/* * Copyright (c) 2012, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "asm/codeBuffer.hpp" #include "classfile/javaClasses.inline.hpp" #include "code/codeCache.hpp" #include "compiler/compileBroker.hpp" #include "compiler/disassembler.hpp" #include "jvmci/jvmciRuntime.hpp" #include "jvmci/jvmciCompilerToVM.hpp" #include "jvmci/jvmciCompiler.hpp" #include "jvmci/jvmciJavaClasses.hpp" #include "jvmci/jvmciEnv.hpp" #include "logging/log.hpp" #include "memory/oopFactory.hpp" #include "memory/resourceArea.hpp" #include "oops/oop.inline.hpp" #include "oops/objArrayOop.inline.hpp" #include "prims/jvm.h" #include "runtime/biasedLocking.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/reflection.hpp" #include "runtime/sharedRuntime.hpp" #include "utilities/debug.hpp" #include "utilities/defaultStream.hpp" #include "utilities/macros.hpp" #if defined(_MSC_VER) #define strtoll _strtoi64 #endif jobject JVMCIRuntime::_HotSpotJVMCIRuntime_instance = NULL; bool JVMCIRuntime::_HotSpotJVMCIRuntime_initialized = false; bool JVMCIRuntime::_well_known_classes_initialized = false; int JVMCIRuntime::_trivial_prefixes_count = 0; char** JVMCIRuntime::_trivial_prefixes = NULL; JVMCIRuntime::CompLevelAdjustment JVMCIRuntime::_comp_level_adjustment = JVMCIRuntime::none; bool JVMCIRuntime::_shutdown_called = false; BasicType JVMCIRuntime::kindToBasicType(Handle kind, TRAPS) { if (kind.is_null()) { THROW_(vmSymbols::java_lang_NullPointerException(), T_ILLEGAL); } jchar ch = JavaKind::typeChar(kind); switch(ch) { case 'Z': return T_BOOLEAN; case 'B': return T_BYTE; case 'S': return T_SHORT; case 'C': return T_CHAR; case 'I': return T_INT; case 'F': return T_FLOAT; case 'J': return T_LONG; case 'D': return T_DOUBLE; case 'A': return T_OBJECT; case '-': return T_ILLEGAL; default: JVMCI_ERROR_(T_ILLEGAL, "unexpected Kind: %c", ch); } } // Simple helper to see if the caller of a runtime stub which // entered the VM has been deoptimized static bool caller_is_deopted() { JavaThread* thread = JavaThread::current(); RegisterMap reg_map(thread, false); frame runtime_frame = thread->last_frame(); frame caller_frame = runtime_frame.sender(®_map); assert(caller_frame.is_compiled_frame(), "must be compiled"); return caller_frame.is_deoptimized_frame(); } // Stress deoptimization static void deopt_caller() { if ( !caller_is_deopted()) { JavaThread* thread = JavaThread::current(); RegisterMap reg_map(thread, false); frame runtime_frame = thread->last_frame(); frame caller_frame = runtime_frame.sender(®_map); Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint); assert(caller_is_deopted(), "Must be deoptimized"); } } JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance(JavaThread* thread, Klass* klass)) JRT_BLOCK; assert(klass->is_klass(), "not a class"); Handle holder(THREAD, klass->klass_holder()); // keep the klass alive InstanceKlass* ik = InstanceKlass::cast(klass); ik->check_valid_for_instantiation(true, CHECK); // make sure klass is initialized ik->initialize(CHECK); // allocate instance and return via TLS oop obj = ik->allocate_instance(CHECK); thread->set_vm_result(obj); JRT_BLOCK_END; if (ReduceInitialCardMarks) { new_store_pre_barrier(thread); } JRT_END JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array(JavaThread* thread, Klass* array_klass, jint length)) JRT_BLOCK; // Note: no handle for klass needed since they are not used // anymore after new_objArray() and no GC can happen before. // (This may have to change if this code changes!) assert(array_klass->is_klass(), "not a class"); oop obj; if (array_klass->is_typeArray_klass()) { BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type(); obj = oopFactory::new_typeArray(elt_type, length, CHECK); } else { Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); obj = oopFactory::new_objArray(elem_klass, length, CHECK); } thread->set_vm_result(obj); // This is pretty rare but this runtime patch is stressful to deoptimization // if we deoptimize here so force a deopt to stress the path. if (DeoptimizeALot) { static int deopts = 0; // Alternate between deoptimizing and raising an error (which will also cause a deopt) if (deopts++ % 2 == 0) { ResourceMark rm(THREAD); THROW(vmSymbols::java_lang_OutOfMemoryError()); } else { deopt_caller(); } } JRT_BLOCK_END; if (ReduceInitialCardMarks) { new_store_pre_barrier(thread); } JRT_END void JVMCIRuntime::new_store_pre_barrier(JavaThread* thread) { // After any safepoint, just before going back to compiled code, // we inform the GC that we will be doing initializing writes to // this object in the future without emitting card-marks, so // GC may take any compensating steps. // NOTE: Keep this code consistent with GraphKit::store_barrier. oop new_obj = thread->vm_result(); if (new_obj == NULL) return; assert(GC::gc()->heap()->can_elide_tlab_store_barriers(), "compiler must check this first"); // GC may decide to give back a safer copy of new_obj. new_obj = GC::gc()->heap()->new_store_pre_barrier(thread, new_obj); thread->set_vm_result(new_obj); } JRT_ENTRY(void, JVMCIRuntime::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims)) assert(klass->is_klass(), "not a class"); assert(rank >= 1, "rank must be nonzero"); Handle holder(THREAD, klass->klass_holder()); // keep the klass alive oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); thread->set_vm_result(obj); JRT_END JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array(JavaThread* thread, oopDesc* element_mirror, jint length)) oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK); thread->set_vm_result(obj); JRT_END JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance(JavaThread* thread, oopDesc* type_mirror)) InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror)); if (klass == NULL) { ResourceMark rm(THREAD); THROW(vmSymbols::java_lang_InstantiationException()); } // Create new instance (the receiver) klass->check_valid_for_instantiation(false, CHECK); // Make sure klass gets initialized klass->initialize(CHECK); oop obj = klass->allocate_instance(CHECK); thread->set_vm_result(obj); JRT_END extern void vm_exit(int code); // Enter this method from compiled code handler below. This is where we transition // to VM mode. This is done as a helper routine so that the method called directly // from compiled code does not have to transition to VM. This allows the entry // method to see if the nmethod that we have just looked up a handler for has // been deoptimized while we were in the vm. This simplifies the assembly code // cpu directories. // // We are entering here from exception stub (via the entry method below) // If there is a compiled exception handler in this method, we will continue there; // otherwise we will unwind the stack and continue at the caller of top frame method // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to // control the area where we can allow a safepoint. After we exit the safepoint area we can // check to see if the handler we are going to return is now in a nmethod that has // been deoptimized. If that is the case we return the deopt blob // unpack_with_exception entry instead. This makes life for the exception blob easier // because making that same check and diverting is painful from assembly language. JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, CompiledMethod*& cm)) // Reset method handle flag. thread->set_is_method_handle_return(false); Handle exception(thread, ex); cm = CodeCache::find_compiled(pc); assert(cm != NULL, "this is not a compiled method"); // Adjust the pc as needed/ if (cm->is_deopt_pc(pc)) { RegisterMap map(thread, false); frame exception_frame = thread->last_frame().sender(&map); // if the frame isn't deopted then pc must not correspond to the caller of last_frame assert(exception_frame.is_deoptimized_frame(), "must be deopted"); pc = exception_frame.pc(); } #ifdef ASSERT assert(exception.not_null(), "NULL exceptions should be handled by throw_exception"); assert(exception->is_oop(), "just checking"); // Check that exception is a subclass of Throwable, otherwise we have a VerifyError if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { if (ExitVMOnVerifyError) vm_exit(-1); ShouldNotReachHere(); } #endif // Check the stack guard pages and reenable them if necessary and there is // enough space on the stack to do so. Use fast exceptions only if the guard // pages are enabled. bool guard_pages_enabled = thread->stack_guards_enabled(); if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); if (JvmtiExport::can_post_on_exceptions()) { // To ensure correct notification of exception catches and throws // we have to deoptimize here. If we attempted to notify the // catches and throws during this exception lookup it's possible // we could deoptimize on the way out of the VM and end back in // the interpreter at the throw site. This would result in double // notifications since the interpreter would also notify about // these same catches and throws as it unwound the frame. RegisterMap reg_map(thread); frame stub_frame = thread->last_frame(); frame caller_frame = stub_frame.sender(®_map); // We don't really want to deoptimize the nmethod itself since we // can actually continue in the exception handler ourselves but I // don't see an easy way to have the desired effect. Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint); assert(caller_is_deopted(), "Must be deoptimized"); return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); } // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions if (guard_pages_enabled) { address fast_continuation = cm->handler_for_exception_and_pc(exception, pc); if (fast_continuation != NULL) { // Set flag if return address is a method handle call site. thread->set_is_method_handle_return(cm->is_method_handle_return(pc)); return fast_continuation; } } // If the stack guard pages are enabled, check whether there is a handler in // the current method. Otherwise (guard pages disabled), force an unwind and // skip the exception cache update (i.e., just leave continuation==NULL). address continuation = NULL; if (guard_pages_enabled) { // New exception handling mechanism can support inlined methods // with exception handlers since the mappings are from PC to PC // debugging support // tracing if (log_is_enabled(Info, exceptions)) { ResourceMark rm; stringStream tempst; tempst.print("compiled method <%s>\n" " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, cm->method()->print_value_string(), p2i(pc), p2i(thread)); Exceptions::log_exception(exception, tempst); } // for AbortVMOnException flag NOT_PRODUCT(Exceptions::debug_check_abort(exception)); // Clear out the exception oop and pc since looking up an // exception handler can cause class loading, which might throw an // exception and those fields are expected to be clear during // normal bytecode execution. thread->clear_exception_oop_and_pc(); bool recursive_exception = false; continuation = SharedRuntime::compute_compiled_exc_handler(cm, pc, exception, false, false, recursive_exception); // If an exception was thrown during exception dispatch, the exception oop may have changed thread->set_exception_oop(exception()); thread->set_exception_pc(pc); // the exception cache is used only by non-implicit exceptions // Update the exception cache only when there didn't happen // another exception during the computation of the compiled // exception handler. Checking for exception oop equality is not // sufficient because some exceptions are pre-allocated and reused. if (continuation != NULL && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) { cm->add_handler_for_exception_and_pc(exception, pc, continuation); } } // Set flag if return address is a method handle call site. thread->set_is_method_handle_return(cm->is_method_handle_return(pc)); if (log_is_enabled(Info, exceptions)) { ResourceMark rm; log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT, p2i(thread), p2i(continuation), p2i(pc)); } return continuation; JRT_END // Enter this method from compiled code only if there is a Java exception handler // in the method handling the exception. // We are entering here from exception stub. We don't do a normal VM transition here. // We do it in a helper. This is so we can check to see if the nmethod we have just // searched for an exception handler has been deoptimized in the meantime. address JVMCIRuntime::exception_handler_for_pc(JavaThread* thread) { oop exception = thread->exception_oop(); address pc = thread->exception_pc(); // Still in Java mode DEBUG_ONLY(ResetNoHandleMark rnhm); CompiledMethod* cm = NULL; address continuation = NULL; { // Enter VM mode by calling the helper ResetNoHandleMark rnhm; continuation = exception_handler_for_pc_helper(thread, exception, pc, cm); } // Back in JAVA, use no oops DON'T safepoint // Now check to see if the compiled method we were called from is now deoptimized. // If so we must return to the deopt blob and deoptimize the nmethod if (cm != NULL && caller_is_deopted()) { continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); } assert(continuation != NULL, "no handler found"); return continuation; } JRT_ENTRY_NO_ASYNC(void, JVMCIRuntime::monitorenter(JavaThread* thread, oopDesc* obj, BasicLock* lock)) IF_TRACE_jvmci_3 { char type[O_BUFLEN]; obj->klass()->name()->as_C_string(type, O_BUFLEN); markOop mark = obj->mark(); TRACE_jvmci_3("%s: entered locking slow case with obj=" INTPTR_FORMAT ", type=%s, mark=" INTPTR_FORMAT ", lock=" INTPTR_FORMAT, thread->name(), p2i(obj), type, p2i(mark), p2i(lock)); tty->flush(); } #ifdef ASSERT if (PrintBiasedLockingStatistics) { Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); } #endif Handle h_obj(thread, obj); assert(h_obj()->is_oop(), "must be NULL or an object"); if (UseBiasedLocking) { // Retry fast entry if bias is revoked to avoid unnecessary inflation ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); } else { if (JVMCIUseFastLocking) { // When using fast locking, the compiled code has already tried the fast case ObjectSynchronizer::slow_enter(h_obj, lock, THREAD); } else { ObjectSynchronizer::fast_enter(h_obj, lock, false, THREAD); } } TRACE_jvmci_3("%s: exiting locking slow with obj=" INTPTR_FORMAT, thread->name(), p2i(obj)); JRT_END JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* thread, oopDesc* obj, BasicLock* lock)) assert(thread == JavaThread::current(), "threads must correspond"); assert(thread->last_Java_sp(), "last_Java_sp must be set"); // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown EXCEPTION_MARK; #ifdef DEBUG if (!obj->is_oop()) { ResetNoHandleMark rhm; nmethod* method = thread->last_frame().cb()->as_nmethod_or_null(); if (method != NULL) { tty->print_cr("ERROR in monitorexit in method %s wrong obj " INTPTR_FORMAT, method->name(), p2i(obj)); } thread->print_stack_on(tty); assert(false, "invalid lock object pointer dected"); } #endif if (JVMCIUseFastLocking) { // When using fast locking, the compiled code has already tried the fast case ObjectSynchronizer::slow_exit(obj, lock, THREAD); } else { ObjectSynchronizer::fast_exit(obj, lock, THREAD); } IF_TRACE_jvmci_3 { char type[O_BUFLEN]; obj->klass()->name()->as_C_string(type, O_BUFLEN); TRACE_jvmci_3("%s: exited locking slow case with obj=" INTPTR_FORMAT ", type=%s, mark=" INTPTR_FORMAT ", lock=" INTPTR_FORMAT, thread->name(), p2i(obj), type, p2i(obj->mark()), p2i(lock)); tty->flush(); } JRT_END JRT_ENTRY(void, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* thread, const char* exception, const char* message)) TempNewSymbol symbol = SymbolTable::new_symbol(exception, CHECK); SharedRuntime::throw_and_post_jvmti_exception(thread, symbol, message); JRT_END JRT_ENTRY(void, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* thread, const char* exception, Klass* klass)) ResourceMark rm(thread); TempNewSymbol symbol = SymbolTable::new_symbol(exception, CHECK); SharedRuntime::throw_and_post_jvmti_exception(thread, symbol, klass->external_name()); JRT_END JRT_ENTRY(void, JVMCIRuntime::throw_class_cast_exception(JavaThread* thread, const char* exception, Klass* caster_klass, Klass* target_klass)) ResourceMark rm(thread); const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass); TempNewSymbol symbol = SymbolTable::new_symbol(exception, CHECK); SharedRuntime::throw_and_post_jvmti_exception(thread, symbol, message); JRT_END JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline)) ttyLocker ttyl; if (obj == NULL) { tty->print("NULL"); } else if (obj->is_oop_or_null(true) && (!as_string || !java_lang_String::is_instance(obj))) { if (obj->is_oop_or_null(true)) { char buf[O_BUFLEN]; tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj)); } else { tty->print(INTPTR_FORMAT, p2i(obj)); } } else { ResourceMark rm; assert(obj != NULL && java_lang_String::is_instance(obj), "must be"); char *buf = java_lang_String::as_utf8_string(obj); tty->print_raw(buf); } if (newline) { tty->cr(); } JRT_END JRT_LEAF(void, JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj)) thread->satb_mark_queue().enqueue(obj); JRT_END JRT_LEAF(void, JVMCIRuntime::write_barrier_post(JavaThread* thread, void* card_addr)) thread->dirty_card_queue().enqueue(card_addr); JRT_END JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child)) bool ret = true; if(!GC::gc()->heap()->is_in_closed_subset(parent)) { tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent)); parent->print(); ret=false; } if(!GC::gc()->heap()->is_in_closed_subset(child)) { tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child)); child->print(); ret=false; } return (jint)ret; JRT_END JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* thread, jlong where, jlong format, jlong value)) ResourceMark rm; const char *error_msg = where == 0L ? "" : (char*) (address) where; char *detail_msg = NULL; if (format != 0L) { const char* buf = (char*) (address) format; size_t detail_msg_length = strlen(buf) * 2; detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length); jio_snprintf(detail_msg, detail_msg_length, buf, value); report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg); } else { report_vm_error(__FILE__, __LINE__, error_msg); } JRT_END JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread)) oop exception = thread->exception_oop(); assert(exception != NULL, "npe"); thread->set_exception_oop(NULL); thread->set_exception_pc(0); return exception; JRT_END PRAGMA_DIAG_PUSH PRAGMA_FORMAT_NONLITERAL_IGNORED JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, oopDesc* format, jlong v1, jlong v2, jlong v3)) ResourceMark rm; assert(format != NULL && java_lang_String::is_instance(format), "must be"); char *buf = java_lang_String::as_utf8_string(format); tty->print((const char*)buf, v1, v2, v3); JRT_END PRAGMA_DIAG_POP static void decipher(jlong v, bool ignoreZero) { if (v != 0 || !ignoreZero) { void* p = (void *)(address) v; CodeBlob* cb = CodeCache::find_blob(p); if (cb) { if (cb->is_nmethod()) { char buf[O_BUFLEN]; tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod_or_null()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin())); return; } cb->print_value_on(tty); return; } if (GC::gc()->heap()->is_in(p)) { oop obj = oop(p); obj->print_value_on(tty); return; } tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v); } } PRAGMA_DIAG_PUSH PRAGMA_FORMAT_NONLITERAL_IGNORED JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3)) ResourceMark rm; const char *buf = (const char*) (address) format; if (vmError) { if (buf != NULL) { fatal(buf, v1, v2, v3); } else { fatal(""); } } else if (buf != NULL) { tty->print(buf, v1, v2, v3); } else { assert(v2 == 0, "v2 != 0"); assert(v3 == 0, "v3 != 0"); decipher(v1, false); } JRT_END PRAGMA_DIAG_POP JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline)) union { jlong l; jdouble d; jfloat f; } uu; uu.l = value; switch (typeChar) { case 'Z': tty->print(value == 0 ? "false" : "true"); break; case 'B': tty->print("%d", (jbyte) value); break; case 'C': tty->print("%c", (jchar) value); break; case 'S': tty->print("%d", (jshort) value); break; case 'I': tty->print("%d", (jint) value); break; case 'F': tty->print("%f", uu.f); break; case 'J': tty->print(JLONG_FORMAT, value); break; case 'D': tty->print("%lf", uu.d); break; default: assert(false, "unknown typeChar"); break; } if (newline) { tty->cr(); } JRT_END JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* thread, oopDesc* obj)) return (jint) obj->identity_hash(); JRT_END JRT_ENTRY(jboolean, JVMCIRuntime::thread_is_interrupted(JavaThread* thread, oopDesc* receiver, jboolean clear_interrupted)) // Ensure that the C++ Thread and OSThread structures aren't freed before we operate. // This locking requires thread_in_vm which is why this method cannot be JRT_LEAF. Handle receiverHandle(thread, receiver); MutexLockerEx ml(thread->threadObj() == (void*)receiver ? NULL : Threads_lock); JavaThread* receiverThread = java_lang_Thread::thread(receiverHandle()); if (receiverThread == NULL) { // The other thread may exit during this process, which is ok so return false. return JNI_FALSE; } else { return (jint) Thread::is_interrupted(receiverThread, clear_interrupted != 0); } JRT_END JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* thread, int value)) deopt_caller(); return value; JRT_END void JVMCIRuntime::force_initialization(TRAPS) { JVMCIRuntime::initialize_well_known_classes(CHECK); ResourceMark rm; TempNewSymbol getCompiler = SymbolTable::new_symbol("getCompiler", CHECK); TempNewSymbol sig = SymbolTable::new_symbol("()Ljdk/vm/ci/runtime/JVMCICompiler;", CHECK); Handle jvmciRuntime = JVMCIRuntime::get_HotSpotJVMCIRuntime(CHECK); JavaValue result(T_OBJECT); JavaCalls::call_virtual(&result, jvmciRuntime, HotSpotJVMCIRuntime::klass(), getCompiler, sig, CHECK); } // private static JVMCIRuntime JVMCI.initializeRuntime() JVM_ENTRY(jobject, JVM_GetJVMCIRuntime(JNIEnv *env, jclass c)) if (!EnableJVMCI) { THROW_MSG_NULL(vmSymbols::java_lang_InternalError(), "JVMCI is not enabled") } JVMCIRuntime::initialize_HotSpotJVMCIRuntime(CHECK_NULL); jobject ret = JVMCIRuntime::get_HotSpotJVMCIRuntime_jobject(CHECK_NULL); return ret; JVM_END Handle JVMCIRuntime::callStatic(const char* className, const char* methodName, const char* signature, JavaCallArguments* args, TRAPS) { TempNewSymbol name = SymbolTable::new_symbol(className, CHECK_(Handle())); Klass* klass = SystemDictionary::resolve_or_fail(name, true, CHECK_(Handle())); TempNewSymbol runtime = SymbolTable::new_symbol(methodName, CHECK_(Handle())); TempNewSymbol sig = SymbolTable::new_symbol(signature, CHECK_(Handle())); JavaValue result(T_OBJECT); if (args == NULL) { JavaCalls::call_static(&result, klass, runtime, sig, CHECK_(Handle())); } else { JavaCalls::call_static(&result, klass, runtime, sig, args, CHECK_(Handle())); } return Handle(THREAD, (oop)result.get_jobject()); } void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(TRAPS) { guarantee(!_HotSpotJVMCIRuntime_initialized, "cannot reinitialize HotSpotJVMCIRuntime"); JVMCIRuntime::initialize_well_known_classes(CHECK); // This should only be called in the context of the JVMCI class being initialized InstanceKlass* klass = SystemDictionary::JVMCI_klass(); guarantee(klass->is_being_initialized() && klass->is_reentrant_initialization(THREAD), "HotSpotJVMCIRuntime initialization should only be triggered through JVMCI initialization"); Handle result = callStatic("jdk/vm/ci/hotspot/HotSpotJVMCIRuntime", "runtime", "()Ljdk/vm/ci/hotspot/HotSpotJVMCIRuntime;", NULL, CHECK); objArrayOop trivial_prefixes = HotSpotJVMCIRuntime::trivialPrefixes(result); if (trivial_prefixes != NULL) { char** prefixes = NEW_C_HEAP_ARRAY(char*, trivial_prefixes->length(), mtCompiler); for (int i = 0; i < trivial_prefixes->length(); i++) { oop str = trivial_prefixes->obj_at(i); if (str == NULL) { THROW(vmSymbols::java_lang_NullPointerException()); } else { prefixes[i] = strdup(java_lang_String::as_utf8_string(str)); } } _trivial_prefixes = prefixes; _trivial_prefixes_count = trivial_prefixes->length(); } int adjustment = HotSpotJVMCIRuntime::compilationLevelAdjustment(result); assert(adjustment >= JVMCIRuntime::none && adjustment <= JVMCIRuntime::by_full_signature, "compilation level adjustment out of bounds"); _comp_level_adjustment = (CompLevelAdjustment) adjustment; _HotSpotJVMCIRuntime_initialized = true; _HotSpotJVMCIRuntime_instance = JNIHandles::make_global(result); } void JVMCIRuntime::initialize_JVMCI(TRAPS) { if (JNIHandles::resolve(_HotSpotJVMCIRuntime_instance) == NULL) { callStatic("jdk/vm/ci/runtime/JVMCI", "getRuntime", "()Ljdk/vm/ci/runtime/JVMCIRuntime;", NULL, CHECK); } assert(_HotSpotJVMCIRuntime_initialized == true, "what?"); } bool JVMCIRuntime::can_initialize_JVMCI() { // Initializing JVMCI requires the module system to be initialized past phase 3. // The JVMCI API itself isn't available until phase 2 and ServiceLoader (which // JVMCI initialization requires) isn't usable until after phase 3. Testing // whether the system loader is initialized satisfies all these invariants. if (SystemDictionary::java_system_loader() == NULL) { return false; } assert(Universe::is_module_initialized(), "must be"); return true; } void JVMCIRuntime::initialize_well_known_classes(TRAPS) { if (JVMCIRuntime::_well_known_classes_initialized == false) { guarantee(can_initialize_JVMCI(), "VM is not yet sufficiently booted to initialize JVMCI"); SystemDictionary::WKID scan = SystemDictionary::FIRST_JVMCI_WKID; SystemDictionary::initialize_wk_klasses_through(SystemDictionary::LAST_JVMCI_WKID, scan, CHECK); JVMCIJavaClasses::compute_offsets(CHECK); JVMCIRuntime::_well_known_classes_initialized = true; } } void JVMCIRuntime::metadata_do(void f(Metadata*)) { // For simplicity, the existence of HotSpotJVMCIMetaAccessContext in // the SystemDictionary well known classes should ensure the other // classes have already been loaded, so make sure their order in the // table enforces that. assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotResolvedJavaMethodImpl) < SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier"); assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotConstantPool) < SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier"); assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotResolvedObjectTypeImpl) < SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier"); if (HotSpotJVMCIMetaAccessContext::klass() == NULL || !HotSpotJVMCIMetaAccessContext::klass()->is_linked()) { // Nothing could be registered yet return; } // WeakReference[] objArrayOop allContexts = HotSpotJVMCIMetaAccessContext::allContexts(); if (allContexts == NULL) { return; } // These must be loaded at this point but the linking state doesn't matter. assert(SystemDictionary::HotSpotResolvedJavaMethodImpl_klass() != NULL, "must be loaded"); assert(SystemDictionary::HotSpotConstantPool_klass() != NULL, "must be loaded"); assert(SystemDictionary::HotSpotResolvedObjectTypeImpl_klass() != NULL, "must be loaded"); for (int i = 0; i < allContexts->length(); i++) { oop ref = allContexts->obj_at(i); if (ref != NULL) { oop referent = java_lang_ref_Reference::referent(ref); if (referent != NULL) { // Chunked Object[] with last element pointing to next chunk objArrayOop metadataRoots = HotSpotJVMCIMetaAccessContext::metadataRoots(referent); while (metadataRoots != NULL) { for (int typeIndex = 0; typeIndex < metadataRoots->length() - 1; typeIndex++) { oop reference = metadataRoots->obj_at(typeIndex); if (reference == NULL) { continue; } oop metadataRoot = java_lang_ref_Reference::referent(reference); if (metadataRoot == NULL) { continue; } if (metadataRoot->is_a(SystemDictionary::HotSpotResolvedJavaMethodImpl_klass())) { Method* method = CompilerToVM::asMethod(metadataRoot); f(method); } else if (metadataRoot->is_a(SystemDictionary::HotSpotConstantPool_klass())) { ConstantPool* constantPool = CompilerToVM::asConstantPool(metadataRoot); f(constantPool); } else if (metadataRoot->is_a(SystemDictionary::HotSpotResolvedObjectTypeImpl_klass())) { Klass* klass = CompilerToVM::asKlass(metadataRoot); f(klass); } else { metadataRoot->print(); ShouldNotReachHere(); } } metadataRoots = (objArrayOop)metadataRoots->obj_at(metadataRoots->length() - 1); assert(metadataRoots == NULL || metadataRoots->is_objArray(), "wrong type"); } } } } } // private static void CompilerToVM.registerNatives() JVM_ENTRY(void, JVM_RegisterJVMCINatives(JNIEnv *env, jclass c2vmClass)) if (!EnableJVMCI) { THROW_MSG(vmSymbols::java_lang_InternalError(), "JVMCI is not enabled"); } #ifdef _LP64 #ifndef SPARC uintptr_t heap_end = (uintptr_t) GC::gc()->heap()->reserved_region().end(); uintptr_t allocation_end = heap_end + ((uintptr_t)16) * 1024 * 1024 * 1024; guarantee(heap_end < allocation_end, "heap end too close to end of address space (might lead to erroneous TLAB allocations)"); #endif // !SPARC #else fatal("check TLAB allocation code for address space conflicts"); #endif // _LP64 JVMCIRuntime::initialize_well_known_classes(CHECK); { ThreadToNativeFromVM trans(thread); env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count()); } JVM_END void JVMCIRuntime::shutdown(TRAPS) { if (_HotSpotJVMCIRuntime_instance != NULL) { _shutdown_called = true; HandleMark hm(THREAD); Handle receiver = get_HotSpotJVMCIRuntime(CHECK); JavaValue result(T_VOID); JavaCallArguments args; args.push_oop(receiver); JavaCalls::call_special(&result, receiver->klass(), vmSymbols::shutdown_method_name(), vmSymbols::void_method_signature(), &args, CHECK); } } CompLevel JVMCIRuntime::adjust_comp_level_inner(methodHandle method, bool is_osr, CompLevel level, JavaThread* thread) { JVMCICompiler* compiler = JVMCICompiler::instance(thread); if (compiler != NULL && compiler->is_bootstrapping()) { return level; } if (!is_HotSpotJVMCIRuntime_initialized() || !_comp_level_adjustment) { // JVMCI cannot participate in compilation scheduling until // JVMCI is initialized and indicates it wants to participate. return level; } #define CHECK_RETURN THREAD); \ if (HAS_PENDING_EXCEPTION) { \ Handle exception(THREAD, PENDING_EXCEPTION); \ CLEAR_PENDING_EXCEPTION; \ \ java_lang_Throwable::java_printStackTrace(exception, THREAD); \ if (HAS_PENDING_EXCEPTION) { \ CLEAR_PENDING_EXCEPTION; \ } \ return level; \ } \ (void)(0 Thread* THREAD = thread; HandleMark hm; Handle receiver = JVMCIRuntime::get_HotSpotJVMCIRuntime(CHECK_RETURN); Handle name; Handle sig; if (_comp_level_adjustment == JVMCIRuntime::by_full_signature) { name = java_lang_String::create_from_symbol(method->name(), CHECK_RETURN); sig = java_lang_String::create_from_symbol(method->signature(), CHECK_RETURN); } else { name = Handle(); sig = Handle(); } JavaValue result(T_INT); JavaCallArguments args; args.push_oop(receiver); args.push_oop(Handle(THREAD, method->method_holder()->java_mirror())); args.push_oop(name); args.push_oop(sig); args.push_int(is_osr); args.push_int(level); JavaCalls::call_special(&result, receiver->klass(), vmSymbols::adjustCompilationLevel_name(), vmSymbols::adjustCompilationLevel_signature(), &args, CHECK_RETURN); int comp_level = result.get_jint(); if (comp_level < CompLevel_none || comp_level > CompLevel_full_optimization) { assert(false, "compilation level out of bounds"); return level; } return (CompLevel) comp_level; #undef CHECK_RETURN } void JVMCIRuntime::bootstrap_finished(TRAPS) { HandleMark hm(THREAD); Handle receiver = get_HotSpotJVMCIRuntime(CHECK); JavaValue result(T_VOID); JavaCallArguments args; args.push_oop(receiver); JavaCalls::call_special(&result, receiver->klass(), vmSymbols::bootstrapFinished_method_name(), vmSymbols::void_method_signature(), &args, CHECK); } bool JVMCIRuntime::treat_as_trivial(Method* method) { if (_HotSpotJVMCIRuntime_initialized) { for (int i = 0; i < _trivial_prefixes_count; i++) { if (method->method_holder()->name()->starts_with(_trivial_prefixes[i])) { return true; } } } return false; }