2067     _timer_exit_phase4.stop();
2068     ResourceMark rm(this);
2069     log_debug(os, thread, timer)("name='%s'"
2070                                  ", exit-phase1=" JLONG_FORMAT
2071                                  ", exit-phase2=" JLONG_FORMAT
2072                                  ", exit-phase3=" JLONG_FORMAT
2073                                  ", exit-phase4=" JLONG_FORMAT,
2074                                  get_thread_name(),
2075                                  _timer_exit_phase1.milliseconds(),
2076                                  _timer_exit_phase2.milliseconds(),
2077                                  _timer_exit_phase3.milliseconds(),
2078                                  _timer_exit_phase4.milliseconds());
2079   }
2080 }
2081 
2082 #if INCLUDE_ALL_GCS
2083 // Flush G1-related queues.
2084 void JavaThread::flush_barrier_queues() {
2085   satb_mark_queue().flush();
2086   dirty_card_queue().flush();
2087 }
2088 
2089 void JavaThread::initialize_queues() {
2090   assert(!SafepointSynchronize::is_at_safepoint(),
2091          "we should not be at a safepoint");
2092 
2093   SATBMarkQueue& satb_queue = satb_mark_queue();
2094   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
2095   // The SATB queue should have been constructed with its active
2096   // field set to false.
2097   assert(!satb_queue.is_active(), "SATB queue should not be active");
2098   assert(satb_queue.is_empty(), "SATB queue should be empty");
2099   // If we are creating the thread during a marking cycle, we should
2100   // set the active field of the SATB queue to true.
2101   if (satb_queue_set.is_active()) {
2102     satb_queue.set_active(true);
2103   }
2104 
2105   DirtyCardQueue& dirty_queue = dirty_card_queue();
2106   // The dirty card queue should have been constructed with its
2107   // active field set to true.
2108   assert(dirty_queue.is_active(), "dirty card queue should be active");
2109 
2110   _gc_state = _gc_state_global;
2111 
2112   if (UseShenandoahGC) {
2113     ShenandoahHeap::heap()->initialize_gclab(this);
2114   }
2115 }
2116 #endif // INCLUDE_ALL_GCS
2117 
2118 void JavaThread::cleanup_failed_attach_current_thread() {
2119   if (active_handles() != NULL) {
2120     JNIHandleBlock* block = active_handles();
2121     set_active_handles(NULL);
2122     JNIHandleBlock::release_block(block);
2123   }
2124 
2125   if (free_handle_block() != NULL) {
2126     JNIHandleBlock* block = free_handle_block();
2127     set_free_handle_block(NULL);
2128     JNIHandleBlock::release_block(block);
2129   }
2130 
2131   // These have to be removed while this is still a valid thread.
2132   remove_stack_guard_pages();
2133 
2134   if (UseTLAB) {
2135     tlab().make_parsable(true);  // retire TLAB, if any
2136   }
2137 
2138 #if INCLUDE_ALL_GCS
2139   if (UseG1GC || (UseShenandoahGC && (ShenandoahSATBBarrier || ShenandoahKeepAliveBarrier || ShenandoahStoreValEnqueueBarrier))) {
2140     flush_barrier_queues();
2141   }
2142   if (UseShenandoahGC && gclab() != NULL) {
2143     gclab()->flush_and_retire_stats(ShenandoahHeap::heap()->mutator_gclab_stats());
2144   }
2145 #endif // INCLUDE_ALL_GCS
2146 
2147   Threads::remove(this);
2148   this->smr_delete();
2149 }
2150 
2151 
2152 
2153 
2154 JavaThread* JavaThread::active() {
2155   Thread* thread = Thread::current();
2156   if (thread->is_Java_thread()) {
2157     return (JavaThread*) thread;
2158   } else {
2159     assert(thread->is_VM_thread(), "this must be a vm thread");
2160     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2161     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2162     assert(ret->is_Java_thread(), "must be a Java thread");
2163     return ret;
2164   }
2165 }
2166 
2167 bool JavaThread::is_lock_owned(address adr) const {
2168   if (Thread::is_lock_owned(adr)) return true;
2169 
2170   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2171     if (chunk->contains(adr)) return true;
2172   }
2173 
2174   return false;
2175 }
2176 
2177 
2178 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2179   chunk->set_next(monitor_chunks());
2180   set_monitor_chunks(chunk);
2181 }
2182 
2183 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2184   guarantee(monitor_chunks() != NULL, "must be non empty");
2185   if (monitor_chunks() == chunk) {
2186     set_monitor_chunks(chunk->next());
2187   } else {
2188     MonitorChunk* prev = monitor_chunks();
2189     while (prev->next() != chunk) prev = prev->next();
2190     prev->set_next(chunk->next());
2191   }
2192 }
2193 
2194 // JVM support.
2195 
2196 // Note: this function shouldn't block if it's called in
2197 // _thread_in_native_trans state (such as from
2198 // check_special_condition_for_native_trans()).
2199 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2200 
2201   if (has_last_Java_frame() && has_async_condition()) {
2202     // If we are at a polling page safepoint (not a poll return)
2203     // then we must defer async exception because live registers
2204     // will be clobbered by the exception path. Poll return is
2205     // ok because the call we a returning from already collides
2206     // with exception handling registers and so there is no issue.
2207     // (The exception handling path kills call result registers but
2208     //  this is ok since the exception kills the result anyway).
2209 
2210     if (is_at_poll_safepoint()) {
2211       // if the code we are returning to has deoptimized we must defer
2212       // the exception otherwise live registers get clobbered on the
2213       // exception path before deoptimization is able to retrieve them.
2214       //
2215       RegisterMap map(this, false);
2216       frame caller_fr = last_frame().sender(&map);
2217       assert(caller_fr.is_compiled_frame(), "what?");
2218       if (caller_fr.is_deoptimized_frame()) {
2219         log_info(exceptions)("deferred async exception at compiled safepoint");
2220         return;
2221       }
2222     }
2223   }
2224 
2225   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2226   if (condition == _no_async_condition) {
2227     // Conditions have changed since has_special_runtime_exit_condition()
2228     // was called:
2229     // - if we were here only because of an external suspend request,
2230     //   then that was taken care of above (or cancelled) so we are done
2231     // - if we were here because of another async request, then it has
2232     //   been cleared between the has_special_runtime_exit_condition()
2233     //   and now so again we are done
2234     return;
2235   }
2236 
2237   // Check for pending async. exception
2238   if (_pending_async_exception != NULL) {
2239     // Only overwrite an already pending exception, if it is not a threadDeath.
2240     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2241 
2242       // We cannot call Exceptions::_throw(...) here because we cannot block
2243       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2244 
2245       LogTarget(Info, exceptions) lt;
2246       if (lt.is_enabled()) {
2247         ResourceMark rm;
2248         LogStream ls(lt);
2249         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2250           if (has_last_Java_frame()) {
2251             frame f = last_frame();
2252            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2253           }
2254         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2255       }
2256       _pending_async_exception = NULL;
2257       clear_has_async_exception();
2258     }
2259   }
2260 
2261   if (check_unsafe_error &&
2262       condition == _async_unsafe_access_error && !has_pending_exception()) {
2263     condition = _no_async_condition;  // done
2264     switch (thread_state()) {
2265     case _thread_in_vm: {
2266       JavaThread* THREAD = this;
2267       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2268     }
2269     case _thread_in_native: {
2270       ThreadInVMfromNative tiv(this);
2271       JavaThread* THREAD = this;
2272       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2273     }
2274     case _thread_in_Java: {
2275       ThreadInVMfromJava tiv(this);
2276       JavaThread* THREAD = this;
2277       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2278     }
2279     default:
2280       ShouldNotReachHere();
2281     }
2282   }
2283 
2284   assert(condition == _no_async_condition || has_pending_exception() ||
2285          (!check_unsafe_error && condition == _async_unsafe_access_error),
2286          "must have handled the async condition, if no exception");
2287 }
2288 
2289 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2290   //
2291   // Check for pending external suspend. Internal suspend requests do
2292   // not use handle_special_runtime_exit_condition().
2293   // If JNIEnv proxies are allowed, don't self-suspend if the target
2294   // thread is not the current thread. In older versions of jdbx, jdbx
2295   // threads could call into the VM with another thread's JNIEnv so we
2296   // can be here operating on behalf of a suspended thread (4432884).
2297   bool do_self_suspend = is_external_suspend_with_lock();
2298   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2299     //
2300     // Because thread is external suspended the safepoint code will count
2301     // thread as at a safepoint. This can be odd because we can be here
2302     // as _thread_in_Java which would normally transition to _thread_blocked
2303     // at a safepoint. We would like to mark the thread as _thread_blocked
2304     // before calling java_suspend_self like all other callers of it but
2305     // we must then observe proper safepoint protocol. (We can't leave
2306     // _thread_blocked with a safepoint in progress). However we can be
2307     // here as _thread_in_native_trans so we can't use a normal transition
2308     // constructor/destructor pair because they assert on that type of
2309     // transition. We could do something like:
2310     //
2311     // JavaThreadState state = thread_state();
2312     // set_thread_state(_thread_in_vm);
2313     // {
2314     //   ThreadBlockInVM tbivm(this);
2315     //   java_suspend_self()
2316     // }
2317     // set_thread_state(_thread_in_vm_trans);
2318     // if (safepoint) block;
2319     // set_thread_state(state);
2320     //
2321     // but that is pretty messy. Instead we just go with the way the
2322     // code has worked before and note that this is the only path to
2323     // java_suspend_self that doesn't put the thread in _thread_blocked
2324     // mode.
2325 
2326     frame_anchor()->make_walkable(this);
2327     java_suspend_self();
2328 
2329     // We might be here for reasons in addition to the self-suspend request
2330     // so check for other async requests.
2331   }
2332 
2333   if (check_asyncs) {
2334     check_and_handle_async_exceptions();
2335   }
2336 #if INCLUDE_TRACE
2337   if (is_trace_suspend()) {
2338     TRACE_SUSPEND_THREAD(this);
2339   }
2340 #endif
2341 }
2342 
2343 void JavaThread::send_thread_stop(oop java_throwable)  {
2344   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2345   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2346   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2347 
2348   // Do not throw asynchronous exceptions against the compiler thread
2349   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2350   if (!can_call_java()) return;
2351 
2352   {
2353     // Actually throw the Throwable against the target Thread - however
2354     // only if there is no thread death exception installed already.
2355     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2356       // If the topmost frame is a runtime stub, then we are calling into
2357       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2358       // must deoptimize the caller before continuing, as the compiled  exception handler table
2359       // may not be valid
2360       if (has_last_Java_frame()) {
2361         frame f = last_frame();
2362         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2363           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2364           RegisterMap reg_map(this, UseBiasedLocking);
2365           frame compiled_frame = f.sender(&reg_map);
2366           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2367             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2368           }
2369         }
2370       }
2371 
2372       // Set async. pending exception in thread.
2373       set_pending_async_exception(java_throwable);
2374 
2375       if (log_is_enabled(Info, exceptions)) {
2376          ResourceMark rm;
2377         log_info(exceptions)("Pending Async. exception installed of type: %s",
2378                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2379       }
2380       // for AbortVMOnException flag
2381       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2382     }
2383   }
2384 
2385 
2386   // Interrupt thread so it will wake up from a potential wait()
2387   Thread::interrupt(this);
2388 }
2389 
2390 // External suspension mechanism.
2391 //
2392 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2393 // to any VM_locks and it is at a transition
2394 // Self-suspension will happen on the transition out of the vm.
2395 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2396 //
2397 // Guarantees on return:
2398 //   + Target thread will not execute any new bytecode (that's why we need to
2399 //     force a safepoint)
2400 //   + Target thread will not enter any new monitors
2401 //
2402 void JavaThread::java_suspend() {
2403   ThreadsListHandle tlh;
2404   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2405     return;
2406   }
2407 
2408   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2409     if (!is_external_suspend()) {
2410       // a racing resume has cancelled us; bail out now
2411       return;
2412     }
2413 
2414     // suspend is done
2415     uint32_t debug_bits = 0;
2416     // Warning: is_ext_suspend_completed() may temporarily drop the
2417     // SR_lock to allow the thread to reach a stable thread state if
2418     // it is currently in a transient thread state.
2419     if (is_ext_suspend_completed(false /* !called_by_wait */,
2420                                  SuspendRetryDelay, &debug_bits)) {
2421       return;
2422     }
2423   }
2424 
2425   VM_ThreadSuspend vm_suspend;
2426   VMThread::execute(&vm_suspend);
2427 }
2428 
2429 // Part II of external suspension.
2430 // A JavaThread self suspends when it detects a pending external suspend
2431 // request. This is usually on transitions. It is also done in places
2432 // where continuing to the next transition would surprise the caller,
2433 // e.g., monitor entry.
2434 //
2435 // Returns the number of times that the thread self-suspended.
2436 //
2437 // Note: DO NOT call java_suspend_self() when you just want to block current
2438 //       thread. java_suspend_self() is the second stage of cooperative
2439 //       suspension for external suspend requests and should only be used
2440 //       to complete an external suspend request.
2441 //
2442 int JavaThread::java_suspend_self() {
2443   int ret = 0;
2444 
2445   // we are in the process of exiting so don't suspend
2446   if (is_exiting()) {
2447     clear_external_suspend();
2448     return ret;
2449   }
2450 
2451   assert(_anchor.walkable() ||
2452          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2453          "must have walkable stack");
2454 
2455   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2456 
2457   assert(!this->is_ext_suspended(),
2458          "a thread trying to self-suspend should not already be suspended");
2459 
2460   if (this->is_suspend_equivalent()) {
2461     // If we are self-suspending as a result of the lifting of a
2462     // suspend equivalent condition, then the suspend_equivalent
2463     // flag is not cleared until we set the ext_suspended flag so
2464     // that wait_for_ext_suspend_completion() returns consistent
2465     // results.
2466     this->clear_suspend_equivalent();
2467   }
2468 
2469   // A racing resume may have cancelled us before we grabbed SR_lock
2470   // above. Or another external suspend request could be waiting for us
2471   // by the time we return from SR_lock()->wait(). The thread
2472   // that requested the suspension may already be trying to walk our
2473   // stack and if we return now, we can change the stack out from under
2474   // it. This would be a "bad thing (TM)" and cause the stack walker
2475   // to crash. We stay self-suspended until there are no more pending
2476   // external suspend requests.
2477   while (is_external_suspend()) {
2478     ret++;
2479     this->set_ext_suspended();
2480 
2481     // _ext_suspended flag is cleared by java_resume()
2482     while (is_ext_suspended()) {
2483       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2484     }
2485   }
2486 
2487   return ret;
2488 }
2489 
2490 #ifdef ASSERT
2491 // verify the JavaThread has not yet been published in the Threads::list, and
2492 // hence doesn't need protection from concurrent access at this stage
2493 void JavaThread::verify_not_published() {
2494   ThreadsListHandle tlh;
2495   assert(!tlh.includes(this), "JavaThread shouldn't have been published yet!");
2496 }
2497 #endif
2498 
2499 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2500 // progress or when _suspend_flags is non-zero.
2501 // Current thread needs to self-suspend if there is a suspend request and/or
2502 // block if a safepoint is in progress.
2503 // Async exception ISN'T checked.
2504 // Note only the ThreadInVMfromNative transition can call this function
2505 // directly and when thread state is _thread_in_native_trans
2506 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2507   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2508 
2509   JavaThread *curJT = JavaThread::current();
2510   bool do_self_suspend = thread->is_external_suspend();
2511 
2512   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2513 
2514   // If JNIEnv proxies are allowed, don't self-suspend if the target
2515   // thread is not the current thread. In older versions of jdbx, jdbx
2516   // threads could call into the VM with another thread's JNIEnv so we
2517   // can be here operating on behalf of a suspended thread (4432884).
2518   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2519     JavaThreadState state = thread->thread_state();
2520 
2521     // We mark this thread_blocked state as a suspend-equivalent so
2522     // that a caller to is_ext_suspend_completed() won't be confused.
2523     // The suspend-equivalent state is cleared by java_suspend_self().
2524     thread->set_suspend_equivalent();
2525 
2526     // If the safepoint code sees the _thread_in_native_trans state, it will
2527     // wait until the thread changes to other thread state. There is no
2528     // guarantee on how soon we can obtain the SR_lock and complete the
2529     // self-suspend request. It would be a bad idea to let safepoint wait for
2530     // too long. Temporarily change the state to _thread_blocked to
2531     // let the VM thread know that this thread is ready for GC. The problem
2532     // of changing thread state is that safepoint could happen just after
2533     // java_suspend_self() returns after being resumed, and VM thread will
2534     // see the _thread_blocked state. We must check for safepoint
2535     // after restoring the state and make sure we won't leave while a safepoint
2536     // is in progress.
2537     thread->set_thread_state(_thread_blocked);
2538     thread->java_suspend_self();
2539     thread->set_thread_state(state);
2540 
2541     InterfaceSupport::serialize_thread_state_with_handler(thread);
2542   }
2543 
2544   SafepointMechanism::block_if_requested(curJT);
2545 
2546   if (thread->is_deopt_suspend()) {
2547     thread->clear_deopt_suspend();
2548     RegisterMap map(thread, false);
2549     frame f = thread->last_frame();
2550     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2551       f = f.sender(&map);
2552     }
2553     if (f.id() == thread->must_deopt_id()) {
2554       thread->clear_must_deopt_id();
2555       f.deoptimize(thread);
2556     } else {
2557       fatal("missed deoptimization!");
2558     }
2559   }
2560 #if INCLUDE_TRACE
2561   if (thread->is_trace_suspend()) {
2562     TRACE_SUSPEND_THREAD(thread);
2563   }
2564 #endif
2565 }
2566 
2567 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2568 // progress or when _suspend_flags is non-zero.
2569 // Current thread needs to self-suspend if there is a suspend request and/or
2570 // block if a safepoint is in progress.
2571 // Also check for pending async exception (not including unsafe access error).
2572 // Note only the native==>VM/Java barriers can call this function and when
2573 // thread state is _thread_in_native_trans.
2574 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2575   check_safepoint_and_suspend_for_native_trans(thread);
2576 
2577   if (thread->has_async_exception()) {
2578     // We are in _thread_in_native_trans state, don't handle unsafe
2579     // access error since that may block.
2580     thread->check_and_handle_async_exceptions(false);
2581   }
2582 }
2583 
2584 // This is a variant of the normal
2585 // check_special_condition_for_native_trans with slightly different
2586 // semantics for use by critical native wrappers.  It does all the
2587 // normal checks but also performs the transition back into
2588 // thread_in_Java state.  This is required so that critical natives
2589 // can potentially block and perform a GC if they are the last thread
2590 // exiting the GCLocker.
2591 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2592   check_special_condition_for_native_trans(thread);
2593 
2594   // Finish the transition
2595   thread->set_thread_state(_thread_in_Java);
2596 
2597   if (thread->do_critical_native_unlock()) {
2598     ThreadInVMfromJavaNoAsyncException tiv(thread);
2599     GCLocker::unlock_critical(thread);
2600     thread->clear_critical_native_unlock();
2601   }
2602 }
2603 
2604 // We need to guarantee the Threads_lock here, since resumes are not
2605 // allowed during safepoint synchronization
2606 // Can only resume from an external suspension
2607 void JavaThread::java_resume() {
2608   assert_locked_or_safepoint(Threads_lock);
2609 
2610   // Sanity check: thread is gone, has started exiting or the thread
2611   // was not externally suspended.
2612   ThreadsListHandle tlh;
2613   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2614     return;
2615   }
2616 
2617   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2618 
2619   clear_external_suspend();
2620 
2621   if (is_ext_suspended()) {
2622     clear_ext_suspended();
2623     SR_lock()->notify_all();
2624   }
2625 }
2626 
2627 size_t JavaThread::_stack_red_zone_size = 0;
2628 size_t JavaThread::_stack_yellow_zone_size = 0;
2629 size_t JavaThread::_stack_reserved_zone_size = 0;
2630 size_t JavaThread::_stack_shadow_zone_size = 0;
2631 
2632 void JavaThread::create_stack_guard_pages() {
2633   if (!os::uses_stack_guard_pages() ||
2634       _stack_guard_state != stack_guard_unused ||
2635       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2636       log_info(os, thread)("Stack guard page creation for thread "
2637                            UINTX_FORMAT " disabled", os::current_thread_id());
2638     return;
2639   }
2640   address low_addr = stack_end();
2641   size_t len = stack_guard_zone_size();
2642 
2643   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2644   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2645 
2646   int must_commit = os::must_commit_stack_guard_pages();
2647   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2648 
2649   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2650     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2651     return;
2652   }
2653 
2654   if (os::guard_memory((char *) low_addr, len)) {
2655     _stack_guard_state = stack_guard_enabled;
2656   } else {
2657     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2658       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2659     if (os::uncommit_memory((char *) low_addr, len)) {
2660       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2661     }
2662     return;
2663   }
2664 
2665   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2666     PTR_FORMAT "-" PTR_FORMAT ".",
2667     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2668 }
2669 
2670 void JavaThread::remove_stack_guard_pages() {
2671   assert(Thread::current() == this, "from different thread");
2672   if (_stack_guard_state == stack_guard_unused) return;
2673   address low_addr = stack_end();
2674   size_t len = stack_guard_zone_size();
2675 
2676   if (os::must_commit_stack_guard_pages()) {
2677     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2678       _stack_guard_state = stack_guard_unused;
2679     } else {
2680       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2681         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2682       return;
2683     }
2684   } else {
2685     if (_stack_guard_state == stack_guard_unused) return;
2686     if (os::unguard_memory((char *) low_addr, len)) {
2687       _stack_guard_state = stack_guard_unused;
2688     } else {
2689       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2690         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2691       return;
2692     }
2693   }
2694 
2695   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2696     PTR_FORMAT "-" PTR_FORMAT ".",
2697     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2698 }
2699 
2700 void JavaThread::enable_stack_reserved_zone() {
2701   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2702   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2703 
2704   // The base notation is from the stack's point of view, growing downward.
2705   // We need to adjust it to work correctly with guard_memory()
2706   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2707 
2708   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2709   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2710 
2711   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2712     _stack_guard_state = stack_guard_enabled;
2713   } else {
2714     warning("Attempt to guard stack reserved zone failed.");
2715   }
2716   enable_register_stack_guard();
2717 }
2718 
2719 void JavaThread::disable_stack_reserved_zone() {
2720   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2721   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2722 
2723   // Simply return if called for a thread that does not use guard pages.
2724   if (_stack_guard_state == stack_guard_unused) return;
2725 
2726   // The base notation is from the stack's point of view, growing downward.
2727   // We need to adjust it to work correctly with guard_memory()
2728   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2729 
2730   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2731     _stack_guard_state = stack_guard_reserved_disabled;
2732   } else {
2733     warning("Attempt to unguard stack reserved zone failed.");
2734   }
2735   disable_register_stack_guard();
2736 }
2737 
2738 void JavaThread::enable_stack_yellow_reserved_zone() {
2739   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2740   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2741 
2742   // The base notation is from the stacks point of view, growing downward.
2743   // We need to adjust it to work correctly with guard_memory()
2744   address base = stack_red_zone_base();
2745 
2746   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2747   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2748 
2749   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2750     _stack_guard_state = stack_guard_enabled;
2751   } else {
2752     warning("Attempt to guard stack yellow zone failed.");
2753   }
2754   enable_register_stack_guard();
2755 }
2756 
2757 void JavaThread::disable_stack_yellow_reserved_zone() {
2758   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2759   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2760 
2761   // Simply return if called for a thread that does not use guard pages.
2762   if (_stack_guard_state == stack_guard_unused) return;
2763 
2764   // The base notation is from the stacks point of view, growing downward.
2765   // We need to adjust it to work correctly with guard_memory()
2766   address base = stack_red_zone_base();
2767 
2768   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2769     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2770   } else {
2771     warning("Attempt to unguard stack yellow zone failed.");
2772   }
2773   disable_register_stack_guard();
2774 }
2775 
2776 void JavaThread::enable_stack_red_zone() {
2777   // The base notation is from the stacks point of view, growing downward.
2778   // We need to adjust it to work correctly with guard_memory()
2779   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2780   address base = stack_red_zone_base() - stack_red_zone_size();
2781 
2782   guarantee(base < stack_base(), "Error calculating stack red zone");
2783   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2784 
2785   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2786     warning("Attempt to guard stack red zone failed.");
2787   }
2788 }
2789 
2790 void JavaThread::disable_stack_red_zone() {
2791   // The base notation is from the stacks point of view, growing downward.
2792   // We need to adjust it to work correctly with guard_memory()
2793   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2794   address base = stack_red_zone_base() - stack_red_zone_size();
2795   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2796     warning("Attempt to unguard stack red zone failed.");
2797   }
2798 }
2799 
2800 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2801   // ignore is there is no stack
2802   if (!has_last_Java_frame()) return;
2803   // traverse the stack frames. Starts from top frame.
2804   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2805     frame* fr = fst.current();
2806     f(fr, fst.register_map());
2807   }
2808 }
2809 
2810 
2811 #ifndef PRODUCT
2812 // Deoptimization
2813 // Function for testing deoptimization
2814 void JavaThread::deoptimize() {
2815   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2816   StackFrameStream fst(this, UseBiasedLocking);
2817   bool deopt = false;           // Dump stack only if a deopt actually happens.
2818   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2819   // Iterate over all frames in the thread and deoptimize
2820   for (; !fst.is_done(); fst.next()) {
2821     if (fst.current()->can_be_deoptimized()) {
2822 
2823       if (only_at) {
2824         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2825         // consists of comma or carriage return separated numbers so
2826         // search for the current bci in that string.
2827         address pc = fst.current()->pc();
2828         nmethod* nm =  (nmethod*) fst.current()->cb();
2829         ScopeDesc* sd = nm->scope_desc_at(pc);
2830         char buffer[8];
2831         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2832         size_t len = strlen(buffer);
2833         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2834         while (found != NULL) {
2835           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2836               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2837             // Check that the bci found is bracketed by terminators.
2838             break;
2839           }
2840           found = strstr(found + 1, buffer);
2841         }
2842         if (!found) {
2843           continue;
2844         }
2845       }
2846 
2847       if (DebugDeoptimization && !deopt) {
2848         deopt = true; // One-time only print before deopt
2849         tty->print_cr("[BEFORE Deoptimization]");
2850         trace_frames();
2851         trace_stack();
2852       }
2853       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2854     }
2855   }
2856 
2857   if (DebugDeoptimization && deopt) {
2858     tty->print_cr("[AFTER Deoptimization]");
2859     trace_frames();
2860   }
2861 }
2862 
2863 
2864 // Make zombies
2865 void JavaThread::make_zombies() {
2866   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2867     if (fst.current()->can_be_deoptimized()) {
2868       // it is a Java nmethod
2869       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2870       nm->make_not_entrant();
2871     }
2872   }
2873 }
2874 #endif // PRODUCT
2875 
2876 
2877 void JavaThread::deoptimized_wrt_marked_nmethods() {
2878   if (!has_last_Java_frame()) return;
2879   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2880   StackFrameStream fst(this, UseBiasedLocking);
2881   for (; !fst.is_done(); fst.next()) {
2882     if (fst.current()->should_be_deoptimized()) {
2883       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2884     }
2885   }
2886 }
2887 
2888 
2889 // If the caller is a NamedThread, then remember, in the current scope,
2890 // the given JavaThread in its _processed_thread field.
2891 class RememberProcessedThread: public StackObj {
2892   NamedThread* _cur_thr;
2893  public:
2894   RememberProcessedThread(JavaThread* jthr) {
2895     Thread* thread = Thread::current();
2896     if (thread->is_Named_thread()) {
2897       _cur_thr = (NamedThread *)thread;
2898       _cur_thr->set_processed_thread(jthr);
2899     } else {
2900       _cur_thr = NULL;
2901     }
2902   }
2903 
2904   ~RememberProcessedThread() {
2905     if (_cur_thr) {
2906       _cur_thr->set_processed_thread(NULL);
2907     }
2908   }
2909 };
2910 
2911 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2912   // Verify that the deferred card marks have been flushed.
2913   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2914 
2915   // Traverse the GCHandles
2916   Thread::oops_do(f, cf);
2917 
2918   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2919 
2920   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2921          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2922 
2923   if (has_last_Java_frame()) {
2924     // Record JavaThread to GC thread
2925     RememberProcessedThread rpt(this);
2926 
2927     // Traverse the privileged stack
2928     if (_privileged_stack_top != NULL) {
2929       _privileged_stack_top->oops_do(f);
2930     }
2931 
2932     // traverse the registered growable array
2933     if (_array_for_gc != NULL) {
2934       for (int index = 0; index < _array_for_gc->length(); index++) {
2935         f->do_oop(_array_for_gc->adr_at(index));
2936       }
2937     }
2938 
2939     // Traverse the monitor chunks
2940     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2941       chunk->oops_do(f);
2942     }
2943 
2944     // Traverse the execution stack
2945     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2946       fst.current()->oops_do(f, cf, fst.register_map());
2947     }
2948   }
2949 
2950   // callee_target is never live across a gc point so NULL it here should
2951   // it still contain a methdOop.
2952 
2953   set_callee_target(NULL);
2954 
2955   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2956   // If we have deferred set_locals there might be oops waiting to be
2957   // written
2958   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2959   if (list != NULL) {
2960     for (int i = 0; i < list->length(); i++) {
2961       list->at(i)->oops_do(f);
2962     }
2963   }
2964 
2965   // Traverse instance variables at the end since the GC may be moving things
2966   // around using this function
2967   f->do_oop((oop*) &_threadObj);
2968   f->do_oop((oop*) &_vm_result);
2969   f->do_oop((oop*) &_exception_oop);
2970   f->do_oop((oop*) &_pending_async_exception);
2971 
2972   if (jvmti_thread_state() != NULL) {
2973     jvmti_thread_state()->oops_do(f);
2974   }
2975 }
2976 
2977 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2978   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2979          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2980 
2981   if (has_last_Java_frame()) {
2982     // Traverse the execution stack
2983     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2984       fst.current()->nmethods_do(cf);
2985     }
2986   }
2987 }
2988 
2989 void JavaThread::metadata_do(void f(Metadata*)) {
2990   if (has_last_Java_frame()) {
2991     // Traverse the execution stack to call f() on the methods in the stack
2992     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2993       fst.current()->metadata_do(f);
2994     }
2995   } else if (is_Compiler_thread()) {
2996     // need to walk ciMetadata in current compile tasks to keep alive.
2997     CompilerThread* ct = (CompilerThread*)this;
2998     if (ct->env() != NULL) {
2999       ct->env()->metadata_do(f);
3000     }
3001     CompileTask* task = ct->task();
3002     if (task != NULL) {
3003       task->metadata_do(f);
3004     }
3005   }
3006 }
3007 
3008 // Printing
3009 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3010   switch (_thread_state) {
3011   case _thread_uninitialized:     return "_thread_uninitialized";
3012   case _thread_new:               return "_thread_new";
3013   case _thread_new_trans:         return "_thread_new_trans";
3014   case _thread_in_native:         return "_thread_in_native";
3015   case _thread_in_native_trans:   return "_thread_in_native_trans";
3016   case _thread_in_vm:             return "_thread_in_vm";
3017   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3018   case _thread_in_Java:           return "_thread_in_Java";
3019   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3020   case _thread_blocked:           return "_thread_blocked";
3021   case _thread_blocked_trans:     return "_thread_blocked_trans";
3022   default:                        return "unknown thread state";
3023   }
3024 }
3025 
3026 #ifndef PRODUCT
3027 void JavaThread::print_thread_state_on(outputStream *st) const {
3028   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3029 };
3030 void JavaThread::print_thread_state() const {
3031   print_thread_state_on(tty);
3032 }
3033 #endif // PRODUCT
3034 
3035 // Called by Threads::print() for VM_PrintThreads operation
3036 void JavaThread::print_on(outputStream *st) const {
3037   st->print_raw("\"");
3038   st->print_raw(get_thread_name());
3039   st->print_raw("\" ");
3040   oop thread_oop = threadObj();
3041   if (thread_oop != NULL) {
3042     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3043     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3044     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3045   }
3046   Thread::print_on(st);
3047   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3048   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3049   if (thread_oop != NULL) {
3050     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3051   }
3052 #ifndef PRODUCT
3053   print_thread_state_on(st);
3054   _safepoint_state->print_on(st);
3055 #endif // PRODUCT
3056   if (is_Compiler_thread()) {
3057     CompileTask *task = ((CompilerThread*)this)->task();
3058     if (task != NULL) {
3059       st->print("   Compiling: ");
3060       task->print(st, NULL, true, false);
3061     } else {
3062       st->print("   No compile task");
3063     }
3064     st->cr();
3065   }
3066 }
3067 
3068 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3069   st->print("%s", get_thread_name_string(buf, buflen));
3070 }
3071 
3072 // Called by fatal error handler. The difference between this and
3073 // JavaThread::print() is that we can't grab lock or allocate memory.
3074 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3075   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3076   oop thread_obj = threadObj();
3077   if (thread_obj != NULL) {
3078     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3079   }
3080   st->print(" [");
3081   st->print("%s", _get_thread_state_name(_thread_state));
3082   if (osthread()) {
3083     st->print(", id=%d", osthread()->thread_id());
3084   }
3085   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3086             p2i(stack_end()), p2i(stack_base()));
3087   st->print("]");
3088 
3089   if (_threads_hazard_ptr != NULL) {
3090     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
3091   }
3092   if (_nested_threads_hazard_ptr != NULL) {
3093     print_nested_threads_hazard_ptrs_on(st);
3094   }
3095   return;
3096 }
3097 
3098 // Verification
3099 
3100 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3101 
3102 void JavaThread::verify() {
3103   // Verify oops in the thread.
3104   oops_do(&VerifyOopClosure::verify_oop, NULL);
3105 
3106   // Verify the stack frames.
3107   frames_do(frame_verify);
3108 }
3109 
3110 // CR 6300358 (sub-CR 2137150)
3111 // Most callers of this method assume that it can't return NULL but a
3112 // thread may not have a name whilst it is in the process of attaching to
3113 // the VM - see CR 6412693, and there are places where a JavaThread can be
3114 // seen prior to having it's threadObj set (eg JNI attaching threads and
3115 // if vm exit occurs during initialization). These cases can all be accounted
3116 // for such that this method never returns NULL.
3117 const char* JavaThread::get_thread_name() const {
3118 #ifdef ASSERT
3119   // early safepoints can hit while current thread does not yet have TLS
3120   if (!SafepointSynchronize::is_at_safepoint()) {
3121     Thread *cur = Thread::current();
3122     if (!(cur->is_Java_thread() && cur == this)) {
3123       // Current JavaThreads are allowed to get their own name without
3124       // the Threads_lock.
3125       assert_locked_or_safepoint(Threads_lock);
3126     }
3127   }
3128 #endif // ASSERT
3129   return get_thread_name_string();
3130 }
3131 
3132 // Returns a non-NULL representation of this thread's name, or a suitable
3133 // descriptive string if there is no set name
3134 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3135   const char* name_str;
3136   oop thread_obj = threadObj();
3137   if (thread_obj != NULL) {
3138     oop name = java_lang_Thread::name(thread_obj);
3139     if (name != NULL) {
3140       if (buf == NULL) {
3141         name_str = java_lang_String::as_utf8_string(name);
3142       } else {
3143         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3144       }
3145     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3146       name_str = "<no-name - thread is attaching>";
3147     } else {
3148       name_str = Thread::name();
3149     }
3150   } else {
3151     name_str = Thread::name();
3152   }
3153   assert(name_str != NULL, "unexpected NULL thread name");
3154   return name_str;
3155 }
3156 
3157 
3158 const char* JavaThread::get_threadgroup_name() const {
3159   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3160   oop thread_obj = threadObj();
3161   if (thread_obj != NULL) {
3162     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3163     if (thread_group != NULL) {
3164       // ThreadGroup.name can be null
3165       return java_lang_ThreadGroup::name(thread_group);
3166     }
3167   }
3168   return NULL;
3169 }
3170 
3171 const char* JavaThread::get_parent_name() const {
3172   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3173   oop thread_obj = threadObj();
3174   if (thread_obj != NULL) {
3175     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3176     if (thread_group != NULL) {
3177       oop parent = java_lang_ThreadGroup::parent(thread_group);
3178       if (parent != NULL) {
3179         // ThreadGroup.name can be null
3180         return java_lang_ThreadGroup::name(parent);
3181       }
3182     }
3183   }
3184   return NULL;
3185 }
3186 
3187 ThreadPriority JavaThread::java_priority() const {
3188   oop thr_oop = threadObj();
3189   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3190   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3191   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3192   return priority;
3193 }
3194 
3195 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3196 
3197   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3198   // Link Java Thread object <-> C++ Thread
3199 
3200   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3201   // and put it into a new Handle.  The Handle "thread_oop" can then
3202   // be used to pass the C++ thread object to other methods.
3203 
3204   // Set the Java level thread object (jthread) field of the
3205   // new thread (a JavaThread *) to C++ thread object using the
3206   // "thread_oop" handle.
3207 
3208   // Set the thread field (a JavaThread *) of the
3209   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3210 
3211   Handle thread_oop(Thread::current(),
3212                     JNIHandles::resolve_non_null(jni_thread));
3213   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3214          "must be initialized");
3215   set_threadObj(thread_oop());
3216   java_lang_Thread::set_thread(thread_oop(), this);
3217 
3218   if (prio == NoPriority) {
3219     prio = java_lang_Thread::priority(thread_oop());
3220     assert(prio != NoPriority, "A valid priority should be present");
3221   }
3222 
3223   // Push the Java priority down to the native thread; needs Threads_lock
3224   Thread::set_priority(this, prio);
3225 
3226   prepare_ext();
3227 
3228   // Add the new thread to the Threads list and set it in motion.
3229   // We must have threads lock in order to call Threads::add.
3230   // It is crucial that we do not block before the thread is
3231   // added to the Threads list for if a GC happens, then the java_thread oop
3232   // will not be visited by GC.
3233   Threads::add(this);
3234 }
3235 
3236 oop JavaThread::current_park_blocker() {
3237   // Support for JSR-166 locks
3238   oop thread_oop = threadObj();
3239   if (thread_oop != NULL &&
3240       JDK_Version::current().supports_thread_park_blocker()) {
3241     return java_lang_Thread::park_blocker(thread_oop);
3242   }
3243   return NULL;
3244 }
3245 
3246 
3247 void JavaThread::print_stack_on(outputStream* st) {
3248   if (!has_last_Java_frame()) return;
3249   ResourceMark rm;
3250   HandleMark   hm;
3251 
3252   RegisterMap reg_map(this);
3253   vframe* start_vf = last_java_vframe(&reg_map);
3254   int count = 0;
3255   for (vframe* f = start_vf; f; f = f->sender()) {
3256     if (f->is_java_frame()) {
3257       javaVFrame* jvf = javaVFrame::cast(f);
3258       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3259 
3260       // Print out lock information
3261       if (JavaMonitorsInStackTrace) {
3262         jvf->print_lock_info_on(st, count);
3263       }
3264     } else {
3265       // Ignore non-Java frames
3266     }
3267 
3268     // Bail-out case for too deep stacks
3269     count++;
3270     if (MaxJavaStackTraceDepth == count) return;
3271   }
3272 }
3273 
3274 
3275 // JVMTI PopFrame support
3276 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3277   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3278   if (in_bytes(size_in_bytes) != 0) {
3279     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3280     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3281     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3282   }
3283 }
3284 
3285 void* JavaThread::popframe_preserved_args() {
3286   return _popframe_preserved_args;
3287 }
3288 
3289 ByteSize JavaThread::popframe_preserved_args_size() {
3290   return in_ByteSize(_popframe_preserved_args_size);
3291 }
3292 
3293 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3294   int sz = in_bytes(popframe_preserved_args_size());
3295   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3296   return in_WordSize(sz / wordSize);
3297 }
3298 
3299 void JavaThread::popframe_free_preserved_args() {
3300   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3301   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3302   _popframe_preserved_args = NULL;
3303   _popframe_preserved_args_size = 0;
3304 }
3305 
3306 #ifndef PRODUCT
3307 
3308 void JavaThread::trace_frames() {
3309   tty->print_cr("[Describe stack]");
3310   int frame_no = 1;
3311   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3312     tty->print("  %d. ", frame_no++);
3313     fst.current()->print_value_on(tty, this);
3314     tty->cr();
3315   }
3316 }
3317 
3318 class PrintAndVerifyOopClosure: public OopClosure {
3319  protected:
3320   template <class T> inline void do_oop_work(T* p) {
3321     oop obj = oopDesc::load_decode_heap_oop(p);
3322     if (obj == NULL) return;
3323     tty->print(INTPTR_FORMAT ": ", p2i(p));
3324     if (oopDesc::is_oop_or_null(obj)) {
3325       if (obj->is_objArray()) {
3326         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3327       } else {
3328         obj->print();
3329       }
3330     } else {
3331       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3332     }
3333     tty->cr();
3334   }
3335  public:
3336   virtual void do_oop(oop* p) { do_oop_work(p); }
3337   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3338 };
3339 
3340 
3341 static void oops_print(frame* f, const RegisterMap *map) {
3342   PrintAndVerifyOopClosure print;
3343   f->print_value();
3344   f->oops_do(&print, NULL, (RegisterMap*)map);
3345 }
3346 
3347 // Print our all the locations that contain oops and whether they are
3348 // valid or not.  This useful when trying to find the oldest frame
3349 // where an oop has gone bad since the frame walk is from youngest to
3350 // oldest.
3351 void JavaThread::trace_oops() {
3352   tty->print_cr("[Trace oops]");
3353   frames_do(oops_print);
3354 }
3355 
3356 
3357 #ifdef ASSERT
3358 // Print or validate the layout of stack frames
3359 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3360   ResourceMark rm;
3361   PRESERVE_EXCEPTION_MARK;
3362   FrameValues values;
3363   int frame_no = 0;
3364   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3365     fst.current()->describe(values, ++frame_no);
3366     if (depth == frame_no) break;
3367   }
3368   if (validate_only) {
3369     values.validate();
3370   } else {
3371     tty->print_cr("[Describe stack layout]");
3372     values.print(this);
3373   }
3374 }
3375 #endif
3376 
3377 void JavaThread::trace_stack_from(vframe* start_vf) {
3378   ResourceMark rm;
3379   int vframe_no = 1;
3380   for (vframe* f = start_vf; f; f = f->sender()) {
3381     if (f->is_java_frame()) {
3382       javaVFrame::cast(f)->print_activation(vframe_no++);
3383     } else {
3384       f->print();
3385     }
3386     if (vframe_no > StackPrintLimit) {
3387       tty->print_cr("...<more frames>...");
3388       return;
3389     }
3390   }
3391 }
3392 
3393 
3394 void JavaThread::trace_stack() {
3395   if (!has_last_Java_frame()) return;
3396   ResourceMark rm;
3397   HandleMark   hm;
3398   RegisterMap reg_map(this);
3399   trace_stack_from(last_java_vframe(&reg_map));
3400 }
3401 
3402 
3403 #endif // PRODUCT
3404 
3405 
3406 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3407   assert(reg_map != NULL, "a map must be given");
3408   frame f = last_frame();
3409   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3410     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3411   }
3412   return NULL;
3413 }
3414 
3415 
3416 Klass* JavaThread::security_get_caller_class(int depth) {
3417   vframeStream vfst(this);
3418   vfst.security_get_caller_frame(depth);
3419   if (!vfst.at_end()) {
3420     return vfst.method()->method_holder();
3421   }
3422   return NULL;
3423 }
3424 
3425 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3426   assert(thread->is_Compiler_thread(), "must be compiler thread");
3427   CompileBroker::compiler_thread_loop();
3428 }
3429 
3430 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3431   NMethodSweeper::sweeper_loop();
3432 }
3433 
3434 // Create a CompilerThread
3435 CompilerThread::CompilerThread(CompileQueue* queue,
3436                                CompilerCounters* counters)
3437                                : JavaThread(&compiler_thread_entry) {
3438   _env   = NULL;
3439   _log   = NULL;
3440   _task  = NULL;
3441   _queue = queue;
3442   _counters = counters;
3443   _buffer_blob = NULL;
3444   _compiler = NULL;
3445 
3446   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3447   resource_area()->bias_to(mtCompiler);
3448 
3449 #ifndef PRODUCT
3450   _ideal_graph_printer = NULL;
3451 #endif
3452 }
3453 
3454 bool CompilerThread::can_call_java() const {
3455   return _compiler != NULL && _compiler->is_jvmci();
3456 }
3457 
3458 // Create sweeper thread
3459 CodeCacheSweeperThread::CodeCacheSweeperThread()
3460 : JavaThread(&sweeper_thread_entry) {
3461   _scanned_compiled_method = NULL;
3462 }
3463 
3464 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3465   JavaThread::oops_do(f, cf);
3466   if (_scanned_compiled_method != NULL && cf != NULL) {
3467     // Safepoints can occur when the sweeper is scanning an nmethod so
3468     // process it here to make sure it isn't unloaded in the middle of
3469     // a scan.
3470     cf->do_code_blob(_scanned_compiled_method);
3471   }
3472 }
3473 
3474 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3475   JavaThread::nmethods_do(cf);
3476   if (_scanned_compiled_method != NULL && cf != NULL) {
3477     // Safepoints can occur when the sweeper is scanning an nmethod so
3478     // process it here to make sure it isn't unloaded in the middle of
3479     // a scan.
3480     cf->do_code_blob(_scanned_compiled_method);
3481   }
3482 }
3483 
3484 
3485 // ======= Threads ========
3486 
3487 // The Threads class links together all active threads, and provides
3488 // operations over all threads. It is protected by the Threads_lock,
3489 // which is also used in other global contexts like safepointing.
3490 // ThreadsListHandles are used to safely perform operations on one
3491 // or more threads without the risk of the thread exiting during the
3492 // operation.
3493 //
3494 // Note: The Threads_lock is currently more widely used than we
3495 // would like. We are actively migrating Threads_lock uses to other
3496 // mechanisms in order to reduce Threads_lock contention.
3497 
3498 JavaThread* Threads::_thread_list = NULL;
3499 int         Threads::_number_of_threads = 0;
3500 int         Threads::_number_of_non_daemon_threads = 0;
3501 int         Threads::_return_code = 0;
3502 int         Threads::_thread_claim_parity = 0;
3503 size_t      JavaThread::_stack_size_at_create = 0;
3504 
3505 #ifdef ASSERT
3506 bool        Threads::_vm_complete = false;
3507 #endif
3508 
3509 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3510   Prefetch::read((void*)addr, prefetch_interval);
3511   return *addr;
3512 }
3513 
3514 // Possibly the ugliest for loop the world has seen. C++ does not allow
3515 // multiple types in the declaration section of the for loop. In this case
3516 // we are only dealing with pointers and hence can cast them. It looks ugly
3517 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3518 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3519     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3520              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3521              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3522              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3523              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3524          MACRO_current_p != MACRO_end;                                                                                    \
3525          MACRO_current_p++,                                                                                               \
3526              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3527 
3528 // All JavaThreads
3529 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3530 
3531 void Threads::java_threads_do(ThreadClosure* tc) {
3532   assert_locked_or_safepoint(Threads_lock);
3533   ALL_JAVA_THREADS(p) {
3534     tc->do_thread(p);
3535   }
3536 }
3537 
3538 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3539 void Threads::threads_do(ThreadClosure* tc) {
3540   assert_locked_or_safepoint(Threads_lock);
3541   // ALL_JAVA_THREADS iterates through all JavaThreads
3542   ALL_JAVA_THREADS(p) {
3543     tc->do_thread(p);
3544   }
3545   // Someday we could have a table or list of all non-JavaThreads.
3546   // For now, just manually iterate through them.
3547   tc->do_thread(VMThread::vm_thread());
3548   Universe::heap()->gc_threads_do(tc);
3549   WatcherThread *wt = WatcherThread::watcher_thread();
3550   // Strictly speaking, the following NULL check isn't sufficient to make sure
3551   // the data for WatcherThread is still valid upon being examined. However,
3552   // considering that WatchThread terminates when the VM is on the way to
3553   // exit at safepoint, the chance of the above is extremely small. The right
3554   // way to prevent termination of WatcherThread would be to acquire
3555   // Terminator_lock, but we can't do that without violating the lock rank
3556   // checking in some cases.
3557   if (wt != NULL) {
3558     tc->do_thread(wt);
3559   }
3560 
3561   // If CompilerThreads ever become non-JavaThreads, add them here
3562 }
3563 
3564 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3565   int cp = Threads::thread_claim_parity();
3566   ALL_JAVA_THREADS(p) {
3567     if (p->claim_oops_do(is_par, cp)) {
3568       tc->do_thread(p);
3569     }
3570   }
3571   VMThread* vmt = VMThread::vm_thread();
3572   if (vmt->claim_oops_do(is_par, cp)) {
3573     tc->do_thread(vmt);
3574   }
3575 }
3576 
3577 // The system initialization in the library has three phases.
3578 //
3579 // Phase 1: java.lang.System class initialization
3580 //     java.lang.System is a primordial class loaded and initialized
3581 //     by the VM early during startup.  java.lang.System.<clinit>
3582 //     only does registerNatives and keeps the rest of the class
3583 //     initialization work later until thread initialization completes.
3584 //
3585 //     System.initPhase1 initializes the system properties, the static
3586 //     fields in, out, and err. Set up java signal handlers, OS-specific
3587 //     system settings, and thread group of the main thread.
3588 static void call_initPhase1(TRAPS) {
3589   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3590   JavaValue result(T_VOID);
3591   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3592                                          vmSymbols::void_method_signature(), CHECK);
3593 }
3594 
3595 // Phase 2. Module system initialization
3596 //     This will initialize the module system.  Only java.base classes
3597 //     can be loaded until phase 2 completes.
3598 //
3599 //     Call System.initPhase2 after the compiler initialization and jsr292
3600 //     classes get initialized because module initialization runs a lot of java
3601 //     code, that for performance reasons, should be compiled.  Also, this will
3602 //     enable the startup code to use lambda and other language features in this
3603 //     phase and onward.
3604 //
3605 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3606 static void call_initPhase2(TRAPS) {
3607   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3608 
3609   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3610 
3611   JavaValue result(T_INT);
3612   JavaCallArguments args;
3613   args.push_int(DisplayVMOutputToStderr);
3614   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3615   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3616                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3617   if (result.get_jint() != JNI_OK) {
3618     vm_exit_during_initialization(); // no message or exception
3619   }
3620 
3621   universe_post_module_init();
3622 }
3623 
3624 // Phase 3. final setup - set security manager, system class loader and TCCL
3625 //
3626 //     This will instantiate and set the security manager, set the system class
3627 //     loader as well as the thread context class loader.  The security manager
3628 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3629 //     other modules or the application's classpath.
3630 static void call_initPhase3(TRAPS) {
3631   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3632   JavaValue result(T_VOID);
3633   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3634                                          vmSymbols::void_method_signature(), CHECK);
3635 }
3636 
3637 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3638   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3639 
3640   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3641     create_vm_init_libraries();
3642   }
3643 
3644   initialize_class(vmSymbols::java_lang_String(), CHECK);
3645 
3646   // Inject CompactStrings value after the static initializers for String ran.
3647   java_lang_String::set_compact_strings(CompactStrings);
3648 
3649   // Initialize java_lang.System (needed before creating the thread)
3650   initialize_class(vmSymbols::java_lang_System(), CHECK);
3651   // The VM creates & returns objects of this class. Make sure it's initialized.
3652   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3653   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3654   Handle thread_group = create_initial_thread_group(CHECK);
3655   Universe::set_main_thread_group(thread_group());
3656   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3657   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3658   main_thread->set_threadObj(thread_object);
3659   // Set thread status to running since main thread has
3660   // been started and running.
3661   java_lang_Thread::set_thread_status(thread_object,
3662                                       java_lang_Thread::RUNNABLE);
3663 
3664   // The VM creates objects of this class.
3665   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3666 
3667   // The VM preresolves methods to these classes. Make sure that they get initialized
3668   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3669   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3670 
3671   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3672   call_initPhase1(CHECK);
3673 
3674   // get the Java runtime name after java.lang.System is initialized
3675   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3676   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3677 
3678   // an instance of OutOfMemory exception has been allocated earlier
3679   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3680   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3681   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3682   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3683   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3684   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3685   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3686   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3687 }
3688 
3689 void Threads::initialize_jsr292_core_classes(TRAPS) {
3690   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3691 
3692   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3693   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3694   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3695   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3696 }
3697 
3698 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3699   extern void JDK_Version_init();
3700 
3701   // Preinitialize version info.
3702   VM_Version::early_initialize();
3703 
3704   // Check version
3705   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3706 
3707   // Initialize library-based TLS
3708   ThreadLocalStorage::init();
3709 
3710   // Initialize the output stream module
3711   ostream_init();
3712 
3713   // Process java launcher properties.
3714   Arguments::process_sun_java_launcher_properties(args);
3715 
3716   // Initialize the os module
3717   os::init();
3718 
3719   // Record VM creation timing statistics
3720   TraceVmCreationTime create_vm_timer;
3721   create_vm_timer.start();
3722 
3723   // Initialize system properties.
3724   Arguments::init_system_properties();
3725 
3726   // So that JDK version can be used as a discriminator when parsing arguments
3727   JDK_Version_init();
3728 
3729   // Update/Initialize System properties after JDK version number is known
3730   Arguments::init_version_specific_system_properties();
3731 
3732   // Make sure to initialize log configuration *before* parsing arguments
3733   LogConfiguration::initialize(create_vm_timer.begin_time());
3734 
3735   // Parse arguments
3736   // Note: this internally calls os::init_container_support()
3737   jint parse_result = Arguments::parse(args);
3738   if (parse_result != JNI_OK) return parse_result;
3739 
3740   os::init_before_ergo();
3741 
3742   jint ergo_result = Arguments::apply_ergo();
3743   if (ergo_result != JNI_OK) return ergo_result;
3744 
3745   // Final check of all ranges after ergonomics which may change values.
3746   if (!CommandLineFlagRangeList::check_ranges()) {
3747     return JNI_EINVAL;
3748   }
3749 
3750   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3751   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3752   if (!constraint_result) {
3753     return JNI_EINVAL;
3754   }
3755 
3756   CommandLineFlagWriteableList::mark_startup();
3757 
3758   if (PauseAtStartup) {
3759     os::pause();
3760   }
3761 
3762   HOTSPOT_VM_INIT_BEGIN();
3763 
3764   // Timing (must come after argument parsing)
3765   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3766 
3767   // Initialize the os module after parsing the args
3768   jint os_init_2_result = os::init_2();
3769   if (os_init_2_result != JNI_OK) return os_init_2_result;
3770 
3771   SafepointMechanism::initialize();
3772 
3773   jint adjust_after_os_result = Arguments::adjust_after_os();
3774   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3775 
3776   // Initialize output stream logging
3777   ostream_init_log();
3778 
3779   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3780   // Must be before create_vm_init_agents()
3781   if (Arguments::init_libraries_at_startup()) {
3782     convert_vm_init_libraries_to_agents();
3783   }
3784 
3785   // Launch -agentlib/-agentpath and converted -Xrun agents
3786   if (Arguments::init_agents_at_startup()) {
3787     create_vm_init_agents();
3788   }
3789 
3790   // Initialize Threads state
3791   _thread_list = NULL;
3792   _number_of_threads = 0;
3793   _number_of_non_daemon_threads = 0;
3794 
3795   // Initialize global data structures and create system classes in heap
3796   vm_init_globals();
3797 
3798 #if INCLUDE_JVMCI
3799   if (JVMCICounterSize > 0) {
3800     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3801     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3802   } else {
3803     JavaThread::_jvmci_old_thread_counters = NULL;
3804   }
3805 #endif // INCLUDE_JVMCI
3806 
3807   // Attach the main thread to this os thread
3808   JavaThread* main_thread = new JavaThread();
3809   main_thread->set_thread_state(_thread_in_vm);
3810   main_thread->initialize_thread_current();
3811   // must do this before set_active_handles
3812   main_thread->record_stack_base_and_size();
3813   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3814 
3815   if (!main_thread->set_as_starting_thread()) {
3816     vm_shutdown_during_initialization(
3817                                       "Failed necessary internal allocation. Out of swap space");
3818     main_thread->smr_delete();
3819     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3820     return JNI_ENOMEM;
3821   }
3822 
3823   // Enable guard page *after* os::create_main_thread(), otherwise it would
3824   // crash Linux VM, see notes in os_linux.cpp.
3825   main_thread->create_stack_guard_pages();
3826 
3827   // Initialize Java-Level synchronization subsystem
3828   ObjectMonitor::Initialize();
3829 
3830   // Initialize global modules
3831   jint status = init_globals();
3832   if (status != JNI_OK) {
3833     main_thread->smr_delete();
3834     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3835     return status;
3836   }
3837 
3838   if (TRACE_INITIALIZE() != JNI_OK) {
3839     vm_exit_during_initialization("Failed to initialize tracing backend");
3840   }
3841 
3842   // Should be done after the heap is fully created
3843   main_thread->cache_global_variables();
3844 
3845   HandleMark hm;
3846 
3847   { MutexLocker mu(Threads_lock);
3848     Threads::add(main_thread);
3849   }
3850 
3851   // Any JVMTI raw monitors entered in onload will transition into
3852   // real raw monitor. VM is setup enough here for raw monitor enter.
3853   JvmtiExport::transition_pending_onload_raw_monitors();
3854 
3855   // Create the VMThread
3856   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3857 
3858   VMThread::create();
3859     Thread* vmthread = VMThread::vm_thread();
3860 
3861     if (!os::create_thread(vmthread, os::vm_thread)) {
3862       vm_exit_during_initialization("Cannot create VM thread. "
3863                                     "Out of system resources.");
3864     }
3865 
3866     // Wait for the VM thread to become ready, and VMThread::run to initialize
3867     // Monitors can have spurious returns, must always check another state flag
3868     {
3869       MutexLocker ml(Notify_lock);
3870       os::start_thread(vmthread);
3871       while (vmthread->active_handles() == NULL) {
3872         Notify_lock->wait();
3873       }
3874     }
3875   }
3876 
3877   assert(Universe::is_fully_initialized(), "not initialized");
3878   if (VerifyDuringStartup) {
3879     // Make sure we're starting with a clean slate.
3880     VM_Verify verify_op;
3881     VMThread::execute(&verify_op);
3882   }
3883 
3884   Thread* THREAD = Thread::current();
3885 
3886   // Always call even when there are not JVMTI environments yet, since environments
3887   // may be attached late and JVMTI must track phases of VM execution
3888   JvmtiExport::enter_early_start_phase();
3889 
3890   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3891   JvmtiExport::post_early_vm_start();
3892 
3893   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3894 
3895   // We need this for ClassDataSharing - the initial vm.info property is set
3896   // with the default value of CDS "sharing" which may be reset through
3897   // command line options.
3898   reset_vm_info_property(CHECK_JNI_ERR);
3899 
3900   quicken_jni_functions();
3901 
3902   // No more stub generation allowed after that point.
3903   StubCodeDesc::freeze();
3904 
3905   // Set flag that basic initialization has completed. Used by exceptions and various
3906   // debug stuff, that does not work until all basic classes have been initialized.
3907   set_init_completed();
3908 
3909   LogConfiguration::post_initialize();
3910   Metaspace::post_initialize();
3911 
3912   HOTSPOT_VM_INIT_END();
3913 
3914   // record VM initialization completion time
3915 #if INCLUDE_MANAGEMENT
3916   Management::record_vm_init_completed();
3917 #endif // INCLUDE_MANAGEMENT
3918 
3919   // Signal Dispatcher needs to be started before VMInit event is posted
3920   os::signal_init(CHECK_JNI_ERR);
3921 
3922   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3923   if (!DisableAttachMechanism) {
3924     AttachListener::vm_start();
3925     if (StartAttachListener || AttachListener::init_at_startup()) {
3926       AttachListener::init();
3927     }
3928   }
3929 
3930   // Launch -Xrun agents
3931   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3932   // back-end can launch with -Xdebug -Xrunjdwp.
3933   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3934     create_vm_init_libraries();
3935   }
3936 
3937   if (CleanChunkPoolAsync) {
3938     Chunk::start_chunk_pool_cleaner_task();
3939   }
3940 
3941   // initialize compiler(s)
3942 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3943   CompileBroker::compilation_init(CHECK_JNI_ERR);
3944 #endif
3945 
3946   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3947   // It is done after compilers are initialized, because otherwise compilations of
3948   // signature polymorphic MH intrinsics can be missed
3949   // (see SystemDictionary::find_method_handle_intrinsic).
3950   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3951 
3952   // This will initialize the module system.  Only java.base classes can be
3953   // loaded until phase 2 completes
3954   call_initPhase2(CHECK_JNI_ERR);
3955 
3956   // Always call even when there are not JVMTI environments yet, since environments
3957   // may be attached late and JVMTI must track phases of VM execution
3958   JvmtiExport::enter_start_phase();
3959 
3960   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3961   JvmtiExport::post_vm_start();
3962 
3963   // Final system initialization including security manager and system class loader
3964   call_initPhase3(CHECK_JNI_ERR);
3965 
3966   // cache the system and platform class loaders
3967   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3968 
3969 #if INCLUDE_JVMCI
3970   if (EnableJVMCI) {
3971     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3972     // The JVMCI Java initialization code will read this flag and
3973     // do the printing if it's set.
3974     bool init = JVMCIPrintProperties;
3975 
3976     if (!init) {
3977       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3978       // compilations via JVMCI will not actually block until JVMCI is initialized.
3979       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3980     }
3981 
3982     if (init) {
3983       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3984     }
3985   }
3986 #endif
3987 
3988   // Always call even when there are not JVMTI environments yet, since environments
3989   // may be attached late and JVMTI must track phases of VM execution
3990   JvmtiExport::enter_live_phase();
3991 
3992   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3993   JvmtiExport::post_vm_initialized();
3994 
3995   if (TRACE_START() != JNI_OK) {
3996     vm_exit_during_initialization("Failed to start tracing backend.");
3997   }
3998 
3999 #if INCLUDE_MANAGEMENT
4000   Management::initialize(THREAD);
4001 
4002   if (HAS_PENDING_EXCEPTION) {
4003     // management agent fails to start possibly due to
4004     // configuration problem and is responsible for printing
4005     // stack trace if appropriate. Simply exit VM.
4006     vm_exit(1);
4007   }
4008 #endif // INCLUDE_MANAGEMENT
4009 
4010   if (MemProfiling)                   MemProfiler::engage();
4011   StatSampler::engage();
4012   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4013 
4014   BiasedLocking::init();
4015 
4016 #if INCLUDE_RTM_OPT
4017   RTMLockingCounters::init();
4018 #endif
4019 
4020   if (JDK_Version::current().post_vm_init_hook_enabled()) {
4021     call_postVMInitHook(THREAD);
4022     // The Java side of PostVMInitHook.run must deal with all
4023     // exceptions and provide means of diagnosis.
4024     if (HAS_PENDING_EXCEPTION) {
4025       CLEAR_PENDING_EXCEPTION;
4026     }
4027   }
4028 
4029   {
4030     MutexLocker ml(PeriodicTask_lock);
4031     // Make sure the WatcherThread can be started by WatcherThread::start()
4032     // or by dynamic enrollment.
4033     WatcherThread::make_startable();
4034     // Start up the WatcherThread if there are any periodic tasks
4035     // NOTE:  All PeriodicTasks should be registered by now. If they
4036     //   aren't, late joiners might appear to start slowly (we might
4037     //   take a while to process their first tick).
4038     if (PeriodicTask::num_tasks() > 0) {
4039       WatcherThread::start();
4040     }
4041   }
4042 
4043   create_vm_timer.end();
4044 #ifdef ASSERT
4045   _vm_complete = true;
4046 #endif
4047 
4048   if (DumpSharedSpaces) {
4049     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4050     ShouldNotReachHere();
4051   }
4052 
4053   return JNI_OK;
4054 }
4055 
4056 // type for the Agent_OnLoad and JVM_OnLoad entry points
4057 extern "C" {
4058   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4059 }
4060 // Find a command line agent library and return its entry point for
4061 //         -agentlib:  -agentpath:   -Xrun
4062 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4063 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4064                                     const char *on_load_symbols[],
4065                                     size_t num_symbol_entries) {
4066   OnLoadEntry_t on_load_entry = NULL;
4067   void *library = NULL;
4068 
4069   if (!agent->valid()) {
4070     char buffer[JVM_MAXPATHLEN];
4071     char ebuf[1024] = "";
4072     const char *name = agent->name();
4073     const char *msg = "Could not find agent library ";
4074 
4075     // First check to see if agent is statically linked into executable
4076     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4077       library = agent->os_lib();
4078     } else if (agent->is_absolute_path()) {
4079       library = os::dll_load(name, ebuf, sizeof ebuf);
4080       if (library == NULL) {
4081         const char *sub_msg = " in absolute path, with error: ";
4082         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4083         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4084         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4085         // If we can't find the agent, exit.
4086         vm_exit_during_initialization(buf, NULL);
4087         FREE_C_HEAP_ARRAY(char, buf);
4088       }
4089     } else {
4090       // Try to load the agent from the standard dll directory
4091       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4092                              name)) {
4093         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4094       }
4095       if (library == NULL) { // Try the library path directory.
4096         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4097           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4098         }
4099         if (library == NULL) {
4100           const char *sub_msg = " on the library path, with error: ";
4101           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4102           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4103           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4104           // If we can't find the agent, exit.
4105           vm_exit_during_initialization(buf, NULL);
4106           FREE_C_HEAP_ARRAY(char, buf);
4107         }
4108       }
4109     }
4110     agent->set_os_lib(library);
4111     agent->set_valid();
4112   }
4113 
4114   // Find the OnLoad function.
4115   on_load_entry =
4116     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4117                                                           false,
4118                                                           on_load_symbols,
4119                                                           num_symbol_entries));
4120   return on_load_entry;
4121 }
4122 
4123 // Find the JVM_OnLoad entry point
4124 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4125   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4126   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4127 }
4128 
4129 // Find the Agent_OnLoad entry point
4130 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4131   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4132   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4133 }
4134 
4135 // For backwards compatibility with -Xrun
4136 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4137 // treated like -agentpath:
4138 // Must be called before agent libraries are created
4139 void Threads::convert_vm_init_libraries_to_agents() {
4140   AgentLibrary* agent;
4141   AgentLibrary* next;
4142 
4143   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4144     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4145     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4146 
4147     // If there is an JVM_OnLoad function it will get called later,
4148     // otherwise see if there is an Agent_OnLoad
4149     if (on_load_entry == NULL) {
4150       on_load_entry = lookup_agent_on_load(agent);
4151       if (on_load_entry != NULL) {
4152         // switch it to the agent list -- so that Agent_OnLoad will be called,
4153         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4154         Arguments::convert_library_to_agent(agent);
4155       } else {
4156         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4157       }
4158     }
4159   }
4160 }
4161 
4162 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4163 // Invokes Agent_OnLoad
4164 // Called very early -- before JavaThreads exist
4165 void Threads::create_vm_init_agents() {
4166   extern struct JavaVM_ main_vm;
4167   AgentLibrary* agent;
4168 
4169   JvmtiExport::enter_onload_phase();
4170 
4171   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4172     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4173 
4174     if (on_load_entry != NULL) {
4175       // Invoke the Agent_OnLoad function
4176       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4177       if (err != JNI_OK) {
4178         vm_exit_during_initialization("agent library failed to init", agent->name());
4179       }
4180     } else {
4181       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4182     }
4183   }
4184   JvmtiExport::enter_primordial_phase();
4185 }
4186 
4187 extern "C" {
4188   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4189 }
4190 
4191 void Threads::shutdown_vm_agents() {
4192   // Send any Agent_OnUnload notifications
4193   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4194   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4195   extern struct JavaVM_ main_vm;
4196   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4197 
4198     // Find the Agent_OnUnload function.
4199     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4200                                                    os::find_agent_function(agent,
4201                                                    false,
4202                                                    on_unload_symbols,
4203                                                    num_symbol_entries));
4204 
4205     // Invoke the Agent_OnUnload function
4206     if (unload_entry != NULL) {
4207       JavaThread* thread = JavaThread::current();
4208       ThreadToNativeFromVM ttn(thread);
4209       HandleMark hm(thread);
4210       (*unload_entry)(&main_vm);
4211     }
4212   }
4213 }
4214 
4215 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4216 // Invokes JVM_OnLoad
4217 void Threads::create_vm_init_libraries() {
4218   extern struct JavaVM_ main_vm;
4219   AgentLibrary* agent;
4220 
4221   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4222     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4223 
4224     if (on_load_entry != NULL) {
4225       // Invoke the JVM_OnLoad function
4226       JavaThread* thread = JavaThread::current();
4227       ThreadToNativeFromVM ttn(thread);
4228       HandleMark hm(thread);
4229       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4230       if (err != JNI_OK) {
4231         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4232       }
4233     } else {
4234       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4235     }
4236   }
4237 }
4238 
4239 
4240 // Last thread running calls java.lang.Shutdown.shutdown()
4241 void JavaThread::invoke_shutdown_hooks() {
4242   HandleMark hm(this);
4243 
4244   // We could get here with a pending exception, if so clear it now.
4245   if (this->has_pending_exception()) {
4246     this->clear_pending_exception();
4247   }
4248 
4249   EXCEPTION_MARK;
4250   Klass* shutdown_klass =
4251     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4252                                       THREAD);
4253   if (shutdown_klass != NULL) {
4254     // SystemDictionary::resolve_or_null will return null if there was
4255     // an exception.  If we cannot load the Shutdown class, just don't
4256     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4257     // and finalizers (if runFinalizersOnExit is set) won't be run.
4258     // Note that if a shutdown hook was registered or runFinalizersOnExit
4259     // was called, the Shutdown class would have already been loaded
4260     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4261     JavaValue result(T_VOID);
4262     JavaCalls::call_static(&result,
4263                            shutdown_klass,
4264                            vmSymbols::shutdown_method_name(),
4265                            vmSymbols::void_method_signature(),
4266                            THREAD);
4267   }
4268   CLEAR_PENDING_EXCEPTION;
4269 }
4270 
4271 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4272 // the program falls off the end of main(). Another VM exit path is through
4273 // vm_exit() when the program calls System.exit() to return a value or when
4274 // there is a serious error in VM. The two shutdown paths are not exactly
4275 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4276 // and VM_Exit op at VM level.
4277 //
4278 // Shutdown sequence:
4279 //   + Shutdown native memory tracking if it is on
4280 //   + Wait until we are the last non-daemon thread to execute
4281 //     <-- every thing is still working at this moment -->
4282 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4283 //        shutdown hooks, run finalizers if finalization-on-exit
4284 //   + Call before_exit(), prepare for VM exit
4285 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4286 //        currently the only user of this mechanism is File.deleteOnExit())
4287 //      > stop StatSampler, watcher thread, CMS threads,
4288 //        post thread end and vm death events to JVMTI,
4289 //        stop signal thread
4290 //   + Call JavaThread::exit(), it will:
4291 //      > release JNI handle blocks, remove stack guard pages
4292 //      > remove this thread from Threads list
4293 //     <-- no more Java code from this thread after this point -->
4294 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4295 //     the compiler threads at safepoint
4296 //     <-- do not use anything that could get blocked by Safepoint -->
4297 //   + Disable tracing at JNI/JVM barriers
4298 //   + Set _vm_exited flag for threads that are still running native code
4299 //   + Delete this thread
4300 //   + Call exit_globals()
4301 //      > deletes tty
4302 //      > deletes PerfMemory resources
4303 //   + Return to caller
4304 
4305 bool Threads::destroy_vm() {
4306   JavaThread* thread = JavaThread::current();
4307 
4308 #ifdef ASSERT
4309   _vm_complete = false;
4310 #endif
4311   // Wait until we are the last non-daemon thread to execute
4312   { MutexLocker nu(Threads_lock);
4313     while (Threads::number_of_non_daemon_threads() > 1)
4314       // This wait should make safepoint checks, wait without a timeout,
4315       // and wait as a suspend-equivalent condition.
4316       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4317                          Mutex::_as_suspend_equivalent_flag);
4318   }
4319 
4320   // Hang forever on exit if we are reporting an error.
4321   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4322     os::infinite_sleep();
4323   }
4324   os::wait_for_keypress_at_exit();
4325 
4326   // run Java level shutdown hooks
4327   thread->invoke_shutdown_hooks();
4328 
4329   before_exit(thread);
4330 
4331   thread->exit(true);
4332 
4333   // Stop VM thread.
4334   {
4335     // 4945125 The vm thread comes to a safepoint during exit.
4336     // GC vm_operations can get caught at the safepoint, and the
4337     // heap is unparseable if they are caught. Grab the Heap_lock
4338     // to prevent this. The GC vm_operations will not be able to
4339     // queue until after the vm thread is dead. After this point,
4340     // we'll never emerge out of the safepoint before the VM exits.
4341 
4342     MutexLocker ml(Heap_lock);
4343 
4344     VMThread::wait_for_vm_thread_exit();
4345     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4346     VMThread::destroy();
4347   }
4348 
4349   // clean up ideal graph printers
4350 #if defined(COMPILER2) && !defined(PRODUCT)
4351   IdealGraphPrinter::clean_up();
4352 #endif
4353 
4354   // Now, all Java threads are gone except daemon threads. Daemon threads
4355   // running Java code or in VM are stopped by the Safepoint. However,
4356   // daemon threads executing native code are still running.  But they
4357   // will be stopped at native=>Java/VM barriers. Note that we can't
4358   // simply kill or suspend them, as it is inherently deadlock-prone.
4359 
4360   VM_Exit::set_vm_exited();
4361 
4362   notify_vm_shutdown();
4363 
4364   // We are after VM_Exit::set_vm_exited() so we can't call
4365   // thread->smr_delete() or we will block on the Threads_lock.
4366   // Deleting the shutdown thread here is safe because another
4367   // JavaThread cannot have an active ThreadsListHandle for
4368   // this JavaThread.
4369   delete thread;
4370 
4371 #if INCLUDE_JVMCI
4372   if (JVMCICounterSize > 0) {
4373     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4374   }
4375 #endif
4376 
4377   // exit_globals() will delete tty
4378   exit_globals();
4379 
4380   LogConfiguration::finalize();
4381 
4382   return true;
4383 }
4384 
4385 
4386 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4387   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4388   return is_supported_jni_version(version);
4389 }
4390 
4391 
4392 jboolean Threads::is_supported_jni_version(jint version) {
4393   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4394   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4395   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4396   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4397   if (version == JNI_VERSION_9) return JNI_TRUE;
4398   if (version == JNI_VERSION_10) return JNI_TRUE;
4399   return JNI_FALSE;
4400 }
4401 
4402 
4403 void Threads::add(JavaThread* p, bool force_daemon) {
4404   // The threads lock must be owned at this point
4405   assert_locked_or_safepoint(Threads_lock);
4406 
4407   // See the comment for this method in thread.hpp for its purpose and
4408   // why it is called here.
4409   p->initialize_queues();
4410   p->set_next(_thread_list);
4411   _thread_list = p;
4412 
4413   // Once a JavaThread is added to the Threads list, smr_delete() has
4414   // to be used to delete it. Otherwise we can just delete it directly.
4415   p->set_on_thread_list();
4416 
4417   _number_of_threads++;
4418   oop threadObj = p->threadObj();
4419   bool daemon = true;
4420   // Bootstrapping problem: threadObj can be null for initial
4421   // JavaThread (or for threads attached via JNI)
4422   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4423     _number_of_non_daemon_threads++;
4424     daemon = false;
4425   }
4426 
4427   ThreadService::add_thread(p, daemon);
4428 
4429   // Maintain fast thread list
4430   ThreadsSMRSupport::add_thread(p);
4431 
4432   // Possible GC point.
4433   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4434 }
4435 
4436 void Threads::remove(JavaThread* p) {
4437 
4438   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4439   ObjectSynchronizer::omFlush(p);
4440 
4441   // Extra scope needed for Thread_lock, so we can check
4442   // that we do not remove thread without safepoint code notice
4443   { MutexLocker ml(Threads_lock);
4444 
4445     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4446 
4447     // Maintain fast thread list
4448     ThreadsSMRSupport::remove_thread(p);
4449 
4450     JavaThread* current = _thread_list;
4451     JavaThread* prev    = NULL;
4452 
4453     while (current != p) {
4454       prev    = current;
4455       current = current->next();
4456     }
4457 
4458     if (prev) {
4459       prev->set_next(current->next());
4460     } else {
4461       _thread_list = p->next();
4462     }
4463 
4464     _number_of_threads--;
4465     oop threadObj = p->threadObj();
4466     bool daemon = true;
4467     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4468       _number_of_non_daemon_threads--;
4469       daemon = false;
4470 
4471       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4472       // on destroy_vm will wake up.
4473       if (number_of_non_daemon_threads() == 1) {
4474         Threads_lock->notify_all();
4475       }
4476     }
4477     ThreadService::remove_thread(p, daemon);
4478 
4479     // Make sure that safepoint code disregard this thread. This is needed since
4480     // the thread might mess around with locks after this point. This can cause it
4481     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4482     // of this thread since it is removed from the queue.
4483     p->set_terminated_value();
4484   } // unlock Threads_lock
4485 
4486   // Since Events::log uses a lock, we grab it outside the Threads_lock
4487   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4488 }
4489 
4490 // Operations on the Threads list for GC.  These are not explicitly locked,
4491 // but the garbage collector must provide a safe context for them to run.
4492 // In particular, these things should never be called when the Threads_lock
4493 // is held by some other thread. (Note: the Safepoint abstraction also
4494 // uses the Threads_lock to guarantee this property. It also makes sure that
4495 // all threads gets blocked when exiting or starting).
4496 
4497 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4498   ALL_JAVA_THREADS(p) {
4499     p->oops_do(f, cf);
4500   }
4501   VMThread::vm_thread()->oops_do(f, cf);
4502 }
4503 
4504 void Threads::change_thread_claim_parity() {
4505   // Set the new claim parity.
4506   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4507          "Not in range.");
4508   _thread_claim_parity++;
4509   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4510   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4511          "Not in range.");
4512 }
4513 
4514 #ifdef ASSERT
4515 void Threads::assert_all_threads_claimed() {
4516   ALL_JAVA_THREADS(p) {
4517     const int thread_parity = p->oops_do_parity();
4518     assert((thread_parity == _thread_claim_parity),
4519            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4520   }
4521   VMThread* vmt = VMThread::vm_thread();
4522   const int thread_parity = vmt->oops_do_parity();
4523   assert((thread_parity == _thread_claim_parity),
4524          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4525 }
4526 #endif // ASSERT
4527 
4528 class ParallelOopsDoThreadClosure : public ThreadClosure {
4529 private:
4530   OopClosure* _f;
4531   CodeBlobClosure* _cf;
4532   CodeBlobClosure* _nmethods_cl;
4533   ThreadClosure* _thread_cl;
4534 public:
4535   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf, CodeBlobClosure* nmethods_cl, ThreadClosure* thread_cl) :
4536           _f(f), _cf(cf), _nmethods_cl(nmethods_cl), _thread_cl(thread_cl) {}
4537   void do_thread(Thread* t) {
4538     t->oops_do(_f, _cf);
4539     if (_thread_cl != NULL) {
4540       _thread_cl->do_thread(t);
4541     }
4542     if (_nmethods_cl != NULL && t->is_Java_thread() && !t->is_Code_cache_sweeper_thread()) {
4543       ((JavaThread*)t)->nmethods_do(_nmethods_cl);
4544     }
4545   }
4546 };
4547 
4548 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf, CodeBlobClosure* nmethods_cl,
4549                                         ThreadClosure* thread_cl) {
4550   ParallelOopsDoThreadClosure tc(f, cf, nmethods_cl, thread_cl);
4551   possibly_parallel_threads_do(is_par, &tc);
4552 }
4553 
4554 #if INCLUDE_ALL_GCS
4555 // Used by ParallelScavenge
4556 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4557   ALL_JAVA_THREADS(p) {
4558     q->enqueue(new ThreadRootsTask(p));
4559   }
4560   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4561 }
4562 
4563 // Used by Parallel Old
4564 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4565   ALL_JAVA_THREADS(p) {
4566     q->enqueue(new ThreadRootsMarkingTask(p));
4567   }
4568   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4569 }
4570 
4571 void JavaThread::set_gc_state(char in_prog) {
4572   _gc_state = in_prog;
4573 }
4574 
4575 void JavaThread::set_gc_state_all_threads(char in_prog) {
4576   assert_locked_or_safepoint(Threads_lock);
4577   _gc_state_global = in_prog;
4578   ALL_JAVA_THREADS(t) {
4579     t->set_gc_state(in_prog);
4580   }
4581 }
4582 
4583 #endif // INCLUDE_ALL_GCS
4584 
4585 void Threads::nmethods_do(CodeBlobClosure* cf) {
4586   ALL_JAVA_THREADS(p) {
4587     // This is used by the code cache sweeper to mark nmethods that are active
4588     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4589     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4590     if(!p->is_Code_cache_sweeper_thread()) {
4591       p->nmethods_do(cf);
4592     }
4593   }
4594 }
4595 
4596 void Threads::metadata_do(void f(Metadata*)) {
4597   ALL_JAVA_THREADS(p) {
4598     p->metadata_do(f);
4599   }
4600 }
4601 
4602 class ThreadHandlesClosure : public ThreadClosure {
4603   void (*_f)(Metadata*);
4604  public:
4605   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4606   virtual void do_thread(Thread* thread) {
4607     thread->metadata_handles_do(_f);
4608   }
4609 };
4610 
4611 void Threads::metadata_handles_do(void f(Metadata*)) {
4612   // Only walk the Handles in Thread.
4613   ThreadHandlesClosure handles_closure(f);
4614   threads_do(&handles_closure);
4615 }
4616 
4617 void Threads::deoptimized_wrt_marked_nmethods() {
4618   ALL_JAVA_THREADS(p) {
4619     p->deoptimized_wrt_marked_nmethods();
4620   }
4621 }
4622 
4623 
4624 // Get count Java threads that are waiting to enter the specified monitor.
4625 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4626                                                          int count,
4627                                                          address monitor) {
4628   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4629 
4630   int i = 0;
4631   DO_JAVA_THREADS(t_list, p) {
4632     if (!p->can_call_java()) continue;
4633 
4634     address pending = (address)p->current_pending_monitor();
4635     if (pending == monitor) {             // found a match
4636       if (i < count) result->append(p);   // save the first count matches
4637       i++;
4638     }
4639   }
4640 
4641   return result;
4642 }
4643 
4644 
4645 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4646                                                       address owner) {
4647   // NULL owner means not locked so we can skip the search
4648   if (owner == NULL) return NULL;
4649 
4650   DO_JAVA_THREADS(t_list, p) {
4651     // first, see if owner is the address of a Java thread
4652     if (owner == (address)p) return p;
4653   }
4654 
4655   // Cannot assert on lack of success here since this function may be
4656   // used by code that is trying to report useful problem information
4657   // like deadlock detection.
4658   if (UseHeavyMonitors) return NULL;
4659 
4660   // If we didn't find a matching Java thread and we didn't force use of
4661   // heavyweight monitors, then the owner is the stack address of the
4662   // Lock Word in the owning Java thread's stack.
4663   //
4664   JavaThread* the_owner = NULL;
4665   DO_JAVA_THREADS(t_list, q) {
4666     if (q->is_lock_owned(owner)) {
4667       the_owner = q;
4668       break;
4669     }
4670   }
4671 
4672   // cannot assert on lack of success here; see above comment
4673   return the_owner;
4674 }
4675 
4676 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4677 void Threads::print_on(outputStream* st, bool print_stacks,
4678                        bool internal_format, bool print_concurrent_locks) {
4679   char buf[32];
4680   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4681 
4682   st->print_cr("Full thread dump %s (%s %s):",
4683                Abstract_VM_Version::vm_name(),
4684                Abstract_VM_Version::vm_release(),
4685                Abstract_VM_Version::vm_info_string());
4686   st->cr();
4687 
4688 #if INCLUDE_SERVICES
4689   // Dump concurrent locks
4690   ConcurrentLocksDump concurrent_locks;
4691   if (print_concurrent_locks) {
4692     concurrent_locks.dump_at_safepoint();
4693   }
4694 #endif // INCLUDE_SERVICES
4695 
4696   ThreadsSMRSupport::print_info_on(st);
4697   st->cr();
4698 
4699   ALL_JAVA_THREADS(p) {
4700     ResourceMark rm;
4701     p->print_on(st);
4702     if (print_stacks) {
4703       if (internal_format) {
4704         p->trace_stack();
4705       } else {
4706         p->print_stack_on(st);
4707       }
4708     }
4709     st->cr();
4710 #if INCLUDE_SERVICES
4711     if (print_concurrent_locks) {
4712       concurrent_locks.print_locks_on(p, st);
4713     }
4714 #endif // INCLUDE_SERVICES
4715   }
4716 
4717   VMThread::vm_thread()->print_on(st);
4718   st->cr();
4719   Universe::heap()->print_gc_threads_on(st);
4720   WatcherThread* wt = WatcherThread::watcher_thread();
4721   if (wt != NULL) {
4722     wt->print_on(st);
4723     st->cr();
4724   }
4725 
4726   st->flush();
4727 }
4728 
4729 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4730                              int buflen, bool* found_current) {
4731   if (this_thread != NULL) {
4732     bool is_current = (current == this_thread);
4733     *found_current = *found_current || is_current;
4734     st->print("%s", is_current ? "=>" : "  ");
4735 
4736     st->print(PTR_FORMAT, p2i(this_thread));
4737     st->print(" ");
4738     this_thread->print_on_error(st, buf, buflen);
4739     st->cr();
4740   }
4741 }
4742 
4743 class PrintOnErrorClosure : public ThreadClosure {
4744   outputStream* _st;
4745   Thread* _current;
4746   char* _buf;
4747   int _buflen;
4748   bool* _found_current;
4749  public:
4750   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4751                       int buflen, bool* found_current) :
4752    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4753 
4754   virtual void do_thread(Thread* thread) {
4755     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4756   }
4757 };
4758 
4759 // Threads::print_on_error() is called by fatal error handler. It's possible
4760 // that VM is not at safepoint and/or current thread is inside signal handler.
4761 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4762 // memory (even in resource area), it might deadlock the error handler.
4763 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4764                              int buflen) {
4765   ThreadsSMRSupport::print_info_on(st);
4766   st->cr();
4767 
4768   bool found_current = false;
4769   st->print_cr("Java Threads: ( => current thread )");
4770   ALL_JAVA_THREADS(thread) {
4771     print_on_error(thread, st, current, buf, buflen, &found_current);
4772   }
4773   st->cr();
4774 
4775   st->print_cr("Other Threads:");
4776   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4777   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4778 
4779   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4780   Universe::heap()->gc_threads_do(&print_closure);
4781 
4782   if (!found_current) {
4783     st->cr();
4784     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4785     current->print_on_error(st, buf, buflen);
4786     st->cr();
4787   }
4788   st->cr();
4789 
4790   st->print_cr("Threads with active compile tasks:");
4791   print_threads_compiling(st, buf, buflen);
4792 }
4793 
4794 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4795   ALL_JAVA_THREADS(thread) {
4796     if (thread->is_Compiler_thread()) {
4797       CompilerThread* ct = (CompilerThread*) thread;
4798 
4799       // Keep task in local variable for NULL check.
4800       // ct->_task might be set to NULL by concurring compiler thread
4801       // because it completed the compilation. The task is never freed,
4802       // though, just returned to a free list.
4803       CompileTask* task = ct->task();
4804       if (task != NULL) {
4805         thread->print_name_on_error(st, buf, buflen);
4806         task->print(st, NULL, true, true);
4807       }
4808     }
4809   }
4810 }
4811 
4812 
4813 // Internal SpinLock and Mutex
4814 // Based on ParkEvent
4815 
4816 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4817 //
4818 // We employ SpinLocks _only for low-contention, fixed-length
4819 // short-duration critical sections where we're concerned
4820 // about native mutex_t or HotSpot Mutex:: latency.
4821 // The mux construct provides a spin-then-block mutual exclusion
4822 // mechanism.
4823 //
4824 // Testing has shown that contention on the ListLock guarding gFreeList
4825 // is common.  If we implement ListLock as a simple SpinLock it's common
4826 // for the JVM to devolve to yielding with little progress.  This is true
4827 // despite the fact that the critical sections protected by ListLock are
4828 // extremely short.
4829 //
4830 // TODO-FIXME: ListLock should be of type SpinLock.
4831 // We should make this a 1st-class type, integrated into the lock
4832 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4833 // should have sufficient padding to avoid false-sharing and excessive
4834 // cache-coherency traffic.
4835 
4836 
4837 typedef volatile int SpinLockT;
4838 
4839 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4840   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4841     return;   // normal fast-path return
4842   }
4843 
4844   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4845   TEVENT(SpinAcquire - ctx);
4846   int ctr = 0;
4847   int Yields = 0;
4848   for (;;) {
4849     while (*adr != 0) {
4850       ++ctr;
4851       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4852         if (Yields > 5) {
4853           os::naked_short_sleep(1);
4854         } else {
4855           os::naked_yield();
4856           ++Yields;
4857         }
4858       } else {
4859         SpinPause();
4860       }
4861     }
4862     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4863   }
4864 }
4865 
4866 void Thread::SpinRelease(volatile int * adr) {
4867   assert(*adr != 0, "invariant");
4868   OrderAccess::fence();      // guarantee at least release consistency.
4869   // Roach-motel semantics.
4870   // It's safe if subsequent LDs and STs float "up" into the critical section,
4871   // but prior LDs and STs within the critical section can't be allowed
4872   // to reorder or float past the ST that releases the lock.
4873   // Loads and stores in the critical section - which appear in program
4874   // order before the store that releases the lock - must also appear
4875   // before the store that releases the lock in memory visibility order.
4876   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4877   // the ST of 0 into the lock-word which releases the lock, so fence
4878   // more than covers this on all platforms.
4879   *adr = 0;
4880 }
4881 
4882 // muxAcquire and muxRelease:
4883 //
4884 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4885 //    The LSB of the word is set IFF the lock is held.
4886 //    The remainder of the word points to the head of a singly-linked list
4887 //    of threads blocked on the lock.
4888 //
4889 // *  The current implementation of muxAcquire-muxRelease uses its own
4890 //    dedicated Thread._MuxEvent instance.  If we're interested in
4891 //    minimizing the peak number of extant ParkEvent instances then
4892 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4893 //    as certain invariants were satisfied.  Specifically, care would need
4894 //    to be taken with regards to consuming unpark() "permits".
4895 //    A safe rule of thumb is that a thread would never call muxAcquire()
4896 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4897 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4898 //    consume an unpark() permit intended for monitorenter, for instance.
4899 //    One way around this would be to widen the restricted-range semaphore
4900 //    implemented in park().  Another alternative would be to provide
4901 //    multiple instances of the PlatformEvent() for each thread.  One
4902 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4903 //
4904 // *  Usage:
4905 //    -- Only as leaf locks
4906 //    -- for short-term locking only as muxAcquire does not perform
4907 //       thread state transitions.
4908 //
4909 // Alternatives:
4910 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4911 //    but with parking or spin-then-park instead of pure spinning.
4912 // *  Use Taura-Oyama-Yonenzawa locks.
4913 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4914 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4915 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4916 //    acquiring threads use timers (ParkTimed) to detect and recover from
4917 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4918 //    boundaries by using placement-new.
4919 // *  Augment MCS with advisory back-link fields maintained with CAS().
4920 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4921 //    The validity of the backlinks must be ratified before we trust the value.
4922 //    If the backlinks are invalid the exiting thread must back-track through the
4923 //    the forward links, which are always trustworthy.
4924 // *  Add a successor indication.  The LockWord is currently encoded as
4925 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4926 //    to provide the usual futile-wakeup optimization.
4927 //    See RTStt for details.
4928 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4929 //
4930 
4931 
4932 const intptr_t LOCKBIT = 1;
4933 
4934 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4935   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4936   if (w == 0) return;
4937   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4938     return;
4939   }
4940 
4941   TEVENT(muxAcquire - Contention);
4942   ParkEvent * const Self = Thread::current()->_MuxEvent;
4943   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4944   for (;;) {
4945     int its = (os::is_MP() ? 100 : 0) + 1;
4946 
4947     // Optional spin phase: spin-then-park strategy
4948     while (--its >= 0) {
4949       w = *Lock;
4950       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4951         return;
4952       }
4953     }
4954 
4955     Self->reset();
4956     Self->OnList = intptr_t(Lock);
4957     // The following fence() isn't _strictly necessary as the subsequent
4958     // CAS() both serializes execution and ratifies the fetched *Lock value.
4959     OrderAccess::fence();
4960     for (;;) {
4961       w = *Lock;
4962       if ((w & LOCKBIT) == 0) {
4963         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4964           Self->OnList = 0;   // hygiene - allows stronger asserts
4965           return;
4966         }
4967         continue;      // Interference -- *Lock changed -- Just retry
4968       }
4969       assert(w & LOCKBIT, "invariant");
4970       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4971       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4972     }
4973 
4974     while (Self->OnList != 0) {
4975       Self->park();
4976     }
4977   }
4978 }
4979 
4980 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4981   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4982   if (w == 0) return;
4983   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4984     return;
4985   }
4986 
4987   TEVENT(muxAcquire - Contention);
4988   ParkEvent * ReleaseAfter = NULL;
4989   if (ev == NULL) {
4990     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4991   }
4992   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4993   for (;;) {
4994     guarantee(ev->OnList == 0, "invariant");
4995     int its = (os::is_MP() ? 100 : 0) + 1;
4996 
4997     // Optional spin phase: spin-then-park strategy
4998     while (--its >= 0) {
4999       w = *Lock;
5000       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5001         if (ReleaseAfter != NULL) {
5002           ParkEvent::Release(ReleaseAfter);
5003         }
5004         return;
5005       }
5006     }
5007 
5008     ev->reset();
5009     ev->OnList = intptr_t(Lock);
5010     // The following fence() isn't _strictly necessary as the subsequent
5011     // CAS() both serializes execution and ratifies the fetched *Lock value.
5012     OrderAccess::fence();
5013     for (;;) {
5014       w = *Lock;
5015       if ((w & LOCKBIT) == 0) {
5016         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5017           ev->OnList = 0;
5018           // We call ::Release while holding the outer lock, thus
5019           // artificially lengthening the critical section.
5020           // Consider deferring the ::Release() until the subsequent unlock(),
5021           // after we've dropped the outer lock.
5022           if (ReleaseAfter != NULL) {
5023             ParkEvent::Release(ReleaseAfter);
5024           }
5025           return;
5026         }
5027         continue;      // Interference -- *Lock changed -- Just retry
5028       }
5029       assert(w & LOCKBIT, "invariant");
5030       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5031       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
5032     }
5033 
5034     while (ev->OnList != 0) {
5035       ev->park();
5036     }
5037   }
5038 }
5039 
5040 // Release() must extract a successor from the list and then wake that thread.
5041 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5042 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5043 // Release() would :
5044 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5045 // (B) Extract a successor from the private list "in-hand"
5046 // (C) attempt to CAS() the residual back into *Lock over null.
5047 //     If there were any newly arrived threads and the CAS() would fail.
5048 //     In that case Release() would detach the RATs, re-merge the list in-hand
5049 //     with the RATs and repeat as needed.  Alternately, Release() might
5050 //     detach and extract a successor, but then pass the residual list to the wakee.
5051 //     The wakee would be responsible for reattaching and remerging before it
5052 //     competed for the lock.
5053 //
5054 // Both "pop" and DMR are immune from ABA corruption -- there can be
5055 // multiple concurrent pushers, but only one popper or detacher.
5056 // This implementation pops from the head of the list.  This is unfair,
5057 // but tends to provide excellent throughput as hot threads remain hot.
5058 // (We wake recently run threads first).
5059 //
5060 // All paths through muxRelease() will execute a CAS.
5061 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5062 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5063 // executed within the critical section are complete and globally visible before the
5064 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5065 void Thread::muxRelease(volatile intptr_t * Lock)  {
5066   for (;;) {
5067     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5068     assert(w & LOCKBIT, "invariant");
5069     if (w == LOCKBIT) return;
5070     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5071     assert(List != NULL, "invariant");
5072     assert(List->OnList == intptr_t(Lock), "invariant");
5073     ParkEvent * const nxt = List->ListNext;
5074     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5075 
5076     // The following CAS() releases the lock and pops the head element.
5077     // The CAS() also ratifies the previously fetched lock-word value.
5078     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5079       continue;
5080     }
5081     List->OnList = 0;
5082     OrderAccess::fence();
5083     List->unpark();
5084     return;
5085   }
5086 }
5087 
5088 
5089 void Threads::verify() {
5090   ALL_JAVA_THREADS(p) {
5091     p->verify();
5092   }
5093   VMThread* thread = VMThread::vm_thread();
5094   if (thread != NULL) thread->verify();
5095 }