< prev index next >

src/hotspot/share/gc/shenandoah/shenandoahHeap.inline.hpp

Print this page
rev 55608 : Rename ShenandoahBrooksPointer to ShenandoahForwarding
rev 55609 : Eliminate extra forwarding pointer per object


 217     // No GCLABs in this thread, fallback to shared allocation
 218     return NULL;
 219   }
 220   HeapWord* obj = gclab->allocate(size);
 221   if (obj != NULL) {
 222     return obj;
 223   }
 224   // Otherwise...
 225   return allocate_from_gclab_slow(thread, size);
 226 }
 227 
 228 inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
 229   if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) {
 230     // This thread went through the OOM during evac protocol and it is safe to return
 231     // the forward pointer. It must not attempt to evacuate any more.
 232     return ShenandoahBarrierSet::resolve_forwarded(p);
 233   }
 234 
 235   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
 236 
 237   size_t size_no_fwdptr = (size_t) p->size();
 238   size_t size_with_fwdptr = size_no_fwdptr + ShenandoahForwarding::word_size();
 239 
 240   assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects");
 241 
 242   bool alloc_from_gclab = true;
 243   HeapWord* filler = NULL;
 244 
 245 #ifdef ASSERT
 246   if (ShenandoahOOMDuringEvacALot &&
 247       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
 248         filler = NULL;
 249   } else {
 250 #endif
 251     if (UseTLAB) {
 252       filler = allocate_from_gclab(thread, size_with_fwdptr);
 253     }
 254     if (filler == NULL) {
 255       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size_with_fwdptr);
 256       filler = allocate_memory(req);
 257       alloc_from_gclab = false;
 258     }
 259 #ifdef ASSERT
 260   }
 261 #endif
 262 
 263   if (filler == NULL) {
 264     control_thread()->handle_alloc_failure_evac(size_with_fwdptr);
 265 
 266     _oom_evac_handler.handle_out_of_memory_during_evacuation();
 267 
 268     return ShenandoahBarrierSet::resolve_forwarded(p);
 269   }
 270 
 271   // Copy the object and initialize its forwarding ptr:
 272   HeapWord* copy = filler + ShenandoahForwarding::word_size();
 273   oop copy_val = oop(copy);
 274 
 275   Copy::aligned_disjoint_words((HeapWord*) p, copy, size_no_fwdptr);
 276   ShenandoahForwarding::initialize(oop(copy));
 277 
 278   // Try to install the new forwarding pointer.

 279   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
 280 
 281   if (oopDesc::equals_raw(result, p)) {
 282     // Successfully evacuated. Our copy is now the public one!
 283     shenandoah_assert_correct(NULL, copy_val);
 284     return copy_val;
 285   }  else {
 286     // Failed to evacuate. We need to deal with the object that is left behind. Since this
 287     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
 288     // But if it happens to contain references to evacuated regions, those references would
 289     // not get updated for this stale copy during this cycle, and we will crash while scanning
 290     // it the next cycle.
 291     //
 292     // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next
 293     // object will overwrite this stale copy, or the filler object on LAB retirement will
 294     // do this. For non-GCLAB allocations, we have no way to retract the allocation, and
 295     // have to explicitly overwrite the copy with the filler object. With that overwrite,
 296     // we have to keep the fwdptr initialized and pointing to our (stale) copy.
 297     if (alloc_from_gclab) {
 298       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(filler, size_with_fwdptr);
 299     } else {
 300       fill_with_object(copy, size_no_fwdptr);
 301     }
 302     shenandoah_assert_correct(NULL, copy_val);

 303     shenandoah_assert_correct(NULL, result);
 304     return result;
 305   }
 306 }
 307 
 308 template<bool RESOLVE>
 309 inline bool ShenandoahHeap::requires_marking(const void* entry) const {
 310   oop obj = oop(entry);
 311   if (RESOLVE) {
 312     obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
 313   }
 314   return !_marking_context->is_marked(obj);
 315 }
 316 
 317 template <class T>
 318 inline bool ShenandoahHeap::in_collection_set(T p) const {
 319   HeapWord* obj = (HeapWord*) p;
 320   assert(collection_set() != NULL, "Sanity");
 321   assert(is_in(obj), "should be in heap");
 322 


 353 
 354 inline bool ShenandoahHeap::is_full_gc_in_progress() const {
 355   return _full_gc_in_progress.is_set();
 356 }
 357 
 358 inline bool ShenandoahHeap::is_full_gc_move_in_progress() const {
 359   return _full_gc_move_in_progress.is_set();
 360 }
 361 
 362 inline bool ShenandoahHeap::is_update_refs_in_progress() const {
 363   return _gc_state.is_set(UPDATEREFS);
 364 }
 365 
 366 template<class T>
 367 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) {
 368   marked_object_iterate(region, cl, region->top());
 369 }
 370 
 371 template<class T>
 372 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) {
 373   assert(ShenandoahForwarding::word_offset() < 0, "skip_delta calculation below assumes the forwarding ptr is before obj");
 374   assert(! region->is_humongous_continuation(), "no humongous continuation regions here");
 375 
 376   ShenandoahMarkingContext* const ctx = complete_marking_context();
 377   assert(ctx->is_complete(), "sanity");
 378 
 379   MarkBitMap* mark_bit_map = ctx->mark_bit_map();
 380   HeapWord* tams = ctx->top_at_mark_start(region);
 381 
 382   size_t skip_bitmap_delta = ShenandoahForwarding::word_size() + 1;
 383   size_t skip_objsize_delta = ShenandoahForwarding::word_size() /* + actual obj.size() below */;
 384   HeapWord* start = region->bottom() + ShenandoahForwarding::word_size();
 385   HeapWord* end = MIN2(tams + ShenandoahForwarding::word_size(), region->end());
 386 
 387   // Step 1. Scan below the TAMS based on bitmap data.
 388   HeapWord* limit_bitmap = MIN2(limit, tams);
 389 
 390   // Try to scan the initial candidate. If the candidate is above the TAMS, it would
 391   // fail the subsequent "< limit_bitmap" checks, and fall through to Step 2.
 392   HeapWord* cb = mark_bit_map->get_next_marked_addr(start, end);
 393 
 394   intx dist = ShenandoahMarkScanPrefetch;
 395   if (dist > 0) {
 396     // Batched scan that prefetches the oop data, anticipating the access to
 397     // either header, oop field, or forwarding pointer. Not that we cannot
 398     // touch anything in oop, while it still being prefetched to get enough
 399     // time for prefetch to work. This is why we try to scan the bitmap linearly,
 400     // disregarding the object size. However, since we know forwarding pointer
 401     // preceeds the object, we can skip over it. Once we cannot trust the bitmap,
 402     // there is no point for prefetching the oop contents, as oop->size() will
 403     // touch it prematurely.
 404 
 405     // No variable-length arrays in standard C++, have enough slots to fit
 406     // the prefetch distance.
 407     static const int SLOT_COUNT = 256;
 408     guarantee(dist <= SLOT_COUNT, "adjust slot count");
 409     HeapWord* slots[SLOT_COUNT];
 410 
 411     int avail;
 412     do {
 413       avail = 0;
 414       for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) {
 415         Prefetch::read(cb, ShenandoahForwarding::byte_offset());
 416         slots[avail++] = cb;
 417         cb += skip_bitmap_delta;
 418         if (cb < limit_bitmap) {
 419           cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap);
 420         }
 421       }
 422 
 423       for (int c = 0; c < avail; c++) {
 424         assert (slots[c] < tams,  "only objects below TAMS here: "  PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams));
 425         assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit));
 426         oop obj = oop(slots[c]);
 427         assert(oopDesc::is_oop(obj), "sanity");
 428         assert(ctx->is_marked(obj), "object expected to be marked");
 429         cl->do_object(obj);
 430       }
 431     } while (avail > 0);
 432   } else {
 433     while (cb < limit_bitmap) {
 434       assert (cb < tams,  "only objects below TAMS here: "  PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams));
 435       assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit));
 436       oop obj = oop(cb);
 437       assert(oopDesc::is_oop(obj), "sanity");
 438       assert(ctx->is_marked(obj), "object expected to be marked");
 439       cl->do_object(obj);
 440       cb += skip_bitmap_delta;
 441       if (cb < limit_bitmap) {
 442         cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap);
 443       }
 444     }
 445   }
 446 
 447   // Step 2. Accurate size-based traversal, happens past the TAMS.
 448   // This restarts the scan at TAMS, which makes sure we traverse all objects,
 449   // regardless of what happened at Step 1.
 450   HeapWord* cs = tams + ShenandoahForwarding::word_size();
 451   while (cs < limit) {
 452     assert (cs > tams,  "only objects past TAMS here: "   PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams));
 453     assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit));
 454     oop obj = oop(cs);
 455     assert(oopDesc::is_oop(obj), "sanity");
 456     assert(ctx->is_marked(obj), "object expected to be marked");
 457     int size = obj->size();
 458     cl->do_object(obj);
 459     cs += size + skip_objsize_delta;
 460   }
 461 }
 462 
 463 template <class T>
 464 class ShenandoahObjectToOopClosure : public ObjectClosure {
 465   T* _cl;
 466 public:
 467   ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {}
 468 
 469   void do_object(oop obj) {
 470     obj->oop_iterate(_cl);
 471   }
 472 };
 473 
 474 template <class T>
 475 class ShenandoahObjectToOopBoundedClosure : public ObjectClosure {
 476   T* _cl;
 477   MemRegion _bounds;
 478 public:
 479   ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) :




 217     // No GCLABs in this thread, fallback to shared allocation
 218     return NULL;
 219   }
 220   HeapWord* obj = gclab->allocate(size);
 221   if (obj != NULL) {
 222     return obj;
 223   }
 224   // Otherwise...
 225   return allocate_from_gclab_slow(thread, size);
 226 }
 227 
 228 inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
 229   if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) {
 230     // This thread went through the OOM during evac protocol and it is safe to return
 231     // the forward pointer. It must not attempt to evacuate any more.
 232     return ShenandoahBarrierSet::resolve_forwarded(p);
 233   }
 234 
 235   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
 236 
 237   size_t size = p->size();

 238 
 239   assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects");
 240 
 241   bool alloc_from_gclab = true;
 242   HeapWord* copy = NULL;
 243 
 244 #ifdef ASSERT
 245   if (ShenandoahOOMDuringEvacALot &&
 246       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
 247         copy = NULL;
 248   } else {
 249 #endif
 250     if (UseTLAB) {
 251       copy = allocate_from_gclab(thread, size);
 252     }
 253     if (copy == NULL) {
 254       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size);
 255       copy = allocate_memory(req);
 256       alloc_from_gclab = false;
 257     }
 258 #ifdef ASSERT
 259   }
 260 #endif
 261 
 262   if (copy == NULL) {
 263     control_thread()->handle_alloc_failure_evac(size);
 264 
 265     _oom_evac_handler.handle_out_of_memory_during_evacuation();
 266 
 267     return ShenandoahBarrierSet::resolve_forwarded(p);
 268   }
 269 
 270   // Copy the object:
 271   Copy::aligned_disjoint_words((HeapWord*) p, copy, size);




 272 
 273   // Try to install the new forwarding pointer.
 274   oop copy_val = oop(copy);
 275   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);

 276   if (oopDesc::equals_raw(result, p)) {
 277     // Successfully evacuated. Our copy is now the public one!
 278     shenandoah_assert_correct(NULL, copy_val);
 279     return copy_val;
 280   }  else {
 281     // Failed to evacuate. We need to deal with the object that is left behind. Since this
 282     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
 283     // But if it happens to contain references to evacuated regions, those references would
 284     // not get updated for this stale copy during this cycle, and we will crash while scanning
 285     // it the next cycle.
 286     //
 287     // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next
 288     // object will overwrite this stale copy, or the filler object on LAB retirement will
 289     // do this. For non-GCLAB allocations, we have no way to retract the allocation, and
 290     // have to explicitly overwrite the copy with the filler object. With that overwrite,
 291     // we have to keep the fwdptr initialized and pointing to our (stale) copy.
 292     if (alloc_from_gclab) {
 293       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
 294     } else {
 295       fill_with_object(copy, size);

 296       shenandoah_assert_correct(NULL, copy_val);
 297     }
 298     shenandoah_assert_correct(NULL, result);
 299     return result;
 300   }
 301 }
 302 
 303 template<bool RESOLVE>
 304 inline bool ShenandoahHeap::requires_marking(const void* entry) const {
 305   oop obj = oop(entry);
 306   if (RESOLVE) {
 307     obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
 308   }
 309   return !_marking_context->is_marked(obj);
 310 }
 311 
 312 template <class T>
 313 inline bool ShenandoahHeap::in_collection_set(T p) const {
 314   HeapWord* obj = (HeapWord*) p;
 315   assert(collection_set() != NULL, "Sanity");
 316   assert(is_in(obj), "should be in heap");
 317 


 348 
 349 inline bool ShenandoahHeap::is_full_gc_in_progress() const {
 350   return _full_gc_in_progress.is_set();
 351 }
 352 
 353 inline bool ShenandoahHeap::is_full_gc_move_in_progress() const {
 354   return _full_gc_move_in_progress.is_set();
 355 }
 356 
 357 inline bool ShenandoahHeap::is_update_refs_in_progress() const {
 358   return _gc_state.is_set(UPDATEREFS);
 359 }
 360 
 361 template<class T>
 362 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) {
 363   marked_object_iterate(region, cl, region->top());
 364 }
 365 
 366 template<class T>
 367 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) {

 368   assert(! region->is_humongous_continuation(), "no humongous continuation regions here");
 369 
 370   ShenandoahMarkingContext* const ctx = complete_marking_context();
 371   assert(ctx->is_complete(), "sanity");
 372 
 373   MarkBitMap* mark_bit_map = ctx->mark_bit_map();
 374   HeapWord* tams = ctx->top_at_mark_start(region);
 375 
 376   size_t skip_bitmap_delta = 1;
 377   HeapWord* start = region->bottom();
 378   HeapWord* end = MIN2(tams, region->end());

 379 
 380   // Step 1. Scan below the TAMS based on bitmap data.
 381   HeapWord* limit_bitmap = MIN2(limit, tams);
 382 
 383   // Try to scan the initial candidate. If the candidate is above the TAMS, it would
 384   // fail the subsequent "< limit_bitmap" checks, and fall through to Step 2.
 385   HeapWord* cb = mark_bit_map->get_next_marked_addr(start, end);
 386 
 387   intx dist = ShenandoahMarkScanPrefetch;
 388   if (dist > 0) {
 389     // Batched scan that prefetches the oop data, anticipating the access to
 390     // either header, oop field, or forwarding pointer. Not that we cannot
 391     // touch anything in oop, while it still being prefetched to get enough
 392     // time for prefetch to work. This is why we try to scan the bitmap linearly,
 393     // disregarding the object size. However, since we know forwarding pointer
 394     // preceeds the object, we can skip over it. Once we cannot trust the bitmap,
 395     // there is no point for prefetching the oop contents, as oop->size() will
 396     // touch it prematurely.
 397 
 398     // No variable-length arrays in standard C++, have enough slots to fit
 399     // the prefetch distance.
 400     static const int SLOT_COUNT = 256;
 401     guarantee(dist <= SLOT_COUNT, "adjust slot count");
 402     HeapWord* slots[SLOT_COUNT];
 403 
 404     int avail;
 405     do {
 406       avail = 0;
 407       for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) {
 408         Prefetch::read(cb, oopDesc::mark_offset_in_bytes());
 409         slots[avail++] = cb;
 410         cb += skip_bitmap_delta;
 411         if (cb < limit_bitmap) {
 412           cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap);
 413         }
 414       }
 415 
 416       for (int c = 0; c < avail; c++) {
 417         assert (slots[c] < tams,  "only objects below TAMS here: "  PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams));
 418         assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit));
 419         oop obj = oop(slots[c]);
 420         assert(oopDesc::is_oop(obj), "sanity");
 421         assert(ctx->is_marked(obj), "object expected to be marked");
 422         cl->do_object(obj);
 423       }
 424     } while (avail > 0);
 425   } else {
 426     while (cb < limit_bitmap) {
 427       assert (cb < tams,  "only objects below TAMS here: "  PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams));
 428       assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit));
 429       oop obj = oop(cb);
 430       assert(oopDesc::is_oop(obj), "sanity");
 431       assert(ctx->is_marked(obj), "object expected to be marked");
 432       cl->do_object(obj);
 433       cb += skip_bitmap_delta;
 434       if (cb < limit_bitmap) {
 435         cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap);
 436       }
 437     }
 438   }
 439 
 440   // Step 2. Accurate size-based traversal, happens past the TAMS.
 441   // This restarts the scan at TAMS, which makes sure we traverse all objects,
 442   // regardless of what happened at Step 1.
 443   HeapWord* cs = tams;
 444   while (cs < limit) {
 445     assert (cs >= tams,  "only objects past TAMS here: "   PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams));
 446     assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit));
 447     oop obj = oop(cs);
 448     assert(oopDesc::is_oop(obj), "sanity");
 449     assert(ctx->is_marked(obj), "object expected to be marked");
 450     int size = obj->size();
 451     cl->do_object(obj);
 452     cs += size;
 453   }
 454 }
 455 
 456 template <class T>
 457 class ShenandoahObjectToOopClosure : public ObjectClosure {
 458   T* _cl;
 459 public:
 460   ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {}
 461 
 462   void do_object(oop obj) {
 463     obj->oop_iterate(_cl);
 464   }
 465 };
 466 
 467 template <class T>
 468 class ShenandoahObjectToOopBoundedClosure : public ObjectClosure {
 469   T* _cl;
 470   MemRegion _bounds;
 471 public:
 472   ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) :


< prev index next >