1 /*
   2  * Copyright (c) 2013, 2019, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "memory/allocation.hpp"
  26 
  27 #include "gc/shared/gcTimer.hpp"
  28 #include "gc/shared/gcTraceTime.inline.hpp"
  29 #include "gc/shared/memAllocator.hpp"
  30 #include "gc/shared/parallelCleaning.hpp"
  31 #include "gc/shared/plab.hpp"
  32 
  33 #include "gc/shenandoah/shenandoahAllocTracker.hpp"
  34 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  35 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  36 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  37 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  38 #include "gc/shenandoah/shenandoahConcurrentMark.inline.hpp"
  39 #include "gc/shenandoah/shenandoahControlThread.hpp"
  40 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  41 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  42 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  43 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  44 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  45 #include "gc/shenandoah/shenandoahMarkCompact.hpp"
  46 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  47 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  48 #include "gc/shenandoah/shenandoahMetrics.hpp"
  49 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  50 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  51 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  52 #include "gc/shenandoah/shenandoahRootProcessor.hpp"
  53 #include "gc/shenandoah/shenandoahStringDedup.hpp"
  54 #include "gc/shenandoah/shenandoahUtils.hpp"
  55 #include "gc/shenandoah/shenandoahVerifier.hpp"
  56 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  57 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  58 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  59 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  60 #include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp"
  61 #include "gc/shenandoah/heuristics/shenandoahAggressiveHeuristics.hpp"
  62 #include "gc/shenandoah/heuristics/shenandoahCompactHeuristics.hpp"
  63 #include "gc/shenandoah/heuristics/shenandoahPassiveHeuristics.hpp"
  64 #include "gc/shenandoah/heuristics/shenandoahStaticHeuristics.hpp"
  65 #include "gc/shenandoah/heuristics/shenandoahTraversalHeuristics.hpp"
  66 
  67 #include "memory/metaspace.hpp"
  68 #include "runtime/interfaceSupport.inline.hpp"
  69 #include "runtime/safepointMechanism.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "services/mallocTracker.hpp"
  72 
  73 #ifdef ASSERT
  74 template <class T>
  75 void ShenandoahAssertToSpaceClosure::do_oop_work(T* p) {
  76   T o = RawAccess<>::oop_load(p);
  77   if (! CompressedOops::is_null(o)) {
  78     oop obj = CompressedOops::decode_not_null(o);
  79     shenandoah_assert_not_forwarded(p, obj);
  80   }
  81 }
  82 
  83 void ShenandoahAssertToSpaceClosure::do_oop(narrowOop* p) { do_oop_work(p); }
  84 void ShenandoahAssertToSpaceClosure::do_oop(oop* p)       { do_oop_work(p); }
  85 #endif
  86 
  87 class ShenandoahPretouchHeapTask : public AbstractGangTask {
  88 private:
  89   ShenandoahRegionIterator _regions;
  90   const size_t _page_size;
  91 public:
  92   ShenandoahPretouchHeapTask(size_t page_size) :
  93     AbstractGangTask("Shenandoah Pretouch Heap"),
  94     _page_size(page_size) {}
  95 
  96   virtual void work(uint worker_id) {
  97     ShenandoahHeapRegion* r = _regions.next();
  98     while (r != NULL) {
  99       os::pretouch_memory(r->bottom(), r->end(), _page_size);
 100       r = _regions.next();
 101     }
 102   }
 103 };
 104 
 105 class ShenandoahPretouchBitmapTask : public AbstractGangTask {
 106 private:
 107   ShenandoahRegionIterator _regions;
 108   char* _bitmap_base;
 109   const size_t _bitmap_size;
 110   const size_t _page_size;
 111 public:
 112   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 113     AbstractGangTask("Shenandoah Pretouch Bitmap"),
 114     _bitmap_base(bitmap_base),
 115     _bitmap_size(bitmap_size),
 116     _page_size(page_size) {}
 117 
 118   virtual void work(uint worker_id) {
 119     ShenandoahHeapRegion* r = _regions.next();
 120     while (r != NULL) {
 121       size_t start = r->region_number()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 122       size_t end   = (r->region_number() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 123       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 124 
 125       os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 126 
 127       r = _regions.next();
 128     }
 129   }
 130 };
 131 
 132 jint ShenandoahHeap::initialize() {
 133 
 134   initialize_heuristics();
 135 
 136   //
 137   // Figure out heap sizing
 138   //
 139 
 140   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
 141   size_t min_byte_size  = collector_policy()->min_heap_byte_size();
 142   size_t max_byte_size  = collector_policy()->max_heap_byte_size();
 143   size_t heap_alignment = collector_policy()->heap_alignment();
 144 
 145   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 146 
 147   if (ShenandoahAlwaysPreTouch) {
 148     // Enabled pre-touch means the entire heap is committed right away.
 149     init_byte_size = max_byte_size;
 150   }
 151 
 152   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 153   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 154 
 155   _num_regions = ShenandoahHeapRegion::region_count();
 156 
 157   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 158   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 159   assert(num_committed_regions <= _num_regions, "sanity");
 160   _initial_size = num_committed_regions * reg_size_bytes;
 161 
 162   size_t num_min_regions = min_byte_size / reg_size_bytes;
 163   num_min_regions = MIN2(num_min_regions, _num_regions);
 164   assert(num_min_regions <= _num_regions, "sanity");
 165   _minimum_size = num_min_regions * reg_size_bytes;
 166 
 167   _committed = _initial_size;
 168 
 169   size_t heap_page_size   = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 170   size_t bitmap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 171 
 172   //
 173   // Reserve and commit memory for heap
 174   //
 175 
 176   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 177   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*) (heap_rs.base() + heap_rs.size()));
 178   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 179   _heap_region_special = heap_rs.special();
 180 
 181   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 182          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 183 
 184   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 185   if (!_heap_region_special) {
 186     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 187                               "Cannot commit heap memory");
 188   }
 189 
 190   //
 191   // Reserve and commit memory for bitmap(s)
 192   //
 193 
 194   _bitmap_size = MarkBitMap::compute_size(heap_rs.size());
 195   _bitmap_size = align_up(_bitmap_size, bitmap_page_size);
 196 
 197   size_t bitmap_bytes_per_region = reg_size_bytes / MarkBitMap::heap_map_factor();
 198 
 199   guarantee(bitmap_bytes_per_region != 0,
 200             "Bitmap bytes per region should not be zero");
 201   guarantee(is_power_of_2(bitmap_bytes_per_region),
 202             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 203 
 204   if (bitmap_page_size > bitmap_bytes_per_region) {
 205     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 206     _bitmap_bytes_per_slice = bitmap_page_size;
 207   } else {
 208     _bitmap_regions_per_slice = 1;
 209     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 210   }
 211 
 212   guarantee(_bitmap_regions_per_slice >= 1,
 213             "Should have at least one region per slice: " SIZE_FORMAT,
 214             _bitmap_regions_per_slice);
 215 
 216   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 217             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 218             _bitmap_bytes_per_slice, bitmap_page_size);
 219 
 220   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 221   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 222   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 223   _bitmap_region_special = bitmap.special();
 224 
 225   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 226                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 227   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 228   if (!_bitmap_region_special) {
 229     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 230                               "Cannot commit bitmap memory");
 231   }
 232 
 233   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions);
 234 
 235   if (ShenandoahVerify) {
 236     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 237     if (!verify_bitmap.special()) {
 238       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 239                                 "Cannot commit verification bitmap memory");
 240     }
 241     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 242     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 243     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 244     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 245   }
 246 
 247   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 248   ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size);
 249   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 250   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 251   _aux_bitmap_region_special = aux_bitmap.special();
 252   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 253 
 254   //
 255   // Create regions and region sets
 256   //
 257 
 258   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 259   _free_set = new ShenandoahFreeSet(this, _num_regions);
 260   _collection_set = new ShenandoahCollectionSet(this, sh_rs.base(), sh_rs.size());
 261 
 262   {
 263     ShenandoahHeapLocker locker(lock());
 264 
 265     size_t size_words = ShenandoahHeapRegion::region_size_words();
 266 
 267     for (size_t i = 0; i < _num_regions; i++) {
 268       HeapWord* start = (HeapWord*)sh_rs.base() + size_words * i;
 269       bool is_committed = i < num_committed_regions;
 270       ShenandoahHeapRegion* r = new ShenandoahHeapRegion(this, start, size_words, i, is_committed);
 271 
 272       _marking_context->initialize_top_at_mark_start(r);
 273       _regions[i] = r;
 274       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 275     }
 276 
 277     // Initialize to complete
 278     _marking_context->mark_complete();
 279 
 280     _free_set->rebuild();
 281   }
 282 
 283   if (ShenandoahAlwaysPreTouch) {
 284     assert(!AlwaysPreTouch, "Should have been overridden");
 285 
 286     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 287     // before initialize() below zeroes it with initializing thread. For any given region,
 288     // we touch the region and the corresponding bitmaps from the same thread.
 289     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 290 
 291     size_t pretouch_heap_page_size = heap_page_size;
 292     size_t pretouch_bitmap_page_size = bitmap_page_size;
 293 
 294 #ifdef LINUX
 295     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 296     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 297     // them into huge one. Therefore, we need to pretouch with smaller pages.
 298     if (UseTransparentHugePages) {
 299       pretouch_heap_page_size = (size_t)os::vm_page_size();
 300       pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 301     }
 302 #endif
 303 
 304     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 305     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 306 
 307     log_info(gc, init)("Pretouch bitmap: " SIZE_FORMAT " regions, " SIZE_FORMAT " bytes page",
 308                        _num_regions, pretouch_bitmap_page_size);
 309     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, pretouch_bitmap_page_size);
 310     _workers->run_task(&bcl);
 311 
 312     log_info(gc, init)("Pretouch heap: " SIZE_FORMAT " regions, " SIZE_FORMAT " bytes page",
 313                        _num_regions, pretouch_heap_page_size);
 314     ShenandoahPretouchHeapTask hcl(pretouch_heap_page_size);
 315     _workers->run_task(&hcl);
 316   }
 317 
 318   //
 319   // Initialize the rest of GC subsystems
 320   //
 321 
 322   _liveness_cache = NEW_C_HEAP_ARRAY(jushort*, _max_workers, mtGC);
 323   for (uint worker = 0; worker < _max_workers; worker++) {
 324     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(jushort, _num_regions, mtGC);
 325     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(jushort));
 326   }
 327 
 328   // The call below uses stuff (the SATB* things) that are in G1, but probably
 329   // belong into a shared location.
 330   ShenandoahBarrierSet::satb_mark_queue_set().initialize(this,
 331                                                          SATB_Q_CBL_mon,
 332                                                          20 /* G1SATBProcessCompletedThreshold */,
 333                                                          60 /* G1SATBBufferEnqueueingThresholdPercent */);
 334 
 335   _monitoring_support = new ShenandoahMonitoringSupport(this);
 336   _phase_timings = new ShenandoahPhaseTimings();
 337   ShenandoahStringDedup::initialize();
 338   ShenandoahCodeRoots::initialize();
 339 
 340   if (ShenandoahAllocationTrace) {
 341     _alloc_tracker = new ShenandoahAllocTracker();
 342   }
 343 
 344   if (ShenandoahPacing) {
 345     _pacer = new ShenandoahPacer(this);
 346     _pacer->setup_for_idle();
 347   } else {
 348     _pacer = NULL;
 349   }
 350 
 351   _traversal_gc = heuristics()->can_do_traversal_gc() ?
 352                   new ShenandoahTraversalGC(this, _num_regions) :
 353                   NULL;
 354 
 355   _control_thread = new ShenandoahControlThread();
 356 
 357   log_info(gc, init)("Initialize Shenandoah heap: " SIZE_FORMAT "%s initial, " SIZE_FORMAT "%s min, " SIZE_FORMAT "%s max",
 358                      byte_size_in_proper_unit(_initial_size),  proper_unit_for_byte_size(_initial_size),
 359                      byte_size_in_proper_unit(_minimum_size),  proper_unit_for_byte_size(_minimum_size),
 360                      byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity())
 361   );
 362 
 363   log_info(gc, init)("Safepointing mechanism: %s",
 364                      SafepointMechanism::uses_thread_local_poll() ? "thread-local poll" :
 365                      (SafepointMechanism::uses_global_page_poll() ? "global-page poll" : "unknown"));
 366 
 367   return JNI_OK;
 368 }
 369 
 370 void ShenandoahHeap::initialize_heuristics() {
 371   if (ShenandoahGCHeuristics != NULL) {
 372     if (strcmp(ShenandoahGCHeuristics, "aggressive") == 0) {
 373       _heuristics = new ShenandoahAggressiveHeuristics();
 374     } else if (strcmp(ShenandoahGCHeuristics, "static") == 0) {
 375       _heuristics = new ShenandoahStaticHeuristics();
 376     } else if (strcmp(ShenandoahGCHeuristics, "adaptive") == 0) {
 377       _heuristics = new ShenandoahAdaptiveHeuristics();
 378     } else if (strcmp(ShenandoahGCHeuristics, "passive") == 0) {
 379       _heuristics = new ShenandoahPassiveHeuristics();
 380     } else if (strcmp(ShenandoahGCHeuristics, "compact") == 0) {
 381       _heuristics = new ShenandoahCompactHeuristics();
 382     } else if (strcmp(ShenandoahGCHeuristics, "traversal") == 0) {
 383       _heuristics = new ShenandoahTraversalHeuristics();
 384     } else {
 385       vm_exit_during_initialization("Unknown -XX:ShenandoahGCHeuristics option");
 386     }
 387 
 388     if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 389       vm_exit_during_initialization(
 390               err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 391                       _heuristics->name()));
 392     }
 393     if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 394       vm_exit_during_initialization(
 395               err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 396                       _heuristics->name()));
 397     }
 398     log_info(gc, init)("Shenandoah heuristics: %s",
 399                        _heuristics->name());
 400   } else {
 401       ShouldNotReachHere();
 402   }
 403 
 404 }
 405 
 406 #ifdef _MSC_VER
 407 #pragma warning( push )
 408 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 409 #endif
 410 
 411 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 412   CollectedHeap(),
 413   _initial_size(0),
 414   _used(0),
 415   _committed(0),
 416   _bytes_allocated_since_gc_start(0),
 417   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 418   _workers(NULL),
 419   _safepoint_workers(NULL),
 420   _heap_region_special(false),
 421   _num_regions(0),
 422   _regions(NULL),
 423   _update_refs_iterator(this),
 424   _control_thread(NULL),
 425   _shenandoah_policy(policy),
 426   _heuristics(NULL),
 427   _free_set(NULL),
 428   _scm(new ShenandoahConcurrentMark()),
 429   _traversal_gc(NULL),
 430   _full_gc(new ShenandoahMarkCompact()),
 431   _pacer(NULL),
 432   _verifier(NULL),
 433   _alloc_tracker(NULL),
 434   _phase_timings(NULL),
 435   _monitoring_support(NULL),
 436   _memory_pool(NULL),
 437   _stw_memory_manager("Shenandoah Pauses", "end of GC pause"),
 438   _cycle_memory_manager("Shenandoah Cycles", "end of GC cycle"),
 439   _gc_timer(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 440   _soft_ref_policy(),
 441   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 442   _ref_processor(NULL),
 443   _marking_context(NULL),
 444   _bitmap_size(0),
 445   _bitmap_regions_per_slice(0),
 446   _bitmap_bytes_per_slice(0),
 447   _bitmap_region_special(false),
 448   _aux_bitmap_region_special(false),
 449   _liveness_cache(NULL),
 450   _collection_set(NULL)
 451 {
 452   log_info(gc, init)("GC threads: " UINT32_FORMAT " parallel, " UINT32_FORMAT " concurrent", ParallelGCThreads, ConcGCThreads);
 453   log_info(gc, init)("Reference processing: %s", ParallelRefProcEnabled ? "parallel" : "serial");
 454 
 455   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 456 
 457   _max_workers = MAX2(_max_workers, 1U);
 458   _workers = new ShenandoahWorkGang("Shenandoah GC Threads", _max_workers,
 459                             /* are_GC_task_threads */ true,
 460                             /* are_ConcurrentGC_threads */ true);
 461   if (_workers == NULL) {
 462     vm_exit_during_initialization("Failed necessary allocation.");
 463   } else {
 464     _workers->initialize_workers();
 465   }
 466 
 467   if (ShenandoahParallelSafepointThreads > 1) {
 468     _safepoint_workers = new ShenandoahWorkGang("Safepoint Cleanup Thread",
 469                                                 ShenandoahParallelSafepointThreads,
 470                       /* are_GC_task_threads */ false,
 471                  /* are_ConcurrentGC_threads */ false);
 472     _safepoint_workers->initialize_workers();
 473   }
 474 }
 475 
 476 #ifdef _MSC_VER
 477 #pragma warning( pop )
 478 #endif
 479 
 480 class ShenandoahResetBitmapTask : public AbstractGangTask {
 481 private:
 482   ShenandoahRegionIterator _regions;
 483 
 484 public:
 485   ShenandoahResetBitmapTask() :
 486     AbstractGangTask("Parallel Reset Bitmap Task") {}
 487 
 488   void work(uint worker_id) {
 489     ShenandoahHeapRegion* region = _regions.next();
 490     ShenandoahHeap* heap = ShenandoahHeap::heap();
 491     ShenandoahMarkingContext* const ctx = heap->marking_context();
 492     while (region != NULL) {
 493       if (heap->is_bitmap_slice_committed(region)) {
 494         ctx->clear_bitmap(region);
 495       }
 496       region = _regions.next();
 497     }
 498   }
 499 };
 500 
 501 void ShenandoahHeap::reset_mark_bitmap() {
 502   assert_gc_workers(_workers->active_workers());
 503   mark_incomplete_marking_context();
 504 
 505   ShenandoahResetBitmapTask task;
 506   _workers->run_task(&task);
 507 }
 508 
 509 void ShenandoahHeap::print_on(outputStream* st) const {
 510   st->print_cr("Shenandoah Heap");
 511   st->print_cr(" " SIZE_FORMAT "K total, " SIZE_FORMAT "K committed, " SIZE_FORMAT "K used",
 512                max_capacity() / K, committed() / K, used() / K);
 513   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"K regions",
 514                num_regions(), ShenandoahHeapRegion::region_size_bytes() / K);
 515 
 516   st->print("Status: ");
 517   if (has_forwarded_objects())               st->print("has forwarded objects, ");
 518   if (is_concurrent_mark_in_progress())      st->print("marking, ");
 519   if (is_evacuation_in_progress())           st->print("evacuating, ");
 520   if (is_update_refs_in_progress())          st->print("updating refs, ");
 521   if (is_concurrent_traversal_in_progress()) st->print("traversal, ");
 522   if (is_degenerated_gc_in_progress())       st->print("degenerated gc, ");
 523   if (is_full_gc_in_progress())              st->print("full gc, ");
 524   if (is_full_gc_move_in_progress())         st->print("full gc move, ");
 525 
 526   if (cancelled_gc()) {
 527     st->print("cancelled");
 528   } else {
 529     st->print("not cancelled");
 530   }
 531   st->cr();
 532 
 533   st->print_cr("Reserved region:");
 534   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 535                p2i(reserved_region().start()),
 536                p2i(reserved_region().end()));
 537 
 538   ShenandoahCollectionSet* cset = collection_set();
 539   st->print_cr("Collection set:");
 540   if (cset != NULL) {
 541     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 542     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 543   } else {
 544     st->print_cr(" (NULL)");
 545   }
 546 
 547   st->cr();
 548   MetaspaceUtils::print_on(st);
 549 
 550   if (Verbose) {
 551     print_heap_regions_on(st);
 552   }
 553 }
 554 
 555 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 556 public:
 557   void do_thread(Thread* thread) {
 558     assert(thread != NULL, "Sanity");
 559     assert(thread->is_Worker_thread(), "Only worker thread expected");
 560     ShenandoahThreadLocalData::initialize_gclab(thread);
 561   }
 562 };
 563 
 564 void ShenandoahHeap::post_initialize() {
 565   CollectedHeap::post_initialize();
 566   MutexLocker ml(Threads_lock);
 567 
 568   ShenandoahInitWorkerGCLABClosure init_gclabs;
 569   _workers->threads_do(&init_gclabs);
 570 
 571   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 572   // Now, we will let WorkGang to initialize gclab when new worker is created.
 573   _workers->set_initialize_gclab();
 574 
 575   _scm->initialize(_max_workers);
 576   _full_gc->initialize(_gc_timer);
 577 
 578   ref_processing_init();
 579 
 580   _heuristics->initialize();
 581 }
 582 
 583 size_t ShenandoahHeap::used() const {
 584   return OrderAccess::load_acquire(&_used);
 585 }
 586 
 587 size_t ShenandoahHeap::committed() const {
 588   OrderAccess::acquire();
 589   return _committed;
 590 }
 591 
 592 void ShenandoahHeap::increase_committed(size_t bytes) {
 593   assert_heaplock_or_safepoint();
 594   _committed += bytes;
 595 }
 596 
 597 void ShenandoahHeap::decrease_committed(size_t bytes) {
 598   assert_heaplock_or_safepoint();
 599   _committed -= bytes;
 600 }
 601 
 602 void ShenandoahHeap::increase_used(size_t bytes) {
 603   Atomic::add(bytes, &_used);
 604 }
 605 
 606 void ShenandoahHeap::set_used(size_t bytes) {
 607   OrderAccess::release_store_fence(&_used, bytes);
 608 }
 609 
 610 void ShenandoahHeap::decrease_used(size_t bytes) {
 611   assert(used() >= bytes, "never decrease heap size by more than we've left");
 612   Atomic::sub(bytes, &_used);
 613 }
 614 
 615 void ShenandoahHeap::increase_allocated(size_t bytes) {
 616   Atomic::add(bytes, &_bytes_allocated_since_gc_start);
 617 }
 618 
 619 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 620   size_t bytes = words * HeapWordSize;
 621   if (!waste) {
 622     increase_used(bytes);
 623   }
 624   increase_allocated(bytes);
 625   if (ShenandoahPacing) {
 626     control_thread()->pacing_notify_alloc(words);
 627     if (waste) {
 628       pacer()->claim_for_alloc(words, true);
 629     }
 630   }
 631 }
 632 
 633 size_t ShenandoahHeap::capacity() const {
 634   return committed();
 635 }
 636 
 637 size_t ShenandoahHeap::max_capacity() const {
 638   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 639 }
 640 
 641 size_t ShenandoahHeap::min_capacity() const {
 642   return _minimum_size;
 643 }
 644 
 645 size_t ShenandoahHeap::initial_capacity() const {
 646   return _initial_size;
 647 }
 648 
 649 bool ShenandoahHeap::is_in(const void* p) const {
 650   HeapWord* heap_base = (HeapWord*) base();
 651   HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
 652   return p >= heap_base && p < last_region_end;
 653 }
 654 
 655 void ShenandoahHeap::op_uncommit(double shrink_before) {
 656   assert (ShenandoahUncommit, "should be enabled");
 657 
 658   // Application allocates from the beginning of the heap, and GC allocates at
 659   // the end of it. It is more efficient to uncommit from the end, so that applications
 660   // could enjoy the near committed regions. GC allocations are much less frequent,
 661   // and therefore can accept the committing costs.
 662 
 663   size_t count = 0;
 664   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 665     ShenandoahHeapRegion* r = get_region(i - 1);
 666     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 667       ShenandoahHeapLocker locker(lock());
 668       if (r->is_empty_committed()) {
 669         // Do not uncommit below minimal capacity
 670         if (committed() < min_capacity() + ShenandoahHeapRegion::region_size_bytes()) {
 671           break;
 672         }
 673 
 674         r->make_uncommitted();
 675         count++;
 676       }
 677     }
 678     SpinPause(); // allow allocators to take the lock
 679   }
 680 
 681   if (count > 0) {
 682     control_thread()->notify_heap_changed();
 683   }
 684 }
 685 
 686 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 687   // New object should fit the GCLAB size
 688   size_t min_size = MAX2(size, PLAB::min_size());
 689 
 690   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 691   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 692   new_size = MIN2(new_size, PLAB::max_size());
 693   new_size = MAX2(new_size, PLAB::min_size());
 694 
 695   // Record new heuristic value even if we take any shortcut. This captures
 696   // the case when moderately-sized objects always take a shortcut. At some point,
 697   // heuristics should catch up with them.
 698   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 699 
 700   if (new_size < size) {
 701     // New size still does not fit the object. Fall back to shared allocation.
 702     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 703     return NULL;
 704   }
 705 
 706   // Retire current GCLAB, and allocate a new one.
 707   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 708   gclab->retire();
 709 
 710   size_t actual_size = 0;
 711   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 712   if (gclab_buf == NULL) {
 713     return NULL;
 714   }
 715 
 716   assert (size <= actual_size, "allocation should fit");
 717 
 718   if (ZeroTLAB) {
 719     // ..and clear it.
 720     Copy::zero_to_words(gclab_buf, actual_size);
 721   } else {
 722     // ...and zap just allocated object.
 723 #ifdef ASSERT
 724     // Skip mangling the space corresponding to the object header to
 725     // ensure that the returned space is not considered parsable by
 726     // any concurrent GC thread.
 727     size_t hdr_size = oopDesc::header_size();
 728     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 729 #endif // ASSERT
 730   }
 731   gclab->set_buf(gclab_buf, actual_size);
 732   return gclab->allocate(size);
 733 }
 734 
 735 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 736                                             size_t requested_size,
 737                                             size_t* actual_size) {
 738   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 739   HeapWord* res = allocate_memory(req);
 740   if (res != NULL) {
 741     *actual_size = req.actual_size();
 742   } else {
 743     *actual_size = 0;
 744   }
 745   return res;
 746 }
 747 
 748 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 749                                              size_t word_size,
 750                                              size_t* actual_size) {
 751   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 752   HeapWord* res = allocate_memory(req);
 753   if (res != NULL) {
 754     *actual_size = req.actual_size();
 755   } else {
 756     *actual_size = 0;
 757   }
 758   return res;
 759 }
 760 
 761 ShenandoahHeap* ShenandoahHeap::heap() {
 762   CollectedHeap* heap = Universe::heap();
 763   assert(heap != NULL, "Unitialized access to ShenandoahHeap::heap()");
 764   assert(heap->kind() == CollectedHeap::Shenandoah, "not a shenandoah heap");
 765   return (ShenandoahHeap*) heap;
 766 }
 767 
 768 ShenandoahHeap* ShenandoahHeap::heap_no_check() {
 769   CollectedHeap* heap = Universe::heap();
 770   return (ShenandoahHeap*) heap;
 771 }
 772 
 773 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 774   ShenandoahAllocTrace trace_alloc(req.size(), req.type());
 775 
 776   intptr_t pacer_epoch = 0;
 777   bool in_new_region = false;
 778   HeapWord* result = NULL;
 779 
 780   if (req.is_mutator_alloc()) {
 781     if (ShenandoahPacing) {
 782       pacer()->pace_for_alloc(req.size());
 783       pacer_epoch = pacer()->epoch();
 784     }
 785 
 786     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 787       result = allocate_memory_under_lock(req, in_new_region);
 788     }
 789 
 790     // Allocation failed, block until control thread reacted, then retry allocation.
 791     //
 792     // It might happen that one of the threads requesting allocation would unblock
 793     // way later after GC happened, only to fail the second allocation, because
 794     // other threads have already depleted the free storage. In this case, a better
 795     // strategy is to try again, as long as GC makes progress.
 796     //
 797     // Then, we need to make sure the allocation was retried after at least one
 798     // Full GC, which means we want to try more than ShenandoahFullGCThreshold times.
 799 
 800     size_t tries = 0;
 801 
 802     while (result == NULL && _progress_last_gc.is_set()) {
 803       tries++;
 804       control_thread()->handle_alloc_failure(req.size());
 805       result = allocate_memory_under_lock(req, in_new_region);
 806     }
 807 
 808     while (result == NULL && tries <= ShenandoahFullGCThreshold) {
 809       tries++;
 810       control_thread()->handle_alloc_failure(req.size());
 811       result = allocate_memory_under_lock(req, in_new_region);
 812     }
 813 
 814   } else {
 815     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 816     result = allocate_memory_under_lock(req, in_new_region);
 817     // Do not call handle_alloc_failure() here, because we cannot block.
 818     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 819   }
 820 
 821   if (in_new_region) {
 822     control_thread()->notify_heap_changed();
 823   }
 824 
 825   if (result != NULL) {
 826     size_t requested = req.size();
 827     size_t actual = req.actual_size();
 828 
 829     assert (req.is_lab_alloc() || (requested == actual),
 830             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 831             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 832 
 833     if (req.is_mutator_alloc()) {
 834       notify_mutator_alloc_words(actual, false);
 835 
 836       // If we requested more than we were granted, give the rest back to pacer.
 837       // This only matters if we are in the same pacing epoch: do not try to unpace
 838       // over the budget for the other phase.
 839       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 840         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 841       }
 842     } else {
 843       increase_used(actual*HeapWordSize);
 844     }
 845   }
 846 
 847   return result;
 848 }
 849 
 850 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
 851   ShenandoahHeapLocker locker(lock());
 852   return _free_set->allocate(req, in_new_region);
 853 }
 854 
 855 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
 856                                         bool*  gc_overhead_limit_was_exceeded) {
 857   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
 858   return allocate_memory(req);
 859 }
 860 
 861 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 862                                                              size_t size,
 863                                                              Metaspace::MetadataType mdtype) {
 864   MetaWord* result;
 865 
 866   // Inform metaspace OOM to GC heuristics if class unloading is possible.
 867   if (heuristics()->can_unload_classes()) {
 868     ShenandoahHeuristics* h = heuristics();
 869     h->record_metaspace_oom();
 870   }
 871 
 872   // Expand and retry allocation
 873   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 874   if (result != NULL) {
 875     return result;
 876   }
 877 
 878   // Start full GC
 879   collect(GCCause::_metadata_GC_clear_soft_refs);
 880 
 881   // Retry allocation
 882   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
 883   if (result != NULL) {
 884     return result;
 885   }
 886 
 887   // Expand and retry allocation
 888   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 889   if (result != NULL) {
 890     return result;
 891   }
 892 
 893   // Out of memory
 894   return NULL;
 895 }
 896 
 897 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
 898 private:
 899   ShenandoahHeap* const _heap;
 900   Thread* const _thread;
 901 public:
 902   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
 903     _heap(heap), _thread(Thread::current()) {}
 904 
 905   void do_object(oop p) {
 906     shenandoah_assert_marked(NULL, p);
 907     if (!p->is_forwarded()) {
 908       _heap->evacuate_object(p, _thread);
 909     }
 910   }
 911 };
 912 
 913 class ShenandoahEvacuationTask : public AbstractGangTask {
 914 private:
 915   ShenandoahHeap* const _sh;
 916   ShenandoahCollectionSet* const _cs;
 917   bool _concurrent;
 918 public:
 919   ShenandoahEvacuationTask(ShenandoahHeap* sh,
 920                            ShenandoahCollectionSet* cs,
 921                            bool concurrent) :
 922     AbstractGangTask("Parallel Evacuation Task"),
 923     _sh(sh),
 924     _cs(cs),
 925     _concurrent(concurrent)
 926   {}
 927 
 928   void work(uint worker_id) {
 929     if (_concurrent) {
 930       ShenandoahConcurrentWorkerSession worker_session(worker_id);
 931       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
 932       ShenandoahEvacOOMScope oom_evac_scope;
 933       do_work();
 934     } else {
 935       ShenandoahParallelWorkerSession worker_session(worker_id);
 936       ShenandoahEvacOOMScope oom_evac_scope;
 937       do_work();
 938     }
 939   }
 940 
 941 private:
 942   void do_work() {
 943     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
 944     ShenandoahHeapRegion* r;
 945     while ((r =_cs->claim_next()) != NULL) {
 946       assert(r->has_live(), "all-garbage regions are reclaimed early");
 947       _sh->marked_object_iterate(r, &cl);
 948 
 949       if (ShenandoahPacing) {
 950         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
 951       }
 952 
 953       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
 954         break;
 955       }
 956     }
 957   }
 958 };
 959 
 960 void ShenandoahHeap::trash_cset_regions() {
 961   ShenandoahHeapLocker locker(lock());
 962 
 963   ShenandoahCollectionSet* set = collection_set();
 964   ShenandoahHeapRegion* r;
 965   set->clear_current_index();
 966   while ((r = set->next()) != NULL) {
 967     r->make_trash();
 968   }
 969   collection_set()->clear();
 970 }
 971 
 972 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
 973   st->print_cr("Heap Regions:");
 974   st->print_cr("EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HC=humongous continuation, CS=collection set, T=trash, P=pinned");
 975   st->print_cr("BTE=bottom/top/end, U=used, T=TLAB allocs, G=GCLAB allocs, S=shared allocs, L=live data");
 976   st->print_cr("R=root, CP=critical pins, TAMS=top-at-mark-start (previous, next)");
 977   st->print_cr("SN=alloc sequence numbers (first mutator, last mutator, first gc, last gc)");
 978 
 979   for (size_t i = 0; i < num_regions(); i++) {
 980     get_region(i)->print_on(st);
 981   }
 982 }
 983 
 984 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
 985   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
 986 
 987   oop humongous_obj = oop(start->bottom());
 988   size_t size = humongous_obj->size();
 989   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
 990   size_t index = start->region_number() + required_regions - 1;
 991 
 992   assert(!start->has_live(), "liveness must be zero");
 993 
 994   for(size_t i = 0; i < required_regions; i++) {
 995     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
 996     // as it expects that every region belongs to a humongous region starting with a humongous start region.
 997     ShenandoahHeapRegion* region = get_region(index --);
 998 
 999     assert(region->is_humongous(), "expect correct humongous start or continuation");
1000     assert(!region->is_cset(), "Humongous region should not be in collection set");
1001 
1002     region->make_trash_immediate();
1003   }
1004 }
1005 
1006 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1007 public:
1008   void do_thread(Thread* thread) {
1009     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1010     assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name());
1011     gclab->retire();
1012   }
1013 };
1014 
1015 void ShenandoahHeap::make_parsable(bool retire_tlabs) {
1016   if (UseTLAB) {
1017     CollectedHeap::ensure_parsability(retire_tlabs);
1018   }
1019   ShenandoahRetireGCLABClosure cl;
1020   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1021     cl.do_thread(t);
1022   }
1023   workers()->threads_do(&cl);
1024 }
1025 
1026 void ShenandoahHeap::resize_tlabs() {
1027   CollectedHeap::resize_all_tlabs();
1028 }
1029 
1030 class ShenandoahEvacuateUpdateRootsTask : public AbstractGangTask {
1031 private:
1032   ShenandoahRootEvacuator* _rp;
1033 
1034 public:
1035   ShenandoahEvacuateUpdateRootsTask(ShenandoahRootEvacuator* rp) :
1036     AbstractGangTask("Shenandoah evacuate and update roots"),
1037     _rp(rp) {}
1038 
1039   void work(uint worker_id) {
1040     ShenandoahParallelWorkerSession worker_session(worker_id);
1041     ShenandoahEvacOOMScope oom_evac_scope;
1042     ShenandoahEvacuateUpdateRootsClosure cl;
1043     MarkingCodeBlobClosure blobsCl(&cl, CodeBlobToOopClosure::FixRelocations);
1044     _rp->process_evacuate_roots(&cl, &blobsCl, worker_id);
1045   }
1046 };
1047 
1048 void ShenandoahHeap::evacuate_and_update_roots() {
1049 #if defined(COMPILER2) || INCLUDE_JVMCI
1050   DerivedPointerTable::clear();
1051 #endif
1052   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only iterate roots while world is stopped");
1053 
1054   {
1055     ShenandoahRootEvacuator rp(this, workers()->active_workers(), ShenandoahPhaseTimings::init_evac);
1056     ShenandoahEvacuateUpdateRootsTask roots_task(&rp);
1057     workers()->run_task(&roots_task);
1058   }
1059 
1060 #if defined(COMPILER2) || INCLUDE_JVMCI
1061   DerivedPointerTable::update_pointers();
1062 #endif
1063 }
1064 
1065 // Returns size in bytes
1066 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1067   if (ShenandoahElasticTLAB) {
1068     // With Elastic TLABs, return the max allowed size, and let the allocation path
1069     // figure out the safe size for current allocation.
1070     return ShenandoahHeapRegion::max_tlab_size_bytes();
1071   } else {
1072     return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes());
1073   }
1074 }
1075 
1076 size_t ShenandoahHeap::max_tlab_size() const {
1077   // Returns size in words
1078   return ShenandoahHeapRegion::max_tlab_size_words();
1079 }
1080 
1081 class ShenandoahRetireAndResetGCLABClosure : public ThreadClosure {
1082 public:
1083   void do_thread(Thread* thread) {
1084     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1085     gclab->retire();
1086     if (ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1087       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1088     }
1089   }
1090 };
1091 
1092 void ShenandoahHeap::retire_and_reset_gclabs() {
1093   ShenandoahRetireAndResetGCLABClosure cl;
1094   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1095     cl.do_thread(t);
1096   }
1097   workers()->threads_do(&cl);
1098 }
1099 
1100 void ShenandoahHeap::collect(GCCause::Cause cause) {
1101   control_thread()->request_gc(cause);
1102 }
1103 
1104 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1105   //assert(false, "Shouldn't need to do full collections");
1106 }
1107 
1108 CollectorPolicy* ShenandoahHeap::collector_policy() const {
1109   return _shenandoah_policy;
1110 }
1111 
1112 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1113   Space* sp = heap_region_containing(addr);
1114   if (sp != NULL) {
1115     return sp->block_start(addr);
1116   }
1117   return NULL;
1118 }
1119 
1120 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1121   Space* sp = heap_region_containing(addr);
1122   return sp->block_is_obj(addr);
1123 }
1124 
1125 jlong ShenandoahHeap::millis_since_last_gc() {
1126   double v = heuristics()->time_since_last_gc() * 1000;
1127   assert(0 <= v && v <= max_jlong, "value should fit: %f", v);
1128   return (jlong)v;
1129 }
1130 
1131 void ShenandoahHeap::prepare_for_verify() {
1132   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
1133     make_parsable(false);
1134   }
1135 }
1136 
1137 void ShenandoahHeap::print_gc_threads_on(outputStream* st) const {
1138   workers()->print_worker_threads_on(st);
1139   if (ShenandoahStringDedup::is_enabled()) {
1140     ShenandoahStringDedup::print_worker_threads_on(st);
1141   }
1142 }
1143 
1144 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1145   workers()->threads_do(tcl);
1146   if (_safepoint_workers != NULL) {
1147     _safepoint_workers->threads_do(tcl);
1148   }
1149   if (ShenandoahStringDedup::is_enabled()) {
1150     ShenandoahStringDedup::threads_do(tcl);
1151   }
1152 }
1153 
1154 void ShenandoahHeap::print_tracing_info() const {
1155   LogTarget(Info, gc, stats) lt;
1156   if (lt.is_enabled()) {
1157     ResourceMark rm;
1158     LogStream ls(lt);
1159 
1160     phase_timings()->print_on(&ls);
1161 
1162     ls.cr();
1163     ls.cr();
1164 
1165     shenandoah_policy()->print_gc_stats(&ls);
1166 
1167     ls.cr();
1168     ls.cr();
1169 
1170     if (ShenandoahPacing) {
1171       pacer()->print_on(&ls);
1172     }
1173 
1174     ls.cr();
1175     ls.cr();
1176 
1177     if (ShenandoahAllocationTrace) {
1178       assert(alloc_tracker() != NULL, "Must be");
1179       alloc_tracker()->print_on(&ls);
1180     } else {
1181       ls.print_cr("  Allocation tracing is disabled, use -XX:+ShenandoahAllocationTrace to enable.");
1182     }
1183   }
1184 }
1185 
1186 void ShenandoahHeap::verify(VerifyOption vo) {
1187   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1188     if (ShenandoahVerify) {
1189       verifier()->verify_generic(vo);
1190     } else {
1191       // TODO: Consider allocating verification bitmaps on demand,
1192       // and turn this on unconditionally.
1193     }
1194   }
1195 }
1196 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1197   return _free_set->capacity();
1198 }
1199 
1200 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1201 private:
1202   MarkBitMap* _bitmap;
1203   Stack<oop,mtGC>* _oop_stack;
1204 
1205   template <class T>
1206   void do_oop_work(T* p) {
1207     T o = RawAccess<>::oop_load(p);
1208     if (!CompressedOops::is_null(o)) {
1209       oop obj = CompressedOops::decode_not_null(o);
1210       obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
1211       assert(oopDesc::is_oop(obj), "must be a valid oop");
1212       if (!_bitmap->is_marked((HeapWord*) obj)) {
1213         _bitmap->mark((HeapWord*) obj);
1214         _oop_stack->push(obj);
1215       }
1216     }
1217   }
1218 public:
1219   ObjectIterateScanRootClosure(MarkBitMap* bitmap, Stack<oop,mtGC>* oop_stack) :
1220     _bitmap(bitmap), _oop_stack(oop_stack) {}
1221   void do_oop(oop* p)       { do_oop_work(p); }
1222   void do_oop(narrowOop* p) { do_oop_work(p); }
1223 };
1224 
1225 /*
1226  * This is public API, used in preparation of object_iterate().
1227  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1228  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1229  * control, we call SH::make_tlabs_parsable().
1230  */
1231 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1232   // No-op.
1233 }
1234 
1235 /*
1236  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1237  *
1238  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1239  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1240  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1241  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1242  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1243  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1244  * wiped the bitmap in preparation for next marking).
1245  *
1246  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1247  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1248  * is allowed to report dead objects, but is not required to do so.
1249  */
1250 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1251   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1252   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1253     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1254     return;
1255   }
1256 
1257   // Reset bitmap
1258   _aux_bit_map.clear();
1259 
1260   Stack<oop,mtGC> oop_stack;
1261 
1262   // First, we process all GC roots. This populates the work stack with initial objects.
1263   ShenandoahRootProcessor rp(this, 1, ShenandoahPhaseTimings::_num_phases);
1264   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1265   CLDToOopClosure clds(&oops, ClassLoaderData::_claim_none);
1266   CodeBlobToOopClosure blobs(&oops, false);
1267   rp.process_all_roots(&oops, &clds, &blobs, NULL, 0);
1268 
1269   // Work through the oop stack to traverse heap.
1270   while (! oop_stack.is_empty()) {
1271     oop obj = oop_stack.pop();
1272     assert(oopDesc::is_oop(obj), "must be a valid oop");
1273     cl->do_object(obj);
1274     obj->oop_iterate(&oops);
1275   }
1276 
1277   assert(oop_stack.is_empty(), "should be empty");
1278 
1279   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1280     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1281   }
1282 }
1283 
1284 void ShenandoahHeap::safe_object_iterate(ObjectClosure* cl) {
1285   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1286   object_iterate(cl);
1287 }
1288 
1289 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1290   for (size_t i = 0; i < num_regions(); i++) {
1291     ShenandoahHeapRegion* current = get_region(i);
1292     blk->heap_region_do(current);
1293   }
1294 }
1295 
1296 class ShenandoahParallelHeapRegionTask : public AbstractGangTask {
1297 private:
1298   ShenandoahHeap* const _heap;
1299   ShenandoahHeapRegionClosure* const _blk;
1300 
1301   DEFINE_PAD_MINUS_SIZE(0, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile size_t));
1302   volatile size_t _index;
1303   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, 0);
1304 
1305 public:
1306   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1307           AbstractGangTask("Parallel Region Task"),
1308           _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1309 
1310   void work(uint worker_id) {
1311     size_t stride = ShenandoahParallelRegionStride;
1312 
1313     size_t max = _heap->num_regions();
1314     while (_index < max) {
1315       size_t cur = Atomic::add(stride, &_index) - stride;
1316       size_t start = cur;
1317       size_t end = MIN2(cur + stride, max);
1318       if (start >= max) break;
1319 
1320       for (size_t i = cur; i < end; i++) {
1321         ShenandoahHeapRegion* current = _heap->get_region(i);
1322         _blk->heap_region_do(current);
1323       }
1324     }
1325   }
1326 };
1327 
1328 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1329   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1330   if (num_regions() > ShenandoahParallelRegionStride) {
1331     ShenandoahParallelHeapRegionTask task(blk);
1332     workers()->run_task(&task);
1333   } else {
1334     heap_region_iterate(blk);
1335   }
1336 }
1337 
1338 class ShenandoahClearLivenessClosure : public ShenandoahHeapRegionClosure {
1339 private:
1340   ShenandoahMarkingContext* const _ctx;
1341 public:
1342   ShenandoahClearLivenessClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1343 
1344   void heap_region_do(ShenandoahHeapRegion* r) {
1345     if (r->is_active()) {
1346       r->clear_live_data();
1347       _ctx->capture_top_at_mark_start(r);
1348     } else {
1349       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->region_number());
1350       assert(_ctx->top_at_mark_start(r) == r->top(),
1351              "Region " SIZE_FORMAT " should already have correct TAMS", r->region_number());
1352     }
1353   }
1354 
1355   bool is_thread_safe() { return true; }
1356 };
1357 
1358 void ShenandoahHeap::op_init_mark() {
1359   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should be at safepoint");
1360   assert(Thread::current()->is_VM_thread(), "can only do this in VMThread");
1361 
1362   assert(marking_context()->is_bitmap_clear(), "need clear marking bitmap");
1363   assert(!marking_context()->is_complete(), "should not be complete");
1364 
1365   if (ShenandoahVerify) {
1366     verifier()->verify_before_concmark();
1367   }
1368 
1369   if (VerifyBeforeGC) {
1370     Universe::verify();
1371   }
1372 
1373   set_concurrent_mark_in_progress(true);
1374   // We need to reset all TLABs because we'd lose marks on all objects allocated in them.
1375   {
1376     ShenandoahGCPhase phase(ShenandoahPhaseTimings::make_parsable);
1377     make_parsable(true);
1378   }
1379 
1380   {
1381     ShenandoahGCPhase phase(ShenandoahPhaseTimings::clear_liveness);
1382     ShenandoahClearLivenessClosure clc;
1383     parallel_heap_region_iterate(&clc);
1384   }
1385 
1386   // Make above changes visible to worker threads
1387   OrderAccess::fence();
1388 
1389   concurrent_mark()->mark_roots(ShenandoahPhaseTimings::scan_roots);
1390 
1391   if (UseTLAB) {
1392     ShenandoahGCPhase phase(ShenandoahPhaseTimings::resize_tlabs);
1393     resize_tlabs();
1394   }
1395 
1396   if (ShenandoahPacing) {
1397     pacer()->setup_for_mark();
1398   }
1399 }
1400 
1401 void ShenandoahHeap::op_mark() {
1402   concurrent_mark()->mark_from_roots();
1403 }
1404 
1405 class ShenandoahCompleteLivenessClosure : public ShenandoahHeapRegionClosure {
1406 private:
1407   ShenandoahMarkingContext* const _ctx;
1408 public:
1409   ShenandoahCompleteLivenessClosure() : _ctx(ShenandoahHeap::heap()->complete_marking_context()) {}
1410 
1411   void heap_region_do(ShenandoahHeapRegion* r) {
1412     if (r->is_active()) {
1413       HeapWord *tams = _ctx->top_at_mark_start(r);
1414       HeapWord *top = r->top();
1415       if (top > tams) {
1416         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1417       }
1418     } else {
1419       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->region_number());
1420       assert(_ctx->top_at_mark_start(r) == r->top(),
1421              "Region " SIZE_FORMAT " should have correct TAMS", r->region_number());
1422     }
1423   }
1424 
1425   bool is_thread_safe() { return true; }
1426 };
1427 
1428 void ShenandoahHeap::op_final_mark() {
1429   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should be at safepoint");
1430 
1431   // It is critical that we
1432   // evacuate roots right after finishing marking, so that we don't
1433   // get unmarked objects in the roots.
1434 
1435   if (!cancelled_gc()) {
1436     concurrent_mark()->finish_mark_from_roots(/* full_gc = */ false);
1437 
1438     if (has_forwarded_objects()) {
1439       concurrent_mark()->update_roots(ShenandoahPhaseTimings::update_roots);
1440     }
1441 
1442     stop_concurrent_marking();
1443 
1444     {
1445       ShenandoahGCPhase phase(ShenandoahPhaseTimings::complete_liveness);
1446 
1447       // All allocations past TAMS are implicitly live, adjust the region data.
1448       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1449       ShenandoahCompleteLivenessClosure cl;
1450       parallel_heap_region_iterate(&cl);
1451     }
1452 
1453     {
1454       ShenandoahGCPhase prepare_evac(ShenandoahPhaseTimings::prepare_evac);
1455 
1456       make_parsable(true);
1457 
1458       trash_cset_regions();
1459 
1460       {
1461         ShenandoahHeapLocker locker(lock());
1462         _collection_set->clear();
1463         _free_set->clear();
1464 
1465         heuristics()->choose_collection_set(_collection_set);
1466 
1467         _free_set->rebuild();
1468       }
1469     }
1470 
1471     // If collection set has candidates, start evacuation.
1472     // Otherwise, bypass the rest of the cycle.
1473     if (!collection_set()->is_empty()) {
1474       ShenandoahGCPhase init_evac(ShenandoahPhaseTimings::init_evac);
1475 
1476       if (ShenandoahVerify) {
1477         verifier()->verify_before_evacuation();
1478       }
1479 
1480       set_evacuation_in_progress(true);
1481       // From here on, we need to update references.
1482       set_has_forwarded_objects(true);
1483 
1484       evacuate_and_update_roots();
1485 
1486       if (ShenandoahPacing) {
1487         pacer()->setup_for_evac();
1488       }
1489 
1490       if (ShenandoahVerify) {
1491         verifier()->verify_during_evacuation();
1492       }
1493     } else {
1494       if (ShenandoahVerify) {
1495         verifier()->verify_after_concmark();
1496       }
1497 
1498       if (VerifyAfterGC) {
1499         Universe::verify();
1500       }
1501     }
1502 
1503   } else {
1504     concurrent_mark()->cancel();
1505     stop_concurrent_marking();
1506 
1507     if (process_references()) {
1508       // Abandon reference processing right away: pre-cleaning must have failed.
1509       ReferenceProcessor *rp = ref_processor();
1510       rp->disable_discovery();
1511       rp->abandon_partial_discovery();
1512       rp->verify_no_references_recorded();
1513     }
1514   }
1515 }
1516 
1517 void ShenandoahHeap::op_final_evac() {
1518   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should be at safepoint");
1519 
1520   set_evacuation_in_progress(false);
1521 
1522   retire_and_reset_gclabs();
1523 
1524   if (ShenandoahVerify) {
1525     verifier()->verify_after_evacuation();
1526   }
1527 
1528   if (VerifyAfterGC) {
1529     Universe::verify();
1530   }
1531 }
1532 
1533 void ShenandoahHeap::op_conc_evac() {
1534   ShenandoahEvacuationTask task(this, _collection_set, true);
1535   workers()->run_task(&task);
1536 }
1537 
1538 void ShenandoahHeap::op_stw_evac() {
1539   ShenandoahEvacuationTask task(this, _collection_set, false);
1540   workers()->run_task(&task);
1541 }
1542 
1543 void ShenandoahHeap::op_updaterefs() {
1544   update_heap_references(true);
1545 }
1546 
1547 void ShenandoahHeap::op_cleanup() {
1548   free_set()->recycle_trash();
1549 }
1550 
1551 void ShenandoahHeap::op_reset() {
1552   reset_mark_bitmap();
1553 }
1554 
1555 void ShenandoahHeap::op_preclean() {
1556   concurrent_mark()->preclean_weak_refs();
1557 }
1558 
1559 void ShenandoahHeap::op_init_traversal() {
1560   traversal_gc()->init_traversal_collection();
1561 }
1562 
1563 void ShenandoahHeap::op_traversal() {
1564   traversal_gc()->concurrent_traversal_collection();
1565 }
1566 
1567 void ShenandoahHeap::op_final_traversal() {
1568   traversal_gc()->final_traversal_collection();
1569 }
1570 
1571 void ShenandoahHeap::op_full(GCCause::Cause cause) {
1572   ShenandoahMetricsSnapshot metrics;
1573   metrics.snap_before();
1574 
1575   full_gc()->do_it(cause);
1576   if (UseTLAB) {
1577     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_resize_tlabs);
1578     resize_all_tlabs();
1579   }
1580 
1581   metrics.snap_after();
1582   metrics.print();
1583 
1584   if (metrics.is_good_progress("Full GC")) {
1585     _progress_last_gc.set();
1586   } else {
1587     // Nothing to do. Tell the allocation path that we have failed to make
1588     // progress, and it can finally fail.
1589     _progress_last_gc.unset();
1590   }
1591 }
1592 
1593 void ShenandoahHeap::op_degenerated(ShenandoahDegenPoint point) {
1594   // Degenerated GC is STW, but it can also fail. Current mechanics communicates
1595   // GC failure via cancelled_concgc() flag. So, if we detect the failure after
1596   // some phase, we have to upgrade the Degenerate GC to Full GC.
1597 
1598   clear_cancelled_gc();
1599 
1600   ShenandoahMetricsSnapshot metrics;
1601   metrics.snap_before();
1602 
1603   switch (point) {
1604     case _degenerated_traversal:
1605       {
1606         // Drop the collection set. Note: this leaves some already forwarded objects
1607         // behind, which may be problematic, see comments for ShenandoahEvacAssist
1608         // workarounds in ShenandoahTraversalHeuristics.
1609 
1610         ShenandoahHeapLocker locker(lock());
1611         collection_set()->clear_current_index();
1612         for (size_t i = 0; i < collection_set()->count(); i++) {
1613           ShenandoahHeapRegion* r = collection_set()->next();
1614           r->make_regular_bypass();
1615         }
1616         collection_set()->clear();
1617       }
1618       op_final_traversal();
1619       op_cleanup();
1620       return;
1621 
1622     // The cases below form the Duff's-like device: it describes the actual GC cycle,
1623     // but enters it at different points, depending on which concurrent phase had
1624     // degenerated.
1625 
1626     case _degenerated_outside_cycle:
1627       // We have degenerated from outside the cycle, which means something is bad with
1628       // the heap, most probably heavy humongous fragmentation, or we are very low on free
1629       // space. It makes little sense to wait for Full GC to reclaim as much as it can, when
1630       // we can do the most aggressive degen cycle, which includes processing references and
1631       // class unloading, unless those features are explicitly disabled.
1632       //
1633       // Note that we can only do this for "outside-cycle" degens, otherwise we would risk
1634       // changing the cycle parameters mid-cycle during concurrent -> degenerated handover.
1635       set_process_references(heuristics()->can_process_references());
1636       set_unload_classes(heuristics()->can_unload_classes());
1637 
1638       if (heuristics()->can_do_traversal_gc()) {
1639         // Not possible to degenerate from here, upgrade to Full GC right away.
1640         cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc);
1641         op_degenerated_fail();
1642         return;
1643       }
1644 
1645       op_reset();
1646 
1647       op_init_mark();
1648       if (cancelled_gc()) {
1649         op_degenerated_fail();
1650         return;
1651       }
1652 
1653     case _degenerated_mark:
1654       op_final_mark();
1655       if (cancelled_gc()) {
1656         op_degenerated_fail();
1657         return;
1658       }
1659 
1660       op_cleanup();
1661 
1662     case _degenerated_evac:
1663       // If heuristics thinks we should do the cycle, this flag would be set,
1664       // and we can do evacuation. Otherwise, it would be the shortcut cycle.
1665       if (is_evacuation_in_progress()) {
1666 
1667         // Degeneration under oom-evac protocol might have left some objects in
1668         // collection set un-evacuated. Restart evacuation from the beginning to
1669         // capture all objects. For all the objects that are already evacuated,
1670         // it would be a simple check, which is supposed to be fast. This is also
1671         // safe to do even without degeneration, as CSet iterator is at beginning
1672         // in preparation for evacuation anyway.
1673         collection_set()->clear_current_index();
1674 
1675         op_stw_evac();
1676         if (cancelled_gc()) {
1677           op_degenerated_fail();
1678           return;
1679         }
1680       }
1681 
1682       // If heuristics thinks we should do the cycle, this flag would be set,
1683       // and we need to do update-refs. Otherwise, it would be the shortcut cycle.
1684       if (has_forwarded_objects()) {
1685         op_init_updaterefs();
1686         if (cancelled_gc()) {
1687           op_degenerated_fail();
1688           return;
1689         }
1690       }
1691 
1692     case _degenerated_updaterefs:
1693       if (has_forwarded_objects()) {
1694         op_final_updaterefs();
1695         if (cancelled_gc()) {
1696           op_degenerated_fail();
1697           return;
1698         }
1699       }
1700 
1701       op_cleanup();
1702       break;
1703 
1704     default:
1705       ShouldNotReachHere();
1706   }
1707 
1708   if (ShenandoahVerify) {
1709     verifier()->verify_after_degenerated();
1710   }
1711 
1712   if (VerifyAfterGC) {
1713     Universe::verify();
1714   }
1715 
1716   metrics.snap_after();
1717   metrics.print();
1718 
1719   // Check for futility and fail. There is no reason to do several back-to-back Degenerated cycles,
1720   // because that probably means the heap is overloaded and/or fragmented.
1721   if (!metrics.is_good_progress("Degenerated GC")) {
1722     _progress_last_gc.unset();
1723     cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc);
1724     op_degenerated_futile();
1725   } else {
1726     _progress_last_gc.set();
1727   }
1728 }
1729 
1730 void ShenandoahHeap::op_degenerated_fail() {
1731   log_info(gc)("Cannot finish degeneration, upgrading to Full GC");
1732   shenandoah_policy()->record_degenerated_upgrade_to_full();
1733   op_full(GCCause::_shenandoah_upgrade_to_full_gc);
1734 }
1735 
1736 void ShenandoahHeap::op_degenerated_futile() {
1737   shenandoah_policy()->record_degenerated_upgrade_to_full();
1738   op_full(GCCause::_shenandoah_upgrade_to_full_gc);
1739 }
1740 
1741 void ShenandoahHeap::stop_concurrent_marking() {
1742   assert(is_concurrent_mark_in_progress(), "How else could we get here?");
1743   set_concurrent_mark_in_progress(false);
1744   if (!cancelled_gc()) {
1745     // If we needed to update refs, and concurrent marking has been cancelled,
1746     // we need to finish updating references.
1747     set_has_forwarded_objects(false);
1748     mark_complete_marking_context();
1749   }
1750 }
1751 
1752 void ShenandoahHeap::force_satb_flush_all_threads() {
1753   if (!is_concurrent_mark_in_progress() && !is_concurrent_traversal_in_progress()) {
1754     // No need to flush SATBs
1755     return;
1756   }
1757 
1758   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1759     ShenandoahThreadLocalData::set_force_satb_flush(t, true);
1760   }
1761   // The threads are not "acquiring" their thread-local data, but it does not
1762   // hurt to "release" the updates here anyway.
1763   OrderAccess::fence();
1764 }
1765 
1766 void ShenandoahHeap::set_gc_state_all_threads(char state) {
1767   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1768     ShenandoahThreadLocalData::set_gc_state(t, state);
1769   }
1770 }
1771 
1772 void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) {
1773   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should really be Shenandoah safepoint");
1774   _gc_state.set_cond(mask, value);
1775   set_gc_state_all_threads(_gc_state.raw_value());
1776 }
1777 
1778 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1779   if (has_forwarded_objects()) {
1780     set_gc_state_mask(MARKING | UPDATEREFS, in_progress);
1781   } else {
1782     set_gc_state_mask(MARKING, in_progress);
1783   }
1784   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1785 }
1786 
1787 void ShenandoahHeap::set_concurrent_traversal_in_progress(bool in_progress) {
1788    set_gc_state_mask(TRAVERSAL | HAS_FORWARDED | UPDATEREFS, in_progress);
1789    ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1790 }
1791 
1792 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1793   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1794   set_gc_state_mask(EVACUATION, in_progress);
1795 }
1796 
1797 void ShenandoahHeap::ref_processing_init() {
1798   assert(_max_workers > 0, "Sanity");
1799 
1800   _ref_processor =
1801     new ReferenceProcessor(&_subject_to_discovery,  // is_subject_to_discovery
1802                            ParallelRefProcEnabled,  // MT processing
1803                            _max_workers,            // Degree of MT processing
1804                            true,                    // MT discovery
1805                            _max_workers,            // Degree of MT discovery
1806                            false,                   // Reference discovery is not atomic
1807                            NULL,                    // No closure, should be installed before use
1808                            true);                   // Scale worker threads
1809 
1810   shenandoah_assert_rp_isalive_not_installed();
1811 }
1812 
1813 GCTracer* ShenandoahHeap::tracer() {
1814   return shenandoah_policy()->tracer();
1815 }
1816 
1817 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1818   return _free_set->used();
1819 }
1820 
1821 bool ShenandoahHeap::try_cancel_gc() {
1822   while (true) {
1823     jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
1824     if (prev == CANCELLABLE) return true;
1825     else if (prev == CANCELLED) return false;
1826     assert(ShenandoahSuspendibleWorkers, "should not get here when not using suspendible workers");
1827     assert(prev == NOT_CANCELLED, "must be NOT_CANCELLED");
1828     {
1829       // We need to provide a safepoint here, otherwise we might
1830       // spin forever if a SP is pending.
1831       ThreadBlockInVM sp(JavaThread::current());
1832       SpinPause();
1833     }
1834   }
1835 }
1836 
1837 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1838   if (try_cancel_gc()) {
1839     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1840     log_info(gc)("%s", msg.buffer());
1841     Events::log(Thread::current(), "%s", msg.buffer());
1842   }
1843 }
1844 
1845 uint ShenandoahHeap::max_workers() {
1846   return _max_workers;
1847 }
1848 
1849 void ShenandoahHeap::stop() {
1850   // The shutdown sequence should be able to terminate when GC is running.
1851 
1852   // Step 0. Notify policy to disable event recording.
1853   _shenandoah_policy->record_shutdown();
1854 
1855   // Step 1. Notify control thread that we are in shutdown.
1856   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1857   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1858   control_thread()->prepare_for_graceful_shutdown();
1859 
1860   // Step 2. Notify GC workers that we are cancelling GC.
1861   cancel_gc(GCCause::_shenandoah_stop_vm);
1862 
1863   // Step 3. Wait until GC worker exits normally.
1864   control_thread()->stop();
1865 
1866   // Step 4. Stop String Dedup thread if it is active
1867   if (ShenandoahStringDedup::is_enabled()) {
1868     ShenandoahStringDedup::stop();
1869   }
1870 }
1871 
1872 void ShenandoahHeap::unload_classes_and_cleanup_tables(bool full_gc) {
1873   assert(heuristics()->can_unload_classes(), "Class unloading should be enabled");
1874 
1875   ShenandoahGCPhase root_phase(full_gc ?
1876                                ShenandoahPhaseTimings::full_gc_purge :
1877                                ShenandoahPhaseTimings::purge);
1878 
1879   ShenandoahIsAliveSelector alive;
1880   BoolObjectClosure* is_alive = alive.is_alive_closure();
1881 
1882   bool purged_class;
1883 
1884   // Unload classes and purge SystemDictionary.
1885   {
1886     ShenandoahGCPhase phase(full_gc ?
1887                             ShenandoahPhaseTimings::full_gc_purge_class_unload :
1888                             ShenandoahPhaseTimings::purge_class_unload);
1889     purged_class = SystemDictionary::do_unloading(gc_timer());
1890   }
1891 
1892   {
1893     ShenandoahGCPhase phase(full_gc ?
1894                             ShenandoahPhaseTimings::full_gc_purge_par :
1895                             ShenandoahPhaseTimings::purge_par);
1896     uint active = _workers->active_workers();
1897     ParallelCleaningTask unlink_task(is_alive, active, purged_class, true);
1898     _workers->run_task(&unlink_task);
1899   }
1900 
1901   {
1902     ShenandoahGCPhase phase(full_gc ?
1903                       ShenandoahPhaseTimings::full_gc_purge_cldg :
1904                       ShenandoahPhaseTimings::purge_cldg);
1905     ClassLoaderDataGraph::purge();
1906   }
1907 }
1908 
1909 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1910   set_gc_state_mask(HAS_FORWARDED, cond);
1911 }
1912 
1913 void ShenandoahHeap::set_process_references(bool pr) {
1914   _process_references.set_cond(pr);
1915 }
1916 
1917 void ShenandoahHeap::set_unload_classes(bool uc) {
1918   _unload_classes.set_cond(uc);
1919 }
1920 
1921 bool ShenandoahHeap::process_references() const {
1922   return _process_references.is_set();
1923 }
1924 
1925 bool ShenandoahHeap::unload_classes() const {
1926   return _unload_classes.is_set();
1927 }
1928 
1929 address ShenandoahHeap::in_cset_fast_test_addr() {
1930   ShenandoahHeap* heap = ShenandoahHeap::heap();
1931   assert(heap->collection_set() != NULL, "Sanity");
1932   return (address) heap->collection_set()->biased_map_address();
1933 }
1934 
1935 address ShenandoahHeap::cancelled_gc_addr() {
1936   return (address) ShenandoahHeap::heap()->_cancelled_gc.addr_of();
1937 }
1938 
1939 address ShenandoahHeap::gc_state_addr() {
1940   return (address) ShenandoahHeap::heap()->_gc_state.addr_of();
1941 }
1942 
1943 size_t ShenandoahHeap::bytes_allocated_since_gc_start() {
1944   return OrderAccess::load_acquire(&_bytes_allocated_since_gc_start);
1945 }
1946 
1947 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
1948   OrderAccess::release_store_fence(&_bytes_allocated_since_gc_start, (size_t)0);
1949 }
1950 
1951 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
1952   _degenerated_gc_in_progress.set_cond(in_progress);
1953 }
1954 
1955 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
1956   _full_gc_in_progress.set_cond(in_progress);
1957 }
1958 
1959 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
1960   assert (is_full_gc_in_progress(), "should be");
1961   _full_gc_move_in_progress.set_cond(in_progress);
1962 }
1963 
1964 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
1965   set_gc_state_mask(UPDATEREFS, in_progress);
1966 }
1967 
1968 void ShenandoahHeap::register_nmethod(nmethod* nm) {
1969   ShenandoahCodeRoots::add_nmethod(nm);
1970 }
1971 
1972 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
1973   ShenandoahCodeRoots::remove_nmethod(nm);
1974 }
1975 
1976 oop ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
1977   ShenandoahHeapLocker locker(lock());
1978   heap_region_containing(o)->make_pinned();
1979   return o;
1980 }
1981 
1982 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
1983   ShenandoahHeapLocker locker(lock());
1984   heap_region_containing(o)->make_unpinned();
1985 }
1986 
1987 GCTimer* ShenandoahHeap::gc_timer() const {
1988   return _gc_timer;
1989 }
1990 
1991 #ifdef ASSERT
1992 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
1993   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
1994 
1995   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1996     if (UseDynamicNumberOfGCThreads ||
1997         (FLAG_IS_DEFAULT(ParallelGCThreads) && ForceDynamicNumberOfGCThreads)) {
1998       assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
1999     } else {
2000       // Use ParallelGCThreads inside safepoints
2001       assert(nworkers == ParallelGCThreads, "Use ParalleGCThreads within safepoints");
2002     }
2003   } else {
2004     if (UseDynamicNumberOfGCThreads ||
2005         (FLAG_IS_DEFAULT(ConcGCThreads) && ForceDynamicNumberOfGCThreads)) {
2006       assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
2007     } else {
2008       // Use ConcGCThreads outside safepoints
2009       assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
2010     }
2011   }
2012 }
2013 #endif
2014 
2015 ShenandoahVerifier* ShenandoahHeap::verifier() {
2016   guarantee(ShenandoahVerify, "Should be enabled");
2017   assert (_verifier != NULL, "sanity");
2018   return _verifier;
2019 }
2020 
2021 template<class T>
2022 class ShenandoahUpdateHeapRefsTask : public AbstractGangTask {
2023 private:
2024   T cl;
2025   ShenandoahHeap* _heap;
2026   ShenandoahRegionIterator* _regions;
2027   bool _concurrent;
2028 public:
2029   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions, bool concurrent) :
2030     AbstractGangTask("Concurrent Update References Task"),
2031     cl(T()),
2032     _heap(ShenandoahHeap::heap()),
2033     _regions(regions),
2034     _concurrent(concurrent) {
2035   }
2036 
2037   void work(uint worker_id) {
2038     if (_concurrent) {
2039       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2040       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
2041       do_work();
2042     } else {
2043       ShenandoahParallelWorkerSession worker_session(worker_id);
2044       do_work();
2045     }
2046   }
2047 
2048 private:
2049   void do_work() {
2050     ShenandoahHeapRegion* r = _regions->next();
2051     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2052     while (r != NULL) {
2053       HeapWord* top_at_start_ur = r->concurrent_iteration_safe_limit();
2054       assert (top_at_start_ur >= r->bottom(), "sanity");
2055       if (r->is_active() && !r->is_cset()) {
2056         _heap->marked_object_oop_iterate(r, &cl, top_at_start_ur);
2057       }
2058       if (ShenandoahPacing) {
2059         _heap->pacer()->report_updaterefs(pointer_delta(top_at_start_ur, r->bottom()));
2060       }
2061       if (_heap->check_cancelled_gc_and_yield(_concurrent)) {
2062         return;
2063       }
2064       r = _regions->next();
2065     }
2066   }
2067 };
2068 
2069 void ShenandoahHeap::update_heap_references(bool concurrent) {
2070   ShenandoahUpdateHeapRefsTask<ShenandoahUpdateHeapRefsClosure> task(&_update_refs_iterator, concurrent);
2071   workers()->run_task(&task);
2072 }
2073 
2074 void ShenandoahHeap::op_init_updaterefs() {
2075   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2076 
2077   set_evacuation_in_progress(false);
2078 
2079   retire_and_reset_gclabs();
2080 
2081   if (ShenandoahVerify) {
2082     verifier()->verify_before_updaterefs();
2083   }
2084 
2085   set_update_refs_in_progress(true);
2086   make_parsable(true);
2087   for (uint i = 0; i < num_regions(); i++) {
2088     ShenandoahHeapRegion* r = get_region(i);
2089     r->set_concurrent_iteration_safe_limit(r->top());
2090   }
2091 
2092   // Reset iterator.
2093   _update_refs_iterator.reset();
2094 
2095   if (ShenandoahPacing) {
2096     pacer()->setup_for_updaterefs();
2097   }
2098 }
2099 
2100 void ShenandoahHeap::op_final_updaterefs() {
2101   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2102 
2103   // Check if there is left-over work, and finish it
2104   if (_update_refs_iterator.has_next()) {
2105     ShenandoahGCPhase final_work(ShenandoahPhaseTimings::final_update_refs_finish_work);
2106 
2107     // Finish updating references where we left off.
2108     clear_cancelled_gc();
2109     update_heap_references(false);
2110   }
2111 
2112   // Clear cancelled GC, if set. On cancellation path, the block before would handle
2113   // everything. On degenerated paths, cancelled gc would not be set anyway.
2114   if (cancelled_gc()) {
2115     clear_cancelled_gc();
2116   }
2117   assert(!cancelled_gc(), "Should have been done right before");
2118 
2119   concurrent_mark()->update_roots(is_degenerated_gc_in_progress() ?
2120                                  ShenandoahPhaseTimings::degen_gc_update_roots:
2121                                  ShenandoahPhaseTimings::final_update_refs_roots);
2122 
2123   ShenandoahGCPhase final_update_refs(ShenandoahPhaseTimings::final_update_refs_recycle);
2124 
2125   trash_cset_regions();
2126   set_has_forwarded_objects(false);
2127   set_update_refs_in_progress(false);
2128 
2129   if (ShenandoahVerify) {
2130     verifier()->verify_after_updaterefs();
2131   }
2132 
2133   if (VerifyAfterGC) {
2134     Universe::verify();
2135   }
2136 
2137   {
2138     ShenandoahHeapLocker locker(lock());
2139     _free_set->rebuild();
2140   }
2141 }
2142 
2143 #ifdef ASSERT
2144 void ShenandoahHeap::assert_heaplock_owned_by_current_thread() {
2145   _lock.assert_owned_by_current_thread();
2146 }
2147 
2148 void ShenandoahHeap::assert_heaplock_not_owned_by_current_thread() {
2149   _lock.assert_not_owned_by_current_thread();
2150 }
2151 
2152 void ShenandoahHeap::assert_heaplock_or_safepoint() {
2153   _lock.assert_owned_by_current_thread_or_safepoint();
2154 }
2155 #endif
2156 
2157 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2158   print_on(st);
2159   print_heap_regions_on(st);
2160 }
2161 
2162 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2163   size_t slice = r->region_number() / _bitmap_regions_per_slice;
2164 
2165   size_t regions_from = _bitmap_regions_per_slice * slice;
2166   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2167   for (size_t g = regions_from; g < regions_to; g++) {
2168     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2169     if (skip_self && g == r->region_number()) continue;
2170     if (get_region(g)->is_committed()) {
2171       return true;
2172     }
2173   }
2174   return false;
2175 }
2176 
2177 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2178   assert_heaplock_owned_by_current_thread();
2179 
2180   // Bitmaps in special regions do not need commits
2181   if (_bitmap_region_special) {
2182     return true;
2183   }
2184 
2185   if (is_bitmap_slice_committed(r, true)) {
2186     // Some other region from the group is already committed, meaning the bitmap
2187     // slice is already committed, we exit right away.
2188     return true;
2189   }
2190 
2191   // Commit the bitmap slice:
2192   size_t slice = r->region_number() / _bitmap_regions_per_slice;
2193   size_t off = _bitmap_bytes_per_slice * slice;
2194   size_t len = _bitmap_bytes_per_slice;
2195   if (!os::commit_memory((char*)_bitmap_region.start() + off, len, false)) {
2196     return false;
2197   }
2198   return true;
2199 }
2200 
2201 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2202   assert_heaplock_owned_by_current_thread();
2203 
2204   // Bitmaps in special regions do not need uncommits
2205   if (_bitmap_region_special) {
2206     return true;
2207   }
2208 
2209   if (is_bitmap_slice_committed(r, true)) {
2210     // Some other region from the group is still committed, meaning the bitmap
2211     // slice is should stay committed, exit right away.
2212     return true;
2213   }
2214 
2215   // Uncommit the bitmap slice:
2216   size_t slice = r->region_number() / _bitmap_regions_per_slice;
2217   size_t off = _bitmap_bytes_per_slice * slice;
2218   size_t len = _bitmap_bytes_per_slice;
2219   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2220     return false;
2221   }
2222   return true;
2223 }
2224 
2225 void ShenandoahHeap::safepoint_synchronize_begin() {
2226   if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2227     SuspendibleThreadSet::synchronize();
2228   }
2229 }
2230 
2231 void ShenandoahHeap::safepoint_synchronize_end() {
2232   if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2233     SuspendibleThreadSet::desynchronize();
2234   }
2235 }
2236 
2237 void ShenandoahHeap::vmop_entry_init_mark() {
2238   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2239   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2240   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_mark_gross);
2241 
2242   try_inject_alloc_failure();
2243   VM_ShenandoahInitMark op;
2244   VMThread::execute(&op); // jump to entry_init_mark() under safepoint
2245 }
2246 
2247 void ShenandoahHeap::vmop_entry_final_mark() {
2248   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2249   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2250   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_mark_gross);
2251 
2252   try_inject_alloc_failure();
2253   VM_ShenandoahFinalMarkStartEvac op;
2254   VMThread::execute(&op); // jump to entry_final_mark under safepoint
2255 }
2256 
2257 void ShenandoahHeap::vmop_entry_final_evac() {
2258   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2259   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2260   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_evac_gross);
2261 
2262   VM_ShenandoahFinalEvac op;
2263   VMThread::execute(&op); // jump to entry_final_evac under safepoint
2264 }
2265 
2266 void ShenandoahHeap::vmop_entry_init_updaterefs() {
2267   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2268   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2269   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_update_refs_gross);
2270 
2271   try_inject_alloc_failure();
2272   VM_ShenandoahInitUpdateRefs op;
2273   VMThread::execute(&op);
2274 }
2275 
2276 void ShenandoahHeap::vmop_entry_final_updaterefs() {
2277   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2278   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2279   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_update_refs_gross);
2280 
2281   try_inject_alloc_failure();
2282   VM_ShenandoahFinalUpdateRefs op;
2283   VMThread::execute(&op);
2284 }
2285 
2286 void ShenandoahHeap::vmop_entry_init_traversal() {
2287   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2288   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2289   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_traversal_gc_gross);
2290 
2291   try_inject_alloc_failure();
2292   VM_ShenandoahInitTraversalGC op;
2293   VMThread::execute(&op);
2294 }
2295 
2296 void ShenandoahHeap::vmop_entry_final_traversal() {
2297   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2298   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2299   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_traversal_gc_gross);
2300 
2301   try_inject_alloc_failure();
2302   VM_ShenandoahFinalTraversalGC op;
2303   VMThread::execute(&op);
2304 }
2305 
2306 void ShenandoahHeap::vmop_entry_full(GCCause::Cause cause) {
2307   TraceCollectorStats tcs(monitoring_support()->full_stw_collection_counters());
2308   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2309   ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_gross);
2310 
2311   try_inject_alloc_failure();
2312   VM_ShenandoahFullGC op(cause);
2313   VMThread::execute(&op);
2314 }
2315 
2316 void ShenandoahHeap::vmop_degenerated(ShenandoahDegenPoint point) {
2317   TraceCollectorStats tcs(monitoring_support()->full_stw_collection_counters());
2318   ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2319   ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_gross);
2320 
2321   VM_ShenandoahDegeneratedGC degenerated_gc((int)point);
2322   VMThread::execute(&degenerated_gc);
2323 }
2324 
2325 void ShenandoahHeap::entry_init_mark() {
2326   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2327   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_mark);
2328   const char* msg = init_mark_event_message();
2329   GCTraceTime(Info, gc) time(msg, gc_timer());
2330   EventMark em("%s", msg);
2331 
2332   ShenandoahWorkerScope scope(workers(),
2333                               ShenandoahWorkerPolicy::calc_workers_for_init_marking(),
2334                               "init marking");
2335 
2336   op_init_mark();
2337 }
2338 
2339 void ShenandoahHeap::entry_final_mark() {
2340   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2341   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_mark);
2342   const char* msg = final_mark_event_message();
2343   GCTraceTime(Info, gc) time(msg, gc_timer());
2344   EventMark em("%s", msg);
2345 
2346   ShenandoahWorkerScope scope(workers(),
2347                               ShenandoahWorkerPolicy::calc_workers_for_final_marking(),
2348                               "final marking");
2349 
2350   op_final_mark();
2351 }
2352 
2353 void ShenandoahHeap::entry_final_evac() {
2354   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2355   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_evac);
2356   static const char* msg = "Pause Final Evac";
2357   GCTraceTime(Info, gc) time(msg, gc_timer());
2358   EventMark em("%s", msg);
2359 
2360   op_final_evac();
2361 }
2362 
2363 void ShenandoahHeap::entry_init_updaterefs() {
2364   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2365   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_update_refs);
2366 
2367   static const char* msg = "Pause Init Update Refs";
2368   GCTraceTime(Info, gc) time(msg, gc_timer());
2369   EventMark em("%s", msg);
2370 
2371   // No workers used in this phase, no setup required
2372 
2373   op_init_updaterefs();
2374 }
2375 
2376 void ShenandoahHeap::entry_final_updaterefs() {
2377   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2378   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_update_refs);
2379 
2380   static const char* msg = "Pause Final Update Refs";
2381   GCTraceTime(Info, gc) time(msg, gc_timer());
2382   EventMark em("%s", msg);
2383 
2384   ShenandoahWorkerScope scope(workers(),
2385                               ShenandoahWorkerPolicy::calc_workers_for_final_update_ref(),
2386                               "final reference update");
2387 
2388   op_final_updaterefs();
2389 }
2390 
2391 void ShenandoahHeap::entry_init_traversal() {
2392   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2393   ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_traversal_gc);
2394 
2395   static const char* msg = "Pause Init Traversal";
2396   GCTraceTime(Info, gc) time(msg, gc_timer());
2397   EventMark em("%s", msg);
2398 
2399   ShenandoahWorkerScope scope(workers(),
2400                               ShenandoahWorkerPolicy::calc_workers_for_stw_traversal(),
2401                               "init traversal");
2402 
2403   op_init_traversal();
2404 }
2405 
2406 void ShenandoahHeap::entry_final_traversal() {
2407   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2408   ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_traversal_gc);
2409 
2410   static const char* msg = "Pause Final Traversal";
2411   GCTraceTime(Info, gc) time(msg, gc_timer());
2412   EventMark em("%s", msg);
2413 
2414   ShenandoahWorkerScope scope(workers(),
2415                               ShenandoahWorkerPolicy::calc_workers_for_stw_traversal(),
2416                               "final traversal");
2417 
2418   op_final_traversal();
2419 }
2420 
2421 void ShenandoahHeap::entry_full(GCCause::Cause cause) {
2422   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2423   ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc);
2424 
2425   static const char* msg = "Pause Full";
2426   GCTraceTime(Info, gc) time(msg, gc_timer(), cause, true);
2427   EventMark em("%s", msg);
2428 
2429   ShenandoahWorkerScope scope(workers(),
2430                               ShenandoahWorkerPolicy::calc_workers_for_fullgc(),
2431                               "full gc");
2432 
2433   op_full(cause);
2434 }
2435 
2436 void ShenandoahHeap::entry_degenerated(int point) {
2437   ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2438   ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc);
2439 
2440   ShenandoahDegenPoint dpoint = (ShenandoahDegenPoint)point;
2441   const char* msg = degen_event_message(dpoint);
2442   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2443   EventMark em("%s", msg);
2444 
2445   ShenandoahWorkerScope scope(workers(),
2446                               ShenandoahWorkerPolicy::calc_workers_for_stw_degenerated(),
2447                               "stw degenerated gc");
2448 
2449   set_degenerated_gc_in_progress(true);
2450   op_degenerated(dpoint);
2451   set_degenerated_gc_in_progress(false);
2452 }
2453 
2454 void ShenandoahHeap::entry_mark() {
2455   TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
2456 
2457   const char* msg = conc_mark_event_message();
2458   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2459   EventMark em("%s", msg);
2460 
2461   ShenandoahWorkerScope scope(workers(),
2462                               ShenandoahWorkerPolicy::calc_workers_for_conc_marking(),
2463                               "concurrent marking");
2464 
2465   try_inject_alloc_failure();
2466   op_mark();
2467 }
2468 
2469 void ShenandoahHeap::entry_evac() {
2470   ShenandoahGCPhase conc_evac_phase(ShenandoahPhaseTimings::conc_evac);
2471   TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
2472 
2473   static const char* msg = "Concurrent evacuation";
2474   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2475   EventMark em("%s", msg);
2476 
2477   ShenandoahWorkerScope scope(workers(),
2478                               ShenandoahWorkerPolicy::calc_workers_for_conc_evac(),
2479                               "concurrent evacuation");
2480 
2481   try_inject_alloc_failure();
2482   op_conc_evac();
2483 }
2484 
2485 void ShenandoahHeap::entry_updaterefs() {
2486   ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_update_refs);
2487 
2488   static const char* msg = "Concurrent update references";
2489   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2490   EventMark em("%s", msg);
2491 
2492   ShenandoahWorkerScope scope(workers(),
2493                               ShenandoahWorkerPolicy::calc_workers_for_conc_update_ref(),
2494                               "concurrent reference update");
2495 
2496   try_inject_alloc_failure();
2497   op_updaterefs();
2498 }
2499 void ShenandoahHeap::entry_cleanup() {
2500   ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_cleanup);
2501 
2502   static const char* msg = "Concurrent cleanup";
2503   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2504   EventMark em("%s", msg);
2505 
2506   // This phase does not use workers, no need for setup
2507 
2508   try_inject_alloc_failure();
2509   op_cleanup();
2510 }
2511 
2512 void ShenandoahHeap::entry_reset() {
2513   ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_reset);
2514 
2515   static const char* msg = "Concurrent reset";
2516   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2517   EventMark em("%s", msg);
2518 
2519   ShenandoahWorkerScope scope(workers(),
2520                               ShenandoahWorkerPolicy::calc_workers_for_conc_reset(),
2521                               "concurrent reset");
2522 
2523   try_inject_alloc_failure();
2524   op_reset();
2525 }
2526 
2527 void ShenandoahHeap::entry_preclean() {
2528   if (ShenandoahPreclean && process_references()) {
2529     static const char* msg = "Concurrent precleaning";
2530     GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2531     EventMark em("%s", msg);
2532 
2533     ShenandoahGCPhase conc_preclean(ShenandoahPhaseTimings::conc_preclean);
2534 
2535     ShenandoahWorkerScope scope(workers(),
2536                                 ShenandoahWorkerPolicy::calc_workers_for_conc_preclean(),
2537                                 "concurrent preclean",
2538                                 /* check_workers = */ false);
2539 
2540     try_inject_alloc_failure();
2541     op_preclean();
2542   }
2543 }
2544 
2545 void ShenandoahHeap::entry_traversal() {
2546   static const char* msg = "Concurrent traversal";
2547   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2548   EventMark em("%s", msg);
2549 
2550   TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
2551 
2552   ShenandoahWorkerScope scope(workers(),
2553                               ShenandoahWorkerPolicy::calc_workers_for_conc_traversal(),
2554                               "concurrent traversal");
2555 
2556   try_inject_alloc_failure();
2557   op_traversal();
2558 }
2559 
2560 void ShenandoahHeap::entry_uncommit(double shrink_before) {
2561   static const char *msg = "Concurrent uncommit";
2562   GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2563   EventMark em("%s", msg);
2564 
2565   ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_uncommit);
2566 
2567   op_uncommit(shrink_before);
2568 }
2569 
2570 void ShenandoahHeap::try_inject_alloc_failure() {
2571   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2572     _inject_alloc_failure.set();
2573     os::naked_short_sleep(1);
2574     if (cancelled_gc()) {
2575       log_info(gc)("Allocation failure was successfully injected");
2576     }
2577   }
2578 }
2579 
2580 bool ShenandoahHeap::should_inject_alloc_failure() {
2581   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2582 }
2583 
2584 void ShenandoahHeap::initialize_serviceability() {
2585   _memory_pool = new ShenandoahMemoryPool(this);
2586   _cycle_memory_manager.add_pool(_memory_pool);
2587   _stw_memory_manager.add_pool(_memory_pool);
2588 }
2589 
2590 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2591   GrowableArray<GCMemoryManager*> memory_managers(2);
2592   memory_managers.append(&_cycle_memory_manager);
2593   memory_managers.append(&_stw_memory_manager);
2594   return memory_managers;
2595 }
2596 
2597 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2598   GrowableArray<MemoryPool*> memory_pools(1);
2599   memory_pools.append(_memory_pool);
2600   return memory_pools;
2601 }
2602 
2603 MemoryUsage ShenandoahHeap::memory_usage() {
2604   return _memory_pool->get_memory_usage();
2605 }
2606 
2607 void ShenandoahHeap::enter_evacuation() {
2608   _oom_evac_handler.enter_evacuation();
2609 }
2610 
2611 void ShenandoahHeap::leave_evacuation() {
2612   _oom_evac_handler.leave_evacuation();
2613 }
2614 
2615 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2616   _heap(ShenandoahHeap::heap()),
2617   _index(0) {}
2618 
2619 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2620   _heap(heap),
2621   _index(0) {}
2622 
2623 void ShenandoahRegionIterator::reset() {
2624   _index = 0;
2625 }
2626 
2627 bool ShenandoahRegionIterator::has_next() const {
2628   return _index < _heap->num_regions();
2629 }
2630 
2631 char ShenandoahHeap::gc_state() const {
2632   return _gc_state.raw_value();
2633 }
2634 
2635 void ShenandoahHeap::deduplicate_string(oop str) {
2636   assert(java_lang_String::is_instance(str), "invariant");
2637 
2638   if (ShenandoahStringDedup::is_enabled()) {
2639     ShenandoahStringDedup::deduplicate(str);
2640   }
2641 }
2642 
2643 const char* ShenandoahHeap::init_mark_event_message() const {
2644   bool update_refs = has_forwarded_objects();
2645   bool proc_refs = process_references();
2646   bool unload_cls = unload_classes();
2647 
2648   if (update_refs && proc_refs && unload_cls) {
2649     return "Pause Init Mark (update refs) (process weakrefs) (unload classes)";
2650   } else if (update_refs && proc_refs) {
2651     return "Pause Init Mark (update refs) (process weakrefs)";
2652   } else if (update_refs && unload_cls) {
2653     return "Pause Init Mark (update refs) (unload classes)";
2654   } else if (proc_refs && unload_cls) {
2655     return "Pause Init Mark (process weakrefs) (unload classes)";
2656   } else if (update_refs) {
2657     return "Pause Init Mark (update refs)";
2658   } else if (proc_refs) {
2659     return "Pause Init Mark (process weakrefs)";
2660   } else if (unload_cls) {
2661     return "Pause Init Mark (unload classes)";
2662   } else {
2663     return "Pause Init Mark";
2664   }
2665 }
2666 
2667 const char* ShenandoahHeap::final_mark_event_message() const {
2668   bool update_refs = has_forwarded_objects();
2669   bool proc_refs = process_references();
2670   bool unload_cls = unload_classes();
2671 
2672   if (update_refs && proc_refs && unload_cls) {
2673     return "Pause Final Mark (update refs) (process weakrefs) (unload classes)";
2674   } else if (update_refs && proc_refs) {
2675     return "Pause Final Mark (update refs) (process weakrefs)";
2676   } else if (update_refs && unload_cls) {
2677     return "Pause Final Mark (update refs) (unload classes)";
2678   } else if (proc_refs && unload_cls) {
2679     return "Pause Final Mark (process weakrefs) (unload classes)";
2680   } else if (update_refs) {
2681     return "Pause Final Mark (update refs)";
2682   } else if (proc_refs) {
2683     return "Pause Final Mark (process weakrefs)";
2684   } else if (unload_cls) {
2685     return "Pause Final Mark (unload classes)";
2686   } else {
2687     return "Pause Final Mark";
2688   }
2689 }
2690 
2691 const char* ShenandoahHeap::conc_mark_event_message() const {
2692   bool update_refs = has_forwarded_objects();
2693   bool proc_refs = process_references();
2694   bool unload_cls = unload_classes();
2695 
2696   if (update_refs && proc_refs && unload_cls) {
2697     return "Concurrent marking (update refs) (process weakrefs) (unload classes)";
2698   } else if (update_refs && proc_refs) {
2699     return "Concurrent marking (update refs) (process weakrefs)";
2700   } else if (update_refs && unload_cls) {
2701     return "Concurrent marking (update refs) (unload classes)";
2702   } else if (proc_refs && unload_cls) {
2703     return "Concurrent marking (process weakrefs) (unload classes)";
2704   } else if (update_refs) {
2705     return "Concurrent marking (update refs)";
2706   } else if (proc_refs) {
2707     return "Concurrent marking (process weakrefs)";
2708   } else if (unload_cls) {
2709     return "Concurrent marking (unload classes)";
2710   } else {
2711     return "Concurrent marking";
2712   }
2713 }
2714 
2715 const char* ShenandoahHeap::degen_event_message(ShenandoahDegenPoint point) const {
2716   switch (point) {
2717     case _degenerated_unset:
2718       return "Pause Degenerated GC (<UNSET>)";
2719     case _degenerated_traversal:
2720       return "Pause Degenerated GC (Traversal)";
2721     case _degenerated_outside_cycle:
2722       return "Pause Degenerated GC (Outside of Cycle)";
2723     case _degenerated_mark:
2724       return "Pause Degenerated GC (Mark)";
2725     case _degenerated_evac:
2726       return "Pause Degenerated GC (Evacuation)";
2727     case _degenerated_updaterefs:
2728       return "Pause Degenerated GC (Update Refs)";
2729     default:
2730       ShouldNotReachHere();
2731       return "ERROR";
2732   }
2733 }
2734 
2735 jushort* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2736 #ifdef ASSERT
2737   assert(_liveness_cache != NULL, "sanity");
2738   assert(worker_id < _max_workers, "sanity");
2739   for (uint i = 0; i < num_regions(); i++) {
2740     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2741   }
2742 #endif
2743   return _liveness_cache[worker_id];
2744 }
2745 
2746 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2747   assert(worker_id < _max_workers, "sanity");
2748   assert(_liveness_cache != NULL, "sanity");
2749   jushort* ld = _liveness_cache[worker_id];
2750   for (uint i = 0; i < num_regions(); i++) {
2751     ShenandoahHeapRegion* r = get_region(i);
2752     jushort live = ld[i];
2753     if (live > 0) {
2754       r->increase_live_data_gc_words(live);
2755       ld[i] = 0;
2756     }
2757   }
2758 }