1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/vectornode.hpp"
  71 #include "runtime/arguments.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/timer.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/copy.hpp"
  78 #include "utilities/macros.hpp"
  79 #if INCLUDE_G1GC
  80 #include "gc/g1/g1ThreadLocalData.hpp"
  81 #endif // INCLUDE_G1GC
  82 #if INCLUDE_ZGC
  83 #include "gc/z/c2/zBarrierSetC2.hpp"
  84 #endif
  85 #if INCLUDE_SHENANDOAHGC
  86 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  87 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  88 #include "gc/shenandoah/brooksPointer.hpp"
  89 #endif
  90 
  91 
  92 // -------------------- Compile::mach_constant_base_node -----------------------
  93 // Constant table base node singleton.
  94 MachConstantBaseNode* Compile::mach_constant_base_node() {
  95   if (_mach_constant_base_node == NULL) {
  96     _mach_constant_base_node = new MachConstantBaseNode();
  97     _mach_constant_base_node->add_req(C->root());
  98   }
  99   return _mach_constant_base_node;
 100 }
 101 
 102 
 103 /// Support for intrinsics.
 104 
 105 // Return the index at which m must be inserted (or already exists).
 106 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 107 class IntrinsicDescPair {
 108  private:
 109   ciMethod* _m;
 110   bool _is_virtual;
 111  public:
 112   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 113   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 114     ciMethod* m= elt->method();
 115     ciMethod* key_m = key->_m;
 116     if (key_m < m)      return -1;
 117     else if (key_m > m) return 1;
 118     else {
 119       bool is_virtual = elt->is_virtual();
 120       bool key_virtual = key->_is_virtual;
 121       if (key_virtual < is_virtual)      return -1;
 122       else if (key_virtual > is_virtual) return 1;
 123       else                               return 0;
 124     }
 125   }
 126 };
 127 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 128 #ifdef ASSERT
 129   for (int i = 1; i < _intrinsics->length(); i++) {
 130     CallGenerator* cg1 = _intrinsics->at(i-1);
 131     CallGenerator* cg2 = _intrinsics->at(i);
 132     assert(cg1->method() != cg2->method()
 133            ? cg1->method()     < cg2->method()
 134            : cg1->is_virtual() < cg2->is_virtual(),
 135            "compiler intrinsics list must stay sorted");
 136   }
 137 #endif
 138   IntrinsicDescPair pair(m, is_virtual);
 139   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 140 }
 141 
 142 void Compile::register_intrinsic(CallGenerator* cg) {
 143   if (_intrinsics == NULL) {
 144     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 145   }
 146   int len = _intrinsics->length();
 147   bool found = false;
 148   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 149   assert(!found, "registering twice");
 150   _intrinsics->insert_before(index, cg);
 151   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 152 }
 153 
 154 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 155   assert(m->is_loaded(), "don't try this on unloaded methods");
 156   if (_intrinsics != NULL) {
 157     bool found = false;
 158     int index = intrinsic_insertion_index(m, is_virtual, found);
 159      if (found) {
 160       return _intrinsics->at(index);
 161     }
 162   }
 163   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 164   if (m->intrinsic_id() != vmIntrinsics::_none &&
 165       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 166     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 167     if (cg != NULL) {
 168       // Save it for next time:
 169       register_intrinsic(cg);
 170       return cg;
 171     } else {
 172       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 173     }
 174   }
 175   return NULL;
 176 }
 177 
 178 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 179 // in library_call.cpp.
 180 
 181 
 182 #ifndef PRODUCT
 183 // statistics gathering...
 184 
 185 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 186 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 187 
 188 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 189   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 190   int oflags = _intrinsic_hist_flags[id];
 191   assert(flags != 0, "what happened?");
 192   if (is_virtual) {
 193     flags |= _intrinsic_virtual;
 194   }
 195   bool changed = (flags != oflags);
 196   if ((flags & _intrinsic_worked) != 0) {
 197     juint count = (_intrinsic_hist_count[id] += 1);
 198     if (count == 1) {
 199       changed = true;           // first time
 200     }
 201     // increment the overall count also:
 202     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 203   }
 204   if (changed) {
 205     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 206       // Something changed about the intrinsic's virtuality.
 207       if ((flags & _intrinsic_virtual) != 0) {
 208         // This is the first use of this intrinsic as a virtual call.
 209         if (oflags != 0) {
 210           // We already saw it as a non-virtual, so note both cases.
 211           flags |= _intrinsic_both;
 212         }
 213       } else if ((oflags & _intrinsic_both) == 0) {
 214         // This is the first use of this intrinsic as a non-virtual
 215         flags |= _intrinsic_both;
 216       }
 217     }
 218     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 219   }
 220   // update the overall flags also:
 221   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 222   return changed;
 223 }
 224 
 225 static char* format_flags(int flags, char* buf) {
 226   buf[0] = 0;
 227   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 228   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 229   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 230   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 231   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 232   if (buf[0] == 0)  strcat(buf, ",");
 233   assert(buf[0] == ',', "must be");
 234   return &buf[1];
 235 }
 236 
 237 void Compile::print_intrinsic_statistics() {
 238   char flagsbuf[100];
 239   ttyLocker ttyl;
 240   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 241   tty->print_cr("Compiler intrinsic usage:");
 242   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 243   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 244   #define PRINT_STAT_LINE(name, c, f) \
 245     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 246   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 247     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 248     int   flags = _intrinsic_hist_flags[id];
 249     juint count = _intrinsic_hist_count[id];
 250     if ((flags | count) != 0) {
 251       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 252     }
 253   }
 254   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 255   if (xtty != NULL)  xtty->tail("statistics");
 256 }
 257 
 258 void Compile::print_statistics() {
 259   { ttyLocker ttyl;
 260     if (xtty != NULL)  xtty->head("statistics type='opto'");
 261     Parse::print_statistics();
 262     PhaseCCP::print_statistics();
 263     PhaseRegAlloc::print_statistics();
 264     Scheduling::print_statistics();
 265     PhasePeephole::print_statistics();
 266     PhaseIdealLoop::print_statistics();
 267     if (xtty != NULL)  xtty->tail("statistics");
 268   }
 269   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 270     // put this under its own <statistics> element.
 271     print_intrinsic_statistics();
 272   }
 273 }
 274 #endif //PRODUCT
 275 
 276 // Support for bundling info
 277 Bundle* Compile::node_bundling(const Node *n) {
 278   assert(valid_bundle_info(n), "oob");
 279   return &_node_bundling_base[n->_idx];
 280 }
 281 
 282 bool Compile::valid_bundle_info(const Node *n) {
 283   return (_node_bundling_limit > n->_idx);
 284 }
 285 
 286 
 287 void Compile::gvn_replace_by(Node* n, Node* nn) {
 288   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 289     Node* use = n->last_out(i);
 290     bool is_in_table = initial_gvn()->hash_delete(use);
 291     uint uses_found = 0;
 292     for (uint j = 0; j < use->len(); j++) {
 293       if (use->in(j) == n) {
 294         if (j < use->req())
 295           use->set_req(j, nn);
 296         else
 297           use->set_prec(j, nn);
 298         uses_found++;
 299       }
 300     }
 301     if (is_in_table) {
 302       // reinsert into table
 303       initial_gvn()->hash_find_insert(use);
 304     }
 305     record_for_igvn(use);
 306     i -= uses_found;    // we deleted 1 or more copies of this edge
 307   }
 308 }
 309 
 310 
 311 static inline bool not_a_node(const Node* n) {
 312   if (n == NULL)                   return true;
 313   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 314   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 315   return false;
 316 }
 317 
 318 // Identify all nodes that are reachable from below, useful.
 319 // Use breadth-first pass that records state in a Unique_Node_List,
 320 // recursive traversal is slower.
 321 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 322   int estimated_worklist_size = live_nodes();
 323   useful.map( estimated_worklist_size, NULL );  // preallocate space
 324 
 325   // Initialize worklist
 326   if (root() != NULL)     { useful.push(root()); }
 327   // If 'top' is cached, declare it useful to preserve cached node
 328   if( cached_top_node() ) { useful.push(cached_top_node()); }
 329 
 330   // Push all useful nodes onto the list, breadthfirst
 331   for( uint next = 0; next < useful.size(); ++next ) {
 332     assert( next < unique(), "Unique useful nodes < total nodes");
 333     Node *n  = useful.at(next);
 334     uint max = n->len();
 335     for( uint i = 0; i < max; ++i ) {
 336       Node *m = n->in(i);
 337       if (not_a_node(m))  continue;
 338       useful.push(m);
 339     }
 340   }
 341 }
 342 
 343 // Update dead_node_list with any missing dead nodes using useful
 344 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 345 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 346   uint max_idx = unique();
 347   VectorSet& useful_node_set = useful.member_set();
 348 
 349   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 350     // If node with index node_idx is not in useful set,
 351     // mark it as dead in dead node list.
 352     if (! useful_node_set.test(node_idx) ) {
 353       record_dead_node(node_idx);
 354     }
 355   }
 356 }
 357 
 358 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 359   int shift = 0;
 360   for (int i = 0; i < inlines->length(); i++) {
 361     CallGenerator* cg = inlines->at(i);
 362     CallNode* call = cg->call_node();
 363     if (shift > 0) {
 364       inlines->at_put(i-shift, cg);
 365     }
 366     if (!useful.member(call)) {
 367       shift++;
 368     }
 369   }
 370   inlines->trunc_to(inlines->length()-shift);
 371 }
 372 
 373 // Disconnect all useless nodes by disconnecting those at the boundary.
 374 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 375   uint next = 0;
 376   while (next < useful.size()) {
 377     Node *n = useful.at(next++);
 378     if (n->is_SafePoint()) {
 379       // We're done with a parsing phase. Replaced nodes are not valid
 380       // beyond that point.
 381       n->as_SafePoint()->delete_replaced_nodes();
 382     }
 383     // Use raw traversal of out edges since this code removes out edges
 384     int max = n->outcnt();
 385     for (int j = 0; j < max; ++j) {
 386       Node* child = n->raw_out(j);
 387       if (! useful.member(child)) {
 388         assert(!child->is_top() || child != top(),
 389                "If top is cached in Compile object it is in useful list");
 390         // Only need to remove this out-edge to the useless node
 391         n->raw_del_out(j);
 392         --j;
 393         --max;
 394       }
 395     }
 396     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 397       record_for_igvn(n->unique_out());
 398     }
 399   }
 400   // Remove useless macro and predicate opaq nodes
 401   for (int i = C->macro_count()-1; i >= 0; i--) {
 402     Node* n = C->macro_node(i);
 403     if (!useful.member(n)) {
 404       remove_macro_node(n);
 405     }
 406   }
 407   // Remove useless CastII nodes with range check dependency
 408   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 409     Node* cast = range_check_cast_node(i);
 410     if (!useful.member(cast)) {
 411       remove_range_check_cast(cast);
 412     }
 413   }
 414   // Remove useless expensive nodes
 415   for (int i = C->expensive_count()-1; i >= 0; i--) {
 416     Node* n = C->expensive_node(i);
 417     if (!useful.member(n)) {
 418       remove_expensive_node(n);
 419     }
 420   }
 421   // Remove useless Opaque4 nodes
 422   for (int i = opaque4_count() - 1; i >= 0; i--) {
 423     Node* opaq = opaque4_node(i);
 424     if (!useful.member(opaq)) {
 425       remove_opaque4_node(opaq);
 426     }
 427   }
 428   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 429   bs->eliminate_useless_gc_barriers(useful, this);
 430   // clean up the late inline lists
 431   remove_useless_late_inlines(&_string_late_inlines, useful);
 432   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 433   remove_useless_late_inlines(&_late_inlines, useful);
 434   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 435 }
 436 
 437 //------------------------------frame_size_in_words-----------------------------
 438 // frame_slots in units of words
 439 int Compile::frame_size_in_words() const {
 440   // shift is 0 in LP32 and 1 in LP64
 441   const int shift = (LogBytesPerWord - LogBytesPerInt);
 442   int words = _frame_slots >> shift;
 443   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 444   return words;
 445 }
 446 
 447 // To bang the stack of this compiled method we use the stack size
 448 // that the interpreter would need in case of a deoptimization. This
 449 // removes the need to bang the stack in the deoptimization blob which
 450 // in turn simplifies stack overflow handling.
 451 int Compile::bang_size_in_bytes() const {
 452   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 453 }
 454 
 455 // ============================================================================
 456 //------------------------------CompileWrapper---------------------------------
 457 class CompileWrapper : public StackObj {
 458   Compile *const _compile;
 459  public:
 460   CompileWrapper(Compile* compile);
 461 
 462   ~CompileWrapper();
 463 };
 464 
 465 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 466   // the Compile* pointer is stored in the current ciEnv:
 467   ciEnv* env = compile->env();
 468   assert(env == ciEnv::current(), "must already be a ciEnv active");
 469   assert(env->compiler_data() == NULL, "compile already active?");
 470   env->set_compiler_data(compile);
 471   assert(compile == Compile::current(), "sanity");
 472 
 473   compile->set_type_dict(NULL);
 474   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 475   compile->clone_map().set_clone_idx(0);
 476   compile->set_type_hwm(NULL);
 477   compile->set_type_last_size(0);
 478   compile->set_last_tf(NULL, NULL);
 479   compile->set_indexSet_arena(NULL);
 480   compile->set_indexSet_free_block_list(NULL);
 481   compile->init_type_arena();
 482   Type::Initialize(compile);
 483   _compile->set_scratch_buffer_blob(NULL);
 484   _compile->begin_method();
 485   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 486 }
 487 CompileWrapper::~CompileWrapper() {
 488   _compile->end_method();
 489   if (_compile->scratch_buffer_blob() != NULL)
 490     BufferBlob::free(_compile->scratch_buffer_blob());
 491   _compile->env()->set_compiler_data(NULL);
 492 }
 493 
 494 
 495 //----------------------------print_compile_messages---------------------------
 496 void Compile::print_compile_messages() {
 497 #ifndef PRODUCT
 498   // Check if recompiling
 499   if (_subsume_loads == false && PrintOpto) {
 500     // Recompiling without allowing machine instructions to subsume loads
 501     tty->print_cr("*********************************************************");
 502     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 503     tty->print_cr("*********************************************************");
 504   }
 505   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 506     // Recompiling without escape analysis
 507     tty->print_cr("*********************************************************");
 508     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 509     tty->print_cr("*********************************************************");
 510   }
 511   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 512     // Recompiling without boxing elimination
 513     tty->print_cr("*********************************************************");
 514     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 515     tty->print_cr("*********************************************************");
 516   }
 517   if (C->directive()->BreakAtCompileOption) {
 518     // Open the debugger when compiling this method.
 519     tty->print("### Breaking when compiling: ");
 520     method()->print_short_name();
 521     tty->cr();
 522     BREAKPOINT;
 523   }
 524 
 525   if( PrintOpto ) {
 526     if (is_osr_compilation()) {
 527       tty->print("[OSR]%3d", _compile_id);
 528     } else {
 529       tty->print("%3d", _compile_id);
 530     }
 531   }
 532 #endif
 533 }
 534 
 535 
 536 //-----------------------init_scratch_buffer_blob------------------------------
 537 // Construct a temporary BufferBlob and cache it for this compile.
 538 void Compile::init_scratch_buffer_blob(int const_size) {
 539   // If there is already a scratch buffer blob allocated and the
 540   // constant section is big enough, use it.  Otherwise free the
 541   // current and allocate a new one.
 542   BufferBlob* blob = scratch_buffer_blob();
 543   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 544     // Use the current blob.
 545   } else {
 546     if (blob != NULL) {
 547       BufferBlob::free(blob);
 548     }
 549 
 550     ResourceMark rm;
 551     _scratch_const_size = const_size;
 552     int size = C2Compiler::initial_code_buffer_size(const_size);
 553     blob = BufferBlob::create("Compile::scratch_buffer", size);
 554     // Record the buffer blob for next time.
 555     set_scratch_buffer_blob(blob);
 556     // Have we run out of code space?
 557     if (scratch_buffer_blob() == NULL) {
 558       // Let CompilerBroker disable further compilations.
 559       record_failure("Not enough space for scratch buffer in CodeCache");
 560       return;
 561     }
 562   }
 563 
 564   // Initialize the relocation buffers
 565   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 566   set_scratch_locs_memory(locs_buf);
 567 }
 568 
 569 
 570 //-----------------------scratch_emit_size-------------------------------------
 571 // Helper function that computes size by emitting code
 572 uint Compile::scratch_emit_size(const Node* n) {
 573   // Start scratch_emit_size section.
 574   set_in_scratch_emit_size(true);
 575 
 576   // Emit into a trash buffer and count bytes emitted.
 577   // This is a pretty expensive way to compute a size,
 578   // but it works well enough if seldom used.
 579   // All common fixed-size instructions are given a size
 580   // method by the AD file.
 581   // Note that the scratch buffer blob and locs memory are
 582   // allocated at the beginning of the compile task, and
 583   // may be shared by several calls to scratch_emit_size.
 584   // The allocation of the scratch buffer blob is particularly
 585   // expensive, since it has to grab the code cache lock.
 586   BufferBlob* blob = this->scratch_buffer_blob();
 587   assert(blob != NULL, "Initialize BufferBlob at start");
 588   assert(blob->size() > MAX_inst_size, "sanity");
 589   relocInfo* locs_buf = scratch_locs_memory();
 590   address blob_begin = blob->content_begin();
 591   address blob_end   = (address)locs_buf;
 592   assert(blob->contains(blob_end), "sanity");
 593   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 594   buf.initialize_consts_size(_scratch_const_size);
 595   buf.initialize_stubs_size(MAX_stubs_size);
 596   assert(locs_buf != NULL, "sanity");
 597   int lsize = MAX_locs_size / 3;
 598   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 599   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 600   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 601   // Mark as scratch buffer.
 602   buf.consts()->set_scratch_emit();
 603   buf.insts()->set_scratch_emit();
 604   buf.stubs()->set_scratch_emit();
 605 
 606   // Do the emission.
 607 
 608   Label fakeL; // Fake label for branch instructions.
 609   Label*   saveL = NULL;
 610   uint save_bnum = 0;
 611   bool is_branch = n->is_MachBranch();
 612   if (is_branch) {
 613     MacroAssembler masm(&buf);
 614     masm.bind(fakeL);
 615     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 616     n->as_MachBranch()->label_set(&fakeL, 0);
 617   }
 618   n->emit(buf, this->regalloc());
 619 
 620   // Emitting into the scratch buffer should not fail
 621   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 622 
 623   if (is_branch) // Restore label.
 624     n->as_MachBranch()->label_set(saveL, save_bnum);
 625 
 626   // End scratch_emit_size section.
 627   set_in_scratch_emit_size(false);
 628 
 629   return buf.insts_size();
 630 }
 631 
 632 
 633 // ============================================================================
 634 //------------------------------Compile standard-------------------------------
 635 debug_only( int Compile::_debug_idx = 100000; )
 636 
 637 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 638 // the continuation bci for on stack replacement.
 639 
 640 
 641 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 642                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 643                 : Phase(Compiler),
 644                   _compile_id(ci_env->compile_id()),
 645                   _save_argument_registers(false),
 646                   _subsume_loads(subsume_loads),
 647                   _do_escape_analysis(do_escape_analysis),
 648                   _eliminate_boxing(eliminate_boxing),
 649                   _method(target),
 650                   _entry_bci(osr_bci),
 651                   _stub_function(NULL),
 652                   _stub_name(NULL),
 653                   _stub_entry_point(NULL),
 654                   _max_node_limit(MaxNodeLimit),
 655                   _orig_pc_slot(0),
 656                   _orig_pc_slot_offset_in_bytes(0),
 657                   _inlining_progress(false),
 658                   _inlining_incrementally(false),
 659                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 660 #ifndef PRODUCT
 661                   _trace_opto_output(directive->TraceOptoOutputOption),
 662 #endif
 663                   _has_method_handle_invokes(false),
 664                   _comp_arena(mtCompiler),
 665                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 666                   _env(ci_env),
 667                   _directive(directive),
 668                   _log(ci_env->log()),
 669                   _failure_reason(NULL),
 670                   _congraph(NULL),
 671 #ifndef PRODUCT
 672                   _printer(IdealGraphPrinter::printer()),
 673 #endif
 674                   _dead_node_list(comp_arena()),
 675                   _dead_node_count(0),
 676                   _node_arena(mtCompiler),
 677                   _old_arena(mtCompiler),
 678                   _mach_constant_base_node(NULL),
 679                   _Compile_types(mtCompiler),
 680                   _initial_gvn(NULL),
 681                   _for_igvn(NULL),
 682                   _warm_calls(NULL),
 683                   _late_inlines(comp_arena(), 2, 0, NULL),
 684                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 685                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 686                   _late_inlines_pos(0),
 687                   _number_of_mh_late_inlines(0),
 688                   _print_inlining_stream(NULL),
 689                   _print_inlining_list(NULL),
 690                   _print_inlining_idx(0),
 691                   _print_inlining_output(NULL),
 692                   _replay_inline_data(NULL),
 693                   _java_calls(0),
 694                   _inner_loops(0),
 695                   _interpreter_frame_size(0),
 696                   _node_bundling_limit(0),
 697                   _node_bundling_base(NULL),
 698                   _code_buffer("Compile::Fill_buffer"),
 699                   _scratch_const_size(-1),
 700                   _in_scratch_emit_size(false)
 701 #ifndef PRODUCT
 702                   , _in_dump_cnt(0)
 703 #endif
 704 {
 705   C = this;
 706 #ifndef PRODUCT
 707   if (_printer != NULL) {
 708     _printer->set_compile(this);
 709   }
 710 #endif
 711   CompileWrapper cw(this);
 712 
 713   if (CITimeVerbose) {
 714     tty->print(" ");
 715     target->holder()->name()->print();
 716     tty->print(".");
 717     target->print_short_name();
 718     tty->print("  ");
 719   }
 720   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 721   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 722 
 723 #ifndef PRODUCT
 724   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 725   if (!print_opto_assembly) {
 726     bool print_assembly = directive->PrintAssemblyOption;
 727     if (print_assembly && !Disassembler::can_decode()) {
 728       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 729       print_opto_assembly = true;
 730     }
 731   }
 732   set_print_assembly(print_opto_assembly);
 733   set_parsed_irreducible_loop(false);
 734 
 735   if (directive->ReplayInlineOption) {
 736     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 737   }
 738 #endif
 739   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 740   set_print_intrinsics(directive->PrintIntrinsicsOption);
 741   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 742 
 743   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 744     // Make sure the method being compiled gets its own MDO,
 745     // so we can at least track the decompile_count().
 746     // Need MDO to record RTM code generation state.
 747     method()->ensure_method_data();
 748   }
 749 
 750   Init(::AliasLevel);
 751 
 752 
 753   print_compile_messages();
 754 
 755   _ilt = InlineTree::build_inline_tree_root();
 756 
 757   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 758   assert(num_alias_types() >= AliasIdxRaw, "");
 759 
 760 #define MINIMUM_NODE_HASH  1023
 761   // Node list that Iterative GVN will start with
 762   Unique_Node_List for_igvn(comp_arena());
 763   set_for_igvn(&for_igvn);
 764 
 765   // GVN that will be run immediately on new nodes
 766   uint estimated_size = method()->code_size()*4+64;
 767   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 768   PhaseGVN gvn(node_arena(), estimated_size);
 769   set_initial_gvn(&gvn);
 770 
 771   print_inlining_init();
 772   { // Scope for timing the parser
 773     TracePhase tp("parse", &timers[_t_parser]);
 774 
 775     // Put top into the hash table ASAP.
 776     initial_gvn()->transform_no_reclaim(top());
 777 
 778     // Set up tf(), start(), and find a CallGenerator.
 779     CallGenerator* cg = NULL;
 780     if (is_osr_compilation()) {
 781       const TypeTuple *domain = StartOSRNode::osr_domain();
 782       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 783       init_tf(TypeFunc::make(domain, range));
 784       StartNode* s = new StartOSRNode(root(), domain);
 785       initial_gvn()->set_type_bottom(s);
 786       init_start(s);
 787       cg = CallGenerator::for_osr(method(), entry_bci());
 788     } else {
 789       // Normal case.
 790       init_tf(TypeFunc::make(method()));
 791       StartNode* s = new StartNode(root(), tf()->domain());
 792       initial_gvn()->set_type_bottom(s);
 793       init_start(s);
 794       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 795         // With java.lang.ref.reference.get() we must go through the
 796         // intrinsic - even when get() is the root
 797         // method of the compile - so that, if necessary, the value in
 798         // the referent field of the reference object gets recorded by
 799         // the pre-barrier code.
 800         cg = find_intrinsic(method(), false);
 801       }
 802       if (cg == NULL) {
 803         float past_uses = method()->interpreter_invocation_count();
 804         float expected_uses = past_uses;
 805         cg = CallGenerator::for_inline(method(), expected_uses);
 806       }
 807     }
 808     if (failing())  return;
 809     if (cg == NULL) {
 810       record_method_not_compilable("cannot parse method");
 811       return;
 812     }
 813     JVMState* jvms = build_start_state(start(), tf());
 814     if ((jvms = cg->generate(jvms)) == NULL) {
 815       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 816         record_method_not_compilable("method parse failed");
 817       }
 818       return;
 819     }
 820     GraphKit kit(jvms);
 821 
 822     if (!kit.stopped()) {
 823       // Accept return values, and transfer control we know not where.
 824       // This is done by a special, unique ReturnNode bound to root.
 825       return_values(kit.jvms());
 826     }
 827 
 828     if (kit.has_exceptions()) {
 829       // Any exceptions that escape from this call must be rethrown
 830       // to whatever caller is dynamically above us on the stack.
 831       // This is done by a special, unique RethrowNode bound to root.
 832       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 833     }
 834 
 835     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 836 
 837     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 838       inline_string_calls(true);
 839     }
 840 
 841     if (failing())  return;
 842 
 843     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 844 
 845     // Remove clutter produced by parsing.
 846     if (!failing()) {
 847       ResourceMark rm;
 848       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 849     }
 850   }
 851 
 852   // Note:  Large methods are capped off in do_one_bytecode().
 853   if (failing())  return;
 854 
 855   // After parsing, node notes are no longer automagic.
 856   // They must be propagated by register_new_node_with_optimizer(),
 857   // clone(), or the like.
 858   set_default_node_notes(NULL);
 859 
 860   for (;;) {
 861     int successes = Inline_Warm();
 862     if (failing())  return;
 863     if (successes == 0)  break;
 864   }
 865 
 866   // Drain the list.
 867   Finish_Warm();
 868 #ifndef PRODUCT
 869   if (_printer && _printer->should_print(1)) {
 870     _printer->print_inlining();
 871   }
 872 #endif
 873 
 874   if (failing())  return;
 875   NOT_PRODUCT( verify_graph_edges(); )
 876 
 877   // Now optimize
 878   Optimize();
 879   if (failing())  return;
 880   NOT_PRODUCT( verify_graph_edges(); )
 881 
 882 #ifndef PRODUCT
 883   if (PrintIdeal) {
 884     ttyLocker ttyl;  // keep the following output all in one block
 885     // This output goes directly to the tty, not the compiler log.
 886     // To enable tools to match it up with the compilation activity,
 887     // be sure to tag this tty output with the compile ID.
 888     if (xtty != NULL) {
 889       xtty->head("ideal compile_id='%d'%s", compile_id(),
 890                  is_osr_compilation()    ? " compile_kind='osr'" :
 891                  "");
 892     }
 893     root()->dump(9999);
 894     if (xtty != NULL) {
 895       xtty->tail("ideal");
 896     }
 897   }
 898 #endif
 899 
 900   NOT_PRODUCT( verify_barriers(); )
 901 
 902   // Dump compilation data to replay it.
 903   if (directive->DumpReplayOption) {
 904     env()->dump_replay_data(_compile_id);
 905   }
 906   if (directive->DumpInlineOption && (ilt() != NULL)) {
 907     env()->dump_inline_data(_compile_id);
 908   }
 909 
 910   // Now that we know the size of all the monitors we can add a fixed slot
 911   // for the original deopt pc.
 912 
 913   _orig_pc_slot =  fixed_slots();
 914   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 915   set_fixed_slots(next_slot);
 916 
 917   // Compute when to use implicit null checks. Used by matching trap based
 918   // nodes and NullCheck optimization.
 919   set_allowed_deopt_reasons();
 920 
 921   // Now generate code
 922   Code_Gen();
 923   if (failing())  return;
 924 
 925   // Check if we want to skip execution of all compiled code.
 926   {
 927 #ifndef PRODUCT
 928     if (OptoNoExecute) {
 929       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 930       return;
 931     }
 932 #endif
 933     TracePhase tp("install_code", &timers[_t_registerMethod]);
 934 
 935     if (is_osr_compilation()) {
 936       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 937       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 938     } else {
 939       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 940       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 941     }
 942 
 943     env()->register_method(_method, _entry_bci,
 944                            &_code_offsets,
 945                            _orig_pc_slot_offset_in_bytes,
 946                            code_buffer(),
 947                            frame_size_in_words(), _oop_map_set,
 948                            &_handler_table, &_inc_table,
 949                            compiler,
 950                            has_unsafe_access(),
 951                            SharedRuntime::is_wide_vector(max_vector_size()),
 952                            rtm_state()
 953                            );
 954 
 955     if (log() != NULL) // Print code cache state into compiler log
 956       log()->code_cache_state();
 957   }
 958 }
 959 
 960 //------------------------------Compile----------------------------------------
 961 // Compile a runtime stub
 962 Compile::Compile( ciEnv* ci_env,
 963                   TypeFunc_generator generator,
 964                   address stub_function,
 965                   const char *stub_name,
 966                   int is_fancy_jump,
 967                   bool pass_tls,
 968                   bool save_arg_registers,
 969                   bool return_pc,
 970                   DirectiveSet* directive)
 971   : Phase(Compiler),
 972     _compile_id(0),
 973     _save_argument_registers(save_arg_registers),
 974     _subsume_loads(true),
 975     _do_escape_analysis(false),
 976     _eliminate_boxing(false),
 977     _method(NULL),
 978     _entry_bci(InvocationEntryBci),
 979     _stub_function(stub_function),
 980     _stub_name(stub_name),
 981     _stub_entry_point(NULL),
 982     _max_node_limit(MaxNodeLimit),
 983     _orig_pc_slot(0),
 984     _orig_pc_slot_offset_in_bytes(0),
 985     _inlining_progress(false),
 986     _inlining_incrementally(false),
 987     _has_reserved_stack_access(false),
 988 #ifndef PRODUCT
 989     _trace_opto_output(directive->TraceOptoOutputOption),
 990 #endif
 991     _has_method_handle_invokes(false),
 992     _comp_arena(mtCompiler),
 993     _env(ci_env),
 994     _directive(directive),
 995     _log(ci_env->log()),
 996     _failure_reason(NULL),
 997     _congraph(NULL),
 998 #ifndef PRODUCT
 999     _printer(NULL),
1000 #endif
1001     _dead_node_list(comp_arena()),
1002     _dead_node_count(0),
1003     _node_arena(mtCompiler),
1004     _old_arena(mtCompiler),
1005     _mach_constant_base_node(NULL),
1006     _Compile_types(mtCompiler),
1007     _initial_gvn(NULL),
1008     _for_igvn(NULL),
1009     _warm_calls(NULL),
1010     _number_of_mh_late_inlines(0),
1011     _print_inlining_stream(NULL),
1012     _print_inlining_list(NULL),
1013     _print_inlining_idx(0),
1014     _print_inlining_output(NULL),
1015     _replay_inline_data(NULL),
1016     _java_calls(0),
1017     _inner_loops(0),
1018     _interpreter_frame_size(0),
1019     _node_bundling_limit(0),
1020     _node_bundling_base(NULL),
1021     _code_buffer("Compile::Fill_buffer"),
1022 #ifndef PRODUCT
1023     _in_dump_cnt(0),
1024 #endif
1025     _allowed_reasons(0) {
1026   C = this;
1027 
1028   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1029   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1030 
1031 #ifndef PRODUCT
1032   set_print_assembly(PrintFrameConverterAssembly);
1033   set_parsed_irreducible_loop(false);
1034 #endif
1035   set_has_irreducible_loop(false); // no loops
1036 
1037   CompileWrapper cw(this);
1038   Init(/*AliasLevel=*/ 0);
1039   init_tf((*generator)());
1040 
1041   {
1042     // The following is a dummy for the sake of GraphKit::gen_stub
1043     Unique_Node_List for_igvn(comp_arena());
1044     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1045     PhaseGVN gvn(Thread::current()->resource_area(),255);
1046     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1047     gvn.transform_no_reclaim(top());
1048 
1049     GraphKit kit;
1050     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1051   }
1052 
1053   NOT_PRODUCT( verify_graph_edges(); )
1054   Code_Gen();
1055   if (failing())  return;
1056 
1057 
1058   // Entry point will be accessed using compile->stub_entry_point();
1059   if (code_buffer() == NULL) {
1060     Matcher::soft_match_failure();
1061   } else {
1062     if (PrintAssembly && (WizardMode || Verbose))
1063       tty->print_cr("### Stub::%s", stub_name);
1064 
1065     if (!failing()) {
1066       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1067 
1068       // Make the NMethod
1069       // For now we mark the frame as never safe for profile stackwalking
1070       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1071                                                       code_buffer(),
1072                                                       CodeOffsets::frame_never_safe,
1073                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1074                                                       frame_size_in_words(),
1075                                                       _oop_map_set,
1076                                                       save_arg_registers);
1077       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1078 
1079       _stub_entry_point = rs->entry_point();
1080     }
1081   }
1082 }
1083 
1084 //------------------------------Init-------------------------------------------
1085 // Prepare for a single compilation
1086 void Compile::Init(int aliaslevel) {
1087   _unique  = 0;
1088   _regalloc = NULL;
1089 
1090   _tf      = NULL;  // filled in later
1091   _top     = NULL;  // cached later
1092   _matcher = NULL;  // filled in later
1093   _cfg     = NULL;  // filled in later
1094 
1095   set_24_bit_selection_and_mode(Use24BitFP, false);
1096 
1097   _node_note_array = NULL;
1098   _default_node_notes = NULL;
1099   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1100 
1101   _immutable_memory = NULL; // filled in at first inquiry
1102 
1103   // Globally visible Nodes
1104   // First set TOP to NULL to give safe behavior during creation of RootNode
1105   set_cached_top_node(NULL);
1106   set_root(new RootNode());
1107   // Now that you have a Root to point to, create the real TOP
1108   set_cached_top_node( new ConNode(Type::TOP) );
1109   set_recent_alloc(NULL, NULL);
1110 
1111   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1112   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1113   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1114   env()->set_dependencies(new Dependencies(env()));
1115 
1116   _fixed_slots = 0;
1117   set_has_split_ifs(false);
1118   set_has_loops(has_method() && method()->has_loops()); // first approximation
1119   set_has_stringbuilder(false);
1120   set_has_boxed_value(false);
1121   _trap_can_recompile = false;  // no traps emitted yet
1122   _major_progress = true; // start out assuming good things will happen
1123   set_has_unsafe_access(false);
1124   set_max_vector_size(0);
1125   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1126   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1127   set_decompile_count(0);
1128 
1129   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1130   set_num_loop_opts(LoopOptsCount);
1131   set_do_inlining(Inline);
1132   set_max_inline_size(MaxInlineSize);
1133   set_freq_inline_size(FreqInlineSize);
1134   set_do_scheduling(OptoScheduling);
1135   set_do_count_invocations(false);
1136   set_do_method_data_update(false);
1137 
1138   set_do_vector_loop(false);
1139 
1140   if (AllowVectorizeOnDemand) {
1141     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1142       set_do_vector_loop(true);
1143       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1144     } else if (has_method() && method()->name() != 0 &&
1145                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1146       set_do_vector_loop(true);
1147     }
1148   }
1149   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1150   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1151 
1152   set_age_code(has_method() && method()->profile_aging());
1153   set_rtm_state(NoRTM); // No RTM lock eliding by default
1154   _max_node_limit = _directive->MaxNodeLimitOption;
1155 
1156 #if INCLUDE_RTM_OPT
1157   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1158     int rtm_state = method()->method_data()->rtm_state();
1159     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1160       // Don't generate RTM lock eliding code.
1161       set_rtm_state(NoRTM);
1162     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1163       // Generate RTM lock eliding code without abort ratio calculation code.
1164       set_rtm_state(UseRTM);
1165     } else if (UseRTMDeopt) {
1166       // Generate RTM lock eliding code and include abort ratio calculation
1167       // code if UseRTMDeopt is on.
1168       set_rtm_state(ProfileRTM);
1169     }
1170   }
1171 #endif
1172   if (debug_info()->recording_non_safepoints()) {
1173     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1174                         (comp_arena(), 8, 0, NULL));
1175     set_default_node_notes(Node_Notes::make(this));
1176   }
1177 
1178   // // -- Initialize types before each compile --
1179   // // Update cached type information
1180   // if( _method && _method->constants() )
1181   //   Type::update_loaded_types(_method, _method->constants());
1182 
1183   // Init alias_type map.
1184   if (!_do_escape_analysis && aliaslevel == 3)
1185     aliaslevel = 2;  // No unique types without escape analysis
1186   _AliasLevel = aliaslevel;
1187   const int grow_ats = 16;
1188   _max_alias_types = grow_ats;
1189   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1190   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1191   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1192   {
1193     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1194   }
1195   // Initialize the first few types.
1196   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1197   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1198   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1199   _num_alias_types = AliasIdxRaw+1;
1200   // Zero out the alias type cache.
1201   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1202   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1203   probe_alias_cache(NULL)->_index = AliasIdxTop;
1204 
1205   _intrinsics = NULL;
1206   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1207   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1208   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1209   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1210   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1211   register_library_intrinsics();
1212 }
1213 
1214 //---------------------------init_start----------------------------------------
1215 // Install the StartNode on this compile object.
1216 void Compile::init_start(StartNode* s) {
1217   if (failing())
1218     return; // already failing
1219   assert(s == start(), "");
1220 }
1221 
1222 /**
1223  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1224  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1225  * the ideal graph.
1226  */
1227 StartNode* Compile::start() const {
1228   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1229   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1230     Node* start = root()->fast_out(i);
1231     if (start->is_Start()) {
1232       return start->as_Start();
1233     }
1234   }
1235   fatal("Did not find Start node!");
1236   return NULL;
1237 }
1238 
1239 //-------------------------------immutable_memory-------------------------------------
1240 // Access immutable memory
1241 Node* Compile::immutable_memory() {
1242   if (_immutable_memory != NULL) {
1243     return _immutable_memory;
1244   }
1245   StartNode* s = start();
1246   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1247     Node *p = s->fast_out(i);
1248     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1249       _immutable_memory = p;
1250       return _immutable_memory;
1251     }
1252   }
1253   ShouldNotReachHere();
1254   return NULL;
1255 }
1256 
1257 //----------------------set_cached_top_node------------------------------------
1258 // Install the cached top node, and make sure Node::is_top works correctly.
1259 void Compile::set_cached_top_node(Node* tn) {
1260   if (tn != NULL)  verify_top(tn);
1261   Node* old_top = _top;
1262   _top = tn;
1263   // Calling Node::setup_is_top allows the nodes the chance to adjust
1264   // their _out arrays.
1265   if (_top != NULL)     _top->setup_is_top();
1266   if (old_top != NULL)  old_top->setup_is_top();
1267   assert(_top == NULL || top()->is_top(), "");
1268 }
1269 
1270 #ifdef ASSERT
1271 uint Compile::count_live_nodes_by_graph_walk() {
1272   Unique_Node_List useful(comp_arena());
1273   // Get useful node list by walking the graph.
1274   identify_useful_nodes(useful);
1275   return useful.size();
1276 }
1277 
1278 void Compile::print_missing_nodes() {
1279 
1280   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1281   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1282     return;
1283   }
1284 
1285   // This is an expensive function. It is executed only when the user
1286   // specifies VerifyIdealNodeCount option or otherwise knows the
1287   // additional work that needs to be done to identify reachable nodes
1288   // by walking the flow graph and find the missing ones using
1289   // _dead_node_list.
1290 
1291   Unique_Node_List useful(comp_arena());
1292   // Get useful node list by walking the graph.
1293   identify_useful_nodes(useful);
1294 
1295   uint l_nodes = C->live_nodes();
1296   uint l_nodes_by_walk = useful.size();
1297 
1298   if (l_nodes != l_nodes_by_walk) {
1299     if (_log != NULL) {
1300       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1301       _log->stamp();
1302       _log->end_head();
1303     }
1304     VectorSet& useful_member_set = useful.member_set();
1305     int last_idx = l_nodes_by_walk;
1306     for (int i = 0; i < last_idx; i++) {
1307       if (useful_member_set.test(i)) {
1308         if (_dead_node_list.test(i)) {
1309           if (_log != NULL) {
1310             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1311           }
1312           if (PrintIdealNodeCount) {
1313             // Print the log message to tty
1314               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1315               useful.at(i)->dump();
1316           }
1317         }
1318       }
1319       else if (! _dead_node_list.test(i)) {
1320         if (_log != NULL) {
1321           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1322         }
1323         if (PrintIdealNodeCount) {
1324           // Print the log message to tty
1325           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1326         }
1327       }
1328     }
1329     if (_log != NULL) {
1330       _log->tail("mismatched_nodes");
1331     }
1332   }
1333 }
1334 void Compile::record_modified_node(Node* n) {
1335   if (_modified_nodes != NULL && !_inlining_incrementally &&
1336       n->outcnt() != 0 && !n->is_Con()) {
1337     _modified_nodes->push(n);
1338   }
1339 }
1340 
1341 void Compile::remove_modified_node(Node* n) {
1342   if (_modified_nodes != NULL) {
1343     _modified_nodes->remove(n);
1344   }
1345 }
1346 #endif
1347 
1348 #ifndef PRODUCT
1349 void Compile::verify_top(Node* tn) const {
1350   if (tn != NULL) {
1351     assert(tn->is_Con(), "top node must be a constant");
1352     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1353     assert(tn->in(0) != NULL, "must have live top node");
1354   }
1355 }
1356 #endif
1357 
1358 
1359 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1360 
1361 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1362   guarantee(arr != NULL, "");
1363   int num_blocks = arr->length();
1364   if (grow_by < num_blocks)  grow_by = num_blocks;
1365   int num_notes = grow_by * _node_notes_block_size;
1366   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1367   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1368   while (num_notes > 0) {
1369     arr->append(notes);
1370     notes     += _node_notes_block_size;
1371     num_notes -= _node_notes_block_size;
1372   }
1373   assert(num_notes == 0, "exact multiple, please");
1374 }
1375 
1376 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1377   if (source == NULL || dest == NULL)  return false;
1378 
1379   if (dest->is_Con())
1380     return false;               // Do not push debug info onto constants.
1381 
1382 #ifdef ASSERT
1383   // Leave a bread crumb trail pointing to the original node:
1384   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1385     dest->set_debug_orig(source);
1386   }
1387 #endif
1388 
1389   if (node_note_array() == NULL)
1390     return false;               // Not collecting any notes now.
1391 
1392   // This is a copy onto a pre-existing node, which may already have notes.
1393   // If both nodes have notes, do not overwrite any pre-existing notes.
1394   Node_Notes* source_notes = node_notes_at(source->_idx);
1395   if (source_notes == NULL || source_notes->is_clear())  return false;
1396   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1397   if (dest_notes == NULL || dest_notes->is_clear()) {
1398     return set_node_notes_at(dest->_idx, source_notes);
1399   }
1400 
1401   Node_Notes merged_notes = (*source_notes);
1402   // The order of operations here ensures that dest notes will win...
1403   merged_notes.update_from(dest_notes);
1404   return set_node_notes_at(dest->_idx, &merged_notes);
1405 }
1406 
1407 
1408 //--------------------------allow_range_check_smearing-------------------------
1409 // Gating condition for coalescing similar range checks.
1410 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1411 // single covering check that is at least as strong as any of them.
1412 // If the optimization succeeds, the simplified (strengthened) range check
1413 // will always succeed.  If it fails, we will deopt, and then give up
1414 // on the optimization.
1415 bool Compile::allow_range_check_smearing() const {
1416   // If this method has already thrown a range-check,
1417   // assume it was because we already tried range smearing
1418   // and it failed.
1419   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1420   return !already_trapped;
1421 }
1422 
1423 
1424 //------------------------------flatten_alias_type-----------------------------
1425 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1426   int offset = tj->offset();
1427   TypePtr::PTR ptr = tj->ptr();
1428 
1429   // Known instance (scalarizable allocation) alias only with itself.
1430   bool is_known_inst = tj->isa_oopptr() != NULL &&
1431                        tj->is_oopptr()->is_known_instance();
1432 
1433   // Process weird unsafe references.
1434   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1435     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1436     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1437     tj = TypeOopPtr::BOTTOM;
1438     ptr = tj->ptr();
1439     offset = tj->offset();
1440   }
1441 
1442   // Array pointers need some flattening
1443   const TypeAryPtr *ta = tj->isa_aryptr();
1444   if (ta && ta->is_stable()) {
1445     // Erase stability property for alias analysis.
1446     tj = ta = ta->cast_to_stable(false);
1447   }
1448   if( ta && is_known_inst ) {
1449     if ( offset != Type::OffsetBot &&
1450          offset > arrayOopDesc::length_offset_in_bytes() ) {
1451       offset = Type::OffsetBot; // Flatten constant access into array body only
1452       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1453     }
1454   } else if( ta && _AliasLevel >= 2 ) {
1455     // For arrays indexed by constant indices, we flatten the alias
1456     // space to include all of the array body.  Only the header, klass
1457     // and array length can be accessed un-aliased.
1458     if( offset != Type::OffsetBot ) {
1459       if( ta->const_oop() ) { // MethodData* or Method*
1460         offset = Type::OffsetBot;   // Flatten constant access into array body
1461         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1462       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1463         // range is OK as-is.
1464         tj = ta = TypeAryPtr::RANGE;
1465       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1466         tj = TypeInstPtr::KLASS; // all klass loads look alike
1467         ta = TypeAryPtr::RANGE; // generic ignored junk
1468         ptr = TypePtr::BotPTR;
1469       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1470         tj = TypeInstPtr::MARK;
1471         ta = TypeAryPtr::RANGE; // generic ignored junk
1472         ptr = TypePtr::BotPTR;
1473       } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1474         ta = tj->isa_aryptr();
1475       } else {                  // Random constant offset into array body
1476         offset = Type::OffsetBot;   // Flatten constant access into array body
1477         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1478       }
1479     }
1480     // Arrays of fixed size alias with arrays of unknown size.
1481     if (ta->size() != TypeInt::POS) {
1482       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1483       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1484     }
1485     // Arrays of known objects become arrays of unknown objects.
1486     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1487       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1488       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1489     }
1490     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1491       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1492       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1493     }
1494     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1495     // cannot be distinguished by bytecode alone.
1496     if (ta->elem() == TypeInt::BOOL) {
1497       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1498       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1499       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1500     }
1501     // During the 2nd round of IterGVN, NotNull castings are removed.
1502     // Make sure the Bottom and NotNull variants alias the same.
1503     // Also, make sure exact and non-exact variants alias the same.
1504     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1505       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1506     }
1507   }
1508 
1509   // Oop pointers need some flattening
1510   const TypeInstPtr *to = tj->isa_instptr();
1511   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1512     ciInstanceKlass *k = to->klass()->as_instance_klass();
1513     if( ptr == TypePtr::Constant ) {
1514       if (to->klass() != ciEnv::current()->Class_klass() ||
1515           offset < k->size_helper() * wordSize) {
1516         // No constant oop pointers (such as Strings); they alias with
1517         // unknown strings.
1518         assert(!is_known_inst, "not scalarizable allocation");
1519         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1520       }
1521     } else if( is_known_inst ) {
1522       tj = to; // Keep NotNull and klass_is_exact for instance type
1523     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1524       // During the 2nd round of IterGVN, NotNull castings are removed.
1525       // Make sure the Bottom and NotNull variants alias the same.
1526       // Also, make sure exact and non-exact variants alias the same.
1527       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1528     }
1529     if (to->speculative() != NULL) {
1530       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1531     }
1532     // Canonicalize the holder of this field
1533     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1534       // First handle header references such as a LoadKlassNode, even if the
1535       // object's klass is unloaded at compile time (4965979).
1536       if (!is_known_inst) { // Do it only for non-instance types
1537         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1538       }
1539     } else if (offset >= k->size_helper() * wordSize) {
1540       // Static fields are in the space above the normal instance
1541       // fields in the java.lang.Class instance.
1542       if (to->klass() != ciEnv::current()->Class_klass()) {
1543         to = NULL;
1544         tj = TypeOopPtr::BOTTOM;
1545         offset = tj->offset();
1546       }
1547     } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1548       to = tj->is_instptr();
1549     } else {
1550       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1551       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1552         if( is_known_inst ) {
1553           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1554         } else {
1555           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1556         }
1557       }
1558     }
1559   }
1560 
1561   // Klass pointers to object array klasses need some flattening
1562   const TypeKlassPtr *tk = tj->isa_klassptr();
1563   if( tk ) {
1564     // If we are referencing a field within a Klass, we need
1565     // to assume the worst case of an Object.  Both exact and
1566     // inexact types must flatten to the same alias class so
1567     // use NotNull as the PTR.
1568     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1569 
1570       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1571                                    TypeKlassPtr::OBJECT->klass(),
1572                                    offset);
1573     }
1574 
1575     ciKlass* klass = tk->klass();
1576     if( klass->is_obj_array_klass() ) {
1577       ciKlass* k = TypeAryPtr::OOPS->klass();
1578       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1579         k = TypeInstPtr::BOTTOM->klass();
1580       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1581     }
1582 
1583     // Check for precise loads from the primary supertype array and force them
1584     // to the supertype cache alias index.  Check for generic array loads from
1585     // the primary supertype array and also force them to the supertype cache
1586     // alias index.  Since the same load can reach both, we need to merge
1587     // these 2 disparate memories into the same alias class.  Since the
1588     // primary supertype array is read-only, there's no chance of confusion
1589     // where we bypass an array load and an array store.
1590     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1591     if (offset == Type::OffsetBot ||
1592         (offset >= primary_supers_offset &&
1593          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1594         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1595       offset = in_bytes(Klass::secondary_super_cache_offset());
1596       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1597     }
1598   }
1599 
1600   // Flatten all Raw pointers together.
1601   if (tj->base() == Type::RawPtr)
1602     tj = TypeRawPtr::BOTTOM;
1603 
1604   if (tj->base() == Type::AnyPtr)
1605     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1606 
1607   // Flatten all to bottom for now
1608   switch( _AliasLevel ) {
1609   case 0:
1610     tj = TypePtr::BOTTOM;
1611     break;
1612   case 1:                       // Flatten to: oop, static, field or array
1613     switch (tj->base()) {
1614     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1615     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1616     case Type::AryPtr:   // do not distinguish arrays at all
1617     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1618     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1619     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1620     default: ShouldNotReachHere();
1621     }
1622     break;
1623   case 2:                       // No collapsing at level 2; keep all splits
1624   case 3:                       // No collapsing at level 3; keep all splits
1625     break;
1626   default:
1627     Unimplemented();
1628   }
1629 
1630   offset = tj->offset();
1631   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1632 
1633   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1634           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1635           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1636           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1637           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1638           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1639           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1640           (UseShenandoahGC SHENANDOAHGC_ONLY(&& offset == BrooksPointer::byte_offset() && tj->base() == Type::AryPtr)),
1641           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1642   assert( tj->ptr() != TypePtr::TopPTR &&
1643           tj->ptr() != TypePtr::AnyNull &&
1644           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1645 //    assert( tj->ptr() != TypePtr::Constant ||
1646 //            tj->base() == Type::RawPtr ||
1647 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1648 
1649   return tj;
1650 }
1651 
1652 void Compile::AliasType::Init(int i, const TypePtr* at) {
1653   _index = i;
1654   _adr_type = at;
1655   _field = NULL;
1656   _element = NULL;
1657   _is_rewritable = true; // default
1658   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1659   if (atoop != NULL && atoop->is_known_instance()) {
1660     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1661     _general_index = Compile::current()->get_alias_index(gt);
1662   } else {
1663     _general_index = 0;
1664   }
1665 }
1666 
1667 BasicType Compile::AliasType::basic_type() const {
1668   if (element() != NULL) {
1669     const Type* element = adr_type()->is_aryptr()->elem();
1670     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1671   } if (field() != NULL) {
1672     return field()->layout_type();
1673   } else {
1674     return T_ILLEGAL; // unknown
1675   }
1676 }
1677 
1678 //---------------------------------print_on------------------------------------
1679 #ifndef PRODUCT
1680 void Compile::AliasType::print_on(outputStream* st) {
1681   if (index() < 10)
1682         st->print("@ <%d> ", index());
1683   else  st->print("@ <%d>",  index());
1684   st->print(is_rewritable() ? "   " : " RO");
1685   int offset = adr_type()->offset();
1686   if (offset == Type::OffsetBot)
1687         st->print(" +any");
1688   else  st->print(" +%-3d", offset);
1689   st->print(" in ");
1690   adr_type()->dump_on(st);
1691   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1692   if (field() != NULL && tjp) {
1693     if (tjp->klass()  != field()->holder() ||
1694         tjp->offset() != field()->offset_in_bytes()) {
1695       st->print(" != ");
1696       field()->print();
1697       st->print(" ***");
1698     }
1699   }
1700 }
1701 
1702 void print_alias_types() {
1703   Compile* C = Compile::current();
1704   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1705   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1706     C->alias_type(idx)->print_on(tty);
1707     tty->cr();
1708   }
1709 }
1710 #endif
1711 
1712 
1713 //----------------------------probe_alias_cache--------------------------------
1714 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1715   intptr_t key = (intptr_t) adr_type;
1716   key ^= key >> logAliasCacheSize;
1717   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1718 }
1719 
1720 
1721 //-----------------------------grow_alias_types--------------------------------
1722 void Compile::grow_alias_types() {
1723   const int old_ats  = _max_alias_types; // how many before?
1724   const int new_ats  = old_ats;          // how many more?
1725   const int grow_ats = old_ats+new_ats;  // how many now?
1726   _max_alias_types = grow_ats;
1727   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1728   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1729   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1730   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1731 }
1732 
1733 
1734 //--------------------------------find_alias_type------------------------------
1735 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1736   if (_AliasLevel == 0)
1737     return alias_type(AliasIdxBot);
1738 
1739   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1740   if (ace->_adr_type == adr_type) {
1741     return alias_type(ace->_index);
1742   }
1743 
1744   // Handle special cases.
1745   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1746   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1747 
1748   // Do it the slow way.
1749   const TypePtr* flat = flatten_alias_type(adr_type);
1750 
1751 #ifdef ASSERT
1752   {
1753     ResourceMark rm;
1754     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1755            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1756     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1757            Type::str(adr_type));
1758     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1759       const TypeOopPtr* foop = flat->is_oopptr();
1760       // Scalarizable allocations have exact klass always.
1761       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1762       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1763       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1764              Type::str(foop), Type::str(xoop));
1765     }
1766   }
1767 #endif
1768 
1769   int idx = AliasIdxTop;
1770   for (int i = 0; i < num_alias_types(); i++) {
1771     if (alias_type(i)->adr_type() == flat) {
1772       idx = i;
1773       break;
1774     }
1775   }
1776 
1777   if (idx == AliasIdxTop) {
1778     if (no_create)  return NULL;
1779     // Grow the array if necessary.
1780     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1781     // Add a new alias type.
1782     idx = _num_alias_types++;
1783     _alias_types[idx]->Init(idx, flat);
1784     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1785     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1786     if (flat->isa_instptr()) {
1787       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1788           && flat->is_instptr()->klass() == env()->Class_klass())
1789         alias_type(idx)->set_rewritable(false);
1790     }
1791     if (flat->isa_aryptr()) {
1792 #ifdef ASSERT
1793       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1794       // (T_BYTE has the weakest alignment and size restrictions...)
1795       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1796 #endif
1797       if (flat->offset() == TypePtr::OffsetBot) {
1798         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1799       }
1800     }
1801     if (flat->isa_klassptr()) {
1802       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1803         alias_type(idx)->set_rewritable(false);
1804       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1805         alias_type(idx)->set_rewritable(false);
1806       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1807         alias_type(idx)->set_rewritable(false);
1808       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1809         alias_type(idx)->set_rewritable(false);
1810     }
1811     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1812     // but the base pointer type is not distinctive enough to identify
1813     // references into JavaThread.)
1814 
1815     // Check for final fields.
1816     const TypeInstPtr* tinst = flat->isa_instptr();
1817     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1818       ciField* field;
1819       if (tinst->const_oop() != NULL &&
1820           tinst->klass() == ciEnv::current()->Class_klass() &&
1821           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1822         // static field
1823         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1824         field = k->get_field_by_offset(tinst->offset(), true);
1825       } else {
1826         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1827         field = k->get_field_by_offset(tinst->offset(), false);
1828       }
1829       assert(field == NULL ||
1830              original_field == NULL ||
1831              (field->holder() == original_field->holder() &&
1832               field->offset() == original_field->offset() &&
1833               field->is_static() == original_field->is_static()), "wrong field?");
1834       // Set field() and is_rewritable() attributes.
1835       if (field != NULL)  alias_type(idx)->set_field(field);
1836     }
1837   }
1838 
1839   // Fill the cache for next time.
1840   ace->_adr_type = adr_type;
1841   ace->_index    = idx;
1842   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1843 
1844   // Might as well try to fill the cache for the flattened version, too.
1845   AliasCacheEntry* face = probe_alias_cache(flat);
1846   if (face->_adr_type == NULL) {
1847     face->_adr_type = flat;
1848     face->_index    = idx;
1849     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1850   }
1851 
1852   return alias_type(idx);
1853 }
1854 
1855 
1856 Compile::AliasType* Compile::alias_type(ciField* field) {
1857   const TypeOopPtr* t;
1858   if (field->is_static())
1859     t = TypeInstPtr::make(field->holder()->java_mirror());
1860   else
1861     t = TypeOopPtr::make_from_klass_raw(field->holder());
1862   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1863   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1864   return atp;
1865 }
1866 
1867 
1868 //------------------------------have_alias_type--------------------------------
1869 bool Compile::have_alias_type(const TypePtr* adr_type) {
1870   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1871   if (ace->_adr_type == adr_type) {
1872     return true;
1873   }
1874 
1875   // Handle special cases.
1876   if (adr_type == NULL)             return true;
1877   if (adr_type == TypePtr::BOTTOM)  return true;
1878 
1879   return find_alias_type(adr_type, true, NULL) != NULL;
1880 }
1881 
1882 //-----------------------------must_alias--------------------------------------
1883 // True if all values of the given address type are in the given alias category.
1884 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1885   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1886   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1887   if (alias_idx == AliasIdxTop)         return false; // the empty category
1888   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1889 
1890   // the only remaining possible overlap is identity
1891   int adr_idx = get_alias_index(adr_type);
1892   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1893   assert(adr_idx == alias_idx ||
1894          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1895           && adr_type                       != TypeOopPtr::BOTTOM),
1896          "should not be testing for overlap with an unsafe pointer");
1897   return adr_idx == alias_idx;
1898 }
1899 
1900 //------------------------------can_alias--------------------------------------
1901 // True if any values of the given address type are in the given alias category.
1902 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1903   if (alias_idx == AliasIdxTop)         return false; // the empty category
1904   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1905   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1906   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1907 
1908   // the only remaining possible overlap is identity
1909   int adr_idx = get_alias_index(adr_type);
1910   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1911   return adr_idx == alias_idx;
1912 }
1913 
1914 
1915 
1916 //---------------------------pop_warm_call-------------------------------------
1917 WarmCallInfo* Compile::pop_warm_call() {
1918   WarmCallInfo* wci = _warm_calls;
1919   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1920   return wci;
1921 }
1922 
1923 //----------------------------Inline_Warm--------------------------------------
1924 int Compile::Inline_Warm() {
1925   // If there is room, try to inline some more warm call sites.
1926   // %%% Do a graph index compaction pass when we think we're out of space?
1927   if (!InlineWarmCalls)  return 0;
1928 
1929   int calls_made_hot = 0;
1930   int room_to_grow   = NodeCountInliningCutoff - unique();
1931   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1932   int amount_grown   = 0;
1933   WarmCallInfo* call;
1934   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1935     int est_size = (int)call->size();
1936     if (est_size > (room_to_grow - amount_grown)) {
1937       // This one won't fit anyway.  Get rid of it.
1938       call->make_cold();
1939       continue;
1940     }
1941     call->make_hot();
1942     calls_made_hot++;
1943     amount_grown   += est_size;
1944     amount_to_grow -= est_size;
1945   }
1946 
1947   if (calls_made_hot > 0)  set_major_progress();
1948   return calls_made_hot;
1949 }
1950 
1951 
1952 //----------------------------Finish_Warm--------------------------------------
1953 void Compile::Finish_Warm() {
1954   if (!InlineWarmCalls)  return;
1955   if (failing())  return;
1956   if (warm_calls() == NULL)  return;
1957 
1958   // Clean up loose ends, if we are out of space for inlining.
1959   WarmCallInfo* call;
1960   while ((call = pop_warm_call()) != NULL) {
1961     call->make_cold();
1962   }
1963 }
1964 
1965 //---------------------cleanup_loop_predicates-----------------------
1966 // Remove the opaque nodes that protect the predicates so that all unused
1967 // checks and uncommon_traps will be eliminated from the ideal graph
1968 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1969   if (predicate_count()==0) return;
1970   for (int i = predicate_count(); i > 0; i--) {
1971     Node * n = predicate_opaque1_node(i-1);
1972     assert(n->Opcode() == Op_Opaque1, "must be");
1973     igvn.replace_node(n, n->in(1));
1974   }
1975   assert(predicate_count()==0, "should be clean!");
1976 }
1977 
1978 void Compile::add_range_check_cast(Node* n) {
1979   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1980   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1981   _range_check_casts->append(n);
1982 }
1983 
1984 // Remove all range check dependent CastIINodes.
1985 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1986   for (int i = range_check_cast_count(); i > 0; i--) {
1987     Node* cast = range_check_cast_node(i-1);
1988     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1989     igvn.replace_node(cast, cast->in(1));
1990   }
1991   assert(range_check_cast_count() == 0, "should be empty");
1992 }
1993 
1994 void Compile::add_opaque4_node(Node* n) {
1995   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
1996   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
1997   _opaque4_nodes->append(n);
1998 }
1999 
2000 // Remove all Opaque4 nodes.
2001 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
2002   for (int i = opaque4_count(); i > 0; i--) {
2003     Node* opaq = opaque4_node(i-1);
2004     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2005     igvn.replace_node(opaq, opaq->in(2));
2006   }
2007   assert(opaque4_count() == 0, "should be empty");
2008 }
2009 
2010 // StringOpts and late inlining of string methods
2011 void Compile::inline_string_calls(bool parse_time) {
2012   {
2013     // remove useless nodes to make the usage analysis simpler
2014     ResourceMark rm;
2015     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2016   }
2017 
2018   {
2019     ResourceMark rm;
2020     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2021     PhaseStringOpts pso(initial_gvn(), for_igvn());
2022     print_method(PHASE_AFTER_STRINGOPTS, 3);
2023   }
2024 
2025   // now inline anything that we skipped the first time around
2026   if (!parse_time) {
2027     _late_inlines_pos = _late_inlines.length();
2028   }
2029 
2030   while (_string_late_inlines.length() > 0) {
2031     CallGenerator* cg = _string_late_inlines.pop();
2032     cg->do_late_inline();
2033     if (failing())  return;
2034   }
2035   _string_late_inlines.trunc_to(0);
2036 }
2037 
2038 // Late inlining of boxing methods
2039 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2040   if (_boxing_late_inlines.length() > 0) {
2041     assert(has_boxed_value(), "inconsistent");
2042 
2043     PhaseGVN* gvn = initial_gvn();
2044     set_inlining_incrementally(true);
2045 
2046     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2047     for_igvn()->clear();
2048     gvn->replace_with(&igvn);
2049 
2050     _late_inlines_pos = _late_inlines.length();
2051 
2052     while (_boxing_late_inlines.length() > 0) {
2053       CallGenerator* cg = _boxing_late_inlines.pop();
2054       cg->do_late_inline();
2055       if (failing())  return;
2056     }
2057     _boxing_late_inlines.trunc_to(0);
2058 
2059     {
2060       ResourceMark rm;
2061       PhaseRemoveUseless pru(gvn, for_igvn());
2062     }
2063 
2064     igvn = PhaseIterGVN(gvn);
2065     igvn.optimize();
2066 
2067     set_inlining_progress(false);
2068     set_inlining_incrementally(false);
2069   }
2070 }
2071 
2072 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2073   assert(IncrementalInline, "incremental inlining should be on");
2074   PhaseGVN* gvn = initial_gvn();
2075 
2076   set_inlining_progress(false);
2077   for_igvn()->clear();
2078   gvn->replace_with(&igvn);
2079 
2080   {
2081     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2082     int i = 0;
2083     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2084       CallGenerator* cg = _late_inlines.at(i);
2085       _late_inlines_pos = i+1;
2086       cg->do_late_inline();
2087       if (failing())  return;
2088     }
2089     int j = 0;
2090     for (; i < _late_inlines.length(); i++, j++) {
2091       _late_inlines.at_put(j, _late_inlines.at(i));
2092     }
2093     _late_inlines.trunc_to(j);
2094   }
2095 
2096   {
2097     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2098     ResourceMark rm;
2099     PhaseRemoveUseless pru(gvn, for_igvn());
2100   }
2101 
2102   {
2103     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2104     igvn = PhaseIterGVN(gvn);
2105   }
2106 }
2107 
2108 // Perform incremental inlining until bound on number of live nodes is reached
2109 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2110   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2111 
2112   PhaseGVN* gvn = initial_gvn();
2113 
2114   set_inlining_incrementally(true);
2115   set_inlining_progress(true);
2116   uint low_live_nodes = 0;
2117 
2118   while(inlining_progress() && _late_inlines.length() > 0) {
2119 
2120     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2121       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2122         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2123         // PhaseIdealLoop is expensive so we only try it once we are
2124         // out of live nodes and we only try it again if the previous
2125         // helped got the number of nodes down significantly
2126         PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2127         if (failing())  return;
2128         low_live_nodes = live_nodes();
2129         _major_progress = true;
2130       }
2131 
2132       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2133         break;
2134       }
2135     }
2136 
2137     inline_incrementally_one(igvn);
2138 
2139     if (failing())  return;
2140 
2141     {
2142       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2143       igvn.optimize();
2144     }
2145 
2146     if (failing())  return;
2147   }
2148 
2149   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2150 
2151   if (_string_late_inlines.length() > 0) {
2152     assert(has_stringbuilder(), "inconsistent");
2153     for_igvn()->clear();
2154     initial_gvn()->replace_with(&igvn);
2155 
2156     inline_string_calls(false);
2157 
2158     if (failing())  return;
2159 
2160     {
2161       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2162       ResourceMark rm;
2163       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2164     }
2165 
2166     {
2167       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2168       igvn = PhaseIterGVN(gvn);
2169       igvn.optimize();
2170     }
2171   }
2172 
2173   set_inlining_incrementally(false);
2174 }
2175 
2176 
2177 bool Compile::optimize_loops(int& loop_opts_cnt, PhaseIterGVN& igvn, LoopOptsMode mode) {
2178   if(loop_opts_cnt > 0) {
2179     debug_only( int cnt = 0; );
2180     while(major_progress() && (loop_opts_cnt > 0)) {
2181       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2182       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2183       PhaseIdealLoop ideal_loop(igvn, mode);
2184       loop_opts_cnt--;
2185       if (failing())  return false;
2186       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2187     }
2188   }
2189   return true;
2190 }
2191 
2192 //------------------------------Optimize---------------------------------------
2193 // Given a graph, optimize it.
2194 void Compile::Optimize() {
2195   TracePhase tp("optimizer", &timers[_t_optimizer]);
2196 
2197 #ifndef PRODUCT
2198   if (_directive->BreakAtCompileOption) {
2199     BREAKPOINT;
2200   }
2201 
2202 #endif
2203 
2204 #ifdef ASSERT
2205   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2206   bs->verify_gc_barriers(true);
2207 #endif
2208 
2209   ResourceMark rm;
2210   int          loop_opts_cnt;
2211 
2212   print_inlining_reinit();
2213 
2214   NOT_PRODUCT( verify_graph_edges(); )
2215 
2216   print_method(PHASE_AFTER_PARSING);
2217 
2218  {
2219   // Iterative Global Value Numbering, including ideal transforms
2220   // Initialize IterGVN with types and values from parse-time GVN
2221   PhaseIterGVN igvn(initial_gvn());
2222 #ifdef ASSERT
2223   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2224 #endif
2225   {
2226     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2227     igvn.optimize();
2228   }
2229 
2230   if (failing())  return;
2231 
2232   print_method(PHASE_ITER_GVN1, 2);
2233 
2234   inline_incrementally(igvn);
2235 
2236   print_method(PHASE_INCREMENTAL_INLINE, 2);
2237 
2238   if (failing())  return;
2239 
2240   if (eliminate_boxing()) {
2241     // Inline valueOf() methods now.
2242     inline_boxing_calls(igvn);
2243 
2244     if (AlwaysIncrementalInline) {
2245       inline_incrementally(igvn);
2246     }
2247 
2248     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2249 
2250     if (failing())  return;
2251   }
2252 
2253   // Remove the speculative part of types and clean up the graph from
2254   // the extra CastPP nodes whose only purpose is to carry them. Do
2255   // that early so that optimizations are not disrupted by the extra
2256   // CastPP nodes.
2257   remove_speculative_types(igvn);
2258 
2259   // No more new expensive nodes will be added to the list from here
2260   // so keep only the actual candidates for optimizations.
2261   cleanup_expensive_nodes(igvn);
2262 
2263   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2264     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2265     initial_gvn()->replace_with(&igvn);
2266     for_igvn()->clear();
2267     Unique_Node_List new_worklist(C->comp_arena());
2268     {
2269       ResourceMark rm;
2270       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2271     }
2272     set_for_igvn(&new_worklist);
2273     igvn = PhaseIterGVN(initial_gvn());
2274     igvn.optimize();
2275   }
2276 
2277   // Perform escape analysis
2278   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2279     if (has_loops()) {
2280       // Cleanup graph (remove dead nodes).
2281       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2282       PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2283       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2284       if (failing())  return;
2285     }
2286     ConnectionGraph::do_analysis(this, &igvn);
2287 
2288     if (failing())  return;
2289 
2290     // Optimize out fields loads from scalar replaceable allocations.
2291     igvn.optimize();
2292     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2293 
2294     if (failing())  return;
2295 
2296     if (congraph() != NULL && macro_count() > 0) {
2297       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2298       PhaseMacroExpand mexp(igvn);
2299       mexp.eliminate_macro_nodes();
2300       igvn.set_delay_transform(false);
2301 
2302       igvn.optimize();
2303       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2304 
2305       if (failing())  return;
2306     }
2307   }
2308 
2309   // Loop transforms on the ideal graph.  Range Check Elimination,
2310   // peeling, unrolling, etc.
2311 
2312   // Set loop opts counter
2313   loop_opts_cnt = num_loop_opts();
2314   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2315     {
2316       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2317       PhaseIdealLoop ideal_loop(igvn, LoopOptsDefault);
2318       loop_opts_cnt--;
2319       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2320       if (failing())  return;
2321     }
2322     // Loop opts pass if partial peeling occurred in previous pass
2323     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2324       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2325       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2326       loop_opts_cnt--;
2327       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2328       if (failing())  return;
2329     }
2330     // Loop opts pass for loop-unrolling before CCP
2331     if(major_progress() && (loop_opts_cnt > 0)) {
2332       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2333       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2334       loop_opts_cnt--;
2335       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2336     }
2337     if (!failing()) {
2338       // Verify that last round of loop opts produced a valid graph
2339       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2340       PhaseIdealLoop::verify(igvn);
2341     }
2342   }
2343   if (failing())  return;
2344 
2345   // Conditional Constant Propagation;
2346   PhaseCCP ccp( &igvn );
2347   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2348   {
2349     TracePhase tp("ccp", &timers[_t_ccp]);
2350     ccp.do_transform();
2351   }
2352   print_method(PHASE_CPP1, 2);
2353 
2354   assert( true, "Break here to ccp.dump_old2new_map()");
2355 
2356   // Iterative Global Value Numbering, including ideal transforms
2357   {
2358     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2359     igvn = ccp;
2360     igvn.optimize();
2361   }
2362 
2363   print_method(PHASE_ITER_GVN2, 2);
2364 
2365   if (failing())  return;
2366 
2367   // Loop transforms on the ideal graph.  Range Check Elimination,
2368   // peeling, unrolling, etc.
2369   if (!optimize_loops(loop_opts_cnt, igvn, LoopOptsDefault)) {
2370     return;
2371   }
2372 
2373 #if INCLUDE_ZGC
2374   if (UseZGC) {
2375     ZBarrierSetC2::find_dominating_barriers(igvn);
2376   }
2377 #endif
2378 
2379   if (failing())  return;
2380 
2381   // Ensure that major progress is now clear
2382   C->clear_major_progress();
2383 
2384   {
2385     // Verify that all previous optimizations produced a valid graph
2386     // at least to this point, even if no loop optimizations were done.
2387     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2388     PhaseIdealLoop::verify(igvn);
2389   }
2390 
2391   if (range_check_cast_count() > 0) {
2392     // No more loop optimizations. Remove all range check dependent CastIINodes.
2393     C->remove_range_check_casts(igvn);
2394     igvn.optimize();
2395   }
2396 
2397 #ifdef ASSERT
2398   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2399   bs->verify_gc_barriers(false);
2400 #endif
2401 
2402   {
2403     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2404     PhaseMacroExpand  mex(igvn);
2405     print_method(PHASE_BEFORE_MACRO_EXPANSION, 2);
2406     if (mex.expand_macro_nodes()) {
2407       assert(failing(), "must bail out w/ explicit message");
2408       return;
2409     }
2410   }
2411 
2412   print_method(PHASE_BEFORE_BARRIER_EXPAND, 2);
2413 
2414 #if INCLUDE_SHENANDOAHGC
2415   if (!ShenandoahWriteBarrierNode::expand(this, igvn, loop_opts_cnt)) {
2416     assert(failing(), "must bail out w/ explicit message");
2417     return;
2418   }
2419 #endif
2420 
2421   if (opaque4_count() > 0) {
2422     C->remove_opaque4_nodes(igvn);
2423     igvn.optimize();
2424   }
2425 
2426   DEBUG_ONLY( _modified_nodes = NULL; )
2427  } // (End scope of igvn; run destructor if necessary for asserts.)
2428 
2429  process_print_inlining();
2430  // A method with only infinite loops has no edges entering loops from root
2431  {
2432    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2433    if (final_graph_reshaping()) {
2434      assert(failing(), "must bail out w/ explicit message");
2435      return;
2436    }
2437  }
2438 
2439  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2440 }
2441 
2442 
2443 //------------------------------Code_Gen---------------------------------------
2444 // Given a graph, generate code for it
2445 void Compile::Code_Gen() {
2446   if (failing()) {
2447     return;
2448   }
2449 
2450   // Perform instruction selection.  You might think we could reclaim Matcher
2451   // memory PDQ, but actually the Matcher is used in generating spill code.
2452   // Internals of the Matcher (including some VectorSets) must remain live
2453   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2454   // set a bit in reclaimed memory.
2455 
2456   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2457   // nodes.  Mapping is only valid at the root of each matched subtree.
2458   NOT_PRODUCT( verify_graph_edges(); )
2459 
2460   Matcher matcher;
2461   _matcher = &matcher;
2462   {
2463     TracePhase tp("matcher", &timers[_t_matcher]);
2464     matcher.match();
2465   }
2466   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2467   // nodes.  Mapping is only valid at the root of each matched subtree.
2468   NOT_PRODUCT( verify_graph_edges(); )
2469 
2470   // If you have too many nodes, or if matching has failed, bail out
2471   check_node_count(0, "out of nodes matching instructions");
2472   if (failing()) {
2473     return;
2474   }
2475 
2476   print_method(PHASE_MATCHING, 2);
2477 
2478   // Build a proper-looking CFG
2479   PhaseCFG cfg(node_arena(), root(), matcher);
2480   _cfg = &cfg;
2481   {
2482     TracePhase tp("scheduler", &timers[_t_scheduler]);
2483     bool success = cfg.do_global_code_motion();
2484     if (!success) {
2485       return;
2486     }
2487 
2488     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2489     NOT_PRODUCT( verify_graph_edges(); )
2490     debug_only( cfg.verify(); )
2491   }
2492 
2493   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2494   _regalloc = &regalloc;
2495   {
2496     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2497     // Perform register allocation.  After Chaitin, use-def chains are
2498     // no longer accurate (at spill code) and so must be ignored.
2499     // Node->LRG->reg mappings are still accurate.
2500     _regalloc->Register_Allocate();
2501 
2502     // Bail out if the allocator builds too many nodes
2503     if (failing()) {
2504       return;
2505     }
2506   }
2507 
2508   // Prior to register allocation we kept empty basic blocks in case the
2509   // the allocator needed a place to spill.  After register allocation we
2510   // are not adding any new instructions.  If any basic block is empty, we
2511   // can now safely remove it.
2512   {
2513     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2514     cfg.remove_empty_blocks();
2515     if (do_freq_based_layout()) {
2516       PhaseBlockLayout layout(cfg);
2517     } else {
2518       cfg.set_loop_alignment();
2519     }
2520     cfg.fixup_flow();
2521   }
2522 
2523   // Apply peephole optimizations
2524   if( OptoPeephole ) {
2525     TracePhase tp("peephole", &timers[_t_peephole]);
2526     PhasePeephole peep( _regalloc, cfg);
2527     peep.do_transform();
2528   }
2529 
2530   // Do late expand if CPU requires this.
2531   if (Matcher::require_postalloc_expand) {
2532     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2533     cfg.postalloc_expand(_regalloc);
2534   }
2535 
2536   // Convert Nodes to instruction bits in a buffer
2537   {
2538     TraceTime tp("output", &timers[_t_output], CITime);
2539     Output();
2540   }
2541 
2542   print_method(PHASE_FINAL_CODE);
2543 
2544   // He's dead, Jim.
2545   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2546   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2547 }
2548 
2549 
2550 //------------------------------dump_asm---------------------------------------
2551 // Dump formatted assembly
2552 #ifndef PRODUCT
2553 void Compile::dump_asm(int *pcs, uint pc_limit) {
2554   bool cut_short = false;
2555   tty->print_cr("#");
2556   tty->print("#  ");  _tf->dump();  tty->cr();
2557   tty->print_cr("#");
2558 
2559   // For all blocks
2560   int pc = 0x0;                 // Program counter
2561   char starts_bundle = ' ';
2562   _regalloc->dump_frame();
2563 
2564   Node *n = NULL;
2565   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2566     if (VMThread::should_terminate()) {
2567       cut_short = true;
2568       break;
2569     }
2570     Block* block = _cfg->get_block(i);
2571     if (block->is_connector() && !Verbose) {
2572       continue;
2573     }
2574     n = block->head();
2575     if (pcs && n->_idx < pc_limit) {
2576       tty->print("%3.3x   ", pcs[n->_idx]);
2577     } else {
2578       tty->print("      ");
2579     }
2580     block->dump_head(_cfg);
2581     if (block->is_connector()) {
2582       tty->print_cr("        # Empty connector block");
2583     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2584       tty->print_cr("        # Block is sole successor of call");
2585     }
2586 
2587     // For all instructions
2588     Node *delay = NULL;
2589     for (uint j = 0; j < block->number_of_nodes(); j++) {
2590       if (VMThread::should_terminate()) {
2591         cut_short = true;
2592         break;
2593       }
2594       n = block->get_node(j);
2595       if (valid_bundle_info(n)) {
2596         Bundle* bundle = node_bundling(n);
2597         if (bundle->used_in_unconditional_delay()) {
2598           delay = n;
2599           continue;
2600         }
2601         if (bundle->starts_bundle()) {
2602           starts_bundle = '+';
2603         }
2604       }
2605 
2606       if (WizardMode) {
2607         n->dump();
2608       }
2609 
2610       if( !n->is_Region() &&    // Dont print in the Assembly
2611           !n->is_Phi() &&       // a few noisely useless nodes
2612           !n->is_Proj() &&
2613           !n->is_MachTemp() &&
2614           !n->is_SafePointScalarObject() &&
2615           !n->is_Catch() &&     // Would be nice to print exception table targets
2616           !n->is_MergeMem() &&  // Not very interesting
2617           !n->is_top() &&       // Debug info table constants
2618           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2619           ) {
2620         if (pcs && n->_idx < pc_limit)
2621           tty->print("%3.3x", pcs[n->_idx]);
2622         else
2623           tty->print("   ");
2624         tty->print(" %c ", starts_bundle);
2625         starts_bundle = ' ';
2626         tty->print("\t");
2627         n->format(_regalloc, tty);
2628         tty->cr();
2629       }
2630 
2631       // If we have an instruction with a delay slot, and have seen a delay,
2632       // then back up and print it
2633       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2634         assert(delay != NULL, "no unconditional delay instruction");
2635         if (WizardMode) delay->dump();
2636 
2637         if (node_bundling(delay)->starts_bundle())
2638           starts_bundle = '+';
2639         if (pcs && n->_idx < pc_limit)
2640           tty->print("%3.3x", pcs[n->_idx]);
2641         else
2642           tty->print("   ");
2643         tty->print(" %c ", starts_bundle);
2644         starts_bundle = ' ';
2645         tty->print("\t");
2646         delay->format(_regalloc, tty);
2647         tty->cr();
2648         delay = NULL;
2649       }
2650 
2651       // Dump the exception table as well
2652       if( n->is_Catch() && (Verbose || WizardMode) ) {
2653         // Print the exception table for this offset
2654         _handler_table.print_subtable_for(pc);
2655       }
2656     }
2657 
2658     if (pcs && n->_idx < pc_limit)
2659       tty->print_cr("%3.3x", pcs[n->_idx]);
2660     else
2661       tty->cr();
2662 
2663     assert(cut_short || delay == NULL, "no unconditional delay branch");
2664 
2665   } // End of per-block dump
2666   tty->cr();
2667 
2668   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2669 }
2670 #endif
2671 
2672 //------------------------------Final_Reshape_Counts---------------------------
2673 // This class defines counters to help identify when a method
2674 // may/must be executed using hardware with only 24-bit precision.
2675 struct Final_Reshape_Counts : public StackObj {
2676   int  _call_count;             // count non-inlined 'common' calls
2677   int  _float_count;            // count float ops requiring 24-bit precision
2678   int  _double_count;           // count double ops requiring more precision
2679   int  _java_call_count;        // count non-inlined 'java' calls
2680   int  _inner_loop_count;       // count loops which need alignment
2681   VectorSet _visited;           // Visitation flags
2682   Node_List _tests;             // Set of IfNodes & PCTableNodes
2683 
2684   Final_Reshape_Counts() :
2685     _call_count(0), _float_count(0), _double_count(0),
2686     _java_call_count(0), _inner_loop_count(0),
2687     _visited( Thread::current()->resource_area() ) { }
2688 
2689   void inc_call_count  () { _call_count  ++; }
2690   void inc_float_count () { _float_count ++; }
2691   void inc_double_count() { _double_count++; }
2692   void inc_java_call_count() { _java_call_count++; }
2693   void inc_inner_loop_count() { _inner_loop_count++; }
2694 
2695   int  get_call_count  () const { return _call_count  ; }
2696   int  get_float_count () const { return _float_count ; }
2697   int  get_double_count() const { return _double_count; }
2698   int  get_java_call_count() const { return _java_call_count; }
2699   int  get_inner_loop_count() const { return _inner_loop_count; }
2700 };
2701 
2702 #ifdef ASSERT
2703 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2704   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2705   // Make sure the offset goes inside the instance layout.
2706   return k->contains_field_offset(tp->offset());
2707   // Note that OffsetBot and OffsetTop are very negative.
2708 }
2709 #endif
2710 
2711 // Eliminate trivially redundant StoreCMs and accumulate their
2712 // precedence edges.
2713 void Compile::eliminate_redundant_card_marks(Node* n) {
2714   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2715   if (n->in(MemNode::Address)->outcnt() > 1) {
2716     // There are multiple users of the same address so it might be
2717     // possible to eliminate some of the StoreCMs
2718     Node* mem = n->in(MemNode::Memory);
2719     Node* adr = n->in(MemNode::Address);
2720     Node* val = n->in(MemNode::ValueIn);
2721     Node* prev = n;
2722     bool done = false;
2723     // Walk the chain of StoreCMs eliminating ones that match.  As
2724     // long as it's a chain of single users then the optimization is
2725     // safe.  Eliminating partially redundant StoreCMs would require
2726     // cloning copies down the other paths.
2727     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2728       if (adr == mem->in(MemNode::Address) &&
2729           val == mem->in(MemNode::ValueIn)) {
2730         // redundant StoreCM
2731         if (mem->req() > MemNode::OopStore) {
2732           // Hasn't been processed by this code yet.
2733           n->add_prec(mem->in(MemNode::OopStore));
2734         } else {
2735           // Already converted to precedence edge
2736           for (uint i = mem->req(); i < mem->len(); i++) {
2737             // Accumulate any precedence edges
2738             if (mem->in(i) != NULL) {
2739               n->add_prec(mem->in(i));
2740             }
2741           }
2742           // Everything above this point has been processed.
2743           done = true;
2744         }
2745         // Eliminate the previous StoreCM
2746         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2747         assert(mem->outcnt() == 0, "should be dead");
2748         mem->disconnect_inputs(NULL, this);
2749       } else {
2750         prev = mem;
2751       }
2752       mem = prev->in(MemNode::Memory);
2753     }
2754   }
2755 }
2756 
2757 //------------------------------final_graph_reshaping_impl----------------------
2758 // Implement items 1-5 from final_graph_reshaping below.
2759 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2760 
2761   if ( n->outcnt() == 0 ) return; // dead node
2762   uint nop = n->Opcode();
2763 
2764   // Check for 2-input instruction with "last use" on right input.
2765   // Swap to left input.  Implements item (2).
2766   if( n->req() == 3 &&          // two-input instruction
2767       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2768       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2769       n->in(2)->outcnt() == 1 &&// right use IS a last use
2770       !n->in(2)->is_Con() ) {   // right use is not a constant
2771     // Check for commutative opcode
2772     switch( nop ) {
2773     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2774     case Op_MaxI:  case Op_MinI:
2775     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2776     case Op_AndL:  case Op_XorL:  case Op_OrL:
2777     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2778       // Move "last use" input to left by swapping inputs
2779       n->swap_edges(1, 2);
2780       break;
2781     }
2782     default:
2783       break;
2784     }
2785   }
2786 
2787 #ifdef ASSERT
2788   if( n->is_Mem() ) {
2789     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2790     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2791             // oop will be recorded in oop map if load crosses safepoint
2792             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2793                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2794             "raw memory operations should have control edge");
2795   }
2796   if (n->is_MemBar()) {
2797     MemBarNode* mb = n->as_MemBar();
2798     if (mb->trailing_store() || mb->trailing_load_store()) {
2799       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2800       Node* mem = mb->in(MemBarNode::Precedent);
2801       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2802              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2803     } else if (mb->leading()) {
2804       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2805     }
2806   }
2807 #endif
2808   // Count FPU ops and common calls, implements item (3)
2809   switch( nop ) {
2810   // Count all float operations that may use FPU
2811   case Op_AddF:
2812   case Op_SubF:
2813   case Op_MulF:
2814   case Op_DivF:
2815   case Op_NegF:
2816   case Op_ModF:
2817   case Op_ConvI2F:
2818   case Op_ConF:
2819   case Op_CmpF:
2820   case Op_CmpF3:
2821   // case Op_ConvL2F: // longs are split into 32-bit halves
2822     frc.inc_float_count();
2823     break;
2824 
2825   case Op_ConvF2D:
2826   case Op_ConvD2F:
2827     frc.inc_float_count();
2828     frc.inc_double_count();
2829     break;
2830 
2831   // Count all double operations that may use FPU
2832   case Op_AddD:
2833   case Op_SubD:
2834   case Op_MulD:
2835   case Op_DivD:
2836   case Op_NegD:
2837   case Op_ModD:
2838   case Op_ConvI2D:
2839   case Op_ConvD2I:
2840   // case Op_ConvL2D: // handled by leaf call
2841   // case Op_ConvD2L: // handled by leaf call
2842   case Op_ConD:
2843   case Op_CmpD:
2844   case Op_CmpD3:
2845     frc.inc_double_count();
2846     break;
2847   case Op_Opaque1:              // Remove Opaque Nodes before matching
2848   case Op_Opaque2:              // Remove Opaque Nodes before matching
2849   case Op_Opaque3:
2850     n->subsume_by(n->in(1), this);
2851     break;
2852   case Op_CallStaticJava:
2853   case Op_CallJava:
2854   case Op_CallDynamicJava:
2855     frc.inc_java_call_count(); // Count java call site;
2856   case Op_CallRuntime:
2857   case Op_CallLeaf:
2858   case Op_CallLeafNoFP: {
2859     assert (n->is_Call(), "");
2860     CallNode *call = n->as_Call();
2861 #if INCLUDE_SHENANDOAHGC
2862     if (UseShenandoahGC && ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) {
2863       uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
2864       if (call->req() > cnt) {
2865         assert(call->req() == cnt+1, "only one extra input");
2866         Node* addp = call->in(cnt);
2867         assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
2868         call->del_req(cnt);
2869       }
2870     }
2871 #endif
2872     // Count call sites where the FP mode bit would have to be flipped.
2873     // Do not count uncommon runtime calls:
2874     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2875     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2876     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2877       frc.inc_call_count();   // Count the call site
2878     } else {                  // See if uncommon argument is shared
2879       Node *n = call->in(TypeFunc::Parms);
2880       int nop = n->Opcode();
2881       // Clone shared simple arguments to uncommon calls, item (1).
2882       if (n->outcnt() > 1 &&
2883           !n->is_Proj() &&
2884           nop != Op_CreateEx &&
2885           nop != Op_CheckCastPP &&
2886           nop != Op_DecodeN &&
2887           nop != Op_DecodeNKlass &&
2888           !n->is_Mem() &&
2889           !n->is_Phi()) {
2890         Node *x = n->clone();
2891         call->set_req(TypeFunc::Parms, x);
2892       }
2893     }
2894     break;
2895   }
2896 
2897   case Op_StoreD:
2898   case Op_LoadD:
2899   case Op_LoadD_unaligned:
2900     frc.inc_double_count();
2901     goto handle_mem;
2902   case Op_StoreF:
2903   case Op_LoadF:
2904     frc.inc_float_count();
2905     goto handle_mem;
2906 
2907   case Op_StoreCM:
2908     {
2909       // Convert OopStore dependence into precedence edge
2910       Node* prec = n->in(MemNode::OopStore);
2911       n->del_req(MemNode::OopStore);
2912       n->add_prec(prec);
2913       eliminate_redundant_card_marks(n);
2914     }
2915 
2916     // fall through
2917 
2918   case Op_StoreB:
2919   case Op_StoreC:
2920   case Op_StorePConditional:
2921   case Op_StoreI:
2922   case Op_StoreL:
2923   case Op_StoreIConditional:
2924   case Op_StoreLConditional:
2925   case Op_CompareAndSwapB:
2926   case Op_CompareAndSwapS:
2927   case Op_CompareAndSwapI:
2928   case Op_CompareAndSwapL:
2929   case Op_CompareAndSwapP:
2930   case Op_CompareAndSwapN:
2931   case Op_WeakCompareAndSwapB:
2932   case Op_WeakCompareAndSwapS:
2933   case Op_WeakCompareAndSwapI:
2934   case Op_WeakCompareAndSwapL:
2935   case Op_WeakCompareAndSwapP:
2936   case Op_WeakCompareAndSwapN:
2937   case Op_CompareAndExchangeB:
2938   case Op_CompareAndExchangeS:
2939   case Op_CompareAndExchangeI:
2940   case Op_CompareAndExchangeL:
2941   case Op_CompareAndExchangeP:
2942   case Op_CompareAndExchangeN:
2943   case Op_ShenandoahCompareAndSwapP:
2944   case Op_ShenandoahCompareAndSwapN:
2945   case Op_ShenandoahWeakCompareAndSwapN:
2946   case Op_ShenandoahWeakCompareAndSwapP:
2947   case Op_ShenandoahCompareAndExchangeP:
2948   case Op_ShenandoahCompareAndExchangeN:
2949   case Op_GetAndAddS:
2950   case Op_GetAndAddB:
2951   case Op_GetAndAddI:
2952   case Op_GetAndAddL:
2953   case Op_GetAndSetS:
2954   case Op_GetAndSetB:
2955   case Op_GetAndSetI:
2956   case Op_GetAndSetL:
2957   case Op_GetAndSetP:
2958   case Op_GetAndSetN:
2959   case Op_StoreP:
2960   case Op_StoreN:
2961   case Op_StoreNKlass:
2962   case Op_LoadB:
2963   case Op_LoadUB:
2964   case Op_LoadUS:
2965   case Op_LoadI:
2966   case Op_LoadKlass:
2967   case Op_LoadNKlass:
2968   case Op_LoadL:
2969   case Op_LoadL_unaligned:
2970   case Op_LoadPLocked:
2971   case Op_LoadP:
2972 #if INCLUDE_ZGC
2973   case Op_LoadBarrierSlowReg:
2974   case Op_LoadBarrierWeakSlowReg:
2975 #endif
2976   case Op_LoadN:
2977   case Op_LoadRange:
2978   case Op_LoadS: {
2979   handle_mem:
2980 #ifdef ASSERT
2981     if( VerifyOptoOopOffsets ) {
2982       assert( n->is_Mem(), "" );
2983       MemNode *mem  = (MemNode*)n;
2984       // Check to see if address types have grounded out somehow.
2985       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2986       assert( !tp || oop_offset_is_sane(tp), "" );
2987     }
2988 #endif
2989     break;
2990   }
2991 
2992   case Op_AddP: {               // Assert sane base pointers
2993     Node *addp = n->in(AddPNode::Address);
2994     assert( !addp->is_AddP() ||
2995             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2996             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2997             "Base pointers must match (addp %u)", addp->_idx );
2998 #ifdef _LP64
2999     if ((UseCompressedOops || UseCompressedClassPointers) &&
3000         addp->Opcode() == Op_ConP &&
3001         addp == n->in(AddPNode::Base) &&
3002         n->in(AddPNode::Offset)->is_Con()) {
3003       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3004       // on the platform and on the compressed oops mode.
3005       // Use addressing with narrow klass to load with offset on x86.
3006       // Some platforms can use the constant pool to load ConP.
3007       // Do this transformation here since IGVN will convert ConN back to ConP.
3008       const Type* t = addp->bottom_type();
3009       bool is_oop   = t->isa_oopptr() != NULL;
3010       bool is_klass = t->isa_klassptr() != NULL;
3011 
3012       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3013           (is_klass && Matcher::const_klass_prefer_decode())) {
3014         Node* nn = NULL;
3015 
3016         int op = is_oop ? Op_ConN : Op_ConNKlass;
3017 
3018         // Look for existing ConN node of the same exact type.
3019         Node* r  = root();
3020         uint cnt = r->outcnt();
3021         for (uint i = 0; i < cnt; i++) {
3022           Node* m = r->raw_out(i);
3023           if (m!= NULL && m->Opcode() == op &&
3024               m->bottom_type()->make_ptr() == t) {
3025             nn = m;
3026             break;
3027           }
3028         }
3029         if (nn != NULL) {
3030           // Decode a narrow oop to match address
3031           // [R12 + narrow_oop_reg<<3 + offset]
3032           if (is_oop) {
3033             nn = new DecodeNNode(nn, t);
3034           } else {
3035             nn = new DecodeNKlassNode(nn, t);
3036           }
3037           // Check for succeeding AddP which uses the same Base.
3038           // Otherwise we will run into the assertion above when visiting that guy.
3039           for (uint i = 0; i < n->outcnt(); ++i) {
3040             Node *out_i = n->raw_out(i);
3041             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3042               out_i->set_req(AddPNode::Base, nn);
3043 #ifdef ASSERT
3044               for (uint j = 0; j < out_i->outcnt(); ++j) {
3045                 Node *out_j = out_i->raw_out(j);
3046                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3047                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3048               }
3049 #endif
3050             }
3051           }
3052           n->set_req(AddPNode::Base, nn);
3053           n->set_req(AddPNode::Address, nn);
3054           if (addp->outcnt() == 0) {
3055             addp->disconnect_inputs(NULL, this);
3056           }
3057         }
3058       }
3059     }
3060 #endif
3061     // platform dependent reshaping of the address expression
3062     reshape_address(n->as_AddP());
3063     break;
3064   }
3065 
3066   case Op_CastPP: {
3067     // Remove CastPP nodes to gain more freedom during scheduling but
3068     // keep the dependency they encode as control or precedence edges
3069     // (if control is set already) on memory operations. Some CastPP
3070     // nodes don't have a control (don't carry a dependency): skip
3071     // those.
3072     if (n->in(0) != NULL) {
3073       ResourceMark rm;
3074       Unique_Node_List wq;
3075       wq.push(n);
3076       for (uint next = 0; next < wq.size(); ++next) {
3077         Node *m = wq.at(next);
3078         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3079           Node* use = m->fast_out(i);
3080           if (use->is_Mem() || use->is_EncodeNarrowPtr() || use->is_ShenandoahBarrier()) {
3081             use->ensure_control_or_add_prec(n->in(0));
3082           } else {
3083             switch(use->Opcode()) {
3084             case Op_AddP:
3085             case Op_DecodeN:
3086             case Op_DecodeNKlass:
3087             case Op_CheckCastPP:
3088             case Op_CastPP:
3089               wq.push(use);
3090               break;
3091             }
3092           }
3093         }
3094       }
3095     }
3096     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3097     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3098       Node* in1 = n->in(1);
3099       const Type* t = n->bottom_type();
3100       Node* new_in1 = in1->clone();
3101       new_in1->as_DecodeN()->set_type(t);
3102 
3103       if (!Matcher::narrow_oop_use_complex_address()) {
3104         //
3105         // x86, ARM and friends can handle 2 adds in addressing mode
3106         // and Matcher can fold a DecodeN node into address by using
3107         // a narrow oop directly and do implicit NULL check in address:
3108         //
3109         // [R12 + narrow_oop_reg<<3 + offset]
3110         // NullCheck narrow_oop_reg
3111         //
3112         // On other platforms (Sparc) we have to keep new DecodeN node and
3113         // use it to do implicit NULL check in address:
3114         //
3115         // decode_not_null narrow_oop_reg, base_reg
3116         // [base_reg + offset]
3117         // NullCheck base_reg
3118         //
3119         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3120         // to keep the information to which NULL check the new DecodeN node
3121         // corresponds to use it as value in implicit_null_check().
3122         //
3123         new_in1->set_req(0, n->in(0));
3124       }
3125 
3126       n->subsume_by(new_in1, this);
3127       if (in1->outcnt() == 0) {
3128         in1->disconnect_inputs(NULL, this);
3129       }
3130     } else {
3131       n->subsume_by(n->in(1), this);
3132       if (n->outcnt() == 0) {
3133         n->disconnect_inputs(NULL, this);
3134       }
3135     }
3136     break;
3137   }
3138 #ifdef _LP64
3139   case Op_CmpP:
3140     // Do this transformation here to preserve CmpPNode::sub() and
3141     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3142     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3143       Node* in1 = n->in(1);
3144       Node* in2 = n->in(2);
3145       if (!in1->is_DecodeNarrowPtr()) {
3146         in2 = in1;
3147         in1 = n->in(2);
3148       }
3149       assert(in1->is_DecodeNarrowPtr(), "sanity");
3150 
3151       Node* new_in2 = NULL;
3152       if (in2->is_DecodeNarrowPtr()) {
3153         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3154         new_in2 = in2->in(1);
3155       } else if (in2->Opcode() == Op_ConP) {
3156         const Type* t = in2->bottom_type();
3157         if (t == TypePtr::NULL_PTR) {
3158           assert(in1->is_DecodeN(), "compare klass to null?");
3159           // Don't convert CmpP null check into CmpN if compressed
3160           // oops implicit null check is not generated.
3161           // This will allow to generate normal oop implicit null check.
3162           if (Matcher::gen_narrow_oop_implicit_null_checks())
3163             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3164           //
3165           // This transformation together with CastPP transformation above
3166           // will generated code for implicit NULL checks for compressed oops.
3167           //
3168           // The original code after Optimize()
3169           //
3170           //    LoadN memory, narrow_oop_reg
3171           //    decode narrow_oop_reg, base_reg
3172           //    CmpP base_reg, NULL
3173           //    CastPP base_reg // NotNull
3174           //    Load [base_reg + offset], val_reg
3175           //
3176           // after these transformations will be
3177           //
3178           //    LoadN memory, narrow_oop_reg
3179           //    CmpN narrow_oop_reg, NULL
3180           //    decode_not_null narrow_oop_reg, base_reg
3181           //    Load [base_reg + offset], val_reg
3182           //
3183           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3184           // since narrow oops can be used in debug info now (see the code in
3185           // final_graph_reshaping_walk()).
3186           //
3187           // At the end the code will be matched to
3188           // on x86:
3189           //
3190           //    Load_narrow_oop memory, narrow_oop_reg
3191           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3192           //    NullCheck narrow_oop_reg
3193           //
3194           // and on sparc:
3195           //
3196           //    Load_narrow_oop memory, narrow_oop_reg
3197           //    decode_not_null narrow_oop_reg, base_reg
3198           //    Load [base_reg + offset], val_reg
3199           //    NullCheck base_reg
3200           //
3201         } else if (t->isa_oopptr()) {
3202           new_in2 = ConNode::make(t->make_narrowoop());
3203         } else if (t->isa_klassptr()) {
3204           new_in2 = ConNode::make(t->make_narrowklass());
3205         }
3206       }
3207       if (new_in2 != NULL) {
3208         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3209         n->subsume_by(cmpN, this);
3210         if (in1->outcnt() == 0) {
3211           in1->disconnect_inputs(NULL, this);
3212         }
3213         if (in2->outcnt() == 0) {
3214           in2->disconnect_inputs(NULL, this);
3215         }
3216       }
3217     }
3218     break;
3219 
3220   case Op_DecodeN:
3221   case Op_DecodeNKlass:
3222     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3223     // DecodeN could be pinned when it can't be fold into
3224     // an address expression, see the code for Op_CastPP above.
3225     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3226     break;
3227 
3228   case Op_EncodeP:
3229   case Op_EncodePKlass: {
3230     Node* in1 = n->in(1);
3231     if (in1->is_DecodeNarrowPtr()) {
3232       n->subsume_by(in1->in(1), this);
3233     } else if (in1->Opcode() == Op_ConP) {
3234       const Type* t = in1->bottom_type();
3235       if (t == TypePtr::NULL_PTR) {
3236         assert(t->isa_oopptr(), "null klass?");
3237         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3238       } else if (t->isa_oopptr()) {
3239         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3240       } else if (t->isa_klassptr()) {
3241         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3242       }
3243     }
3244     if (in1->outcnt() == 0) {
3245       in1->disconnect_inputs(NULL, this);
3246     }
3247     break;
3248   }
3249 
3250   case Op_Proj: {
3251     if (OptimizeStringConcat) {
3252       ProjNode* p = n->as_Proj();
3253       if (p->_is_io_use) {
3254         // Separate projections were used for the exception path which
3255         // are normally removed by a late inline.  If it wasn't inlined
3256         // then they will hang around and should just be replaced with
3257         // the original one.
3258         Node* proj = NULL;
3259         // Replace with just one
3260         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3261           Node *use = i.get();
3262           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3263             proj = use;
3264             break;
3265           }
3266         }
3267         assert(proj != NULL, "must be found");
3268         p->subsume_by(proj, this);
3269       }
3270     }
3271     break;
3272   }
3273 
3274   case Op_Phi:
3275     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3276       // The EncodeP optimization may create Phi with the same edges
3277       // for all paths. It is not handled well by Register Allocator.
3278       Node* unique_in = n->in(1);
3279       assert(unique_in != NULL, "");
3280       uint cnt = n->req();
3281       for (uint i = 2; i < cnt; i++) {
3282         Node* m = n->in(i);
3283         assert(m != NULL, "");
3284         if (unique_in != m)
3285           unique_in = NULL;
3286       }
3287       if (unique_in != NULL) {
3288         n->subsume_by(unique_in, this);
3289       }
3290     }
3291     break;
3292 
3293 #endif
3294 
3295 #ifdef ASSERT
3296   case Op_CastII:
3297     // Verify that all range check dependent CastII nodes were removed.
3298     if (n->isa_CastII()->has_range_check()) {
3299       n->dump(3);
3300       assert(false, "Range check dependent CastII node was not removed");
3301     }
3302     break;
3303 #endif
3304 
3305   case Op_ModI:
3306     if (UseDivMod) {
3307       // Check if a%b and a/b both exist
3308       Node* d = n->find_similar(Op_DivI);
3309       if (d) {
3310         // Replace them with a fused divmod if supported
3311         if (Matcher::has_match_rule(Op_DivModI)) {
3312           DivModINode* divmod = DivModINode::make(n);
3313           d->subsume_by(divmod->div_proj(), this);
3314           n->subsume_by(divmod->mod_proj(), this);
3315         } else {
3316           // replace a%b with a-((a/b)*b)
3317           Node* mult = new MulINode(d, d->in(2));
3318           Node* sub  = new SubINode(d->in(1), mult);
3319           n->subsume_by(sub, this);
3320         }
3321       }
3322     }
3323     break;
3324 
3325   case Op_ModL:
3326     if (UseDivMod) {
3327       // Check if a%b and a/b both exist
3328       Node* d = n->find_similar(Op_DivL);
3329       if (d) {
3330         // Replace them with a fused divmod if supported
3331         if (Matcher::has_match_rule(Op_DivModL)) {
3332           DivModLNode* divmod = DivModLNode::make(n);
3333           d->subsume_by(divmod->div_proj(), this);
3334           n->subsume_by(divmod->mod_proj(), this);
3335         } else {
3336           // replace a%b with a-((a/b)*b)
3337           Node* mult = new MulLNode(d, d->in(2));
3338           Node* sub  = new SubLNode(d->in(1), mult);
3339           n->subsume_by(sub, this);
3340         }
3341       }
3342     }
3343     break;
3344 
3345   case Op_LoadVector:
3346   case Op_StoreVector:
3347     break;
3348 
3349   case Op_AddReductionVI:
3350   case Op_AddReductionVL:
3351   case Op_AddReductionVF:
3352   case Op_AddReductionVD:
3353   case Op_MulReductionVI:
3354   case Op_MulReductionVL:
3355   case Op_MulReductionVF:
3356   case Op_MulReductionVD:
3357     break;
3358 
3359   case Op_PackB:
3360   case Op_PackS:
3361   case Op_PackI:
3362   case Op_PackF:
3363   case Op_PackL:
3364   case Op_PackD:
3365     if (n->req()-1 > 2) {
3366       // Replace many operand PackNodes with a binary tree for matching
3367       PackNode* p = (PackNode*) n;
3368       Node* btp = p->binary_tree_pack(1, n->req());
3369       n->subsume_by(btp, this);
3370     }
3371     break;
3372   case Op_Loop:
3373   case Op_CountedLoop:
3374   case Op_OuterStripMinedLoop:
3375     if (n->as_Loop()->is_inner_loop()) {
3376       frc.inc_inner_loop_count();
3377     }
3378     n->as_Loop()->verify_strip_mined(0);
3379     break;
3380   case Op_LShiftI:
3381   case Op_RShiftI:
3382   case Op_URShiftI:
3383   case Op_LShiftL:
3384   case Op_RShiftL:
3385   case Op_URShiftL:
3386     if (Matcher::need_masked_shift_count) {
3387       // The cpu's shift instructions don't restrict the count to the
3388       // lower 5/6 bits. We need to do the masking ourselves.
3389       Node* in2 = n->in(2);
3390       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3391       const TypeInt* t = in2->find_int_type();
3392       if (t != NULL && t->is_con()) {
3393         juint shift = t->get_con();
3394         if (shift > mask) { // Unsigned cmp
3395           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3396         }
3397       } else {
3398         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3399           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3400           n->set_req(2, shift);
3401         }
3402       }
3403       if (in2->outcnt() == 0) { // Remove dead node
3404         in2->disconnect_inputs(NULL, this);
3405       }
3406     }
3407     break;
3408   case Op_MemBarStoreStore:
3409   case Op_MemBarRelease:
3410     // Break the link with AllocateNode: it is no longer useful and
3411     // confuses register allocation.
3412     if (n->req() > MemBarNode::Precedent) {
3413       n->set_req(MemBarNode::Precedent, top());
3414     }
3415     break;
3416 #if INCLUDE_SHENANDOAHGC
3417   case Op_ShenandoahReadBarrier:
3418     break;
3419   case Op_ShenandoahWriteBarrier:
3420     assert(false, "should have been expanded already");
3421     break;
3422 #endif
3423   case Op_MemBarAcquire: {
3424     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3425       // At parse time, the trailing MemBarAcquire for a volatile load
3426       // is created with an edge to the load. After optimizations,
3427       // that input may be a chain of Phis. If those phis have no
3428       // other use, then the MemBarAcquire keeps them alive and
3429       // register allocation can be confused.
3430       ResourceMark rm;
3431       Unique_Node_List wq;
3432       wq.push(n->in(MemBarNode::Precedent));
3433       n->set_req(MemBarNode::Precedent, top());
3434       while (wq.size() > 0) {
3435         Node* m = wq.pop();
3436         if (m->outcnt() == 0) {
3437           for (uint j = 0; j < m->req(); j++) {
3438             Node* in = m->in(j);
3439             if (in != NULL) {
3440               wq.push(in);
3441             }
3442           }
3443           m->disconnect_inputs(NULL, this);
3444         }
3445       }
3446     }
3447     break;
3448   }
3449   case Op_RangeCheck: {
3450     RangeCheckNode* rc = n->as_RangeCheck();
3451     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3452     n->subsume_by(iff, this);
3453     frc._tests.push(iff);
3454     break;
3455   }
3456   case Op_ConvI2L: {
3457     if (!Matcher::convi2l_type_required) {
3458       // Code generation on some platforms doesn't need accurate
3459       // ConvI2L types. Widening the type can help remove redundant
3460       // address computations.
3461       n->as_Type()->set_type(TypeLong::INT);
3462       ResourceMark rm;
3463       Node_List wq;
3464       wq.push(n);
3465       for (uint next = 0; next < wq.size(); next++) {
3466         Node *m = wq.at(next);
3467 
3468         for(;;) {
3469           // Loop over all nodes with identical inputs edges as m
3470           Node* k = m->find_similar(m->Opcode());
3471           if (k == NULL) {
3472             break;
3473           }
3474           // Push their uses so we get a chance to remove node made
3475           // redundant
3476           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3477             Node* u = k->fast_out(i);
3478             assert(!wq.contains(u), "shouldn't process one node several times");
3479             if (u->Opcode() == Op_LShiftL ||
3480                 u->Opcode() == Op_AddL ||
3481                 u->Opcode() == Op_SubL ||
3482                 u->Opcode() == Op_AddP) {
3483               wq.push(u);
3484             }
3485           }
3486           // Replace all nodes with identical edges as m with m
3487           k->subsume_by(m, this);
3488         }
3489       }
3490     }
3491     break;
3492   }
3493   case Op_CmpUL: {
3494     if (!Matcher::has_match_rule(Op_CmpUL)) {
3495       // We don't support unsigned long comparisons. Set 'max_idx_expr'
3496       // to max_julong if < 0 to make the signed comparison fail.
3497       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3498       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3499       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3500       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3501       Node* andl = new AndLNode(orl, remove_sign_mask);
3502       Node* cmp = new CmpLNode(andl, n->in(2));
3503       n->subsume_by(cmp, this);
3504     }
3505     break;
3506   }
3507   default:
3508     assert( !n->is_Call(), "" );
3509     assert( !n->is_Mem(), "" );
3510     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3511     break;
3512   }
3513 
3514   // Collect CFG split points
3515   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3516     frc._tests.push(n);
3517   }
3518 }
3519 
3520 //------------------------------final_graph_reshaping_walk---------------------
3521 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3522 // requires that the walk visits a node's inputs before visiting the node.
3523 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3524   ResourceArea *area = Thread::current()->resource_area();
3525   Unique_Node_List sfpt(area);
3526 
3527   frc._visited.set(root->_idx); // first, mark node as visited
3528   uint cnt = root->req();
3529   Node *n = root;
3530   uint  i = 0;
3531   while (true) {
3532     if (i < cnt) {
3533       // Place all non-visited non-null inputs onto stack
3534       Node* m = n->in(i);
3535       ++i;
3536       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3537         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3538           // compute worst case interpreter size in case of a deoptimization
3539           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3540 
3541           sfpt.push(m);
3542         }
3543         cnt = m->req();
3544         nstack.push(n, i); // put on stack parent and next input's index
3545         n = m;
3546         i = 0;
3547       }
3548     } else {
3549       // Now do post-visit work
3550       final_graph_reshaping_impl( n, frc );
3551       if (nstack.is_empty())
3552         break;             // finished
3553       n = nstack.node();   // Get node from stack
3554       cnt = n->req();
3555       i = nstack.index();
3556       nstack.pop();        // Shift to the next node on stack
3557     }
3558   }
3559 
3560   // Skip next transformation if compressed oops are not used.
3561   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3562       (!UseCompressedOops && !UseCompressedClassPointers))
3563     return;
3564 
3565   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3566   // It could be done for an uncommon traps or any safepoints/calls
3567   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3568   while (sfpt.size() > 0) {
3569     n = sfpt.pop();
3570     JVMState *jvms = n->as_SafePoint()->jvms();
3571     assert(jvms != NULL, "sanity");
3572     int start = jvms->debug_start();
3573     int end   = n->req();
3574     bool is_uncommon = (n->is_CallStaticJava() &&
3575                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3576     for (int j = start; j < end; j++) {
3577       Node* in = n->in(j);
3578       if (in->is_DecodeNarrowPtr()) {
3579         bool safe_to_skip = true;
3580         if (!is_uncommon ) {
3581           // Is it safe to skip?
3582           for (uint i = 0; i < in->outcnt(); i++) {
3583             Node* u = in->raw_out(i);
3584             if (!u->is_SafePoint() ||
3585                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3586               safe_to_skip = false;
3587             }
3588           }
3589         }
3590         if (safe_to_skip) {
3591           n->set_req(j, in->in(1));
3592         }
3593         if (in->outcnt() == 0) {
3594           in->disconnect_inputs(NULL, this);
3595         }
3596       }
3597     }
3598   }
3599 }
3600 
3601 //------------------------------final_graph_reshaping--------------------------
3602 // Final Graph Reshaping.
3603 //
3604 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3605 //     and not commoned up and forced early.  Must come after regular
3606 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3607 //     inputs to Loop Phis; these will be split by the allocator anyways.
3608 //     Remove Opaque nodes.
3609 // (2) Move last-uses by commutative operations to the left input to encourage
3610 //     Intel update-in-place two-address operations and better register usage
3611 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3612 //     calls canonicalizing them back.
3613 // (3) Count the number of double-precision FP ops, single-precision FP ops
3614 //     and call sites.  On Intel, we can get correct rounding either by
3615 //     forcing singles to memory (requires extra stores and loads after each
3616 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3617 //     clearing the mode bit around call sites).  The mode bit is only used
3618 //     if the relative frequency of single FP ops to calls is low enough.
3619 //     This is a key transform for SPEC mpeg_audio.
3620 // (4) Detect infinite loops; blobs of code reachable from above but not
3621 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3622 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3623 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3624 //     Detection is by looking for IfNodes where only 1 projection is
3625 //     reachable from below or CatchNodes missing some targets.
3626 // (5) Assert for insane oop offsets in debug mode.
3627 
3628 bool Compile::final_graph_reshaping() {
3629   // an infinite loop may have been eliminated by the optimizer,
3630   // in which case the graph will be empty.
3631   if (root()->req() == 1) {
3632     record_method_not_compilable("trivial infinite loop");
3633     return true;
3634   }
3635 
3636   // Expensive nodes have their control input set to prevent the GVN
3637   // from freely commoning them. There's no GVN beyond this point so
3638   // no need to keep the control input. We want the expensive nodes to
3639   // be freely moved to the least frequent code path by gcm.
3640   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3641   for (int i = 0; i < expensive_count(); i++) {
3642     _expensive_nodes->at(i)->set_req(0, NULL);
3643   }
3644 
3645   Final_Reshape_Counts frc;
3646 
3647   // Visit everybody reachable!
3648   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3649   Node_Stack nstack(live_nodes() >> 1);
3650   final_graph_reshaping_walk(nstack, root(), frc);
3651 
3652   // Check for unreachable (from below) code (i.e., infinite loops).
3653   for( uint i = 0; i < frc._tests.size(); i++ ) {
3654     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3655     // Get number of CFG targets.
3656     // Note that PCTables include exception targets after calls.
3657     uint required_outcnt = n->required_outcnt();
3658     if (n->outcnt() != required_outcnt) {
3659       // Check for a few special cases.  Rethrow Nodes never take the
3660       // 'fall-thru' path, so expected kids is 1 less.
3661       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3662         if (n->in(0)->in(0)->is_Call()) {
3663           CallNode *call = n->in(0)->in(0)->as_Call();
3664           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3665             required_outcnt--;      // Rethrow always has 1 less kid
3666           } else if (call->req() > TypeFunc::Parms &&
3667                      call->is_CallDynamicJava()) {
3668             // Check for null receiver. In such case, the optimizer has
3669             // detected that the virtual call will always result in a null
3670             // pointer exception. The fall-through projection of this CatchNode
3671             // will not be populated.
3672             Node *arg0 = call->in(TypeFunc::Parms);
3673             if (arg0->is_Type() &&
3674                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3675               required_outcnt--;
3676             }
3677           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3678                      call->req() > TypeFunc::Parms+1 &&
3679                      call->is_CallStaticJava()) {
3680             // Check for negative array length. In such case, the optimizer has
3681             // detected that the allocation attempt will always result in an
3682             // exception. There is no fall-through projection of this CatchNode .
3683             Node *arg1 = call->in(TypeFunc::Parms+1);
3684             if (arg1->is_Type() &&
3685                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3686               required_outcnt--;
3687             }
3688           }
3689         }
3690       }
3691       // Recheck with a better notion of 'required_outcnt'
3692       if (n->outcnt() != required_outcnt) {
3693         record_method_not_compilable("malformed control flow");
3694         return true;            // Not all targets reachable!
3695       }
3696     }
3697     // Check that I actually visited all kids.  Unreached kids
3698     // must be infinite loops.
3699     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3700       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3701         record_method_not_compilable("infinite loop");
3702         return true;            // Found unvisited kid; must be unreach
3703       }
3704 
3705     // Here so verification code in final_graph_reshaping_walk()
3706     // always see an OuterStripMinedLoopEnd
3707     if (n->is_OuterStripMinedLoopEnd()) {
3708       IfNode* init_iff = n->as_If();
3709       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3710       n->subsume_by(iff, this);
3711     }
3712   }
3713 
3714   // If original bytecodes contained a mixture of floats and doubles
3715   // check if the optimizer has made it homogenous, item (3).
3716   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3717       frc.get_float_count() > 32 &&
3718       frc.get_double_count() == 0 &&
3719       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3720     set_24_bit_selection_and_mode( false,  true );
3721   }
3722 
3723   set_java_calls(frc.get_java_call_count());
3724   set_inner_loops(frc.get_inner_loop_count());
3725 
3726   // No infinite loops, no reason to bail out.
3727   return false;
3728 }
3729 
3730 //-----------------------------too_many_traps----------------------------------
3731 // Report if there are too many traps at the current method and bci.
3732 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3733 bool Compile::too_many_traps(ciMethod* method,
3734                              int bci,
3735                              Deoptimization::DeoptReason reason) {
3736   ciMethodData* md = method->method_data();
3737   if (md->is_empty()) {
3738     // Assume the trap has not occurred, or that it occurred only
3739     // because of a transient condition during start-up in the interpreter.
3740     return false;
3741   }
3742   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3743   if (md->has_trap_at(bci, m, reason) != 0) {
3744     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3745     // Also, if there are multiple reasons, or if there is no per-BCI record,
3746     // assume the worst.
3747     if (log())
3748       log()->elem("observe trap='%s' count='%d'",
3749                   Deoptimization::trap_reason_name(reason),
3750                   md->trap_count(reason));
3751     return true;
3752   } else {
3753     // Ignore method/bci and see if there have been too many globally.
3754     return too_many_traps(reason, md);
3755   }
3756 }
3757 
3758 // Less-accurate variant which does not require a method and bci.
3759 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3760                              ciMethodData* logmd) {
3761   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3762     // Too many traps globally.
3763     // Note that we use cumulative trap_count, not just md->trap_count.
3764     if (log()) {
3765       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3766       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3767                   Deoptimization::trap_reason_name(reason),
3768                   mcount, trap_count(reason));
3769     }
3770     return true;
3771   } else {
3772     // The coast is clear.
3773     return false;
3774   }
3775 }
3776 
3777 //--------------------------too_many_recompiles--------------------------------
3778 // Report if there are too many recompiles at the current method and bci.
3779 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3780 // Is not eager to return true, since this will cause the compiler to use
3781 // Action_none for a trap point, to avoid too many recompilations.
3782 bool Compile::too_many_recompiles(ciMethod* method,
3783                                   int bci,
3784                                   Deoptimization::DeoptReason reason) {
3785   ciMethodData* md = method->method_data();
3786   if (md->is_empty()) {
3787     // Assume the trap has not occurred, or that it occurred only
3788     // because of a transient condition during start-up in the interpreter.
3789     return false;
3790   }
3791   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3792   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3793   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3794   Deoptimization::DeoptReason per_bc_reason
3795     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3796   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3797   if ((per_bc_reason == Deoptimization::Reason_none
3798        || md->has_trap_at(bci, m, reason) != 0)
3799       // The trap frequency measure we care about is the recompile count:
3800       && md->trap_recompiled_at(bci, m)
3801       && md->overflow_recompile_count() >= bc_cutoff) {
3802     // Do not emit a trap here if it has already caused recompilations.
3803     // Also, if there are multiple reasons, or if there is no per-BCI record,
3804     // assume the worst.
3805     if (log())
3806       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3807                   Deoptimization::trap_reason_name(reason),
3808                   md->trap_count(reason),
3809                   md->overflow_recompile_count());
3810     return true;
3811   } else if (trap_count(reason) != 0
3812              && decompile_count() >= m_cutoff) {
3813     // Too many recompiles globally, and we have seen this sort of trap.
3814     // Use cumulative decompile_count, not just md->decompile_count.
3815     if (log())
3816       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3817                   Deoptimization::trap_reason_name(reason),
3818                   md->trap_count(reason), trap_count(reason),
3819                   md->decompile_count(), decompile_count());
3820     return true;
3821   } else {
3822     // The coast is clear.
3823     return false;
3824   }
3825 }
3826 
3827 // Compute when not to trap. Used by matching trap based nodes and
3828 // NullCheck optimization.
3829 void Compile::set_allowed_deopt_reasons() {
3830   _allowed_reasons = 0;
3831   if (is_method_compilation()) {
3832     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3833       assert(rs < BitsPerInt, "recode bit map");
3834       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3835         _allowed_reasons |= nth_bit(rs);
3836       }
3837     }
3838   }
3839 }
3840 
3841 #ifndef PRODUCT
3842 //------------------------------verify_graph_edges---------------------------
3843 // Walk the Graph and verify that there is a one-to-one correspondence
3844 // between Use-Def edges and Def-Use edges in the graph.
3845 void Compile::verify_graph_edges(bool no_dead_code) {
3846   if (VerifyGraphEdges) {
3847     ResourceArea *area = Thread::current()->resource_area();
3848     Unique_Node_List visited(area);
3849     // Call recursive graph walk to check edges
3850     _root->verify_edges(visited);
3851     if (no_dead_code) {
3852       // Now make sure that no visited node is used by an unvisited node.
3853       bool dead_nodes = false;
3854       Unique_Node_List checked(area);
3855       while (visited.size() > 0) {
3856         Node* n = visited.pop();
3857         checked.push(n);
3858         for (uint i = 0; i < n->outcnt(); i++) {
3859           Node* use = n->raw_out(i);
3860           if (checked.member(use))  continue;  // already checked
3861           if (visited.member(use))  continue;  // already in the graph
3862           if (use->is_Con())        continue;  // a dead ConNode is OK
3863           // At this point, we have found a dead node which is DU-reachable.
3864           if (!dead_nodes) {
3865             tty->print_cr("*** Dead nodes reachable via DU edges:");
3866             dead_nodes = true;
3867           }
3868           use->dump(2);
3869           tty->print_cr("---");
3870           checked.push(use);  // No repeats; pretend it is now checked.
3871         }
3872       }
3873       assert(!dead_nodes, "using nodes must be reachable from root");
3874     }
3875   }
3876 }
3877 
3878 // Verify GC barriers consistency
3879 // Currently supported:
3880 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3881 void Compile::verify_barriers() {
3882 #if INCLUDE_G1GC || INCLUDE_SHENANDOAHGC
3883   if (UseG1GC || UseShenandoahGC) {
3884     // Verify G1 pre-barriers
3885 
3886 #if INCLUDE_G1GC && INCLUDE_SHENANDOAHGC
3887     const int marking_offset = in_bytes(UseG1GC ? G1ThreadLocalData::satb_mark_queue_active_offset()
3888                                                 : ShenandoahThreadLocalData::satb_mark_queue_active_offset());
3889 #elif INCLUDE_G1GC
3890     const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
3891 #else
3892     const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset());
3893 #endif
3894 
3895     ResourceArea *area = Thread::current()->resource_area();
3896     Unique_Node_List visited(area);
3897     Node_List worklist(area);
3898     // We're going to walk control flow backwards starting from the Root
3899     worklist.push(_root);
3900     while (worklist.size() > 0) {
3901       Node* x = worklist.pop();
3902       if (x == NULL || x == top()) continue;
3903       if (visited.member(x)) {
3904         continue;
3905       } else {
3906         visited.push(x);
3907       }
3908 
3909       if (x->is_Region()) {
3910         for (uint i = 1; i < x->req(); i++) {
3911           worklist.push(x->in(i));
3912         }
3913       } else {
3914         worklist.push(x->in(0));
3915         // We are looking for the pattern:
3916         //                            /->ThreadLocal
3917         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3918         //              \->ConI(0)
3919         // We want to verify that the If and the LoadB have the same control
3920         // See GraphKit::g1_write_barrier_pre()
3921         if (x->is_If()) {
3922           IfNode *iff = x->as_If();
3923           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3924             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3925             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3926                 && cmp->in(1)->is_Load()) {
3927               LoadNode* load = cmp->in(1)->as_Load();
3928               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3929                   && load->in(2)->in(3)->is_Con()
3930                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3931 
3932                 Node* if_ctrl = iff->in(0);
3933                 Node* load_ctrl = load->in(0);
3934 
3935                 if (if_ctrl != load_ctrl) {
3936                   // Skip possible CProj->NeverBranch in infinite loops
3937                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3938                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3939                     if_ctrl = if_ctrl->in(0)->in(0);
3940                   }
3941                 }
3942                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3943               }
3944             }
3945           }
3946         }
3947       }
3948     }
3949   }
3950 #endif
3951 }
3952 
3953 #endif
3954 
3955 // The Compile object keeps track of failure reasons separately from the ciEnv.
3956 // This is required because there is not quite a 1-1 relation between the
3957 // ciEnv and its compilation task and the Compile object.  Note that one
3958 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3959 // to backtrack and retry without subsuming loads.  Other than this backtracking
3960 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3961 // by the logic in C2Compiler.
3962 void Compile::record_failure(const char* reason) {
3963   if (log() != NULL) {
3964     log()->elem("failure reason='%s' phase='compile'", reason);
3965   }
3966   if (_failure_reason == NULL) {
3967     // Record the first failure reason.
3968     _failure_reason = reason;
3969   }
3970 
3971   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3972     C->print_method(PHASE_FAILURE);
3973   }
3974   _root = NULL;  // flush the graph, too
3975 }
3976 
3977 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3978   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3979     _phase_name(name), _dolog(CITimeVerbose)
3980 {
3981   if (_dolog) {
3982     C = Compile::current();
3983     _log = C->log();
3984   } else {
3985     C = NULL;
3986     _log = NULL;
3987   }
3988   if (_log != NULL) {
3989     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3990     _log->stamp();
3991     _log->end_head();
3992   }
3993 }
3994 
3995 Compile::TracePhase::~TracePhase() {
3996 
3997   C = Compile::current();
3998   if (_dolog) {
3999     _log = C->log();
4000   } else {
4001     _log = NULL;
4002   }
4003 
4004 #ifdef ASSERT
4005   if (PrintIdealNodeCount) {
4006     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4007                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
4008   }
4009 
4010   if (VerifyIdealNodeCount) {
4011     Compile::current()->print_missing_nodes();
4012   }
4013 #endif
4014 
4015   if (_log != NULL) {
4016     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4017   }
4018 }
4019 
4020 //=============================================================================
4021 // Two Constant's are equal when the type and the value are equal.
4022 bool Compile::Constant::operator==(const Constant& other) {
4023   if (type()          != other.type()         )  return false;
4024   if (can_be_reused() != other.can_be_reused())  return false;
4025   // For floating point values we compare the bit pattern.
4026   switch (type()) {
4027   case T_INT:
4028   case T_FLOAT:   return (_v._value.i == other._v._value.i);
4029   case T_LONG:
4030   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
4031   case T_OBJECT:
4032   case T_ADDRESS: return (_v._value.l == other._v._value.l);
4033   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
4034   case T_METADATA: return (_v._metadata == other._v._metadata);
4035   default: ShouldNotReachHere(); return false;
4036   }
4037 }
4038 
4039 static int type_to_size_in_bytes(BasicType t) {
4040   switch (t) {
4041   case T_INT:     return sizeof(jint   );
4042   case T_LONG:    return sizeof(jlong  );
4043   case T_FLOAT:   return sizeof(jfloat );
4044   case T_DOUBLE:  return sizeof(jdouble);
4045   case T_METADATA: return sizeof(Metadata*);
4046     // We use T_VOID as marker for jump-table entries (labels) which
4047     // need an internal word relocation.
4048   case T_VOID:
4049   case T_ADDRESS:
4050   case T_OBJECT:  return sizeof(jobject);
4051   default:
4052     ShouldNotReachHere();
4053     return -1;
4054   }
4055 }
4056 
4057 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4058   // sort descending
4059   if (a->freq() > b->freq())  return -1;
4060   if (a->freq() < b->freq())  return  1;
4061   return 0;
4062 }
4063 
4064 void Compile::ConstantTable::calculate_offsets_and_size() {
4065   // First, sort the array by frequencies.
4066   _constants.sort(qsort_comparator);
4067 
4068 #ifdef ASSERT
4069   // Make sure all jump-table entries were sorted to the end of the
4070   // array (they have a negative frequency).
4071   bool found_void = false;
4072   for (int i = 0; i < _constants.length(); i++) {
4073     Constant con = _constants.at(i);
4074     if (con.type() == T_VOID)
4075       found_void = true;  // jump-tables
4076     else
4077       assert(!found_void, "wrong sorting");
4078   }
4079 #endif
4080 
4081   int offset = 0;
4082   for (int i = 0; i < _constants.length(); i++) {
4083     Constant* con = _constants.adr_at(i);
4084 
4085     // Align offset for type.
4086     int typesize = type_to_size_in_bytes(con->type());
4087     offset = align_up(offset, typesize);
4088     con->set_offset(offset);   // set constant's offset
4089 
4090     if (con->type() == T_VOID) {
4091       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4092       offset = offset + typesize * n->outcnt();  // expand jump-table
4093     } else {
4094       offset = offset + typesize;
4095     }
4096   }
4097 
4098   // Align size up to the next section start (which is insts; see
4099   // CodeBuffer::align_at_start).
4100   assert(_size == -1, "already set?");
4101   _size = align_up(offset, (int)CodeEntryAlignment);
4102 }
4103 
4104 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4105   MacroAssembler _masm(&cb);
4106   for (int i = 0; i < _constants.length(); i++) {
4107     Constant con = _constants.at(i);
4108     address constant_addr = NULL;
4109     switch (con.type()) {
4110     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4111     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4112     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4113     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4114     case T_OBJECT: {
4115       jobject obj = con.get_jobject();
4116       int oop_index = _masm.oop_recorder()->find_index(obj);
4117       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4118       break;
4119     }
4120     case T_ADDRESS: {
4121       address addr = (address) con.get_jobject();
4122       constant_addr = _masm.address_constant(addr);
4123       break;
4124     }
4125     // We use T_VOID as marker for jump-table entries (labels) which
4126     // need an internal word relocation.
4127     case T_VOID: {
4128       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4129       // Fill the jump-table with a dummy word.  The real value is
4130       // filled in later in fill_jump_table.
4131       address dummy = (address) n;
4132       constant_addr = _masm.address_constant(dummy);
4133       // Expand jump-table
4134       for (uint i = 1; i < n->outcnt(); i++) {
4135         address temp_addr = _masm.address_constant(dummy + i);
4136         assert(temp_addr, "consts section too small");
4137       }
4138       break;
4139     }
4140     case T_METADATA: {
4141       Metadata* obj = con.get_metadata();
4142       int metadata_index = _masm.oop_recorder()->find_index(obj);
4143       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4144       break;
4145     }
4146     default: ShouldNotReachHere();
4147     }
4148     assert(constant_addr, "consts section too small");
4149     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4150             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4151   }
4152 }
4153 
4154 int Compile::ConstantTable::find_offset(Constant& con) const {
4155   int idx = _constants.find(con);
4156   guarantee(idx != -1, "constant must be in constant table");
4157   int offset = _constants.at(idx).offset();
4158   guarantee(offset != -1, "constant table not emitted yet?");
4159   return offset;
4160 }
4161 
4162 void Compile::ConstantTable::add(Constant& con) {
4163   if (con.can_be_reused()) {
4164     int idx = _constants.find(con);
4165     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4166       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4167       return;
4168     }
4169   }
4170   (void) _constants.append(con);
4171 }
4172 
4173 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4174   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4175   Constant con(type, value, b->_freq);
4176   add(con);
4177   return con;
4178 }
4179 
4180 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4181   Constant con(metadata);
4182   add(con);
4183   return con;
4184 }
4185 
4186 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4187   jvalue value;
4188   BasicType type = oper->type()->basic_type();
4189   switch (type) {
4190   case T_LONG:    value.j = oper->constantL(); break;
4191   case T_FLOAT:   value.f = oper->constantF(); break;
4192   case T_DOUBLE:  value.d = oper->constantD(); break;
4193   case T_OBJECT:
4194   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4195   case T_METADATA: return add((Metadata*)oper->constant()); break;
4196   default: guarantee(false, "unhandled type: %s", type2name(type));
4197   }
4198   return add(n, type, value);
4199 }
4200 
4201 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4202   jvalue value;
4203   // We can use the node pointer here to identify the right jump-table
4204   // as this method is called from Compile::Fill_buffer right before
4205   // the MachNodes are emitted and the jump-table is filled (means the
4206   // MachNode pointers do not change anymore).
4207   value.l = (jobject) n;
4208   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4209   add(con);
4210   return con;
4211 }
4212 
4213 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4214   // If called from Compile::scratch_emit_size do nothing.
4215   if (Compile::current()->in_scratch_emit_size())  return;
4216 
4217   assert(labels.is_nonempty(), "must be");
4218   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4219 
4220   // Since MachConstantNode::constant_offset() also contains
4221   // table_base_offset() we need to subtract the table_base_offset()
4222   // to get the plain offset into the constant table.
4223   int offset = n->constant_offset() - table_base_offset();
4224 
4225   MacroAssembler _masm(&cb);
4226   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4227 
4228   for (uint i = 0; i < n->outcnt(); i++) {
4229     address* constant_addr = &jump_table_base[i];
4230     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4231     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4232     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4233   }
4234 }
4235 
4236 //----------------------------static_subtype_check-----------------------------
4237 // Shortcut important common cases when superklass is exact:
4238 // (0) superklass is java.lang.Object (can occur in reflective code)
4239 // (1) subklass is already limited to a subtype of superklass => always ok
4240 // (2) subklass does not overlap with superklass => always fail
4241 // (3) superklass has NO subtypes and we can check with a simple compare.
4242 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4243   if (StressReflectiveCode) {
4244     return SSC_full_test;       // Let caller generate the general case.
4245   }
4246 
4247   if (superk == env()->Object_klass()) {
4248     return SSC_always_true;     // (0) this test cannot fail
4249   }
4250 
4251   ciType* superelem = superk;
4252   if (superelem->is_array_klass())
4253     superelem = superelem->as_array_klass()->base_element_type();
4254 
4255   if (!subk->is_interface()) {  // cannot trust static interface types yet
4256     if (subk->is_subtype_of(superk)) {
4257       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4258     }
4259     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4260         !superk->is_subtype_of(subk)) {
4261       return SSC_always_false;
4262     }
4263   }
4264 
4265   // If casting to an instance klass, it must have no subtypes
4266   if (superk->is_interface()) {
4267     // Cannot trust interfaces yet.
4268     // %%% S.B. superk->nof_implementors() == 1
4269   } else if (superelem->is_instance_klass()) {
4270     ciInstanceKlass* ik = superelem->as_instance_klass();
4271     if (!ik->has_subklass() && !ik->is_interface()) {
4272       if (!ik->is_final()) {
4273         // Add a dependency if there is a chance of a later subclass.
4274         dependencies()->assert_leaf_type(ik);
4275       }
4276       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4277     }
4278   } else {
4279     // A primitive array type has no subtypes.
4280     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4281   }
4282 
4283   return SSC_full_test;
4284 }
4285 
4286 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4287 #ifdef _LP64
4288   // The scaled index operand to AddP must be a clean 64-bit value.
4289   // Java allows a 32-bit int to be incremented to a negative
4290   // value, which appears in a 64-bit register as a large
4291   // positive number.  Using that large positive number as an
4292   // operand in pointer arithmetic has bad consequences.
4293   // On the other hand, 32-bit overflow is rare, and the possibility
4294   // can often be excluded, if we annotate the ConvI2L node with
4295   // a type assertion that its value is known to be a small positive
4296   // number.  (The prior range check has ensured this.)
4297   // This assertion is used by ConvI2LNode::Ideal.
4298   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4299   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4300   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4301   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4302 #endif
4303   return idx;
4304 }
4305 
4306 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4307 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4308   if (ctrl != NULL) {
4309     // Express control dependency by a CastII node with a narrow type.
4310     value = new CastIINode(value, itype, false, true /* range check dependency */);
4311     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4312     // node from floating above the range check during loop optimizations. Otherwise, the
4313     // ConvI2L node may be eliminated independently of the range check, causing the data path
4314     // to become TOP while the control path is still there (although it's unreachable).
4315     value->set_req(0, ctrl);
4316     // Save CastII node to remove it after loop optimizations.
4317     phase->C->add_range_check_cast(value);
4318     value = phase->transform(value);
4319   }
4320   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4321   return phase->transform(new ConvI2LNode(value, ltype));
4322 }
4323 
4324 // The message about the current inlining is accumulated in
4325 // _print_inlining_stream and transfered into the _print_inlining_list
4326 // once we know whether inlining succeeds or not. For regular
4327 // inlining, messages are appended to the buffer pointed by
4328 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4329 // a new buffer is added after _print_inlining_idx in the list. This
4330 // way we can update the inlining message for late inlining call site
4331 // when the inlining is attempted again.
4332 void Compile::print_inlining_init() {
4333   if (print_inlining() || print_intrinsics()) {
4334     _print_inlining_stream = new stringStream();
4335     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4336   }
4337 }
4338 
4339 void Compile::print_inlining_reinit() {
4340   if (print_inlining() || print_intrinsics()) {
4341     // Re allocate buffer when we change ResourceMark
4342     _print_inlining_stream = new stringStream();
4343   }
4344 }
4345 
4346 void Compile::print_inlining_reset() {
4347   _print_inlining_stream->reset();
4348 }
4349 
4350 void Compile::print_inlining_commit() {
4351   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4352   // Transfer the message from _print_inlining_stream to the current
4353   // _print_inlining_list buffer and clear _print_inlining_stream.
4354   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4355   print_inlining_reset();
4356 }
4357 
4358 void Compile::print_inlining_push() {
4359   // Add new buffer to the _print_inlining_list at current position
4360   _print_inlining_idx++;
4361   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4362 }
4363 
4364 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4365   return _print_inlining_list->at(_print_inlining_idx);
4366 }
4367 
4368 void Compile::print_inlining_update(CallGenerator* cg) {
4369   if (print_inlining() || print_intrinsics()) {
4370     if (!cg->is_late_inline()) {
4371       if (print_inlining_current().cg() != NULL) {
4372         print_inlining_push();
4373       }
4374       print_inlining_commit();
4375     } else {
4376       if (print_inlining_current().cg() != cg &&
4377           (print_inlining_current().cg() != NULL ||
4378            print_inlining_current().ss()->size() != 0)) {
4379         print_inlining_push();
4380       }
4381       print_inlining_commit();
4382       print_inlining_current().set_cg(cg);
4383     }
4384   }
4385 }
4386 
4387 void Compile::print_inlining_move_to(CallGenerator* cg) {
4388   // We resume inlining at a late inlining call site. Locate the
4389   // corresponding inlining buffer so that we can update it.
4390   if (print_inlining()) {
4391     for (int i = 0; i < _print_inlining_list->length(); i++) {
4392       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4393         _print_inlining_idx = i;
4394         return;
4395       }
4396     }
4397     ShouldNotReachHere();
4398   }
4399 }
4400 
4401 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4402   if (print_inlining()) {
4403     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4404     assert(print_inlining_current().cg() == cg, "wrong entry");
4405     // replace message with new message
4406     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4407     print_inlining_commit();
4408     print_inlining_current().set_cg(cg);
4409   }
4410 }
4411 
4412 void Compile::print_inlining_assert_ready() {
4413   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4414 }
4415 
4416 void Compile::process_print_inlining() {
4417   bool do_print_inlining = print_inlining() || print_intrinsics();
4418   if (do_print_inlining || log() != NULL) {
4419     // Print inlining message for candidates that we couldn't inline
4420     // for lack of space
4421     for (int i = 0; i < _late_inlines.length(); i++) {
4422       CallGenerator* cg = _late_inlines.at(i);
4423       if (!cg->is_mh_late_inline()) {
4424         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4425         if (do_print_inlining) {
4426           cg->print_inlining_late(msg);
4427         }
4428         log_late_inline_failure(cg, msg);
4429       }
4430     }
4431   }
4432   if (do_print_inlining) {
4433     ResourceMark rm;
4434     stringStream ss;
4435     for (int i = 0; i < _print_inlining_list->length(); i++) {
4436       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4437     }
4438     size_t end = ss.size();
4439     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4440     strncpy(_print_inlining_output, ss.base(), end+1);
4441     _print_inlining_output[end] = 0;
4442   }
4443 }
4444 
4445 void Compile::dump_print_inlining() {
4446   if (_print_inlining_output != NULL) {
4447     tty->print_raw(_print_inlining_output);
4448   }
4449 }
4450 
4451 void Compile::log_late_inline(CallGenerator* cg) {
4452   if (log() != NULL) {
4453     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4454                 cg->unique_id());
4455     JVMState* p = cg->call_node()->jvms();
4456     while (p != NULL) {
4457       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4458       p = p->caller();
4459     }
4460     log()->tail("late_inline");
4461   }
4462 }
4463 
4464 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4465   log_late_inline(cg);
4466   if (log() != NULL) {
4467     log()->inline_fail(msg);
4468   }
4469 }
4470 
4471 void Compile::log_inline_id(CallGenerator* cg) {
4472   if (log() != NULL) {
4473     // The LogCompilation tool needs a unique way to identify late
4474     // inline call sites. This id must be unique for this call site in
4475     // this compilation. Try to have it unique across compilations as
4476     // well because it can be convenient when grepping through the log
4477     // file.
4478     // Distinguish OSR compilations from others in case CICountOSR is
4479     // on.
4480     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4481     cg->set_unique_id(id);
4482     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4483   }
4484 }
4485 
4486 void Compile::log_inline_failure(const char* msg) {
4487   if (C->log() != NULL) {
4488     C->log()->inline_fail(msg);
4489   }
4490 }
4491 
4492 
4493 // Dump inlining replay data to the stream.
4494 // Don't change thread state and acquire any locks.
4495 void Compile::dump_inline_data(outputStream* out) {
4496   InlineTree* inl_tree = ilt();
4497   if (inl_tree != NULL) {
4498     out->print(" inline %d", inl_tree->count());
4499     inl_tree->dump_replay_data(out);
4500   }
4501 }
4502 
4503 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4504   if (n1->Opcode() < n2->Opcode())      return -1;
4505   else if (n1->Opcode() > n2->Opcode()) return 1;
4506 
4507   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4508   for (uint i = 1; i < n1->req(); i++) {
4509     if (n1->in(i) < n2->in(i))      return -1;
4510     else if (n1->in(i) > n2->in(i)) return 1;
4511   }
4512 
4513   return 0;
4514 }
4515 
4516 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4517   Node* n1 = *n1p;
4518   Node* n2 = *n2p;
4519 
4520   return cmp_expensive_nodes(n1, n2);
4521 }
4522 
4523 void Compile::sort_expensive_nodes() {
4524   if (!expensive_nodes_sorted()) {
4525     _expensive_nodes->sort(cmp_expensive_nodes);
4526   }
4527 }
4528 
4529 bool Compile::expensive_nodes_sorted() const {
4530   for (int i = 1; i < _expensive_nodes->length(); i++) {
4531     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4532       return false;
4533     }
4534   }
4535   return true;
4536 }
4537 
4538 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4539   if (_expensive_nodes->length() == 0) {
4540     return false;
4541   }
4542 
4543   assert(OptimizeExpensiveOps, "optimization off?");
4544 
4545   // Take this opportunity to remove dead nodes from the list
4546   int j = 0;
4547   for (int i = 0; i < _expensive_nodes->length(); i++) {
4548     Node* n = _expensive_nodes->at(i);
4549     if (!n->is_unreachable(igvn)) {
4550       assert(n->is_expensive(), "should be expensive");
4551       _expensive_nodes->at_put(j, n);
4552       j++;
4553     }
4554   }
4555   _expensive_nodes->trunc_to(j);
4556 
4557   // Then sort the list so that similar nodes are next to each other
4558   // and check for at least two nodes of identical kind with same data
4559   // inputs.
4560   sort_expensive_nodes();
4561 
4562   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4563     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4564       return true;
4565     }
4566   }
4567 
4568   return false;
4569 }
4570 
4571 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4572   if (_expensive_nodes->length() == 0) {
4573     return;
4574   }
4575 
4576   assert(OptimizeExpensiveOps, "optimization off?");
4577 
4578   // Sort to bring similar nodes next to each other and clear the
4579   // control input of nodes for which there's only a single copy.
4580   sort_expensive_nodes();
4581 
4582   int j = 0;
4583   int identical = 0;
4584   int i = 0;
4585   bool modified = false;
4586   for (; i < _expensive_nodes->length()-1; i++) {
4587     assert(j <= i, "can't write beyond current index");
4588     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4589       identical++;
4590       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4591       continue;
4592     }
4593     if (identical > 0) {
4594       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4595       identical = 0;
4596     } else {
4597       Node* n = _expensive_nodes->at(i);
4598       igvn.replace_input_of(n, 0, NULL);
4599       igvn.hash_insert(n);
4600       modified = true;
4601     }
4602   }
4603   if (identical > 0) {
4604     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4605   } else if (_expensive_nodes->length() >= 1) {
4606     Node* n = _expensive_nodes->at(i);
4607     igvn.replace_input_of(n, 0, NULL);
4608     igvn.hash_insert(n);
4609     modified = true;
4610   }
4611   _expensive_nodes->trunc_to(j);
4612   if (modified) {
4613     igvn.optimize();
4614   }
4615 }
4616 
4617 void Compile::add_expensive_node(Node * n) {
4618   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4619   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4620   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4621   if (OptimizeExpensiveOps) {
4622     _expensive_nodes->append(n);
4623   } else {
4624     // Clear control input and let IGVN optimize expensive nodes if
4625     // OptimizeExpensiveOps is off.
4626     n->set_req(0, NULL);
4627   }
4628 }
4629 
4630 /**
4631  * Remove the speculative part of types and clean up the graph
4632  */
4633 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4634   if (UseTypeSpeculation) {
4635     Unique_Node_List worklist;
4636     worklist.push(root());
4637     int modified = 0;
4638     // Go over all type nodes that carry a speculative type, drop the
4639     // speculative part of the type and enqueue the node for an igvn
4640     // which may optimize it out.
4641     for (uint next = 0; next < worklist.size(); ++next) {
4642       Node *n  = worklist.at(next);
4643       if (n->is_Type()) {
4644         TypeNode* tn = n->as_Type();
4645         const Type* t = tn->type();
4646         const Type* t_no_spec = t->remove_speculative();
4647         if (t_no_spec != t) {
4648           bool in_hash = igvn.hash_delete(n);
4649           assert(in_hash, "node should be in igvn hash table");
4650           tn->set_type(t_no_spec);
4651           igvn.hash_insert(n);
4652           igvn._worklist.push(n); // give it a chance to go away
4653           modified++;
4654         }
4655       }
4656       uint max = n->len();
4657       for( uint i = 0; i < max; ++i ) {
4658         Node *m = n->in(i);
4659         if (not_a_node(m))  continue;
4660         worklist.push(m);
4661       }
4662     }
4663     // Drop the speculative part of all types in the igvn's type table
4664     igvn.remove_speculative_types();
4665     if (modified > 0) {
4666       igvn.optimize();
4667     }
4668 #ifdef ASSERT
4669     // Verify that after the IGVN is over no speculative type has resurfaced
4670     worklist.clear();
4671     worklist.push(root());
4672     for (uint next = 0; next < worklist.size(); ++next) {
4673       Node *n  = worklist.at(next);
4674       const Type* t = igvn.type_or_null(n);
4675       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4676       if (n->is_Type()) {
4677         t = n->as_Type()->type();
4678         assert(t == t->remove_speculative(), "no more speculative types");
4679       }
4680       uint max = n->len();
4681       for( uint i = 0; i < max; ++i ) {
4682         Node *m = n->in(i);
4683         if (not_a_node(m))  continue;
4684         worklist.push(m);
4685       }
4686     }
4687     igvn.check_no_speculative_types();
4688 #endif
4689   }
4690 }
4691 
4692 // Auxiliary method to support randomized stressing/fuzzing.
4693 //
4694 // This method can be called the arbitrary number of times, with current count
4695 // as the argument. The logic allows selecting a single candidate from the
4696 // running list of candidates as follows:
4697 //    int count = 0;
4698 //    Cand* selected = null;
4699 //    while(cand = cand->next()) {
4700 //      if (randomized_select(++count)) {
4701 //        selected = cand;
4702 //      }
4703 //    }
4704 //
4705 // Including count equalizes the chances any candidate is "selected".
4706 // This is useful when we don't have the complete list of candidates to choose
4707 // from uniformly. In this case, we need to adjust the randomicity of the
4708 // selection, or else we will end up biasing the selection towards the latter
4709 // candidates.
4710 //
4711 // Quick back-envelope calculation shows that for the list of n candidates
4712 // the equal probability for the candidate to persist as "best" can be
4713 // achieved by replacing it with "next" k-th candidate with the probability
4714 // of 1/k. It can be easily shown that by the end of the run, the
4715 // probability for any candidate is converged to 1/n, thus giving the
4716 // uniform distribution among all the candidates.
4717 //
4718 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4719 #define RANDOMIZED_DOMAIN_POW 29
4720 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4721 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4722 bool Compile::randomized_select(int count) {
4723   assert(count > 0, "only positive");
4724   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4725 }
4726 
4727 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4728 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4729 
4730 void NodeCloneInfo::dump() const {
4731   tty->print(" {%d:%d} ", idx(), gen());
4732 }
4733 
4734 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4735   uint64_t val = value(old->_idx);
4736   NodeCloneInfo cio(val);
4737   assert(val != 0, "old node should be in the map");
4738   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4739   insert(nnn->_idx, cin.get());
4740 #ifndef PRODUCT
4741   if (is_debug()) {
4742     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4743   }
4744 #endif
4745 }
4746 
4747 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4748   NodeCloneInfo cio(value(old->_idx));
4749   if (cio.get() == 0) {
4750     cio.set(old->_idx, 0);
4751     insert(old->_idx, cio.get());
4752 #ifndef PRODUCT
4753     if (is_debug()) {
4754       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4755     }
4756 #endif
4757   }
4758   clone(old, nnn, gen);
4759 }
4760 
4761 int CloneMap::max_gen() const {
4762   int g = 0;
4763   DictI di(_dict);
4764   for(; di.test(); ++di) {
4765     int t = gen(di._key);
4766     if (g < t) {
4767       g = t;
4768 #ifndef PRODUCT
4769       if (is_debug()) {
4770         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4771       }
4772 #endif
4773     }
4774   }
4775   return g;
4776 }
4777 
4778 void CloneMap::dump(node_idx_t key) const {
4779   uint64_t val = value(key);
4780   if (val != 0) {
4781     NodeCloneInfo ni(val);
4782     ni.dump();
4783   }
4784 }