1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "vmreg_x86.inline.hpp"
  44 
  45 
  46 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  47 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  48 // fast versions of NegF/NegD and AbsF/AbsD.
  49 
  50 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  51 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  52   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  53   // of 128-bits operands for SSE instructions.
  54   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  55   // Store the value to a 128-bits operand.
  56   operand[0] = lo;
  57   operand[1] = hi;
  58   return operand;
  59 }
  60 
  61 // Buffer for 128-bits masks used by SSE instructions.
  62 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  63 
  64 // Static initialization during VM startup.
  65 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  66 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  67 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  68 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  69 
  70 
  71 
  72 NEEDS_CLEANUP // remove this definitions ?
  73 const Register IC_Klass    = rax;   // where the IC klass is cached
  74 const Register SYNC_header = rax;   // synchronization header
  75 const Register SHIFT_count = rcx;   // where count for shift operations must be
  76 
  77 #define __ _masm->
  78 
  79 
  80 static void select_different_registers(Register preserve,
  81                                        Register extra,
  82                                        Register &tmp1,
  83                                        Register &tmp2) {
  84   if (tmp1 == preserve) {
  85     assert_different_registers(tmp1, tmp2, extra);
  86     tmp1 = extra;
  87   } else if (tmp2 == preserve) {
  88     assert_different_registers(tmp1, tmp2, extra);
  89     tmp2 = extra;
  90   }
  91   assert_different_registers(preserve, tmp1, tmp2);
  92 }
  93 
  94 
  95 
  96 static void select_different_registers(Register preserve,
  97                                        Register extra,
  98                                        Register &tmp1,
  99                                        Register &tmp2,
 100                                        Register &tmp3) {
 101   if (tmp1 == preserve) {
 102     assert_different_registers(tmp1, tmp2, tmp3, extra);
 103     tmp1 = extra;
 104   } else if (tmp2 == preserve) {
 105     assert_different_registers(tmp1, tmp2, tmp3, extra);
 106     tmp2 = extra;
 107   } else if (tmp3 == preserve) {
 108     assert_different_registers(tmp1, tmp2, tmp3, extra);
 109     tmp3 = extra;
 110   }
 111   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 112 }
 113 
 114 
 115 
 116 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 117   if (opr->is_constant()) {
 118     LIR_Const* constant = opr->as_constant_ptr();
 119     switch (constant->type()) {
 120       case T_INT: {
 121         return true;
 122       }
 123 
 124       default:
 125         return false;
 126     }
 127   }
 128   return false;
 129 }
 130 
 131 
 132 LIR_Opr LIR_Assembler::receiverOpr() {
 133   return FrameMap::receiver_opr;
 134 }
 135 
 136 LIR_Opr LIR_Assembler::osrBufferPointer() {
 137   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 138 }
 139 
 140 //--------------fpu register translations-----------------------
 141 
 142 
 143 address LIR_Assembler::float_constant(float f) {
 144   address const_addr = __ float_constant(f);
 145   if (const_addr == NULL) {
 146     bailout("const section overflow");
 147     return __ code()->consts()->start();
 148   } else {
 149     return const_addr;
 150   }
 151 }
 152 
 153 
 154 address LIR_Assembler::double_constant(double d) {
 155   address const_addr = __ double_constant(d);
 156   if (const_addr == NULL) {
 157     bailout("const section overflow");
 158     return __ code()->consts()->start();
 159   } else {
 160     return const_addr;
 161   }
 162 }
 163 
 164 
 165 void LIR_Assembler::set_24bit_FPU() {
 166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 167 }
 168 
 169 void LIR_Assembler::reset_FPU() {
 170   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 171 }
 172 
 173 void LIR_Assembler::fpop() {
 174   __ fpop();
 175 }
 176 
 177 void LIR_Assembler::fxch(int i) {
 178   __ fxch(i);
 179 }
 180 
 181 void LIR_Assembler::fld(int i) {
 182   __ fld_s(i);
 183 }
 184 
 185 void LIR_Assembler::ffree(int i) {
 186   __ ffree(i);
 187 }
 188 
 189 void LIR_Assembler::breakpoint() {
 190   __ int3();
 191 }
 192 
 193 void LIR_Assembler::push(LIR_Opr opr) {
 194   if (opr->is_single_cpu()) {
 195     __ push_reg(opr->as_register());
 196   } else if (opr->is_double_cpu()) {
 197     NOT_LP64(__ push_reg(opr->as_register_hi()));
 198     __ push_reg(opr->as_register_lo());
 199   } else if (opr->is_stack()) {
 200     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 201   } else if (opr->is_constant()) {
 202     LIR_Const* const_opr = opr->as_constant_ptr();
 203     if (const_opr->type() == T_OBJECT) {
 204       __ push_oop(const_opr->as_jobject());
 205     } else if (const_opr->type() == T_INT) {
 206       __ push_jint(const_opr->as_jint());
 207     } else {
 208       ShouldNotReachHere();
 209     }
 210 
 211   } else {
 212     ShouldNotReachHere();
 213   }
 214 }
 215 
 216 void LIR_Assembler::pop(LIR_Opr opr) {
 217   if (opr->is_single_cpu()) {
 218     __ pop_reg(opr->as_register());
 219   } else {
 220     ShouldNotReachHere();
 221   }
 222 }
 223 
 224 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 225   return addr->base()->is_illegal() && addr->index()->is_illegal();
 226 }
 227 
 228 //-------------------------------------------
 229 
 230 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 231   return as_Address(addr, rscratch1);
 232 }
 233 
 234 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 235   if (addr->base()->is_illegal()) {
 236     assert(addr->index()->is_illegal(), "must be illegal too");
 237     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 238     if (! __ reachable(laddr)) {
 239       __ movptr(tmp, laddr.addr());
 240       Address res(tmp, 0);
 241       return res;
 242     } else {
 243       return __ as_Address(laddr);
 244     }
 245   }
 246 
 247   Register base = addr->base()->as_pointer_register();
 248 
 249   if (addr->index()->is_illegal()) {
 250     return Address( base, addr->disp());
 251   } else if (addr->index()->is_cpu_register()) {
 252     Register index = addr->index()->as_pointer_register();
 253     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 254   } else if (addr->index()->is_constant()) {
 255     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 256     assert(Assembler::is_simm32(addr_offset), "must be");
 257 
 258     return Address(base, addr_offset);
 259   } else {
 260     Unimplemented();
 261     return Address();
 262   }
 263 }
 264 
 265 
 266 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 267   Address base = as_Address(addr);
 268   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 269 }
 270 
 271 
 272 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 273   return as_Address(addr);
 274 }
 275 
 276 
 277 void LIR_Assembler::osr_entry() {
 278   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 279   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 280   ValueStack* entry_state = osr_entry->state();
 281   int number_of_locks = entry_state->locks_size();
 282 
 283   // we jump here if osr happens with the interpreter
 284   // state set up to continue at the beginning of the
 285   // loop that triggered osr - in particular, we have
 286   // the following registers setup:
 287   //
 288   // rcx: osr buffer
 289   //
 290 
 291   // build frame
 292   ciMethod* m = compilation()->method();
 293   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 294 
 295   // OSR buffer is
 296   //
 297   // locals[nlocals-1..0]
 298   // monitors[0..number_of_locks]
 299   //
 300   // locals is a direct copy of the interpreter frame so in the osr buffer
 301   // so first slot in the local array is the last local from the interpreter
 302   // and last slot is local[0] (receiver) from the interpreter
 303   //
 304   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 305   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 306   // in the interpreter frame (the method lock if a sync method)
 307 
 308   // Initialize monitors in the compiled activation.
 309   //   rcx: pointer to osr buffer
 310   //
 311   // All other registers are dead at this point and the locals will be
 312   // copied into place by code emitted in the IR.
 313 
 314   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 315   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 316     int monitor_offset = BytesPerWord * method()->max_locals() +
 317       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 318     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 319     // the OSR buffer using 2 word entries: first the lock and then
 320     // the oop.
 321     for (int i = 0; i < number_of_locks; i++) {
 322       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 323 #ifdef ASSERT
 324       // verify the interpreter's monitor has a non-null object
 325       {
 326         Label L;
 327         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 328         __ jcc(Assembler::notZero, L);
 329         __ stop("locked object is NULL");
 330         __ bind(L);
 331       }
 332 #endif
 333       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 334       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 335       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 336       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 337     }
 338   }
 339 }
 340 
 341 
 342 // inline cache check; done before the frame is built.
 343 int LIR_Assembler::check_icache() {
 344   Register receiver = FrameMap::receiver_opr->as_register();
 345   Register ic_klass = IC_Klass;
 346   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 347   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 348   if (!do_post_padding) {
 349     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 350     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 351   }
 352   int offset = __ offset();
 353   __ inline_cache_check(receiver, IC_Klass);
 354   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 355   if (do_post_padding) {
 356     // force alignment after the cache check.
 357     // It's been verified to be aligned if !VerifyOops
 358     __ align(CodeEntryAlignment);
 359   }
 360   return offset;
 361 }
 362 
 363 
 364 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 365   jobject o = NULL;
 366   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 367   __ movoop(reg, o);
 368   patching_epilog(patch, lir_patch_normal, reg, info);
 369 }
 370 
 371 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 372   Metadata* o = NULL;
 373   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 374   __ mov_metadata(reg, o);
 375   patching_epilog(patch, lir_patch_normal, reg, info);
 376 }
 377 
 378 // This specifies the rsp decrement needed to build the frame
 379 int LIR_Assembler::initial_frame_size_in_bytes() const {
 380   // if rounding, must let FrameMap know!
 381 
 382   // The frame_map records size in slots (32bit word)
 383 
 384   // subtract two words to account for return address and link
 385   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 386 }
 387 
 388 
 389 int LIR_Assembler::emit_exception_handler() {
 390   // if the last instruction is a call (typically to do a throw which
 391   // is coming at the end after block reordering) the return address
 392   // must still point into the code area in order to avoid assertion
 393   // failures when searching for the corresponding bci => add a nop
 394   // (was bug 5/14/1999 - gri)
 395   __ nop();
 396 
 397   // generate code for exception handler
 398   address handler_base = __ start_a_stub(exception_handler_size());
 399   if (handler_base == NULL) {
 400     // not enough space left for the handler
 401     bailout("exception handler overflow");
 402     return -1;
 403   }
 404 
 405   int offset = code_offset();
 406 
 407   // the exception oop and pc are in rax, and rdx
 408   // no other registers need to be preserved, so invalidate them
 409   __ invalidate_registers(false, true, true, false, true, true);
 410 
 411   // check that there is really an exception
 412   __ verify_not_null_oop(rax);
 413 
 414   // search an exception handler (rax: exception oop, rdx: throwing pc)
 415   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 416   __ should_not_reach_here();
 417   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 418   __ end_a_stub();
 419 
 420   return offset;
 421 }
 422 
 423 
 424 // Emit the code to remove the frame from the stack in the exception
 425 // unwind path.
 426 int LIR_Assembler::emit_unwind_handler() {
 427 #ifndef PRODUCT
 428   if (CommentedAssembly) {
 429     _masm->block_comment("Unwind handler");
 430   }
 431 #endif
 432 
 433   int offset = code_offset();
 434 
 435   // Fetch the exception from TLS and clear out exception related thread state
 436   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 437   NOT_LP64(__ get_thread(rsi));
 438   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 439   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 440   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 441 
 442   __ bind(_unwind_handler_entry);
 443   __ verify_not_null_oop(rax);
 444   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 445     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 446   }
 447 
 448   // Preform needed unlocking
 449   MonitorExitStub* stub = NULL;
 450   if (method()->is_synchronized()) {
 451     monitor_address(0, FrameMap::rax_opr);
 452     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 453     __ unlock_object(rdi, rsi, rax, *stub->entry());
 454     __ bind(*stub->continuation());
 455   }
 456 
 457   if (compilation()->env()->dtrace_method_probes()) {
 458 #ifdef _LP64
 459     __ mov(rdi, r15_thread);
 460     __ mov_metadata(rsi, method()->constant_encoding());
 461 #else
 462     __ get_thread(rax);
 463     __ movptr(Address(rsp, 0), rax);
 464     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 465 #endif
 466     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 467   }
 468 
 469   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 470     __ mov(rax, rbx);  // Restore the exception
 471   }
 472 
 473   // remove the activation and dispatch to the unwind handler
 474   __ remove_frame(initial_frame_size_in_bytes());
 475   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 476 
 477   // Emit the slow path assembly
 478   if (stub != NULL) {
 479     stub->emit_code(this);
 480   }
 481 
 482   return offset;
 483 }
 484 
 485 
 486 int LIR_Assembler::emit_deopt_handler() {
 487   // if the last instruction is a call (typically to do a throw which
 488   // is coming at the end after block reordering) the return address
 489   // must still point into the code area in order to avoid assertion
 490   // failures when searching for the corresponding bci => add a nop
 491   // (was bug 5/14/1999 - gri)
 492   __ nop();
 493 
 494   // generate code for exception handler
 495   address handler_base = __ start_a_stub(deopt_handler_size());
 496   if (handler_base == NULL) {
 497     // not enough space left for the handler
 498     bailout("deopt handler overflow");
 499     return -1;
 500   }
 501 
 502   int offset = code_offset();
 503   InternalAddress here(__ pc());
 504 
 505   __ pushptr(here.addr());
 506   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 507   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 508   __ end_a_stub();
 509 
 510   return offset;
 511 }
 512 
 513 
 514 void LIR_Assembler::return_op(LIR_Opr result) {
 515   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 516   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 517     assert(result->fpu() == 0, "result must already be on TOS");
 518   }
 519 
 520   // Pop the stack before the safepoint code
 521   __ remove_frame(initial_frame_size_in_bytes());
 522 
 523   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 524     __ reserved_stack_check();
 525   }
 526 
 527   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 528 
 529   // Note: we do not need to round double result; float result has the right precision
 530   // the poll sets the condition code, but no data registers
 531 
 532   if (SafepointMechanism::uses_thread_local_poll()) {
 533 #ifdef _LP64
 534     const Register poll_addr = rscratch1;
 535     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 536 #else
 537     const Register poll_addr = rbx;
 538     assert(FrameMap::is_caller_save_register(poll_addr), "will overwrite");
 539     __ get_thread(poll_addr);
 540     __ movptr(poll_addr, Address(poll_addr, Thread::polling_page_offset()));
 541 #endif
 542     __ relocate(relocInfo::poll_return_type);
 543     __ testl(rax, Address(poll_addr, 0));
 544   } else {
 545     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 546 
 547     if (Assembler::is_polling_page_far()) {
 548       __ lea(rscratch1, polling_page);
 549       __ relocate(relocInfo::poll_return_type);
 550       __ testl(rax, Address(rscratch1, 0));
 551     } else {
 552       __ testl(rax, polling_page);
 553     }
 554   }
 555   __ ret(0);
 556 }
 557 
 558 
 559 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 560   guarantee(info != NULL, "Shouldn't be NULL");
 561   int offset = __ offset();
 562   if (SafepointMechanism::uses_thread_local_poll()) {
 563 #ifdef _LP64
 564     const Register poll_addr = rscratch1;
 565     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 566 #else
 567     assert(tmp->is_cpu_register(), "needed");
 568     const Register poll_addr = tmp->as_register();
 569     __ get_thread(poll_addr);
 570     __ movptr(poll_addr, Address(poll_addr, in_bytes(Thread::polling_page_offset())));
 571 #endif
 572     add_debug_info_for_branch(info);
 573     __ relocate(relocInfo::poll_type);
 574     address pre_pc = __ pc();
 575     __ testl(rax, Address(poll_addr, 0));
 576     address post_pc = __ pc();
 577     guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 578   } else {
 579     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 580     if (Assembler::is_polling_page_far()) {
 581       __ lea(rscratch1, polling_page);
 582       offset = __ offset();
 583       add_debug_info_for_branch(info);
 584       __ relocate(relocInfo::poll_type);
 585       __ testl(rax, Address(rscratch1, 0));
 586     } else {
 587       add_debug_info_for_branch(info);
 588       __ testl(rax, polling_page);
 589     }
 590   }
 591   return offset;
 592 }
 593 
 594 
 595 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 596   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 597 }
 598 
 599 void LIR_Assembler::swap_reg(Register a, Register b) {
 600   __ xchgptr(a, b);
 601 }
 602 
 603 
 604 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 605   assert(src->is_constant(), "should not call otherwise");
 606   assert(dest->is_register(), "should not call otherwise");
 607   LIR_Const* c = src->as_constant_ptr();
 608 
 609   switch (c->type()) {
 610     case T_INT: {
 611       assert(patch_code == lir_patch_none, "no patching handled here");
 612       __ movl(dest->as_register(), c->as_jint());
 613       break;
 614     }
 615 
 616     case T_ADDRESS: {
 617       assert(patch_code == lir_patch_none, "no patching handled here");
 618       __ movptr(dest->as_register(), c->as_jint());
 619       break;
 620     }
 621 
 622     case T_LONG: {
 623       assert(patch_code == lir_patch_none, "no patching handled here");
 624 #ifdef _LP64
 625       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 626 #else
 627       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 628       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 629 #endif // _LP64
 630       break;
 631     }
 632 
 633     case T_OBJECT: {
 634       if (patch_code != lir_patch_none) {
 635         jobject2reg_with_patching(dest->as_register(), info);
 636       } else {
 637         __ movoop(dest->as_register(), c->as_jobject());
 638       }
 639       break;
 640     }
 641 
 642     case T_METADATA: {
 643       if (patch_code != lir_patch_none) {
 644         klass2reg_with_patching(dest->as_register(), info);
 645       } else {
 646         __ mov_metadata(dest->as_register(), c->as_metadata());
 647       }
 648       break;
 649     }
 650 
 651     case T_FLOAT: {
 652       if (dest->is_single_xmm()) {
 653         if (c->is_zero_float()) {
 654           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 655         } else {
 656           __ movflt(dest->as_xmm_float_reg(),
 657                    InternalAddress(float_constant(c->as_jfloat())));
 658         }
 659       } else {
 660         assert(dest->is_single_fpu(), "must be");
 661         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 662         if (c->is_zero_float()) {
 663           __ fldz();
 664         } else if (c->is_one_float()) {
 665           __ fld1();
 666         } else {
 667           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 668         }
 669       }
 670       break;
 671     }
 672 
 673     case T_DOUBLE: {
 674       if (dest->is_double_xmm()) {
 675         if (c->is_zero_double()) {
 676           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 677         } else {
 678           __ movdbl(dest->as_xmm_double_reg(),
 679                     InternalAddress(double_constant(c->as_jdouble())));
 680         }
 681       } else {
 682         assert(dest->is_double_fpu(), "must be");
 683         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 684         if (c->is_zero_double()) {
 685           __ fldz();
 686         } else if (c->is_one_double()) {
 687           __ fld1();
 688         } else {
 689           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 690         }
 691       }
 692       break;
 693     }
 694 
 695     default:
 696       ShouldNotReachHere();
 697   }
 698 }
 699 
 700 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 701   assert(src->is_constant(), "should not call otherwise");
 702   assert(dest->is_stack(), "should not call otherwise");
 703   LIR_Const* c = src->as_constant_ptr();
 704 
 705   switch (c->type()) {
 706     case T_INT:  // fall through
 707     case T_FLOAT:
 708       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 709       break;
 710 
 711     case T_ADDRESS:
 712       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 713       break;
 714 
 715     case T_OBJECT:
 716       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 717       break;
 718 
 719     case T_LONG:  // fall through
 720     case T_DOUBLE:
 721 #ifdef _LP64
 722       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 723                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 724 #else
 725       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 726                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 727       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 728                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 729 #endif // _LP64
 730       break;
 731 
 732     default:
 733       ShouldNotReachHere();
 734   }
 735 }
 736 
 737 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 738   assert(src->is_constant(), "should not call otherwise");
 739   assert(dest->is_address(), "should not call otherwise");
 740   LIR_Const* c = src->as_constant_ptr();
 741   LIR_Address* addr = dest->as_address_ptr();
 742 
 743   int null_check_here = code_offset();
 744   switch (type) {
 745     case T_INT:    // fall through
 746     case T_FLOAT:
 747       __ movl(as_Address(addr), c->as_jint_bits());
 748       break;
 749 
 750     case T_ADDRESS:
 751       __ movptr(as_Address(addr), c->as_jint_bits());
 752       break;
 753 
 754     case T_OBJECT:  // fall through
 755     case T_ARRAY:
 756       if (c->as_jobject() == NULL) {
 757         if (UseCompressedOops && !wide) {
 758           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 759         } else {
 760 #ifdef _LP64
 761           __ xorptr(rscratch1, rscratch1);
 762           null_check_here = code_offset();
 763           __ movptr(as_Address(addr), rscratch1);
 764 #else
 765           __ movptr(as_Address(addr), NULL_WORD);
 766 #endif
 767         }
 768       } else {
 769         if (is_literal_address(addr)) {
 770           ShouldNotReachHere();
 771           __ movoop(as_Address(addr, noreg), c->as_jobject());
 772         } else {
 773 #ifdef _LP64
 774           __ movoop(rscratch1, c->as_jobject());
 775           if (UseCompressedOops && !wide) {
 776             __ encode_heap_oop(rscratch1);
 777             null_check_here = code_offset();
 778             __ movl(as_Address_lo(addr), rscratch1);
 779           } else {
 780             null_check_here = code_offset();
 781             __ movptr(as_Address_lo(addr), rscratch1);
 782           }
 783 #else
 784           __ movoop(as_Address(addr), c->as_jobject());
 785 #endif
 786         }
 787       }
 788       break;
 789 
 790     case T_LONG:    // fall through
 791     case T_DOUBLE:
 792 #ifdef _LP64
 793       if (is_literal_address(addr)) {
 794         ShouldNotReachHere();
 795         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 796       } else {
 797         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 798         null_check_here = code_offset();
 799         __ movptr(as_Address_lo(addr), r10);
 800       }
 801 #else
 802       // Always reachable in 32bit so this doesn't produce useless move literal
 803       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 804       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 805 #endif // _LP64
 806       break;
 807 
 808     case T_BOOLEAN: // fall through
 809     case T_BYTE:
 810       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 811       break;
 812 
 813     case T_CHAR:    // fall through
 814     case T_SHORT:
 815       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 816       break;
 817 
 818     default:
 819       ShouldNotReachHere();
 820   };
 821 
 822   if (info != NULL) {
 823     add_debug_info_for_null_check(null_check_here, info);
 824   }
 825 }
 826 
 827 
 828 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 829   assert(src->is_register(), "should not call otherwise");
 830   assert(dest->is_register(), "should not call otherwise");
 831 
 832   // move between cpu-registers
 833   if (dest->is_single_cpu()) {
 834 #ifdef _LP64
 835     if (src->type() == T_LONG) {
 836       // Can do LONG -> OBJECT
 837       move_regs(src->as_register_lo(), dest->as_register());
 838       return;
 839     }
 840 #endif
 841     assert(src->is_single_cpu(), "must match");
 842     if (src->type() == T_OBJECT) {
 843       __ verify_oop(src->as_register());
 844     }
 845     move_regs(src->as_register(), dest->as_register());
 846 
 847   } else if (dest->is_double_cpu()) {
 848 #ifdef _LP64
 849     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 850       // Surprising to me but we can see move of a long to t_object
 851       __ verify_oop(src->as_register());
 852       move_regs(src->as_register(), dest->as_register_lo());
 853       return;
 854     }
 855 #endif
 856     assert(src->is_double_cpu(), "must match");
 857     Register f_lo = src->as_register_lo();
 858     Register f_hi = src->as_register_hi();
 859     Register t_lo = dest->as_register_lo();
 860     Register t_hi = dest->as_register_hi();
 861 #ifdef _LP64
 862     assert(f_hi == f_lo, "must be same");
 863     assert(t_hi == t_lo, "must be same");
 864     move_regs(f_lo, t_lo);
 865 #else
 866     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 867 
 868 
 869     if (f_lo == t_hi && f_hi == t_lo) {
 870       swap_reg(f_lo, f_hi);
 871     } else if (f_hi == t_lo) {
 872       assert(f_lo != t_hi, "overwriting register");
 873       move_regs(f_hi, t_hi);
 874       move_regs(f_lo, t_lo);
 875     } else {
 876       assert(f_hi != t_lo, "overwriting register");
 877       move_regs(f_lo, t_lo);
 878       move_regs(f_hi, t_hi);
 879     }
 880 #endif // LP64
 881 
 882     // special moves from fpu-register to xmm-register
 883     // necessary for method results
 884   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 885     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 886     __ fld_s(Address(rsp, 0));
 887   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 888     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 889     __ fld_d(Address(rsp, 0));
 890   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 891     __ fstp_s(Address(rsp, 0));
 892     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 893   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 894     __ fstp_d(Address(rsp, 0));
 895     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 896 
 897     // move between xmm-registers
 898   } else if (dest->is_single_xmm()) {
 899     assert(src->is_single_xmm(), "must match");
 900     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 901   } else if (dest->is_double_xmm()) {
 902     assert(src->is_double_xmm(), "must match");
 903     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 904 
 905     // move between fpu-registers (no instruction necessary because of fpu-stack)
 906   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 907     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 908     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 909   } else {
 910     ShouldNotReachHere();
 911   }
 912 }
 913 
 914 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 915   assert(src->is_register(), "should not call otherwise");
 916   assert(dest->is_stack(), "should not call otherwise");
 917 
 918   if (src->is_single_cpu()) {
 919     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 920     if (type == T_OBJECT || type == T_ARRAY) {
 921       __ verify_oop(src->as_register());
 922       __ movptr (dst, src->as_register());
 923     } else if (type == T_METADATA) {
 924       __ movptr (dst, src->as_register());
 925     } else {
 926       __ movl (dst, src->as_register());
 927     }
 928 
 929   } else if (src->is_double_cpu()) {
 930     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 931     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 932     __ movptr (dstLO, src->as_register_lo());
 933     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 934 
 935   } else if (src->is_single_xmm()) {
 936     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 937     __ movflt(dst_addr, src->as_xmm_float_reg());
 938 
 939   } else if (src->is_double_xmm()) {
 940     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 941     __ movdbl(dst_addr, src->as_xmm_double_reg());
 942 
 943   } else if (src->is_single_fpu()) {
 944     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 945     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 946     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 947     else                   __ fst_s  (dst_addr);
 948 
 949   } else if (src->is_double_fpu()) {
 950     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 951     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 952     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 953     else                   __ fst_d  (dst_addr);
 954 
 955   } else {
 956     ShouldNotReachHere();
 957   }
 958 }
 959 
 960 
 961 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 962   LIR_Address* to_addr = dest->as_address_ptr();
 963   PatchingStub* patch = NULL;
 964   Register compressed_src = rscratch1;
 965 
 966   if (type == T_ARRAY || type == T_OBJECT) {
 967     __ verify_oop(src->as_register());
 968 #ifdef _LP64
 969     if (UseCompressedOops && !wide) {
 970       __ movptr(compressed_src, src->as_register());
 971       __ encode_heap_oop(compressed_src);
 972       if (patch_code != lir_patch_none) {
 973         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 974       }
 975     }
 976 #endif
 977   }
 978 
 979   if (patch_code != lir_patch_none) {
 980     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 981     Address toa = as_Address(to_addr);
 982     assert(toa.disp() != 0, "must have");
 983   }
 984 
 985   int null_check_here = code_offset();
 986   switch (type) {
 987     case T_FLOAT: {
 988       if (src->is_single_xmm()) {
 989         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 990       } else {
 991         assert(src->is_single_fpu(), "must be");
 992         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 993         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 994         else                    __ fst_s (as_Address(to_addr));
 995       }
 996       break;
 997     }
 998 
 999     case T_DOUBLE: {
1000       if (src->is_double_xmm()) {
1001         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1002       } else {
1003         assert(src->is_double_fpu(), "must be");
1004         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1005         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1006         else                    __ fst_d (as_Address(to_addr));
1007       }
1008       break;
1009     }
1010 
1011     case T_ARRAY:   // fall through
1012     case T_OBJECT:  // fall through
1013       if (UseCompressedOops && !wide) {
1014         __ movl(as_Address(to_addr), compressed_src);
1015       } else {
1016         __ movptr(as_Address(to_addr), src->as_register());
1017       }
1018       break;
1019     case T_METADATA:
1020       // We get here to store a method pointer to the stack to pass to
1021       // a dtrace runtime call. This can't work on 64 bit with
1022       // compressed klass ptrs: T_METADATA can be a compressed klass
1023       // ptr or a 64 bit method pointer.
1024       LP64_ONLY(ShouldNotReachHere());
1025       __ movptr(as_Address(to_addr), src->as_register());
1026       break;
1027     case T_ADDRESS:
1028       __ movptr(as_Address(to_addr), src->as_register());
1029       break;
1030     case T_INT:
1031       __ movl(as_Address(to_addr), src->as_register());
1032       break;
1033 
1034     case T_LONG: {
1035       Register from_lo = src->as_register_lo();
1036       Register from_hi = src->as_register_hi();
1037 #ifdef _LP64
1038       __ movptr(as_Address_lo(to_addr), from_lo);
1039 #else
1040       Register base = to_addr->base()->as_register();
1041       Register index = noreg;
1042       if (to_addr->index()->is_register()) {
1043         index = to_addr->index()->as_register();
1044       }
1045       if (base == from_lo || index == from_lo) {
1046         assert(base != from_hi, "can't be");
1047         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1048         __ movl(as_Address_hi(to_addr), from_hi);
1049         if (patch != NULL) {
1050           patching_epilog(patch, lir_patch_high, base, info);
1051           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1052           patch_code = lir_patch_low;
1053         }
1054         __ movl(as_Address_lo(to_addr), from_lo);
1055       } else {
1056         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1057         __ movl(as_Address_lo(to_addr), from_lo);
1058         if (patch != NULL) {
1059           patching_epilog(patch, lir_patch_low, base, info);
1060           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1061           patch_code = lir_patch_high;
1062         }
1063         __ movl(as_Address_hi(to_addr), from_hi);
1064       }
1065 #endif // _LP64
1066       break;
1067     }
1068 
1069     case T_BYTE:    // fall through
1070     case T_BOOLEAN: {
1071       Register src_reg = src->as_register();
1072       Address dst_addr = as_Address(to_addr);
1073       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1074       __ movb(dst_addr, src_reg);
1075       break;
1076     }
1077 
1078     case T_CHAR:    // fall through
1079     case T_SHORT:
1080       __ movw(as_Address(to_addr), src->as_register());
1081       break;
1082 
1083     default:
1084       ShouldNotReachHere();
1085   }
1086   if (info != NULL) {
1087     add_debug_info_for_null_check(null_check_here, info);
1088   }
1089 
1090   if (patch_code != lir_patch_none) {
1091     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1092   }
1093 }
1094 
1095 
1096 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1097   assert(src->is_stack(), "should not call otherwise");
1098   assert(dest->is_register(), "should not call otherwise");
1099 
1100   if (dest->is_single_cpu()) {
1101     if (type == T_ARRAY || type == T_OBJECT) {
1102       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1103       __ verify_oop(dest->as_register());
1104     } else if (type == T_METADATA) {
1105       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1106     } else {
1107       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1108     }
1109 
1110   } else if (dest->is_double_cpu()) {
1111     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1112     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1113     __ movptr(dest->as_register_lo(), src_addr_LO);
1114     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1115 
1116   } else if (dest->is_single_xmm()) {
1117     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1118     __ movflt(dest->as_xmm_float_reg(), src_addr);
1119 
1120   } else if (dest->is_double_xmm()) {
1121     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1122     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1123 
1124   } else if (dest->is_single_fpu()) {
1125     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1126     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1127     __ fld_s(src_addr);
1128 
1129   } else if (dest->is_double_fpu()) {
1130     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1131     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1132     __ fld_d(src_addr);
1133 
1134   } else {
1135     ShouldNotReachHere();
1136   }
1137 }
1138 
1139 
1140 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1141   if (src->is_single_stack()) {
1142     if (type == T_OBJECT || type == T_ARRAY) {
1143       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1144       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1145     } else {
1146 #ifndef _LP64
1147       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1148       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1149 #else
1150       //no pushl on 64bits
1151       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1152       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1153 #endif
1154     }
1155 
1156   } else if (src->is_double_stack()) {
1157 #ifdef _LP64
1158     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1159     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1160 #else
1161     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1162     // push and pop the part at src + wordSize, adding wordSize for the previous push
1163     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1164     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1165     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1166 #endif // _LP64
1167 
1168   } else {
1169     ShouldNotReachHere();
1170   }
1171 }
1172 
1173 
1174 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1175   assert(src->is_address(), "should not call otherwise");
1176   assert(dest->is_register(), "should not call otherwise");
1177 
1178   LIR_Address* addr = src->as_address_ptr();
1179   Address from_addr = as_Address(addr);
1180 
1181   if (addr->base()->type() == T_OBJECT) {
1182     __ verify_oop(addr->base()->as_pointer_register());
1183   }
1184 
1185   switch (type) {
1186     case T_BOOLEAN: // fall through
1187     case T_BYTE:    // fall through
1188     case T_CHAR:    // fall through
1189     case T_SHORT:
1190       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1191         // on pre P6 processors we may get partial register stalls
1192         // so blow away the value of to_rinfo before loading a
1193         // partial word into it.  Do it here so that it precedes
1194         // the potential patch point below.
1195         __ xorptr(dest->as_register(), dest->as_register());
1196       }
1197       break;
1198    default:
1199      break;
1200   }
1201 
1202   PatchingStub* patch = NULL;
1203   if (patch_code != lir_patch_none) {
1204     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1205     assert(from_addr.disp() != 0, "must have");
1206   }
1207   if (info != NULL) {
1208     add_debug_info_for_null_check_here(info);
1209   }
1210 
1211   switch (type) {
1212     case T_FLOAT: {
1213       if (dest->is_single_xmm()) {
1214         __ movflt(dest->as_xmm_float_reg(), from_addr);
1215       } else {
1216         assert(dest->is_single_fpu(), "must be");
1217         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1218         __ fld_s(from_addr);
1219       }
1220       break;
1221     }
1222 
1223     case T_DOUBLE: {
1224       if (dest->is_double_xmm()) {
1225         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1226       } else {
1227         assert(dest->is_double_fpu(), "must be");
1228         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1229         __ fld_d(from_addr);
1230       }
1231       break;
1232     }
1233 
1234     case T_OBJECT:  // fall through
1235     case T_ARRAY:   // fall through
1236       if (UseCompressedOops && !wide) {
1237         __ movl(dest->as_register(), from_addr);
1238       } else {
1239         __ movptr(dest->as_register(), from_addr);
1240       }
1241       break;
1242 
1243     case T_ADDRESS:
1244       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1245         __ movl(dest->as_register(), from_addr);
1246       } else {
1247         __ movptr(dest->as_register(), from_addr);
1248       }
1249       break;
1250     case T_INT:
1251       __ movl(dest->as_register(), from_addr);
1252       break;
1253 
1254     case T_LONG: {
1255       Register to_lo = dest->as_register_lo();
1256       Register to_hi = dest->as_register_hi();
1257 #ifdef _LP64
1258       __ movptr(to_lo, as_Address_lo(addr));
1259 #else
1260       Register base = addr->base()->as_register();
1261       Register index = noreg;
1262       if (addr->index()->is_register()) {
1263         index = addr->index()->as_register();
1264       }
1265       if ((base == to_lo && index == to_hi) ||
1266           (base == to_hi && index == to_lo)) {
1267         // addresses with 2 registers are only formed as a result of
1268         // array access so this code will never have to deal with
1269         // patches or null checks.
1270         assert(info == NULL && patch == NULL, "must be");
1271         __ lea(to_hi, as_Address(addr));
1272         __ movl(to_lo, Address(to_hi, 0));
1273         __ movl(to_hi, Address(to_hi, BytesPerWord));
1274       } else if (base == to_lo || index == to_lo) {
1275         assert(base != to_hi, "can't be");
1276         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1277         __ movl(to_hi, as_Address_hi(addr));
1278         if (patch != NULL) {
1279           patching_epilog(patch, lir_patch_high, base, info);
1280           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1281           patch_code = lir_patch_low;
1282         }
1283         __ movl(to_lo, as_Address_lo(addr));
1284       } else {
1285         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1286         __ movl(to_lo, as_Address_lo(addr));
1287         if (patch != NULL) {
1288           patching_epilog(patch, lir_patch_low, base, info);
1289           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1290           patch_code = lir_patch_high;
1291         }
1292         __ movl(to_hi, as_Address_hi(addr));
1293       }
1294 #endif // _LP64
1295       break;
1296     }
1297 
1298     case T_BOOLEAN: // fall through
1299     case T_BYTE: {
1300       Register dest_reg = dest->as_register();
1301       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1302       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1303         __ movsbl(dest_reg, from_addr);
1304       } else {
1305         __ movb(dest_reg, from_addr);
1306         __ shll(dest_reg, 24);
1307         __ sarl(dest_reg, 24);
1308       }
1309       break;
1310     }
1311 
1312     case T_CHAR: {
1313       Register dest_reg = dest->as_register();
1314       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1315       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1316         __ movzwl(dest_reg, from_addr);
1317       } else {
1318         __ movw(dest_reg, from_addr);
1319       }
1320       break;
1321     }
1322 
1323     case T_SHORT: {
1324       Register dest_reg = dest->as_register();
1325       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1326         __ movswl(dest_reg, from_addr);
1327       } else {
1328         __ movw(dest_reg, from_addr);
1329         __ shll(dest_reg, 16);
1330         __ sarl(dest_reg, 16);
1331       }
1332       break;
1333     }
1334 
1335     default:
1336       ShouldNotReachHere();
1337   }
1338 
1339   if (patch != NULL) {
1340     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1341   }
1342 
1343   if (type == T_ARRAY || type == T_OBJECT) {
1344 #ifdef _LP64
1345     if (UseCompressedOops && !wide) {
1346       __ decode_heap_oop(dest->as_register());
1347     }
1348 #endif
1349 
1350     // Load barrier has not yet been applied, so ZGC can't verify the oop here
1351     if (!UseZGC) {
1352       __ verify_oop(dest->as_register());
1353     }
1354   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1355 #ifdef _LP64
1356     if (UseCompressedClassPointers) {
1357       __ decode_klass_not_null(dest->as_register());
1358     }
1359 #endif
1360   }
1361 }
1362 
1363 
1364 NEEDS_CLEANUP; // This could be static?
1365 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1366   int elem_size = type2aelembytes(type);
1367   switch (elem_size) {
1368     case 1: return Address::times_1;
1369     case 2: return Address::times_2;
1370     case 4: return Address::times_4;
1371     case 8: return Address::times_8;
1372   }
1373   ShouldNotReachHere();
1374   return Address::no_scale;
1375 }
1376 
1377 
1378 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1379   switch (op->code()) {
1380     case lir_idiv:
1381     case lir_irem:
1382       arithmetic_idiv(op->code(),
1383                       op->in_opr1(),
1384                       op->in_opr2(),
1385                       op->in_opr3(),
1386                       op->result_opr(),
1387                       op->info());
1388       break;
1389     case lir_fmad:
1390       __ fmad(op->result_opr()->as_xmm_double_reg(),
1391               op->in_opr1()->as_xmm_double_reg(),
1392               op->in_opr2()->as_xmm_double_reg(),
1393               op->in_opr3()->as_xmm_double_reg());
1394       break;
1395     case lir_fmaf:
1396       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1397               op->in_opr1()->as_xmm_float_reg(),
1398               op->in_opr2()->as_xmm_float_reg(),
1399               op->in_opr3()->as_xmm_float_reg());
1400       break;
1401     default:      ShouldNotReachHere(); break;
1402   }
1403 }
1404 
1405 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1406 #ifdef ASSERT
1407   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1408   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1409   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1410 #endif
1411 
1412   if (op->cond() == lir_cond_always) {
1413     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1414     __ jmp (*(op->label()));
1415   } else {
1416     Assembler::Condition acond = Assembler::zero;
1417     if (op->code() == lir_cond_float_branch) {
1418       assert(op->ublock() != NULL, "must have unordered successor");
1419       __ jcc(Assembler::parity, *(op->ublock()->label()));
1420       switch(op->cond()) {
1421         case lir_cond_equal:        acond = Assembler::equal;      break;
1422         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1423         case lir_cond_less:         acond = Assembler::below;      break;
1424         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1425         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1426         case lir_cond_greater:      acond = Assembler::above;      break;
1427         default:                         ShouldNotReachHere();
1428       }
1429     } else {
1430       switch (op->cond()) {
1431         case lir_cond_equal:        acond = Assembler::equal;       break;
1432         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1433         case lir_cond_less:         acond = Assembler::less;        break;
1434         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1435         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1436         case lir_cond_greater:      acond = Assembler::greater;     break;
1437         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1438         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1439         default:                         ShouldNotReachHere();
1440       }
1441     }
1442     __ jcc(acond,*(op->label()));
1443   }
1444 }
1445 
1446 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1447   LIR_Opr src  = op->in_opr();
1448   LIR_Opr dest = op->result_opr();
1449 
1450   switch (op->bytecode()) {
1451     case Bytecodes::_i2l:
1452 #ifdef _LP64
1453       __ movl2ptr(dest->as_register_lo(), src->as_register());
1454 #else
1455       move_regs(src->as_register(), dest->as_register_lo());
1456       move_regs(src->as_register(), dest->as_register_hi());
1457       __ sarl(dest->as_register_hi(), 31);
1458 #endif // LP64
1459       break;
1460 
1461     case Bytecodes::_l2i:
1462 #ifdef _LP64
1463       __ movl(dest->as_register(), src->as_register_lo());
1464 #else
1465       move_regs(src->as_register_lo(), dest->as_register());
1466 #endif
1467       break;
1468 
1469     case Bytecodes::_i2b:
1470       move_regs(src->as_register(), dest->as_register());
1471       __ sign_extend_byte(dest->as_register());
1472       break;
1473 
1474     case Bytecodes::_i2c:
1475       move_regs(src->as_register(), dest->as_register());
1476       __ andl(dest->as_register(), 0xFFFF);
1477       break;
1478 
1479     case Bytecodes::_i2s:
1480       move_regs(src->as_register(), dest->as_register());
1481       __ sign_extend_short(dest->as_register());
1482       break;
1483 
1484 
1485     case Bytecodes::_f2d:
1486     case Bytecodes::_d2f:
1487       if (dest->is_single_xmm()) {
1488         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1489       } else if (dest->is_double_xmm()) {
1490         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1491       } else {
1492         assert(src->fpu() == dest->fpu(), "register must be equal");
1493         // do nothing (float result is rounded later through spilling)
1494       }
1495       break;
1496 
1497     case Bytecodes::_i2f:
1498     case Bytecodes::_i2d:
1499       if (dest->is_single_xmm()) {
1500         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1501       } else if (dest->is_double_xmm()) {
1502         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1503       } else {
1504         assert(dest->fpu() == 0, "result must be on TOS");
1505         __ movl(Address(rsp, 0), src->as_register());
1506         __ fild_s(Address(rsp, 0));
1507       }
1508       break;
1509 
1510     case Bytecodes::_f2i:
1511     case Bytecodes::_d2i:
1512       if (src->is_single_xmm()) {
1513         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1514       } else if (src->is_double_xmm()) {
1515         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1516       } else {
1517         assert(src->fpu() == 0, "input must be on TOS");
1518         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1519         __ fist_s(Address(rsp, 0));
1520         __ movl(dest->as_register(), Address(rsp, 0));
1521         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1522       }
1523 
1524       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1525       assert(op->stub() != NULL, "stub required");
1526       __ cmpl(dest->as_register(), 0x80000000);
1527       __ jcc(Assembler::equal, *op->stub()->entry());
1528       __ bind(*op->stub()->continuation());
1529       break;
1530 
1531     case Bytecodes::_l2f:
1532     case Bytecodes::_l2d:
1533       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1534       assert(dest->fpu() == 0, "result must be on TOS");
1535 
1536       __ movptr(Address(rsp, 0),            src->as_register_lo());
1537       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1538       __ fild_d(Address(rsp, 0));
1539       // float result is rounded later through spilling
1540       break;
1541 
1542     case Bytecodes::_f2l:
1543     case Bytecodes::_d2l:
1544       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1545       assert(src->fpu() == 0, "input must be on TOS");
1546       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1547 
1548       // instruction sequence too long to inline it here
1549       {
1550         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1551       }
1552       break;
1553 
1554     default: ShouldNotReachHere();
1555   }
1556 }
1557 
1558 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1559   if (op->init_check()) {
1560     add_debug_info_for_null_check_here(op->stub()->info());
1561     __ cmpb(Address(op->klass()->as_register(),
1562                     InstanceKlass::init_state_offset()),
1563                     InstanceKlass::fully_initialized);
1564     __ jcc(Assembler::notEqual, *op->stub()->entry());
1565   }
1566   __ allocate_object(op->obj()->as_register(),
1567                      op->tmp1()->as_register(),
1568                      op->tmp2()->as_register(),
1569                      op->header_size(),
1570                      op->object_size(),
1571                      op->klass()->as_register(),
1572                      *op->stub()->entry());
1573   __ bind(*op->stub()->continuation());
1574 }
1575 
1576 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1577   Register len =  op->len()->as_register();
1578   LP64_ONLY( __ movslq(len, len); )
1579 
1580   if (UseSlowPath ||
1581       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1582       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1583     __ jmp(*op->stub()->entry());
1584   } else {
1585     Register tmp1 = op->tmp1()->as_register();
1586     Register tmp2 = op->tmp2()->as_register();
1587     Register tmp3 = op->tmp3()->as_register();
1588     if (len == tmp1) {
1589       tmp1 = tmp3;
1590     } else if (len == tmp2) {
1591       tmp2 = tmp3;
1592     } else if (len == tmp3) {
1593       // everything is ok
1594     } else {
1595       __ mov(tmp3, len);
1596     }
1597     __ allocate_array(op->obj()->as_register(),
1598                       len,
1599                       tmp1,
1600                       tmp2,
1601                       arrayOopDesc::header_size(op->type()),
1602                       array_element_size(op->type()),
1603                       op->klass()->as_register(),
1604                       *op->stub()->entry());
1605   }
1606   __ bind(*op->stub()->continuation());
1607 }
1608 
1609 void LIR_Assembler::type_profile_helper(Register mdo,
1610                                         ciMethodData *md, ciProfileData *data,
1611                                         Register recv, Label* update_done) {
1612   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1613     Label next_test;
1614     // See if the receiver is receiver[n].
1615     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1616     __ jccb(Assembler::notEqual, next_test);
1617     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1618     __ addptr(data_addr, DataLayout::counter_increment);
1619     __ jmp(*update_done);
1620     __ bind(next_test);
1621   }
1622 
1623   // Didn't find receiver; find next empty slot and fill it in
1624   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1625     Label next_test;
1626     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1627     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1628     __ jccb(Assembler::notEqual, next_test);
1629     __ movptr(recv_addr, recv);
1630     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1631     __ jmp(*update_done);
1632     __ bind(next_test);
1633   }
1634 }
1635 
1636 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1637   // we always need a stub for the failure case.
1638   CodeStub* stub = op->stub();
1639   Register obj = op->object()->as_register();
1640   Register k_RInfo = op->tmp1()->as_register();
1641   Register klass_RInfo = op->tmp2()->as_register();
1642   Register dst = op->result_opr()->as_register();
1643   ciKlass* k = op->klass();
1644   Register Rtmp1 = noreg;
1645 
1646   // check if it needs to be profiled
1647   ciMethodData* md = NULL;
1648   ciProfileData* data = NULL;
1649 
1650   if (op->should_profile()) {
1651     ciMethod* method = op->profiled_method();
1652     assert(method != NULL, "Should have method");
1653     int bci = op->profiled_bci();
1654     md = method->method_data_or_null();
1655     assert(md != NULL, "Sanity");
1656     data = md->bci_to_data(bci);
1657     assert(data != NULL,                "need data for type check");
1658     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1659   }
1660   Label profile_cast_success, profile_cast_failure;
1661   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1662   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1663 
1664   if (obj == k_RInfo) {
1665     k_RInfo = dst;
1666   } else if (obj == klass_RInfo) {
1667     klass_RInfo = dst;
1668   }
1669   if (k->is_loaded() && !UseCompressedClassPointers) {
1670     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1671   } else {
1672     Rtmp1 = op->tmp3()->as_register();
1673     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1674   }
1675 
1676   assert_different_registers(obj, k_RInfo, klass_RInfo);
1677 
1678   __ cmpptr(obj, (int32_t)NULL_WORD);
1679   if (op->should_profile()) {
1680     Label not_null;
1681     __ jccb(Assembler::notEqual, not_null);
1682     // Object is null; update MDO and exit
1683     Register mdo  = klass_RInfo;
1684     __ mov_metadata(mdo, md->constant_encoding());
1685     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1686     int header_bits = BitData::null_seen_byte_constant();
1687     __ orb(data_addr, header_bits);
1688     __ jmp(*obj_is_null);
1689     __ bind(not_null);
1690   } else {
1691     __ jcc(Assembler::equal, *obj_is_null);
1692   }
1693 
1694   if (!k->is_loaded()) {
1695     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1696   } else {
1697 #ifdef _LP64
1698     __ mov_metadata(k_RInfo, k->constant_encoding());
1699 #endif // _LP64
1700   }
1701   __ verify_oop(obj);
1702 
1703   if (op->fast_check()) {
1704     // get object class
1705     // not a safepoint as obj null check happens earlier
1706 #ifdef _LP64
1707     if (UseCompressedClassPointers) {
1708       __ load_klass(Rtmp1, obj);
1709       __ cmpptr(k_RInfo, Rtmp1);
1710     } else {
1711       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1712     }
1713 #else
1714     if (k->is_loaded()) {
1715       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1716     } else {
1717       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1718     }
1719 #endif
1720     __ jcc(Assembler::notEqual, *failure_target);
1721     // successful cast, fall through to profile or jump
1722   } else {
1723     // get object class
1724     // not a safepoint as obj null check happens earlier
1725     __ load_klass(klass_RInfo, obj);
1726     if (k->is_loaded()) {
1727       // See if we get an immediate positive hit
1728 #ifdef _LP64
1729       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1730 #else
1731       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1732 #endif // _LP64
1733       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1734         __ jcc(Assembler::notEqual, *failure_target);
1735         // successful cast, fall through to profile or jump
1736       } else {
1737         // See if we get an immediate positive hit
1738         __ jcc(Assembler::equal, *success_target);
1739         // check for self
1740 #ifdef _LP64
1741         __ cmpptr(klass_RInfo, k_RInfo);
1742 #else
1743         __ cmpklass(klass_RInfo, k->constant_encoding());
1744 #endif // _LP64
1745         __ jcc(Assembler::equal, *success_target);
1746 
1747         __ push(klass_RInfo);
1748 #ifdef _LP64
1749         __ push(k_RInfo);
1750 #else
1751         __ pushklass(k->constant_encoding());
1752 #endif // _LP64
1753         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1754         __ pop(klass_RInfo);
1755         __ pop(klass_RInfo);
1756         // result is a boolean
1757         __ cmpl(klass_RInfo, 0);
1758         __ jcc(Assembler::equal, *failure_target);
1759         // successful cast, fall through to profile or jump
1760       }
1761     } else {
1762       // perform the fast part of the checking logic
1763       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1764       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1765       __ push(klass_RInfo);
1766       __ push(k_RInfo);
1767       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1768       __ pop(klass_RInfo);
1769       __ pop(k_RInfo);
1770       // result is a boolean
1771       __ cmpl(k_RInfo, 0);
1772       __ jcc(Assembler::equal, *failure_target);
1773       // successful cast, fall through to profile or jump
1774     }
1775   }
1776   if (op->should_profile()) {
1777     Register mdo  = klass_RInfo, recv = k_RInfo;
1778     __ bind(profile_cast_success);
1779     __ mov_metadata(mdo, md->constant_encoding());
1780     __ load_klass(recv, obj);
1781     Label update_done;
1782     type_profile_helper(mdo, md, data, recv, success);
1783     __ jmp(*success);
1784 
1785     __ bind(profile_cast_failure);
1786     __ mov_metadata(mdo, md->constant_encoding());
1787     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1788     __ subptr(counter_addr, DataLayout::counter_increment);
1789     __ jmp(*failure);
1790   }
1791   __ jmp(*success);
1792 }
1793 
1794 
1795 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1796   LIR_Code code = op->code();
1797   if (code == lir_store_check) {
1798     Register value = op->object()->as_register();
1799     Register array = op->array()->as_register();
1800     Register k_RInfo = op->tmp1()->as_register();
1801     Register klass_RInfo = op->tmp2()->as_register();
1802     Register Rtmp1 = op->tmp3()->as_register();
1803 
1804     CodeStub* stub = op->stub();
1805 
1806     // check if it needs to be profiled
1807     ciMethodData* md = NULL;
1808     ciProfileData* data = NULL;
1809 
1810     if (op->should_profile()) {
1811       ciMethod* method = op->profiled_method();
1812       assert(method != NULL, "Should have method");
1813       int bci = op->profiled_bci();
1814       md = method->method_data_or_null();
1815       assert(md != NULL, "Sanity");
1816       data = md->bci_to_data(bci);
1817       assert(data != NULL,                "need data for type check");
1818       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1819     }
1820     Label profile_cast_success, profile_cast_failure, done;
1821     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1822     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1823 
1824     __ cmpptr(value, (int32_t)NULL_WORD);
1825     if (op->should_profile()) {
1826       Label not_null;
1827       __ jccb(Assembler::notEqual, not_null);
1828       // Object is null; update MDO and exit
1829       Register mdo  = klass_RInfo;
1830       __ mov_metadata(mdo, md->constant_encoding());
1831       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1832       int header_bits = BitData::null_seen_byte_constant();
1833       __ orb(data_addr, header_bits);
1834       __ jmp(done);
1835       __ bind(not_null);
1836     } else {
1837       __ jcc(Assembler::equal, done);
1838     }
1839 
1840     add_debug_info_for_null_check_here(op->info_for_exception());
1841     __ load_klass(k_RInfo, array);
1842     __ load_klass(klass_RInfo, value);
1843 
1844     // get instance klass (it's already uncompressed)
1845     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1846     // perform the fast part of the checking logic
1847     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1848     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1849     __ push(klass_RInfo);
1850     __ push(k_RInfo);
1851     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1852     __ pop(klass_RInfo);
1853     __ pop(k_RInfo);
1854     // result is a boolean
1855     __ cmpl(k_RInfo, 0);
1856     __ jcc(Assembler::equal, *failure_target);
1857     // fall through to the success case
1858 
1859     if (op->should_profile()) {
1860       Register mdo  = klass_RInfo, recv = k_RInfo;
1861       __ bind(profile_cast_success);
1862       __ mov_metadata(mdo, md->constant_encoding());
1863       __ load_klass(recv, value);
1864       Label update_done;
1865       type_profile_helper(mdo, md, data, recv, &done);
1866       __ jmpb(done);
1867 
1868       __ bind(profile_cast_failure);
1869       __ mov_metadata(mdo, md->constant_encoding());
1870       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1871       __ subptr(counter_addr, DataLayout::counter_increment);
1872       __ jmp(*stub->entry());
1873     }
1874 
1875     __ bind(done);
1876   } else
1877     if (code == lir_checkcast) {
1878       Register obj = op->object()->as_register();
1879       Register dst = op->result_opr()->as_register();
1880       Label success;
1881       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1882       __ bind(success);
1883       if (dst != obj) {
1884         __ mov(dst, obj);
1885       }
1886     } else
1887       if (code == lir_instanceof) {
1888         Register obj = op->object()->as_register();
1889         Register dst = op->result_opr()->as_register();
1890         Label success, failure, done;
1891         emit_typecheck_helper(op, &success, &failure, &failure);
1892         __ bind(failure);
1893         __ xorptr(dst, dst);
1894         __ jmpb(done);
1895         __ bind(success);
1896         __ movptr(dst, 1);
1897         __ bind(done);
1898       } else {
1899         ShouldNotReachHere();
1900       }
1901 
1902 }
1903 
1904 
1905 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1906   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1907     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1908     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1909     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1910     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1911     Register addr = op->addr()->as_register();
1912     if (os::is_MP()) {
1913       __ lock();
1914     }
1915     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1916 
1917   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1918     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1919     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1920     Register newval = op->new_value()->as_register();
1921     Register cmpval = op->cmp_value()->as_register();
1922     assert(cmpval == rax, "wrong register");
1923     assert(newval != NULL, "new val must be register");
1924     assert(cmpval != newval, "cmp and new values must be in different registers");
1925     assert(cmpval != addr, "cmp and addr must be in different registers");
1926     assert(newval != addr, "new value and addr must be in different registers");
1927 
1928     if ( op->code() == lir_cas_obj) {
1929       Register tmp1 = op->tmp1()->as_register();
1930       Register tmp2 = op->tmp2()->as_register();
1931       __ cmpxchg_oop(NULL, Address(addr, 0), cmpval, newval, true, true, tmp1, tmp2);
1932     } else {
1933       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1934       if (os::is_MP()) {
1935         __ lock();
1936       }
1937       __ cmpxchgl(newval, Address(addr, 0));
1938     }
1939 #ifdef _LP64
1940   } else if (op->code() == lir_cas_long) {
1941     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1942     Register newval = op->new_value()->as_register_lo();
1943     Register cmpval = op->cmp_value()->as_register_lo();
1944     assert(cmpval == rax, "wrong register");
1945     assert(newval != NULL, "new val must be register");
1946     assert(cmpval != newval, "cmp and new values must be in different registers");
1947     assert(cmpval != addr, "cmp and addr must be in different registers");
1948     assert(newval != addr, "new value and addr must be in different registers");
1949     if (os::is_MP()) {
1950       __ lock();
1951     }
1952     __ cmpxchgq(newval, Address(addr, 0));
1953 #endif // _LP64
1954   } else {
1955     Unimplemented();
1956   }
1957 }
1958 
1959 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1960   Assembler::Condition acond, ncond;
1961   switch (condition) {
1962     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1963     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1964     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1965     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1966     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1967     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1968     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1969     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1970     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1971                                 ShouldNotReachHere();
1972   }
1973 
1974   if (opr1->is_cpu_register()) {
1975     reg2reg(opr1, result);
1976   } else if (opr1->is_stack()) {
1977     stack2reg(opr1, result, result->type());
1978   } else if (opr1->is_constant()) {
1979     const2reg(opr1, result, lir_patch_none, NULL);
1980   } else {
1981     ShouldNotReachHere();
1982   }
1983 
1984   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1985     // optimized version that does not require a branch
1986     if (opr2->is_single_cpu()) {
1987       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1988       __ cmov(ncond, result->as_register(), opr2->as_register());
1989     } else if (opr2->is_double_cpu()) {
1990       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1991       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1992       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
1993       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
1994     } else if (opr2->is_single_stack()) {
1995       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
1996     } else if (opr2->is_double_stack()) {
1997       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
1998       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
1999     } else {
2000       ShouldNotReachHere();
2001     }
2002 
2003   } else {
2004     Label skip;
2005     __ jcc (acond, skip);
2006     if (opr2->is_cpu_register()) {
2007       reg2reg(opr2, result);
2008     } else if (opr2->is_stack()) {
2009       stack2reg(opr2, result, result->type());
2010     } else if (opr2->is_constant()) {
2011       const2reg(opr2, result, lir_patch_none, NULL);
2012     } else {
2013       ShouldNotReachHere();
2014     }
2015     __ bind(skip);
2016   }
2017 }
2018 
2019 
2020 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2021   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2022 
2023   if (left->is_single_cpu()) {
2024     assert(left == dest, "left and dest must be equal");
2025     Register lreg = left->as_register();
2026 
2027     if (right->is_single_cpu()) {
2028       // cpu register - cpu register
2029       Register rreg = right->as_register();
2030       switch (code) {
2031         case lir_add: __ addl (lreg, rreg); break;
2032         case lir_sub: __ subl (lreg, rreg); break;
2033         case lir_mul: __ imull(lreg, rreg); break;
2034         default:      ShouldNotReachHere();
2035       }
2036 
2037     } else if (right->is_stack()) {
2038       // cpu register - stack
2039       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2040       switch (code) {
2041         case lir_add: __ addl(lreg, raddr); break;
2042         case lir_sub: __ subl(lreg, raddr); break;
2043         default:      ShouldNotReachHere();
2044       }
2045 
2046     } else if (right->is_constant()) {
2047       // cpu register - constant
2048       jint c = right->as_constant_ptr()->as_jint();
2049       switch (code) {
2050         case lir_add: {
2051           __ incrementl(lreg, c);
2052           break;
2053         }
2054         case lir_sub: {
2055           __ decrementl(lreg, c);
2056           break;
2057         }
2058         default: ShouldNotReachHere();
2059       }
2060 
2061     } else {
2062       ShouldNotReachHere();
2063     }
2064 
2065   } else if (left->is_double_cpu()) {
2066     assert(left == dest, "left and dest must be equal");
2067     Register lreg_lo = left->as_register_lo();
2068     Register lreg_hi = left->as_register_hi();
2069 
2070     if (right->is_double_cpu()) {
2071       // cpu register - cpu register
2072       Register rreg_lo = right->as_register_lo();
2073       Register rreg_hi = right->as_register_hi();
2074       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2075       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2076       switch (code) {
2077         case lir_add:
2078           __ addptr(lreg_lo, rreg_lo);
2079           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2080           break;
2081         case lir_sub:
2082           __ subptr(lreg_lo, rreg_lo);
2083           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2084           break;
2085         case lir_mul:
2086 #ifdef _LP64
2087           __ imulq(lreg_lo, rreg_lo);
2088 #else
2089           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2090           __ imull(lreg_hi, rreg_lo);
2091           __ imull(rreg_hi, lreg_lo);
2092           __ addl (rreg_hi, lreg_hi);
2093           __ mull (rreg_lo);
2094           __ addl (lreg_hi, rreg_hi);
2095 #endif // _LP64
2096           break;
2097         default:
2098           ShouldNotReachHere();
2099       }
2100 
2101     } else if (right->is_constant()) {
2102       // cpu register - constant
2103 #ifdef _LP64
2104       jlong c = right->as_constant_ptr()->as_jlong_bits();
2105       __ movptr(r10, (intptr_t) c);
2106       switch (code) {
2107         case lir_add:
2108           __ addptr(lreg_lo, r10);
2109           break;
2110         case lir_sub:
2111           __ subptr(lreg_lo, r10);
2112           break;
2113         default:
2114           ShouldNotReachHere();
2115       }
2116 #else
2117       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2118       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2119       switch (code) {
2120         case lir_add:
2121           __ addptr(lreg_lo, c_lo);
2122           __ adcl(lreg_hi, c_hi);
2123           break;
2124         case lir_sub:
2125           __ subptr(lreg_lo, c_lo);
2126           __ sbbl(lreg_hi, c_hi);
2127           break;
2128         default:
2129           ShouldNotReachHere();
2130       }
2131 #endif // _LP64
2132 
2133     } else {
2134       ShouldNotReachHere();
2135     }
2136 
2137   } else if (left->is_single_xmm()) {
2138     assert(left == dest, "left and dest must be equal");
2139     XMMRegister lreg = left->as_xmm_float_reg();
2140 
2141     if (right->is_single_xmm()) {
2142       XMMRegister rreg = right->as_xmm_float_reg();
2143       switch (code) {
2144         case lir_add: __ addss(lreg, rreg);  break;
2145         case lir_sub: __ subss(lreg, rreg);  break;
2146         case lir_mul_strictfp: // fall through
2147         case lir_mul: __ mulss(lreg, rreg);  break;
2148         case lir_div_strictfp: // fall through
2149         case lir_div: __ divss(lreg, rreg);  break;
2150         default: ShouldNotReachHere();
2151       }
2152     } else {
2153       Address raddr;
2154       if (right->is_single_stack()) {
2155         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2156       } else if (right->is_constant()) {
2157         // hack for now
2158         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2159       } else {
2160         ShouldNotReachHere();
2161       }
2162       switch (code) {
2163         case lir_add: __ addss(lreg, raddr);  break;
2164         case lir_sub: __ subss(lreg, raddr);  break;
2165         case lir_mul_strictfp: // fall through
2166         case lir_mul: __ mulss(lreg, raddr);  break;
2167         case lir_div_strictfp: // fall through
2168         case lir_div: __ divss(lreg, raddr);  break;
2169         default: ShouldNotReachHere();
2170       }
2171     }
2172 
2173   } else if (left->is_double_xmm()) {
2174     assert(left == dest, "left and dest must be equal");
2175 
2176     XMMRegister lreg = left->as_xmm_double_reg();
2177     if (right->is_double_xmm()) {
2178       XMMRegister rreg = right->as_xmm_double_reg();
2179       switch (code) {
2180         case lir_add: __ addsd(lreg, rreg);  break;
2181         case lir_sub: __ subsd(lreg, rreg);  break;
2182         case lir_mul_strictfp: // fall through
2183         case lir_mul: __ mulsd(lreg, rreg);  break;
2184         case lir_div_strictfp: // fall through
2185         case lir_div: __ divsd(lreg, rreg);  break;
2186         default: ShouldNotReachHere();
2187       }
2188     } else {
2189       Address raddr;
2190       if (right->is_double_stack()) {
2191         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2192       } else if (right->is_constant()) {
2193         // hack for now
2194         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2195       } else {
2196         ShouldNotReachHere();
2197       }
2198       switch (code) {
2199         case lir_add: __ addsd(lreg, raddr);  break;
2200         case lir_sub: __ subsd(lreg, raddr);  break;
2201         case lir_mul_strictfp: // fall through
2202         case lir_mul: __ mulsd(lreg, raddr);  break;
2203         case lir_div_strictfp: // fall through
2204         case lir_div: __ divsd(lreg, raddr);  break;
2205         default: ShouldNotReachHere();
2206       }
2207     }
2208 
2209   } else if (left->is_single_fpu()) {
2210     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2211 
2212     if (right->is_single_fpu()) {
2213       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2214 
2215     } else {
2216       assert(left->fpu_regnr() == 0, "left must be on TOS");
2217       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2218 
2219       Address raddr;
2220       if (right->is_single_stack()) {
2221         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2222       } else if (right->is_constant()) {
2223         address const_addr = float_constant(right->as_jfloat());
2224         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2225         // hack for now
2226         raddr = __ as_Address(InternalAddress(const_addr));
2227       } else {
2228         ShouldNotReachHere();
2229       }
2230 
2231       switch (code) {
2232         case lir_add: __ fadd_s(raddr); break;
2233         case lir_sub: __ fsub_s(raddr); break;
2234         case lir_mul_strictfp: // fall through
2235         case lir_mul: __ fmul_s(raddr); break;
2236         case lir_div_strictfp: // fall through
2237         case lir_div: __ fdiv_s(raddr); break;
2238         default:      ShouldNotReachHere();
2239       }
2240     }
2241 
2242   } else if (left->is_double_fpu()) {
2243     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2244 
2245     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2246       // Double values require special handling for strictfp mul/div on x86
2247       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2248       __ fmulp(left->fpu_regnrLo() + 1);
2249     }
2250 
2251     if (right->is_double_fpu()) {
2252       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2253 
2254     } else {
2255       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2256       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2257 
2258       Address raddr;
2259       if (right->is_double_stack()) {
2260         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2261       } else if (right->is_constant()) {
2262         // hack for now
2263         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2264       } else {
2265         ShouldNotReachHere();
2266       }
2267 
2268       switch (code) {
2269         case lir_add: __ fadd_d(raddr); break;
2270         case lir_sub: __ fsub_d(raddr); break;
2271         case lir_mul_strictfp: // fall through
2272         case lir_mul: __ fmul_d(raddr); break;
2273         case lir_div_strictfp: // fall through
2274         case lir_div: __ fdiv_d(raddr); break;
2275         default: ShouldNotReachHere();
2276       }
2277     }
2278 
2279     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2280       // Double values require special handling for strictfp mul/div on x86
2281       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2282       __ fmulp(dest->fpu_regnrLo() + 1);
2283     }
2284 
2285   } else if (left->is_single_stack() || left->is_address()) {
2286     assert(left == dest, "left and dest must be equal");
2287 
2288     Address laddr;
2289     if (left->is_single_stack()) {
2290       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2291     } else if (left->is_address()) {
2292       laddr = as_Address(left->as_address_ptr());
2293     } else {
2294       ShouldNotReachHere();
2295     }
2296 
2297     if (right->is_single_cpu()) {
2298       Register rreg = right->as_register();
2299       switch (code) {
2300         case lir_add: __ addl(laddr, rreg); break;
2301         case lir_sub: __ subl(laddr, rreg); break;
2302         default:      ShouldNotReachHere();
2303       }
2304     } else if (right->is_constant()) {
2305       jint c = right->as_constant_ptr()->as_jint();
2306       switch (code) {
2307         case lir_add: {
2308           __ incrementl(laddr, c);
2309           break;
2310         }
2311         case lir_sub: {
2312           __ decrementl(laddr, c);
2313           break;
2314         }
2315         default: ShouldNotReachHere();
2316       }
2317     } else {
2318       ShouldNotReachHere();
2319     }
2320 
2321   } else {
2322     ShouldNotReachHere();
2323   }
2324 }
2325 
2326 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2327   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2328   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2329   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2330 
2331   bool left_is_tos = (left_index == 0);
2332   bool dest_is_tos = (dest_index == 0);
2333   int non_tos_index = (left_is_tos ? right_index : left_index);
2334 
2335   switch (code) {
2336     case lir_add:
2337       if (pop_fpu_stack)       __ faddp(non_tos_index);
2338       else if (dest_is_tos)    __ fadd (non_tos_index);
2339       else                     __ fadda(non_tos_index);
2340       break;
2341 
2342     case lir_sub:
2343       if (left_is_tos) {
2344         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2345         else if (dest_is_tos)  __ fsub  (non_tos_index);
2346         else                   __ fsubra(non_tos_index);
2347       } else {
2348         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2349         else if (dest_is_tos)  __ fsubr (non_tos_index);
2350         else                   __ fsuba (non_tos_index);
2351       }
2352       break;
2353 
2354     case lir_mul_strictfp: // fall through
2355     case lir_mul:
2356       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2357       else if (dest_is_tos)    __ fmul (non_tos_index);
2358       else                     __ fmula(non_tos_index);
2359       break;
2360 
2361     case lir_div_strictfp: // fall through
2362     case lir_div:
2363       if (left_is_tos) {
2364         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2365         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2366         else                   __ fdivra(non_tos_index);
2367       } else {
2368         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2369         else if (dest_is_tos)  __ fdivr (non_tos_index);
2370         else                   __ fdiva (non_tos_index);
2371       }
2372       break;
2373 
2374     case lir_rem:
2375       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2376       __ fremr(noreg);
2377       break;
2378 
2379     default:
2380       ShouldNotReachHere();
2381   }
2382 }
2383 
2384 
2385 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2386   if (value->is_double_xmm()) {
2387     switch(code) {
2388       case lir_abs :
2389         {
2390           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2391             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2392           }
2393           __ andpd(dest->as_xmm_double_reg(),
2394                     ExternalAddress((address)double_signmask_pool));
2395         }
2396         break;
2397 
2398       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2399       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2400       default      : ShouldNotReachHere();
2401     }
2402 
2403   } else if (value->is_double_fpu()) {
2404     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2405     switch(code) {
2406       case lir_abs   : __ fabs() ; break;
2407       case lir_sqrt  : __ fsqrt(); break;
2408       default      : ShouldNotReachHere();
2409     }
2410   } else {
2411     Unimplemented();
2412   }
2413 }
2414 
2415 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2416   // assert(left->destroys_register(), "check");
2417   if (left->is_single_cpu()) {
2418     Register reg = left->as_register();
2419     if (right->is_constant()) {
2420       int val = right->as_constant_ptr()->as_jint();
2421       switch (code) {
2422         case lir_logic_and: __ andl (reg, val); break;
2423         case lir_logic_or:  __ orl  (reg, val); break;
2424         case lir_logic_xor: __ xorl (reg, val); break;
2425         default: ShouldNotReachHere();
2426       }
2427     } else if (right->is_stack()) {
2428       // added support for stack operands
2429       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2430       switch (code) {
2431         case lir_logic_and: __ andl (reg, raddr); break;
2432         case lir_logic_or:  __ orl  (reg, raddr); break;
2433         case lir_logic_xor: __ xorl (reg, raddr); break;
2434         default: ShouldNotReachHere();
2435       }
2436     } else {
2437       Register rright = right->as_register();
2438       switch (code) {
2439         case lir_logic_and: __ andptr (reg, rright); break;
2440         case lir_logic_or : __ orptr  (reg, rright); break;
2441         case lir_logic_xor: __ xorptr (reg, rright); break;
2442         default: ShouldNotReachHere();
2443       }
2444     }
2445     move_regs(reg, dst->as_register());
2446   } else {
2447     Register l_lo = left->as_register_lo();
2448     Register l_hi = left->as_register_hi();
2449     if (right->is_constant()) {
2450 #ifdef _LP64
2451       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2452       switch (code) {
2453         case lir_logic_and:
2454           __ andq(l_lo, rscratch1);
2455           break;
2456         case lir_logic_or:
2457           __ orq(l_lo, rscratch1);
2458           break;
2459         case lir_logic_xor:
2460           __ xorq(l_lo, rscratch1);
2461           break;
2462         default: ShouldNotReachHere();
2463       }
2464 #else
2465       int r_lo = right->as_constant_ptr()->as_jint_lo();
2466       int r_hi = right->as_constant_ptr()->as_jint_hi();
2467       switch (code) {
2468         case lir_logic_and:
2469           __ andl(l_lo, r_lo);
2470           __ andl(l_hi, r_hi);
2471           break;
2472         case lir_logic_or:
2473           __ orl(l_lo, r_lo);
2474           __ orl(l_hi, r_hi);
2475           break;
2476         case lir_logic_xor:
2477           __ xorl(l_lo, r_lo);
2478           __ xorl(l_hi, r_hi);
2479           break;
2480         default: ShouldNotReachHere();
2481       }
2482 #endif // _LP64
2483     } else {
2484 #ifdef _LP64
2485       Register r_lo;
2486       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2487         r_lo = right->as_register();
2488       } else {
2489         r_lo = right->as_register_lo();
2490       }
2491 #else
2492       Register r_lo = right->as_register_lo();
2493       Register r_hi = right->as_register_hi();
2494       assert(l_lo != r_hi, "overwriting registers");
2495 #endif
2496       switch (code) {
2497         case lir_logic_and:
2498           __ andptr(l_lo, r_lo);
2499           NOT_LP64(__ andptr(l_hi, r_hi);)
2500           break;
2501         case lir_logic_or:
2502           __ orptr(l_lo, r_lo);
2503           NOT_LP64(__ orptr(l_hi, r_hi);)
2504           break;
2505         case lir_logic_xor:
2506           __ xorptr(l_lo, r_lo);
2507           NOT_LP64(__ xorptr(l_hi, r_hi);)
2508           break;
2509         default: ShouldNotReachHere();
2510       }
2511     }
2512 
2513     Register dst_lo = dst->as_register_lo();
2514     Register dst_hi = dst->as_register_hi();
2515 
2516 #ifdef _LP64
2517     move_regs(l_lo, dst_lo);
2518 #else
2519     if (dst_lo == l_hi) {
2520       assert(dst_hi != l_lo, "overwriting registers");
2521       move_regs(l_hi, dst_hi);
2522       move_regs(l_lo, dst_lo);
2523     } else {
2524       assert(dst_lo != l_hi, "overwriting registers");
2525       move_regs(l_lo, dst_lo);
2526       move_regs(l_hi, dst_hi);
2527     }
2528 #endif // _LP64
2529   }
2530 }
2531 
2532 
2533 // we assume that rax, and rdx can be overwritten
2534 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2535 
2536   assert(left->is_single_cpu(),   "left must be register");
2537   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2538   assert(result->is_single_cpu(), "result must be register");
2539 
2540   //  assert(left->destroys_register(), "check");
2541   //  assert(right->destroys_register(), "check");
2542 
2543   Register lreg = left->as_register();
2544   Register dreg = result->as_register();
2545 
2546   if (right->is_constant()) {
2547     int divisor = right->as_constant_ptr()->as_jint();
2548     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2549     if (code == lir_idiv) {
2550       assert(lreg == rax, "must be rax,");
2551       assert(temp->as_register() == rdx, "tmp register must be rdx");
2552       __ cdql(); // sign extend into rdx:rax
2553       if (divisor == 2) {
2554         __ subl(lreg, rdx);
2555       } else {
2556         __ andl(rdx, divisor - 1);
2557         __ addl(lreg, rdx);
2558       }
2559       __ sarl(lreg, log2_intptr(divisor));
2560       move_regs(lreg, dreg);
2561     } else if (code == lir_irem) {
2562       Label done;
2563       __ mov(dreg, lreg);
2564       __ andl(dreg, 0x80000000 | (divisor - 1));
2565       __ jcc(Assembler::positive, done);
2566       __ decrement(dreg);
2567       __ orl(dreg, ~(divisor - 1));
2568       __ increment(dreg);
2569       __ bind(done);
2570     } else {
2571       ShouldNotReachHere();
2572     }
2573   } else {
2574     Register rreg = right->as_register();
2575     assert(lreg == rax, "left register must be rax,");
2576     assert(rreg != rdx, "right register must not be rdx");
2577     assert(temp->as_register() == rdx, "tmp register must be rdx");
2578 
2579     move_regs(lreg, rax);
2580 
2581     int idivl_offset = __ corrected_idivl(rreg);
2582     if (ImplicitDiv0Checks) {
2583       add_debug_info_for_div0(idivl_offset, info);
2584     }
2585     if (code == lir_irem) {
2586       move_regs(rdx, dreg); // result is in rdx
2587     } else {
2588       move_regs(rax, dreg);
2589     }
2590   }
2591 }
2592 
2593 
2594 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2595   if (opr1->is_single_cpu()) {
2596     Register reg1 = opr1->as_register();
2597     if (opr2->is_single_cpu()) {
2598       // cpu register - cpu register
2599       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2600         __ cmpoop(reg1, opr2->as_register());
2601       } else {
2602         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2603         __ cmpl(reg1, opr2->as_register());
2604       }
2605     } else if (opr2->is_stack()) {
2606       // cpu register - stack
2607       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2608         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2609       } else {
2610         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2611       }
2612     } else if (opr2->is_constant()) {
2613       // cpu register - constant
2614       LIR_Const* c = opr2->as_constant_ptr();
2615       if (c->type() == T_INT) {
2616         __ cmpl(reg1, c->as_jint());
2617       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2618         // In 64bit oops are single register
2619         jobject o = c->as_jobject();
2620         if (o == NULL) {
2621           __ cmpptr(reg1, (int32_t)NULL_WORD);
2622         } else {
2623           __ cmpoop(reg1, o);
2624         }
2625       } else {
2626         fatal("unexpected type: %s", basictype_to_str(c->type()));
2627       }
2628       // cpu register - address
2629     } else if (opr2->is_address()) {
2630       if (op->info() != NULL) {
2631         add_debug_info_for_null_check_here(op->info());
2632       }
2633       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2634     } else {
2635       ShouldNotReachHere();
2636     }
2637 
2638   } else if(opr1->is_double_cpu()) {
2639     Register xlo = opr1->as_register_lo();
2640     Register xhi = opr1->as_register_hi();
2641     if (opr2->is_double_cpu()) {
2642 #ifdef _LP64
2643       __ cmpptr(xlo, opr2->as_register_lo());
2644 #else
2645       // cpu register - cpu register
2646       Register ylo = opr2->as_register_lo();
2647       Register yhi = opr2->as_register_hi();
2648       __ subl(xlo, ylo);
2649       __ sbbl(xhi, yhi);
2650       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2651         __ orl(xhi, xlo);
2652       }
2653 #endif // _LP64
2654     } else if (opr2->is_constant()) {
2655       // cpu register - constant 0
2656       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2657 #ifdef _LP64
2658       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2659 #else
2660       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2661       __ orl(xhi, xlo);
2662 #endif // _LP64
2663     } else {
2664       ShouldNotReachHere();
2665     }
2666 
2667   } else if (opr1->is_single_xmm()) {
2668     XMMRegister reg1 = opr1->as_xmm_float_reg();
2669     if (opr2->is_single_xmm()) {
2670       // xmm register - xmm register
2671       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2672     } else if (opr2->is_stack()) {
2673       // xmm register - stack
2674       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2675     } else if (opr2->is_constant()) {
2676       // xmm register - constant
2677       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2678     } else if (opr2->is_address()) {
2679       // xmm register - address
2680       if (op->info() != NULL) {
2681         add_debug_info_for_null_check_here(op->info());
2682       }
2683       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2684     } else {
2685       ShouldNotReachHere();
2686     }
2687 
2688   } else if (opr1->is_double_xmm()) {
2689     XMMRegister reg1 = opr1->as_xmm_double_reg();
2690     if (opr2->is_double_xmm()) {
2691       // xmm register - xmm register
2692       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2693     } else if (opr2->is_stack()) {
2694       // xmm register - stack
2695       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2696     } else if (opr2->is_constant()) {
2697       // xmm register - constant
2698       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2699     } else if (opr2->is_address()) {
2700       // xmm register - address
2701       if (op->info() != NULL) {
2702         add_debug_info_for_null_check_here(op->info());
2703       }
2704       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2705     } else {
2706       ShouldNotReachHere();
2707     }
2708 
2709   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2710     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2711     assert(opr2->is_fpu_register(), "both must be registers");
2712     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2713 
2714   } else if (opr1->is_address() && opr2->is_constant()) {
2715     LIR_Const* c = opr2->as_constant_ptr();
2716 #ifdef _LP64
2717     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2718       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2719       __ movoop(rscratch1, c->as_jobject());
2720     }
2721 #endif // LP64
2722     if (op->info() != NULL) {
2723       add_debug_info_for_null_check_here(op->info());
2724     }
2725     // special case: address - constant
2726     LIR_Address* addr = opr1->as_address_ptr();
2727     if (c->type() == T_INT) {
2728       __ cmpl(as_Address(addr), c->as_jint());
2729     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2730 #ifdef _LP64
2731       // %%% Make this explode if addr isn't reachable until we figure out a
2732       // better strategy by giving noreg as the temp for as_Address
2733       __ cmpoop(rscratch1, as_Address(addr, noreg));
2734 #else
2735       __ cmpoop(as_Address(addr), c->as_jobject());
2736 #endif // _LP64
2737     } else {
2738       ShouldNotReachHere();
2739     }
2740 
2741   } else {
2742     ShouldNotReachHere();
2743   }
2744 }
2745 
2746 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2747   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2748     if (left->is_single_xmm()) {
2749       assert(right->is_single_xmm(), "must match");
2750       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2751     } else if (left->is_double_xmm()) {
2752       assert(right->is_double_xmm(), "must match");
2753       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2754 
2755     } else {
2756       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2757       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2758 
2759       assert(left->fpu() == 0, "left must be on TOS");
2760       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2761                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2762     }
2763   } else {
2764     assert(code == lir_cmp_l2i, "check");
2765 #ifdef _LP64
2766     Label done;
2767     Register dest = dst->as_register();
2768     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2769     __ movl(dest, -1);
2770     __ jccb(Assembler::less, done);
2771     __ set_byte_if_not_zero(dest);
2772     __ movzbl(dest, dest);
2773     __ bind(done);
2774 #else
2775     __ lcmp2int(left->as_register_hi(),
2776                 left->as_register_lo(),
2777                 right->as_register_hi(),
2778                 right->as_register_lo());
2779     move_regs(left->as_register_hi(), dst->as_register());
2780 #endif // _LP64
2781   }
2782 }
2783 
2784 
2785 void LIR_Assembler::align_call(LIR_Code code) {
2786   if (os::is_MP()) {
2787     // make sure that the displacement word of the call ends up word aligned
2788     int offset = __ offset();
2789     switch (code) {
2790       case lir_static_call:
2791       case lir_optvirtual_call:
2792       case lir_dynamic_call:
2793         offset += NativeCall::displacement_offset;
2794         break;
2795       case lir_icvirtual_call:
2796         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2797       break;
2798       case lir_virtual_call:  // currently, sparc-specific for niagara
2799       default: ShouldNotReachHere();
2800     }
2801     __ align(BytesPerWord, offset);
2802   }
2803 }
2804 
2805 
2806 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2807   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2808          "must be aligned");
2809   __ call(AddressLiteral(op->addr(), rtype));
2810   add_call_info(code_offset(), op->info());
2811 }
2812 
2813 
2814 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2815   __ ic_call(op->addr());
2816   add_call_info(code_offset(), op->info());
2817   assert(!os::is_MP() ||
2818          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2819          "must be aligned");
2820 }
2821 
2822 
2823 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2824 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2825   ShouldNotReachHere();
2826 }
2827 
2828 
2829 void LIR_Assembler::emit_static_call_stub() {
2830   address call_pc = __ pc();
2831   address stub = __ start_a_stub(call_stub_size());
2832   if (stub == NULL) {
2833     bailout("static call stub overflow");
2834     return;
2835   }
2836 
2837   int start = __ offset();
2838   if (os::is_MP()) {
2839     // make sure that the displacement word of the call ends up word aligned
2840     __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2841   }
2842   __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2843   __ mov_metadata(rbx, (Metadata*)NULL);
2844   // must be set to -1 at code generation time
2845   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2846   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2847   __ jump(RuntimeAddress(__ pc()));
2848 
2849   if (UseAOT) {
2850     // Trampoline to aot code
2851     __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2852 #ifdef _LP64
2853     __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2854 #else
2855     __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2856 #endif
2857     __ jmp(rax);
2858   }
2859   assert(__ offset() - start <= call_stub_size(), "stub too big");
2860   __ end_a_stub();
2861 }
2862 
2863 
2864 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2865   assert(exceptionOop->as_register() == rax, "must match");
2866   assert(exceptionPC->as_register() == rdx, "must match");
2867 
2868   // exception object is not added to oop map by LinearScan
2869   // (LinearScan assumes that no oops are in fixed registers)
2870   info->add_register_oop(exceptionOop);
2871   Runtime1::StubID unwind_id;
2872 
2873   // get current pc information
2874   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2875   int pc_for_athrow_offset = __ offset();
2876   InternalAddress pc_for_athrow(__ pc());
2877   __ lea(exceptionPC->as_register(), pc_for_athrow);
2878   add_call_info(pc_for_athrow_offset, info); // for exception handler
2879 
2880   __ verify_not_null_oop(rax);
2881   // search an exception handler (rax: exception oop, rdx: throwing pc)
2882   if (compilation()->has_fpu_code()) {
2883     unwind_id = Runtime1::handle_exception_id;
2884   } else {
2885     unwind_id = Runtime1::handle_exception_nofpu_id;
2886   }
2887   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2888 
2889   // enough room for two byte trap
2890   __ nop();
2891 }
2892 
2893 
2894 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2895   assert(exceptionOop->as_register() == rax, "must match");
2896 
2897   __ jmp(_unwind_handler_entry);
2898 }
2899 
2900 
2901 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2902 
2903   // optimized version for linear scan:
2904   // * count must be already in ECX (guaranteed by LinearScan)
2905   // * left and dest must be equal
2906   // * tmp must be unused
2907   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2908   assert(left == dest, "left and dest must be equal");
2909   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2910 
2911   if (left->is_single_cpu()) {
2912     Register value = left->as_register();
2913     assert(value != SHIFT_count, "left cannot be ECX");
2914 
2915     switch (code) {
2916       case lir_shl:  __ shll(value); break;
2917       case lir_shr:  __ sarl(value); break;
2918       case lir_ushr: __ shrl(value); break;
2919       default: ShouldNotReachHere();
2920     }
2921   } else if (left->is_double_cpu()) {
2922     Register lo = left->as_register_lo();
2923     Register hi = left->as_register_hi();
2924     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2925 #ifdef _LP64
2926     switch (code) {
2927       case lir_shl:  __ shlptr(lo);        break;
2928       case lir_shr:  __ sarptr(lo);        break;
2929       case lir_ushr: __ shrptr(lo);        break;
2930       default: ShouldNotReachHere();
2931     }
2932 #else
2933 
2934     switch (code) {
2935       case lir_shl:  __ lshl(hi, lo);        break;
2936       case lir_shr:  __ lshr(hi, lo, true);  break;
2937       case lir_ushr: __ lshr(hi, lo, false); break;
2938       default: ShouldNotReachHere();
2939     }
2940 #endif // LP64
2941   } else {
2942     ShouldNotReachHere();
2943   }
2944 }
2945 
2946 
2947 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2948   if (dest->is_single_cpu()) {
2949     // first move left into dest so that left is not destroyed by the shift
2950     Register value = dest->as_register();
2951     count = count & 0x1F; // Java spec
2952 
2953     move_regs(left->as_register(), value);
2954     switch (code) {
2955       case lir_shl:  __ shll(value, count); break;
2956       case lir_shr:  __ sarl(value, count); break;
2957       case lir_ushr: __ shrl(value, count); break;
2958       default: ShouldNotReachHere();
2959     }
2960   } else if (dest->is_double_cpu()) {
2961 #ifndef _LP64
2962     Unimplemented();
2963 #else
2964     // first move left into dest so that left is not destroyed by the shift
2965     Register value = dest->as_register_lo();
2966     count = count & 0x1F; // Java spec
2967 
2968     move_regs(left->as_register_lo(), value);
2969     switch (code) {
2970       case lir_shl:  __ shlptr(value, count); break;
2971       case lir_shr:  __ sarptr(value, count); break;
2972       case lir_ushr: __ shrptr(value, count); break;
2973       default: ShouldNotReachHere();
2974     }
2975 #endif // _LP64
2976   } else {
2977     ShouldNotReachHere();
2978   }
2979 }
2980 
2981 
2982 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2983   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2984   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2985   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2986   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
2987 }
2988 
2989 
2990 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2991   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2992   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2993   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2994   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
2995 }
2996 
2997 
2998 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2999   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3000   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3001   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3002   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3003 }
3004 
3005 
3006 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
3007   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3008   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3009   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3010   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
3011 }
3012 
3013 
3014 // This code replaces a call to arraycopy; no exception may
3015 // be thrown in this code, they must be thrown in the System.arraycopy
3016 // activation frame; we could save some checks if this would not be the case
3017 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3018   ciArrayKlass* default_type = op->expected_type();
3019   Register src = op->src()->as_register();
3020   Register dst = op->dst()->as_register();
3021   Register src_pos = op->src_pos()->as_register();
3022   Register dst_pos = op->dst_pos()->as_register();
3023   Register length  = op->length()->as_register();
3024   Register tmp = op->tmp()->as_register();
3025 
3026   CodeStub* stub = op->stub();
3027   int flags = op->flags();
3028   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3029   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3030 
3031   // if we don't know anything, just go through the generic arraycopy
3032   if (default_type == NULL) {
3033     Label done;
3034     // save outgoing arguments on stack in case call to System.arraycopy is needed
3035     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3036     // for interpreter calling conventions. Now we have to do it in new style conventions.
3037     // For the moment until C1 gets the new register allocator I just force all the
3038     // args to the right place (except the register args) and then on the back side
3039     // reload the register args properly if we go slow path. Yuck
3040 
3041     // These are proper for the calling convention
3042     store_parameter(length, 2);
3043     store_parameter(dst_pos, 1);
3044     store_parameter(dst, 0);
3045 
3046     // these are just temporary placements until we need to reload
3047     store_parameter(src_pos, 3);
3048     store_parameter(src, 4);
3049     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3050 
3051     address copyfunc_addr = StubRoutines::generic_arraycopy();
3052     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
3053 
3054     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3055 #ifdef _LP64
3056     // The arguments are in java calling convention so we can trivially shift them to C
3057     // convention
3058     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3059     __ mov(c_rarg0, j_rarg0);
3060     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3061     __ mov(c_rarg1, j_rarg1);
3062     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3063     __ mov(c_rarg2, j_rarg2);
3064     assert_different_registers(c_rarg3, j_rarg4);
3065     __ mov(c_rarg3, j_rarg3);
3066 #ifdef _WIN64
3067     // Allocate abi space for args but be sure to keep stack aligned
3068     __ subptr(rsp, 6*wordSize);
3069     store_parameter(j_rarg4, 4);
3070 #ifndef PRODUCT
3071     if (PrintC1Statistics) {
3072       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3073     }
3074 #endif
3075     __ call(RuntimeAddress(copyfunc_addr));
3076     __ addptr(rsp, 6*wordSize);
3077 #else
3078     __ mov(c_rarg4, j_rarg4);
3079 #ifndef PRODUCT
3080     if (PrintC1Statistics) {
3081       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3082     }
3083 #endif
3084     __ call(RuntimeAddress(copyfunc_addr));
3085 #endif // _WIN64
3086 #else
3087     __ push(length);
3088     __ push(dst_pos);
3089     __ push(dst);
3090     __ push(src_pos);
3091     __ push(src);
3092 
3093 #ifndef PRODUCT
3094     if (PrintC1Statistics) {
3095       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3096     }
3097 #endif
3098     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3099 
3100 #endif // _LP64
3101 
3102     __ cmpl(rax, 0);
3103     __ jcc(Assembler::equal, *stub->continuation());
3104 
3105     __ mov(tmp, rax);
3106     __ xorl(tmp, -1);
3107 
3108     // Reload values from the stack so they are where the stub
3109     // expects them.
3110     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3111     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3112     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3113     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3114     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3115 
3116     __ subl(length, tmp);
3117     __ addl(src_pos, tmp);
3118     __ addl(dst_pos, tmp);
3119     __ jmp(*stub->entry());
3120 
3121     __ bind(*stub->continuation());
3122     return;
3123   }
3124 
3125   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3126 
3127   int elem_size = type2aelembytes(basic_type);
3128   Address::ScaleFactor scale;
3129 
3130   switch (elem_size) {
3131     case 1 :
3132       scale = Address::times_1;
3133       break;
3134     case 2 :
3135       scale = Address::times_2;
3136       break;
3137     case 4 :
3138       scale = Address::times_4;
3139       break;
3140     case 8 :
3141       scale = Address::times_8;
3142       break;
3143     default:
3144       scale = Address::no_scale;
3145       ShouldNotReachHere();
3146   }
3147 
3148   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3149   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3150   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3151   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3152 
3153   // length and pos's are all sign extended at this point on 64bit
3154 
3155   // test for NULL
3156   if (flags & LIR_OpArrayCopy::src_null_check) {
3157     __ testptr(src, src);
3158     __ jcc(Assembler::zero, *stub->entry());
3159   }
3160   if (flags & LIR_OpArrayCopy::dst_null_check) {
3161     __ testptr(dst, dst);
3162     __ jcc(Assembler::zero, *stub->entry());
3163   }
3164 
3165   // If the compiler was not able to prove that exact type of the source or the destination
3166   // of the arraycopy is an array type, check at runtime if the source or the destination is
3167   // an instance type.
3168   if (flags & LIR_OpArrayCopy::type_check) {
3169     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3170       __ load_klass(tmp, dst);
3171       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3172       __ jcc(Assembler::greaterEqual, *stub->entry());
3173     }
3174 
3175     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3176       __ load_klass(tmp, src);
3177       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3178       __ jcc(Assembler::greaterEqual, *stub->entry());
3179     }
3180   }
3181 
3182   // check if negative
3183   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3184     __ testl(src_pos, src_pos);
3185     __ jcc(Assembler::less, *stub->entry());
3186   }
3187   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3188     __ testl(dst_pos, dst_pos);
3189     __ jcc(Assembler::less, *stub->entry());
3190   }
3191 
3192   if (flags & LIR_OpArrayCopy::src_range_check) {
3193     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3194     __ cmpl(tmp, src_length_addr);
3195     __ jcc(Assembler::above, *stub->entry());
3196   }
3197   if (flags & LIR_OpArrayCopy::dst_range_check) {
3198     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3199     __ cmpl(tmp, dst_length_addr);
3200     __ jcc(Assembler::above, *stub->entry());
3201   }
3202 
3203   if (flags & LIR_OpArrayCopy::length_positive_check) {
3204     __ testl(length, length);
3205     __ jcc(Assembler::less, *stub->entry());
3206   }
3207 
3208 #ifdef _LP64
3209   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3210   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3211 #endif
3212 
3213   if (flags & LIR_OpArrayCopy::type_check) {
3214     // We don't know the array types are compatible
3215     if (basic_type != T_OBJECT) {
3216       // Simple test for basic type arrays
3217       if (UseCompressedClassPointers) {
3218         __ movl(tmp, src_klass_addr);
3219         __ cmpl(tmp, dst_klass_addr);
3220       } else {
3221         __ movptr(tmp, src_klass_addr);
3222         __ cmpptr(tmp, dst_klass_addr);
3223       }
3224       __ jcc(Assembler::notEqual, *stub->entry());
3225     } else {
3226       // For object arrays, if src is a sub class of dst then we can
3227       // safely do the copy.
3228       Label cont, slow;
3229 
3230       __ push(src);
3231       __ push(dst);
3232 
3233       __ load_klass(src, src);
3234       __ load_klass(dst, dst);
3235 
3236       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3237 
3238       __ push(src);
3239       __ push(dst);
3240       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3241       __ pop(dst);
3242       __ pop(src);
3243 
3244       __ cmpl(src, 0);
3245       __ jcc(Assembler::notEqual, cont);
3246 
3247       __ bind(slow);
3248       __ pop(dst);
3249       __ pop(src);
3250 
3251       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3252       if (copyfunc_addr != NULL) { // use stub if available
3253         // src is not a sub class of dst so we have to do a
3254         // per-element check.
3255 
3256         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3257         if ((flags & mask) != mask) {
3258           // Check that at least both of them object arrays.
3259           assert(flags & mask, "one of the two should be known to be an object array");
3260 
3261           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3262             __ load_klass(tmp, src);
3263           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3264             __ load_klass(tmp, dst);
3265           }
3266           int lh_offset = in_bytes(Klass::layout_helper_offset());
3267           Address klass_lh_addr(tmp, lh_offset);
3268           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3269           __ cmpl(klass_lh_addr, objArray_lh);
3270           __ jcc(Assembler::notEqual, *stub->entry());
3271         }
3272 
3273        // Spill because stubs can use any register they like and it's
3274        // easier to restore just those that we care about.
3275        store_parameter(dst, 0);
3276        store_parameter(dst_pos, 1);
3277        store_parameter(length, 2);
3278        store_parameter(src_pos, 3);
3279        store_parameter(src, 4);
3280 
3281 #ifndef _LP64
3282         __ movptr(tmp, dst_klass_addr);
3283         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3284         __ push(tmp);
3285         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3286         __ push(tmp);
3287         __ push(length);
3288         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3289         __ push(tmp);
3290         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3291         __ push(tmp);
3292 
3293         __ call_VM_leaf(copyfunc_addr, 5);
3294 #else
3295         __ movl2ptr(length, length); //higher 32bits must be null
3296 
3297         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3298         assert_different_registers(c_rarg0, dst, dst_pos, length);
3299         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3300         assert_different_registers(c_rarg1, dst, length);
3301 
3302         __ mov(c_rarg2, length);
3303         assert_different_registers(c_rarg2, dst);
3304 
3305 #ifdef _WIN64
3306         // Allocate abi space for args but be sure to keep stack aligned
3307         __ subptr(rsp, 6*wordSize);
3308         __ load_klass(c_rarg3, dst);
3309         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3310         store_parameter(c_rarg3, 4);
3311         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3312         __ call(RuntimeAddress(copyfunc_addr));
3313         __ addptr(rsp, 6*wordSize);
3314 #else
3315         __ load_klass(c_rarg4, dst);
3316         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3317         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3318         __ call(RuntimeAddress(copyfunc_addr));
3319 #endif
3320 
3321 #endif
3322 
3323 #ifndef PRODUCT
3324         if (PrintC1Statistics) {
3325           Label failed;
3326           __ testl(rax, rax);
3327           __ jcc(Assembler::notZero, failed);
3328           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3329           __ bind(failed);
3330         }
3331 #endif
3332 
3333         __ testl(rax, rax);
3334         __ jcc(Assembler::zero, *stub->continuation());
3335 
3336 #ifndef PRODUCT
3337         if (PrintC1Statistics) {
3338           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3339         }
3340 #endif
3341 
3342         __ mov(tmp, rax);
3343 
3344         __ xorl(tmp, -1);
3345 
3346         // Restore previously spilled arguments
3347         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3348         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3349         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3350         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3351         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3352 
3353 
3354         __ subl(length, tmp);
3355         __ addl(src_pos, tmp);
3356         __ addl(dst_pos, tmp);
3357       }
3358 
3359       __ jmp(*stub->entry());
3360 
3361       __ bind(cont);
3362       __ pop(dst);
3363       __ pop(src);
3364     }
3365   }
3366 
3367 #ifdef ASSERT
3368   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3369     // Sanity check the known type with the incoming class.  For the
3370     // primitive case the types must match exactly with src.klass and
3371     // dst.klass each exactly matching the default type.  For the
3372     // object array case, if no type check is needed then either the
3373     // dst type is exactly the expected type and the src type is a
3374     // subtype which we can't check or src is the same array as dst
3375     // but not necessarily exactly of type default_type.
3376     Label known_ok, halt;
3377     __ mov_metadata(tmp, default_type->constant_encoding());
3378 #ifdef _LP64
3379     if (UseCompressedClassPointers) {
3380       __ encode_klass_not_null(tmp);
3381     }
3382 #endif
3383 
3384     if (basic_type != T_OBJECT) {
3385 
3386       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3387       else                   __ cmpptr(tmp, dst_klass_addr);
3388       __ jcc(Assembler::notEqual, halt);
3389       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3390       else                   __ cmpptr(tmp, src_klass_addr);
3391       __ jcc(Assembler::equal, known_ok);
3392     } else {
3393       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3394       else                   __ cmpptr(tmp, dst_klass_addr);
3395       __ jcc(Assembler::equal, known_ok);
3396       __ cmpptr(src, dst);
3397       __ jcc(Assembler::equal, known_ok);
3398     }
3399     __ bind(halt);
3400     __ stop("incorrect type information in arraycopy");
3401     __ bind(known_ok);
3402   }
3403 #endif
3404 
3405 #ifndef PRODUCT
3406   if (PrintC1Statistics) {
3407     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3408   }
3409 #endif
3410 
3411 #ifdef _LP64
3412   assert_different_registers(c_rarg0, dst, dst_pos, length);
3413   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3414   assert_different_registers(c_rarg1, length);
3415   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3416   __ mov(c_rarg2, length);
3417 
3418 #else
3419   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3420   store_parameter(tmp, 0);
3421   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3422   store_parameter(tmp, 1);
3423   store_parameter(length, 2);
3424 #endif // _LP64
3425 
3426   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3427   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3428   const char *name;
3429   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3430   __ call_VM_leaf(entry, 0);
3431 
3432   __ bind(*stub->continuation());
3433 }
3434 
3435 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3436   assert(op->crc()->is_single_cpu(),  "crc must be register");
3437   assert(op->val()->is_single_cpu(),  "byte value must be register");
3438   assert(op->result_opr()->is_single_cpu(), "result must be register");
3439   Register crc = op->crc()->as_register();
3440   Register val = op->val()->as_register();
3441   Register res = op->result_opr()->as_register();
3442 
3443   assert_different_registers(val, crc, res);
3444 
3445   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3446   __ notl(crc); // ~crc
3447   __ update_byte_crc32(crc, val, res);
3448   __ notl(crc); // ~crc
3449   __ mov(res, crc);
3450 }
3451 
3452 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3453   Register obj = op->obj_opr()->as_register();  // may not be an oop
3454   Register hdr = op->hdr_opr()->as_register();
3455   Register lock = op->lock_opr()->as_register();
3456   if (!UseFastLocking) {
3457     __ jmp(*op->stub()->entry());
3458   } else if (op->code() == lir_lock) {
3459     Register scratch = noreg;
3460     if (UseBiasedLocking) {
3461       scratch = op->scratch_opr()->as_register();
3462     }
3463     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3464     // add debug info for NullPointerException only if one is possible
3465     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3466     if (op->info() != NULL) {
3467       add_debug_info_for_null_check(null_check_offset, op->info());
3468     }
3469     // done
3470   } else if (op->code() == lir_unlock) {
3471     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3472     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3473   } else {
3474     Unimplemented();
3475   }
3476   __ bind(*op->stub()->continuation());
3477 }
3478 
3479 
3480 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3481   ciMethod* method = op->profiled_method();
3482   int bci          = op->profiled_bci();
3483   ciMethod* callee = op->profiled_callee();
3484 
3485   // Update counter for all call types
3486   ciMethodData* md = method->method_data_or_null();
3487   assert(md != NULL, "Sanity");
3488   ciProfileData* data = md->bci_to_data(bci);
3489   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
3490   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3491   Register mdo  = op->mdo()->as_register();
3492   __ mov_metadata(mdo, md->constant_encoding());
3493   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3494   // Perform additional virtual call profiling for invokevirtual and
3495   // invokeinterface bytecodes
3496   if (op->should_profile_receiver_type()) {
3497     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3498     Register recv = op->recv()->as_register();
3499     assert_different_registers(mdo, recv);
3500     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3501     ciKlass* known_klass = op->known_holder();
3502     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3503       // We know the type that will be seen at this call site; we can
3504       // statically update the MethodData* rather than needing to do
3505       // dynamic tests on the receiver type
3506 
3507       // NOTE: we should probably put a lock around this search to
3508       // avoid collisions by concurrent compilations
3509       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3510       uint i;
3511       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3512         ciKlass* receiver = vc_data->receiver(i);
3513         if (known_klass->equals(receiver)) {
3514           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3515           __ addptr(data_addr, DataLayout::counter_increment);
3516           return;
3517         }
3518       }
3519 
3520       // Receiver type not found in profile data; select an empty slot
3521 
3522       // Note that this is less efficient than it should be because it
3523       // always does a write to the receiver part of the
3524       // VirtualCallData rather than just the first time
3525       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3526         ciKlass* receiver = vc_data->receiver(i);
3527         if (receiver == NULL) {
3528           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3529           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3530           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3531           __ addptr(data_addr, DataLayout::counter_increment);
3532           return;
3533         }
3534       }
3535     } else {
3536       __ load_klass(recv, recv);
3537       Label update_done;
3538       type_profile_helper(mdo, md, data, recv, &update_done);
3539       // Receiver did not match any saved receiver and there is no empty row for it.
3540       // Increment total counter to indicate polymorphic case.
3541       __ addptr(counter_addr, DataLayout::counter_increment);
3542 
3543       __ bind(update_done);
3544     }
3545   } else {
3546     // Static call
3547     __ addptr(counter_addr, DataLayout::counter_increment);
3548   }
3549 }
3550 
3551 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3552   Register obj = op->obj()->as_register();
3553   Register tmp = op->tmp()->as_pointer_register();
3554   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3555   ciKlass* exact_klass = op->exact_klass();
3556   intptr_t current_klass = op->current_klass();
3557   bool not_null = op->not_null();
3558   bool no_conflict = op->no_conflict();
3559 
3560   Label update, next, none;
3561 
3562   bool do_null = !not_null;
3563   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3564   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3565 
3566   assert(do_null || do_update, "why are we here?");
3567   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3568 
3569   __ verify_oop(obj);
3570 
3571   if (tmp != obj) {
3572     __ mov(tmp, obj);
3573   }
3574   if (do_null) {
3575     __ testptr(tmp, tmp);
3576     __ jccb(Assembler::notZero, update);
3577     if (!TypeEntries::was_null_seen(current_klass)) {
3578       __ orptr(mdo_addr, TypeEntries::null_seen);
3579     }
3580     if (do_update) {
3581 #ifndef ASSERT
3582       __ jmpb(next);
3583     }
3584 #else
3585       __ jmp(next);
3586     }
3587   } else {
3588     __ testptr(tmp, tmp);
3589     __ jccb(Assembler::notZero, update);
3590     __ stop("unexpect null obj");
3591 #endif
3592   }
3593 
3594   __ bind(update);
3595 
3596   if (do_update) {
3597 #ifdef ASSERT
3598     if (exact_klass != NULL) {
3599       Label ok;
3600       __ load_klass(tmp, tmp);
3601       __ push(tmp);
3602       __ mov_metadata(tmp, exact_klass->constant_encoding());
3603       __ cmpptr(tmp, Address(rsp, 0));
3604       __ jccb(Assembler::equal, ok);
3605       __ stop("exact klass and actual klass differ");
3606       __ bind(ok);
3607       __ pop(tmp);
3608     }
3609 #endif
3610     if (!no_conflict) {
3611       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3612         if (exact_klass != NULL) {
3613           __ mov_metadata(tmp, exact_klass->constant_encoding());
3614         } else {
3615           __ load_klass(tmp, tmp);
3616         }
3617 
3618         __ xorptr(tmp, mdo_addr);
3619         __ testptr(tmp, TypeEntries::type_klass_mask);
3620         // klass seen before, nothing to do. The unknown bit may have been
3621         // set already but no need to check.
3622         __ jccb(Assembler::zero, next);
3623 
3624         __ testptr(tmp, TypeEntries::type_unknown);
3625         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3626 
3627         if (TypeEntries::is_type_none(current_klass)) {
3628           __ cmpptr(mdo_addr, 0);
3629           __ jccb(Assembler::equal, none);
3630           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3631           __ jccb(Assembler::equal, none);
3632           // There is a chance that the checks above (re-reading profiling
3633           // data from memory) fail if another thread has just set the
3634           // profiling to this obj's klass
3635           __ xorptr(tmp, mdo_addr);
3636           __ testptr(tmp, TypeEntries::type_klass_mask);
3637           __ jccb(Assembler::zero, next);
3638         }
3639       } else {
3640         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3641                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3642 
3643         __ movptr(tmp, mdo_addr);
3644         __ testptr(tmp, TypeEntries::type_unknown);
3645         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3646       }
3647 
3648       // different than before. Cannot keep accurate profile.
3649       __ orptr(mdo_addr, TypeEntries::type_unknown);
3650 
3651       if (TypeEntries::is_type_none(current_klass)) {
3652         __ jmpb(next);
3653 
3654         __ bind(none);
3655         // first time here. Set profile type.
3656         __ movptr(mdo_addr, tmp);
3657       }
3658     } else {
3659       // There's a single possible klass at this profile point
3660       assert(exact_klass != NULL, "should be");
3661       if (TypeEntries::is_type_none(current_klass)) {
3662         __ mov_metadata(tmp, exact_klass->constant_encoding());
3663         __ xorptr(tmp, mdo_addr);
3664         __ testptr(tmp, TypeEntries::type_klass_mask);
3665 #ifdef ASSERT
3666         __ jcc(Assembler::zero, next);
3667 
3668         {
3669           Label ok;
3670           __ push(tmp);
3671           __ cmpptr(mdo_addr, 0);
3672           __ jcc(Assembler::equal, ok);
3673           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3674           __ jcc(Assembler::equal, ok);
3675           // may have been set by another thread
3676           __ mov_metadata(tmp, exact_klass->constant_encoding());
3677           __ xorptr(tmp, mdo_addr);
3678           __ testptr(tmp, TypeEntries::type_mask);
3679           __ jcc(Assembler::zero, ok);
3680 
3681           __ stop("unexpected profiling mismatch");
3682           __ bind(ok);
3683           __ pop(tmp);
3684         }
3685 #else
3686         __ jccb(Assembler::zero, next);
3687 #endif
3688         // first time here. Set profile type.
3689         __ movptr(mdo_addr, tmp);
3690       } else {
3691         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3692                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3693 
3694         __ movptr(tmp, mdo_addr);
3695         __ testptr(tmp, TypeEntries::type_unknown);
3696         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3697 
3698         __ orptr(mdo_addr, TypeEntries::type_unknown);
3699       }
3700     }
3701 
3702     __ bind(next);
3703   }
3704 }
3705 
3706 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3707   Unimplemented();
3708 }
3709 
3710 
3711 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3712   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3713 }
3714 
3715 
3716 void LIR_Assembler::align_backward_branch_target() {
3717   __ align(BytesPerWord);
3718 }
3719 
3720 
3721 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3722   if (left->is_single_cpu()) {
3723     __ negl(left->as_register());
3724     move_regs(left->as_register(), dest->as_register());
3725 
3726   } else if (left->is_double_cpu()) {
3727     Register lo = left->as_register_lo();
3728 #ifdef _LP64
3729     Register dst = dest->as_register_lo();
3730     __ movptr(dst, lo);
3731     __ negptr(dst);
3732 #else
3733     Register hi = left->as_register_hi();
3734     __ lneg(hi, lo);
3735     if (dest->as_register_lo() == hi) {
3736       assert(dest->as_register_hi() != lo, "destroying register");
3737       move_regs(hi, dest->as_register_hi());
3738       move_regs(lo, dest->as_register_lo());
3739     } else {
3740       move_regs(lo, dest->as_register_lo());
3741       move_regs(hi, dest->as_register_hi());
3742     }
3743 #endif // _LP64
3744 
3745   } else if (dest->is_single_xmm()) {
3746     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3747       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3748     }
3749     if (UseAVX > 0) {
3750       __ vnegatess(dest->as_xmm_float_reg(), dest->as_xmm_float_reg(),
3751                    ExternalAddress((address)float_signflip_pool));
3752     } else {
3753       __ xorps(dest->as_xmm_float_reg(),
3754                ExternalAddress((address)float_signflip_pool));
3755     }
3756   } else if (dest->is_double_xmm()) {
3757     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3758       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3759     }
3760     if (UseAVX > 0) {
3761       __ vnegatesd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg(),
3762                    ExternalAddress((address)double_signflip_pool));
3763     } else {
3764       __ xorpd(dest->as_xmm_double_reg(),
3765                ExternalAddress((address)double_signflip_pool));
3766     }
3767   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3768     assert(left->fpu() == 0, "arg must be on TOS");
3769     assert(dest->fpu() == 0, "dest must be TOS");
3770     __ fchs();
3771 
3772   } else {
3773     ShouldNotReachHere();
3774   }
3775 }
3776 
3777 
3778 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3779   assert(src->is_address(), "must be an address");
3780   assert(dest->is_register(), "must be a register");
3781 
3782   PatchingStub* patch = NULL;
3783   if (patch_code != lir_patch_none) {
3784     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3785   }
3786 
3787   Register reg = dest->as_pointer_register();
3788   LIR_Address* addr = src->as_address_ptr();
3789   __ lea(reg, as_Address(addr));
3790 
3791   if (patch != NULL) {
3792     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3793   }
3794 }
3795 
3796 
3797 
3798 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3799   assert(!tmp->is_valid(), "don't need temporary");
3800   __ call(RuntimeAddress(dest));
3801   if (info != NULL) {
3802     add_call_info_here(info);
3803   }
3804 }
3805 
3806 
3807 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3808   assert(type == T_LONG, "only for volatile long fields");
3809 
3810   if (info != NULL) {
3811     add_debug_info_for_null_check_here(info);
3812   }
3813 
3814   if (src->is_double_xmm()) {
3815     if (dest->is_double_cpu()) {
3816 #ifdef _LP64
3817       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3818 #else
3819       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3820       __ psrlq(src->as_xmm_double_reg(), 32);
3821       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3822 #endif // _LP64
3823     } else if (dest->is_double_stack()) {
3824       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3825     } else if (dest->is_address()) {
3826       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3827     } else {
3828       ShouldNotReachHere();
3829     }
3830 
3831   } else if (dest->is_double_xmm()) {
3832     if (src->is_double_stack()) {
3833       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3834     } else if (src->is_address()) {
3835       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3836     } else {
3837       ShouldNotReachHere();
3838     }
3839 
3840   } else if (src->is_double_fpu()) {
3841     assert(src->fpu_regnrLo() == 0, "must be TOS");
3842     if (dest->is_double_stack()) {
3843       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3844     } else if (dest->is_address()) {
3845       __ fistp_d(as_Address(dest->as_address_ptr()));
3846     } else {
3847       ShouldNotReachHere();
3848     }
3849 
3850   } else if (dest->is_double_fpu()) {
3851     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3852     if (src->is_double_stack()) {
3853       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3854     } else if (src->is_address()) {
3855       __ fild_d(as_Address(src->as_address_ptr()));
3856     } else {
3857       ShouldNotReachHere();
3858     }
3859   } else {
3860     ShouldNotReachHere();
3861   }
3862 }
3863 
3864 #ifdef ASSERT
3865 // emit run-time assertion
3866 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3867   assert(op->code() == lir_assert, "must be");
3868 
3869   if (op->in_opr1()->is_valid()) {
3870     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3871     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3872   } else {
3873     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3874     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3875   }
3876 
3877   Label ok;
3878   if (op->condition() != lir_cond_always) {
3879     Assembler::Condition acond = Assembler::zero;
3880     switch (op->condition()) {
3881       case lir_cond_equal:        acond = Assembler::equal;       break;
3882       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3883       case lir_cond_less:         acond = Assembler::less;        break;
3884       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3885       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3886       case lir_cond_greater:      acond = Assembler::greater;     break;
3887       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3888       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3889       default:                    ShouldNotReachHere();
3890     }
3891     __ jcc(acond, ok);
3892   }
3893   if (op->halt()) {
3894     const char* str = __ code_string(op->msg());
3895     __ stop(str);
3896   } else {
3897     breakpoint();
3898   }
3899   __ bind(ok);
3900 }
3901 #endif
3902 
3903 void LIR_Assembler::membar() {
3904   // QQQ sparc TSO uses this,
3905   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3906 }
3907 
3908 void LIR_Assembler::membar_acquire() {
3909   // No x86 machines currently require load fences
3910 }
3911 
3912 void LIR_Assembler::membar_release() {
3913   // No x86 machines currently require store fences
3914 }
3915 
3916 void LIR_Assembler::membar_loadload() {
3917   // no-op
3918   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3919 }
3920 
3921 void LIR_Assembler::membar_storestore() {
3922   // no-op
3923   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3924 }
3925 
3926 void LIR_Assembler::membar_loadstore() {
3927   // no-op
3928   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3929 }
3930 
3931 void LIR_Assembler::membar_storeload() {
3932   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3933 }
3934 
3935 void LIR_Assembler::on_spin_wait() {
3936   __ pause ();
3937 }
3938 
3939 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3940   assert(result_reg->is_register(), "check");
3941 #ifdef _LP64
3942   // __ get_thread(result_reg->as_register_lo());
3943   __ mov(result_reg->as_register(), r15_thread);
3944 #else
3945   __ get_thread(result_reg->as_register());
3946 #endif // _LP64
3947 }
3948 
3949 
3950 void LIR_Assembler::peephole(LIR_List*) {
3951   // do nothing for now
3952 }
3953 
3954 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3955   assert(data == dest, "xchg/xadd uses only 2 operands");
3956 
3957   if (data->type() == T_INT) {
3958     if (code == lir_xadd) {
3959       if (os::is_MP()) {
3960         __ lock();
3961       }
3962       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3963     } else {
3964       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3965     }
3966   } else if (data->is_oop()) {
3967     assert (code == lir_xchg, "xadd for oops");
3968     Register obj = data->as_register();
3969     assert (tmp->is_register(), "should be register");
3970     __ xchg_oop(obj, as_Address(src->as_address_ptr()), tmp->as_register());
3971   } else if (data->type() == T_LONG) {
3972 #ifdef _LP64
3973     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
3974     if (code == lir_xadd) {
3975       if (os::is_MP()) {
3976         __ lock();
3977       }
3978       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
3979     } else {
3980       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
3981     }
3982 #else
3983     ShouldNotReachHere();
3984 #endif
3985   } else {
3986     ShouldNotReachHere();
3987   }
3988 }
3989 
3990 #undef __