1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/privilegedStack.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/commandLineFlagConstraintList.hpp"
  61 #include "runtime/commandLineFlagWriteableList.hpp"
  62 #include "runtime/commandLineFlagRangeList.hpp"
  63 #include "runtime/deoptimization.hpp"
  64 #include "runtime/fprofiler.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/globals.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniPeriodicChecker.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/memprofiler.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/objectMonitor.hpp"
  76 #include "runtime/orderAccess.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/statSampler.hpp"
  81 #include "runtime/stubRoutines.hpp"
  82 #include "runtime/sweeper.hpp"
  83 #include "runtime/task.hpp"
  84 #include "runtime/thread.inline.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/vframe.hpp"
  87 #include "runtime/vframeArray.hpp"
  88 #include "runtime/vframe_hp.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "runtime/vm_operations.hpp"
  91 #include "runtime/vm_version.hpp"
  92 #include "services/attachListener.hpp"
  93 #include "services/management.hpp"
  94 #include "services/memTracker.hpp"
  95 #include "services/threadService.hpp"
  96 #include "trace/traceMacros.hpp"
  97 #include "trace/tracing.hpp"
  98 #include "utilities/defaultStream.hpp"
  99 #include "utilities/dtrace.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/macros.hpp"
 102 #include "utilities/preserveException.hpp"
 103 #if INCLUDE_ALL_GCS
 104 #include "gc/shenandoah/shenandoahConcurrentThread.hpp"
 105 #include "gc/cms/concurrentMarkSweepThread.hpp"
 106 #include "gc/g1/concurrentMarkThread.inline.hpp"
 107 #include "gc/parallel/pcTasks.hpp"
 108 #endif // INCLUDE_ALL_GCS
 109 #if INCLUDE_JVMCI
 110 #include "jvmci/jvmciCompiler.hpp"
 111 #include "jvmci/jvmciRuntime.hpp"
 112 #endif
 113 #ifdef COMPILER1
 114 #include "c1/c1_Compiler.hpp"
 115 #endif
 116 #ifdef COMPILER2
 117 #include "opto/c2compiler.hpp"
 118 #include "opto/idealGraphPrinter.hpp"
 119 #endif
 120 #if INCLUDE_RTM_OPT
 121 #include "runtime/rtmLocking.hpp"
 122 #endif
 123 
 124 // Initialization after module runtime initialization
 125 void universe_post_module_init();  // must happen after call_initPhase2
 126 
 127 #ifdef DTRACE_ENABLED
 128 
 129 // Only bother with this argument setup if dtrace is available
 130 
 131   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 132   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 133 
 134   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 135     {                                                                      \
 136       ResourceMark rm(this);                                               \
 137       int len = 0;                                                         \
 138       const char* name = (javathread)->get_thread_name();                  \
 139       len = strlen(name);                                                  \
 140       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 141         (char *) name, len,                                                \
 142         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 143         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 144         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 145     }
 146 
 147 #else //  ndef DTRACE_ENABLED
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)
 150 
 151 #endif // ndef DTRACE_ENABLED
 152 
 153 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 154 // Current thread is maintained as a thread-local variable
 155 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 156 #endif
 157 // Class hierarchy
 158 // - Thread
 159 //   - VMThread
 160 //   - WatcherThread
 161 //   - ConcurrentMarkSweepThread
 162 //   - JavaThread
 163 //     - CompilerThread
 164 
 165 // ======= Thread ========
 166 // Support for forcing alignment of thread objects for biased locking
 167 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 168   if (UseBiasedLocking) {
 169     const int alignment = markOopDesc::biased_lock_alignment;
 170     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 171     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 172                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 173                                                          AllocFailStrategy::RETURN_NULL);
 174     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 175     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 176            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 177            "JavaThread alignment code overflowed allocated storage");
 178     if (aligned_addr != real_malloc_addr) {
 179       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 180                               p2i(real_malloc_addr),
 181                               p2i(aligned_addr));
 182     }
 183     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 184     return aligned_addr;
 185   } else {
 186     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 187                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 188   }
 189 }
 190 
 191 void Thread::operator delete(void* p) {
 192   if (UseBiasedLocking) {
 193     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 194     FreeHeap(real_malloc_addr);
 195   } else {
 196     FreeHeap(p);
 197   }
 198 }
 199 
 200 
 201 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 202 // JavaThread
 203 
 204 
 205 Thread::Thread() {
 206   // stack and get_thread
 207   set_stack_base(NULL);
 208   set_stack_size(0);
 209   set_self_raw_id(0);
 210   set_lgrp_id(-1);
 211   DEBUG_ONLY(clear_suspendible_thread();)
 212 
 213   // allocated data structures
 214   set_osthread(NULL);
 215   set_resource_area(new (mtThread)ResourceArea());
 216   DEBUG_ONLY(_current_resource_mark = NULL;)
 217   set_handle_area(new (mtThread) HandleArea(NULL));
 218   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 219   set_active_handles(NULL);
 220   set_free_handle_block(NULL);
 221   set_last_handle_mark(NULL);
 222 
 223   // This initial value ==> never claimed.
 224   _oops_do_parity = 0;
 225 
 226   // the handle mark links itself to last_handle_mark
 227   new HandleMark(this);
 228 
 229   // plain initialization
 230   debug_only(_owned_locks = NULL;)
 231   debug_only(_allow_allocation_count = 0;)
 232   NOT_PRODUCT(_allow_safepoint_count = 0;)
 233   NOT_PRODUCT(_skip_gcalot = false;)
 234   _jvmti_env_iteration_count = 0;
 235   set_allocated_bytes(0);
 236   _vm_operation_started_count = 0;
 237   _vm_operation_completed_count = 0;
 238   _current_pending_monitor = NULL;
 239   _current_pending_monitor_is_from_java = true;
 240   _current_waiting_monitor = NULL;
 241   _num_nested_signal = 0;
 242   omFreeList = NULL;
 243   omFreeCount = 0;
 244   omFreeProvision = 32;
 245   omInUseList = NULL;
 246   omInUseCount = 0;
 247 
 248 #ifdef ASSERT
 249   _visited_for_critical_count = false;
 250 #endif
 251 
 252   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 253                          Monitor::_safepoint_check_sometimes);
 254   _suspend_flags = 0;
 255 
 256   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 257   _hashStateX = os::random();
 258   _hashStateY = 842502087;
 259   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 260   _hashStateW = 273326509;
 261 
 262   _OnTrap   = 0;
 263   _schedctl = NULL;
 264   _Stalled  = 0;
 265   _TypeTag  = 0x2BAD;
 266 
 267   // Many of the following fields are effectively final - immutable
 268   // Note that nascent threads can't use the Native Monitor-Mutex
 269   // construct until the _MutexEvent is initialized ...
 270   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 271   // we might instead use a stack of ParkEvents that we could provision on-demand.
 272   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 273   // and ::Release()
 274   _ParkEvent   = ParkEvent::Allocate(this);
 275   _SleepEvent  = ParkEvent::Allocate(this);
 276   _MutexEvent  = ParkEvent::Allocate(this);
 277   _MuxEvent    = ParkEvent::Allocate(this);
 278 
 279 #ifdef CHECK_UNHANDLED_OOPS
 280   if (CheckUnhandledOops) {
 281     _unhandled_oops = new UnhandledOops(this);
 282   }
 283 #endif // CHECK_UNHANDLED_OOPS
 284 #ifdef ASSERT
 285   if (UseBiasedLocking) {
 286     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 287     assert(this == _real_malloc_address ||
 288            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 289            "bug in forced alignment of thread objects");
 290   }
 291 #endif // ASSERT
 292 }
 293 
 294 void Thread::initialize_thread_current() {
 295 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 296   assert(_thr_current == NULL, "Thread::current already initialized");
 297   _thr_current = this;
 298 #endif
 299   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 300   ThreadLocalStorage::set_thread(this);
 301   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 302 }
 303 
 304 void Thread::clear_thread_current() {
 305   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 306 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 307   _thr_current = NULL;
 308 #endif
 309   ThreadLocalStorage::set_thread(NULL);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 316   // in initialize_thread(). Without the adjustment, stack size is
 317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 318   // So far, only Solaris has real implementation of initialize_thread().
 319   //
 320   // set up any platform-specific state.
 321   os::initialize_thread(this);
 322 
 323   // Set stack limits after thread is initialized.
 324   if (is_Java_thread()) {
 325     ((JavaThread*) this)->set_stack_overflow_limit();
 326     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 327   }
 328 #if INCLUDE_NMT
 329   // record thread's native stack, stack grows downward
 330   MemTracker::record_thread_stack(stack_end(), stack_size());
 331 #endif // INCLUDE_NMT
 332   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 333     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 334     os::current_thread_id(), p2i(stack_base() - stack_size()),
 335     p2i(stack_base()), stack_size()/1024);
 336 }
 337 
 338 
 339 Thread::~Thread() {
 340   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 341   ObjectSynchronizer::omFlush(this);
 342 
 343   EVENT_THREAD_DESTRUCT(this);
 344 
 345   // stack_base can be NULL if the thread is never started or exited before
 346   // record_stack_base_and_size called. Although, we would like to ensure
 347   // that all started threads do call record_stack_base_and_size(), there is
 348   // not proper way to enforce that.
 349 #if INCLUDE_NMT
 350   if (_stack_base != NULL) {
 351     MemTracker::release_thread_stack(stack_end(), stack_size());
 352 #ifdef ASSERT
 353     set_stack_base(NULL);
 354 #endif
 355   }
 356 #endif // INCLUDE_NMT
 357 
 358   // deallocate data structures
 359   delete resource_area();
 360   // since the handle marks are using the handle area, we have to deallocated the root
 361   // handle mark before deallocating the thread's handle area,
 362   assert(last_handle_mark() != NULL, "check we have an element");
 363   delete last_handle_mark();
 364   assert(last_handle_mark() == NULL, "check we have reached the end");
 365 
 366   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 367   // We NULL out the fields for good hygiene.
 368   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 369   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 370   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 371   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 372 
 373   delete handle_area();
 374   delete metadata_handles();
 375 
 376   // SR_handler uses this as a termination indicator -
 377   // needs to happen before os::free_thread()
 378   delete _SR_lock;
 379   _SR_lock = NULL;
 380 
 381   // osthread() can be NULL, if creation of thread failed.
 382   if (osthread() != NULL) os::free_thread(osthread());
 383 
 384   // clear Thread::current if thread is deleting itself.
 385   // Needed to ensure JNI correctly detects non-attached threads.
 386   if (this == Thread::current()) {
 387     clear_thread_current();
 388   }
 389 
 390   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 391 }
 392 
 393 // NOTE: dummy function for assertion purpose.
 394 void Thread::run() {
 395   ShouldNotReachHere();
 396 }
 397 
 398 #ifdef ASSERT
 399 // Private method to check for dangling thread pointer
 400 void check_for_dangling_thread_pointer(Thread *thread) {
 401   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 402          "possibility of dangling Thread pointer");
 403 }
 404 #endif
 405 
 406 ThreadPriority Thread::get_priority(const Thread* const thread) {
 407   ThreadPriority priority;
 408   // Can return an error!
 409   (void)os::get_priority(thread, priority);
 410   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 411   return priority;
 412 }
 413 
 414 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 415   debug_only(check_for_dangling_thread_pointer(thread);)
 416   // Can return an error!
 417   (void)os::set_priority(thread, priority);
 418 }
 419 
 420 
 421 void Thread::start(Thread* thread) {
 422   // Start is different from resume in that its safety is guaranteed by context or
 423   // being called from a Java method synchronized on the Thread object.
 424   if (!DisableStartThread) {
 425     if (thread->is_Java_thread()) {
 426       // Initialize the thread state to RUNNABLE before starting this thread.
 427       // Can not set it after the thread started because we do not know the
 428       // exact thread state at that time. It could be in MONITOR_WAIT or
 429       // in SLEEPING or some other state.
 430       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 431                                           java_lang_Thread::RUNNABLE);
 432     }
 433     os::start_thread(thread);
 434   }
 435 }
 436 
 437 // Enqueue a VM_Operation to do the job for us - sometime later
 438 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 439   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 440   VMThread::execute(vm_stop);
 441 }
 442 
 443 
 444 // Check if an external suspend request has completed (or has been
 445 // cancelled). Returns true if the thread is externally suspended and
 446 // false otherwise.
 447 //
 448 // The bits parameter returns information about the code path through
 449 // the routine. Useful for debugging:
 450 //
 451 // set in is_ext_suspend_completed():
 452 // 0x00000001 - routine was entered
 453 // 0x00000010 - routine return false at end
 454 // 0x00000100 - thread exited (return false)
 455 // 0x00000200 - suspend request cancelled (return false)
 456 // 0x00000400 - thread suspended (return true)
 457 // 0x00001000 - thread is in a suspend equivalent state (return true)
 458 // 0x00002000 - thread is native and walkable (return true)
 459 // 0x00004000 - thread is native_trans and walkable (needed retry)
 460 //
 461 // set in wait_for_ext_suspend_completion():
 462 // 0x00010000 - routine was entered
 463 // 0x00020000 - suspend request cancelled before loop (return false)
 464 // 0x00040000 - thread suspended before loop (return true)
 465 // 0x00080000 - suspend request cancelled in loop (return false)
 466 // 0x00100000 - thread suspended in loop (return true)
 467 // 0x00200000 - suspend not completed during retry loop (return false)
 468 
 469 // Helper class for tracing suspend wait debug bits.
 470 //
 471 // 0x00000100 indicates that the target thread exited before it could
 472 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 473 // 0x00080000 each indicate a cancelled suspend request so they don't
 474 // count as wait failures either.
 475 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 476 
 477 class TraceSuspendDebugBits : public StackObj {
 478  private:
 479   JavaThread * jt;
 480   bool         is_wait;
 481   bool         called_by_wait;  // meaningful when !is_wait
 482   uint32_t *   bits;
 483 
 484  public:
 485   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 486                         uint32_t *_bits) {
 487     jt             = _jt;
 488     is_wait        = _is_wait;
 489     called_by_wait = _called_by_wait;
 490     bits           = _bits;
 491   }
 492 
 493   ~TraceSuspendDebugBits() {
 494     if (!is_wait) {
 495 #if 1
 496       // By default, don't trace bits for is_ext_suspend_completed() calls.
 497       // That trace is very chatty.
 498       return;
 499 #else
 500       if (!called_by_wait) {
 501         // If tracing for is_ext_suspend_completed() is enabled, then only
 502         // trace calls to it from wait_for_ext_suspend_completion()
 503         return;
 504       }
 505 #endif
 506     }
 507 
 508     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 509       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 510         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 511         ResourceMark rm;
 512 
 513         tty->print_cr(
 514                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 515                       jt->get_thread_name(), *bits);
 516 
 517         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 518       }
 519     }
 520   }
 521 };
 522 #undef DEBUG_FALSE_BITS
 523 
 524 
 525 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 526                                           uint32_t *bits) {
 527   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 528 
 529   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 530   bool do_trans_retry;           // flag to force the retry
 531 
 532   *bits |= 0x00000001;
 533 
 534   do {
 535     do_trans_retry = false;
 536 
 537     if (is_exiting()) {
 538       // Thread is in the process of exiting. This is always checked
 539       // first to reduce the risk of dereferencing a freed JavaThread.
 540       *bits |= 0x00000100;
 541       return false;
 542     }
 543 
 544     if (!is_external_suspend()) {
 545       // Suspend request is cancelled. This is always checked before
 546       // is_ext_suspended() to reduce the risk of a rogue resume
 547       // confusing the thread that made the suspend request.
 548       *bits |= 0x00000200;
 549       return false;
 550     }
 551 
 552     if (is_ext_suspended()) {
 553       // thread is suspended
 554       *bits |= 0x00000400;
 555       return true;
 556     }
 557 
 558     // Now that we no longer do hard suspends of threads running
 559     // native code, the target thread can be changing thread state
 560     // while we are in this routine:
 561     //
 562     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 563     //
 564     // We save a copy of the thread state as observed at this moment
 565     // and make our decision about suspend completeness based on the
 566     // copy. This closes the race where the thread state is seen as
 567     // _thread_in_native_trans in the if-thread_blocked check, but is
 568     // seen as _thread_blocked in if-thread_in_native_trans check.
 569     JavaThreadState save_state = thread_state();
 570 
 571     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 572       // If the thread's state is _thread_blocked and this blocking
 573       // condition is known to be equivalent to a suspend, then we can
 574       // consider the thread to be externally suspended. This means that
 575       // the code that sets _thread_blocked has been modified to do
 576       // self-suspension if the blocking condition releases. We also
 577       // used to check for CONDVAR_WAIT here, but that is now covered by
 578       // the _thread_blocked with self-suspension check.
 579       //
 580       // Return true since we wouldn't be here unless there was still an
 581       // external suspend request.
 582       *bits |= 0x00001000;
 583       return true;
 584     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 585       // Threads running native code will self-suspend on native==>VM/Java
 586       // transitions. If its stack is walkable (should always be the case
 587       // unless this function is called before the actual java_suspend()
 588       // call), then the wait is done.
 589       *bits |= 0x00002000;
 590       return true;
 591     } else if (!called_by_wait && !did_trans_retry &&
 592                save_state == _thread_in_native_trans &&
 593                frame_anchor()->walkable()) {
 594       // The thread is transitioning from thread_in_native to another
 595       // thread state. check_safepoint_and_suspend_for_native_trans()
 596       // will force the thread to self-suspend. If it hasn't gotten
 597       // there yet we may have caught the thread in-between the native
 598       // code check above and the self-suspend. Lucky us. If we were
 599       // called by wait_for_ext_suspend_completion(), then it
 600       // will be doing the retries so we don't have to.
 601       //
 602       // Since we use the saved thread state in the if-statement above,
 603       // there is a chance that the thread has already transitioned to
 604       // _thread_blocked by the time we get here. In that case, we will
 605       // make a single unnecessary pass through the logic below. This
 606       // doesn't hurt anything since we still do the trans retry.
 607 
 608       *bits |= 0x00004000;
 609 
 610       // Once the thread leaves thread_in_native_trans for another
 611       // thread state, we break out of this retry loop. We shouldn't
 612       // need this flag to prevent us from getting back here, but
 613       // sometimes paranoia is good.
 614       did_trans_retry = true;
 615 
 616       // We wait for the thread to transition to a more usable state.
 617       for (int i = 1; i <= SuspendRetryCount; i++) {
 618         // We used to do an "os::yield_all(i)" call here with the intention
 619         // that yielding would increase on each retry. However, the parameter
 620         // is ignored on Linux which means the yield didn't scale up. Waiting
 621         // on the SR_lock below provides a much more predictable scale up for
 622         // the delay. It also provides a simple/direct point to check for any
 623         // safepoint requests from the VMThread
 624 
 625         // temporarily drops SR_lock while doing wait with safepoint check
 626         // (if we're a JavaThread - the WatcherThread can also call this)
 627         // and increase delay with each retry
 628         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 629 
 630         // check the actual thread state instead of what we saved above
 631         if (thread_state() != _thread_in_native_trans) {
 632           // the thread has transitioned to another thread state so
 633           // try all the checks (except this one) one more time.
 634           do_trans_retry = true;
 635           break;
 636         }
 637       } // end retry loop
 638 
 639 
 640     }
 641   } while (do_trans_retry);
 642 
 643   *bits |= 0x00000010;
 644   return false;
 645 }
 646 
 647 // Wait for an external suspend request to complete (or be cancelled).
 648 // Returns true if the thread is externally suspended and false otherwise.
 649 //
 650 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 651                                                  uint32_t *bits) {
 652   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 653                              false /* !called_by_wait */, bits);
 654 
 655   // local flag copies to minimize SR_lock hold time
 656   bool is_suspended;
 657   bool pending;
 658   uint32_t reset_bits;
 659 
 660   // set a marker so is_ext_suspend_completed() knows we are the caller
 661   *bits |= 0x00010000;
 662 
 663   // We use reset_bits to reinitialize the bits value at the top of
 664   // each retry loop. This allows the caller to make use of any
 665   // unused bits for their own marking purposes.
 666   reset_bits = *bits;
 667 
 668   {
 669     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 670     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 671                                             delay, bits);
 672     pending = is_external_suspend();
 673   }
 674   // must release SR_lock to allow suspension to complete
 675 
 676   if (!pending) {
 677     // A cancelled suspend request is the only false return from
 678     // is_ext_suspend_completed() that keeps us from entering the
 679     // retry loop.
 680     *bits |= 0x00020000;
 681     return false;
 682   }
 683 
 684   if (is_suspended) {
 685     *bits |= 0x00040000;
 686     return true;
 687   }
 688 
 689   for (int i = 1; i <= retries; i++) {
 690     *bits = reset_bits;  // reinit to only track last retry
 691 
 692     // We used to do an "os::yield_all(i)" call here with the intention
 693     // that yielding would increase on each retry. However, the parameter
 694     // is ignored on Linux which means the yield didn't scale up. Waiting
 695     // on the SR_lock below provides a much more predictable scale up for
 696     // the delay. It also provides a simple/direct point to check for any
 697     // safepoint requests from the VMThread
 698 
 699     {
 700       MutexLocker ml(SR_lock());
 701       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 702       // can also call this)  and increase delay with each retry
 703       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 704 
 705       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 706                                               delay, bits);
 707 
 708       // It is possible for the external suspend request to be cancelled
 709       // (by a resume) before the actual suspend operation is completed.
 710       // Refresh our local copy to see if we still need to wait.
 711       pending = is_external_suspend();
 712     }
 713 
 714     if (!pending) {
 715       // A cancelled suspend request is the only false return from
 716       // is_ext_suspend_completed() that keeps us from staying in the
 717       // retry loop.
 718       *bits |= 0x00080000;
 719       return false;
 720     }
 721 
 722     if (is_suspended) {
 723       *bits |= 0x00100000;
 724       return true;
 725     }
 726   } // end retry loop
 727 
 728   // thread did not suspend after all our retries
 729   *bits |= 0x00200000;
 730   return false;
 731 }
 732 
 733 #ifndef PRODUCT
 734 void JavaThread::record_jump(address target, address instr, const char* file,
 735                              int line) {
 736 
 737   // This should not need to be atomic as the only way for simultaneous
 738   // updates is via interrupts. Even then this should be rare or non-existent
 739   // and we don't care that much anyway.
 740 
 741   int index = _jmp_ring_index;
 742   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 743   _jmp_ring[index]._target = (intptr_t) target;
 744   _jmp_ring[index]._instruction = (intptr_t) instr;
 745   _jmp_ring[index]._file = file;
 746   _jmp_ring[index]._line = line;
 747 }
 748 #endif // PRODUCT
 749 
 750 // Called by flat profiler
 751 // Callers have already called wait_for_ext_suspend_completion
 752 // The assertion for that is currently too complex to put here:
 753 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 754   bool gotframe = false;
 755   // self suspension saves needed state.
 756   if (has_last_Java_frame() && _anchor.walkable()) {
 757     *_fr = pd_last_frame();
 758     gotframe = true;
 759   }
 760   return gotframe;
 761 }
 762 
 763 void Thread::interrupt(Thread* thread) {
 764   debug_only(check_for_dangling_thread_pointer(thread);)
 765   os::interrupt(thread);
 766 }
 767 
 768 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 769   debug_only(check_for_dangling_thread_pointer(thread);)
 770   // Note:  If clear_interrupted==false, this simply fetches and
 771   // returns the value of the field osthread()->interrupted().
 772   return os::is_interrupted(thread, clear_interrupted);
 773 }
 774 
 775 
 776 // GC Support
 777 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 778   jint thread_parity = _oops_do_parity;
 779   if (thread_parity != strong_roots_parity) {
 780     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 781     if (res == thread_parity) {
 782       return true;
 783     } else {
 784       guarantee(res == strong_roots_parity, "Or else what?");
 785       return false;
 786     }
 787   }
 788   return false;
 789 }
 790 
 791 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 792   active_handles()->oops_do(f);
 793   // Do oop for ThreadShadow
 794   f->do_oop((oop*)&_pending_exception);
 795   handle_area()->oops_do(f);
 796   // TODO: Either need better abstractions or have all GCs use this.
 797   if (DeflateIdleMonitorsPerThread) {
 798     ObjectSynchronizer::deflate_idle_monitors_per_thread(this);
 799   }
 800   if (UseShenandoahGC && ShenandoahFastSyncRoots && MonitorInUseLists) {
 801     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 802   }
 803 }
 804 
 805 void Thread::metadata_handles_do(void f(Metadata*)) {
 806   // Only walk the Handles in Thread.
 807   if (metadata_handles() != NULL) {
 808     for (int i = 0; i< metadata_handles()->length(); i++) {
 809       f(metadata_handles()->at(i));
 810     }
 811   }
 812 }
 813 
 814 void Thread::print_on(outputStream* st) const {
 815   // get_priority assumes osthread initialized
 816   if (osthread() != NULL) {
 817     int os_prio;
 818     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 819       st->print("os_prio=%d ", os_prio);
 820     }
 821     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 822     ext().print_on(st);
 823     osthread()->print_on(st);
 824   }
 825   debug_only(if (WizardMode) print_owned_locks_on(st);)
 826 }
 827 
 828 // Thread::print_on_error() is called by fatal error handler. Don't use
 829 // any lock or allocate memory.
 830 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 831   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 832 
 833   if (is_VM_thread())                 { st->print("VMThread"); }
 834   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 835   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 836   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 837   else                                { st->print("Thread"); }
 838 
 839   if (is_Named_thread()) {
 840     st->print(" \"%s\"", name());
 841   }
 842 
 843   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 844             p2i(stack_end()), p2i(stack_base()));
 845 
 846   if (osthread()) {
 847     st->print(" [id=%d]", osthread()->thread_id());
 848   }
 849 }
 850 
 851 #ifdef ASSERT
 852 void Thread::print_owned_locks_on(outputStream* st) const {
 853   Monitor *cur = _owned_locks;
 854   if (cur == NULL) {
 855     st->print(" (no locks) ");
 856   } else {
 857     st->print_cr(" Locks owned:");
 858     while (cur) {
 859       cur->print_on(st);
 860       cur = cur->next();
 861     }
 862   }
 863 }
 864 
 865 static int ref_use_count  = 0;
 866 
 867 bool Thread::owns_locks_but_compiled_lock() const {
 868   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 869     if (cur != Compile_lock) return true;
 870   }
 871   return false;
 872 }
 873 
 874 
 875 #endif
 876 
 877 #ifndef PRODUCT
 878 
 879 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 880 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 881 // no threads which allow_vm_block's are held
 882 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 883   // Check if current thread is allowed to block at a safepoint
 884   if (!(_allow_safepoint_count == 0)) {
 885     fatal("Possible safepoint reached by thread that does not allow it");
 886   }
 887   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 888     fatal("LEAF method calling lock?");
 889   }
 890 
 891 #ifdef ASSERT
 892   if (potential_vm_operation && is_Java_thread()
 893       && !Universe::is_bootstrapping()) {
 894     // Make sure we do not hold any locks that the VM thread also uses.
 895     // This could potentially lead to deadlocks
 896     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 897       // Threads_lock is special, since the safepoint synchronization will not start before this is
 898       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 899       // since it is used to transfer control between JavaThreads and the VMThread
 900       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 901       if ((cur->allow_vm_block() &&
 902            cur != Threads_lock &&
 903            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 904            cur != VMOperationRequest_lock &&
 905            cur != VMOperationQueue_lock) ||
 906            cur->rank() == Mutex::special) {
 907         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 908       }
 909     }
 910   }
 911 
 912   if (GCALotAtAllSafepoints) {
 913     // We could enter a safepoint here and thus have a gc
 914     InterfaceSupport::check_gc_alot();
 915   }
 916 #endif
 917 }
 918 #endif
 919 
 920 bool Thread::is_in_stack(address adr) const {
 921   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 922   address end = os::current_stack_pointer();
 923   // Allow non Java threads to call this without stack_base
 924   if (_stack_base == NULL) return true;
 925   if (stack_base() >= adr && adr >= end) return true;
 926 
 927   return false;
 928 }
 929 
 930 bool Thread::is_in_usable_stack(address adr) const {
 931   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 932   size_t usable_stack_size = _stack_size - stack_guard_size;
 933 
 934   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 935 }
 936 
 937 
 938 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 939 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 940 // used for compilation in the future. If that change is made, the need for these methods
 941 // should be revisited, and they should be removed if possible.
 942 
 943 bool Thread::is_lock_owned(address adr) const {
 944   return on_local_stack(adr);
 945 }
 946 
 947 bool Thread::set_as_starting_thread() {
 948   // NOTE: this must be called inside the main thread.
 949   return os::create_main_thread((JavaThread*)this);
 950 }
 951 
 952 static void initialize_class(Symbol* class_name, TRAPS) {
 953   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 954   InstanceKlass::cast(klass)->initialize(CHECK);
 955 }
 956 
 957 
 958 // Creates the initial ThreadGroup
 959 static Handle create_initial_thread_group(TRAPS) {
 960   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 961   instanceKlassHandle klass (THREAD, k);
 962 
 963   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 964   {
 965     JavaValue result(T_VOID);
 966     JavaCalls::call_special(&result,
 967                             system_instance,
 968                             klass,
 969                             vmSymbols::object_initializer_name(),
 970                             vmSymbols::void_method_signature(),
 971                             CHECK_NH);
 972   }
 973   Universe::set_system_thread_group(system_instance());
 974 
 975   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 976   {
 977     JavaValue result(T_VOID);
 978     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 979     JavaCalls::call_special(&result,
 980                             main_instance,
 981                             klass,
 982                             vmSymbols::object_initializer_name(),
 983                             vmSymbols::threadgroup_string_void_signature(),
 984                             system_instance,
 985                             string,
 986                             CHECK_NH);
 987   }
 988   return main_instance;
 989 }
 990 
 991 // Creates the initial Thread
 992 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 993                                  TRAPS) {
 994   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 995   instanceKlassHandle klass (THREAD, k);
 996   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 997 
 998   java_lang_Thread::set_thread(thread_oop(), thread);
 999   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1000   thread->set_threadObj(thread_oop());
1001 
1002   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1003 
1004   JavaValue result(T_VOID);
1005   JavaCalls::call_special(&result, thread_oop,
1006                           klass,
1007                           vmSymbols::object_initializer_name(),
1008                           vmSymbols::threadgroup_string_void_signature(),
1009                           thread_group,
1010                           string,
1011                           CHECK_NULL);
1012   return thread_oop();
1013 }
1014 
1015 char java_runtime_name[128] = "";
1016 char java_runtime_version[128] = "";
1017 
1018 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1019 static const char* get_java_runtime_name(TRAPS) {
1020   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1021                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1022   fieldDescriptor fd;
1023   bool found = k != NULL &&
1024                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1025                                                         vmSymbols::string_signature(), &fd);
1026   if (found) {
1027     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1028     if (name_oop == NULL) {
1029       return NULL;
1030     }
1031     const char* name = java_lang_String::as_utf8_string(name_oop,
1032                                                         java_runtime_name,
1033                                                         sizeof(java_runtime_name));
1034     return name;
1035   } else {
1036     return NULL;
1037   }
1038 }
1039 
1040 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1041 static const char* get_java_runtime_version(TRAPS) {
1042   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1043                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1044   fieldDescriptor fd;
1045   bool found = k != NULL &&
1046                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1047                                                         vmSymbols::string_signature(), &fd);
1048   if (found) {
1049     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1050     if (name_oop == NULL) {
1051       return NULL;
1052     }
1053     const char* name = java_lang_String::as_utf8_string(name_oop,
1054                                                         java_runtime_version,
1055                                                         sizeof(java_runtime_version));
1056     return name;
1057   } else {
1058     return NULL;
1059   }
1060 }
1061 
1062 // General purpose hook into Java code, run once when the VM is initialized.
1063 // The Java library method itself may be changed independently from the VM.
1064 static void call_postVMInitHook(TRAPS) {
1065   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1066   instanceKlassHandle klass (THREAD, k);
1067   if (klass.not_null()) {
1068     JavaValue result(T_VOID);
1069     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1070                            vmSymbols::void_method_signature(),
1071                            CHECK);
1072   }
1073 }
1074 
1075 static void reset_vm_info_property(TRAPS) {
1076   // the vm info string
1077   ResourceMark rm(THREAD);
1078   const char *vm_info = VM_Version::vm_info_string();
1079 
1080   // java.lang.System class
1081   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1082   instanceKlassHandle klass (THREAD, k);
1083 
1084   // setProperty arguments
1085   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1086   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1087 
1088   // return value
1089   JavaValue r(T_OBJECT);
1090 
1091   // public static String setProperty(String key, String value);
1092   JavaCalls::call_static(&r,
1093                          klass,
1094                          vmSymbols::setProperty_name(),
1095                          vmSymbols::string_string_string_signature(),
1096                          key_str,
1097                          value_str,
1098                          CHECK);
1099 }
1100 
1101 
1102 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1103                                     bool daemon, TRAPS) {
1104   assert(thread_group.not_null(), "thread group should be specified");
1105   assert(threadObj() == NULL, "should only create Java thread object once");
1106 
1107   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1108   instanceKlassHandle klass (THREAD, k);
1109   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1110 
1111   java_lang_Thread::set_thread(thread_oop(), this);
1112   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1113   set_threadObj(thread_oop());
1114 
1115   JavaValue result(T_VOID);
1116   if (thread_name != NULL) {
1117     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1118     // Thread gets assigned specified name and null target
1119     JavaCalls::call_special(&result,
1120                             thread_oop,
1121                             klass,
1122                             vmSymbols::object_initializer_name(),
1123                             vmSymbols::threadgroup_string_void_signature(),
1124                             thread_group, // Argument 1
1125                             name,         // Argument 2
1126                             THREAD);
1127   } else {
1128     // Thread gets assigned name "Thread-nnn" and null target
1129     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1130     JavaCalls::call_special(&result,
1131                             thread_oop,
1132                             klass,
1133                             vmSymbols::object_initializer_name(),
1134                             vmSymbols::threadgroup_runnable_void_signature(),
1135                             thread_group, // Argument 1
1136                             Handle(),     // Argument 2
1137                             THREAD);
1138   }
1139 
1140 
1141   if (daemon) {
1142     java_lang_Thread::set_daemon(thread_oop());
1143   }
1144 
1145   if (HAS_PENDING_EXCEPTION) {
1146     return;
1147   }
1148 
1149   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1150   Handle threadObj(THREAD, this->threadObj());
1151 
1152   JavaCalls::call_special(&result,
1153                           thread_group,
1154                           group,
1155                           vmSymbols::add_method_name(),
1156                           vmSymbols::thread_void_signature(),
1157                           threadObj,          // Arg 1
1158                           THREAD);
1159 }
1160 
1161 // NamedThread --  non-JavaThread subclasses with multiple
1162 // uniquely named instances should derive from this.
1163 NamedThread::NamedThread() : Thread() {
1164   _name = NULL;
1165   _processed_thread = NULL;
1166   _gc_id = GCId::undefined();
1167 }
1168 
1169 NamedThread::~NamedThread() {
1170   if (_name != NULL) {
1171     FREE_C_HEAP_ARRAY(char, _name);
1172     _name = NULL;
1173   }
1174 }
1175 
1176 void NamedThread::set_name(const char* format, ...) {
1177   guarantee(_name == NULL, "Only get to set name once.");
1178   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1179   guarantee(_name != NULL, "alloc failure");
1180   va_list ap;
1181   va_start(ap, format);
1182   jio_vsnprintf(_name, max_name_len, format, ap);
1183   va_end(ap);
1184 }
1185 
1186 void NamedThread::initialize_named_thread() {
1187   set_native_thread_name(name());
1188 }
1189 
1190 void NamedThread::print_on(outputStream* st) const {
1191   st->print("\"%s\" ", name());
1192   Thread::print_on(st);
1193   st->cr();
1194 }
1195 
1196 
1197 // ======= WatcherThread ========
1198 
1199 // The watcher thread exists to simulate timer interrupts.  It should
1200 // be replaced by an abstraction over whatever native support for
1201 // timer interrupts exists on the platform.
1202 
1203 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1204 bool WatcherThread::_startable = false;
1205 volatile bool  WatcherThread::_should_terminate = false;
1206 
1207 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1208   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1209   if (os::create_thread(this, os::watcher_thread)) {
1210     _watcher_thread = this;
1211 
1212     // WatcherThread needs GCLAB for cases when it writes to Java heap,
1213     // and needs the space to evacuate. Have to initialize here, because
1214     // WatcherThread is initialized before the Universe.
1215     if (UseShenandoahGC && UseTLAB) {
1216       gclab().initialize(true);
1217     }
1218 
1219     // Set the watcher thread to the highest OS priority which should not be
1220     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1221     // is created. The only normal thread using this priority is the reference
1222     // handler thread, which runs for very short intervals only.
1223     // If the VMThread's priority is not lower than the WatcherThread profiling
1224     // will be inaccurate.
1225     os::set_priority(this, MaxPriority);
1226     if (!DisableStartThread) {
1227       os::start_thread(this);
1228     }
1229   }
1230 }
1231 
1232 int WatcherThread::sleep() const {
1233   // The WatcherThread does not participate in the safepoint protocol
1234   // for the PeriodicTask_lock because it is not a JavaThread.
1235   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1236 
1237   if (_should_terminate) {
1238     // check for termination before we do any housekeeping or wait
1239     return 0;  // we did not sleep.
1240   }
1241 
1242   // remaining will be zero if there are no tasks,
1243   // causing the WatcherThread to sleep until a task is
1244   // enrolled
1245   int remaining = PeriodicTask::time_to_wait();
1246   int time_slept = 0;
1247 
1248   // we expect this to timeout - we only ever get unparked when
1249   // we should terminate or when a new task has been enrolled
1250   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1251 
1252   jlong time_before_loop = os::javaTimeNanos();
1253 
1254   while (true) {
1255     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1256                                             remaining);
1257     jlong now = os::javaTimeNanos();
1258 
1259     if (remaining == 0) {
1260       // if we didn't have any tasks we could have waited for a long time
1261       // consider the time_slept zero and reset time_before_loop
1262       time_slept = 0;
1263       time_before_loop = now;
1264     } else {
1265       // need to recalculate since we might have new tasks in _tasks
1266       time_slept = (int) ((now - time_before_loop) / 1000000);
1267     }
1268 
1269     // Change to task list or spurious wakeup of some kind
1270     if (timedout || _should_terminate) {
1271       break;
1272     }
1273 
1274     remaining = PeriodicTask::time_to_wait();
1275     if (remaining == 0) {
1276       // Last task was just disenrolled so loop around and wait until
1277       // another task gets enrolled
1278       continue;
1279     }
1280 
1281     remaining -= time_slept;
1282     if (remaining <= 0) {
1283       break;
1284     }
1285   }
1286 
1287   return time_slept;
1288 }
1289 
1290 void WatcherThread::run() {
1291   assert(this == watcher_thread(), "just checking");
1292 
1293   this->record_stack_base_and_size();
1294   this->set_native_thread_name(this->name());
1295   this->set_active_handles(JNIHandleBlock::allocate_block());
1296   while (true) {
1297     assert(watcher_thread() == Thread::current(), "thread consistency check");
1298     assert(watcher_thread() == this, "thread consistency check");
1299 
1300     // Calculate how long it'll be until the next PeriodicTask work
1301     // should be done, and sleep that amount of time.
1302     int time_waited = sleep();
1303 
1304     if (is_error_reported()) {
1305       // A fatal error has happened, the error handler(VMError::report_and_die)
1306       // should abort JVM after creating an error log file. However in some
1307       // rare cases, the error handler itself might deadlock. Here we try to
1308       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1309       //
1310       // This code is in WatcherThread because WatcherThread wakes up
1311       // periodically so the fatal error handler doesn't need to do anything;
1312       // also because the WatcherThread is less likely to crash than other
1313       // threads.
1314 
1315       for (;;) {
1316         if (!ShowMessageBoxOnError
1317             && (OnError == NULL || OnError[0] == '\0')
1318             && Arguments::abort_hook() == NULL) {
1319           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1320           fdStream err(defaultStream::output_fd());
1321           err.print_raw_cr("# [ timer expired, abort... ]");
1322           // skip atexit/vm_exit/vm_abort hooks
1323           os::die();
1324         }
1325 
1326         // Wake up 5 seconds later, the fatal handler may reset OnError or
1327         // ShowMessageBoxOnError when it is ready to abort.
1328         os::sleep(this, 5 * 1000, false);
1329       }
1330     }
1331 
1332     if (_should_terminate) {
1333       // check for termination before posting the next tick
1334       break;
1335     }
1336 
1337     PeriodicTask::real_time_tick(time_waited);
1338   }
1339 
1340   // Signal that it is terminated
1341   {
1342     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1343     _watcher_thread = NULL;
1344     Terminator_lock->notify();
1345   }
1346 }
1347 
1348 void WatcherThread::start() {
1349   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1350 
1351   if (watcher_thread() == NULL && _startable) {
1352     _should_terminate = false;
1353     // Create the single instance of WatcherThread
1354     new WatcherThread();
1355   }
1356 }
1357 
1358 void WatcherThread::make_startable() {
1359   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1360   _startable = true;
1361 }
1362 
1363 void WatcherThread::stop() {
1364   {
1365     // Follow normal safepoint aware lock enter protocol since the
1366     // WatcherThread is stopped by another JavaThread.
1367     MutexLocker ml(PeriodicTask_lock);
1368     _should_terminate = true;
1369 
1370     WatcherThread* watcher = watcher_thread();
1371     if (watcher != NULL) {
1372       // unpark the WatcherThread so it can see that it should terminate
1373       watcher->unpark();
1374     }
1375   }
1376 
1377   MutexLocker mu(Terminator_lock);
1378 
1379   while (watcher_thread() != NULL) {
1380     // This wait should make safepoint checks, wait without a timeout,
1381     // and wait as a suspend-equivalent condition.
1382     //
1383     // Note: If the FlatProfiler is running, then this thread is waiting
1384     // for the WatcherThread to terminate and the WatcherThread, via the
1385     // FlatProfiler task, is waiting for the external suspend request on
1386     // this thread to complete. wait_for_ext_suspend_completion() will
1387     // eventually timeout, but that takes time. Making this wait a
1388     // suspend-equivalent condition solves that timeout problem.
1389     //
1390     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1391                           Mutex::_as_suspend_equivalent_flag);
1392   }
1393 }
1394 
1395 void WatcherThread::unpark() {
1396   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1397   PeriodicTask_lock->notify();
1398 }
1399 
1400 void WatcherThread::print_on(outputStream* st) const {
1401   st->print("\"%s\" ", name());
1402   Thread::print_on(st);
1403   st->cr();
1404 }
1405 
1406 // ======= JavaThread ========
1407 
1408 #if INCLUDE_JVMCI
1409 
1410 jlong* JavaThread::_jvmci_old_thread_counters;
1411 
1412 bool jvmci_counters_include(JavaThread* thread) {
1413   oop threadObj = thread->threadObj();
1414   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1415 }
1416 
1417 void JavaThread::collect_counters(typeArrayOop array) {
1418   if (JVMCICounterSize > 0) {
1419     MutexLocker tl(Threads_lock);
1420     for (int i = 0; i < array->length(); i++) {
1421       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1422     }
1423     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1424       if (jvmci_counters_include(tp)) {
1425         for (int i = 0; i < array->length(); i++) {
1426           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1427         }
1428       }
1429     }
1430   }
1431 }
1432 
1433 #endif // INCLUDE_JVMCI
1434 
1435 // A JavaThread is a normal Java thread
1436 
1437 void JavaThread::initialize() {
1438   // Initialize fields
1439 
1440   set_saved_exception_pc(NULL);
1441   set_threadObj(NULL);
1442   _anchor.clear();
1443   set_entry_point(NULL);
1444   set_jni_functions(jni_functions());
1445   set_callee_target(NULL);
1446   set_vm_result(NULL);
1447   set_vm_result_2(NULL);
1448   set_vframe_array_head(NULL);
1449   set_vframe_array_last(NULL);
1450   set_deferred_locals(NULL);
1451   set_deopt_mark(NULL);
1452   set_deopt_compiled_method(NULL);
1453   clear_must_deopt_id();
1454   set_monitor_chunks(NULL);
1455   set_next(NULL);
1456   set_thread_state(_thread_new);
1457   _terminated = _not_terminated;
1458   _privileged_stack_top = NULL;
1459   _array_for_gc = NULL;
1460   _suspend_equivalent = false;
1461   _in_deopt_handler = 0;
1462   _doing_unsafe_access = false;
1463   _stack_guard_state = stack_guard_unused;
1464 #if INCLUDE_JVMCI
1465   _pending_monitorenter = false;
1466   _pending_deoptimization = -1;
1467   _pending_failed_speculation = NULL;
1468   _pending_transfer_to_interpreter = false;
1469   _adjusting_comp_level = false;
1470   _jvmci._alternate_call_target = NULL;
1471   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1472   if (JVMCICounterSize > 0) {
1473     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1474     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1475   } else {
1476     _jvmci_counters = NULL;
1477   }
1478 #endif // INCLUDE_JVMCI
1479   _reserved_stack_activation = NULL;  // stack base not known yet
1480   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1481   _exception_pc  = 0;
1482   _exception_handler_pc = 0;
1483   _is_method_handle_return = 0;
1484   _jvmti_thread_state= NULL;
1485   _should_post_on_exceptions_flag = JNI_FALSE;
1486   _jvmti_get_loaded_classes_closure = NULL;
1487   _interp_only_mode    = 0;
1488   _special_runtime_exit_condition = _no_async_condition;
1489   _pending_async_exception = NULL;
1490   _thread_stat = NULL;
1491   _thread_stat = new ThreadStatistics();
1492   _blocked_on_compilation = false;
1493   _jni_active_critical = 0;
1494   _pending_jni_exception_check_fn = NULL;
1495   _do_not_unlock_if_synchronized = false;
1496   _cached_monitor_info = NULL;
1497   _parker = Parker::Allocate(this);
1498 
1499 #ifndef PRODUCT
1500   _jmp_ring_index = 0;
1501   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1502     record_jump(NULL, NULL, NULL, 0);
1503   }
1504 #endif // PRODUCT
1505 
1506   set_thread_profiler(NULL);
1507   if (FlatProfiler::is_active()) {
1508     // This is where we would decide to either give each thread it's own profiler
1509     // or use one global one from FlatProfiler,
1510     // or up to some count of the number of profiled threads, etc.
1511     ThreadProfiler* pp = new ThreadProfiler();
1512     pp->engage();
1513     set_thread_profiler(pp);
1514   }
1515 
1516   // Setup safepoint state info for this thread
1517   ThreadSafepointState::create(this);
1518 
1519   debug_only(_java_call_counter = 0);
1520 
1521   // JVMTI PopFrame support
1522   _popframe_condition = popframe_inactive;
1523   _popframe_preserved_args = NULL;
1524   _popframe_preserved_args_size = 0;
1525   _frames_to_pop_failed_realloc = 0;
1526 
1527   pd_initialize();
1528 }
1529 
1530 #if INCLUDE_ALL_GCS
1531 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1532 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1533 bool JavaThread::_evacuation_in_progress_global = false;
1534 #endif // INCLUDE_ALL_GCS
1535 
1536 JavaThread::JavaThread(bool is_attaching_via_jni) :
1537                        Thread()
1538 #if INCLUDE_ALL_GCS
1539                        , _satb_mark_queue(&_satb_mark_queue_set),
1540                        _dirty_card_queue(&_dirty_card_queue_set),
1541                        _evacuation_in_progress(_evacuation_in_progress_global)
1542 #endif // INCLUDE_ALL_GCS
1543 {
1544   initialize();
1545   if (is_attaching_via_jni) {
1546     _jni_attach_state = _attaching_via_jni;
1547   } else {
1548     _jni_attach_state = _not_attaching_via_jni;
1549   }
1550   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1551 }
1552 
1553 bool JavaThread::reguard_stack(address cur_sp) {
1554   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1555       && _stack_guard_state != stack_guard_reserved_disabled) {
1556     return true; // Stack already guarded or guard pages not needed.
1557   }
1558 
1559   if (register_stack_overflow()) {
1560     // For those architectures which have separate register and
1561     // memory stacks, we must check the register stack to see if
1562     // it has overflowed.
1563     return false;
1564   }
1565 
1566   // Java code never executes within the yellow zone: the latter is only
1567   // there to provoke an exception during stack banging.  If java code
1568   // is executing there, either StackShadowPages should be larger, or
1569   // some exception code in c1, c2 or the interpreter isn't unwinding
1570   // when it should.
1571   guarantee(cur_sp > stack_reserved_zone_base(),
1572             "not enough space to reguard - increase StackShadowPages");
1573   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1574     enable_stack_yellow_reserved_zone();
1575     if (reserved_stack_activation() != stack_base()) {
1576       set_reserved_stack_activation(stack_base());
1577     }
1578   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1579     set_reserved_stack_activation(stack_base());
1580     enable_stack_reserved_zone();
1581   }
1582   return true;
1583 }
1584 
1585 bool JavaThread::reguard_stack(void) {
1586   return reguard_stack(os::current_stack_pointer());
1587 }
1588 
1589 
1590 void JavaThread::block_if_vm_exited() {
1591   if (_terminated == _vm_exited) {
1592     // _vm_exited is set at safepoint, and Threads_lock is never released
1593     // we will block here forever
1594     Threads_lock->lock_without_safepoint_check();
1595     ShouldNotReachHere();
1596   }
1597 }
1598 
1599 
1600 // Remove this ifdef when C1 is ported to the compiler interface.
1601 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1602 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1603 
1604 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1605                        Thread()
1606 #if INCLUDE_ALL_GCS
1607                        , _satb_mark_queue(&_satb_mark_queue_set),
1608                        _dirty_card_queue(&_dirty_card_queue_set),
1609                        _evacuation_in_progress(_evacuation_in_progress_global)
1610 #endif // INCLUDE_ALL_GCS
1611 {
1612   initialize();
1613   _jni_attach_state = _not_attaching_via_jni;
1614   set_entry_point(entry_point);
1615   // Create the native thread itself.
1616   // %note runtime_23
1617   os::ThreadType thr_type = os::java_thread;
1618   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1619                                                      os::java_thread;
1620   os::create_thread(this, thr_type, stack_sz);
1621   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1622   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1623   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1624   // the exception consists of creating the exception object & initializing it, initialization
1625   // will leave the VM via a JavaCall and then all locks must be unlocked).
1626   //
1627   // The thread is still suspended when we reach here. Thread must be explicit started
1628   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1629   // by calling Threads:add. The reason why this is not done here, is because the thread
1630   // object must be fully initialized (take a look at JVM_Start)
1631 }
1632 
1633 JavaThread::~JavaThread() {
1634 
1635   // JSR166 -- return the parker to the free list
1636   Parker::Release(_parker);
1637   _parker = NULL;
1638 
1639   // Free any remaining  previous UnrollBlock
1640   vframeArray* old_array = vframe_array_last();
1641 
1642   if (old_array != NULL) {
1643     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1644     old_array->set_unroll_block(NULL);
1645     delete old_info;
1646     delete old_array;
1647   }
1648 
1649   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1650   if (deferred != NULL) {
1651     // This can only happen if thread is destroyed before deoptimization occurs.
1652     assert(deferred->length() != 0, "empty array!");
1653     do {
1654       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1655       deferred->remove_at(0);
1656       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1657       delete dlv;
1658     } while (deferred->length() != 0);
1659     delete deferred;
1660   }
1661 
1662   // All Java related clean up happens in exit
1663   ThreadSafepointState::destroy(this);
1664   if (_thread_profiler != NULL) delete _thread_profiler;
1665   if (_thread_stat != NULL) delete _thread_stat;
1666 
1667 #if INCLUDE_JVMCI
1668   if (JVMCICounterSize > 0) {
1669     if (jvmci_counters_include(this)) {
1670       for (int i = 0; i < JVMCICounterSize; i++) {
1671         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1672       }
1673     }
1674     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1675   }
1676 #endif // INCLUDE_JVMCI
1677 }
1678 
1679 
1680 // The first routine called by a new Java thread
1681 void JavaThread::run() {
1682   // initialize thread-local alloc buffer related fields
1683   this->initialize_tlab();
1684 
1685   // used to test validity of stack trace backs
1686   this->record_base_of_stack_pointer();
1687 
1688   // Record real stack base and size.
1689   this->record_stack_base_and_size();
1690 
1691   this->create_stack_guard_pages();
1692 
1693   this->cache_global_variables();
1694 
1695   // Thread is now sufficient initialized to be handled by the safepoint code as being
1696   // in the VM. Change thread state from _thread_new to _thread_in_vm
1697   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1698 
1699   assert(JavaThread::current() == this, "sanity check");
1700   assert(!Thread::current()->owns_locks(), "sanity check");
1701 
1702   DTRACE_THREAD_PROBE(start, this);
1703 
1704   // This operation might block. We call that after all safepoint checks for a new thread has
1705   // been completed.
1706   this->set_active_handles(JNIHandleBlock::allocate_block());
1707 
1708   if (JvmtiExport::should_post_thread_life()) {
1709     JvmtiExport::post_thread_start(this);
1710   }
1711 
1712   EventThreadStart event;
1713   if (event.should_commit()) {
1714     event.set_thread(THREAD_TRACE_ID(this));
1715     event.commit();
1716   }
1717 
1718   // We call another function to do the rest so we are sure that the stack addresses used
1719   // from there will be lower than the stack base just computed
1720   thread_main_inner();
1721 
1722   // Note, thread is no longer valid at this point!
1723 }
1724 
1725 
1726 void JavaThread::thread_main_inner() {
1727   assert(JavaThread::current() == this, "sanity check");
1728   assert(this->threadObj() != NULL, "just checking");
1729 
1730   // Execute thread entry point unless this thread has a pending exception
1731   // or has been stopped before starting.
1732   // Note: Due to JVM_StopThread we can have pending exceptions already!
1733   if (!this->has_pending_exception() &&
1734       !java_lang_Thread::is_stillborn(this->threadObj())) {
1735     {
1736       ResourceMark rm(this);
1737       this->set_native_thread_name(this->get_thread_name());
1738     }
1739     HandleMark hm(this);
1740     this->entry_point()(this, this);
1741   }
1742 
1743   DTRACE_THREAD_PROBE(stop, this);
1744 
1745   this->exit(false);
1746   delete this;
1747 }
1748 
1749 
1750 static void ensure_join(JavaThread* thread) {
1751   // We do not need to grap the Threads_lock, since we are operating on ourself.
1752   Handle threadObj(thread, thread->threadObj());
1753   assert(threadObj.not_null(), "java thread object must exist");
1754   ObjectLocker lock(threadObj, thread);
1755   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1756   thread->clear_pending_exception();
1757   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1758   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1759   // Clear the native thread instance - this makes isAlive return false and allows the join()
1760   // to complete once we've done the notify_all below
1761   java_lang_Thread::set_thread(threadObj(), NULL);
1762   lock.notify_all(thread);
1763   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1764   thread->clear_pending_exception();
1765 }
1766 
1767 
1768 // For any new cleanup additions, please check to see if they need to be applied to
1769 // cleanup_failed_attach_current_thread as well.
1770 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1771   assert(this == JavaThread::current(), "thread consistency check");
1772 
1773   HandleMark hm(this);
1774   Handle uncaught_exception(this, this->pending_exception());
1775   this->clear_pending_exception();
1776   Handle threadObj(this, this->threadObj());
1777   assert(threadObj.not_null(), "Java thread object should be created");
1778 
1779   if (get_thread_profiler() != NULL) {
1780     get_thread_profiler()->disengage();
1781     ResourceMark rm;
1782     get_thread_profiler()->print(get_thread_name());
1783   }
1784 
1785 
1786   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1787   {
1788     EXCEPTION_MARK;
1789 
1790     CLEAR_PENDING_EXCEPTION;
1791   }
1792   if (!destroy_vm) {
1793     if (uncaught_exception.not_null()) {
1794       EXCEPTION_MARK;
1795       // Call method Thread.dispatchUncaughtException().
1796       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1797       JavaValue result(T_VOID);
1798       JavaCalls::call_virtual(&result,
1799                               threadObj, thread_klass,
1800                               vmSymbols::dispatchUncaughtException_name(),
1801                               vmSymbols::throwable_void_signature(),
1802                               uncaught_exception,
1803                               THREAD);
1804       if (HAS_PENDING_EXCEPTION) {
1805         ResourceMark rm(this);
1806         jio_fprintf(defaultStream::error_stream(),
1807                     "\nException: %s thrown from the UncaughtExceptionHandler"
1808                     " in thread \"%s\"\n",
1809                     pending_exception()->klass()->external_name(),
1810                     get_thread_name());
1811         CLEAR_PENDING_EXCEPTION;
1812       }
1813     }
1814 
1815     // Called before the java thread exit since we want to read info
1816     // from java_lang_Thread object
1817     EventThreadEnd event;
1818     if (event.should_commit()) {
1819       event.set_thread(THREAD_TRACE_ID(this));
1820       event.commit();
1821     }
1822 
1823     // Call after last event on thread
1824     EVENT_THREAD_EXIT(this);
1825 
1826     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1827     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1828     // is deprecated anyhow.
1829     if (!is_Compiler_thread()) {
1830       int count = 3;
1831       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1832         EXCEPTION_MARK;
1833         JavaValue result(T_VOID);
1834         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1835         JavaCalls::call_virtual(&result,
1836                                 threadObj, thread_klass,
1837                                 vmSymbols::exit_method_name(),
1838                                 vmSymbols::void_method_signature(),
1839                                 THREAD);
1840         CLEAR_PENDING_EXCEPTION;
1841       }
1842     }
1843     // notify JVMTI
1844     if (JvmtiExport::should_post_thread_life()) {
1845       JvmtiExport::post_thread_end(this);
1846     }
1847 
1848     // We have notified the agents that we are exiting, before we go on,
1849     // we must check for a pending external suspend request and honor it
1850     // in order to not surprise the thread that made the suspend request.
1851     while (true) {
1852       {
1853         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1854         if (!is_external_suspend()) {
1855           set_terminated(_thread_exiting);
1856           ThreadService::current_thread_exiting(this);
1857           break;
1858         }
1859         // Implied else:
1860         // Things get a little tricky here. We have a pending external
1861         // suspend request, but we are holding the SR_lock so we
1862         // can't just self-suspend. So we temporarily drop the lock
1863         // and then self-suspend.
1864       }
1865 
1866       ThreadBlockInVM tbivm(this);
1867       java_suspend_self();
1868 
1869       // We're done with this suspend request, but we have to loop around
1870       // and check again. Eventually we will get SR_lock without a pending
1871       // external suspend request and will be able to mark ourselves as
1872       // exiting.
1873     }
1874     // no more external suspends are allowed at this point
1875   } else {
1876     // before_exit() has already posted JVMTI THREAD_END events
1877   }
1878 
1879   // Notify waiters on thread object. This has to be done after exit() is called
1880   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1881   // group should have the destroyed bit set before waiters are notified).
1882   ensure_join(this);
1883   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1884 
1885   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1886   // held by this thread must be released. The spec does not distinguish
1887   // between JNI-acquired and regular Java monitors. We can only see
1888   // regular Java monitors here if monitor enter-exit matching is broken.
1889   //
1890   // Optionally release any monitors for regular JavaThread exits. This
1891   // is provided as a work around for any bugs in monitor enter-exit
1892   // matching. This can be expensive so it is not enabled by default.
1893   //
1894   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1895   // ObjectSynchronizer::release_monitors_owned_by_thread().
1896   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1897     // Sanity check even though JNI DetachCurrentThread() would have
1898     // returned JNI_ERR if there was a Java frame. JavaThread exit
1899     // should be done executing Java code by the time we get here.
1900     assert(!this->has_last_Java_frame(),
1901            "should not have a Java frame when detaching or exiting");
1902     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1903     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1904   }
1905 
1906   // These things needs to be done while we are still a Java Thread. Make sure that thread
1907   // is in a consistent state, in case GC happens
1908   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1909 
1910   if (active_handles() != NULL) {
1911     JNIHandleBlock* block = active_handles();
1912     set_active_handles(NULL);
1913     JNIHandleBlock::release_block(block);
1914   }
1915 
1916   if (free_handle_block() != NULL) {
1917     JNIHandleBlock* block = free_handle_block();
1918     set_free_handle_block(NULL);
1919     JNIHandleBlock::release_block(block);
1920   }
1921 
1922   // These have to be removed while this is still a valid thread.
1923   remove_stack_guard_pages();
1924 
1925   if (UseTLAB) {
1926     tlab().make_parsable(true);  // retire TLAB
1927   }
1928 
1929   if (JvmtiEnv::environments_might_exist()) {
1930     JvmtiExport::cleanup_thread(this);
1931   }
1932 
1933   // We must flush any deferred card marks before removing a thread from
1934   // the list of active threads.
1935   Universe::heap()->flush_deferred_store_barrier(this);
1936   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1937 
1938 #if INCLUDE_ALL_GCS
1939   // We must flush the G1-related buffers before removing a thread
1940   // from the list of active threads. We must do this after any deferred
1941   // card marks have been flushed (above) so that any entries that are
1942   // added to the thread's dirty card queue as a result are not lost.
1943   if (UseG1GC || (UseShenandoahGC && ShenandoahWriteBarrier)) {
1944     flush_barrier_queues();
1945   }
1946   if (UseShenandoahGC && UseTLAB) {
1947     gclab().make_parsable(true);
1948   }
1949 #endif // INCLUDE_ALL_GCS
1950 
1951   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1952     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1953     os::current_thread_id());
1954 
1955   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1956   Threads::remove(this);
1957 }
1958 
1959 #if INCLUDE_ALL_GCS
1960 // Flush G1-related queues.
1961 void JavaThread::flush_barrier_queues() {
1962   satb_mark_queue().flush();
1963   dirty_card_queue().flush();
1964 }
1965 
1966 void JavaThread::initialize_queues() {
1967   assert(!SafepointSynchronize::is_at_safepoint(),
1968          "we should not be at a safepoint");
1969 
1970   SATBMarkQueue& satb_queue = satb_mark_queue();
1971   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1972   // The SATB queue should have been constructed with its active
1973   // field set to false.
1974   assert(!satb_queue.is_active(), "SATB queue should not be active");
1975   assert(satb_queue.is_empty(), "SATB queue should be empty");
1976   // If we are creating the thread during a marking cycle, we should
1977   // set the active field of the SATB queue to true.
1978   if (satb_queue_set.is_active()) {
1979     satb_queue.set_active(true);
1980   }
1981 
1982   DirtyCardQueue& dirty_queue = dirty_card_queue();
1983   // The dirty card queue should have been constructed with its
1984   // active field set to true.
1985   assert(dirty_queue.is_active(), "dirty card queue should be active");
1986 
1987   _evacuation_in_progress = _evacuation_in_progress_global;
1988 }
1989 
1990 bool JavaThread::evacuation_in_progress() const {
1991   return _evacuation_in_progress;
1992 }
1993 
1994 void JavaThread::set_evacuation_in_progress(bool in_prog) {
1995   _evacuation_in_progress = in_prog;
1996 }
1997 
1998 void JavaThread::set_evacuation_in_progress_all_threads(bool in_prog) {
1999   assert_locked_or_safepoint(Threads_lock);
2000   _evacuation_in_progress_global = in_prog;
2001   for (JavaThread* t = Threads::first(); t != NULL; t = t->next()) {
2002     t->set_evacuation_in_progress(in_prog);
2003   }
2004 }
2005 #endif // INCLUDE_ALL_GCS
2006 
2007 void JavaThread::cleanup_failed_attach_current_thread() {
2008   if (get_thread_profiler() != NULL) {
2009     get_thread_profiler()->disengage();
2010     ResourceMark rm;
2011     get_thread_profiler()->print(get_thread_name());
2012   }
2013 
2014   if (active_handles() != NULL) {
2015     JNIHandleBlock* block = active_handles();
2016     set_active_handles(NULL);
2017     JNIHandleBlock::release_block(block);
2018   }
2019 
2020   if (free_handle_block() != NULL) {
2021     JNIHandleBlock* block = free_handle_block();
2022     set_free_handle_block(NULL);
2023     JNIHandleBlock::release_block(block);
2024   }
2025 
2026   // These have to be removed while this is still a valid thread.
2027   remove_stack_guard_pages();
2028 
2029   if (UseTLAB) {
2030     tlab().make_parsable(true);  // retire TLAB, if any
2031   }
2032 
2033 #if INCLUDE_ALL_GCS
2034   if (UseG1GC || (UseShenandoahGC && ShenandoahWriteBarrier)) {
2035     flush_barrier_queues();
2036   }
2037   if (UseShenandoahGC && UseTLAB) {
2038     gclab().make_parsable(true);
2039   }
2040 #endif // INCLUDE_ALL_GCS
2041 
2042   Threads::remove(this);
2043   delete this;
2044 }
2045 
2046 
2047 
2048 
2049 JavaThread* JavaThread::active() {
2050   Thread* thread = Thread::current();
2051   if (thread->is_Java_thread()) {
2052     return (JavaThread*) thread;
2053   } else {
2054     assert(thread->is_VM_thread(), "this must be a vm thread");
2055     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2056     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2057     assert(ret->is_Java_thread(), "must be a Java thread");
2058     return ret;
2059   }
2060 }
2061 
2062 bool JavaThread::is_lock_owned(address adr) const {
2063   if (Thread::is_lock_owned(adr)) return true;
2064 
2065   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2066     if (chunk->contains(adr)) return true;
2067   }
2068 
2069   return false;
2070 }
2071 
2072 
2073 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2074   chunk->set_next(monitor_chunks());
2075   set_monitor_chunks(chunk);
2076 }
2077 
2078 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2079   guarantee(monitor_chunks() != NULL, "must be non empty");
2080   if (monitor_chunks() == chunk) {
2081     set_monitor_chunks(chunk->next());
2082   } else {
2083     MonitorChunk* prev = monitor_chunks();
2084     while (prev->next() != chunk) prev = prev->next();
2085     prev->set_next(chunk->next());
2086   }
2087 }
2088 
2089 // JVM support.
2090 
2091 // Note: this function shouldn't block if it's called in
2092 // _thread_in_native_trans state (such as from
2093 // check_special_condition_for_native_trans()).
2094 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2095 
2096   if (has_last_Java_frame() && has_async_condition()) {
2097     // If we are at a polling page safepoint (not a poll return)
2098     // then we must defer async exception because live registers
2099     // will be clobbered by the exception path. Poll return is
2100     // ok because the call we a returning from already collides
2101     // with exception handling registers and so there is no issue.
2102     // (The exception handling path kills call result registers but
2103     //  this is ok since the exception kills the result anyway).
2104 
2105     if (is_at_poll_safepoint()) {
2106       // if the code we are returning to has deoptimized we must defer
2107       // the exception otherwise live registers get clobbered on the
2108       // exception path before deoptimization is able to retrieve them.
2109       //
2110       RegisterMap map(this, false);
2111       frame caller_fr = last_frame().sender(&map);
2112       assert(caller_fr.is_compiled_frame(), "what?");
2113       if (caller_fr.is_deoptimized_frame()) {
2114         log_info(exceptions)("deferred async exception at compiled safepoint");
2115         return;
2116       }
2117     }
2118   }
2119 
2120   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2121   if (condition == _no_async_condition) {
2122     // Conditions have changed since has_special_runtime_exit_condition()
2123     // was called:
2124     // - if we were here only because of an external suspend request,
2125     //   then that was taken care of above (or cancelled) so we are done
2126     // - if we were here because of another async request, then it has
2127     //   been cleared between the has_special_runtime_exit_condition()
2128     //   and now so again we are done
2129     return;
2130   }
2131 
2132   // Check for pending async. exception
2133   if (_pending_async_exception != NULL) {
2134     // Only overwrite an already pending exception, if it is not a threadDeath.
2135     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2136 
2137       // We cannot call Exceptions::_throw(...) here because we cannot block
2138       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2139 
2140       if (log_is_enabled(Info, exceptions)) {
2141         ResourceMark rm;
2142         outputStream* logstream = Log(exceptions)::info_stream();
2143         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2144           if (has_last_Java_frame()) {
2145             frame f = last_frame();
2146            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2147           }
2148         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2149       }
2150       _pending_async_exception = NULL;
2151       clear_has_async_exception();
2152     }
2153   }
2154 
2155   if (check_unsafe_error &&
2156       condition == _async_unsafe_access_error && !has_pending_exception()) {
2157     condition = _no_async_condition;  // done
2158     switch (thread_state()) {
2159     case _thread_in_vm: {
2160       JavaThread* THREAD = this;
2161       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2162     }
2163     case _thread_in_native: {
2164       ThreadInVMfromNative tiv(this);
2165       JavaThread* THREAD = this;
2166       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2167     }
2168     case _thread_in_Java: {
2169       ThreadInVMfromJava tiv(this);
2170       JavaThread* THREAD = this;
2171       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2172     }
2173     default:
2174       ShouldNotReachHere();
2175     }
2176   }
2177 
2178   assert(condition == _no_async_condition || has_pending_exception() ||
2179          (!check_unsafe_error && condition == _async_unsafe_access_error),
2180          "must have handled the async condition, if no exception");
2181 }
2182 
2183 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2184   //
2185   // Check for pending external suspend. Internal suspend requests do
2186   // not use handle_special_runtime_exit_condition().
2187   // If JNIEnv proxies are allowed, don't self-suspend if the target
2188   // thread is not the current thread. In older versions of jdbx, jdbx
2189   // threads could call into the VM with another thread's JNIEnv so we
2190   // can be here operating on behalf of a suspended thread (4432884).
2191   bool do_self_suspend = is_external_suspend_with_lock();
2192   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2193     //
2194     // Because thread is external suspended the safepoint code will count
2195     // thread as at a safepoint. This can be odd because we can be here
2196     // as _thread_in_Java which would normally transition to _thread_blocked
2197     // at a safepoint. We would like to mark the thread as _thread_blocked
2198     // before calling java_suspend_self like all other callers of it but
2199     // we must then observe proper safepoint protocol. (We can't leave
2200     // _thread_blocked with a safepoint in progress). However we can be
2201     // here as _thread_in_native_trans so we can't use a normal transition
2202     // constructor/destructor pair because they assert on that type of
2203     // transition. We could do something like:
2204     //
2205     // JavaThreadState state = thread_state();
2206     // set_thread_state(_thread_in_vm);
2207     // {
2208     //   ThreadBlockInVM tbivm(this);
2209     //   java_suspend_self()
2210     // }
2211     // set_thread_state(_thread_in_vm_trans);
2212     // if (safepoint) block;
2213     // set_thread_state(state);
2214     //
2215     // but that is pretty messy. Instead we just go with the way the
2216     // code has worked before and note that this is the only path to
2217     // java_suspend_self that doesn't put the thread in _thread_blocked
2218     // mode.
2219 
2220     frame_anchor()->make_walkable(this);
2221     java_suspend_self();
2222 
2223     // We might be here for reasons in addition to the self-suspend request
2224     // so check for other async requests.
2225   }
2226 
2227   if (check_asyncs) {
2228     check_and_handle_async_exceptions();
2229   }
2230 }
2231 
2232 void JavaThread::send_thread_stop(oop java_throwable)  {
2233   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2234   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2235   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2236 
2237   // Do not throw asynchronous exceptions against the compiler thread
2238   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2239   if (!can_call_java()) return;
2240 
2241   {
2242     // Actually throw the Throwable against the target Thread - however
2243     // only if there is no thread death exception installed already.
2244     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2245       // If the topmost frame is a runtime stub, then we are calling into
2246       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2247       // must deoptimize the caller before continuing, as the compiled  exception handler table
2248       // may not be valid
2249       if (has_last_Java_frame()) {
2250         frame f = last_frame();
2251         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2252           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2253           RegisterMap reg_map(this, UseBiasedLocking);
2254           frame compiled_frame = f.sender(&reg_map);
2255           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2256             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2257           }
2258         }
2259       }
2260 
2261       // Set async. pending exception in thread.
2262       set_pending_async_exception(java_throwable);
2263 
2264       if (log_is_enabled(Info, exceptions)) {
2265          ResourceMark rm;
2266         log_info(exceptions)("Pending Async. exception installed of type: %s",
2267                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2268       }
2269       // for AbortVMOnException flag
2270       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2271     }
2272   }
2273 
2274 
2275   // Interrupt thread so it will wake up from a potential wait()
2276   Thread::interrupt(this);
2277 }
2278 
2279 // External suspension mechanism.
2280 //
2281 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2282 // to any VM_locks and it is at a transition
2283 // Self-suspension will happen on the transition out of the vm.
2284 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2285 //
2286 // Guarantees on return:
2287 //   + Target thread will not execute any new bytecode (that's why we need to
2288 //     force a safepoint)
2289 //   + Target thread will not enter any new monitors
2290 //
2291 void JavaThread::java_suspend() {
2292   { MutexLocker mu(Threads_lock);
2293     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2294       return;
2295     }
2296   }
2297 
2298   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2299     if (!is_external_suspend()) {
2300       // a racing resume has cancelled us; bail out now
2301       return;
2302     }
2303 
2304     // suspend is done
2305     uint32_t debug_bits = 0;
2306     // Warning: is_ext_suspend_completed() may temporarily drop the
2307     // SR_lock to allow the thread to reach a stable thread state if
2308     // it is currently in a transient thread state.
2309     if (is_ext_suspend_completed(false /* !called_by_wait */,
2310                                  SuspendRetryDelay, &debug_bits)) {
2311       return;
2312     }
2313   }
2314 
2315   VM_ForceSafepoint vm_suspend;
2316   VMThread::execute(&vm_suspend);
2317 }
2318 
2319 // Part II of external suspension.
2320 // A JavaThread self suspends when it detects a pending external suspend
2321 // request. This is usually on transitions. It is also done in places
2322 // where continuing to the next transition would surprise the caller,
2323 // e.g., monitor entry.
2324 //
2325 // Returns the number of times that the thread self-suspended.
2326 //
2327 // Note: DO NOT call java_suspend_self() when you just want to block current
2328 //       thread. java_suspend_self() is the second stage of cooperative
2329 //       suspension for external suspend requests and should only be used
2330 //       to complete an external suspend request.
2331 //
2332 int JavaThread::java_suspend_self() {
2333   int ret = 0;
2334 
2335   // we are in the process of exiting so don't suspend
2336   if (is_exiting()) {
2337     clear_external_suspend();
2338     return ret;
2339   }
2340 
2341   assert(_anchor.walkable() ||
2342          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2343          "must have walkable stack");
2344 
2345   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2346 
2347   assert(!this->is_ext_suspended(),
2348          "a thread trying to self-suspend should not already be suspended");
2349 
2350   if (this->is_suspend_equivalent()) {
2351     // If we are self-suspending as a result of the lifting of a
2352     // suspend equivalent condition, then the suspend_equivalent
2353     // flag is not cleared until we set the ext_suspended flag so
2354     // that wait_for_ext_suspend_completion() returns consistent
2355     // results.
2356     this->clear_suspend_equivalent();
2357   }
2358 
2359   // A racing resume may have cancelled us before we grabbed SR_lock
2360   // above. Or another external suspend request could be waiting for us
2361   // by the time we return from SR_lock()->wait(). The thread
2362   // that requested the suspension may already be trying to walk our
2363   // stack and if we return now, we can change the stack out from under
2364   // it. This would be a "bad thing (TM)" and cause the stack walker
2365   // to crash. We stay self-suspended until there are no more pending
2366   // external suspend requests.
2367   while (is_external_suspend()) {
2368     ret++;
2369     this->set_ext_suspended();
2370 
2371     // _ext_suspended flag is cleared by java_resume()
2372     while (is_ext_suspended()) {
2373       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2374     }
2375   }
2376 
2377   return ret;
2378 }
2379 
2380 #ifdef ASSERT
2381 // verify the JavaThread has not yet been published in the Threads::list, and
2382 // hence doesn't need protection from concurrent access at this stage
2383 void JavaThread::verify_not_published() {
2384   if (!Threads_lock->owned_by_self()) {
2385     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2386     assert(!Threads::includes(this),
2387            "java thread shouldn't have been published yet!");
2388   } else {
2389     assert(!Threads::includes(this),
2390            "java thread shouldn't have been published yet!");
2391   }
2392 }
2393 #endif
2394 
2395 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2396 // progress or when _suspend_flags is non-zero.
2397 // Current thread needs to self-suspend if there is a suspend request and/or
2398 // block if a safepoint is in progress.
2399 // Async exception ISN'T checked.
2400 // Note only the ThreadInVMfromNative transition can call this function
2401 // directly and when thread state is _thread_in_native_trans
2402 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2403   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2404 
2405   JavaThread *curJT = JavaThread::current();
2406   bool do_self_suspend = thread->is_external_suspend();
2407 
2408   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2409 
2410   // If JNIEnv proxies are allowed, don't self-suspend if the target
2411   // thread is not the current thread. In older versions of jdbx, jdbx
2412   // threads could call into the VM with another thread's JNIEnv so we
2413   // can be here operating on behalf of a suspended thread (4432884).
2414   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2415     JavaThreadState state = thread->thread_state();
2416 
2417     // We mark this thread_blocked state as a suspend-equivalent so
2418     // that a caller to is_ext_suspend_completed() won't be confused.
2419     // The suspend-equivalent state is cleared by java_suspend_self().
2420     thread->set_suspend_equivalent();
2421 
2422     // If the safepoint code sees the _thread_in_native_trans state, it will
2423     // wait until the thread changes to other thread state. There is no
2424     // guarantee on how soon we can obtain the SR_lock and complete the
2425     // self-suspend request. It would be a bad idea to let safepoint wait for
2426     // too long. Temporarily change the state to _thread_blocked to
2427     // let the VM thread know that this thread is ready for GC. The problem
2428     // of changing thread state is that safepoint could happen just after
2429     // java_suspend_self() returns after being resumed, and VM thread will
2430     // see the _thread_blocked state. We must check for safepoint
2431     // after restoring the state and make sure we won't leave while a safepoint
2432     // is in progress.
2433     thread->set_thread_state(_thread_blocked);
2434     thread->java_suspend_self();
2435     thread->set_thread_state(state);
2436     // Make sure new state is seen by VM thread
2437     if (os::is_MP()) {
2438       if (UseMembar) {
2439         // Force a fence between the write above and read below
2440         OrderAccess::fence();
2441       } else {
2442         // Must use this rather than serialization page in particular on Windows
2443         InterfaceSupport::serialize_memory(thread);
2444       }
2445     }
2446   }
2447 
2448   if (SafepointSynchronize::do_call_back()) {
2449     // If we are safepointing, then block the caller which may not be
2450     // the same as the target thread (see above).
2451     SafepointSynchronize::block(curJT);
2452   }
2453 
2454   if (thread->is_deopt_suspend()) {
2455     thread->clear_deopt_suspend();
2456     RegisterMap map(thread, false);
2457     frame f = thread->last_frame();
2458     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2459       f = f.sender(&map);
2460     }
2461     if (f.id() == thread->must_deopt_id()) {
2462       thread->clear_must_deopt_id();
2463       f.deoptimize(thread);
2464     } else {
2465       fatal("missed deoptimization!");
2466     }
2467   }
2468 }
2469 
2470 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2471 // progress or when _suspend_flags is non-zero.
2472 // Current thread needs to self-suspend if there is a suspend request and/or
2473 // block if a safepoint is in progress.
2474 // Also check for pending async exception (not including unsafe access error).
2475 // Note only the native==>VM/Java barriers can call this function and when
2476 // thread state is _thread_in_native_trans.
2477 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2478   check_safepoint_and_suspend_for_native_trans(thread);
2479 
2480   if (thread->has_async_exception()) {
2481     // We are in _thread_in_native_trans state, don't handle unsafe
2482     // access error since that may block.
2483     thread->check_and_handle_async_exceptions(false);
2484   }
2485 }
2486 
2487 // This is a variant of the normal
2488 // check_special_condition_for_native_trans with slightly different
2489 // semantics for use by critical native wrappers.  It does all the
2490 // normal checks but also performs the transition back into
2491 // thread_in_Java state.  This is required so that critical natives
2492 // can potentially block and perform a GC if they are the last thread
2493 // exiting the GCLocker.
2494 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2495   check_special_condition_for_native_trans(thread);
2496 
2497   // Finish the transition
2498   thread->set_thread_state(_thread_in_Java);
2499 
2500   if (thread->do_critical_native_unlock()) {
2501     ThreadInVMfromJavaNoAsyncException tiv(thread);
2502     GCLocker::unlock_critical(thread);
2503     thread->clear_critical_native_unlock();
2504   }
2505 }
2506 
2507 // We need to guarantee the Threads_lock here, since resumes are not
2508 // allowed during safepoint synchronization
2509 // Can only resume from an external suspension
2510 void JavaThread::java_resume() {
2511   assert_locked_or_safepoint(Threads_lock);
2512 
2513   // Sanity check: thread is gone, has started exiting or the thread
2514   // was not externally suspended.
2515   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2516     return;
2517   }
2518 
2519   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2520 
2521   clear_external_suspend();
2522 
2523   if (is_ext_suspended()) {
2524     clear_ext_suspended();
2525     SR_lock()->notify_all();
2526   }
2527 }
2528 
2529 size_t JavaThread::_stack_red_zone_size = 0;
2530 size_t JavaThread::_stack_yellow_zone_size = 0;
2531 size_t JavaThread::_stack_reserved_zone_size = 0;
2532 size_t JavaThread::_stack_shadow_zone_size = 0;
2533 
2534 void JavaThread::create_stack_guard_pages() {
2535   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2536   address low_addr = stack_end();
2537   size_t len = stack_guard_zone_size();
2538 
2539   int must_commit = os::must_commit_stack_guard_pages();
2540   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2541 
2542   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2543     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2544     return;
2545   }
2546 
2547   if (os::guard_memory((char *) low_addr, len)) {
2548     _stack_guard_state = stack_guard_enabled;
2549   } else {
2550     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2551       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2552     if (os::uncommit_memory((char *) low_addr, len)) {
2553       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2554     }
2555     return;
2556   }
2557 
2558   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2559     PTR_FORMAT "-" PTR_FORMAT ".",
2560     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2561 }
2562 
2563 void JavaThread::remove_stack_guard_pages() {
2564   assert(Thread::current() == this, "from different thread");
2565   if (_stack_guard_state == stack_guard_unused) return;
2566   address low_addr = stack_end();
2567   size_t len = stack_guard_zone_size();
2568 
2569   if (os::must_commit_stack_guard_pages()) {
2570     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2571       _stack_guard_state = stack_guard_unused;
2572     } else {
2573       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2574         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2575       return;
2576     }
2577   } else {
2578     if (_stack_guard_state == stack_guard_unused) return;
2579     if (os::unguard_memory((char *) low_addr, len)) {
2580       _stack_guard_state = stack_guard_unused;
2581     } else {
2582       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2583         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2584       return;
2585     }
2586   }
2587 
2588   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2589     PTR_FORMAT "-" PTR_FORMAT ".",
2590     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2591 }
2592 
2593 void JavaThread::enable_stack_reserved_zone() {
2594   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2595   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2596 
2597   // The base notation is from the stack's point of view, growing downward.
2598   // We need to adjust it to work correctly with guard_memory()
2599   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2600 
2601   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2602   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2603 
2604   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2605     _stack_guard_state = stack_guard_enabled;
2606   } else {
2607     warning("Attempt to guard stack reserved zone failed.");
2608   }
2609   enable_register_stack_guard();
2610 }
2611 
2612 void JavaThread::disable_stack_reserved_zone() {
2613   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2614   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2615 
2616   // Simply return if called for a thread that does not use guard pages.
2617   if (_stack_guard_state == stack_guard_unused) return;
2618 
2619   // The base notation is from the stack's point of view, growing downward.
2620   // We need to adjust it to work correctly with guard_memory()
2621   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2622 
2623   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2624     _stack_guard_state = stack_guard_reserved_disabled;
2625   } else {
2626     warning("Attempt to unguard stack reserved zone failed.");
2627   }
2628   disable_register_stack_guard();
2629 }
2630 
2631 void JavaThread::enable_stack_yellow_reserved_zone() {
2632   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2633   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2634 
2635   // The base notation is from the stacks point of view, growing downward.
2636   // We need to adjust it to work correctly with guard_memory()
2637   address base = stack_red_zone_base();
2638 
2639   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2640   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2641 
2642   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2643     _stack_guard_state = stack_guard_enabled;
2644   } else {
2645     warning("Attempt to guard stack yellow zone failed.");
2646   }
2647   enable_register_stack_guard();
2648 }
2649 
2650 void JavaThread::disable_stack_yellow_reserved_zone() {
2651   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2652   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2653 
2654   // Simply return if called for a thread that does not use guard pages.
2655   if (_stack_guard_state == stack_guard_unused) return;
2656 
2657   // The base notation is from the stacks point of view, growing downward.
2658   // We need to adjust it to work correctly with guard_memory()
2659   address base = stack_red_zone_base();
2660 
2661   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2662     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2663   } else {
2664     warning("Attempt to unguard stack yellow zone failed.");
2665   }
2666   disable_register_stack_guard();
2667 }
2668 
2669 void JavaThread::enable_stack_red_zone() {
2670   // The base notation is from the stacks point of view, growing downward.
2671   // We need to adjust it to work correctly with guard_memory()
2672   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2673   address base = stack_red_zone_base() - stack_red_zone_size();
2674 
2675   guarantee(base < stack_base(), "Error calculating stack red zone");
2676   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2677 
2678   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2679     warning("Attempt to guard stack red zone failed.");
2680   }
2681 }
2682 
2683 void JavaThread::disable_stack_red_zone() {
2684   // The base notation is from the stacks point of view, growing downward.
2685   // We need to adjust it to work correctly with guard_memory()
2686   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2687   address base = stack_red_zone_base() - stack_red_zone_size();
2688   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2689     warning("Attempt to unguard stack red zone failed.");
2690   }
2691 }
2692 
2693 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2694   // ignore is there is no stack
2695   if (!has_last_Java_frame()) return;
2696   // traverse the stack frames. Starts from top frame.
2697   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2698     frame* fr = fst.current();
2699     f(fr, fst.register_map());
2700   }
2701 }
2702 
2703 
2704 #ifndef PRODUCT
2705 // Deoptimization
2706 // Function for testing deoptimization
2707 void JavaThread::deoptimize() {
2708   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2709   StackFrameStream fst(this, UseBiasedLocking);
2710   bool deopt = false;           // Dump stack only if a deopt actually happens.
2711   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2712   // Iterate over all frames in the thread and deoptimize
2713   for (; !fst.is_done(); fst.next()) {
2714     if (fst.current()->can_be_deoptimized()) {
2715 
2716       if (only_at) {
2717         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2718         // consists of comma or carriage return separated numbers so
2719         // search for the current bci in that string.
2720         address pc = fst.current()->pc();
2721         nmethod* nm =  (nmethod*) fst.current()->cb();
2722         ScopeDesc* sd = nm->scope_desc_at(pc);
2723         char buffer[8];
2724         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2725         size_t len = strlen(buffer);
2726         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2727         while (found != NULL) {
2728           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2729               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2730             // Check that the bci found is bracketed by terminators.
2731             break;
2732           }
2733           found = strstr(found + 1, buffer);
2734         }
2735         if (!found) {
2736           continue;
2737         }
2738       }
2739 
2740       if (DebugDeoptimization && !deopt) {
2741         deopt = true; // One-time only print before deopt
2742         tty->print_cr("[BEFORE Deoptimization]");
2743         trace_frames();
2744         trace_stack();
2745       }
2746       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2747     }
2748   }
2749 
2750   if (DebugDeoptimization && deopt) {
2751     tty->print_cr("[AFTER Deoptimization]");
2752     trace_frames();
2753   }
2754 }
2755 
2756 
2757 // Make zombies
2758 void JavaThread::make_zombies() {
2759   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2760     if (fst.current()->can_be_deoptimized()) {
2761       // it is a Java nmethod
2762       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2763       nm->make_not_entrant();
2764     }
2765   }
2766 }
2767 #endif // PRODUCT
2768 
2769 
2770 void JavaThread::deoptimized_wrt_marked_nmethods() {
2771   if (!has_last_Java_frame()) return;
2772   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2773   StackFrameStream fst(this, UseBiasedLocking);
2774   for (; !fst.is_done(); fst.next()) {
2775     if (fst.current()->should_be_deoptimized()) {
2776       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2777     }
2778   }
2779 }
2780 
2781 
2782 // If the caller is a NamedThread, then remember, in the current scope,
2783 // the given JavaThread in its _processed_thread field.
2784 class RememberProcessedThread: public StackObj {
2785   NamedThread* _cur_thr;
2786  public:
2787   RememberProcessedThread(JavaThread* jthr) {
2788     Thread* thread = Thread::current();
2789     if (thread->is_Named_thread()) {
2790       _cur_thr = (NamedThread *)thread;
2791       _cur_thr->set_processed_thread(jthr);
2792     } else {
2793       _cur_thr = NULL;
2794     }
2795   }
2796 
2797   ~RememberProcessedThread() {
2798     if (_cur_thr) {
2799       _cur_thr->set_processed_thread(NULL);
2800     }
2801   }
2802 };
2803 
2804 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2805   // Verify that the deferred card marks have been flushed.
2806   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2807 
2808   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2809   // since there may be more than one thread using each ThreadProfiler.
2810 
2811   // Traverse the GCHandles
2812   Thread::oops_do(f, cf);
2813 
2814   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2815 
2816   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2817          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2818 
2819   if (has_last_Java_frame()) {
2820     // Record JavaThread to GC thread
2821     RememberProcessedThread rpt(this);
2822 
2823     // Traverse the privileged stack
2824     if (_privileged_stack_top != NULL) {
2825       _privileged_stack_top->oops_do(f);
2826     }
2827 
2828     // traverse the registered growable array
2829     if (_array_for_gc != NULL) {
2830       for (int index = 0; index < _array_for_gc->length(); index++) {
2831         f->do_oop(_array_for_gc->adr_at(index));
2832       }
2833     }
2834 
2835     // Traverse the monitor chunks
2836     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2837       chunk->oops_do(f);
2838     }
2839 
2840     // Traverse the execution stack
2841     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2842       fst.current()->oops_do(f, cf, fst.register_map());
2843     }
2844   }
2845 
2846   // callee_target is never live across a gc point so NULL it here should
2847   // it still contain a methdOop.
2848 
2849   set_callee_target(NULL);
2850 
2851   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2852   // If we have deferred set_locals there might be oops waiting to be
2853   // written
2854   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2855   if (list != NULL) {
2856     for (int i = 0; i < list->length(); i++) {
2857       list->at(i)->oops_do(f);
2858     }
2859   }
2860 
2861   // Traverse instance variables at the end since the GC may be moving things
2862   // around using this function
2863   f->do_oop((oop*) &_threadObj);
2864   f->do_oop((oop*) &_vm_result);
2865   f->do_oop((oop*) &_exception_oop);
2866   f->do_oop((oop*) &_pending_async_exception);
2867 
2868   if (jvmti_thread_state() != NULL) {
2869     jvmti_thread_state()->oops_do(f);
2870   }
2871 }
2872 
2873 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2874   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2875          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2876 
2877   if (has_last_Java_frame()) {
2878     // Traverse the execution stack
2879     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2880       fst.current()->nmethods_do(cf);
2881     }
2882   }
2883 }
2884 
2885 void JavaThread::metadata_do(void f(Metadata*)) {
2886   if (has_last_Java_frame()) {
2887     // Traverse the execution stack to call f() on the methods in the stack
2888     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2889       fst.current()->metadata_do(f);
2890     }
2891   } else if (is_Compiler_thread()) {
2892     // need to walk ciMetadata in current compile tasks to keep alive.
2893     CompilerThread* ct = (CompilerThread*)this;
2894     if (ct->env() != NULL) {
2895       ct->env()->metadata_do(f);
2896     }
2897     if (ct->task() != NULL) {
2898       ct->task()->metadata_do(f);
2899     }
2900   }
2901 }
2902 
2903 // Printing
2904 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2905   switch (_thread_state) {
2906   case _thread_uninitialized:     return "_thread_uninitialized";
2907   case _thread_new:               return "_thread_new";
2908   case _thread_new_trans:         return "_thread_new_trans";
2909   case _thread_in_native:         return "_thread_in_native";
2910   case _thread_in_native_trans:   return "_thread_in_native_trans";
2911   case _thread_in_vm:             return "_thread_in_vm";
2912   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2913   case _thread_in_Java:           return "_thread_in_Java";
2914   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2915   case _thread_blocked:           return "_thread_blocked";
2916   case _thread_blocked_trans:     return "_thread_blocked_trans";
2917   default:                        return "unknown thread state";
2918   }
2919 }
2920 
2921 #ifndef PRODUCT
2922 void JavaThread::print_thread_state_on(outputStream *st) const {
2923   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2924 };
2925 void JavaThread::print_thread_state() const {
2926   print_thread_state_on(tty);
2927 }
2928 #endif // PRODUCT
2929 
2930 // Called by Threads::print() for VM_PrintThreads operation
2931 void JavaThread::print_on(outputStream *st) const {
2932   st->print_raw("\"");
2933   st->print_raw(get_thread_name());
2934   st->print_raw("\" ");
2935   oop thread_oop = threadObj();
2936   if (thread_oop != NULL) {
2937     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2938     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2939     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2940   }
2941   Thread::print_on(st);
2942   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2943   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2944   if (thread_oop != NULL) {
2945     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2946   }
2947 #ifndef PRODUCT
2948   print_thread_state_on(st);
2949   _safepoint_state->print_on(st);
2950 #endif // PRODUCT
2951   if (is_Compiler_thread()) {
2952     CompilerThread* ct = (CompilerThread*)this;
2953     if (ct->task() != NULL) {
2954       st->print("   Compiling: ");
2955       ct->task()->print(st, NULL, true, false);
2956     } else {
2957       st->print("   No compile task");
2958     }
2959     st->cr();
2960   }
2961 }
2962 
2963 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2964   st->print("%s", get_thread_name_string(buf, buflen));
2965 }
2966 
2967 // Called by fatal error handler. The difference between this and
2968 // JavaThread::print() is that we can't grab lock or allocate memory.
2969 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2970   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2971   oop thread_obj = threadObj();
2972   if (thread_obj != NULL) {
2973     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2974   }
2975   st->print(" [");
2976   st->print("%s", _get_thread_state_name(_thread_state));
2977   if (osthread()) {
2978     st->print(", id=%d", osthread()->thread_id());
2979   }
2980   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2981             p2i(stack_end()), p2i(stack_base()));
2982   st->print("]");
2983   return;
2984 }
2985 
2986 // Verification
2987 
2988 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2989 
2990 void JavaThread::verify() {
2991   // Verify oops in the thread.
2992   oops_do(&VerifyOopClosure::verify_oop, NULL);
2993 
2994   // Verify the stack frames.
2995   frames_do(frame_verify);
2996 }
2997 
2998 // CR 6300358 (sub-CR 2137150)
2999 // Most callers of this method assume that it can't return NULL but a
3000 // thread may not have a name whilst it is in the process of attaching to
3001 // the VM - see CR 6412693, and there are places where a JavaThread can be
3002 // seen prior to having it's threadObj set (eg JNI attaching threads and
3003 // if vm exit occurs during initialization). These cases can all be accounted
3004 // for such that this method never returns NULL.
3005 const char* JavaThread::get_thread_name() const {
3006 #ifdef ASSERT
3007   // early safepoints can hit while current thread does not yet have TLS
3008   if (!SafepointSynchronize::is_at_safepoint()) {
3009     Thread *cur = Thread::current();
3010     if (!(cur->is_Java_thread() && cur == this)) {
3011       // Current JavaThreads are allowed to get their own name without
3012       // the Threads_lock.
3013       assert_locked_or_safepoint(Threads_lock);
3014     }
3015   }
3016 #endif // ASSERT
3017   return get_thread_name_string();
3018 }
3019 
3020 // Returns a non-NULL representation of this thread's name, or a suitable
3021 // descriptive string if there is no set name
3022 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3023   const char* name_str;
3024   oop thread_obj = threadObj();
3025   if (thread_obj != NULL) {
3026     oop name = java_lang_Thread::name(thread_obj);
3027     if (name != NULL) {
3028       if (buf == NULL) {
3029         name_str = java_lang_String::as_utf8_string(name);
3030       } else {
3031         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3032       }
3033     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3034       name_str = "<no-name - thread is attaching>";
3035     } else {
3036       name_str = Thread::name();
3037     }
3038   } else {
3039     name_str = Thread::name();
3040   }
3041   assert(name_str != NULL, "unexpected NULL thread name");
3042   return name_str;
3043 }
3044 
3045 
3046 const char* JavaThread::get_threadgroup_name() const {
3047   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3048   oop thread_obj = threadObj();
3049   if (thread_obj != NULL) {
3050     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3051     if (thread_group != NULL) {
3052       // ThreadGroup.name can be null
3053       return java_lang_ThreadGroup::name(thread_group);
3054     }
3055   }
3056   return NULL;
3057 }
3058 
3059 const char* JavaThread::get_parent_name() const {
3060   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3061   oop thread_obj = threadObj();
3062   if (thread_obj != NULL) {
3063     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3064     if (thread_group != NULL) {
3065       oop parent = java_lang_ThreadGroup::parent(thread_group);
3066       if (parent != NULL) {
3067         // ThreadGroup.name can be null
3068         return java_lang_ThreadGroup::name(parent);
3069       }
3070     }
3071   }
3072   return NULL;
3073 }
3074 
3075 ThreadPriority JavaThread::java_priority() const {
3076   oop thr_oop = threadObj();
3077   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3078   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3079   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3080   return priority;
3081 }
3082 
3083 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3084 
3085   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3086   // Link Java Thread object <-> C++ Thread
3087 
3088   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3089   // and put it into a new Handle.  The Handle "thread_oop" can then
3090   // be used to pass the C++ thread object to other methods.
3091 
3092   // Set the Java level thread object (jthread) field of the
3093   // new thread (a JavaThread *) to C++ thread object using the
3094   // "thread_oop" handle.
3095 
3096   // Set the thread field (a JavaThread *) of the
3097   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3098 
3099   Handle thread_oop(Thread::current(),
3100                     JNIHandles::resolve_non_null(jni_thread));
3101   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3102          "must be initialized");
3103   set_threadObj(thread_oop());
3104   java_lang_Thread::set_thread(thread_oop(), this);
3105 
3106   if (prio == NoPriority) {
3107     prio = java_lang_Thread::priority(thread_oop());
3108     assert(prio != NoPriority, "A valid priority should be present");
3109   }
3110 
3111   // Push the Java priority down to the native thread; needs Threads_lock
3112   Thread::set_priority(this, prio);
3113 
3114   prepare_ext();
3115 
3116   // Add the new thread to the Threads list and set it in motion.
3117   // We must have threads lock in order to call Threads::add.
3118   // It is crucial that we do not block before the thread is
3119   // added to the Threads list for if a GC happens, then the java_thread oop
3120   // will not be visited by GC.
3121   Threads::add(this);
3122 }
3123 
3124 oop JavaThread::current_park_blocker() {
3125   // Support for JSR-166 locks
3126   oop thread_oop = threadObj();
3127   if (thread_oop != NULL &&
3128       JDK_Version::current().supports_thread_park_blocker()) {
3129     return java_lang_Thread::park_blocker(thread_oop);
3130   }
3131   return NULL;
3132 }
3133 
3134 
3135 void JavaThread::print_stack_on(outputStream* st) {
3136   if (!has_last_Java_frame()) return;
3137   ResourceMark rm;
3138   HandleMark   hm;
3139 
3140   RegisterMap reg_map(this);
3141   vframe* start_vf = last_java_vframe(&reg_map);
3142   int count = 0;
3143   for (vframe* f = start_vf; f; f = f->sender()) {
3144     if (f->is_java_frame()) {
3145       javaVFrame* jvf = javaVFrame::cast(f);
3146       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3147 
3148       // Print out lock information
3149       if (JavaMonitorsInStackTrace) {
3150         jvf->print_lock_info_on(st, count);
3151       }
3152     } else {
3153       // Ignore non-Java frames
3154     }
3155 
3156     // Bail-out case for too deep stacks
3157     count++;
3158     if (MaxJavaStackTraceDepth == count) return;
3159   }
3160 }
3161 
3162 
3163 // JVMTI PopFrame support
3164 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3165   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3166   if (in_bytes(size_in_bytes) != 0) {
3167     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3168     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3169     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3170   }
3171 }
3172 
3173 void* JavaThread::popframe_preserved_args() {
3174   return _popframe_preserved_args;
3175 }
3176 
3177 ByteSize JavaThread::popframe_preserved_args_size() {
3178   return in_ByteSize(_popframe_preserved_args_size);
3179 }
3180 
3181 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3182   int sz = in_bytes(popframe_preserved_args_size());
3183   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3184   return in_WordSize(sz / wordSize);
3185 }
3186 
3187 void JavaThread::popframe_free_preserved_args() {
3188   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3189   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3190   _popframe_preserved_args = NULL;
3191   _popframe_preserved_args_size = 0;
3192 }
3193 
3194 #ifndef PRODUCT
3195 
3196 void JavaThread::trace_frames() {
3197   tty->print_cr("[Describe stack]");
3198   int frame_no = 1;
3199   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3200     tty->print("  %d. ", frame_no++);
3201     fst.current()->print_value_on(tty, this);
3202     tty->cr();
3203   }
3204 }
3205 
3206 class PrintAndVerifyOopClosure: public OopClosure {
3207  protected:
3208   template <class T> inline void do_oop_work(T* p) {
3209     oop obj = oopDesc::load_decode_heap_oop(p);
3210     if (obj == NULL) return;
3211     tty->print(INTPTR_FORMAT ": ", p2i(p));
3212     if (obj->is_oop_or_null()) {
3213       if (obj->is_objArray()) {
3214         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3215       } else {
3216         obj->print();
3217       }
3218     } else {
3219       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3220     }
3221     tty->cr();
3222   }
3223  public:
3224   virtual void do_oop(oop* p) { do_oop_work(p); }
3225   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3226 };
3227 
3228 
3229 static void oops_print(frame* f, const RegisterMap *map) {
3230   PrintAndVerifyOopClosure print;
3231   f->print_value();
3232   f->oops_do(&print, NULL, (RegisterMap*)map);
3233 }
3234 
3235 // Print our all the locations that contain oops and whether they are
3236 // valid or not.  This useful when trying to find the oldest frame
3237 // where an oop has gone bad since the frame walk is from youngest to
3238 // oldest.
3239 void JavaThread::trace_oops() {
3240   tty->print_cr("[Trace oops]");
3241   frames_do(oops_print);
3242 }
3243 
3244 
3245 #ifdef ASSERT
3246 // Print or validate the layout of stack frames
3247 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3248   ResourceMark rm;
3249   PRESERVE_EXCEPTION_MARK;
3250   FrameValues values;
3251   int frame_no = 0;
3252   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3253     fst.current()->describe(values, ++frame_no);
3254     if (depth == frame_no) break;
3255   }
3256   if (validate_only) {
3257     values.validate();
3258   } else {
3259     tty->print_cr("[Describe stack layout]");
3260     values.print(this);
3261   }
3262 }
3263 #endif
3264 
3265 void JavaThread::trace_stack_from(vframe* start_vf) {
3266   ResourceMark rm;
3267   int vframe_no = 1;
3268   for (vframe* f = start_vf; f; f = f->sender()) {
3269     if (f->is_java_frame()) {
3270       javaVFrame::cast(f)->print_activation(vframe_no++);
3271     } else {
3272       f->print();
3273     }
3274     if (vframe_no > StackPrintLimit) {
3275       tty->print_cr("...<more frames>...");
3276       return;
3277     }
3278   }
3279 }
3280 
3281 
3282 void JavaThread::trace_stack() {
3283   if (!has_last_Java_frame()) return;
3284   ResourceMark rm;
3285   HandleMark   hm;
3286   RegisterMap reg_map(this);
3287   trace_stack_from(last_java_vframe(&reg_map));
3288 }
3289 
3290 
3291 #endif // PRODUCT
3292 
3293 
3294 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3295   assert(reg_map != NULL, "a map must be given");
3296   frame f = last_frame();
3297   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3298     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3299   }
3300   return NULL;
3301 }
3302 
3303 
3304 Klass* JavaThread::security_get_caller_class(int depth) {
3305   vframeStream vfst(this);
3306   vfst.security_get_caller_frame(depth);
3307   if (!vfst.at_end()) {
3308     return vfst.method()->method_holder();
3309   }
3310   return NULL;
3311 }
3312 
3313 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3314   assert(thread->is_Compiler_thread(), "must be compiler thread");
3315   CompileBroker::compiler_thread_loop();
3316 }
3317 
3318 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3319   NMethodSweeper::sweeper_loop();
3320 }
3321 
3322 // Create a CompilerThread
3323 CompilerThread::CompilerThread(CompileQueue* queue,
3324                                CompilerCounters* counters)
3325                                : JavaThread(&compiler_thread_entry) {
3326   _env   = NULL;
3327   _log   = NULL;
3328   _task  = NULL;
3329   _queue = queue;
3330   _counters = counters;
3331   _buffer_blob = NULL;
3332   _compiler = NULL;
3333 
3334 #ifndef PRODUCT
3335   _ideal_graph_printer = NULL;
3336 #endif
3337 }
3338 
3339 bool CompilerThread::can_call_java() const {
3340   return _compiler != NULL && _compiler->is_jvmci();
3341 }
3342 
3343 // Create sweeper thread
3344 CodeCacheSweeperThread::CodeCacheSweeperThread()
3345 : JavaThread(&sweeper_thread_entry) {
3346   _scanned_compiled_method = NULL;
3347 }
3348 
3349 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3350   JavaThread::oops_do(f, cf);
3351   if (_scanned_compiled_method != NULL && cf != NULL) {
3352     // Safepoints can occur when the sweeper is scanning an nmethod so
3353     // process it here to make sure it isn't unloaded in the middle of
3354     // a scan.
3355     cf->do_code_blob(_scanned_compiled_method);
3356   }
3357 }
3358 
3359 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3360   JavaThread::nmethods_do(cf);
3361   if (_scanned_compiled_method != NULL && cf != NULL) {
3362     // Safepoints can occur when the sweeper is scanning an nmethod so
3363     // process it here to make sure it isn't unloaded in the middle of
3364     // a scan.
3365     cf->do_code_blob(_scanned_compiled_method);
3366   }
3367 }
3368 
3369 
3370 // ======= Threads ========
3371 
3372 // The Threads class links together all active threads, and provides
3373 // operations over all threads.  It is protected by its own Mutex
3374 // lock, which is also used in other contexts to protect thread
3375 // operations from having the thread being operated on from exiting
3376 // and going away unexpectedly (e.g., safepoint synchronization)
3377 
3378 JavaThread* Threads::_thread_list = NULL;
3379 int         Threads::_number_of_threads = 0;
3380 int         Threads::_number_of_non_daemon_threads = 0;
3381 int         Threads::_return_code = 0;
3382 int         Threads::_thread_claim_parity = 0;
3383 size_t      JavaThread::_stack_size_at_create = 0;
3384 #ifdef ASSERT
3385 bool        Threads::_vm_complete = false;
3386 #endif
3387 
3388 // All JavaThreads
3389 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3390 
3391 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3392 void Threads::threads_do(ThreadClosure* tc) {
3393   assert_locked_or_safepoint(Threads_lock);
3394   // ALL_JAVA_THREADS iterates through all JavaThreads
3395   ALL_JAVA_THREADS(p) {
3396     tc->do_thread(p);
3397   }
3398   // Someday we could have a table or list of all non-JavaThreads.
3399   // For now, just manually iterate through them.
3400   tc->do_thread(VMThread::vm_thread());
3401   Universe::heap()->gc_threads_do(tc);
3402   WatcherThread *wt = WatcherThread::watcher_thread();
3403   // Strictly speaking, the following NULL check isn't sufficient to make sure
3404   // the data for WatcherThread is still valid upon being examined. However,
3405   // considering that WatchThread terminates when the VM is on the way to
3406   // exit at safepoint, the chance of the above is extremely small. The right
3407   // way to prevent termination of WatcherThread would be to acquire
3408   // Terminator_lock, but we can't do that without violating the lock rank
3409   // checking in some cases.
3410   if (wt != NULL) {
3411     tc->do_thread(wt);
3412   }
3413 
3414   // If CompilerThreads ever become non-JavaThreads, add them here
3415 }
3416 
3417 // The system initialization in the library has three phases.
3418 //
3419 // Phase 1: java.lang.System class initialization
3420 //     java.lang.System is a primordial class loaded and initialized
3421 //     by the VM early during startup.  java.lang.System.<clinit>
3422 //     only does registerNatives and keeps the rest of the class
3423 //     initialization work later until thread initialization completes.
3424 //
3425 //     System.initPhase1 initializes the system properties, the static
3426 //     fields in, out, and err. Set up java signal handlers, OS-specific
3427 //     system settings, and thread group of the main thread.
3428 static void call_initPhase1(TRAPS) {
3429   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3430   instanceKlassHandle klass (THREAD, k);
3431 
3432   JavaValue result(T_VOID);
3433   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3434                                          vmSymbols::void_method_signature(), CHECK);
3435 }
3436 
3437 // Phase 2. Module system initialization
3438 //     This will initialize the module system.  Only java.base classes
3439 //     can be loaded until phase 2 completes.
3440 //
3441 //     Call System.initPhase2 after the compiler initialization and jsr292
3442 //     classes get initialized because module initialization runs a lot of java
3443 //     code, that for performance reasons, should be compiled.  Also, this will
3444 //     enable the startup code to use lambda and other language features in this
3445 //     phase and onward.
3446 //
3447 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3448 static void call_initPhase2(TRAPS) {
3449   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, modules, startuptime));
3450 
3451   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3452   instanceKlassHandle klass (THREAD, k);
3453 
3454   JavaValue result(T_INT);
3455   JavaCallArguments args;
3456   args.push_int(DisplayVMOutputToStderr);
3457   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3458   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3459                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3460   if (result.get_jint() != JNI_OK) {
3461     vm_exit_during_initialization(); // no message or exception
3462   }
3463 
3464   universe_post_module_init();
3465 }
3466 
3467 // Phase 3. final setup - set security manager, system class loader and TCCL
3468 //
3469 //     This will instantiate and set the security manager, set the system class
3470 //     loader as well as the thread context class loader.  The security manager
3471 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3472 //     other modules or the application's classpath.
3473 static void call_initPhase3(TRAPS) {
3474   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3475   instanceKlassHandle klass (THREAD, k);
3476 
3477   JavaValue result(T_VOID);
3478   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3479                                          vmSymbols::void_method_signature(), CHECK);
3480 }
3481 
3482 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3483   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3484 
3485   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3486     create_vm_init_libraries();
3487   }
3488 
3489   initialize_class(vmSymbols::java_lang_String(), CHECK);
3490 
3491   // Inject CompactStrings value after the static initializers for String ran.
3492   java_lang_String::set_compact_strings(CompactStrings);
3493 
3494   // Initialize java_lang.System (needed before creating the thread)
3495   initialize_class(vmSymbols::java_lang_System(), CHECK);
3496   // The VM creates & returns objects of this class. Make sure it's initialized.
3497   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3498   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3499   Handle thread_group = create_initial_thread_group(CHECK);
3500   Universe::set_main_thread_group(thread_group());
3501   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3502   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3503   main_thread->set_threadObj(thread_object);
3504   // Set thread status to running since main thread has
3505   // been started and running.
3506   java_lang_Thread::set_thread_status(thread_object,
3507                                       java_lang_Thread::RUNNABLE);
3508 
3509   // The VM creates objects of this class.
3510   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3511 
3512   // The VM preresolves methods to these classes. Make sure that they get initialized
3513   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3514   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3515 
3516   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3517   call_initPhase1(CHECK);
3518 
3519   // get the Java runtime name after java.lang.System is initialized
3520   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3521   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3522 
3523   // an instance of OutOfMemory exception has been allocated earlier
3524   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3525   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3526   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3527   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3528   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3529   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3530   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3531   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3532 }
3533 
3534 void Threads::initialize_jsr292_core_classes(TRAPS) {
3535   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3536 
3537   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3538   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3539   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3540 }
3541 
3542 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3543   extern void JDK_Version_init();
3544 
3545   // Preinitialize version info.
3546   VM_Version::early_initialize();
3547 
3548   // Check version
3549   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3550 
3551   // Initialize library-based TLS
3552   ThreadLocalStorage::init();
3553 
3554   // Initialize the output stream module
3555   ostream_init();
3556 
3557   // Process java launcher properties.
3558   Arguments::process_sun_java_launcher_properties(args);
3559 
3560   // Initialize the os module
3561   os::init();
3562 
3563   // Record VM creation timing statistics
3564   TraceVmCreationTime create_vm_timer;
3565   create_vm_timer.start();
3566 
3567   // Initialize system properties.
3568   Arguments::init_system_properties();
3569 
3570   // So that JDK version can be used as a discriminator when parsing arguments
3571   JDK_Version_init();
3572 
3573   // Update/Initialize System properties after JDK version number is known
3574   Arguments::init_version_specific_system_properties();
3575 
3576   // Make sure to initialize log configuration *before* parsing arguments
3577   LogConfiguration::initialize(create_vm_timer.begin_time());
3578 
3579   // Parse arguments
3580   jint parse_result = Arguments::parse(args);
3581   if (parse_result != JNI_OK) return parse_result;
3582 
3583   os::init_before_ergo();
3584 
3585   jint ergo_result = Arguments::apply_ergo();
3586   if (ergo_result != JNI_OK) return ergo_result;
3587 
3588   // Final check of all ranges after ergonomics which may change values.
3589   if (!CommandLineFlagRangeList::check_ranges()) {
3590     return JNI_EINVAL;
3591   }
3592 
3593   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3594   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3595   if (!constraint_result) {
3596     return JNI_EINVAL;
3597   }
3598 
3599   CommandLineFlagWriteableList::mark_startup();
3600 
3601   if (PauseAtStartup) {
3602     os::pause();
3603   }
3604 
3605   HOTSPOT_VM_INIT_BEGIN();
3606 
3607   // Timing (must come after argument parsing)
3608   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3609 
3610   // Initialize the os module after parsing the args
3611   jint os_init_2_result = os::init_2();
3612   if (os_init_2_result != JNI_OK) return os_init_2_result;
3613 
3614   jint adjust_after_os_result = Arguments::adjust_after_os();
3615   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3616 
3617   // Initialize output stream logging
3618   ostream_init_log();
3619 
3620   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3621   // Must be before create_vm_init_agents()
3622   if (Arguments::init_libraries_at_startup()) {
3623     convert_vm_init_libraries_to_agents();
3624   }
3625 
3626   // Launch -agentlib/-agentpath and converted -Xrun agents
3627   if (Arguments::init_agents_at_startup()) {
3628     create_vm_init_agents();
3629   }
3630 
3631   // Initialize Threads state
3632   _thread_list = NULL;
3633   _number_of_threads = 0;
3634   _number_of_non_daemon_threads = 0;
3635 
3636   // Initialize global data structures and create system classes in heap
3637   vm_init_globals();
3638 
3639 #if INCLUDE_JVMCI
3640   if (JVMCICounterSize > 0) {
3641     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3642     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3643   } else {
3644     JavaThread::_jvmci_old_thread_counters = NULL;
3645   }
3646 #endif // INCLUDE_JVMCI
3647 
3648   // Attach the main thread to this os thread
3649   JavaThread* main_thread = new JavaThread();
3650   main_thread->set_thread_state(_thread_in_vm);
3651   main_thread->initialize_thread_current();
3652   // must do this before set_active_handles
3653   main_thread->record_stack_base_and_size();
3654   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3655 
3656   if (!main_thread->set_as_starting_thread()) {
3657     vm_shutdown_during_initialization(
3658                                       "Failed necessary internal allocation. Out of swap space");
3659     delete main_thread;
3660     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3661     return JNI_ENOMEM;
3662   }
3663 
3664   // Enable guard page *after* os::create_main_thread(), otherwise it would
3665   // crash Linux VM, see notes in os_linux.cpp.
3666   main_thread->create_stack_guard_pages();
3667 
3668   // Initialize Java-Level synchronization subsystem
3669   ObjectMonitor::Initialize();
3670 
3671   // Initialize global modules
3672   jint status = init_globals();
3673   if (status != JNI_OK) {
3674     delete main_thread;
3675     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3676     return status;
3677   }
3678 
3679   if (TRACE_INITIALIZE() != JNI_OK) {
3680     vm_exit_during_initialization("Failed to initialize tracing backend");
3681   }
3682 
3683   // Should be done after the heap is fully created
3684   main_thread->cache_global_variables();
3685 
3686   HandleMark hm;
3687 
3688   { MutexLocker mu(Threads_lock);
3689     Threads::add(main_thread);
3690   }
3691 
3692   // Any JVMTI raw monitors entered in onload will transition into
3693   // real raw monitor. VM is setup enough here for raw monitor enter.
3694   JvmtiExport::transition_pending_onload_raw_monitors();
3695 
3696   // Create the VMThread
3697   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3698 
3699   VMThread::create();
3700     Thread* vmthread = VMThread::vm_thread();
3701 
3702     if (!os::create_thread(vmthread, os::vm_thread)) {
3703       vm_exit_during_initialization("Cannot create VM thread. "
3704                                     "Out of system resources.");
3705     }
3706 
3707     // Wait for the VM thread to become ready, and VMThread::run to initialize
3708     // Monitors can have spurious returns, must always check another state flag
3709     {
3710       MutexLocker ml(Notify_lock);
3711       os::start_thread(vmthread);
3712       while (vmthread->active_handles() == NULL) {
3713         Notify_lock->wait();
3714       }
3715     }
3716   }
3717 
3718   assert(Universe::is_fully_initialized(), "not initialized");
3719   if (VerifyDuringStartup) {
3720     // Make sure we're starting with a clean slate.
3721     VM_Verify verify_op;
3722     VMThread::execute(&verify_op);
3723   }
3724 
3725   Thread* THREAD = Thread::current();
3726 
3727   // At this point, the Universe is initialized, but we have not executed
3728   // any byte code.  Now is a good time (the only time) to dump out the
3729   // internal state of the JVM for sharing.
3730   if (DumpSharedSpaces) {
3731     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3732     ShouldNotReachHere();
3733   }
3734 
3735   // Always call even when there are not JVMTI environments yet, since environments
3736   // may be attached late and JVMTI must track phases of VM execution
3737   JvmtiExport::enter_early_start_phase();
3738 
3739   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3740   JvmtiExport::post_early_vm_start();
3741 
3742   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3743 
3744   // We need this for ClassDataSharing - the initial vm.info property is set
3745   // with the default value of CDS "sharing" which may be reset through
3746   // command line options.
3747   reset_vm_info_property(CHECK_JNI_ERR);
3748 
3749   quicken_jni_functions();
3750 
3751   // No more stub generation allowed after that point.
3752   StubCodeDesc::freeze();
3753 
3754   // Set flag that basic initialization has completed. Used by exceptions and various
3755   // debug stuff, that does not work until all basic classes have been initialized.
3756   set_init_completed();
3757 
3758   LogConfiguration::post_initialize();
3759   Metaspace::post_initialize();
3760 
3761   HOTSPOT_VM_INIT_END();
3762 
3763   // record VM initialization completion time
3764 #if INCLUDE_MANAGEMENT
3765   Management::record_vm_init_completed();
3766 #endif // INCLUDE_MANAGEMENT
3767 
3768   // Signal Dispatcher needs to be started before VMInit event is posted
3769   os::signal_init();
3770 
3771   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3772   if (!DisableAttachMechanism) {
3773     AttachListener::vm_start();
3774     if (StartAttachListener || AttachListener::init_at_startup()) {
3775       AttachListener::init();
3776     }
3777   }
3778 
3779   // Launch -Xrun agents
3780   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3781   // back-end can launch with -Xdebug -Xrunjdwp.
3782   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3783     create_vm_init_libraries();
3784   }
3785 
3786   if (CleanChunkPoolAsync) {
3787     Chunk::start_chunk_pool_cleaner_task();
3788   }
3789 
3790   // initialize compiler(s)
3791 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3792   CompileBroker::compilation_init(CHECK_JNI_ERR);
3793 #endif
3794 
3795   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3796   // It is done after compilers are initialized, because otherwise compilations of
3797   // signature polymorphic MH intrinsics can be missed
3798   // (see SystemDictionary::find_method_handle_intrinsic).
3799   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3800 
3801   // This will initialize the module system.  Only java.base classes can be
3802   // loaded until phase 2 completes
3803   call_initPhase2(CHECK_JNI_ERR);
3804 
3805   // Always call even when there are not JVMTI environments yet, since environments
3806   // may be attached late and JVMTI must track phases of VM execution
3807   JvmtiExport::enter_start_phase();
3808 
3809   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3810   JvmtiExport::post_vm_start();
3811 
3812   // Final system initialization including security manager and system class loader
3813   call_initPhase3(CHECK_JNI_ERR);
3814 
3815   // cache the system class loader
3816   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3817 
3818 #if INCLUDE_JVMCI
3819   if (EnableJVMCI) {
3820     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3821     // The JVMCI Java initialization code will read this flag and
3822     // do the printing if it's set.
3823     bool init = JVMCIPrintProperties;
3824 
3825     if (!init) {
3826       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3827       // compilations via JVMCI will not actually block until JVMCI is initialized.
3828       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3829     }
3830 
3831     if (init) {
3832       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3833     }
3834   }
3835 #endif
3836 
3837   // Always call even when there are not JVMTI environments yet, since environments
3838   // may be attached late and JVMTI must track phases of VM execution
3839   JvmtiExport::enter_live_phase();
3840 
3841   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3842   JvmtiExport::post_vm_initialized();
3843 
3844   if (TRACE_START() != JNI_OK) {
3845     vm_exit_during_initialization("Failed to start tracing backend.");
3846   }
3847 
3848 #if INCLUDE_MANAGEMENT
3849   Management::initialize(THREAD);
3850 
3851   if (HAS_PENDING_EXCEPTION) {
3852     // management agent fails to start possibly due to
3853     // configuration problem and is responsible for printing
3854     // stack trace if appropriate. Simply exit VM.
3855     vm_exit(1);
3856   }
3857 #endif // INCLUDE_MANAGEMENT
3858 
3859   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3860   if (MemProfiling)                   MemProfiler::engage();
3861   StatSampler::engage();
3862   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3863 
3864   BiasedLocking::init();
3865 
3866 #if INCLUDE_RTM_OPT
3867   RTMLockingCounters::init();
3868 #endif
3869 
3870   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3871     call_postVMInitHook(THREAD);
3872     // The Java side of PostVMInitHook.run must deal with all
3873     // exceptions and provide means of diagnosis.
3874     if (HAS_PENDING_EXCEPTION) {
3875       CLEAR_PENDING_EXCEPTION;
3876     }
3877   }
3878 
3879   {
3880     MutexLocker ml(PeriodicTask_lock);
3881     // Make sure the WatcherThread can be started by WatcherThread::start()
3882     // or by dynamic enrollment.
3883     WatcherThread::make_startable();
3884     // Start up the WatcherThread if there are any periodic tasks
3885     // NOTE:  All PeriodicTasks should be registered by now. If they
3886     //   aren't, late joiners might appear to start slowly (we might
3887     //   take a while to process their first tick).
3888     if (PeriodicTask::num_tasks() > 0) {
3889       WatcherThread::start();
3890     }
3891   }
3892 
3893   create_vm_timer.end();
3894 #ifdef ASSERT
3895   _vm_complete = true;
3896 #endif
3897   return JNI_OK;
3898 }
3899 
3900 // type for the Agent_OnLoad and JVM_OnLoad entry points
3901 extern "C" {
3902   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3903 }
3904 // Find a command line agent library and return its entry point for
3905 //         -agentlib:  -agentpath:   -Xrun
3906 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3907 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3908                                     const char *on_load_symbols[],
3909                                     size_t num_symbol_entries) {
3910   OnLoadEntry_t on_load_entry = NULL;
3911   void *library = NULL;
3912 
3913   if (!agent->valid()) {
3914     char buffer[JVM_MAXPATHLEN];
3915     char ebuf[1024] = "";
3916     const char *name = agent->name();
3917     const char *msg = "Could not find agent library ";
3918 
3919     // First check to see if agent is statically linked into executable
3920     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3921       library = agent->os_lib();
3922     } else if (agent->is_absolute_path()) {
3923       library = os::dll_load(name, ebuf, sizeof ebuf);
3924       if (library == NULL) {
3925         const char *sub_msg = " in absolute path, with error: ";
3926         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3927         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3928         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3929         // If we can't find the agent, exit.
3930         vm_exit_during_initialization(buf, NULL);
3931         FREE_C_HEAP_ARRAY(char, buf);
3932       }
3933     } else {
3934       // Try to load the agent from the standard dll directory
3935       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3936                              name)) {
3937         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3938       }
3939       if (library == NULL) { // Try the local directory
3940         char ns[1] = {0};
3941         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3942           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3943         }
3944         if (library == NULL) {
3945           const char *sub_msg = " on the library path, with error: ";
3946           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3947           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3948           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3949           // If we can't find the agent, exit.
3950           vm_exit_during_initialization(buf, NULL);
3951           FREE_C_HEAP_ARRAY(char, buf);
3952         }
3953       }
3954     }
3955     agent->set_os_lib(library);
3956     agent->set_valid();
3957   }
3958 
3959   // Find the OnLoad function.
3960   on_load_entry =
3961     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3962                                                           false,
3963                                                           on_load_symbols,
3964                                                           num_symbol_entries));
3965   return on_load_entry;
3966 }
3967 
3968 // Find the JVM_OnLoad entry point
3969 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3970   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3971   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3972 }
3973 
3974 // Find the Agent_OnLoad entry point
3975 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3976   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3977   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3978 }
3979 
3980 // For backwards compatibility with -Xrun
3981 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3982 // treated like -agentpath:
3983 // Must be called before agent libraries are created
3984 void Threads::convert_vm_init_libraries_to_agents() {
3985   AgentLibrary* agent;
3986   AgentLibrary* next;
3987 
3988   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3989     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3990     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3991 
3992     // If there is an JVM_OnLoad function it will get called later,
3993     // otherwise see if there is an Agent_OnLoad
3994     if (on_load_entry == NULL) {
3995       on_load_entry = lookup_agent_on_load(agent);
3996       if (on_load_entry != NULL) {
3997         // switch it to the agent list -- so that Agent_OnLoad will be called,
3998         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3999         Arguments::convert_library_to_agent(agent);
4000       } else {
4001         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4002       }
4003     }
4004   }
4005 }
4006 
4007 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4008 // Invokes Agent_OnLoad
4009 // Called very early -- before JavaThreads exist
4010 void Threads::create_vm_init_agents() {
4011   extern struct JavaVM_ main_vm;
4012   AgentLibrary* agent;
4013 
4014   JvmtiExport::enter_onload_phase();
4015 
4016   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4017     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4018 
4019     if (on_load_entry != NULL) {
4020       // Invoke the Agent_OnLoad function
4021       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4022       if (err != JNI_OK) {
4023         vm_exit_during_initialization("agent library failed to init", agent->name());
4024       }
4025     } else {
4026       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4027     }
4028   }
4029   JvmtiExport::enter_primordial_phase();
4030 }
4031 
4032 extern "C" {
4033   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4034 }
4035 
4036 void Threads::shutdown_vm_agents() {
4037   // Send any Agent_OnUnload notifications
4038   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4039   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4040   extern struct JavaVM_ main_vm;
4041   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4042 
4043     // Find the Agent_OnUnload function.
4044     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4045                                                    os::find_agent_function(agent,
4046                                                    false,
4047                                                    on_unload_symbols,
4048                                                    num_symbol_entries));
4049 
4050     // Invoke the Agent_OnUnload function
4051     if (unload_entry != NULL) {
4052       JavaThread* thread = JavaThread::current();
4053       ThreadToNativeFromVM ttn(thread);
4054       HandleMark hm(thread);
4055       (*unload_entry)(&main_vm);
4056     }
4057   }
4058 }
4059 
4060 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4061 // Invokes JVM_OnLoad
4062 void Threads::create_vm_init_libraries() {
4063   extern struct JavaVM_ main_vm;
4064   AgentLibrary* agent;
4065 
4066   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4067     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4068 
4069     if (on_load_entry != NULL) {
4070       // Invoke the JVM_OnLoad function
4071       JavaThread* thread = JavaThread::current();
4072       ThreadToNativeFromVM ttn(thread);
4073       HandleMark hm(thread);
4074       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4075       if (err != JNI_OK) {
4076         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4077       }
4078     } else {
4079       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4080     }
4081   }
4082 }
4083 
4084 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4085   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4086 
4087   JavaThread* java_thread = NULL;
4088   // Sequential search for now.  Need to do better optimization later.
4089   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4090     oop tobj = thread->threadObj();
4091     if (!thread->is_exiting() &&
4092         tobj != NULL &&
4093         java_tid == java_lang_Thread::thread_id(tobj)) {
4094       java_thread = thread;
4095       break;
4096     }
4097   }
4098   return java_thread;
4099 }
4100 
4101 
4102 // Last thread running calls java.lang.Shutdown.shutdown()
4103 void JavaThread::invoke_shutdown_hooks() {
4104   HandleMark hm(this);
4105 
4106   // We could get here with a pending exception, if so clear it now.
4107   if (this->has_pending_exception()) {
4108     this->clear_pending_exception();
4109   }
4110 
4111   EXCEPTION_MARK;
4112   Klass* k =
4113     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4114                                       THREAD);
4115   if (k != NULL) {
4116     // SystemDictionary::resolve_or_null will return null if there was
4117     // an exception.  If we cannot load the Shutdown class, just don't
4118     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4119     // and finalizers (if runFinalizersOnExit is set) won't be run.
4120     // Note that if a shutdown hook was registered or runFinalizersOnExit
4121     // was called, the Shutdown class would have already been loaded
4122     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4123     instanceKlassHandle shutdown_klass (THREAD, k);
4124     JavaValue result(T_VOID);
4125     JavaCalls::call_static(&result,
4126                            shutdown_klass,
4127                            vmSymbols::shutdown_method_name(),
4128                            vmSymbols::void_method_signature(),
4129                            THREAD);
4130   }
4131   CLEAR_PENDING_EXCEPTION;
4132 }
4133 
4134 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4135 // the program falls off the end of main(). Another VM exit path is through
4136 // vm_exit() when the program calls System.exit() to return a value or when
4137 // there is a serious error in VM. The two shutdown paths are not exactly
4138 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4139 // and VM_Exit op at VM level.
4140 //
4141 // Shutdown sequence:
4142 //   + Shutdown native memory tracking if it is on
4143 //   + Wait until we are the last non-daemon thread to execute
4144 //     <-- every thing is still working at this moment -->
4145 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4146 //        shutdown hooks, run finalizers if finalization-on-exit
4147 //   + Call before_exit(), prepare for VM exit
4148 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4149 //        currently the only user of this mechanism is File.deleteOnExit())
4150 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4151 //        post thread end and vm death events to JVMTI,
4152 //        stop signal thread
4153 //   + Call JavaThread::exit(), it will:
4154 //      > release JNI handle blocks, remove stack guard pages
4155 //      > remove this thread from Threads list
4156 //     <-- no more Java code from this thread after this point -->
4157 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4158 //     the compiler threads at safepoint
4159 //     <-- do not use anything that could get blocked by Safepoint -->
4160 //   + Disable tracing at JNI/JVM barriers
4161 //   + Set _vm_exited flag for threads that are still running native code
4162 //   + Delete this thread
4163 //   + Call exit_globals()
4164 //      > deletes tty
4165 //      > deletes PerfMemory resources
4166 //   + Return to caller
4167 
4168 bool Threads::destroy_vm() {
4169   JavaThread* thread = JavaThread::current();
4170 
4171 #ifdef ASSERT
4172   _vm_complete = false;
4173 #endif
4174   // Wait until we are the last non-daemon thread to execute
4175   { MutexLocker nu(Threads_lock);
4176     while (Threads::number_of_non_daemon_threads() > 1)
4177       // This wait should make safepoint checks, wait without a timeout,
4178       // and wait as a suspend-equivalent condition.
4179       //
4180       // Note: If the FlatProfiler is running and this thread is waiting
4181       // for another non-daemon thread to finish, then the FlatProfiler
4182       // is waiting for the external suspend request on this thread to
4183       // complete. wait_for_ext_suspend_completion() will eventually
4184       // timeout, but that takes time. Making this wait a suspend-
4185       // equivalent condition solves that timeout problem.
4186       //
4187       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4188                          Mutex::_as_suspend_equivalent_flag);
4189   }
4190 
4191   // Hang forever on exit if we are reporting an error.
4192   if (ShowMessageBoxOnError && is_error_reported()) {
4193     os::infinite_sleep();
4194   }
4195   os::wait_for_keypress_at_exit();
4196 
4197   // run Java level shutdown hooks
4198   thread->invoke_shutdown_hooks();
4199 
4200   before_exit(thread);
4201 
4202   thread->exit(true);
4203 
4204   // Stop VM thread.
4205   {
4206     // 4945125 The vm thread comes to a safepoint during exit.
4207     // GC vm_operations can get caught at the safepoint, and the
4208     // heap is unparseable if they are caught. Grab the Heap_lock
4209     // to prevent this. The GC vm_operations will not be able to
4210     // queue until after the vm thread is dead. After this point,
4211     // we'll never emerge out of the safepoint before the VM exits.
4212 
4213     MutexLocker ml(Heap_lock);
4214 
4215     VMThread::wait_for_vm_thread_exit();
4216     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4217     VMThread::destroy();
4218   }
4219 
4220   // clean up ideal graph printers
4221 #if defined(COMPILER2) && !defined(PRODUCT)
4222   IdealGraphPrinter::clean_up();
4223 #endif
4224 
4225   // Now, all Java threads are gone except daemon threads. Daemon threads
4226   // running Java code or in VM are stopped by the Safepoint. However,
4227   // daemon threads executing native code are still running.  But they
4228   // will be stopped at native=>Java/VM barriers. Note that we can't
4229   // simply kill or suspend them, as it is inherently deadlock-prone.
4230 
4231   VM_Exit::set_vm_exited();
4232 
4233   notify_vm_shutdown();
4234 
4235   delete thread;
4236 
4237 #if INCLUDE_JVMCI
4238   if (JVMCICounterSize > 0) {
4239     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4240   }
4241 #endif
4242 
4243   // exit_globals() will delete tty
4244   exit_globals();
4245 
4246   LogConfiguration::finalize();
4247 
4248   return true;
4249 }
4250 
4251 
4252 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4253   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4254   return is_supported_jni_version(version);
4255 }
4256 
4257 
4258 jboolean Threads::is_supported_jni_version(jint version) {
4259   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4260   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4261   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4262   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4263   if (version == JNI_VERSION_9) return JNI_TRUE;
4264   return JNI_FALSE;
4265 }
4266 
4267 
4268 void Threads::add(JavaThread* p, bool force_daemon) {
4269   // The threads lock must be owned at this point
4270   assert_locked_or_safepoint(Threads_lock);
4271 
4272   // See the comment for this method in thread.hpp for its purpose and
4273   // why it is called here.
4274   p->initialize_queues();
4275   p->set_next(_thread_list);
4276   _thread_list = p;
4277   _number_of_threads++;
4278   oop threadObj = p->threadObj();
4279   bool daemon = true;
4280   // Bootstrapping problem: threadObj can be null for initial
4281   // JavaThread (or for threads attached via JNI)
4282   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4283     _number_of_non_daemon_threads++;
4284     daemon = false;
4285   }
4286 
4287   ThreadService::add_thread(p, daemon);
4288 
4289   // Possible GC point.
4290   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4291 }
4292 
4293 void Threads::remove(JavaThread* p) {
4294   // Extra scope needed for Thread_lock, so we can check
4295   // that we do not remove thread without safepoint code notice
4296   { MutexLocker ml(Threads_lock);
4297 
4298     assert(includes(p), "p must be present");
4299 
4300     JavaThread* current = _thread_list;
4301     JavaThread* prev    = NULL;
4302 
4303     while (current != p) {
4304       prev    = current;
4305       current = current->next();
4306     }
4307 
4308     if (prev) {
4309       prev->set_next(current->next());
4310     } else {
4311       _thread_list = p->next();
4312     }
4313     _number_of_threads--;
4314     oop threadObj = p->threadObj();
4315     bool daemon = true;
4316     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4317       _number_of_non_daemon_threads--;
4318       daemon = false;
4319 
4320       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4321       // on destroy_vm will wake up.
4322       if (number_of_non_daemon_threads() == 1) {
4323         Threads_lock->notify_all();
4324       }
4325     }
4326     ThreadService::remove_thread(p, daemon);
4327 
4328     // Make sure that safepoint code disregard this thread. This is needed since
4329     // the thread might mess around with locks after this point. This can cause it
4330     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4331     // of this thread since it is removed from the queue.
4332     p->set_terminated_value();
4333   } // unlock Threads_lock
4334 
4335   // Since Events::log uses a lock, we grab it outside the Threads_lock
4336   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4337 }
4338 
4339 // Threads_lock must be held when this is called (or must be called during a safepoint)
4340 bool Threads::includes(JavaThread* p) {
4341   assert(Threads_lock->is_locked(), "sanity check");
4342   ALL_JAVA_THREADS(q) {
4343     if (q == p) {
4344       return true;
4345     }
4346   }
4347   return false;
4348 }
4349 
4350 // Operations on the Threads list for GC.  These are not explicitly locked,
4351 // but the garbage collector must provide a safe context for them to run.
4352 // In particular, these things should never be called when the Threads_lock
4353 // is held by some other thread. (Note: the Safepoint abstraction also
4354 // uses the Threads_lock to guarantee this property. It also makes sure that
4355 // all threads gets blocked when exiting or starting).
4356 
4357 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4358   ALL_JAVA_THREADS(p) {
4359     p->oops_do(f, cf);
4360   }
4361   VMThread::vm_thread()->oops_do(f, cf);
4362 }
4363 
4364 void Threads::change_thread_claim_parity() {
4365   // Set the new claim parity.
4366   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4367          "Not in range.");
4368   _thread_claim_parity++;
4369   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4370   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4371          "Not in range.");
4372 }
4373 
4374 #ifdef ASSERT
4375 void Threads::assert_all_threads_claimed() {
4376   ALL_JAVA_THREADS(p) {
4377     const int thread_parity = p->oops_do_parity();
4378     assert((thread_parity == _thread_claim_parity),
4379            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4380   }
4381 }
4382 #endif // ASSERT
4383 
4384 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4385   int cp = Threads::thread_claim_parity();
4386   ALL_JAVA_THREADS(p) {
4387     if (p->claim_oops_do(is_par, cp)) {
4388       p->oops_do(f, cf);
4389     }
4390   }
4391   VMThread* vmt = VMThread::vm_thread();
4392   if (vmt->claim_oops_do(is_par, cp)) {
4393     vmt->oops_do(f, cf);
4394   }
4395 }
4396 
4397 #if INCLUDE_ALL_GCS
4398 // Used by ParallelScavenge
4399 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4400   ALL_JAVA_THREADS(p) {
4401     q->enqueue(new ThreadRootsTask(p));
4402   }
4403   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4404 }
4405 
4406 // Used by Parallel Old
4407 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4408   ALL_JAVA_THREADS(p) {
4409     q->enqueue(new ThreadRootsMarkingTask(p));
4410   }
4411   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4412 }
4413 #endif // INCLUDE_ALL_GCS
4414 
4415 void Threads::nmethods_do(CodeBlobClosure* cf) {
4416   ALL_JAVA_THREADS(p) {
4417     // This is used by the code cache sweeper to mark nmethods that are active
4418     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4419     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4420     if(!p->is_Code_cache_sweeper_thread()) {
4421       p->nmethods_do(cf);
4422     }
4423   }
4424 }
4425 
4426 void Threads::metadata_do(void f(Metadata*)) {
4427   ALL_JAVA_THREADS(p) {
4428     p->metadata_do(f);
4429   }
4430 }
4431 
4432 class ThreadHandlesClosure : public ThreadClosure {
4433   void (*_f)(Metadata*);
4434  public:
4435   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4436   virtual void do_thread(Thread* thread) {
4437     thread->metadata_handles_do(_f);
4438   }
4439 };
4440 
4441 void Threads::metadata_handles_do(void f(Metadata*)) {
4442   // Only walk the Handles in Thread.
4443   ThreadHandlesClosure handles_closure(f);
4444   threads_do(&handles_closure);
4445 }
4446 
4447 void Threads::deoptimized_wrt_marked_nmethods() {
4448   ALL_JAVA_THREADS(p) {
4449     p->deoptimized_wrt_marked_nmethods();
4450   }
4451 }
4452 
4453 
4454 // Get count Java threads that are waiting to enter the specified monitor.
4455 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4456                                                          address monitor,
4457                                                          bool doLock) {
4458   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4459          "must grab Threads_lock or be at safepoint");
4460   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4461 
4462   int i = 0;
4463   {
4464     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4465     ALL_JAVA_THREADS(p) {
4466       if (!p->can_call_java()) continue;
4467 
4468       address pending = (address)p->current_pending_monitor();
4469       if (pending == monitor) {             // found a match
4470         if (i < count) result->append(p);   // save the first count matches
4471         i++;
4472       }
4473     }
4474   }
4475   return result;
4476 }
4477 
4478 
4479 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4480                                                       bool doLock) {
4481   assert(doLock ||
4482          Threads_lock->owned_by_self() ||
4483          SafepointSynchronize::is_at_safepoint(),
4484          "must grab Threads_lock or be at safepoint");
4485 
4486   // NULL owner means not locked so we can skip the search
4487   if (owner == NULL) return NULL;
4488 
4489   {
4490     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4491     ALL_JAVA_THREADS(p) {
4492       // first, see if owner is the address of a Java thread
4493       if (owner == (address)p) return p;
4494     }
4495   }
4496   // Cannot assert on lack of success here since this function may be
4497   // used by code that is trying to report useful problem information
4498   // like deadlock detection.
4499   if (UseHeavyMonitors) return NULL;
4500 
4501   // If we didn't find a matching Java thread and we didn't force use of
4502   // heavyweight monitors, then the owner is the stack address of the
4503   // Lock Word in the owning Java thread's stack.
4504   //
4505   JavaThread* the_owner = NULL;
4506   {
4507     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4508     ALL_JAVA_THREADS(q) {
4509       if (q->is_lock_owned(owner)) {
4510         the_owner = q;
4511         break;
4512       }
4513     }
4514   }
4515   // cannot assert on lack of success here; see above comment
4516   return the_owner;
4517 }
4518 
4519 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4520 void Threads::print_on(outputStream* st, bool print_stacks,
4521                        bool internal_format, bool print_concurrent_locks) {
4522   char buf[32];
4523   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4524 
4525   st->print_cr("Full thread dump %s (%s %s):",
4526                Abstract_VM_Version::vm_name(),
4527                Abstract_VM_Version::vm_release(),
4528                Abstract_VM_Version::vm_info_string());
4529   st->cr();
4530 
4531 #if INCLUDE_SERVICES
4532   // Dump concurrent locks
4533   ConcurrentLocksDump concurrent_locks;
4534   if (print_concurrent_locks) {
4535     concurrent_locks.dump_at_safepoint();
4536   }
4537 #endif // INCLUDE_SERVICES
4538 
4539   ALL_JAVA_THREADS(p) {
4540     ResourceMark rm;
4541     p->print_on(st);
4542     if (print_stacks) {
4543       if (internal_format) {
4544         p->trace_stack();
4545       } else {
4546         p->print_stack_on(st);
4547       }
4548     }
4549     st->cr();
4550 #if INCLUDE_SERVICES
4551     if (print_concurrent_locks) {
4552       concurrent_locks.print_locks_on(p, st);
4553     }
4554 #endif // INCLUDE_SERVICES
4555   }
4556 
4557   VMThread::vm_thread()->print_on(st);
4558   st->cr();
4559   Universe::heap()->print_gc_threads_on(st);
4560   WatcherThread* wt = WatcherThread::watcher_thread();
4561   if (wt != NULL) {
4562     wt->print_on(st);
4563     st->cr();
4564   }
4565   st->flush();
4566 }
4567 
4568 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4569                              int buflen, bool* found_current) {
4570   if (this_thread != NULL) {
4571     bool is_current = (current == this_thread);
4572     *found_current = *found_current || is_current;
4573     st->print("%s", is_current ? "=>" : "  ");
4574 
4575     st->print(PTR_FORMAT, p2i(this_thread));
4576     st->print(" ");
4577     this_thread->print_on_error(st, buf, buflen);
4578     st->cr();
4579   }
4580 }
4581 
4582 class PrintOnErrorClosure : public ThreadClosure {
4583   outputStream* _st;
4584   Thread* _current;
4585   char* _buf;
4586   int _buflen;
4587   bool* _found_current;
4588  public:
4589   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4590                       int buflen, bool* found_current) :
4591    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4592 
4593   virtual void do_thread(Thread* thread) {
4594     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4595   }
4596 };
4597 
4598 // Threads::print_on_error() is called by fatal error handler. It's possible
4599 // that VM is not at safepoint and/or current thread is inside signal handler.
4600 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4601 // memory (even in resource area), it might deadlock the error handler.
4602 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4603                              int buflen) {
4604   bool found_current = false;
4605   st->print_cr("Java Threads: ( => current thread )");
4606   ALL_JAVA_THREADS(thread) {
4607     print_on_error(thread, st, current, buf, buflen, &found_current);
4608   }
4609   st->cr();
4610 
4611   st->print_cr("Other Threads:");
4612   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4613   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4614 
4615   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4616   Universe::heap()->gc_threads_do(&print_closure);
4617 
4618   if (!found_current) {
4619     st->cr();
4620     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4621     current->print_on_error(st, buf, buflen);
4622     st->cr();
4623   }
4624   st->cr();
4625   st->print_cr("Threads with active compile tasks:");
4626   print_threads_compiling(st, buf, buflen);
4627 }
4628 
4629 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4630   ALL_JAVA_THREADS(thread) {
4631     if (thread->is_Compiler_thread()) {
4632       CompilerThread* ct = (CompilerThread*) thread;
4633       if (ct->task() != NULL) {
4634         thread->print_name_on_error(st, buf, buflen);
4635         ct->task()->print(st, NULL, true, true);
4636       }
4637     }
4638   }
4639 }
4640 
4641 
4642 // Internal SpinLock and Mutex
4643 // Based on ParkEvent
4644 
4645 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4646 //
4647 // We employ SpinLocks _only for low-contention, fixed-length
4648 // short-duration critical sections where we're concerned
4649 // about native mutex_t or HotSpot Mutex:: latency.
4650 // The mux construct provides a spin-then-block mutual exclusion
4651 // mechanism.
4652 //
4653 // Testing has shown that contention on the ListLock guarding gFreeList
4654 // is common.  If we implement ListLock as a simple SpinLock it's common
4655 // for the JVM to devolve to yielding with little progress.  This is true
4656 // despite the fact that the critical sections protected by ListLock are
4657 // extremely short.
4658 //
4659 // TODO-FIXME: ListLock should be of type SpinLock.
4660 // We should make this a 1st-class type, integrated into the lock
4661 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4662 // should have sufficient padding to avoid false-sharing and excessive
4663 // cache-coherency traffic.
4664 
4665 
4666 typedef volatile int SpinLockT;
4667 
4668 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4669   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4670     return;   // normal fast-path return
4671   }
4672 
4673   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4674   TEVENT(SpinAcquire - ctx);
4675   int ctr = 0;
4676   int Yields = 0;
4677   for (;;) {
4678     while (*adr != 0) {
4679       ++ctr;
4680       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4681         if (Yields > 5) {
4682           os::naked_short_sleep(1);
4683         } else {
4684           os::naked_yield();
4685           ++Yields;
4686         }
4687       } else {
4688         SpinPause();
4689       }
4690     }
4691     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4692   }
4693 }
4694 
4695 void Thread::SpinRelease(volatile int * adr) {
4696   assert(*adr != 0, "invariant");
4697   OrderAccess::fence();      // guarantee at least release consistency.
4698   // Roach-motel semantics.
4699   // It's safe if subsequent LDs and STs float "up" into the critical section,
4700   // but prior LDs and STs within the critical section can't be allowed
4701   // to reorder or float past the ST that releases the lock.
4702   // Loads and stores in the critical section - which appear in program
4703   // order before the store that releases the lock - must also appear
4704   // before the store that releases the lock in memory visibility order.
4705   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4706   // the ST of 0 into the lock-word which releases the lock, so fence
4707   // more than covers this on all platforms.
4708   *adr = 0;
4709 }
4710 
4711 // muxAcquire and muxRelease:
4712 //
4713 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4714 //    The LSB of the word is set IFF the lock is held.
4715 //    The remainder of the word points to the head of a singly-linked list
4716 //    of threads blocked on the lock.
4717 //
4718 // *  The current implementation of muxAcquire-muxRelease uses its own
4719 //    dedicated Thread._MuxEvent instance.  If we're interested in
4720 //    minimizing the peak number of extant ParkEvent instances then
4721 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4722 //    as certain invariants were satisfied.  Specifically, care would need
4723 //    to be taken with regards to consuming unpark() "permits".
4724 //    A safe rule of thumb is that a thread would never call muxAcquire()
4725 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4726 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4727 //    consume an unpark() permit intended for monitorenter, for instance.
4728 //    One way around this would be to widen the restricted-range semaphore
4729 //    implemented in park().  Another alternative would be to provide
4730 //    multiple instances of the PlatformEvent() for each thread.  One
4731 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4732 //
4733 // *  Usage:
4734 //    -- Only as leaf locks
4735 //    -- for short-term locking only as muxAcquire does not perform
4736 //       thread state transitions.
4737 //
4738 // Alternatives:
4739 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4740 //    but with parking or spin-then-park instead of pure spinning.
4741 // *  Use Taura-Oyama-Yonenzawa locks.
4742 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4743 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4744 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4745 //    acquiring threads use timers (ParkTimed) to detect and recover from
4746 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4747 //    boundaries by using placement-new.
4748 // *  Augment MCS with advisory back-link fields maintained with CAS().
4749 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4750 //    The validity of the backlinks must be ratified before we trust the value.
4751 //    If the backlinks are invalid the exiting thread must back-track through the
4752 //    the forward links, which are always trustworthy.
4753 // *  Add a successor indication.  The LockWord is currently encoded as
4754 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4755 //    to provide the usual futile-wakeup optimization.
4756 //    See RTStt for details.
4757 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4758 //
4759 
4760 
4761 typedef volatile intptr_t MutexT;      // Mux Lock-word
4762 enum MuxBits { LOCKBIT = 1 };
4763 
4764 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4765   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4766   if (w == 0) return;
4767   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4768     return;
4769   }
4770 
4771   TEVENT(muxAcquire - Contention);
4772   ParkEvent * const Self = Thread::current()->_MuxEvent;
4773   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4774   for (;;) {
4775     int its = (os::is_MP() ? 100 : 0) + 1;
4776 
4777     // Optional spin phase: spin-then-park strategy
4778     while (--its >= 0) {
4779       w = *Lock;
4780       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4781         return;
4782       }
4783     }
4784 
4785     Self->reset();
4786     Self->OnList = intptr_t(Lock);
4787     // The following fence() isn't _strictly necessary as the subsequent
4788     // CAS() both serializes execution and ratifies the fetched *Lock value.
4789     OrderAccess::fence();
4790     for (;;) {
4791       w = *Lock;
4792       if ((w & LOCKBIT) == 0) {
4793         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4794           Self->OnList = 0;   // hygiene - allows stronger asserts
4795           return;
4796         }
4797         continue;      // Interference -- *Lock changed -- Just retry
4798       }
4799       assert(w & LOCKBIT, "invariant");
4800       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4801       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4802     }
4803 
4804     while (Self->OnList != 0) {
4805       Self->park();
4806     }
4807   }
4808 }
4809 
4810 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4811   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4812   if (w == 0) return;
4813   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4814     return;
4815   }
4816 
4817   TEVENT(muxAcquire - Contention);
4818   ParkEvent * ReleaseAfter = NULL;
4819   if (ev == NULL) {
4820     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4821   }
4822   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4823   for (;;) {
4824     guarantee(ev->OnList == 0, "invariant");
4825     int its = (os::is_MP() ? 100 : 0) + 1;
4826 
4827     // Optional spin phase: spin-then-park strategy
4828     while (--its >= 0) {
4829       w = *Lock;
4830       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4831         if (ReleaseAfter != NULL) {
4832           ParkEvent::Release(ReleaseAfter);
4833         }
4834         return;
4835       }
4836     }
4837 
4838     ev->reset();
4839     ev->OnList = intptr_t(Lock);
4840     // The following fence() isn't _strictly necessary as the subsequent
4841     // CAS() both serializes execution and ratifies the fetched *Lock value.
4842     OrderAccess::fence();
4843     for (;;) {
4844       w = *Lock;
4845       if ((w & LOCKBIT) == 0) {
4846         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4847           ev->OnList = 0;
4848           // We call ::Release while holding the outer lock, thus
4849           // artificially lengthening the critical section.
4850           // Consider deferring the ::Release() until the subsequent unlock(),
4851           // after we've dropped the outer lock.
4852           if (ReleaseAfter != NULL) {
4853             ParkEvent::Release(ReleaseAfter);
4854           }
4855           return;
4856         }
4857         continue;      // Interference -- *Lock changed -- Just retry
4858       }
4859       assert(w & LOCKBIT, "invariant");
4860       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4861       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4862     }
4863 
4864     while (ev->OnList != 0) {
4865       ev->park();
4866     }
4867   }
4868 }
4869 
4870 // Release() must extract a successor from the list and then wake that thread.
4871 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4872 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4873 // Release() would :
4874 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4875 // (B) Extract a successor from the private list "in-hand"
4876 // (C) attempt to CAS() the residual back into *Lock over null.
4877 //     If there were any newly arrived threads and the CAS() would fail.
4878 //     In that case Release() would detach the RATs, re-merge the list in-hand
4879 //     with the RATs and repeat as needed.  Alternately, Release() might
4880 //     detach and extract a successor, but then pass the residual list to the wakee.
4881 //     The wakee would be responsible for reattaching and remerging before it
4882 //     competed for the lock.
4883 //
4884 // Both "pop" and DMR are immune from ABA corruption -- there can be
4885 // multiple concurrent pushers, but only one popper or detacher.
4886 // This implementation pops from the head of the list.  This is unfair,
4887 // but tends to provide excellent throughput as hot threads remain hot.
4888 // (We wake recently run threads first).
4889 //
4890 // All paths through muxRelease() will execute a CAS.
4891 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4892 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4893 // executed within the critical section are complete and globally visible before the
4894 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4895 void Thread::muxRelease(volatile intptr_t * Lock)  {
4896   for (;;) {
4897     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4898     assert(w & LOCKBIT, "invariant");
4899     if (w == LOCKBIT) return;
4900     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4901     assert(List != NULL, "invariant");
4902     assert(List->OnList == intptr_t(Lock), "invariant");
4903     ParkEvent * const nxt = List->ListNext;
4904     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4905 
4906     // The following CAS() releases the lock and pops the head element.
4907     // The CAS() also ratifies the previously fetched lock-word value.
4908     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4909       continue;
4910     }
4911     List->OnList = 0;
4912     OrderAccess::fence();
4913     List->unpark();
4914     return;
4915   }
4916 }
4917 
4918 
4919 void Threads::verify() {
4920   ALL_JAVA_THREADS(p) {
4921     p->verify();
4922   }
4923   VMThread* thread = VMThread::vm_thread();
4924   if (thread != NULL) thread->verify();
4925 }