1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_Instruction.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_LIRGenerator.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArray.hpp"
  36 #include "ci/ciObjArrayKlass.hpp"
  37 #include "ci/ciTypeArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "vmreg_aarch64.inline.hpp"
  41 
  42 #ifdef ASSERT
  43 #define __ gen()->lir(__FILE__, __LINE__)->
  44 #else
  45 #define __ gen()->lir()->
  46 #endif
  47 
  48 // Item will be loaded into a byte register; Intel only
  49 void LIRItem::load_byte_item() {
  50   load_item();
  51 }
  52 
  53 
  54 void LIRItem::load_nonconstant() {
  55   LIR_Opr r = value()->operand();
  56   if (r->is_constant()) {
  57     _result = r;
  58   } else {
  59     load_item();
  60   }
  61 }
  62 
  63 //--------------------------------------------------------------
  64 //               LIRGenerator
  65 //--------------------------------------------------------------
  66 
  67 
  68 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
  69 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::r3_opr; }
  70 LIR_Opr LIRGenerator::divInOpr()        { Unimplemented(); return LIR_OprFact::illegalOpr; }
  71 LIR_Opr LIRGenerator::divOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  72 LIR_Opr LIRGenerator::remOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  73 LIR_Opr LIRGenerator::shiftCountOpr()   { Unimplemented(); return LIR_OprFact::illegalOpr; }
  74 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
  75 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::r0_opr; }
  76 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  77 
  78 
  79 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  80   LIR_Opr opr;
  81   switch (type->tag()) {
  82     case intTag:     opr = FrameMap::r0_opr;          break;
  83     case objectTag:  opr = FrameMap::r0_oop_opr;      break;
  84     case longTag:    opr = FrameMap::long0_opr;        break;
  85     case floatTag:   opr = FrameMap::fpu0_float_opr;  break;
  86     case doubleTag:  opr = FrameMap::fpu0_double_opr;  break;
  87 
  88     case addressTag:
  89     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  90   }
  91 
  92   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  93   return opr;
  94 }
  95 
  96 
  97 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  98   LIR_Opr reg = new_register(T_INT);
  99   set_vreg_flag(reg, LIRGenerator::byte_reg);
 100   return reg;
 101 }
 102 
 103 
 104 //--------- loading items into registers --------------------------------
 105 
 106 
 107 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 108   if (v->type()->as_IntConstant() != NULL) {
 109     return v->type()->as_IntConstant()->value() == 0L;
 110   } else if (v->type()->as_LongConstant() != NULL) {
 111     return v->type()->as_LongConstant()->value() == 0L;
 112   } else if (v->type()->as_ObjectConstant() != NULL) {
 113     return v->type()->as_ObjectConstant()->value()->is_null_object();
 114   } else {
 115     return false;
 116   }
 117 }
 118 
 119 bool LIRGenerator::can_inline_as_constant(Value v) const {
 120   // FIXME: Just a guess
 121   if (v->type()->as_IntConstant() != NULL) {
 122     return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
 123   } else if (v->type()->as_LongConstant() != NULL) {
 124     return v->type()->as_LongConstant()->value() == 0L;
 125   } else if (v->type()->as_ObjectConstant() != NULL) {
 126     return v->type()->as_ObjectConstant()->value()->is_null_object();
 127   } else {
 128     return false;
 129   }
 130 }
 131 
 132 
 133 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
 134 
 135 
 136 LIR_Opr LIRGenerator::safepoint_poll_register() {
 137   return LIR_OprFact::illegalOpr;
 138 }
 139 
 140 
 141 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 142                                             int shift, int disp, BasicType type) {
 143   assert(base->is_register(), "must be");
 144   intx large_disp = disp;
 145 
 146   // accumulate fixed displacements
 147   if (index->is_constant()) {
 148     LIR_Const *constant = index->as_constant_ptr();
 149     if (constant->type() == T_INT) {
 150       large_disp += index->as_jint() << shift;
 151     } else {
 152       assert(constant->type() == T_LONG, "should be");
 153       jlong c = index->as_jlong() << shift;
 154       if ((jlong)((jint)c) == c) {
 155         large_disp += c;
 156         index = LIR_OprFact::illegalOpr;
 157       } else {
 158         LIR_Opr tmp = new_register(T_LONG);
 159         __ move(index, tmp);
 160         index = tmp;
 161         // apply shift and displacement below
 162       }
 163     }
 164   }
 165 
 166   if (index->is_register()) {
 167     // apply the shift and accumulate the displacement
 168     if (shift > 0) {
 169       LIR_Opr tmp = new_pointer_register();
 170       __ shift_left(index, shift, tmp);
 171       index = tmp;
 172     }
 173     if (large_disp != 0) {
 174       LIR_Opr tmp = new_pointer_register();
 175       if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) {
 176         __ add(tmp, tmp, LIR_OprFact::intptrConst(large_disp));
 177         index = tmp;
 178       } else {
 179         __ move(tmp, LIR_OprFact::intptrConst(large_disp));
 180         __ add(tmp, index, tmp);
 181         index = tmp;
 182       }
 183       large_disp = 0;
 184     }
 185   } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) {
 186     // index is illegal so replace it with the displacement loaded into a register
 187     index = new_pointer_register();
 188     __ move(LIR_OprFact::intptrConst(large_disp), index);
 189     large_disp = 0;
 190   }
 191 
 192   // at this point we either have base + index or base + displacement
 193   if (large_disp == 0) {
 194     return new LIR_Address(base, index, type);
 195   } else {
 196     assert(Address::offset_ok_for_immed(large_disp, 0), "must be");
 197     return new LIR_Address(base, large_disp, type);
 198   }
 199 }
 200 
 201 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 202                                               BasicType type) {
 203   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 204   int elem_size = type2aelembytes(type);
 205   int shift = exact_log2(elem_size);
 206 
 207   LIR_Address* addr;
 208   if (index_opr->is_constant()) {
 209     addr = new LIR_Address(array_opr,
 210                            offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
 211   } else {
 212     if (offset_in_bytes) {
 213       LIR_Opr tmp = new_pointer_register();
 214       __ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp);
 215       array_opr = tmp;
 216       offset_in_bytes = 0;
 217     }
 218     addr =  new LIR_Address(array_opr,
 219                             index_opr,
 220                             LIR_Address::scale(type),
 221                             offset_in_bytes, type);
 222   }
 223   return addr;
 224 }
 225 
 226 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 227   LIR_Opr r;
 228   if (type == T_LONG) {
 229     r = LIR_OprFact::longConst(x);
 230     if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
 231       LIR_Opr tmp = new_register(type);
 232       __ move(r, tmp);
 233       return tmp;
 234     }
 235   } else if (type == T_INT) {
 236     r = LIR_OprFact::intConst(x);
 237     if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
 238       // This is all rather nasty.  We don't know whether our constant
 239       // is required for a logical or an arithmetic operation, wo we
 240       // don't know what the range of valid values is!!
 241       LIR_Opr tmp = new_register(type);
 242       __ move(r, tmp);
 243       return tmp;
 244     }
 245   } else {
 246     ShouldNotReachHere();
 247     r = NULL;  // unreachable
 248   }
 249   return r;
 250 }
 251 
 252 
 253 
 254 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 255   LIR_Opr pointer = new_pointer_register();
 256   __ move(LIR_OprFact::intptrConst(counter), pointer);
 257   LIR_Address* addr = new LIR_Address(pointer, type);
 258   increment_counter(addr, step);
 259 }
 260 
 261 
 262 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 263   LIR_Opr imm = NULL;
 264   switch(addr->type()) {
 265   case T_INT:
 266     imm = LIR_OprFact::intConst(step);
 267     break;
 268   case T_LONG:
 269     imm = LIR_OprFact::longConst(step);
 270     break;
 271   default:
 272     ShouldNotReachHere();
 273   }
 274   LIR_Opr reg = new_register(addr->type());
 275   __ load(addr, reg);
 276   __ add(reg, imm, reg);
 277   __ store(reg, addr);
 278 }
 279 
 280 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 281   LIR_Opr reg = new_register(T_INT);
 282   __ load(generate_address(base, disp, T_INT), reg, info);
 283   __ cmp(condition, reg, LIR_OprFact::intConst(c));
 284 }
 285 
 286 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 287   LIR_Opr reg1 = new_register(T_INT);
 288   __ load(generate_address(base, disp, type), reg1, info);
 289   __ cmp(condition, reg, reg1);
 290 }
 291 
 292 
 293 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 294 
 295   if (is_power_of_2(c - 1)) {
 296     __ shift_left(left, exact_log2(c - 1), tmp);
 297     __ add(tmp, left, result);
 298     return true;
 299   } else if (is_power_of_2(c + 1)) {
 300     __ shift_left(left, exact_log2(c + 1), tmp);
 301     __ sub(tmp, left, result);
 302     return true;
 303   } else {
 304     return false;
 305   }
 306 }
 307 
 308 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 309   BasicType type = item->type();
 310   __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
 311 }
 312 
 313 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 314     LIR_Opr tmp1 = new_register(objectType);
 315     LIR_Opr tmp2 = new_register(objectType);
 316     LIR_Opr tmp3 = new_register(objectType);
 317     __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 318 }
 319 
 320 //----------------------------------------------------------------------
 321 //             visitor functions
 322 //----------------------------------------------------------------------
 323 
 324 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 325   assert(x->is_pinned(),"");
 326   LIRItem obj(x->obj(), this);
 327   obj.load_item();
 328 
 329   set_no_result(x);
 330 
 331   // "lock" stores the address of the monitor stack slot, so this is not an oop
 332   LIR_Opr lock = new_register(T_INT);
 333   // Need a scratch register for biased locking
 334   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 335   if (UseBiasedLocking) {
 336     scratch = new_register(T_INT);
 337   }
 338 
 339   CodeEmitInfo* info_for_exception = NULL;
 340   if (x->needs_null_check()) {
 341     info_for_exception = state_for(x);
 342   }
 343   // this CodeEmitInfo must not have the xhandlers because here the
 344   // object is already locked (xhandlers expect object to be unlocked)
 345   CodeEmitInfo* info = state_for(x, x->state(), true);
 346   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 347                         x->monitor_no(), info_for_exception, info);
 348 }
 349 
 350 
 351 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 352   assert(x->is_pinned(),"");
 353 
 354   LIRItem obj(x->obj(), this);
 355   obj.dont_load_item();
 356 
 357   LIR_Opr lock = new_register(T_INT);
 358   LIR_Opr obj_temp = new_register(T_INT);
 359   set_no_result(x);
 360   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 361 }
 362 
 363 
 364 void LIRGenerator::do_NegateOp(NegateOp* x) {
 365 
 366   LIRItem from(x->x(), this);
 367   from.load_item();
 368   LIR_Opr result = rlock_result(x);
 369   __ negate (from.result(), result);
 370 
 371 }
 372 
 373 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 374 //      _dadd, _dmul, _dsub, _ddiv, _drem
 375 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 376 
 377   if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
 378     // float remainder is implemented as a direct call into the runtime
 379     LIRItem right(x->x(), this);
 380     LIRItem left(x->y(), this);
 381 
 382     BasicTypeList signature(2);
 383     if (x->op() == Bytecodes::_frem) {
 384       signature.append(T_FLOAT);
 385       signature.append(T_FLOAT);
 386     } else {
 387       signature.append(T_DOUBLE);
 388       signature.append(T_DOUBLE);
 389     }
 390     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 391 
 392     const LIR_Opr result_reg = result_register_for(x->type());
 393     left.load_item_force(cc->at(1));
 394     right.load_item();
 395 
 396     __ move(right.result(), cc->at(0));
 397 
 398     address entry;
 399     if (x->op() == Bytecodes::_frem) {
 400       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 401     } else {
 402       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 403     }
 404 
 405     LIR_Opr result = rlock_result(x);
 406     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 407     __ move(result_reg, result);
 408 
 409     return;
 410   }
 411 
 412   LIRItem left(x->x(),  this);
 413   LIRItem right(x->y(), this);
 414   LIRItem* left_arg  = &left;
 415   LIRItem* right_arg = &right;
 416 
 417   // Always load right hand side.
 418   right.load_item();
 419 
 420   if (!left.is_register())
 421     left.load_item();
 422 
 423   LIR_Opr reg = rlock(x);
 424   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 425   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 426     tmp = new_register(T_DOUBLE);
 427   }
 428 
 429   arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), NULL);
 430 
 431   set_result(x, round_item(reg));
 432 }
 433 
 434 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 435 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 436 
 437   // missing test if instr is commutative and if we should swap
 438   LIRItem left(x->x(), this);
 439   LIRItem right(x->y(), this);
 440 
 441   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 442 
 443     // the check for division by zero destroys the right operand
 444     right.set_destroys_register();
 445 
 446     // check for division by zero (destroys registers of right operand!)
 447     CodeEmitInfo* info = state_for(x);
 448 
 449     left.load_item();
 450     right.load_item();
 451 
 452     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 453     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 454 
 455     rlock_result(x);
 456     switch (x->op()) {
 457     case Bytecodes::_lrem:
 458       __ rem (left.result(), right.result(), x->operand());
 459       break;
 460     case Bytecodes::_ldiv:
 461       __ div (left.result(), right.result(), x->operand());
 462       break;
 463     default:
 464       ShouldNotReachHere();
 465       break;
 466     }
 467 
 468 
 469   } else {
 470     assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
 471             "expect lmul, ladd or lsub");
 472     // add, sub, mul
 473     left.load_item();
 474     if (! right.is_register()) {
 475       if (x->op() == Bytecodes::_lmul
 476           || ! right.is_constant()
 477           || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
 478         right.load_item();
 479       } else { // add, sub
 480         assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
 481         // don't load constants to save register
 482         right.load_nonconstant();
 483       }
 484     }
 485     rlock_result(x);
 486     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 487   }
 488 }
 489 
 490 // for: _iadd, _imul, _isub, _idiv, _irem
 491 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 492 
 493   // Test if instr is commutative and if we should swap
 494   LIRItem left(x->x(),  this);
 495   LIRItem right(x->y(), this);
 496   LIRItem* left_arg = &left;
 497   LIRItem* right_arg = &right;
 498   if (x->is_commutative() && left.is_stack() && right.is_register()) {
 499     // swap them if left is real stack (or cached) and right is real register(not cached)
 500     left_arg = &right;
 501     right_arg = &left;
 502   }
 503 
 504   left_arg->load_item();
 505 
 506   // do not need to load right, as we can handle stack and constants
 507   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 508 
 509     right_arg->load_item();
 510     rlock_result(x);
 511 
 512     CodeEmitInfo* info = state_for(x);
 513     LIR_Opr tmp = new_register(T_INT);
 514     __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
 515     __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 516     info = state_for(x);
 517 
 518     if (x->op() == Bytecodes::_irem) {
 519       __ irem(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
 520     } else if (x->op() == Bytecodes::_idiv) {
 521       __ idiv(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
 522     }
 523 
 524   } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
 525     if (right.is_constant()
 526         && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
 527       right.load_nonconstant();
 528     } else {
 529       right.load_item();
 530     }
 531     rlock_result(x);
 532     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
 533   } else {
 534     assert (x->op() == Bytecodes::_imul, "expect imul");
 535     if (right.is_constant()) {
 536       jint c = right.get_jint_constant();
 537       if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
 538         right_arg->dont_load_item();
 539       } else {
 540         // Cannot use constant op.
 541         right_arg->load_item();
 542       }
 543     } else {
 544       right.load_item();
 545     }
 546     rlock_result(x);
 547     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
 548   }
 549 }
 550 
 551 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 552   // when an operand with use count 1 is the left operand, then it is
 553   // likely that no move for 2-operand-LIR-form is necessary
 554   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 555     x->swap_operands();
 556   }
 557 
 558   ValueTag tag = x->type()->tag();
 559   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 560   switch (tag) {
 561     case floatTag:
 562     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 563     case longTag:    do_ArithmeticOp_Long(x); return;
 564     case intTag:     do_ArithmeticOp_Int(x);  return;
 565   }
 566   ShouldNotReachHere();
 567 }
 568 
 569 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 570 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 571 
 572   LIRItem left(x->x(),  this);
 573   LIRItem right(x->y(), this);
 574 
 575   left.load_item();
 576 
 577   rlock_result(x);
 578   if (right.is_constant()) {
 579     right.dont_load_item();
 580 
 581     switch (x->op()) {
 582     case Bytecodes::_ishl: {
 583       int c = right.get_jint_constant() & 0x1f;
 584       __ shift_left(left.result(), c, x->operand());
 585       break;
 586     }
 587     case Bytecodes::_ishr: {
 588       int c = right.get_jint_constant() & 0x1f;
 589       __ shift_right(left.result(), c, x->operand());
 590       break;
 591     }
 592     case Bytecodes::_iushr: {
 593       int c = right.get_jint_constant() & 0x1f;
 594       __ unsigned_shift_right(left.result(), c, x->operand());
 595       break;
 596     }
 597     case Bytecodes::_lshl: {
 598       int c = right.get_jint_constant() & 0x3f;
 599       __ shift_left(left.result(), c, x->operand());
 600       break;
 601     }
 602     case Bytecodes::_lshr: {
 603       int c = right.get_jint_constant() & 0x3f;
 604       __ shift_right(left.result(), c, x->operand());
 605       break;
 606     }
 607     case Bytecodes::_lushr: {
 608       int c = right.get_jint_constant() & 0x3f;
 609       __ unsigned_shift_right(left.result(), c, x->operand());
 610       break;
 611     }
 612     default:
 613       ShouldNotReachHere();
 614     }
 615   } else {
 616     right.load_item();
 617     LIR_Opr tmp = new_register(T_INT);
 618     switch (x->op()) {
 619     case Bytecodes::_ishl: {
 620       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 621       __ shift_left(left.result(), tmp, x->operand(), tmp);
 622       break;
 623     }
 624     case Bytecodes::_ishr: {
 625       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 626       __ shift_right(left.result(), tmp, x->operand(), tmp);
 627       break;
 628     }
 629     case Bytecodes::_iushr: {
 630       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 631       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 632       break;
 633     }
 634     case Bytecodes::_lshl: {
 635       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 636       __ shift_left(left.result(), tmp, x->operand(), tmp);
 637       break;
 638     }
 639     case Bytecodes::_lshr: {
 640       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 641       __ shift_right(left.result(), tmp, x->operand(), tmp);
 642       break;
 643     }
 644     case Bytecodes::_lushr: {
 645       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 646       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 647       break;
 648     }
 649     default:
 650       ShouldNotReachHere();
 651     }
 652   }
 653 }
 654 
 655 // _iand, _land, _ior, _lor, _ixor, _lxor
 656 void LIRGenerator::do_LogicOp(LogicOp* x) {
 657 
 658   LIRItem left(x->x(),  this);
 659   LIRItem right(x->y(), this);
 660 
 661   left.load_item();
 662 
 663   rlock_result(x);
 664   if (right.is_constant()
 665       && ((right.type()->tag() == intTag
 666            && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
 667           || (right.type()->tag() == longTag
 668               && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant()))))  {
 669     right.dont_load_item();
 670   } else {
 671     right.load_item();
 672   }
 673   switch (x->op()) {
 674   case Bytecodes::_iand:
 675   case Bytecodes::_land:
 676     __ logical_and(left.result(), right.result(), x->operand()); break;
 677   case Bytecodes::_ior:
 678   case Bytecodes::_lor:
 679     __ logical_or (left.result(), right.result(), x->operand()); break;
 680   case Bytecodes::_ixor:
 681   case Bytecodes::_lxor:
 682     __ logical_xor(left.result(), right.result(), x->operand()); break;
 683   default: Unimplemented();
 684   }
 685 }
 686 
 687 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 688 void LIRGenerator::do_CompareOp(CompareOp* x) {
 689   LIRItem left(x->x(), this);
 690   LIRItem right(x->y(), this);
 691   ValueTag tag = x->x()->type()->tag();
 692   if (tag == longTag) {
 693     left.set_destroys_register();
 694   }
 695   left.load_item();
 696   right.load_item();
 697   LIR_Opr reg = rlock_result(x);
 698 
 699   if (x->x()->type()->is_float_kind()) {
 700     Bytecodes::Code code = x->op();
 701     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 702   } else if (x->x()->type()->tag() == longTag) {
 703     __ lcmp2int(left.result(), right.result(), reg);
 704   } else {
 705     Unimplemented();
 706   }
 707 }
 708 
 709 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 710   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 711   new_value.load_item();
 712   cmp_value.load_item();
 713   if (type == T_OBJECT || type == T_ARRAY) {
 714     __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT));
 715   } else if (type == T_INT) {
 716     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 717   } else if (type == T_LONG) {
 718     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 719   } else {
 720     ShouldNotReachHere();
 721     Unimplemented();
 722   }
 723   LIR_Opr result = new_register(T_INT);
 724   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 725            result, type);
 726   return result;
 727 }
 728 
 729 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
 730   bool is_oop = type == T_OBJECT || type == T_ARRAY;
 731   LIR_Opr result = new_register(type);
 732   value.load_item();
 733   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
 734   LIR_Opr tmp = new_register(T_INT);
 735   __ xchg(addr, value.result(), result, tmp);
 736   return result;
 737 }
 738 
 739 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
 740   LIR_Opr result = new_register(type);
 741   value.load_item();
 742   assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
 743   LIR_Opr tmp = new_register(T_INT);
 744   __ xadd(addr, value.result(), result, tmp);
 745   return result;
 746 }
 747 
 748 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 749   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 750   if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
 751       x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
 752       x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
 753       x->id() == vmIntrinsics::_dlog10) {
 754     do_LibmIntrinsic(x);
 755     return;
 756   }
 757   switch (x->id()) {
 758     case vmIntrinsics::_dabs:
 759     case vmIntrinsics::_dsqrt: {
 760       assert(x->number_of_arguments() == 1, "wrong type");
 761       LIRItem value(x->argument_at(0), this);
 762       value.load_item();
 763       LIR_Opr dst = rlock_result(x);
 764 
 765       switch (x->id()) {
 766         case vmIntrinsics::_dsqrt: {
 767           __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 768           break;
 769         }
 770         case vmIntrinsics::_dabs: {
 771           __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 772           break;
 773         }
 774       }
 775       break;
 776     }
 777   }
 778 }
 779 
 780 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
 781   LIRItem value(x->argument_at(0), this);
 782   value.set_destroys_register();
 783 
 784   LIR_Opr calc_result = rlock_result(x);
 785   LIR_Opr result_reg = result_register_for(x->type());
 786 
 787   CallingConvention* cc = NULL;
 788 
 789   if (x->id() == vmIntrinsics::_dpow) {
 790     LIRItem value1(x->argument_at(1), this);
 791 
 792     value1.set_destroys_register();
 793 
 794     BasicTypeList signature(2);
 795     signature.append(T_DOUBLE);
 796     signature.append(T_DOUBLE);
 797     cc = frame_map()->c_calling_convention(&signature);
 798     value.load_item_force(cc->at(0));
 799     value1.load_item_force(cc->at(1));
 800   } else {
 801     BasicTypeList signature(1);
 802     signature.append(T_DOUBLE);
 803     cc = frame_map()->c_calling_convention(&signature);
 804     value.load_item_force(cc->at(0));
 805   }
 806 
 807   switch (x->id()) {
 808     case vmIntrinsics::_dexp:
 809       if (StubRoutines::dexp() != NULL) {
 810         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 811       } else {
 812         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
 813       }
 814       break;
 815     case vmIntrinsics::_dlog:
 816       if (StubRoutines::dlog() != NULL) {
 817         __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
 818       } else {
 819         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
 820       }
 821       break;
 822     case vmIntrinsics::_dlog10:
 823       if (StubRoutines::dlog10() != NULL) {
 824         __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
 825       } else {
 826         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
 827       }
 828       break;
 829     case vmIntrinsics::_dpow:
 830       if (StubRoutines::dpow() != NULL) {
 831         __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
 832       } else {
 833         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
 834       }
 835       break;
 836     case vmIntrinsics::_dsin:
 837       if (StubRoutines::dsin() != NULL) {
 838         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
 839       } else {
 840         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
 841       }
 842       break;
 843     case vmIntrinsics::_dcos:
 844       if (StubRoutines::dcos() != NULL) {
 845         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
 846       } else {
 847         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
 848       }
 849       break;
 850     case vmIntrinsics::_dtan:
 851       if (StubRoutines::dtan() != NULL) {
 852         __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
 853       } else {
 854         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
 855       }
 856       break;
 857     default:  ShouldNotReachHere();
 858   }
 859   __ move(result_reg, calc_result);
 860 }
 861 
 862 
 863 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 864   assert(x->number_of_arguments() == 5, "wrong type");
 865 
 866   // Make all state_for calls early since they can emit code
 867   CodeEmitInfo* info = state_for(x, x->state());
 868 
 869   LIRItem src(x->argument_at(0), this);
 870   LIRItem src_pos(x->argument_at(1), this);
 871   LIRItem dst(x->argument_at(2), this);
 872   LIRItem dst_pos(x->argument_at(3), this);
 873   LIRItem length(x->argument_at(4), this);
 874 
 875   // operands for arraycopy must use fixed registers, otherwise
 876   // LinearScan will fail allocation (because arraycopy always needs a
 877   // call)
 878 
 879   // The java calling convention will give us enough registers
 880   // so that on the stub side the args will be perfect already.
 881   // On the other slow/special case side we call C and the arg
 882   // positions are not similar enough to pick one as the best.
 883   // Also because the java calling convention is a "shifted" version
 884   // of the C convention we can process the java args trivially into C
 885   // args without worry of overwriting during the xfer
 886 
 887   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 888   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 889   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 890   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 891   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 892 
 893   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 894 
 895   set_no_result(x);
 896 
 897   int flags;
 898   ciArrayKlass* expected_type;
 899   arraycopy_helper(x, &flags, &expected_type);
 900 
 901   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 902 }
 903 
 904 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 905   assert(UseCRC32Intrinsics, "why are we here?");
 906   // Make all state_for calls early since they can emit code
 907   LIR_Opr result = rlock_result(x);
 908   int flags = 0;
 909   switch (x->id()) {
 910     case vmIntrinsics::_updateCRC32: {
 911       LIRItem crc(x->argument_at(0), this);
 912       LIRItem val(x->argument_at(1), this);
 913       // val is destroyed by update_crc32
 914       val.set_destroys_register();
 915       crc.load_item();
 916       val.load_item();
 917       __ update_crc32(crc.result(), val.result(), result);
 918       break;
 919     }
 920     case vmIntrinsics::_updateBytesCRC32:
 921     case vmIntrinsics::_updateByteBufferCRC32: {
 922       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 923 
 924       LIRItem crc(x->argument_at(0), this);
 925       LIRItem buf(x->argument_at(1), this);
 926       LIRItem off(x->argument_at(2), this);
 927       LIRItem len(x->argument_at(3), this);
 928       buf.load_item();
 929       off.load_nonconstant();
 930 
 931       LIR_Opr index = off.result();
 932       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 933       if(off.result()->is_constant()) {
 934         index = LIR_OprFact::illegalOpr;
 935        offset += off.result()->as_jint();
 936       }
 937       LIR_Opr base_op = buf.result();
 938 
 939       if (index->is_valid()) {
 940         LIR_Opr tmp = new_register(T_LONG);
 941         __ convert(Bytecodes::_i2l, index, tmp);
 942         index = tmp;
 943       }
 944 
 945       if (is_updateBytes) {
 946         base_op = access_resolve_for_read(IN_HEAP, base_op, NULL);
 947       }
 948 
 949       if (offset) {
 950         LIR_Opr tmp = new_pointer_register();
 951         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
 952         base_op = tmp;
 953         offset = 0;
 954       }
 955 
 956       LIR_Address* a = new LIR_Address(base_op,
 957                                        index,
 958                                        offset,
 959                                        T_BYTE);
 960       BasicTypeList signature(3);
 961       signature.append(T_INT);
 962       signature.append(T_ADDRESS);
 963       signature.append(T_INT);
 964       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 965       const LIR_Opr result_reg = result_register_for(x->type());
 966 
 967       LIR_Opr addr = new_pointer_register();
 968       __ leal(LIR_OprFact::address(a), addr);
 969 
 970       crc.load_item_force(cc->at(0));
 971       __ move(addr, cc->at(1));
 972       len.load_item_force(cc->at(2));
 973 
 974       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
 975       __ move(result_reg, result);
 976 
 977       break;
 978     }
 979     default: {
 980       ShouldNotReachHere();
 981     }
 982   }
 983 }
 984 
 985 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
 986   assert(UseCRC32CIntrinsics, "why are we here?");
 987   // Make all state_for calls early since they can emit code
 988   LIR_Opr result = rlock_result(x);
 989   int flags = 0;
 990   switch (x->id()) {
 991     case vmIntrinsics::_updateBytesCRC32C:
 992     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
 993       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
 994       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 995 
 996       LIRItem crc(x->argument_at(0), this);
 997       LIRItem buf(x->argument_at(1), this);
 998       LIRItem off(x->argument_at(2), this);
 999       LIRItem end(x->argument_at(3), this);
1000 
1001       buf.load_item();
1002       off.load_nonconstant();
1003       end.load_nonconstant();
1004 
1005       // len = end - off
1006       LIR_Opr len  = end.result();
1007       LIR_Opr tmpA = new_register(T_INT);
1008       LIR_Opr tmpB = new_register(T_INT);
1009       __ move(end.result(), tmpA);
1010       __ move(off.result(), tmpB);
1011       __ sub(tmpA, tmpB, tmpA);
1012       len = tmpA;
1013 
1014       LIR_Opr index = off.result();
1015       if(off.result()->is_constant()) {
1016         index = LIR_OprFact::illegalOpr;
1017         offset += off.result()->as_jint();
1018       }
1019       LIR_Opr base_op = buf.result();
1020 
1021       if (index->is_valid()) {
1022         LIR_Opr tmp = new_register(T_LONG);
1023         __ convert(Bytecodes::_i2l, index, tmp);
1024         index = tmp;
1025       }
1026 
1027       if (offset) {
1028         LIR_Opr tmp = new_pointer_register();
1029         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
1030         base_op = tmp;
1031         offset = 0;
1032       }
1033 
1034       LIR_Address* a = new LIR_Address(base_op,
1035                                        index,
1036                                        offset,
1037                                        T_BYTE);
1038       BasicTypeList signature(3);
1039       signature.append(T_INT);
1040       signature.append(T_ADDRESS);
1041       signature.append(T_INT);
1042       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1043       const LIR_Opr result_reg = result_register_for(x->type());
1044 
1045       LIR_Opr addr = new_pointer_register();
1046       __ leal(LIR_OprFact::address(a), addr);
1047 
1048       crc.load_item_force(cc->at(0));
1049       __ move(addr, cc->at(1));
1050       __ move(len, cc->at(2));
1051 
1052       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
1053       __ move(result_reg, result);
1054 
1055       break;
1056     }
1057     default: {
1058       ShouldNotReachHere();
1059     }
1060   }
1061 }
1062 
1063 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
1064   assert(x->number_of_arguments() == 3, "wrong type");
1065   assert(UseFMA, "Needs FMA instructions support.");
1066   LIRItem value(x->argument_at(0), this);
1067   LIRItem value1(x->argument_at(1), this);
1068   LIRItem value2(x->argument_at(2), this);
1069 
1070   value.load_item();
1071   value1.load_item();
1072   value2.load_item();
1073 
1074   LIR_Opr calc_input = value.result();
1075   LIR_Opr calc_input1 = value1.result();
1076   LIR_Opr calc_input2 = value2.result();
1077   LIR_Opr calc_result = rlock_result(x);
1078 
1079   switch (x->id()) {
1080   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
1081   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
1082   default:                    ShouldNotReachHere();
1083   }
1084 }
1085 
1086 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1087   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1088 }
1089 
1090 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1091 // _i2b, _i2c, _i2s
1092 void LIRGenerator::do_Convert(Convert* x) {
1093   LIRItem value(x->value(), this);
1094   value.load_item();
1095   LIR_Opr input = value.result();
1096   LIR_Opr result = rlock(x);
1097 
1098   // arguments of lir_convert
1099   LIR_Opr conv_input = input;
1100   LIR_Opr conv_result = result;
1101   ConversionStub* stub = NULL;
1102 
1103   __ convert(x->op(), conv_input, conv_result);
1104 
1105   assert(result->is_virtual(), "result must be virtual register");
1106   set_result(x, result);
1107 }
1108 
1109 void LIRGenerator::do_NewInstance(NewInstance* x) {
1110 #ifndef PRODUCT
1111   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1112     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1113   }
1114 #endif
1115   CodeEmitInfo* info = state_for(x, x->state());
1116   LIR_Opr reg = result_register_for(x->type());
1117   new_instance(reg, x->klass(), x->is_unresolved(),
1118                        FrameMap::r2_oop_opr,
1119                        FrameMap::r5_oop_opr,
1120                        FrameMap::r4_oop_opr,
1121                        LIR_OprFact::illegalOpr,
1122                        FrameMap::r3_metadata_opr, info);
1123   LIR_Opr result = rlock_result(x);
1124   __ move(reg, result);
1125 }
1126 
1127 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1128   CodeEmitInfo* info = state_for(x, x->state());
1129 
1130   LIRItem length(x->length(), this);
1131   length.load_item_force(FrameMap::r19_opr);
1132 
1133   LIR_Opr reg = result_register_for(x->type());
1134   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1135   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1136   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1137   LIR_Opr tmp4 = reg;
1138   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1139   LIR_Opr len = length.result();
1140   BasicType elem_type = x->elt_type();
1141 
1142   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1143 
1144   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1145   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1146 
1147   LIR_Opr result = rlock_result(x);
1148   __ move(reg, result);
1149 }
1150 
1151 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1152   LIRItem length(x->length(), this);
1153   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1154   // and therefore provide the state before the parameters have been consumed
1155   CodeEmitInfo* patching_info = NULL;
1156   if (!x->klass()->is_loaded() || PatchALot) {
1157     patching_info =  state_for(x, x->state_before());
1158   }
1159 
1160   CodeEmitInfo* info = state_for(x, x->state());
1161 
1162   LIR_Opr reg = result_register_for(x->type());
1163   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1164   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1165   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1166   LIR_Opr tmp4 = reg;
1167   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1168 
1169   length.load_item_force(FrameMap::r19_opr);
1170   LIR_Opr len = length.result();
1171 
1172   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1173   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1174   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1175     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1176   }
1177   klass2reg_with_patching(klass_reg, obj, patching_info);
1178   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1179 
1180   LIR_Opr result = rlock_result(x);
1181   __ move(reg, result);
1182 }
1183 
1184 
1185 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1186   Values* dims = x->dims();
1187   int i = dims->length();
1188   LIRItemList* items = new LIRItemList(i, i, NULL);
1189   while (i-- > 0) {
1190     LIRItem* size = new LIRItem(dims->at(i), this);
1191     items->at_put(i, size);
1192   }
1193 
1194   // Evaluate state_for early since it may emit code.
1195   CodeEmitInfo* patching_info = NULL;
1196   if (!x->klass()->is_loaded() || PatchALot) {
1197     patching_info = state_for(x, x->state_before());
1198 
1199     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1200     // clone all handlers (NOTE: Usually this is handled transparently
1201     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1202     // is done explicitly here because a stub isn't being used).
1203     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1204   }
1205   CodeEmitInfo* info = state_for(x, x->state());
1206 
1207   i = dims->length();
1208   while (i-- > 0) {
1209     LIRItem* size = items->at(i);
1210     size->load_item();
1211 
1212     store_stack_parameter(size->result(), in_ByteSize(i*4));
1213   }
1214 
1215   LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
1216   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1217 
1218   LIR_Opr rank = FrameMap::r19_opr;
1219   __ move(LIR_OprFact::intConst(x->rank()), rank);
1220   LIR_Opr varargs = FrameMap::r2_opr;
1221   __ move(FrameMap::sp_opr, varargs);
1222   LIR_OprList* args = new LIR_OprList(3);
1223   args->append(klass_reg);
1224   args->append(rank);
1225   args->append(varargs);
1226   LIR_Opr reg = result_register_for(x->type());
1227   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1228                   LIR_OprFact::illegalOpr,
1229                   reg, args, info);
1230 
1231   LIR_Opr result = rlock_result(x);
1232   __ move(reg, result);
1233 }
1234 
1235 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1236   // nothing to do for now
1237 }
1238 
1239 void LIRGenerator::do_CheckCast(CheckCast* x) {
1240   LIRItem obj(x->obj(), this);
1241 
1242   CodeEmitInfo* patching_info = NULL;
1243   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1244     // must do this before locking the destination register as an oop register,
1245     // and before the obj is loaded (the latter is for deoptimization)
1246     patching_info = state_for(x, x->state_before());
1247   }
1248   obj.load_item();
1249 
1250   // info for exceptions
1251   CodeEmitInfo* info_for_exception =
1252       (x->needs_exception_state() ? state_for(x) :
1253                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1254 
1255   CodeStub* stub;
1256   if (x->is_incompatible_class_change_check()) {
1257     assert(patching_info == NULL, "can't patch this");
1258     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1259   } else if (x->is_invokespecial_receiver_check()) {
1260     assert(patching_info == NULL, "can't patch this");
1261     stub = new DeoptimizeStub(info_for_exception,
1262                               Deoptimization::Reason_class_check,
1263                               Deoptimization::Action_none);
1264   } else {
1265     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1266   }
1267   LIR_Opr reg = rlock_result(x);
1268   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1269   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1270     tmp3 = new_register(objectType);
1271   }
1272   __ checkcast(reg, obj.result(), x->klass(),
1273                new_register(objectType), new_register(objectType), tmp3,
1274                x->direct_compare(), info_for_exception, patching_info, stub,
1275                x->profiled_method(), x->profiled_bci());
1276 }
1277 
1278 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1279   LIRItem obj(x->obj(), this);
1280 
1281   // result and test object may not be in same register
1282   LIR_Opr reg = rlock_result(x);
1283   CodeEmitInfo* patching_info = NULL;
1284   if ((!x->klass()->is_loaded() || PatchALot)) {
1285     // must do this before locking the destination register as an oop register
1286     patching_info = state_for(x, x->state_before());
1287   }
1288   obj.load_item();
1289   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1290   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1291     tmp3 = new_register(objectType);
1292   }
1293   __ instanceof(reg, obj.result(), x->klass(),
1294                 new_register(objectType), new_register(objectType), tmp3,
1295                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1296 }
1297 
1298 void LIRGenerator::do_If(If* x) {
1299   assert(x->number_of_sux() == 2, "inconsistency");
1300   ValueTag tag = x->x()->type()->tag();
1301   bool is_safepoint = x->is_safepoint();
1302 
1303   If::Condition cond = x->cond();
1304 
1305   LIRItem xitem(x->x(), this);
1306   LIRItem yitem(x->y(), this);
1307   LIRItem* xin = &xitem;
1308   LIRItem* yin = &yitem;
1309 
1310   if (tag == longTag) {
1311     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1312     // mirror for other conditions
1313     if (cond == If::gtr || cond == If::leq) {
1314       cond = Instruction::mirror(cond);
1315       xin = &yitem;
1316       yin = &xitem;
1317     }
1318     xin->set_destroys_register();
1319   }
1320   xin->load_item();
1321 
1322   if (tag == longTag) {
1323     if (yin->is_constant()
1324         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
1325       yin->dont_load_item();
1326     } else {
1327       yin->load_item();
1328     }
1329   } else if (tag == intTag) {
1330     if (yin->is_constant()
1331         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant()))  {
1332       yin->dont_load_item();
1333     } else {
1334       yin->load_item();
1335     }
1336   } else {
1337     yin->load_item();
1338   }
1339 
1340   set_no_result(x);
1341 
1342   LIR_Opr left = xin->result();
1343   LIR_Opr right = yin->result();
1344 
1345   // add safepoint before generating condition code so it can be recomputed
1346   if (x->is_safepoint()) {
1347     // increment backedge counter if needed
1348     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1349         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1350     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1351   }
1352 
1353   __ cmp(lir_cond(cond), left, right);
1354   // Generate branch profiling. Profiling code doesn't kill flags.
1355   profile_branch(x, cond);
1356   move_to_phi(x->state());
1357   if (x->x()->type()->is_float_kind()) {
1358     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1359   } else {
1360     __ branch(lir_cond(cond), right->type(), x->tsux());
1361   }
1362   assert(x->default_sux() == x->fsux(), "wrong destination above");
1363   __ jump(x->default_sux());
1364 }
1365 
1366 LIR_Opr LIRGenerator::getThreadPointer() {
1367    return FrameMap::as_pointer_opr(rthread);
1368 }
1369 
1370 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
1371 
1372 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1373                                         CodeEmitInfo* info) {
1374   __ volatile_store_mem_reg(value, address, info);
1375 }
1376 
1377 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1378                                        CodeEmitInfo* info) {
1379   // 8179954: We need to make sure that the code generated for
1380   // volatile accesses forms a sequentially-consistent set of
1381   // operations when combined with STLR and LDAR.  Without a leading
1382   // membar it's possible for a simple Dekker test to fail if loads
1383   // use LD;DMB but stores use STLR.  This can happen if C2 compiles
1384   // the stores in one method and C1 compiles the loads in another.
1385   if (! UseBarriersForVolatile) {
1386     __ membar();
1387   }
1388 
1389   __ volatile_load_mem_reg(address, result, info);
1390 }