1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "runtime/atomic.hpp"
  78 #include "runtime/init.hpp"
  79 #include "runtime/orderAccess.inline.hpp"
  80 #include "runtime/vmThread.hpp"
  81 #include "utilities/globalDefinitions.hpp"
  82 #include "utilities/stack.inline.hpp"
  83 
  84 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  85 
  86 // INVARIANTS/NOTES
  87 //
  88 // All allocation activity covered by the G1CollectedHeap interface is
  89 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  90 // and allocate_new_tlab, which are the "entry" points to the
  91 // allocation code from the rest of the JVM.  (Note that this does not
  92 // apply to TLAB allocation, which is not part of this interface: it
  93 // is done by clients of this interface.)
  94 
  95 // Local to this file.
  96 
  97 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  98   bool _concurrent;
  99 public:
 100   RefineCardTableEntryClosure() : _concurrent(true) { }
 101 
 102   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 103     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, NULL);
 104     // This path is executed by the concurrent refine or mutator threads,
 105     // concurrently, and so we do not care if card_ptr contains references
 106     // that point into the collection set.
 107     assert(!oops_into_cset, "should be");
 108 
 109     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 110       // Caller will actually yield.
 111       return false;
 112     }
 113     // Otherwise, we finished successfully; return true.
 114     return true;
 115   }
 116 
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 122  private:
 123   size_t _num_dirtied;
 124   G1CollectedHeap* _g1h;
 125   G1SATBCardTableLoggingModRefBS* _g1_bs;
 126 
 127   HeapRegion* region_for_card(jbyte* card_ptr) const {
 128     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 129   }
 130 
 131   bool will_become_free(HeapRegion* hr) const {
 132     // A region will be freed by free_collection_set if the region is in the
 133     // collection set and has not had an evacuation failure.
 134     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 135   }
 136 
 137  public:
 138   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 139     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 140 
 141   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 142     HeapRegion* hr = region_for_card(card_ptr);
 143 
 144     // Should only dirty cards in regions that won't be freed.
 145     if (!will_become_free(hr)) {
 146       *card_ptr = CardTableModRefBS::dirty_card_val();
 147       _num_dirtied++;
 148     }
 149 
 150     return true;
 151   }
 152 
 153   size_t num_dirtied()   const { return _num_dirtied; }
 154 };
 155 
 156 
 157 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 158   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 159 }
 160 
 161 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 162   // The from card cache is not the memory that is actually committed. So we cannot
 163   // take advantage of the zero_filled parameter.
 164   reset_from_card_cache(start_idx, num_regions);
 165 }
 166 
 167 // Returns true if the reference points to an object that
 168 // can move in an incremental collection.
 169 bool G1CollectedHeap::is_scavengable(const void* p) {
 170   HeapRegion* hr = heap_region_containing(p);
 171   return !hr->is_pinned();
 172 }
 173 
 174 // Private methods.
 175 
 176 HeapRegion*
 177 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 178   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 179   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 180     if (!_secondary_free_list.is_empty()) {
 181       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 182                                       "secondary_free_list has %u entries",
 183                                       _secondary_free_list.length());
 184       // It looks as if there are free regions available on the
 185       // secondary_free_list. Let's move them to the free_list and try
 186       // again to allocate from it.
 187       append_secondary_free_list();
 188 
 189       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 190              "empty we should have moved at least one entry to the free_list");
 191       HeapRegion* res = _hrm.allocate_free_region(is_old);
 192       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 193                                       "allocated " HR_FORMAT " from secondary_free_list",
 194                                       HR_FORMAT_PARAMS(res));
 195       return res;
 196     }
 197 
 198     // Wait here until we get notified either when (a) there are no
 199     // more free regions coming or (b) some regions have been moved on
 200     // the secondary_free_list.
 201     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 202   }
 203 
 204   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 205                                   "could not allocate from secondary_free_list");
 206   return NULL;
 207 }
 208 
 209 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 210   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 211          "the only time we use this to allocate a humongous region is "
 212          "when we are allocating a single humongous region");
 213 
 214   HeapRegion* res;
 215   if (G1StressConcRegionFreeing) {
 216     if (!_secondary_free_list.is_empty()) {
 217       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 218                                       "forced to look at the secondary_free_list");
 219       res = new_region_try_secondary_free_list(is_old);
 220       if (res != NULL) {
 221         return res;
 222       }
 223     }
 224   }
 225 
 226   res = _hrm.allocate_free_region(is_old);
 227 
 228   if (res == NULL) {
 229     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 230                                     "res == NULL, trying the secondary_free_list");
 231     res = new_region_try_secondary_free_list(is_old);
 232   }
 233   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 234     // Currently, only attempts to allocate GC alloc regions set
 235     // do_expand to true. So, we should only reach here during a
 236     // safepoint. If this assumption changes we might have to
 237     // reconsider the use of _expand_heap_after_alloc_failure.
 238     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 239 
 240     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 241                               word_size * HeapWordSize);
 242 
 243     if (expand(word_size * HeapWordSize)) {
 244       // Given that expand() succeeded in expanding the heap, and we
 245       // always expand the heap by an amount aligned to the heap
 246       // region size, the free list should in theory not be empty.
 247       // In either case allocate_free_region() will check for NULL.
 248       res = _hrm.allocate_free_region(is_old);
 249     } else {
 250       _expand_heap_after_alloc_failure = false;
 251     }
 252   }
 253   return res;
 254 }
 255 
 256 HeapWord*
 257 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 258                                                            uint num_regions,
 259                                                            size_t word_size,
 260                                                            AllocationContext_t context) {
 261   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 262   assert(is_humongous(word_size), "word_size should be humongous");
 263   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 264 
 265   // Index of last region in the series.
 266   uint last = first + num_regions - 1;
 267 
 268   // We need to initialize the region(s) we just discovered. This is
 269   // a bit tricky given that it can happen concurrently with
 270   // refinement threads refining cards on these regions and
 271   // potentially wanting to refine the BOT as they are scanning
 272   // those cards (this can happen shortly after a cleanup; see CR
 273   // 6991377). So we have to set up the region(s) carefully and in
 274   // a specific order.
 275 
 276   // The word size sum of all the regions we will allocate.
 277   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 278   assert(word_size <= word_size_sum, "sanity");
 279 
 280   // This will be the "starts humongous" region.
 281   HeapRegion* first_hr = region_at(first);
 282   // The header of the new object will be placed at the bottom of
 283   // the first region.
 284   HeapWord* new_obj = first_hr->bottom();
 285   // This will be the new top of the new object.
 286   HeapWord* obj_top = new_obj + word_size;
 287 
 288   // First, we need to zero the header of the space that we will be
 289   // allocating. When we update top further down, some refinement
 290   // threads might try to scan the region. By zeroing the header we
 291   // ensure that any thread that will try to scan the region will
 292   // come across the zero klass word and bail out.
 293   //
 294   // NOTE: It would not have been correct to have used
 295   // CollectedHeap::fill_with_object() and make the space look like
 296   // an int array. The thread that is doing the allocation will
 297   // later update the object header to a potentially different array
 298   // type and, for a very short period of time, the klass and length
 299   // fields will be inconsistent. This could cause a refinement
 300   // thread to calculate the object size incorrectly.
 301   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 302 
 303   // Next, pad out the unused tail of the last region with filler
 304   // objects, for improved usage accounting.
 305   // How many words we use for filler objects.
 306   size_t word_fill_size = word_size_sum - word_size;
 307 
 308   // How many words memory we "waste" which cannot hold a filler object.
 309   size_t words_not_fillable = 0;
 310 
 311   if (word_fill_size >= min_fill_size()) {
 312     fill_with_objects(obj_top, word_fill_size);
 313   } else if (word_fill_size > 0) {
 314     // We have space to fill, but we cannot fit an object there.
 315     words_not_fillable = word_fill_size;
 316     word_fill_size = 0;
 317   }
 318 
 319   // We will set up the first region as "starts humongous". This
 320   // will also update the BOT covering all the regions to reflect
 321   // that there is a single object that starts at the bottom of the
 322   // first region.
 323   first_hr->set_starts_humongous(obj_top, word_fill_size);
 324   first_hr->set_allocation_context(context);
 325   // Then, if there are any, we will set up the "continues
 326   // humongous" regions.
 327   HeapRegion* hr = NULL;
 328   for (uint i = first + 1; i <= last; ++i) {
 329     hr = region_at(i);
 330     hr->set_continues_humongous(first_hr);
 331     hr->set_allocation_context(context);
 332   }
 333 
 334   // Up to this point no concurrent thread would have been able to
 335   // do any scanning on any region in this series. All the top
 336   // fields still point to bottom, so the intersection between
 337   // [bottom,top] and [card_start,card_end] will be empty. Before we
 338   // update the top fields, we'll do a storestore to make sure that
 339   // no thread sees the update to top before the zeroing of the
 340   // object header and the BOT initialization.
 341   OrderAccess::storestore();
 342 
 343   // Now, we will update the top fields of the "continues humongous"
 344   // regions except the last one.
 345   for (uint i = first; i < last; ++i) {
 346     hr = region_at(i);
 347     hr->set_top(hr->end());
 348   }
 349 
 350   hr = region_at(last);
 351   // If we cannot fit a filler object, we must set top to the end
 352   // of the humongous object, otherwise we cannot iterate the heap
 353   // and the BOT will not be complete.
 354   hr->set_top(hr->end() - words_not_fillable);
 355 
 356   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 357          "obj_top should be in last region");
 358 
 359   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 360 
 361   assert(words_not_fillable == 0 ||
 362          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 363          "Miscalculation in humongous allocation");
 364 
 365   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 366 
 367   for (uint i = first; i <= last; ++i) {
 368     hr = region_at(i);
 369     _humongous_set.add(hr);
 370     _hr_printer.alloc(hr);
 371   }
 372 
 373   return new_obj;
 374 }
 375 
 376 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 377   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 378   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 379 }
 380 
 381 // If could fit into free regions w/o expansion, try.
 382 // Otherwise, if can expand, do so.
 383 // Otherwise, if using ex regions might help, try with ex given back.
 384 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 385   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 386 
 387   _verifier->verify_region_sets_optional();
 388 
 389   uint first = G1_NO_HRM_INDEX;
 390   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 391 
 392   if (obj_regions == 1) {
 393     // Only one region to allocate, try to use a fast path by directly allocating
 394     // from the free lists. Do not try to expand here, we will potentially do that
 395     // later.
 396     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 397     if (hr != NULL) {
 398       first = hr->hrm_index();
 399     }
 400   } else {
 401     // We can't allocate humongous regions spanning more than one region while
 402     // cleanupComplete() is running, since some of the regions we find to be
 403     // empty might not yet be added to the free list. It is not straightforward
 404     // to know in which list they are on so that we can remove them. We only
 405     // need to do this if we need to allocate more than one region to satisfy the
 406     // current humongous allocation request. If we are only allocating one region
 407     // we use the one-region region allocation code (see above), that already
 408     // potentially waits for regions from the secondary free list.
 409     wait_while_free_regions_coming();
 410     append_secondary_free_list_if_not_empty_with_lock();
 411 
 412     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 413     // are lucky enough to find some.
 414     first = _hrm.find_contiguous_only_empty(obj_regions);
 415     if (first != G1_NO_HRM_INDEX) {
 416       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 417     }
 418   }
 419 
 420   if (first == G1_NO_HRM_INDEX) {
 421     // Policy: We could not find enough regions for the humongous object in the
 422     // free list. Look through the heap to find a mix of free and uncommitted regions.
 423     // If so, try expansion.
 424     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 425     if (first != G1_NO_HRM_INDEX) {
 426       // We found something. Make sure these regions are committed, i.e. expand
 427       // the heap. Alternatively we could do a defragmentation GC.
 428       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 429                                     word_size * HeapWordSize);
 430 
 431       _hrm.expand_at(first, obj_regions, workers());
 432       g1_policy()->record_new_heap_size(num_regions());
 433 
 434 #ifdef ASSERT
 435       for (uint i = first; i < first + obj_regions; ++i) {
 436         HeapRegion* hr = region_at(i);
 437         assert(hr->is_free(), "sanity");
 438         assert(hr->is_empty(), "sanity");
 439         assert(is_on_master_free_list(hr), "sanity");
 440       }
 441 #endif
 442       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 443     } else {
 444       // Policy: Potentially trigger a defragmentation GC.
 445     }
 446   }
 447 
 448   HeapWord* result = NULL;
 449   if (first != G1_NO_HRM_INDEX) {
 450     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 451                                                        word_size, context);
 452     assert(result != NULL, "it should always return a valid result");
 453 
 454     // A successful humongous object allocation changes the used space
 455     // information of the old generation so we need to recalculate the
 456     // sizes and update the jstat counters here.
 457     g1mm()->update_sizes();
 458   }
 459 
 460   _verifier->verify_region_sets_optional();
 461 
 462   return result;
 463 }
 464 
 465 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 466   assert_heap_not_locked_and_not_at_safepoint();
 467   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 468 
 469   uint dummy_gc_count_before;
 470   uint dummy_gclocker_retry_count = 0;
 471   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 472 }
 473 
 474 HeapWord*
 475 G1CollectedHeap::mem_allocate(size_t word_size,
 476                               bool*  gc_overhead_limit_was_exceeded) {
 477   assert_heap_not_locked_and_not_at_safepoint();
 478 
 479   // Loop until the allocation is satisfied, or unsatisfied after GC.
 480   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 481     uint gc_count_before;
 482 
 483     HeapWord* result = NULL;
 484     if (!is_humongous(word_size)) {
 485       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 486     } else {
 487       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 488     }
 489     if (result != NULL) {
 490       return result;
 491     }
 492 
 493     // Create the garbage collection operation...
 494     VM_G1CollectForAllocation op(gc_count_before, word_size);
 495     op.set_allocation_context(AllocationContext::current());
 496 
 497     // ...and get the VM thread to execute it.
 498     VMThread::execute(&op);
 499 
 500     if (op.prologue_succeeded() && op.pause_succeeded()) {
 501       // If the operation was successful we'll return the result even
 502       // if it is NULL. If the allocation attempt failed immediately
 503       // after a Full GC, it's unlikely we'll be able to allocate now.
 504       HeapWord* result = op.result();
 505       if (result != NULL && !is_humongous(word_size)) {
 506         // Allocations that take place on VM operations do not do any
 507         // card dirtying and we have to do it here. We only have to do
 508         // this for non-humongous allocations, though.
 509         dirty_young_block(result, word_size);
 510       }
 511       return result;
 512     } else {
 513       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 514         return NULL;
 515       }
 516       assert(op.result() == NULL,
 517              "the result should be NULL if the VM op did not succeed");
 518     }
 519 
 520     // Give a warning if we seem to be looping forever.
 521     if ((QueuedAllocationWarningCount > 0) &&
 522         (try_count % QueuedAllocationWarningCount == 0)) {
 523       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 524     }
 525   }
 526 
 527   ShouldNotReachHere();
 528   return NULL;
 529 }
 530 
 531 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 532                                                    AllocationContext_t context,
 533                                                    uint* gc_count_before_ret,
 534                                                    uint* gclocker_retry_count_ret) {
 535   // Make sure you read the note in attempt_allocation_humongous().
 536 
 537   assert_heap_not_locked_and_not_at_safepoint();
 538   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 539          "be called for humongous allocation requests");
 540 
 541   // We should only get here after the first-level allocation attempt
 542   // (attempt_allocation()) failed to allocate.
 543 
 544   // We will loop until a) we manage to successfully perform the
 545   // allocation or b) we successfully schedule a collection which
 546   // fails to perform the allocation. b) is the only case when we'll
 547   // return NULL.
 548   HeapWord* result = NULL;
 549   for (int try_count = 1; /* we'll return */; try_count += 1) {
 550     bool should_try_gc;
 551     uint gc_count_before;
 552 
 553     {
 554       MutexLockerEx x(Heap_lock);
 555       result = _allocator->attempt_allocation_locked(word_size, context);
 556       if (result != NULL) {
 557         return result;
 558       }
 559 
 560       if (GCLocker::is_active_and_needs_gc()) {
 561         if (g1_policy()->can_expand_young_list()) {
 562           // No need for an ergo verbose message here,
 563           // can_expand_young_list() does this when it returns true.
 564           result = _allocator->attempt_allocation_force(word_size, context);
 565           if (result != NULL) {
 566             return result;
 567           }
 568         }
 569         should_try_gc = false;
 570       } else {
 571         // The GCLocker may not be active but the GCLocker initiated
 572         // GC may not yet have been performed (GCLocker::needs_gc()
 573         // returns true). In this case we do not try this GC and
 574         // wait until the GCLocker initiated GC is performed, and
 575         // then retry the allocation.
 576         if (GCLocker::needs_gc()) {
 577           should_try_gc = false;
 578         } else {
 579           // Read the GC count while still holding the Heap_lock.
 580           gc_count_before = total_collections();
 581           should_try_gc = true;
 582         }
 583       }
 584     }
 585 
 586     if (should_try_gc) {
 587       bool succeeded;
 588       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 589                                    GCCause::_g1_inc_collection_pause);
 590       if (result != NULL) {
 591         assert(succeeded, "only way to get back a non-NULL result");
 592         return result;
 593       }
 594 
 595       if (succeeded) {
 596         // If we get here we successfully scheduled a collection which
 597         // failed to allocate. No point in trying to allocate
 598         // further. We'll just return NULL.
 599         MutexLockerEx x(Heap_lock);
 600         *gc_count_before_ret = total_collections();
 601         return NULL;
 602       }
 603     } else {
 604       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 605         MutexLockerEx x(Heap_lock);
 606         *gc_count_before_ret = total_collections();
 607         return NULL;
 608       }
 609       // The GCLocker is either active or the GCLocker initiated
 610       // GC has not yet been performed. Stall until it is and
 611       // then retry the allocation.
 612       GCLocker::stall_until_clear();
 613       (*gclocker_retry_count_ret) += 1;
 614     }
 615 
 616     // We can reach here if we were unsuccessful in scheduling a
 617     // collection (because another thread beat us to it) or if we were
 618     // stalled due to the GC locker. In either can we should retry the
 619     // allocation attempt in case another thread successfully
 620     // performed a collection and reclaimed enough space. We do the
 621     // first attempt (without holding the Heap_lock) here and the
 622     // follow-on attempt will be at the start of the next loop
 623     // iteration (after taking the Heap_lock).
 624     result = _allocator->attempt_allocation(word_size, context);
 625     if (result != NULL) {
 626       return result;
 627     }
 628 
 629     // Give a warning if we seem to be looping forever.
 630     if ((QueuedAllocationWarningCount > 0) &&
 631         (try_count % QueuedAllocationWarningCount == 0)) {
 632       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 633                       "retries %d times", try_count);
 634     }
 635   }
 636 
 637   ShouldNotReachHere();
 638   return NULL;
 639 }
 640 
 641 void G1CollectedHeap::begin_archive_alloc_range() {
 642   assert_at_safepoint(true /* should_be_vm_thread */);
 643   if (_archive_allocator == NULL) {
 644     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 645   }
 646 }
 647 
 648 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 649   // Allocations in archive regions cannot be of a size that would be considered
 650   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 651   // may be different at archive-restore time.
 652   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 653 }
 654 
 655 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 656   assert_at_safepoint(true /* should_be_vm_thread */);
 657   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 658   if (is_archive_alloc_too_large(word_size)) {
 659     return NULL;
 660   }
 661   return _archive_allocator->archive_mem_allocate(word_size);
 662 }
 663 
 664 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 665                                               size_t end_alignment_in_bytes) {
 666   assert_at_safepoint(true /* should_be_vm_thread */);
 667   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 668 
 669   // Call complete_archive to do the real work, filling in the MemRegion
 670   // array with the archive regions.
 671   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 672   delete _archive_allocator;
 673   _archive_allocator = NULL;
 674 }
 675 
 676 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 677   assert(ranges != NULL, "MemRegion array NULL");
 678   assert(count != 0, "No MemRegions provided");
 679   MemRegion reserved = _hrm.reserved();
 680   for (size_t i = 0; i < count; i++) {
 681     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 682       return false;
 683     }
 684   }
 685   return true;
 686 }
 687 
 688 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 689   assert(!is_init_completed(), "Expect to be called at JVM init time");
 690   assert(ranges != NULL, "MemRegion array NULL");
 691   assert(count != 0, "No MemRegions provided");
 692   MutexLockerEx x(Heap_lock);
 693 
 694   MemRegion reserved = _hrm.reserved();
 695   HeapWord* prev_last_addr = NULL;
 696   HeapRegion* prev_last_region = NULL;
 697 
 698   // Temporarily disable pretouching of heap pages. This interface is used
 699   // when mmap'ing archived heap data in, so pre-touching is wasted.
 700   FlagSetting fs(AlwaysPreTouch, false);
 701 
 702   // Enable archive object checking used by G1MarkSweep. We have to let it know
 703   // about each archive range, so that objects in those ranges aren't marked.
 704   G1ArchiveAllocator::enable_archive_object_check();
 705 
 706   // For each specified MemRegion range, allocate the corresponding G1
 707   // regions and mark them as archive regions. We expect the ranges in
 708   // ascending starting address order, without overlap.
 709   for (size_t i = 0; i < count; i++) {
 710     MemRegion curr_range = ranges[i];
 711     HeapWord* start_address = curr_range.start();
 712     size_t word_size = curr_range.word_size();
 713     HeapWord* last_address = curr_range.last();
 714     size_t commits = 0;
 715 
 716     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 717               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 718               p2i(start_address), p2i(last_address));
 719     guarantee(start_address > prev_last_addr,
 720               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 721               p2i(start_address), p2i(prev_last_addr));
 722     prev_last_addr = last_address;
 723 
 724     // Check for ranges that start in the same G1 region in which the previous
 725     // range ended, and adjust the start address so we don't try to allocate
 726     // the same region again. If the current range is entirely within that
 727     // region, skip it, just adjusting the recorded top.
 728     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 729     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 730       start_address = start_region->end();
 731       if (start_address > last_address) {
 732         increase_used(word_size * HeapWordSize);
 733         start_region->set_top(last_address + 1);
 734         continue;
 735       }
 736       start_region->set_top(start_address);
 737       curr_range = MemRegion(start_address, last_address + 1);
 738       start_region = _hrm.addr_to_region(start_address);
 739     }
 740 
 741     // Perform the actual region allocation, exiting if it fails.
 742     // Then note how much new space we have allocated.
 743     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 744       return false;
 745     }
 746     increase_used(word_size * HeapWordSize);
 747     if (commits != 0) {
 748       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 749                                 HeapRegion::GrainWords * HeapWordSize * commits);
 750 
 751     }
 752 
 753     // Mark each G1 region touched by the range as archive, add it to the old set,
 754     // and set the allocation context and top.
 755     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 756     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 757     prev_last_region = last_region;
 758 
 759     while (curr_region != NULL) {
 760       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 761              "Region already in use (index %u)", curr_region->hrm_index());
 762       curr_region->set_allocation_context(AllocationContext::system());
 763       curr_region->set_archive();
 764       _hr_printer.alloc(curr_region);
 765       _old_set.add(curr_region);
 766       if (curr_region != last_region) {
 767         curr_region->set_top(curr_region->end());
 768         curr_region = _hrm.next_region_in_heap(curr_region);
 769       } else {
 770         curr_region->set_top(last_address + 1);
 771         curr_region = NULL;
 772       }
 773     }
 774 
 775     // Notify mark-sweep of the archive range.
 776     G1ArchiveAllocator::set_range_archive(curr_range, true);
 777   }
 778   return true;
 779 }
 780 
 781 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 782   assert(!is_init_completed(), "Expect to be called at JVM init time");
 783   assert(ranges != NULL, "MemRegion array NULL");
 784   assert(count != 0, "No MemRegions provided");
 785   MemRegion reserved = _hrm.reserved();
 786   HeapWord *prev_last_addr = NULL;
 787   HeapRegion* prev_last_region = NULL;
 788 
 789   // For each MemRegion, create filler objects, if needed, in the G1 regions
 790   // that contain the address range. The address range actually within the
 791   // MemRegion will not be modified. That is assumed to have been initialized
 792   // elsewhere, probably via an mmap of archived heap data.
 793   MutexLockerEx x(Heap_lock);
 794   for (size_t i = 0; i < count; i++) {
 795     HeapWord* start_address = ranges[i].start();
 796     HeapWord* last_address = ranges[i].last();
 797 
 798     assert(reserved.contains(start_address) && reserved.contains(last_address),
 799            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 800            p2i(start_address), p2i(last_address));
 801     assert(start_address > prev_last_addr,
 802            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 803            p2i(start_address), p2i(prev_last_addr));
 804 
 805     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 806     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 807     HeapWord* bottom_address = start_region->bottom();
 808 
 809     // Check for a range beginning in the same region in which the
 810     // previous one ended.
 811     if (start_region == prev_last_region) {
 812       bottom_address = prev_last_addr + 1;
 813     }
 814 
 815     // Verify that the regions were all marked as archive regions by
 816     // alloc_archive_regions.
 817     HeapRegion* curr_region = start_region;
 818     while (curr_region != NULL) {
 819       guarantee(curr_region->is_archive(),
 820                 "Expected archive region at index %u", curr_region->hrm_index());
 821       if (curr_region != last_region) {
 822         curr_region = _hrm.next_region_in_heap(curr_region);
 823       } else {
 824         curr_region = NULL;
 825       }
 826     }
 827 
 828     prev_last_addr = last_address;
 829     prev_last_region = last_region;
 830 
 831     // Fill the memory below the allocated range with dummy object(s),
 832     // if the region bottom does not match the range start, or if the previous
 833     // range ended within the same G1 region, and there is a gap.
 834     if (start_address != bottom_address) {
 835       size_t fill_size = pointer_delta(start_address, bottom_address);
 836       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 837       increase_used(fill_size * HeapWordSize);
 838     }
 839   }
 840 }
 841 
 842 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 843                                                      uint* gc_count_before_ret,
 844                                                      uint* gclocker_retry_count_ret) {
 845   assert_heap_not_locked_and_not_at_safepoint();
 846   assert(!is_humongous(word_size), "attempt_allocation() should not "
 847          "be called for humongous allocation requests");
 848 
 849   AllocationContext_t context = AllocationContext::current();
 850   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 851 
 852   if (result == NULL) {
 853     result = attempt_allocation_slow(word_size,
 854                                      context,
 855                                      gc_count_before_ret,
 856                                      gclocker_retry_count_ret);
 857   }
 858   assert_heap_not_locked();
 859   if (result != NULL) {
 860     dirty_young_block(result, word_size);
 861   }
 862   return result;
 863 }
 864 
 865 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 866   assert(!is_init_completed(), "Expect to be called at JVM init time");
 867   assert(ranges != NULL, "MemRegion array NULL");
 868   assert(count != 0, "No MemRegions provided");
 869   MemRegion reserved = _hrm.reserved();
 870   HeapWord* prev_last_addr = NULL;
 871   HeapRegion* prev_last_region = NULL;
 872   size_t size_used = 0;
 873   size_t uncommitted_regions = 0;
 874 
 875   // For each Memregion, free the G1 regions that constitute it, and
 876   // notify mark-sweep that the range is no longer to be considered 'archive.'
 877   MutexLockerEx x(Heap_lock);
 878   for (size_t i = 0; i < count; i++) {
 879     HeapWord* start_address = ranges[i].start();
 880     HeapWord* last_address = ranges[i].last();
 881 
 882     assert(reserved.contains(start_address) && reserved.contains(last_address),
 883            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 884            p2i(start_address), p2i(last_address));
 885     assert(start_address > prev_last_addr,
 886            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 887            p2i(start_address), p2i(prev_last_addr));
 888     size_used += ranges[i].byte_size();
 889     prev_last_addr = last_address;
 890 
 891     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 892     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 893 
 894     // Check for ranges that start in the same G1 region in which the previous
 895     // range ended, and adjust the start address so we don't try to free
 896     // the same region again. If the current range is entirely within that
 897     // region, skip it.
 898     if (start_region == prev_last_region) {
 899       start_address = start_region->end();
 900       if (start_address > last_address) {
 901         continue;
 902       }
 903       start_region = _hrm.addr_to_region(start_address);
 904     }
 905     prev_last_region = last_region;
 906 
 907     // After verifying that each region was marked as an archive region by
 908     // alloc_archive_regions, set it free and empty and uncommit it.
 909     HeapRegion* curr_region = start_region;
 910     while (curr_region != NULL) {
 911       guarantee(curr_region->is_archive(),
 912                 "Expected archive region at index %u", curr_region->hrm_index());
 913       uint curr_index = curr_region->hrm_index();
 914       _old_set.remove(curr_region);
 915       curr_region->set_free();
 916       curr_region->set_top(curr_region->bottom());
 917       if (curr_region != last_region) {
 918         curr_region = _hrm.next_region_in_heap(curr_region);
 919       } else {
 920         curr_region = NULL;
 921       }
 922       _hrm.shrink_at(curr_index, 1);
 923       uncommitted_regions++;
 924     }
 925 
 926     // Notify mark-sweep that this is no longer an archive range.
 927     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 928   }
 929 
 930   if (uncommitted_regions != 0) {
 931     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 932                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 933   }
 934   decrease_used(size_used);
 935 }
 936 
 937 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 938                                                         uint* gc_count_before_ret,
 939                                                         uint* gclocker_retry_count_ret) {
 940   // The structure of this method has a lot of similarities to
 941   // attempt_allocation_slow(). The reason these two were not merged
 942   // into a single one is that such a method would require several "if
 943   // allocation is not humongous do this, otherwise do that"
 944   // conditional paths which would obscure its flow. In fact, an early
 945   // version of this code did use a unified method which was harder to
 946   // follow and, as a result, it had subtle bugs that were hard to
 947   // track down. So keeping these two methods separate allows each to
 948   // be more readable. It will be good to keep these two in sync as
 949   // much as possible.
 950 
 951   assert_heap_not_locked_and_not_at_safepoint();
 952   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 953          "should only be called for humongous allocations");
 954 
 955   // Humongous objects can exhaust the heap quickly, so we should check if we
 956   // need to start a marking cycle at each humongous object allocation. We do
 957   // the check before we do the actual allocation. The reason for doing it
 958   // before the allocation is that we avoid having to keep track of the newly
 959   // allocated memory while we do a GC.
 960   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 961                                            word_size)) {
 962     collect(GCCause::_g1_humongous_allocation);
 963   }
 964 
 965   // We will loop until a) we manage to successfully perform the
 966   // allocation or b) we successfully schedule a collection which
 967   // fails to perform the allocation. b) is the only case when we'll
 968   // return NULL.
 969   HeapWord* result = NULL;
 970   for (int try_count = 1; /* we'll return */; try_count += 1) {
 971     bool should_try_gc;
 972     uint gc_count_before;
 973 
 974     {
 975       MutexLockerEx x(Heap_lock);
 976 
 977       // Given that humongous objects are not allocated in young
 978       // regions, we'll first try to do the allocation without doing a
 979       // collection hoping that there's enough space in the heap.
 980       result = humongous_obj_allocate(word_size, AllocationContext::current());
 981       if (result != NULL) {
 982         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 983         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 984         return result;
 985       }
 986 
 987       if (GCLocker::is_active_and_needs_gc()) {
 988         should_try_gc = false;
 989       } else {
 990          // The GCLocker may not be active but the GCLocker initiated
 991         // GC may not yet have been performed (GCLocker::needs_gc()
 992         // returns true). In this case we do not try this GC and
 993         // wait until the GCLocker initiated GC is performed, and
 994         // then retry the allocation.
 995         if (GCLocker::needs_gc()) {
 996           should_try_gc = false;
 997         } else {
 998           // Read the GC count while still holding the Heap_lock.
 999           gc_count_before = total_collections();
1000           should_try_gc = true;
1001         }
1002       }
1003     }
1004 
1005     if (should_try_gc) {
1006       // If we failed to allocate the humongous object, we should try to
1007       // do a collection pause (if we're allowed) in case it reclaims
1008       // enough space for the allocation to succeed after the pause.
1009 
1010       bool succeeded;
1011       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1012                                    GCCause::_g1_humongous_allocation);
1013       if (result != NULL) {
1014         assert(succeeded, "only way to get back a non-NULL result");
1015         return result;
1016       }
1017 
1018       if (succeeded) {
1019         // If we get here we successfully scheduled a collection which
1020         // failed to allocate. No point in trying to allocate
1021         // further. We'll just return NULL.
1022         MutexLockerEx x(Heap_lock);
1023         *gc_count_before_ret = total_collections();
1024         return NULL;
1025       }
1026     } else {
1027       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1028         MutexLockerEx x(Heap_lock);
1029         *gc_count_before_ret = total_collections();
1030         return NULL;
1031       }
1032       // The GCLocker is either active or the GCLocker initiated
1033       // GC has not yet been performed. Stall until it is and
1034       // then retry the allocation.
1035       GCLocker::stall_until_clear();
1036       (*gclocker_retry_count_ret) += 1;
1037     }
1038 
1039     // We can reach here if we were unsuccessful in scheduling a
1040     // collection (because another thread beat us to it) or if we were
1041     // stalled due to the GC locker. In either can we should retry the
1042     // allocation attempt in case another thread successfully
1043     // performed a collection and reclaimed enough space.  Give a
1044     // warning if we seem to be looping forever.
1045 
1046     if ((QueuedAllocationWarningCount > 0) &&
1047         (try_count % QueuedAllocationWarningCount == 0)) {
1048       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1049                       "retries %d times", try_count);
1050     }
1051   }
1052 
1053   ShouldNotReachHere();
1054   return NULL;
1055 }
1056 
1057 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1058                                                            AllocationContext_t context,
1059                                                            bool expect_null_mutator_alloc_region) {
1060   assert_at_safepoint(true /* should_be_vm_thread */);
1061   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1062          "the current alloc region was unexpectedly found to be non-NULL");
1063 
1064   if (!is_humongous(word_size)) {
1065     return _allocator->attempt_allocation_locked(word_size, context);
1066   } else {
1067     HeapWord* result = humongous_obj_allocate(word_size, context);
1068     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1069       collector_state()->set_initiate_conc_mark_if_possible(true);
1070     }
1071     return result;
1072   }
1073 
1074   ShouldNotReachHere();
1075 }
1076 
1077 class PostMCRemSetClearClosure: public HeapRegionClosure {
1078   G1CollectedHeap* _g1h;
1079   ModRefBarrierSet* _mr_bs;
1080 public:
1081   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1082     _g1h(g1h), _mr_bs(mr_bs) {}
1083 
1084   bool doHeapRegion(HeapRegion* r) {
1085     HeapRegionRemSet* hrrs = r->rem_set();
1086 
1087     _g1h->reset_gc_time_stamps(r);
1088 
1089     if (r->is_continues_humongous()) {
1090       // We'll assert that the strong code root list and RSet is empty
1091       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1092       assert(hrrs->occupied() == 0, "RSet should be empty");
1093     } else {
1094       hrrs->clear();
1095     }
1096     // You might think here that we could clear just the cards
1097     // corresponding to the used region.  But no: if we leave a dirty card
1098     // in a region we might allocate into, then it would prevent that card
1099     // from being enqueued, and cause it to be missed.
1100     // Re: the performance cost: we shouldn't be doing full GC anyway!
1101     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1102 
1103     return false;
1104   }
1105 };
1106 
1107 void G1CollectedHeap::clear_rsets_post_compaction() {
1108   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1109   heap_region_iterate(&rs_clear);
1110 }
1111 
1112 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1113   G1CollectedHeap*   _g1h;
1114   UpdateRSOopClosure _cl;
1115 public:
1116   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1117     _cl(g1->g1_rem_set(), worker_i),
1118     _g1h(g1)
1119   { }
1120 
1121   bool doHeapRegion(HeapRegion* r) {
1122     if (!r->is_continues_humongous()) {
1123       _cl.set_from(r);
1124       r->oop_iterate(&_cl);
1125     }
1126     return false;
1127   }
1128 };
1129 
1130 class ParRebuildRSTask: public AbstractGangTask {
1131   G1CollectedHeap* _g1;
1132   HeapRegionClaimer _hrclaimer;
1133 
1134 public:
1135   ParRebuildRSTask(G1CollectedHeap* g1) :
1136       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1137 
1138   void work(uint worker_id) {
1139     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1140     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1141   }
1142 };
1143 
1144 class PostCompactionPrinterClosure: public HeapRegionClosure {
1145 private:
1146   G1HRPrinter* _hr_printer;
1147 public:
1148   bool doHeapRegion(HeapRegion* hr) {
1149     assert(!hr->is_young(), "not expecting to find young regions");
1150     _hr_printer->post_compaction(hr);
1151     return false;
1152   }
1153 
1154   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1155     : _hr_printer(hr_printer) { }
1156 };
1157 
1158 void G1CollectedHeap::print_hrm_post_compaction() {
1159   if (_hr_printer.is_active()) {
1160     PostCompactionPrinterClosure cl(hr_printer());
1161     heap_region_iterate(&cl);
1162   }
1163 
1164 }
1165 
1166 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1167                                          bool clear_all_soft_refs) {
1168   assert_at_safepoint(true /* should_be_vm_thread */);
1169 
1170   if (GCLocker::check_active_before_gc()) {
1171     return false;
1172   }
1173 
1174   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1175   gc_timer->register_gc_start();
1176 
1177   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1178   GCIdMark gc_id_mark;
1179   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1180 
1181   SvcGCMarker sgcm(SvcGCMarker::FULL);
1182   ResourceMark rm;
1183 
1184   print_heap_before_gc();
1185   print_heap_regions();
1186   trace_heap_before_gc(gc_tracer);
1187 
1188   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1189 
1190   _verifier->verify_region_sets_optional();
1191 
1192   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1193                            collector_policy()->should_clear_all_soft_refs();
1194 
1195   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1196 
1197   {
1198     IsGCActiveMark x;
1199 
1200     // Timing
1201     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1202     GCTraceCPUTime tcpu;
1203 
1204     {
1205       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1206       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1207       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1208 
1209       G1HeapTransition heap_transition(this);
1210       g1_policy()->record_full_collection_start();
1211 
1212       // Note: When we have a more flexible GC logging framework that
1213       // allows us to add optional attributes to a GC log record we
1214       // could consider timing and reporting how long we wait in the
1215       // following two methods.
1216       wait_while_free_regions_coming();
1217       // If we start the compaction before the CM threads finish
1218       // scanning the root regions we might trip them over as we'll
1219       // be moving objects / updating references. So let's wait until
1220       // they are done. By telling them to abort, they should complete
1221       // early.
1222       _cm->root_regions()->abort();
1223       _cm->root_regions()->wait_until_scan_finished();
1224       append_secondary_free_list_if_not_empty_with_lock();
1225 
1226       gc_prologue(true);
1227       increment_total_collections(true /* full gc */);
1228       increment_old_marking_cycles_started();
1229 
1230       assert(used() == recalculate_used(), "Should be equal");
1231 
1232       _verifier->verify_before_gc();
1233 
1234       _verifier->check_bitmaps("Full GC Start");
1235       pre_full_gc_dump(gc_timer);
1236 
1237 #if defined(COMPILER2) || INCLUDE_JVMCI
1238       DerivedPointerTable::clear();
1239 #endif
1240 
1241       // Disable discovery and empty the discovered lists
1242       // for the CM ref processor.
1243       ref_processor_cm()->disable_discovery();
1244       ref_processor_cm()->abandon_partial_discovery();
1245       ref_processor_cm()->verify_no_references_recorded();
1246 
1247       // Abandon current iterations of concurrent marking and concurrent
1248       // refinement, if any are in progress.
1249       concurrent_mark()->abort();
1250 
1251       // Make sure we'll choose a new allocation region afterwards.
1252       _allocator->release_mutator_alloc_region();
1253       _allocator->abandon_gc_alloc_regions();
1254       g1_rem_set()->cleanupHRRS();
1255 
1256       // We may have added regions to the current incremental collection
1257       // set between the last GC or pause and now. We need to clear the
1258       // incremental collection set and then start rebuilding it afresh
1259       // after this full GC.
1260       abandon_collection_set(collection_set());
1261 
1262       tear_down_region_sets(false /* free_list_only */);
1263       collector_state()->set_gcs_are_young(true);
1264 
1265       // See the comments in g1CollectedHeap.hpp and
1266       // G1CollectedHeap::ref_processing_init() about
1267       // how reference processing currently works in G1.
1268 
1269       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1270       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1271 
1272       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1273       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1274 
1275       ref_processor_stw()->enable_discovery();
1276       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1277 
1278       // Do collection work
1279       {
1280         HandleMark hm;  // Discard invalid handles created during gc
1281         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1282       }
1283 
1284       assert(num_free_regions() == 0, "we should not have added any free regions");
1285       rebuild_region_sets(false /* free_list_only */);
1286 
1287       // Enqueue any discovered reference objects that have
1288       // not been removed from the discovered lists.
1289       ref_processor_stw()->enqueue_discovered_references();
1290 
1291 #if defined(COMPILER2) || INCLUDE_JVMCI
1292       DerivedPointerTable::update_pointers();
1293 #endif
1294 
1295       MemoryService::track_memory_usage();
1296 
1297       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1298       ref_processor_stw()->verify_no_references_recorded();
1299 
1300       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1301       ClassLoaderDataGraph::purge();
1302       MetaspaceAux::verify_metrics();
1303 
1304       // Note: since we've just done a full GC, concurrent
1305       // marking is no longer active. Therefore we need not
1306       // re-enable reference discovery for the CM ref processor.
1307       // That will be done at the start of the next marking cycle.
1308       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1309       ref_processor_cm()->verify_no_references_recorded();
1310 
1311       reset_gc_time_stamp();
1312       // Since everything potentially moved, we will clear all remembered
1313       // sets, and clear all cards.  Later we will rebuild remembered
1314       // sets. We will also reset the GC time stamps of the regions.
1315       clear_rsets_post_compaction();
1316       check_gc_time_stamps();
1317 
1318       resize_if_necessary_after_full_collection();
1319 
1320       // We should do this after we potentially resize the heap so
1321       // that all the COMMIT / UNCOMMIT events are generated before
1322       // the compaction events.
1323       print_hrm_post_compaction();
1324 
1325       if (_hot_card_cache->use_cache()) {
1326         _hot_card_cache->reset_card_counts();
1327         _hot_card_cache->reset_hot_cache();
1328       }
1329 
1330       // Rebuild remembered sets of all regions.
1331       uint n_workers =
1332         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1333                                                 workers()->active_workers(),
1334                                                 Threads::number_of_non_daemon_threads());
1335       workers()->update_active_workers(n_workers);
1336       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1337 
1338       ParRebuildRSTask rebuild_rs_task(this);
1339       workers()->run_task(&rebuild_rs_task);
1340 
1341       // Rebuild the strong code root lists for each region
1342       rebuild_strong_code_roots();
1343 
1344       if (true) { // FIXME
1345         MetaspaceGC::compute_new_size();
1346       }
1347 
1348 #ifdef TRACESPINNING
1349       ParallelTaskTerminator::print_termination_counts();
1350 #endif
1351 
1352       // Discard all rset updates
1353       JavaThread::dirty_card_queue_set().abandon_logs();
1354       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1355 
1356       // At this point there should be no regions in the
1357       // entire heap tagged as young.
1358       assert(check_young_list_empty(), "young list should be empty at this point");
1359 
1360       // Update the number of full collections that have been completed.
1361       increment_old_marking_cycles_completed(false /* concurrent */);
1362 
1363       _hrm.verify_optional();
1364       _verifier->verify_region_sets_optional();
1365 
1366       _verifier->verify_after_gc();
1367 
1368       // Clear the previous marking bitmap, if needed for bitmap verification.
1369       // Note we cannot do this when we clear the next marking bitmap in
1370       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1371       // objects marked during a full GC against the previous bitmap.
1372       // But we need to clear it before calling check_bitmaps below since
1373       // the full GC has compacted objects and updated TAMS but not updated
1374       // the prev bitmap.
1375       if (G1VerifyBitmaps) {
1376         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1377         _cm->clear_prev_bitmap(workers());
1378       }
1379       _verifier->check_bitmaps("Full GC End");
1380 
1381       start_new_collection_set();
1382 
1383       _allocator->init_mutator_alloc_region();
1384 
1385       g1_policy()->record_full_collection_end();
1386 
1387       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1388       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1389       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1390       // before any GC notifications are raised.
1391       g1mm()->update_sizes();
1392 
1393       gc_epilogue(true);
1394 
1395       heap_transition.print();
1396 
1397       print_heap_after_gc();
1398       print_heap_regions();
1399       trace_heap_after_gc(gc_tracer);
1400 
1401       post_full_gc_dump(gc_timer);
1402     }
1403 
1404     gc_timer->register_gc_end();
1405     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1406   }
1407 
1408   return true;
1409 }
1410 
1411 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1412   // Currently, there is no facility in the do_full_collection(bool) API to notify
1413   // the caller that the collection did not succeed (e.g., because it was locked
1414   // out by the GC locker). So, right now, we'll ignore the return value.
1415   bool dummy = do_full_collection(true,                /* explicit_gc */
1416                                   clear_all_soft_refs);
1417 }
1418 
1419 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1420   // Include bytes that will be pre-allocated to support collections, as "used".
1421   const size_t used_after_gc = used();
1422   const size_t capacity_after_gc = capacity();
1423   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1424 
1425   // This is enforced in arguments.cpp.
1426   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1427          "otherwise the code below doesn't make sense");
1428 
1429   // We don't have floating point command-line arguments
1430   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1431   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1432   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1433   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1434 
1435   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1436   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1437 
1438   // We have to be careful here as these two calculations can overflow
1439   // 32-bit size_t's.
1440   double used_after_gc_d = (double) used_after_gc;
1441   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1442   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1443 
1444   // Let's make sure that they are both under the max heap size, which
1445   // by default will make them fit into a size_t.
1446   double desired_capacity_upper_bound = (double) max_heap_size;
1447   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1448                                     desired_capacity_upper_bound);
1449   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1450                                     desired_capacity_upper_bound);
1451 
1452   // We can now safely turn them into size_t's.
1453   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1454   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1455 
1456   // This assert only makes sense here, before we adjust them
1457   // with respect to the min and max heap size.
1458   assert(minimum_desired_capacity <= maximum_desired_capacity,
1459          "minimum_desired_capacity = " SIZE_FORMAT ", "
1460          "maximum_desired_capacity = " SIZE_FORMAT,
1461          minimum_desired_capacity, maximum_desired_capacity);
1462 
1463   // Should not be greater than the heap max size. No need to adjust
1464   // it with respect to the heap min size as it's a lower bound (i.e.,
1465   // we'll try to make the capacity larger than it, not smaller).
1466   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1467   // Should not be less than the heap min size. No need to adjust it
1468   // with respect to the heap max size as it's an upper bound (i.e.,
1469   // we'll try to make the capacity smaller than it, not greater).
1470   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1471 
1472   if (capacity_after_gc < minimum_desired_capacity) {
1473     // Don't expand unless it's significant
1474     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1475 
1476     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1477                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1478                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1479 
1480     expand(expand_bytes, _workers);
1481 
1482     // No expansion, now see if we want to shrink
1483   } else if (capacity_after_gc > maximum_desired_capacity) {
1484     // Capacity too large, compute shrinking size
1485     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1486 
1487     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1488                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1489                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1490 
1491     shrink(shrink_bytes);
1492   }
1493 }
1494 
1495 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1496                                                             AllocationContext_t context,
1497                                                             bool do_gc,
1498                                                             bool clear_all_soft_refs,
1499                                                             bool expect_null_mutator_alloc_region,
1500                                                             bool* gc_succeeded) {
1501   *gc_succeeded = true;
1502   // Let's attempt the allocation first.
1503   HeapWord* result =
1504     attempt_allocation_at_safepoint(word_size,
1505                                     context,
1506                                     expect_null_mutator_alloc_region);
1507   if (result != NULL) {
1508     assert(*gc_succeeded, "sanity");
1509     return result;
1510   }
1511 
1512   // In a G1 heap, we're supposed to keep allocation from failing by
1513   // incremental pauses.  Therefore, at least for now, we'll favor
1514   // expansion over collection.  (This might change in the future if we can
1515   // do something smarter than full collection to satisfy a failed alloc.)
1516   result = expand_and_allocate(word_size, context);
1517   if (result != NULL) {
1518     assert(*gc_succeeded, "sanity");
1519     return result;
1520   }
1521 
1522   if (do_gc) {
1523     // Expansion didn't work, we'll try to do a Full GC.
1524     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1525                                        clear_all_soft_refs);
1526   }
1527 
1528   return NULL;
1529 }
1530 
1531 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1532                                                      AllocationContext_t context,
1533                                                      bool* succeeded) {
1534   assert_at_safepoint(true /* should_be_vm_thread */);
1535 
1536   // Attempts to allocate followed by Full GC.
1537   HeapWord* result =
1538     satisfy_failed_allocation_helper(word_size,
1539                                      context,
1540                                      true,  /* do_gc */
1541                                      false, /* clear_all_soft_refs */
1542                                      false, /* expect_null_mutator_alloc_region */
1543                                      succeeded);
1544 
1545   if (result != NULL || !*succeeded) {
1546     return result;
1547   }
1548 
1549   // Attempts to allocate followed by Full GC that will collect all soft references.
1550   result = satisfy_failed_allocation_helper(word_size,
1551                                             context,
1552                                             true, /* do_gc */
1553                                             true, /* clear_all_soft_refs */
1554                                             true, /* expect_null_mutator_alloc_region */
1555                                             succeeded);
1556 
1557   if (result != NULL || !*succeeded) {
1558     return result;
1559   }
1560 
1561   // Attempts to allocate, no GC
1562   result = satisfy_failed_allocation_helper(word_size,
1563                                             context,
1564                                             false, /* do_gc */
1565                                             false, /* clear_all_soft_refs */
1566                                             true,  /* expect_null_mutator_alloc_region */
1567                                             succeeded);
1568 
1569   if (result != NULL) {
1570     assert(*succeeded, "sanity");
1571     return result;
1572   }
1573 
1574   assert(!collector_policy()->should_clear_all_soft_refs(),
1575          "Flag should have been handled and cleared prior to this point");
1576 
1577   // What else?  We might try synchronous finalization later.  If the total
1578   // space available is large enough for the allocation, then a more
1579   // complete compaction phase than we've tried so far might be
1580   // appropriate.
1581   assert(*succeeded, "sanity");
1582   return NULL;
1583 }
1584 
1585 // Attempting to expand the heap sufficiently
1586 // to support an allocation of the given "word_size".  If
1587 // successful, perform the allocation and return the address of the
1588 // allocated block, or else "NULL".
1589 
1590 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1591   assert_at_safepoint(true /* should_be_vm_thread */);
1592 
1593   _verifier->verify_region_sets_optional();
1594 
1595   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1596   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1597                             word_size * HeapWordSize);
1598 
1599 
1600   if (expand(expand_bytes, _workers)) {
1601     _hrm.verify_optional();
1602     _verifier->verify_region_sets_optional();
1603     return attempt_allocation_at_safepoint(word_size,
1604                                            context,
1605                                            false /* expect_null_mutator_alloc_region */);
1606   }
1607   return NULL;
1608 }
1609 
1610 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1611   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1612   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1613                                        HeapRegion::GrainBytes);
1614 
1615   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1616                             expand_bytes, aligned_expand_bytes);
1617 
1618   if (is_maximal_no_gc()) {
1619     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1620     return false;
1621   }
1622 
1623   double expand_heap_start_time_sec = os::elapsedTime();
1624   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1625   assert(regions_to_expand > 0, "Must expand by at least one region");
1626 
1627   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1628   if (expand_time_ms != NULL) {
1629     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1630   }
1631 
1632   if (expanded_by > 0) {
1633     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1634     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1635     g1_policy()->record_new_heap_size(num_regions());
1636   } else {
1637     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1638 
1639     // The expansion of the virtual storage space was unsuccessful.
1640     // Let's see if it was because we ran out of swap.
1641     if (G1ExitOnExpansionFailure &&
1642         _hrm.available() >= regions_to_expand) {
1643       // We had head room...
1644       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1645     }
1646   }
1647   return regions_to_expand > 0;
1648 }
1649 
1650 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1651   size_t aligned_shrink_bytes =
1652     ReservedSpace::page_align_size_down(shrink_bytes);
1653   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1654                                          HeapRegion::GrainBytes);
1655   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1656 
1657   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1658   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1659 
1660 
1661   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1662                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1663   if (num_regions_removed > 0) {
1664     g1_policy()->record_new_heap_size(num_regions());
1665   } else {
1666     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1667   }
1668 }
1669 
1670 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1671   _verifier->verify_region_sets_optional();
1672 
1673   // We should only reach here at the end of a Full GC which means we
1674   // should not not be holding to any GC alloc regions. The method
1675   // below will make sure of that and do any remaining clean up.
1676   _allocator->abandon_gc_alloc_regions();
1677 
1678   // Instead of tearing down / rebuilding the free lists here, we
1679   // could instead use the remove_all_pending() method on free_list to
1680   // remove only the ones that we need to remove.
1681   tear_down_region_sets(true /* free_list_only */);
1682   shrink_helper(shrink_bytes);
1683   rebuild_region_sets(true /* free_list_only */);
1684 
1685   _hrm.verify_optional();
1686   _verifier->verify_region_sets_optional();
1687 }
1688 
1689 // Public methods.
1690 
1691 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1692   CollectedHeap(),
1693   _collector_policy(collector_policy),
1694   _g1_policy(create_g1_policy()),
1695   _collection_set(this, _g1_policy),
1696   _dirty_card_queue_set(false),
1697   _is_alive_closure_cm(this),
1698   _is_alive_closure_stw(this),
1699   _ref_processor_cm(NULL),
1700   _ref_processor_stw(NULL),
1701   _bot(NULL),
1702   _hot_card_cache(NULL),
1703   _g1_rem_set(NULL),
1704   _cg1r(NULL),
1705   _g1mm(NULL),
1706   _refine_cte_cl(NULL),
1707   _preserved_marks_set(true /* in_c_heap */),
1708   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1709   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1710   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1711   _humongous_reclaim_candidates(),
1712   _has_humongous_reclaim_candidates(false),
1713   _archive_allocator(NULL),
1714   _free_regions_coming(false),
1715   _gc_time_stamp(0),
1716   _summary_bytes_used(0),
1717   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1718   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1719   _expand_heap_after_alloc_failure(true),
1720   _old_marking_cycles_started(0),
1721   _old_marking_cycles_completed(0),
1722   _in_cset_fast_test(),
1723   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1724   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1725 
1726   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1727                           /* are_GC_task_threads */true,
1728                           /* are_ConcurrentGC_threads */false);
1729   _workers->initialize_workers();
1730   _verifier = new G1HeapVerifier(this);
1731 
1732   _allocator = G1Allocator::create_allocator(this);
1733 
1734   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1735 
1736   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1737 
1738   // Override the default _filler_array_max_size so that no humongous filler
1739   // objects are created.
1740   _filler_array_max_size = _humongous_object_threshold_in_words;
1741 
1742   uint n_queues = ParallelGCThreads;
1743   _task_queues = new RefToScanQueueSet(n_queues);
1744 
1745   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1746 
1747   for (uint i = 0; i < n_queues; i++) {
1748     RefToScanQueue* q = new RefToScanQueue();
1749     q->initialize();
1750     _task_queues->register_queue(i, q);
1751     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1752   }
1753 
1754   // Initialize the G1EvacuationFailureALot counters and flags.
1755   NOT_PRODUCT(reset_evacuation_should_fail();)
1756 
1757   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1758 }
1759 
1760 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1761                                                                  size_t size,
1762                                                                  size_t translation_factor) {
1763   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1764   // Allocate a new reserved space, preferring to use large pages.
1765   ReservedSpace rs(size, preferred_page_size);
1766   G1RegionToSpaceMapper* result  =
1767     G1RegionToSpaceMapper::create_mapper(rs,
1768                                          size,
1769                                          rs.alignment(),
1770                                          HeapRegion::GrainBytes,
1771                                          translation_factor,
1772                                          mtGC);
1773 
1774   os::trace_page_sizes_for_requested_size(description,
1775                                           size,
1776                                           preferred_page_size,
1777                                           rs.alignment(),
1778                                           rs.base(),
1779                                           rs.size());
1780 
1781   return result;
1782 }
1783 
1784 jint G1CollectedHeap::initialize() {
1785   CollectedHeap::pre_initialize();
1786   os::enable_vtime();
1787 
1788   // Necessary to satisfy locking discipline assertions.
1789 
1790   MutexLocker x(Heap_lock);
1791 
1792   // While there are no constraints in the GC code that HeapWordSize
1793   // be any particular value, there are multiple other areas in the
1794   // system which believe this to be true (e.g. oop->object_size in some
1795   // cases incorrectly returns the size in wordSize units rather than
1796   // HeapWordSize).
1797   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1798 
1799   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1800   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1801   size_t heap_alignment = collector_policy()->heap_alignment();
1802 
1803   // Ensure that the sizes are properly aligned.
1804   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1805   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1806   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1807 
1808   _refine_cte_cl = new RefineCardTableEntryClosure();
1809 
1810   jint ecode = JNI_OK;
1811   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1812   if (_cg1r == NULL) {
1813     return ecode;
1814   }
1815 
1816   // Reserve the maximum.
1817 
1818   // When compressed oops are enabled, the preferred heap base
1819   // is calculated by subtracting the requested size from the
1820   // 32Gb boundary and using the result as the base address for
1821   // heap reservation. If the requested size is not aligned to
1822   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1823   // into the ReservedHeapSpace constructor) then the actual
1824   // base of the reserved heap may end up differing from the
1825   // address that was requested (i.e. the preferred heap base).
1826   // If this happens then we could end up using a non-optimal
1827   // compressed oops mode.
1828 
1829   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1830                                                  heap_alignment);
1831 
1832   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1833 
1834   // Create the barrier set for the entire reserved region.
1835   G1SATBCardTableLoggingModRefBS* bs
1836     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1837   bs->initialize();
1838   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1839   set_barrier_set(bs);
1840 
1841   // Create the hot card cache.
1842   _hot_card_cache = new G1HotCardCache(this);
1843 
1844   // Also create a G1 rem set.
1845   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1846 
1847   // Carve out the G1 part of the heap.
1848   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1849   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1850   G1RegionToSpaceMapper* heap_storage =
1851     G1RegionToSpaceMapper::create_mapper(g1_rs,
1852                                          g1_rs.size(),
1853                                          page_size,
1854                                          HeapRegion::GrainBytes,
1855                                          1,
1856                                          mtJavaHeap);
1857   os::trace_page_sizes("Heap",
1858                        collector_policy()->min_heap_byte_size(),
1859                        max_byte_size,
1860                        page_size,
1861                        heap_rs.base(),
1862                        heap_rs.size());
1863   heap_storage->set_mapping_changed_listener(&_listener);
1864 
1865   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1866   G1RegionToSpaceMapper* bot_storage =
1867     create_aux_memory_mapper("Block Offset Table",
1868                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1869                              G1BlockOffsetTable::heap_map_factor());
1870 
1871   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1872   G1RegionToSpaceMapper* cardtable_storage =
1873     create_aux_memory_mapper("Card Table",
1874                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1875                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1876 
1877   G1RegionToSpaceMapper* card_counts_storage =
1878     create_aux_memory_mapper("Card Counts Table",
1879                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1880                              G1CardCounts::heap_map_factor());
1881 
1882   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1883   G1RegionToSpaceMapper* prev_bitmap_storage =
1884     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1885   G1RegionToSpaceMapper* next_bitmap_storage =
1886     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1887 
1888   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1889   g1_barrier_set()->initialize(cardtable_storage);
1890   // Do later initialization work for concurrent refinement.
1891   _hot_card_cache->initialize(card_counts_storage);
1892 
1893   // 6843694 - ensure that the maximum region index can fit
1894   // in the remembered set structures.
1895   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1896   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1897 
1898   g1_rem_set()->initialize(max_capacity(), max_regions());
1899 
1900   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1901   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1902   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1903             "too many cards per region");
1904 
1905   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1906 
1907   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1908 
1909   {
1910     HeapWord* start = _hrm.reserved().start();
1911     HeapWord* end = _hrm.reserved().end();
1912     size_t granularity = HeapRegion::GrainBytes;
1913 
1914     _in_cset_fast_test.initialize(start, end, granularity);
1915     _humongous_reclaim_candidates.initialize(start, end, granularity);
1916   }
1917 
1918   // Create the G1ConcurrentMark data structure and thread.
1919   // (Must do this late, so that "max_regions" is defined.)
1920   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1921   if (_cm == NULL || !_cm->completed_initialization()) {
1922     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1923     return JNI_ENOMEM;
1924   }
1925   _cmThread = _cm->cmThread();
1926 
1927   // Now expand into the initial heap size.
1928   if (!expand(init_byte_size, _workers)) {
1929     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1930     return JNI_ENOMEM;
1931   }
1932 
1933   // Perform any initialization actions delegated to the policy.
1934   g1_policy()->init(this, &_collection_set);
1935 
1936   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1937                                                SATB_Q_FL_lock,
1938                                                G1SATBProcessCompletedThreshold,
1939                                                Shared_SATB_Q_lock);
1940 
1941   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1942                                                 DirtyCardQ_CBL_mon,
1943                                                 DirtyCardQ_FL_lock,
1944                                                 (int)concurrent_g1_refine()->yellow_zone(),
1945                                                 (int)concurrent_g1_refine()->red_zone(),
1946                                                 Shared_DirtyCardQ_lock,
1947                                                 NULL,  // fl_owner
1948                                                 true); // init_free_ids
1949 
1950   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1951                                     DirtyCardQ_CBL_mon,
1952                                     DirtyCardQ_FL_lock,
1953                                     -1, // never trigger processing
1954                                     -1, // no limit on length
1955                                     Shared_DirtyCardQ_lock,
1956                                     &JavaThread::dirty_card_queue_set());
1957 
1958   // Here we allocate the dummy HeapRegion that is required by the
1959   // G1AllocRegion class.
1960   HeapRegion* dummy_region = _hrm.get_dummy_region();
1961 
1962   // We'll re-use the same region whether the alloc region will
1963   // require BOT updates or not and, if it doesn't, then a non-young
1964   // region will complain that it cannot support allocations without
1965   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1966   dummy_region->set_eden();
1967   // Make sure it's full.
1968   dummy_region->set_top(dummy_region->end());
1969   G1AllocRegion::setup(this, dummy_region);
1970 
1971   _allocator->init_mutator_alloc_region();
1972 
1973   // Do create of the monitoring and management support so that
1974   // values in the heap have been properly initialized.
1975   _g1mm = new G1MonitoringSupport(this);
1976 
1977   G1StringDedup::initialize();
1978 
1979   _preserved_marks_set.init(ParallelGCThreads);
1980 
1981   _collection_set.initialize(max_regions());
1982 
1983   return JNI_OK;
1984 }
1985 
1986 void G1CollectedHeap::stop() {
1987   // Stop all concurrent threads. We do this to make sure these threads
1988   // do not continue to execute and access resources (e.g. logging)
1989   // that are destroyed during shutdown.
1990   _cg1r->stop();
1991   _cmThread->stop();
1992   if (G1StringDedup::is_enabled()) {
1993     G1StringDedup::stop();
1994   }
1995 }
1996 
1997 void G1CollectedHeap::post_initialize() {
1998   ref_processing_init();
1999 }
2000 
2001 void G1CollectedHeap::ref_processing_init() {
2002   // Reference processing in G1 currently works as follows:
2003   //
2004   // * There are two reference processor instances. One is
2005   //   used to record and process discovered references
2006   //   during concurrent marking; the other is used to
2007   //   record and process references during STW pauses
2008   //   (both full and incremental).
2009   // * Both ref processors need to 'span' the entire heap as
2010   //   the regions in the collection set may be dotted around.
2011   //
2012   // * For the concurrent marking ref processor:
2013   //   * Reference discovery is enabled at initial marking.
2014   //   * Reference discovery is disabled and the discovered
2015   //     references processed etc during remarking.
2016   //   * Reference discovery is MT (see below).
2017   //   * Reference discovery requires a barrier (see below).
2018   //   * Reference processing may or may not be MT
2019   //     (depending on the value of ParallelRefProcEnabled
2020   //     and ParallelGCThreads).
2021   //   * A full GC disables reference discovery by the CM
2022   //     ref processor and abandons any entries on it's
2023   //     discovered lists.
2024   //
2025   // * For the STW processor:
2026   //   * Non MT discovery is enabled at the start of a full GC.
2027   //   * Processing and enqueueing during a full GC is non-MT.
2028   //   * During a full GC, references are processed after marking.
2029   //
2030   //   * Discovery (may or may not be MT) is enabled at the start
2031   //     of an incremental evacuation pause.
2032   //   * References are processed near the end of a STW evacuation pause.
2033   //   * For both types of GC:
2034   //     * Discovery is atomic - i.e. not concurrent.
2035   //     * Reference discovery will not need a barrier.
2036 
2037   MemRegion mr = reserved_region();
2038 
2039   // Concurrent Mark ref processor
2040   _ref_processor_cm =
2041     new ReferenceProcessor(mr,    // span
2042                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2043                                 // mt processing
2044                            ParallelGCThreads,
2045                                 // degree of mt processing
2046                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2047                                 // mt discovery
2048                            MAX2(ParallelGCThreads, ConcGCThreads),
2049                                 // degree of mt discovery
2050                            false,
2051                                 // Reference discovery is not atomic
2052                            &_is_alive_closure_cm);
2053                                 // is alive closure
2054                                 // (for efficiency/performance)
2055 
2056   // STW ref processor
2057   _ref_processor_stw =
2058     new ReferenceProcessor(mr,    // span
2059                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2060                                 // mt processing
2061                            ParallelGCThreads,
2062                                 // degree of mt processing
2063                            (ParallelGCThreads > 1),
2064                                 // mt discovery
2065                            ParallelGCThreads,
2066                                 // degree of mt discovery
2067                            true,
2068                                 // Reference discovery is atomic
2069                            &_is_alive_closure_stw);
2070                                 // is alive closure
2071                                 // (for efficiency/performance)
2072 }
2073 
2074 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2075   return _collector_policy;
2076 }
2077 
2078 size_t G1CollectedHeap::capacity() const {
2079   return _hrm.length() * HeapRegion::GrainBytes;
2080 }
2081 
2082 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2083   hr->reset_gc_time_stamp();
2084 }
2085 
2086 #ifndef PRODUCT
2087 
2088 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2089 private:
2090   unsigned _gc_time_stamp;
2091   bool _failures;
2092 
2093 public:
2094   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2095     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2096 
2097   virtual bool doHeapRegion(HeapRegion* hr) {
2098     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2099     if (_gc_time_stamp != region_gc_time_stamp) {
2100       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2101                             region_gc_time_stamp, _gc_time_stamp);
2102       _failures = true;
2103     }
2104     return false;
2105   }
2106 
2107   bool failures() { return _failures; }
2108 };
2109 
2110 void G1CollectedHeap::check_gc_time_stamps() {
2111   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2112   heap_region_iterate(&cl);
2113   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2114 }
2115 #endif // PRODUCT
2116 
2117 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2118   _hot_card_cache->drain(cl, worker_i);
2119 }
2120 
2121 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2122   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2123   size_t n_completed_buffers = 0;
2124   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2125     n_completed_buffers++;
2126   }
2127   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2128   dcqs.clear_n_completed_buffers();
2129   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2130 }
2131 
2132 // Computes the sum of the storage used by the various regions.
2133 size_t G1CollectedHeap::used() const {
2134   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2135   if (_archive_allocator != NULL) {
2136     result += _archive_allocator->used();
2137   }
2138   return result;
2139 }
2140 
2141 size_t G1CollectedHeap::used_unlocked() const {
2142   return _summary_bytes_used;
2143 }
2144 
2145 class SumUsedClosure: public HeapRegionClosure {
2146   size_t _used;
2147 public:
2148   SumUsedClosure() : _used(0) {}
2149   bool doHeapRegion(HeapRegion* r) {
2150     _used += r->used();
2151     return false;
2152   }
2153   size_t result() { return _used; }
2154 };
2155 
2156 size_t G1CollectedHeap::recalculate_used() const {
2157   double recalculate_used_start = os::elapsedTime();
2158 
2159   SumUsedClosure blk;
2160   heap_region_iterate(&blk);
2161 
2162   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2163   return blk.result();
2164 }
2165 
2166 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2167   switch (cause) {
2168     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2169     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2170     case GCCause::_update_allocation_context_stats_inc: return true;
2171     case GCCause::_wb_conc_mark:                        return true;
2172     default :                                           return false;
2173   }
2174 }
2175 
2176 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2177   switch (cause) {
2178     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2179     case GCCause::_g1_humongous_allocation: return true;
2180     default:                                return is_user_requested_concurrent_full_gc(cause);
2181   }
2182 }
2183 
2184 #ifndef PRODUCT
2185 void G1CollectedHeap::allocate_dummy_regions() {
2186   // Let's fill up most of the region
2187   size_t word_size = HeapRegion::GrainWords - 1024;
2188   // And as a result the region we'll allocate will be humongous.
2189   guarantee(is_humongous(word_size), "sanity");
2190 
2191   // _filler_array_max_size is set to humongous object threshold
2192   // but temporarily change it to use CollectedHeap::fill_with_object().
2193   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2194 
2195   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2196     // Let's use the existing mechanism for the allocation
2197     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2198                                                  AllocationContext::system());
2199     if (dummy_obj != NULL) {
2200       MemRegion mr(dummy_obj, word_size);
2201       CollectedHeap::fill_with_object(mr);
2202     } else {
2203       // If we can't allocate once, we probably cannot allocate
2204       // again. Let's get out of the loop.
2205       break;
2206     }
2207   }
2208 }
2209 #endif // !PRODUCT
2210 
2211 void G1CollectedHeap::increment_old_marking_cycles_started() {
2212   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2213          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2214          "Wrong marking cycle count (started: %d, completed: %d)",
2215          _old_marking_cycles_started, _old_marking_cycles_completed);
2216 
2217   _old_marking_cycles_started++;
2218 }
2219 
2220 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2221   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2222 
2223   // We assume that if concurrent == true, then the caller is a
2224   // concurrent thread that was joined the Suspendible Thread
2225   // Set. If there's ever a cheap way to check this, we should add an
2226   // assert here.
2227 
2228   // Given that this method is called at the end of a Full GC or of a
2229   // concurrent cycle, and those can be nested (i.e., a Full GC can
2230   // interrupt a concurrent cycle), the number of full collections
2231   // completed should be either one (in the case where there was no
2232   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2233   // behind the number of full collections started.
2234 
2235   // This is the case for the inner caller, i.e. a Full GC.
2236   assert(concurrent ||
2237          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2238          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2239          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2240          "is inconsistent with _old_marking_cycles_completed = %u",
2241          _old_marking_cycles_started, _old_marking_cycles_completed);
2242 
2243   // This is the case for the outer caller, i.e. the concurrent cycle.
2244   assert(!concurrent ||
2245          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2246          "for outer caller (concurrent cycle): "
2247          "_old_marking_cycles_started = %u "
2248          "is inconsistent with _old_marking_cycles_completed = %u",
2249          _old_marking_cycles_started, _old_marking_cycles_completed);
2250 
2251   _old_marking_cycles_completed += 1;
2252 
2253   // We need to clear the "in_progress" flag in the CM thread before
2254   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2255   // is set) so that if a waiter requests another System.gc() it doesn't
2256   // incorrectly see that a marking cycle is still in progress.
2257   if (concurrent) {
2258     _cmThread->set_idle();
2259   }
2260 
2261   // This notify_all() will ensure that a thread that called
2262   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2263   // and it's waiting for a full GC to finish will be woken up. It is
2264   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2265   FullGCCount_lock->notify_all();
2266 }
2267 
2268 void G1CollectedHeap::collect(GCCause::Cause cause) {
2269   assert_heap_not_locked();
2270 
2271   uint gc_count_before;
2272   uint old_marking_count_before;
2273   uint full_gc_count_before;
2274   bool retry_gc;
2275 
2276   do {
2277     retry_gc = false;
2278 
2279     {
2280       MutexLocker ml(Heap_lock);
2281 
2282       // Read the GC count while holding the Heap_lock
2283       gc_count_before = total_collections();
2284       full_gc_count_before = total_full_collections();
2285       old_marking_count_before = _old_marking_cycles_started;
2286     }
2287 
2288     if (should_do_concurrent_full_gc(cause)) {
2289       // Schedule an initial-mark evacuation pause that will start a
2290       // concurrent cycle. We're setting word_size to 0 which means that
2291       // we are not requesting a post-GC allocation.
2292       VM_G1IncCollectionPause op(gc_count_before,
2293                                  0,     /* word_size */
2294                                  true,  /* should_initiate_conc_mark */
2295                                  g1_policy()->max_pause_time_ms(),
2296                                  cause);
2297       op.set_allocation_context(AllocationContext::current());
2298 
2299       VMThread::execute(&op);
2300       if (!op.pause_succeeded()) {
2301         if (old_marking_count_before == _old_marking_cycles_started) {
2302           retry_gc = op.should_retry_gc();
2303         } else {
2304           // A Full GC happened while we were trying to schedule the
2305           // initial-mark GC. No point in starting a new cycle given
2306           // that the whole heap was collected anyway.
2307         }
2308 
2309         if (retry_gc) {
2310           if (GCLocker::is_active_and_needs_gc()) {
2311             GCLocker::stall_until_clear();
2312           }
2313         }
2314       }
2315     } else {
2316       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2317           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2318 
2319         // Schedule a standard evacuation pause. We're setting word_size
2320         // to 0 which means that we are not requesting a post-GC allocation.
2321         VM_G1IncCollectionPause op(gc_count_before,
2322                                    0,     /* word_size */
2323                                    false, /* should_initiate_conc_mark */
2324                                    g1_policy()->max_pause_time_ms(),
2325                                    cause);
2326         VMThread::execute(&op);
2327       } else {
2328         // Schedule a Full GC.
2329         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2330         VMThread::execute(&op);
2331       }
2332     }
2333   } while (retry_gc);
2334 }
2335 
2336 bool G1CollectedHeap::is_in(const void* p) const {
2337   if (_hrm.reserved().contains(p)) {
2338     // Given that we know that p is in the reserved space,
2339     // heap_region_containing() should successfully
2340     // return the containing region.
2341     HeapRegion* hr = heap_region_containing(p);
2342     return hr->is_in(p);
2343   } else {
2344     return false;
2345   }
2346 }
2347 
2348 #ifdef ASSERT
2349 bool G1CollectedHeap::is_in_exact(const void* p) const {
2350   bool contains = reserved_region().contains(p);
2351   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2352   if (contains && available) {
2353     return true;
2354   } else {
2355     return false;
2356   }
2357 }
2358 #endif
2359 
2360 // Iteration functions.
2361 
2362 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2363 
2364 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2365   ExtendedOopClosure* _cl;
2366 public:
2367   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2368   bool doHeapRegion(HeapRegion* r) {
2369     if (!r->is_continues_humongous()) {
2370       r->oop_iterate(_cl);
2371     }
2372     return false;
2373   }
2374 };
2375 
2376 // Iterates an ObjectClosure over all objects within a HeapRegion.
2377 
2378 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2379   ObjectClosure* _cl;
2380 public:
2381   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2382   bool doHeapRegion(HeapRegion* r) {
2383     if (!r->is_continues_humongous()) {
2384       r->object_iterate(_cl);
2385     }
2386     return false;
2387   }
2388 };
2389 
2390 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2391   IterateObjectClosureRegionClosure blk(cl);
2392   heap_region_iterate(&blk);
2393 }
2394 
2395 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2396   _hrm.iterate(cl);
2397 }
2398 
2399 void
2400 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2401                                          uint worker_id,
2402                                          HeapRegionClaimer *hrclaimer,
2403                                          bool concurrent) const {
2404   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2405 }
2406 
2407 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2408   _collection_set.iterate(cl);
2409 }
2410 
2411 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2412   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2413 }
2414 
2415 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2416   HeapRegion* result = _hrm.next_region_in_heap(from);
2417   while (result != NULL && result->is_pinned()) {
2418     result = _hrm.next_region_in_heap(result);
2419   }
2420   return result;
2421 }
2422 
2423 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2424   HeapRegion* hr = heap_region_containing(addr);
2425   return hr->block_start(addr);
2426 }
2427 
2428 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2429   HeapRegion* hr = heap_region_containing(addr);
2430   return hr->block_size(addr);
2431 }
2432 
2433 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2434   HeapRegion* hr = heap_region_containing(addr);
2435   return hr->block_is_obj(addr);
2436 }
2437 
2438 bool G1CollectedHeap::supports_tlab_allocation() const {
2439   return true;
2440 }
2441 
2442 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2443   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2444 }
2445 
2446 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2447   return _eden.length() * HeapRegion::GrainBytes;
2448 }
2449 
2450 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2451 // must be equal to the humongous object limit.
2452 size_t G1CollectedHeap::max_tlab_size() const {
2453   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2454 }
2455 
2456 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2457   AllocationContext_t context = AllocationContext::current();
2458   return _allocator->unsafe_max_tlab_alloc(context);
2459 }
2460 
2461 size_t G1CollectedHeap::max_capacity() const {
2462   return _hrm.reserved().byte_size();
2463 }
2464 
2465 jlong G1CollectedHeap::millis_since_last_gc() {
2466   // See the notes in GenCollectedHeap::millis_since_last_gc()
2467   // for more information about the implementation.
2468   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2469     _g1_policy->collection_pause_end_millis();
2470   if (ret_val < 0) {
2471     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2472       ". returning zero instead.", ret_val);
2473     return 0;
2474   }
2475   return ret_val;
2476 }
2477 
2478 void G1CollectedHeap::prepare_for_verify() {
2479   _verifier->prepare_for_verify();
2480 }
2481 
2482 void G1CollectedHeap::verify(VerifyOption vo) {
2483   _verifier->verify(vo);
2484 }
2485 
2486 class PrintRegionClosure: public HeapRegionClosure {
2487   outputStream* _st;
2488 public:
2489   PrintRegionClosure(outputStream* st) : _st(st) {}
2490   bool doHeapRegion(HeapRegion* r) {
2491     r->print_on(_st);
2492     return false;
2493   }
2494 };
2495 
2496 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2497                                        const HeapRegion* hr,
2498                                        const VerifyOption vo) const {
2499   switch (vo) {
2500   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2501   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2502   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2503   default:                            ShouldNotReachHere();
2504   }
2505   return false; // keep some compilers happy
2506 }
2507 
2508 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2509                                        const VerifyOption vo) const {
2510   switch (vo) {
2511   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2512   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2513   case VerifyOption_G1UseMarkWord: {
2514     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2515     return !obj->is_gc_marked() && !hr->is_archive();
2516   }
2517   default:                            ShouldNotReachHere();
2518   }
2519   return false; // keep some compilers happy
2520 }
2521 
2522 void G1CollectedHeap::print_heap_regions() const {
2523   Log(gc, heap, region) log;
2524   if (log.is_trace()) {
2525     ResourceMark rm;
2526     print_regions_on(log.trace_stream());
2527   }
2528 }
2529 
2530 void G1CollectedHeap::print_on(outputStream* st) const {
2531   st->print(" %-20s", "garbage-first heap");
2532   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2533             capacity()/K, used_unlocked()/K);
2534   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2535             p2i(_hrm.reserved().start()),
2536             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2537             p2i(_hrm.reserved().end()));
2538   st->cr();
2539   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2540   uint young_regions = young_regions_count();
2541   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2542             (size_t) young_regions * HeapRegion::GrainBytes / K);
2543   uint survivor_regions = survivor_regions_count();
2544   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2545             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2546   st->cr();
2547   MetaspaceAux::print_on(st);
2548 }
2549 
2550 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2551   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2552                "HS=humongous(starts), HC=humongous(continues), "
2553                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2554                "AC=allocation context, "
2555                "TAMS=top-at-mark-start (previous, next)");
2556   PrintRegionClosure blk(st);
2557   heap_region_iterate(&blk);
2558 }
2559 
2560 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2561   print_on(st);
2562 
2563   // Print the per-region information.
2564   print_regions_on(st);
2565 }
2566 
2567 void G1CollectedHeap::print_on_error(outputStream* st) const {
2568   this->CollectedHeap::print_on_error(st);
2569 
2570   if (_cm != NULL) {
2571     st->cr();
2572     _cm->print_on_error(st);
2573   }
2574 }
2575 
2576 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2577   workers()->print_worker_threads_on(st);
2578   _cmThread->print_on(st);
2579   st->cr();
2580   _cm->print_worker_threads_on(st);
2581   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2582   if (G1StringDedup::is_enabled()) {
2583     G1StringDedup::print_worker_threads_on(st);
2584   }
2585 }
2586 
2587 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2588   workers()->threads_do(tc);
2589   tc->do_thread(_cmThread);
2590   _cm->threads_do(tc);
2591   _cg1r->threads_do(tc); // also iterates over the sample thread
2592   if (G1StringDedup::is_enabled()) {
2593     G1StringDedup::threads_do(tc);
2594   }
2595 }
2596 
2597 void G1CollectedHeap::print_tracing_info() const {
2598   g1_rem_set()->print_summary_info();
2599   concurrent_mark()->print_summary_info();
2600 }
2601 
2602 #ifndef PRODUCT
2603 // Helpful for debugging RSet issues.
2604 
2605 class PrintRSetsClosure : public HeapRegionClosure {
2606 private:
2607   const char* _msg;
2608   size_t _occupied_sum;
2609 
2610 public:
2611   bool doHeapRegion(HeapRegion* r) {
2612     HeapRegionRemSet* hrrs = r->rem_set();
2613     size_t occupied = hrrs->occupied();
2614     _occupied_sum += occupied;
2615 
2616     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2617     if (occupied == 0) {
2618       tty->print_cr("  RSet is empty");
2619     } else {
2620       hrrs->print();
2621     }
2622     tty->print_cr("----------");
2623     return false;
2624   }
2625 
2626   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2627     tty->cr();
2628     tty->print_cr("========================================");
2629     tty->print_cr("%s", msg);
2630     tty->cr();
2631   }
2632 
2633   ~PrintRSetsClosure() {
2634     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2635     tty->print_cr("========================================");
2636     tty->cr();
2637   }
2638 };
2639 
2640 void G1CollectedHeap::print_cset_rsets() {
2641   PrintRSetsClosure cl("Printing CSet RSets");
2642   collection_set_iterate(&cl);
2643 }
2644 
2645 void G1CollectedHeap::print_all_rsets() {
2646   PrintRSetsClosure cl("Printing All RSets");;
2647   heap_region_iterate(&cl);
2648 }
2649 #endif // PRODUCT
2650 
2651 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2652 
2653   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2654   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2655   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2656 
2657   size_t eden_capacity_bytes =
2658     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2659 
2660   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2661   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2662                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2663 }
2664 
2665 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2666   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2667                        stats->unused(), stats->used(), stats->region_end_waste(),
2668                        stats->regions_filled(), stats->direct_allocated(),
2669                        stats->failure_used(), stats->failure_waste());
2670 }
2671 
2672 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2673   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2674   gc_tracer->report_gc_heap_summary(when, heap_summary);
2675 
2676   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2677   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2678 }
2679 
2680 G1CollectedHeap* G1CollectedHeap::heap() {
2681   CollectedHeap* heap = GC::gc()->heap();
2682   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2683   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2684   return (G1CollectedHeap*)heap;
2685 }
2686 
2687 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2688   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2689 
2690   double start = os::elapsedTime();
2691   // Fill TLAB's and such
2692   accumulate_statistics_all_tlabs();
2693   ensure_parsability(true);
2694   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2695 
2696   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2697 }
2698 
2699 void G1CollectedHeap::gc_epilogue(bool full) {
2700   // we are at the end of the GC. Total collections has already been increased.
2701   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2702 
2703   // FIXME: what is this about?
2704   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2705   // is set.
2706 #if defined(COMPILER2) || INCLUDE_JVMCI
2707   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2708 #endif
2709 
2710   double start = os::elapsedTime();
2711   resize_all_tlabs();
2712   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2713 
2714   allocation_context_stats().update(full);
2715 
2716   // We have just completed a GC. Update the soft reference
2717   // policy with the new heap occupancy
2718   Universe::update_heap_info_at_gc();
2719 }
2720 
2721 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2722                                                uint gc_count_before,
2723                                                bool* succeeded,
2724                                                GCCause::Cause gc_cause) {
2725   assert_heap_not_locked_and_not_at_safepoint();
2726   VM_G1IncCollectionPause op(gc_count_before,
2727                              word_size,
2728                              false, /* should_initiate_conc_mark */
2729                              g1_policy()->max_pause_time_ms(),
2730                              gc_cause);
2731 
2732   op.set_allocation_context(AllocationContext::current());
2733   VMThread::execute(&op);
2734 
2735   HeapWord* result = op.result();
2736   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2737   assert(result == NULL || ret_succeeded,
2738          "the result should be NULL if the VM did not succeed");
2739   *succeeded = ret_succeeded;
2740 
2741   assert_heap_not_locked();
2742   return result;
2743 }
2744 
2745 void
2746 G1CollectedHeap::doConcurrentMark() {
2747   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2748   if (!_cmThread->in_progress()) {
2749     _cmThread->set_started();
2750     CGC_lock->notify();
2751   }
2752 }
2753 
2754 size_t G1CollectedHeap::pending_card_num() {
2755   size_t extra_cards = 0;
2756   JavaThread *curr = Threads::first();
2757   while (curr != NULL) {
2758     DirtyCardQueue& dcq = curr->dirty_card_queue();
2759     extra_cards += dcq.size();
2760     curr = curr->next();
2761   }
2762   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2763   size_t buffer_size = dcqs.buffer_size();
2764   size_t buffer_num = dcqs.completed_buffers_num();
2765 
2766   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
2767   // in bytes - not the number of 'entries'. We need to convert
2768   // into a number of cards.
2769   return (buffer_size * buffer_num + extra_cards) / oopSize;
2770 }
2771 
2772 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2773  private:
2774   size_t _total_humongous;
2775   size_t _candidate_humongous;
2776 
2777   DirtyCardQueue _dcq;
2778 
2779   // We don't nominate objects with many remembered set entries, on
2780   // the assumption that such objects are likely still live.
2781   bool is_remset_small(HeapRegion* region) const {
2782     HeapRegionRemSet* const rset = region->rem_set();
2783     return G1EagerReclaimHumongousObjectsWithStaleRefs
2784       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2785       : rset->is_empty();
2786   }
2787 
2788   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2789     assert(region->is_starts_humongous(), "Must start a humongous object");
2790 
2791     oop obj = oop(region->bottom());
2792 
2793     // Dead objects cannot be eager reclaim candidates. Due to class
2794     // unloading it is unsafe to query their classes so we return early.
2795     if (heap->is_obj_dead(obj, region)) {
2796       return false;
2797     }
2798 
2799     // Candidate selection must satisfy the following constraints
2800     // while concurrent marking is in progress:
2801     //
2802     // * In order to maintain SATB invariants, an object must not be
2803     // reclaimed if it was allocated before the start of marking and
2804     // has not had its references scanned.  Such an object must have
2805     // its references (including type metadata) scanned to ensure no
2806     // live objects are missed by the marking process.  Objects
2807     // allocated after the start of concurrent marking don't need to
2808     // be scanned.
2809     //
2810     // * An object must not be reclaimed if it is on the concurrent
2811     // mark stack.  Objects allocated after the start of concurrent
2812     // marking are never pushed on the mark stack.
2813     //
2814     // Nominating only objects allocated after the start of concurrent
2815     // marking is sufficient to meet both constraints.  This may miss
2816     // some objects that satisfy the constraints, but the marking data
2817     // structures don't support efficiently performing the needed
2818     // additional tests or scrubbing of the mark stack.
2819     //
2820     // However, we presently only nominate is_typeArray() objects.
2821     // A humongous object containing references induces remembered
2822     // set entries on other regions.  In order to reclaim such an
2823     // object, those remembered sets would need to be cleaned up.
2824     //
2825     // We also treat is_typeArray() objects specially, allowing them
2826     // to be reclaimed even if allocated before the start of
2827     // concurrent mark.  For this we rely on mark stack insertion to
2828     // exclude is_typeArray() objects, preventing reclaiming an object
2829     // that is in the mark stack.  We also rely on the metadata for
2830     // such objects to be built-in and so ensured to be kept live.
2831     // Frequent allocation and drop of large binary blobs is an
2832     // important use case for eager reclaim, and this special handling
2833     // may reduce needed headroom.
2834 
2835     return obj->is_typeArray() && is_remset_small(region);
2836   }
2837 
2838  public:
2839   RegisterHumongousWithInCSetFastTestClosure()
2840   : _total_humongous(0),
2841     _candidate_humongous(0),
2842     _dcq(&JavaThread::dirty_card_queue_set()) {
2843   }
2844 
2845   virtual bool doHeapRegion(HeapRegion* r) {
2846     if (!r->is_starts_humongous()) {
2847       return false;
2848     }
2849     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2850 
2851     bool is_candidate = humongous_region_is_candidate(g1h, r);
2852     uint rindex = r->hrm_index();
2853     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2854     if (is_candidate) {
2855       _candidate_humongous++;
2856       g1h->register_humongous_region_with_cset(rindex);
2857       // Is_candidate already filters out humongous object with large remembered sets.
2858       // If we have a humongous object with a few remembered sets, we simply flush these
2859       // remembered set entries into the DCQS. That will result in automatic
2860       // re-evaluation of their remembered set entries during the following evacuation
2861       // phase.
2862       if (!r->rem_set()->is_empty()) {
2863         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2864                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2865         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2866         HeapRegionRemSetIterator hrrs(r->rem_set());
2867         size_t card_index;
2868         while (hrrs.has_next(card_index)) {
2869           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2870           // The remembered set might contain references to already freed
2871           // regions. Filter out such entries to avoid failing card table
2872           // verification.
2873           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2874             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2875               *card_ptr = CardTableModRefBS::dirty_card_val();
2876               _dcq.enqueue(card_ptr);
2877             }
2878           }
2879         }
2880         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2881                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2882                hrrs.n_yielded(), r->rem_set()->occupied());
2883         r->rem_set()->clear_locked();
2884       }
2885       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2886     }
2887     _total_humongous++;
2888 
2889     return false;
2890   }
2891 
2892   size_t total_humongous() const { return _total_humongous; }
2893   size_t candidate_humongous() const { return _candidate_humongous; }
2894 
2895   void flush_rem_set_entries() { _dcq.flush(); }
2896 };
2897 
2898 void G1CollectedHeap::register_humongous_regions_with_cset() {
2899   if (!G1EagerReclaimHumongousObjects) {
2900     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2901     return;
2902   }
2903   double time = os::elapsed_counter();
2904 
2905   // Collect reclaim candidate information and register candidates with cset.
2906   RegisterHumongousWithInCSetFastTestClosure cl;
2907   heap_region_iterate(&cl);
2908 
2909   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2910   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2911                                                                   cl.total_humongous(),
2912                                                                   cl.candidate_humongous());
2913   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2914 
2915   // Finally flush all remembered set entries to re-check into the global DCQS.
2916   cl.flush_rem_set_entries();
2917 }
2918 
2919 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2920   public:
2921     bool doHeapRegion(HeapRegion* hr) {
2922       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2923         hr->verify_rem_set();
2924       }
2925       return false;
2926     }
2927 };
2928 
2929 uint G1CollectedHeap::num_task_queues() const {
2930   return _task_queues->size();
2931 }
2932 
2933 #if TASKQUEUE_STATS
2934 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2935   st->print_raw_cr("GC Task Stats");
2936   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2937   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2938 }
2939 
2940 void G1CollectedHeap::print_taskqueue_stats() const {
2941   if (!log_is_enabled(Trace, gc, task, stats)) {
2942     return;
2943   }
2944   Log(gc, task, stats) log;
2945   ResourceMark rm;
2946   outputStream* st = log.trace_stream();
2947 
2948   print_taskqueue_stats_hdr(st);
2949 
2950   TaskQueueStats totals;
2951   const uint n = num_task_queues();
2952   for (uint i = 0; i < n; ++i) {
2953     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2954     totals += task_queue(i)->stats;
2955   }
2956   st->print_raw("tot "); totals.print(st); st->cr();
2957 
2958   DEBUG_ONLY(totals.verify());
2959 }
2960 
2961 void G1CollectedHeap::reset_taskqueue_stats() {
2962   const uint n = num_task_queues();
2963   for (uint i = 0; i < n; ++i) {
2964     task_queue(i)->stats.reset();
2965   }
2966 }
2967 #endif // TASKQUEUE_STATS
2968 
2969 void G1CollectedHeap::wait_for_root_region_scanning() {
2970   double scan_wait_start = os::elapsedTime();
2971   // We have to wait until the CM threads finish scanning the
2972   // root regions as it's the only way to ensure that all the
2973   // objects on them have been correctly scanned before we start
2974   // moving them during the GC.
2975   bool waited = _cm->root_regions()->wait_until_scan_finished();
2976   double wait_time_ms = 0.0;
2977   if (waited) {
2978     double scan_wait_end = os::elapsedTime();
2979     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2980   }
2981   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2982 }
2983 
2984 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2985 private:
2986   G1HRPrinter* _hr_printer;
2987 public:
2988   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2989 
2990   virtual bool doHeapRegion(HeapRegion* r) {
2991     _hr_printer->cset(r);
2992     return false;
2993   }
2994 };
2995 
2996 void G1CollectedHeap::start_new_collection_set() {
2997   collection_set()->start_incremental_building();
2998 
2999   clear_cset_fast_test();
3000 
3001   guarantee(_eden.length() == 0, "eden should have been cleared");
3002   g1_policy()->transfer_survivors_to_cset(survivor());
3003 }
3004 
3005 bool
3006 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3007   assert_at_safepoint(true /* should_be_vm_thread */);
3008   guarantee(!is_gc_active(), "collection is not reentrant");
3009 
3010   if (GCLocker::check_active_before_gc()) {
3011     return false;
3012   }
3013 
3014   _gc_timer_stw->register_gc_start();
3015 
3016   GCIdMark gc_id_mark;
3017   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3018 
3019   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3020   ResourceMark rm;
3021 
3022   g1_policy()->note_gc_start();
3023 
3024   wait_for_root_region_scanning();
3025 
3026   print_heap_before_gc();
3027   print_heap_regions();
3028   trace_heap_before_gc(_gc_tracer_stw);
3029 
3030   _verifier->verify_region_sets_optional();
3031   _verifier->verify_dirty_young_regions();
3032 
3033   // We should not be doing initial mark unless the conc mark thread is running
3034   if (!_cmThread->should_terminate()) {
3035     // This call will decide whether this pause is an initial-mark
3036     // pause. If it is, during_initial_mark_pause() will return true
3037     // for the duration of this pause.
3038     g1_policy()->decide_on_conc_mark_initiation();
3039   }
3040 
3041   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3042   assert(!collector_state()->during_initial_mark_pause() ||
3043           collector_state()->gcs_are_young(), "sanity");
3044 
3045   // We also do not allow mixed GCs during marking.
3046   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3047 
3048   // Record whether this pause is an initial mark. When the current
3049   // thread has completed its logging output and it's safe to signal
3050   // the CM thread, the flag's value in the policy has been reset.
3051   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3052 
3053   // Inner scope for scope based logging, timers, and stats collection
3054   {
3055     EvacuationInfo evacuation_info;
3056 
3057     if (collector_state()->during_initial_mark_pause()) {
3058       // We are about to start a marking cycle, so we increment the
3059       // full collection counter.
3060       increment_old_marking_cycles_started();
3061       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3062     }
3063 
3064     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3065 
3066     GCTraceCPUTime tcpu;
3067 
3068     FormatBuffer<> gc_string("Pause ");
3069     if (collector_state()->during_initial_mark_pause()) {
3070       gc_string.append("Initial Mark");
3071     } else if (collector_state()->gcs_are_young()) {
3072       gc_string.append("Young");
3073     } else {
3074       gc_string.append("Mixed");
3075     }
3076     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3077 
3078     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3079                                                                   workers()->active_workers(),
3080                                                                   Threads::number_of_non_daemon_threads());
3081     workers()->update_active_workers(active_workers);
3082     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3083 
3084     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3085     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3086 
3087     // If the secondary_free_list is not empty, append it to the
3088     // free_list. No need to wait for the cleanup operation to finish;
3089     // the region allocation code will check the secondary_free_list
3090     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3091     // set, skip this step so that the region allocation code has to
3092     // get entries from the secondary_free_list.
3093     if (!G1StressConcRegionFreeing) {
3094       append_secondary_free_list_if_not_empty_with_lock();
3095     }
3096 
3097     G1HeapTransition heap_transition(this);
3098     size_t heap_used_bytes_before_gc = used();
3099 
3100     // Don't dynamically change the number of GC threads this early.  A value of
3101     // 0 is used to indicate serial work.  When parallel work is done,
3102     // it will be set.
3103 
3104     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3105       IsGCActiveMark x;
3106 
3107       gc_prologue(false);
3108       increment_total_collections(false /* full gc */);
3109       increment_gc_time_stamp();
3110 
3111       if (VerifyRememberedSets) {
3112         log_info(gc, verify)("[Verifying RemSets before GC]");
3113         VerifyRegionRemSetClosure v_cl;
3114         heap_region_iterate(&v_cl);
3115       }
3116 
3117       _verifier->verify_before_gc();
3118 
3119       _verifier->check_bitmaps("GC Start");
3120 
3121 #if defined(COMPILER2) || INCLUDE_JVMCI
3122       DerivedPointerTable::clear();
3123 #endif
3124 
3125       // Please see comment in g1CollectedHeap.hpp and
3126       // G1CollectedHeap::ref_processing_init() to see how
3127       // reference processing currently works in G1.
3128 
3129       // Enable discovery in the STW reference processor
3130       if (g1_policy()->should_process_references()) {
3131         ref_processor_stw()->enable_discovery();
3132       } else {
3133         ref_processor_stw()->disable_discovery();
3134       }
3135 
3136       {
3137         // We want to temporarily turn off discovery by the
3138         // CM ref processor, if necessary, and turn it back on
3139         // on again later if we do. Using a scoped
3140         // NoRefDiscovery object will do this.
3141         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3142 
3143         // Forget the current alloc region (we might even choose it to be part
3144         // of the collection set!).
3145         _allocator->release_mutator_alloc_region();
3146 
3147         // This timing is only used by the ergonomics to handle our pause target.
3148         // It is unclear why this should not include the full pause. We will
3149         // investigate this in CR 7178365.
3150         //
3151         // Preserving the old comment here if that helps the investigation:
3152         //
3153         // The elapsed time induced by the start time below deliberately elides
3154         // the possible verification above.
3155         double sample_start_time_sec = os::elapsedTime();
3156 
3157         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3158 
3159         if (collector_state()->during_initial_mark_pause()) {
3160           concurrent_mark()->checkpointRootsInitialPre();
3161         }
3162 
3163         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3164 
3165         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3166 
3167         // Make sure the remembered sets are up to date. This needs to be
3168         // done before register_humongous_regions_with_cset(), because the
3169         // remembered sets are used there to choose eager reclaim candidates.
3170         // If the remembered sets are not up to date we might miss some
3171         // entries that need to be handled.
3172         g1_rem_set()->cleanupHRRS();
3173 
3174         register_humongous_regions_with_cset();
3175 
3176         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3177 
3178         // We call this after finalize_cset() to
3179         // ensure that the CSet has been finalized.
3180         _cm->verify_no_cset_oops();
3181 
3182         if (_hr_printer.is_active()) {
3183           G1PrintCollectionSetClosure cl(&_hr_printer);
3184           _collection_set.iterate(&cl);
3185         }
3186 
3187         // Initialize the GC alloc regions.
3188         _allocator->init_gc_alloc_regions(evacuation_info);
3189 
3190         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3191         pre_evacuate_collection_set();
3192 
3193         // Actually do the work...
3194         evacuate_collection_set(evacuation_info, &per_thread_states);
3195 
3196         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3197 
3198         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3199         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3200 
3201         eagerly_reclaim_humongous_regions();
3202 
3203         record_obj_copy_mem_stats();
3204         _survivor_evac_stats.adjust_desired_plab_sz();
3205         _old_evac_stats.adjust_desired_plab_sz();
3206 
3207         double start = os::elapsedTime();
3208         start_new_collection_set();
3209         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3210 
3211         if (evacuation_failed()) {
3212           set_used(recalculate_used());
3213           if (_archive_allocator != NULL) {
3214             _archive_allocator->clear_used();
3215           }
3216           for (uint i = 0; i < ParallelGCThreads; i++) {
3217             if (_evacuation_failed_info_array[i].has_failed()) {
3218               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3219             }
3220           }
3221         } else {
3222           // The "used" of the the collection set have already been subtracted
3223           // when they were freed.  Add in the bytes evacuated.
3224           increase_used(g1_policy()->bytes_copied_during_gc());
3225         }
3226 
3227         if (collector_state()->during_initial_mark_pause()) {
3228           // We have to do this before we notify the CM threads that
3229           // they can start working to make sure that all the
3230           // appropriate initialization is done on the CM object.
3231           concurrent_mark()->checkpointRootsInitialPost();
3232           collector_state()->set_mark_in_progress(true);
3233           // Note that we don't actually trigger the CM thread at
3234           // this point. We do that later when we're sure that
3235           // the current thread has completed its logging output.
3236         }
3237 
3238         allocate_dummy_regions();
3239 
3240         _allocator->init_mutator_alloc_region();
3241 
3242         {
3243           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3244           if (expand_bytes > 0) {
3245             size_t bytes_before = capacity();
3246             // No need for an ergo logging here,
3247             // expansion_amount() does this when it returns a value > 0.
3248             double expand_ms;
3249             if (!expand(expand_bytes, _workers, &expand_ms)) {
3250               // We failed to expand the heap. Cannot do anything about it.
3251             }
3252             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3253           }
3254         }
3255 
3256         // We redo the verification but now wrt to the new CSet which
3257         // has just got initialized after the previous CSet was freed.
3258         _cm->verify_no_cset_oops();
3259 
3260         // This timing is only used by the ergonomics to handle our pause target.
3261         // It is unclear why this should not include the full pause. We will
3262         // investigate this in CR 7178365.
3263         double sample_end_time_sec = os::elapsedTime();
3264         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3265         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3266         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3267 
3268         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3269         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3270 
3271         MemoryService::track_memory_usage();
3272 
3273         // In prepare_for_verify() below we'll need to scan the deferred
3274         // update buffers to bring the RSets up-to-date if
3275         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3276         // the update buffers we'll probably need to scan cards on the
3277         // regions we just allocated to (i.e., the GC alloc
3278         // regions). However, during the last GC we called
3279         // set_saved_mark() on all the GC alloc regions, so card
3280         // scanning might skip the [saved_mark_word()...top()] area of
3281         // those regions (i.e., the area we allocated objects into
3282         // during the last GC). But it shouldn't. Given that
3283         // saved_mark_word() is conditional on whether the GC time stamp
3284         // on the region is current or not, by incrementing the GC time
3285         // stamp here we invalidate all the GC time stamps on all the
3286         // regions and saved_mark_word() will simply return top() for
3287         // all the regions. This is a nicer way of ensuring this rather
3288         // than iterating over the regions and fixing them. In fact, the
3289         // GC time stamp increment here also ensures that
3290         // saved_mark_word() will return top() between pauses, i.e.,
3291         // during concurrent refinement. So we don't need the
3292         // is_gc_active() check to decided which top to use when
3293         // scanning cards (see CR 7039627).
3294         increment_gc_time_stamp();
3295 
3296         if (VerifyRememberedSets) {
3297           log_info(gc, verify)("[Verifying RemSets after GC]");
3298           VerifyRegionRemSetClosure v_cl;
3299           heap_region_iterate(&v_cl);
3300         }
3301 
3302         _verifier->verify_after_gc();
3303         _verifier->check_bitmaps("GC End");
3304 
3305         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3306         ref_processor_stw()->verify_no_references_recorded();
3307 
3308         // CM reference discovery will be re-enabled if necessary.
3309       }
3310 
3311 #ifdef TRACESPINNING
3312       ParallelTaskTerminator::print_termination_counts();
3313 #endif
3314 
3315       gc_epilogue(false);
3316     }
3317 
3318     // Print the remainder of the GC log output.
3319     if (evacuation_failed()) {
3320       log_info(gc)("To-space exhausted");
3321     }
3322 
3323     g1_policy()->print_phases();
3324     heap_transition.print();
3325 
3326     // It is not yet to safe to tell the concurrent mark to
3327     // start as we have some optional output below. We don't want the
3328     // output from the concurrent mark thread interfering with this
3329     // logging output either.
3330 
3331     _hrm.verify_optional();
3332     _verifier->verify_region_sets_optional();
3333 
3334     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3335     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3336 
3337     print_heap_after_gc();
3338     print_heap_regions();
3339     trace_heap_after_gc(_gc_tracer_stw);
3340 
3341     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3342     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3343     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3344     // before any GC notifications are raised.
3345     g1mm()->update_sizes();
3346 
3347     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3348     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3349     _gc_timer_stw->register_gc_end();
3350     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3351   }
3352   // It should now be safe to tell the concurrent mark thread to start
3353   // without its logging output interfering with the logging output
3354   // that came from the pause.
3355 
3356   if (should_start_conc_mark) {
3357     // CAUTION: after the doConcurrentMark() call below,
3358     // the concurrent marking thread(s) could be running
3359     // concurrently with us. Make sure that anything after
3360     // this point does not assume that we are the only GC thread
3361     // running. Note: of course, the actual marking work will
3362     // not start until the safepoint itself is released in
3363     // SuspendibleThreadSet::desynchronize().
3364     doConcurrentMark();
3365   }
3366 
3367   return true;
3368 }
3369 
3370 void G1CollectedHeap::remove_self_forwarding_pointers() {
3371   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3372   workers()->run_task(&rsfp_task);
3373 }
3374 
3375 void G1CollectedHeap::restore_after_evac_failure() {
3376   double remove_self_forwards_start = os::elapsedTime();
3377 
3378   remove_self_forwarding_pointers();
3379   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3380   _preserved_marks_set.restore(&task_executor);
3381 
3382   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3383 }
3384 
3385 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3386   if (!_evacuation_failed) {
3387     _evacuation_failed = true;
3388   }
3389 
3390   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3391   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3392 }
3393 
3394 bool G1ParEvacuateFollowersClosure::offer_termination() {
3395   G1ParScanThreadState* const pss = par_scan_state();
3396   start_term_time();
3397   const bool res = terminator()->offer_termination();
3398   end_term_time();
3399   return res;
3400 }
3401 
3402 void G1ParEvacuateFollowersClosure::do_void() {
3403   G1ParScanThreadState* const pss = par_scan_state();
3404   pss->trim_queue();
3405   do {
3406     pss->steal_and_trim_queue(queues());
3407   } while (!offer_termination());
3408 }
3409 
3410 class G1ParTask : public AbstractGangTask {
3411 protected:
3412   G1CollectedHeap*         _g1h;
3413   G1ParScanThreadStateSet* _pss;
3414   RefToScanQueueSet*       _queues;
3415   G1RootProcessor*         _root_processor;
3416   ParallelTaskTerminator   _terminator;
3417   uint                     _n_workers;
3418 
3419 public:
3420   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3421     : AbstractGangTask("G1 collection"),
3422       _g1h(g1h),
3423       _pss(per_thread_states),
3424       _queues(task_queues),
3425       _root_processor(root_processor),
3426       _terminator(n_workers, _queues),
3427       _n_workers(n_workers)
3428   {}
3429 
3430   void work(uint worker_id) {
3431     if (worker_id >= _n_workers) return;  // no work needed this round
3432 
3433     double start_sec = os::elapsedTime();
3434     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3435 
3436     {
3437       ResourceMark rm;
3438       HandleMark   hm;
3439 
3440       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3441 
3442       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3443       pss->set_ref_processor(rp);
3444 
3445       double start_strong_roots_sec = os::elapsedTime();
3446 
3447       _root_processor->evacuate_roots(pss->closures(), worker_id);
3448 
3449       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3450 
3451       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3452       // treating the nmethods visited to act as roots for concurrent marking.
3453       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3454       // objects copied by the current evacuation.
3455       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3456                                                                              pss->closures()->weak_codeblobs(),
3457                                                                              worker_id);
3458 
3459       _pss->add_cards_scanned(worker_id, cards_scanned);
3460 
3461       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3462 
3463       double term_sec = 0.0;
3464       size_t evac_term_attempts = 0;
3465       {
3466         double start = os::elapsedTime();
3467         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3468         evac.do_void();
3469 
3470         evac_term_attempts = evac.term_attempts();
3471         term_sec = evac.term_time();
3472         double elapsed_sec = os::elapsedTime() - start;
3473         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3474         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3475         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3476       }
3477 
3478       assert(pss->queue_is_empty(), "should be empty");
3479 
3480       if (log_is_enabled(Debug, gc, task, stats)) {
3481         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3482         size_t lab_waste;
3483         size_t lab_undo_waste;
3484         pss->waste(lab_waste, lab_undo_waste);
3485         _g1h->print_termination_stats(worker_id,
3486                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3487                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3488                                       term_sec * 1000.0,                          /* evac term time */
3489                                       evac_term_attempts,                         /* evac term attempts */
3490                                       lab_waste,                                  /* alloc buffer waste */
3491                                       lab_undo_waste                              /* undo waste */
3492                                       );
3493       }
3494 
3495       // Close the inner scope so that the ResourceMark and HandleMark
3496       // destructors are executed here and are included as part of the
3497       // "GC Worker Time".
3498     }
3499     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3500   }
3501 };
3502 
3503 void G1CollectedHeap::print_termination_stats_hdr() {
3504   log_debug(gc, task, stats)("GC Termination Stats");
3505   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3506   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3507   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3508 }
3509 
3510 void G1CollectedHeap::print_termination_stats(uint worker_id,
3511                                               double elapsed_ms,
3512                                               double strong_roots_ms,
3513                                               double term_ms,
3514                                               size_t term_attempts,
3515                                               size_t alloc_buffer_waste,
3516                                               size_t undo_waste) const {
3517   log_debug(gc, task, stats)
3518               ("%3d %9.2f %9.2f %6.2f "
3519                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3520                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3521                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3522                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3523                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3524                alloc_buffer_waste * HeapWordSize / K,
3525                undo_waste * HeapWordSize / K);
3526 }
3527 
3528 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3529 private:
3530   BoolObjectClosure* _is_alive;
3531   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3532 
3533   int _initial_string_table_size;
3534   int _initial_symbol_table_size;
3535 
3536   bool  _process_strings;
3537   int _strings_processed;
3538   int _strings_removed;
3539 
3540   bool  _process_symbols;
3541   int _symbols_processed;
3542   int _symbols_removed;
3543 
3544   bool _process_string_dedup;
3545 
3546 public:
3547   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3548     AbstractGangTask("String/Symbol Unlinking"),
3549     _is_alive(is_alive),
3550     _dedup_closure(is_alive, NULL, false),
3551     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3552     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3553     _process_string_dedup(process_string_dedup) {
3554 
3555     _initial_string_table_size = StringTable::the_table()->table_size();
3556     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3557     if (process_strings) {
3558       StringTable::clear_parallel_claimed_index();
3559     }
3560     if (process_symbols) {
3561       SymbolTable::clear_parallel_claimed_index();
3562     }
3563   }
3564 
3565   ~G1StringAndSymbolCleaningTask() {
3566     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3567               "claim value %d after unlink less than initial string table size %d",
3568               StringTable::parallel_claimed_index(), _initial_string_table_size);
3569     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3570               "claim value %d after unlink less than initial symbol table size %d",
3571               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3572 
3573     log_info(gc, stringtable)(
3574         "Cleaned string and symbol table, "
3575         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3576         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3577         strings_processed(), strings_removed(),
3578         symbols_processed(), symbols_removed());
3579   }
3580 
3581   void work(uint worker_id) {
3582     int strings_processed = 0;
3583     int strings_removed = 0;
3584     int symbols_processed = 0;
3585     int symbols_removed = 0;
3586     if (_process_strings) {
3587       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3588       Atomic::add(strings_processed, &_strings_processed);
3589       Atomic::add(strings_removed, &_strings_removed);
3590     }
3591     if (_process_symbols) {
3592       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3593       Atomic::add(symbols_processed, &_symbols_processed);
3594       Atomic::add(symbols_removed, &_symbols_removed);
3595     }
3596     if (_process_string_dedup) {
3597       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3598     }
3599   }
3600 
3601   size_t strings_processed() const { return (size_t)_strings_processed; }
3602   size_t strings_removed()   const { return (size_t)_strings_removed; }
3603 
3604   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3605   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3606 };
3607 
3608 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3609 private:
3610   static Monitor* _lock;
3611 
3612   BoolObjectClosure* const _is_alive;
3613   const bool               _unloading_occurred;
3614   const uint               _num_workers;
3615 
3616   // Variables used to claim nmethods.
3617   CompiledMethod* _first_nmethod;
3618   volatile CompiledMethod* _claimed_nmethod;
3619 
3620   // The list of nmethods that need to be processed by the second pass.
3621   volatile CompiledMethod* _postponed_list;
3622   volatile uint            _num_entered_barrier;
3623 
3624  public:
3625   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3626       _is_alive(is_alive),
3627       _unloading_occurred(unloading_occurred),
3628       _num_workers(num_workers),
3629       _first_nmethod(NULL),
3630       _claimed_nmethod(NULL),
3631       _postponed_list(NULL),
3632       _num_entered_barrier(0)
3633   {
3634     CompiledMethod::increase_unloading_clock();
3635     // Get first alive nmethod
3636     CompiledMethodIterator iter = CompiledMethodIterator();
3637     if(iter.next_alive()) {
3638       _first_nmethod = iter.method();
3639     }
3640     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3641   }
3642 
3643   ~G1CodeCacheUnloadingTask() {
3644     CodeCache::verify_clean_inline_caches();
3645 
3646     CodeCache::set_needs_cache_clean(false);
3647     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3648 
3649     CodeCache::verify_icholder_relocations();
3650   }
3651 
3652  private:
3653   void add_to_postponed_list(CompiledMethod* nm) {
3654       CompiledMethod* old;
3655       do {
3656         old = (CompiledMethod*)_postponed_list;
3657         nm->set_unloading_next(old);
3658       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3659   }
3660 
3661   void clean_nmethod(CompiledMethod* nm) {
3662     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3663 
3664     if (postponed) {
3665       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3666       add_to_postponed_list(nm);
3667     }
3668 
3669     // Mark that this thread has been cleaned/unloaded.
3670     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3671     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3672   }
3673 
3674   void clean_nmethod_postponed(CompiledMethod* nm) {
3675     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3676   }
3677 
3678   static const int MaxClaimNmethods = 16;
3679 
3680   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3681     CompiledMethod* first;
3682     CompiledMethodIterator last;
3683 
3684     do {
3685       *num_claimed_nmethods = 0;
3686 
3687       first = (CompiledMethod*)_claimed_nmethod;
3688       last = CompiledMethodIterator(first);
3689 
3690       if (first != NULL) {
3691 
3692         for (int i = 0; i < MaxClaimNmethods; i++) {
3693           if (!last.next_alive()) {
3694             break;
3695           }
3696           claimed_nmethods[i] = last.method();
3697           (*num_claimed_nmethods)++;
3698         }
3699       }
3700 
3701     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3702   }
3703 
3704   CompiledMethod* claim_postponed_nmethod() {
3705     CompiledMethod* claim;
3706     CompiledMethod* next;
3707 
3708     do {
3709       claim = (CompiledMethod*)_postponed_list;
3710       if (claim == NULL) {
3711         return NULL;
3712       }
3713 
3714       next = claim->unloading_next();
3715 
3716     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3717 
3718     return claim;
3719   }
3720 
3721  public:
3722   // Mark that we're done with the first pass of nmethod cleaning.
3723   void barrier_mark(uint worker_id) {
3724     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3725     _num_entered_barrier++;
3726     if (_num_entered_barrier == _num_workers) {
3727       ml.notify_all();
3728     }
3729   }
3730 
3731   // See if we have to wait for the other workers to
3732   // finish their first-pass nmethod cleaning work.
3733   void barrier_wait(uint worker_id) {
3734     if (_num_entered_barrier < _num_workers) {
3735       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3736       while (_num_entered_barrier < _num_workers) {
3737           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3738       }
3739     }
3740   }
3741 
3742   // Cleaning and unloading of nmethods. Some work has to be postponed
3743   // to the second pass, when we know which nmethods survive.
3744   void work_first_pass(uint worker_id) {
3745     // The first nmethods is claimed by the first worker.
3746     if (worker_id == 0 && _first_nmethod != NULL) {
3747       clean_nmethod(_first_nmethod);
3748       _first_nmethod = NULL;
3749     }
3750 
3751     int num_claimed_nmethods;
3752     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3753 
3754     while (true) {
3755       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3756 
3757       if (num_claimed_nmethods == 0) {
3758         break;
3759       }
3760 
3761       for (int i = 0; i < num_claimed_nmethods; i++) {
3762         clean_nmethod(claimed_nmethods[i]);
3763       }
3764     }
3765   }
3766 
3767   void work_second_pass(uint worker_id) {
3768     CompiledMethod* nm;
3769     // Take care of postponed nmethods.
3770     while ((nm = claim_postponed_nmethod()) != NULL) {
3771       clean_nmethod_postponed(nm);
3772     }
3773   }
3774 };
3775 
3776 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3777 
3778 class G1KlassCleaningTask : public StackObj {
3779   BoolObjectClosure*                      _is_alive;
3780   volatile jint                           _clean_klass_tree_claimed;
3781   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3782 
3783  public:
3784   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3785       _is_alive(is_alive),
3786       _clean_klass_tree_claimed(0),
3787       _klass_iterator() {
3788   }
3789 
3790  private:
3791   bool claim_clean_klass_tree_task() {
3792     if (_clean_klass_tree_claimed) {
3793       return false;
3794     }
3795 
3796     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3797   }
3798 
3799   InstanceKlass* claim_next_klass() {
3800     Klass* klass;
3801     do {
3802       klass =_klass_iterator.next_klass();
3803     } while (klass != NULL && !klass->is_instance_klass());
3804 
3805     // this can be null so don't call InstanceKlass::cast
3806     return static_cast<InstanceKlass*>(klass);
3807   }
3808 
3809 public:
3810 
3811   void clean_klass(InstanceKlass* ik) {
3812     ik->clean_weak_instanceklass_links(_is_alive);
3813   }
3814 
3815   void work() {
3816     ResourceMark rm;
3817 
3818     // One worker will clean the subklass/sibling klass tree.
3819     if (claim_clean_klass_tree_task()) {
3820       Klass::clean_subklass_tree(_is_alive);
3821     }
3822 
3823     // All workers will help cleaning the classes,
3824     InstanceKlass* klass;
3825     while ((klass = claim_next_klass()) != NULL) {
3826       clean_klass(klass);
3827     }
3828   }
3829 };
3830 
3831 // To minimize the remark pause times, the tasks below are done in parallel.
3832 class G1ParallelCleaningTask : public AbstractGangTask {
3833 private:
3834   G1StringAndSymbolCleaningTask _string_symbol_task;
3835   G1CodeCacheUnloadingTask      _code_cache_task;
3836   G1KlassCleaningTask           _klass_cleaning_task;
3837 
3838 public:
3839   // The constructor is run in the VMThread.
3840   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3841       AbstractGangTask("Parallel Cleaning"),
3842       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3843       _code_cache_task(num_workers, is_alive, unloading_occurred),
3844       _klass_cleaning_task(is_alive) {
3845   }
3846 
3847   // The parallel work done by all worker threads.
3848   void work(uint worker_id) {
3849     // Do first pass of code cache cleaning.
3850     _code_cache_task.work_first_pass(worker_id);
3851 
3852     // Let the threads mark that the first pass is done.
3853     _code_cache_task.barrier_mark(worker_id);
3854 
3855     // Clean the Strings and Symbols.
3856     _string_symbol_task.work(worker_id);
3857 
3858     // Wait for all workers to finish the first code cache cleaning pass.
3859     _code_cache_task.barrier_wait(worker_id);
3860 
3861     // Do the second code cache cleaning work, which realize on
3862     // the liveness information gathered during the first pass.
3863     _code_cache_task.work_second_pass(worker_id);
3864 
3865     // Clean all klasses that were not unloaded.
3866     _klass_cleaning_task.work();
3867   }
3868 };
3869 
3870 
3871 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3872                                         bool class_unloading_occurred) {
3873   uint n_workers = workers()->active_workers();
3874 
3875   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3876   workers()->run_task(&g1_unlink_task);
3877 }
3878 
3879 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3880                                        bool process_strings,
3881                                        bool process_symbols,
3882                                        bool process_string_dedup) {
3883   if (!process_strings && !process_symbols && !process_string_dedup) {
3884     // Nothing to clean.
3885     return;
3886   }
3887 
3888   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3889   workers()->run_task(&g1_unlink_task);
3890 
3891 }
3892 
3893 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3894  private:
3895   DirtyCardQueueSet* _queue;
3896   G1CollectedHeap* _g1h;
3897  public:
3898   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3899     _queue(queue), _g1h(g1h) { }
3900 
3901   virtual void work(uint worker_id) {
3902     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3903     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3904 
3905     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3906     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3907 
3908     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3909   }
3910 };
3911 
3912 void G1CollectedHeap::redirty_logged_cards() {
3913   double redirty_logged_cards_start = os::elapsedTime();
3914 
3915   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3916   dirty_card_queue_set().reset_for_par_iteration();
3917   workers()->run_task(&redirty_task);
3918 
3919   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3920   dcq.merge_bufferlists(&dirty_card_queue_set());
3921   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3922 
3923   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3924 }
3925 
3926 // Weak Reference Processing support
3927 
3928 // An always "is_alive" closure that is used to preserve referents.
3929 // If the object is non-null then it's alive.  Used in the preservation
3930 // of referent objects that are pointed to by reference objects
3931 // discovered by the CM ref processor.
3932 class G1AlwaysAliveClosure: public BoolObjectClosure {
3933   G1CollectedHeap* _g1;
3934 public:
3935   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3936   bool do_object_b(oop p) {
3937     if (p != NULL) {
3938       return true;
3939     }
3940     return false;
3941   }
3942 };
3943 
3944 bool G1STWIsAliveClosure::do_object_b(oop p) {
3945   // An object is reachable if it is outside the collection set,
3946   // or is inside and copied.
3947   return !_g1->is_in_cset(p) || p->is_forwarded();
3948 }
3949 
3950 // Non Copying Keep Alive closure
3951 class G1KeepAliveClosure: public OopClosure {
3952   G1CollectedHeap* _g1;
3953 public:
3954   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3955   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3956   void do_oop(oop* p) {
3957     oop obj = *p;
3958     assert(obj != NULL, "the caller should have filtered out NULL values");
3959 
3960     const InCSetState cset_state = _g1->in_cset_state(obj);
3961     if (!cset_state.is_in_cset_or_humongous()) {
3962       return;
3963     }
3964     if (cset_state.is_in_cset()) {
3965       assert( obj->is_forwarded(), "invariant" );
3966       *p = obj->forwardee();
3967     } else {
3968       assert(!obj->is_forwarded(), "invariant" );
3969       assert(cset_state.is_humongous(),
3970              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3971       _g1->set_humongous_is_live(obj);
3972     }
3973   }
3974 };
3975 
3976 // Copying Keep Alive closure - can be called from both
3977 // serial and parallel code as long as different worker
3978 // threads utilize different G1ParScanThreadState instances
3979 // and different queues.
3980 
3981 class G1CopyingKeepAliveClosure: public OopClosure {
3982   G1CollectedHeap*         _g1h;
3983   OopClosure*              _copy_non_heap_obj_cl;
3984   G1ParScanThreadState*    _par_scan_state;
3985 
3986 public:
3987   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3988                             OopClosure* non_heap_obj_cl,
3989                             G1ParScanThreadState* pss):
3990     _g1h(g1h),
3991     _copy_non_heap_obj_cl(non_heap_obj_cl),
3992     _par_scan_state(pss)
3993   {}
3994 
3995   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3996   virtual void do_oop(      oop* p) { do_oop_work(p); }
3997 
3998   template <class T> void do_oop_work(T* p) {
3999     oop obj = oopDesc::load_decode_heap_oop(p);
4000 
4001     if (_g1h->is_in_cset_or_humongous(obj)) {
4002       // If the referent object has been forwarded (either copied
4003       // to a new location or to itself in the event of an
4004       // evacuation failure) then we need to update the reference
4005       // field and, if both reference and referent are in the G1
4006       // heap, update the RSet for the referent.
4007       //
4008       // If the referent has not been forwarded then we have to keep
4009       // it alive by policy. Therefore we have copy the referent.
4010       //
4011       // If the reference field is in the G1 heap then we can push
4012       // on the PSS queue. When the queue is drained (after each
4013       // phase of reference processing) the object and it's followers
4014       // will be copied, the reference field set to point to the
4015       // new location, and the RSet updated. Otherwise we need to
4016       // use the the non-heap or metadata closures directly to copy
4017       // the referent object and update the pointer, while avoiding
4018       // updating the RSet.
4019 
4020       if (_g1h->is_in_g1_reserved(p)) {
4021         _par_scan_state->push_on_queue(p);
4022       } else {
4023         assert(!Metaspace::contains((const void*)p),
4024                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4025         _copy_non_heap_obj_cl->do_oop(p);
4026       }
4027     }
4028   }
4029 };
4030 
4031 // Serial drain queue closure. Called as the 'complete_gc'
4032 // closure for each discovered list in some of the
4033 // reference processing phases.
4034 
4035 class G1STWDrainQueueClosure: public VoidClosure {
4036 protected:
4037   G1CollectedHeap* _g1h;
4038   G1ParScanThreadState* _par_scan_state;
4039 
4040   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4041 
4042 public:
4043   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4044     _g1h(g1h),
4045     _par_scan_state(pss)
4046   { }
4047 
4048   void do_void() {
4049     G1ParScanThreadState* const pss = par_scan_state();
4050     pss->trim_queue();
4051   }
4052 };
4053 
4054 // Parallel Reference Processing closures
4055 
4056 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4057 // processing during G1 evacuation pauses.
4058 
4059 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4060 private:
4061   G1CollectedHeap*          _g1h;
4062   G1ParScanThreadStateSet*  _pss;
4063   RefToScanQueueSet*        _queues;
4064   WorkGang*                 _workers;
4065   uint                      _active_workers;
4066 
4067 public:
4068   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4069                            G1ParScanThreadStateSet* per_thread_states,
4070                            WorkGang* workers,
4071                            RefToScanQueueSet *task_queues,
4072                            uint n_workers) :
4073     _g1h(g1h),
4074     _pss(per_thread_states),
4075     _queues(task_queues),
4076     _workers(workers),
4077     _active_workers(n_workers)
4078   {
4079     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4080   }
4081 
4082   // Executes the given task using concurrent marking worker threads.
4083   virtual void execute(ProcessTask& task);
4084   virtual void execute(EnqueueTask& task);
4085 };
4086 
4087 // Gang task for possibly parallel reference processing
4088 
4089 class G1STWRefProcTaskProxy: public AbstractGangTask {
4090   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4091   ProcessTask&     _proc_task;
4092   G1CollectedHeap* _g1h;
4093   G1ParScanThreadStateSet* _pss;
4094   RefToScanQueueSet* _task_queues;
4095   ParallelTaskTerminator* _terminator;
4096 
4097 public:
4098   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4099                         G1CollectedHeap* g1h,
4100                         G1ParScanThreadStateSet* per_thread_states,
4101                         RefToScanQueueSet *task_queues,
4102                         ParallelTaskTerminator* terminator) :
4103     AbstractGangTask("Process reference objects in parallel"),
4104     _proc_task(proc_task),
4105     _g1h(g1h),
4106     _pss(per_thread_states),
4107     _task_queues(task_queues),
4108     _terminator(terminator)
4109   {}
4110 
4111   virtual void work(uint worker_id) {
4112     // The reference processing task executed by a single worker.
4113     ResourceMark rm;
4114     HandleMark   hm;
4115 
4116     G1STWIsAliveClosure is_alive(_g1h);
4117 
4118     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4119     pss->set_ref_processor(NULL);
4120 
4121     // Keep alive closure.
4122     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4123 
4124     // Complete GC closure
4125     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4126 
4127     // Call the reference processing task's work routine.
4128     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4129 
4130     // Note we cannot assert that the refs array is empty here as not all
4131     // of the processing tasks (specifically phase2 - pp2_work) execute
4132     // the complete_gc closure (which ordinarily would drain the queue) so
4133     // the queue may not be empty.
4134   }
4135 };
4136 
4137 // Driver routine for parallel reference processing.
4138 // Creates an instance of the ref processing gang
4139 // task and has the worker threads execute it.
4140 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4141   assert(_workers != NULL, "Need parallel worker threads.");
4142 
4143   ParallelTaskTerminator terminator(_active_workers, _queues);
4144   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4145 
4146   _workers->run_task(&proc_task_proxy);
4147 }
4148 
4149 // Gang task for parallel reference enqueueing.
4150 
4151 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4152   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4153   EnqueueTask& _enq_task;
4154 
4155 public:
4156   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4157     AbstractGangTask("Enqueue reference objects in parallel"),
4158     _enq_task(enq_task)
4159   { }
4160 
4161   virtual void work(uint worker_id) {
4162     _enq_task.work(worker_id);
4163   }
4164 };
4165 
4166 // Driver routine for parallel reference enqueueing.
4167 // Creates an instance of the ref enqueueing gang
4168 // task and has the worker threads execute it.
4169 
4170 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4171   assert(_workers != NULL, "Need parallel worker threads.");
4172 
4173   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4174 
4175   _workers->run_task(&enq_task_proxy);
4176 }
4177 
4178 // End of weak reference support closures
4179 
4180 // Abstract task used to preserve (i.e. copy) any referent objects
4181 // that are in the collection set and are pointed to by reference
4182 // objects discovered by the CM ref processor.
4183 
4184 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4185 protected:
4186   G1CollectedHeap*         _g1h;
4187   G1ParScanThreadStateSet* _pss;
4188   RefToScanQueueSet*       _queues;
4189   ParallelTaskTerminator   _terminator;
4190   uint                     _n_workers;
4191 
4192 public:
4193   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4194     AbstractGangTask("ParPreserveCMReferents"),
4195     _g1h(g1h),
4196     _pss(per_thread_states),
4197     _queues(task_queues),
4198     _terminator(workers, _queues),
4199     _n_workers(workers)
4200   {
4201     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4202   }
4203 
4204   void work(uint worker_id) {
4205     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4206 
4207     ResourceMark rm;
4208     HandleMark   hm;
4209 
4210     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4211     pss->set_ref_processor(NULL);
4212     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4213 
4214     // Is alive closure
4215     G1AlwaysAliveClosure always_alive(_g1h);
4216 
4217     // Copying keep alive closure. Applied to referent objects that need
4218     // to be copied.
4219     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4220 
4221     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4222 
4223     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4224     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4225 
4226     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4227     // So this must be true - but assert just in case someone decides to
4228     // change the worker ids.
4229     assert(worker_id < limit, "sanity");
4230     assert(!rp->discovery_is_atomic(), "check this code");
4231 
4232     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4233     for (uint idx = worker_id; idx < limit; idx += stride) {
4234       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4235 
4236       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4237       while (iter.has_next()) {
4238         // Since discovery is not atomic for the CM ref processor, we
4239         // can see some null referent objects.
4240         iter.load_ptrs(DEBUG_ONLY(true));
4241         oop ref = iter.obj();
4242 
4243         // This will filter nulls.
4244         if (iter.is_referent_alive()) {
4245           iter.make_referent_alive();
4246         }
4247         iter.move_to_next();
4248       }
4249     }
4250 
4251     // Drain the queue - which may cause stealing
4252     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4253     drain_queue.do_void();
4254     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4255     assert(pss->queue_is_empty(), "should be");
4256   }
4257 };
4258 
4259 void G1CollectedHeap::process_weak_jni_handles() {
4260   double ref_proc_start = os::elapsedTime();
4261 
4262   G1STWIsAliveClosure is_alive(this);
4263   G1KeepAliveClosure keep_alive(this);
4264   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4265 
4266   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4267   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4268 }
4269 
4270 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4271   // Any reference objects, in the collection set, that were 'discovered'
4272   // by the CM ref processor should have already been copied (either by
4273   // applying the external root copy closure to the discovered lists, or
4274   // by following an RSet entry).
4275   //
4276   // But some of the referents, that are in the collection set, that these
4277   // reference objects point to may not have been copied: the STW ref
4278   // processor would have seen that the reference object had already
4279   // been 'discovered' and would have skipped discovering the reference,
4280   // but would not have treated the reference object as a regular oop.
4281   // As a result the copy closure would not have been applied to the
4282   // referent object.
4283   //
4284   // We need to explicitly copy these referent objects - the references
4285   // will be processed at the end of remarking.
4286   //
4287   // We also need to do this copying before we process the reference
4288   // objects discovered by the STW ref processor in case one of these
4289   // referents points to another object which is also referenced by an
4290   // object discovered by the STW ref processor.
4291   double preserve_cm_referents_time = 0.0;
4292 
4293   // To avoid spawning task when there is no work to do, check that
4294   // a concurrent cycle is active and that some references have been
4295   // discovered.
4296   if (concurrent_mark()->cmThread()->during_cycle() &&
4297       ref_processor_cm()->has_discovered_references()) {
4298     double preserve_cm_referents_start = os::elapsedTime();
4299     uint no_of_gc_workers = workers()->active_workers();
4300     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4301                                                    per_thread_states,
4302                                                    no_of_gc_workers,
4303                                                    _task_queues);
4304     workers()->run_task(&keep_cm_referents);
4305     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4306   }
4307 
4308   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4309 }
4310 
4311 // Weak Reference processing during an evacuation pause (part 1).
4312 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4313   double ref_proc_start = os::elapsedTime();
4314 
4315   ReferenceProcessor* rp = _ref_processor_stw;
4316   assert(rp->discovery_enabled(), "should have been enabled");
4317 
4318   // Closure to test whether a referent is alive.
4319   G1STWIsAliveClosure is_alive(this);
4320 
4321   // Even when parallel reference processing is enabled, the processing
4322   // of JNI refs is serial and performed serially by the current thread
4323   // rather than by a worker. The following PSS will be used for processing
4324   // JNI refs.
4325 
4326   // Use only a single queue for this PSS.
4327   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4328   pss->set_ref_processor(NULL);
4329   assert(pss->queue_is_empty(), "pre-condition");
4330 
4331   // Keep alive closure.
4332   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4333 
4334   // Serial Complete GC closure
4335   G1STWDrainQueueClosure drain_queue(this, pss);
4336 
4337   // Setup the soft refs policy...
4338   rp->setup_policy(false);
4339 
4340   ReferenceProcessorStats stats;
4341   if (!rp->processing_is_mt()) {
4342     // Serial reference processing...
4343     stats = rp->process_discovered_references(&is_alive,
4344                                               &keep_alive,
4345                                               &drain_queue,
4346                                               NULL,
4347                                               _gc_timer_stw);
4348   } else {
4349     uint no_of_gc_workers = workers()->active_workers();
4350 
4351     // Parallel reference processing
4352     assert(no_of_gc_workers <= rp->max_num_q(),
4353            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4354            no_of_gc_workers,  rp->max_num_q());
4355 
4356     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4357     stats = rp->process_discovered_references(&is_alive,
4358                                               &keep_alive,
4359                                               &drain_queue,
4360                                               &par_task_executor,
4361                                               _gc_timer_stw);
4362   }
4363 
4364   _gc_tracer_stw->report_gc_reference_stats(stats);
4365 
4366   // We have completed copying any necessary live referent objects.
4367   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4368 
4369   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4370   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4371 }
4372 
4373 // Weak Reference processing during an evacuation pause (part 2).
4374 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4375   double ref_enq_start = os::elapsedTime();
4376 
4377   ReferenceProcessor* rp = _ref_processor_stw;
4378   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4379 
4380   // Now enqueue any remaining on the discovered lists on to
4381   // the pending list.
4382   if (!rp->processing_is_mt()) {
4383     // Serial reference processing...
4384     rp->enqueue_discovered_references();
4385   } else {
4386     // Parallel reference enqueueing
4387 
4388     uint n_workers = workers()->active_workers();
4389 
4390     assert(n_workers <= rp->max_num_q(),
4391            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4392            n_workers,  rp->max_num_q());
4393 
4394     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4395     rp->enqueue_discovered_references(&par_task_executor);
4396   }
4397 
4398   rp->verify_no_references_recorded();
4399   assert(!rp->discovery_enabled(), "should have been disabled");
4400 
4401   // FIXME
4402   // CM's reference processing also cleans up the string and symbol tables.
4403   // Should we do that here also? We could, but it is a serial operation
4404   // and could significantly increase the pause time.
4405 
4406   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4407   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4408 }
4409 
4410 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4411   double merge_pss_time_start = os::elapsedTime();
4412   per_thread_states->flush();
4413   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4414 }
4415 
4416 void G1CollectedHeap::pre_evacuate_collection_set() {
4417   _expand_heap_after_alloc_failure = true;
4418   _evacuation_failed = false;
4419 
4420   // Disable the hot card cache.
4421   _hot_card_cache->reset_hot_cache_claimed_index();
4422   _hot_card_cache->set_use_cache(false);
4423 
4424   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4425   _preserved_marks_set.assert_empty();
4426 
4427   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4428 
4429   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4430   if (collector_state()->during_initial_mark_pause()) {
4431     double start_clear_claimed_marks = os::elapsedTime();
4432 
4433     ClassLoaderDataGraph::clear_claimed_marks();
4434 
4435     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4436     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4437   }
4438 }
4439 
4440 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4441   // Should G1EvacuationFailureALot be in effect for this GC?
4442   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4443 
4444   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4445 
4446   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4447 
4448   double start_par_time_sec = os::elapsedTime();
4449   double end_par_time_sec;
4450 
4451   {
4452     const uint n_workers = workers()->active_workers();
4453     G1RootProcessor root_processor(this, n_workers);
4454     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4455 
4456     print_termination_stats_hdr();
4457 
4458     workers()->run_task(&g1_par_task);
4459     end_par_time_sec = os::elapsedTime();
4460 
4461     // Closing the inner scope will execute the destructor
4462     // for the G1RootProcessor object. We record the current
4463     // elapsed time before closing the scope so that time
4464     // taken for the destructor is NOT included in the
4465     // reported parallel time.
4466   }
4467 
4468   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4469   phase_times->record_par_time(par_time_ms);
4470 
4471   double code_root_fixup_time_ms =
4472         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4473   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4474 }
4475 
4476 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4477   // Process any discovered reference objects - we have
4478   // to do this _before_ we retire the GC alloc regions
4479   // as we may have to copy some 'reachable' referent
4480   // objects (and their reachable sub-graphs) that were
4481   // not copied during the pause.
4482   if (g1_policy()->should_process_references()) {
4483     preserve_cm_referents(per_thread_states);
4484     process_discovered_references(per_thread_states);
4485   } else {
4486     ref_processor_stw()->verify_no_references_recorded();
4487     process_weak_jni_handles();
4488   }
4489 
4490   if (G1StringDedup::is_enabled()) {
4491     double fixup_start = os::elapsedTime();
4492 
4493     G1STWIsAliveClosure is_alive(this);
4494     G1KeepAliveClosure keep_alive(this);
4495     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4496 
4497     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4498     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4499   }
4500 
4501   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4502 
4503   if (evacuation_failed()) {
4504     restore_after_evac_failure();
4505 
4506     // Reset the G1EvacuationFailureALot counters and flags
4507     // Note: the values are reset only when an actual
4508     // evacuation failure occurs.
4509     NOT_PRODUCT(reset_evacuation_should_fail();)
4510   }
4511 
4512   _preserved_marks_set.assert_empty();
4513 
4514   // Enqueue any remaining references remaining on the STW
4515   // reference processor's discovered lists. We need to do
4516   // this after the card table is cleaned (and verified) as
4517   // the act of enqueueing entries on to the pending list
4518   // will log these updates (and dirty their associated
4519   // cards). We need these updates logged to update any
4520   // RSets.
4521   if (g1_policy()->should_process_references()) {
4522     enqueue_discovered_references(per_thread_states);
4523   } else {
4524     g1_policy()->phase_times()->record_ref_enq_time(0);
4525   }
4526 
4527   _allocator->release_gc_alloc_regions(evacuation_info);
4528 
4529   merge_per_thread_state_info(per_thread_states);
4530 
4531   // Reset and re-enable the hot card cache.
4532   // Note the counts for the cards in the regions in the
4533   // collection set are reset when the collection set is freed.
4534   _hot_card_cache->reset_hot_cache();
4535   _hot_card_cache->set_use_cache(true);
4536 
4537   purge_code_root_memory();
4538 
4539   redirty_logged_cards();
4540 #if defined(COMPILER2) || INCLUDE_JVMCI
4541   double start = os::elapsedTime();
4542   DerivedPointerTable::update_pointers();
4543   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4544 #endif
4545   g1_policy()->print_age_table();
4546 }
4547 
4548 void G1CollectedHeap::record_obj_copy_mem_stats() {
4549   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4550 
4551   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4552                                                create_g1_evac_summary(&_old_evac_stats));
4553 }
4554 
4555 void G1CollectedHeap::free_region(HeapRegion* hr,
4556                                   FreeRegionList* free_list,
4557                                   bool skip_remset,
4558                                   bool skip_hot_card_cache,
4559                                   bool locked) {
4560   assert(!hr->is_free(), "the region should not be free");
4561   assert(!hr->is_empty(), "the region should not be empty");
4562   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4563   assert(free_list != NULL, "pre-condition");
4564 
4565   if (G1VerifyBitmaps) {
4566     MemRegion mr(hr->bottom(), hr->end());
4567     concurrent_mark()->clearRangePrevBitmap(mr);
4568   }
4569 
4570   // Clear the card counts for this region.
4571   // Note: we only need to do this if the region is not young
4572   // (since we don't refine cards in young regions).
4573   if (!skip_hot_card_cache && !hr->is_young()) {
4574     _hot_card_cache->reset_card_counts(hr);
4575   }
4576   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4577   free_list->add_ordered(hr);
4578 }
4579 
4580 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4581                                             FreeRegionList* free_list,
4582                                             bool skip_remset) {
4583   assert(hr->is_humongous(), "this is only for humongous regions");
4584   assert(free_list != NULL, "pre-condition");
4585   hr->clear_humongous();
4586   free_region(hr, free_list, skip_remset);
4587 }
4588 
4589 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4590                                            const uint humongous_regions_removed) {
4591   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4592     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4593     _old_set.bulk_remove(old_regions_removed);
4594     _humongous_set.bulk_remove(humongous_regions_removed);
4595   }
4596 
4597 }
4598 
4599 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4600   assert(list != NULL, "list can't be null");
4601   if (!list->is_empty()) {
4602     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4603     _hrm.insert_list_into_free_list(list);
4604   }
4605 }
4606 
4607 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4608   decrease_used(bytes);
4609 }
4610 
4611 class G1ParScrubRemSetTask: public AbstractGangTask {
4612 protected:
4613   G1RemSet* _g1rs;
4614   HeapRegionClaimer _hrclaimer;
4615 
4616 public:
4617   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4618     AbstractGangTask("G1 ScrubRS"),
4619     _g1rs(g1_rs),
4620     _hrclaimer(num_workers) {
4621   }
4622 
4623   void work(uint worker_id) {
4624     _g1rs->scrub(worker_id, &_hrclaimer);
4625   }
4626 };
4627 
4628 void G1CollectedHeap::scrub_rem_set() {
4629   uint num_workers = workers()->active_workers();
4630   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4631   workers()->run_task(&g1_par_scrub_rs_task);
4632 }
4633 
4634 class G1FreeCollectionSetTask : public AbstractGangTask {
4635 private:
4636 
4637   // Closure applied to all regions in the collection set to do work that needs to
4638   // be done serially in a single thread.
4639   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4640   private:
4641     EvacuationInfo* _evacuation_info;
4642     const size_t* _surviving_young_words;
4643 
4644     // Bytes used in successfully evacuated regions before the evacuation.
4645     size_t _before_used_bytes;
4646     // Bytes used in unsucessfully evacuated regions before the evacuation
4647     size_t _after_used_bytes;
4648 
4649     size_t _bytes_allocated_in_old_since_last_gc;
4650 
4651     size_t _failure_used_words;
4652     size_t _failure_waste_words;
4653 
4654     FreeRegionList _local_free_list;
4655   public:
4656     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4657       HeapRegionClosure(),
4658       _evacuation_info(evacuation_info),
4659       _surviving_young_words(surviving_young_words),
4660       _before_used_bytes(0),
4661       _after_used_bytes(0),
4662       _bytes_allocated_in_old_since_last_gc(0),
4663       _failure_used_words(0),
4664       _failure_waste_words(0),
4665       _local_free_list("Local Region List for CSet Freeing") {
4666     }
4667 
4668     virtual bool doHeapRegion(HeapRegion* r) {
4669       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4670 
4671       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4672       g1h->clear_in_cset(r);
4673 
4674       if (r->is_young()) {
4675         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4676                "Young index %d is wrong for region %u of type %s with %u young regions",
4677                r->young_index_in_cset(),
4678                r->hrm_index(),
4679                r->get_type_str(),
4680                g1h->collection_set()->young_region_length());
4681         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4682         r->record_surv_words_in_group(words_survived);
4683       }
4684 
4685       if (!r->evacuation_failed()) {
4686         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4687         _before_used_bytes += r->used();
4688         g1h->free_region(r,
4689                          &_local_free_list,
4690                          true, /* skip_remset */
4691                          true, /* skip_hot_card_cache */
4692                          true  /* locked */);
4693       } else {
4694         r->uninstall_surv_rate_group();
4695         r->set_young_index_in_cset(-1);
4696         r->set_evacuation_failed(false);
4697         // When moving a young gen region to old gen, we "allocate" that whole region
4698         // there. This is in addition to any already evacuated objects. Notify the
4699         // policy about that.
4700         // Old gen regions do not cause an additional allocation: both the objects
4701         // still in the region and the ones already moved are accounted for elsewhere.
4702         if (r->is_young()) {
4703           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4704         }
4705         // The region is now considered to be old.
4706         r->set_old();
4707         // Do some allocation statistics accounting. Regions that failed evacuation
4708         // are always made old, so there is no need to update anything in the young
4709         // gen statistics, but we need to update old gen statistics.
4710         size_t used_words = r->marked_bytes() / HeapWordSize;
4711 
4712         _failure_used_words += used_words;
4713         _failure_waste_words += HeapRegion::GrainWords - used_words;
4714 
4715         g1h->old_set_add(r);
4716         _after_used_bytes += r->used();
4717       }
4718       return false;
4719     }
4720 
4721     void complete_work() {
4722       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4723 
4724       _evacuation_info->set_regions_freed(_local_free_list.length());
4725       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4726 
4727       g1h->prepend_to_freelist(&_local_free_list);
4728       g1h->decrement_summary_bytes(_before_used_bytes);
4729 
4730       G1Policy* policy = g1h->g1_policy();
4731       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4732 
4733       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4734     }
4735   };
4736 
4737   G1CollectionSet* _collection_set;
4738   G1SerialFreeCollectionSetClosure _cl;
4739   const size_t* _surviving_young_words;
4740 
4741   size_t _rs_lengths;
4742 
4743   volatile jint _serial_work_claim;
4744 
4745   struct WorkItem {
4746     uint region_idx;
4747     bool is_young;
4748     bool evacuation_failed;
4749 
4750     WorkItem(HeapRegion* r) {
4751       region_idx = r->hrm_index();
4752       is_young = r->is_young();
4753       evacuation_failed = r->evacuation_failed();
4754     }
4755   };
4756 
4757   volatile size_t _parallel_work_claim;
4758   size_t _num_work_items;
4759   WorkItem* _work_items;
4760 
4761   void do_serial_work() {
4762     // Need to grab the lock to be allowed to modify the old region list.
4763     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4764     _collection_set->iterate(&_cl);
4765   }
4766 
4767   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4768     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4769 
4770     HeapRegion* r = g1h->region_at(region_idx);
4771     assert(!g1h->is_on_master_free_list(r), "sanity");
4772 
4773     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4774 
4775     if (!is_young) {
4776       g1h->_hot_card_cache->reset_card_counts(r);
4777     }
4778 
4779     if (!evacuation_failed) {
4780       r->rem_set()->clear_locked();
4781     }
4782   }
4783 
4784   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4785   private:
4786     size_t _cur_idx;
4787     WorkItem* _work_items;
4788   public:
4789     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4790 
4791     virtual bool doHeapRegion(HeapRegion* r) {
4792       _work_items[_cur_idx++] = WorkItem(r);
4793       return false;
4794     }
4795   };
4796 
4797   void prepare_work() {
4798     G1PrepareFreeCollectionSetClosure cl(_work_items);
4799     _collection_set->iterate(&cl);
4800   }
4801 
4802   void complete_work() {
4803     _cl.complete_work();
4804 
4805     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4806     policy->record_max_rs_lengths(_rs_lengths);
4807     policy->cset_regions_freed();
4808   }
4809 public:
4810   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4811     AbstractGangTask("G1 Free Collection Set"),
4812     _cl(evacuation_info, surviving_young_words),
4813     _collection_set(collection_set),
4814     _surviving_young_words(surviving_young_words),
4815     _serial_work_claim(0),
4816     _rs_lengths(0),
4817     _parallel_work_claim(0),
4818     _num_work_items(collection_set->region_length()),
4819     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4820     prepare_work();
4821   }
4822 
4823   ~G1FreeCollectionSetTask() {
4824     complete_work();
4825     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4826   }
4827 
4828   // Chunk size for work distribution. The chosen value has been determined experimentally
4829   // to be a good tradeoff between overhead and achievable parallelism.
4830   static uint chunk_size() { return 32; }
4831 
4832   virtual void work(uint worker_id) {
4833     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4834 
4835     // Claim serial work.
4836     if (_serial_work_claim == 0) {
4837       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4838       if (value == 0) {
4839         double serial_time = os::elapsedTime();
4840         do_serial_work();
4841         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4842       }
4843     }
4844 
4845     // Start parallel work.
4846     double young_time = 0.0;
4847     bool has_young_time = false;
4848     double non_young_time = 0.0;
4849     bool has_non_young_time = false;
4850 
4851     while (true) {
4852       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4853       size_t cur = end - chunk_size();
4854 
4855       if (cur >= _num_work_items) {
4856         break;
4857       }
4858 
4859       double start_time = os::elapsedTime();
4860 
4861       end = MIN2(end, _num_work_items);
4862 
4863       for (; cur < end; cur++) {
4864         bool is_young = _work_items[cur].is_young;
4865 
4866         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4867 
4868         double end_time = os::elapsedTime();
4869         double time_taken = end_time - start_time;
4870         if (is_young) {
4871           young_time += time_taken;
4872           has_young_time = true;
4873         } else {
4874           non_young_time += time_taken;
4875           has_non_young_time = true;
4876         }
4877         start_time = end_time;
4878       }
4879     }
4880 
4881     if (has_young_time) {
4882       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4883     }
4884     if (has_non_young_time) {
4885       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4886     }
4887   }
4888 };
4889 
4890 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4891   _eden.clear();
4892 
4893   double free_cset_start_time = os::elapsedTime();
4894 
4895   {
4896     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4897     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4898 
4899     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4900 
4901     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4902                         cl.name(),
4903                         num_workers,
4904                         _collection_set.region_length());
4905     workers()->run_task(&cl, num_workers);
4906   }
4907   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4908 
4909   collection_set->clear();
4910 }
4911 
4912 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4913  private:
4914   FreeRegionList* _free_region_list;
4915   HeapRegionSet* _proxy_set;
4916   uint _humongous_regions_removed;
4917   size_t _freed_bytes;
4918  public:
4919 
4920   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4921     _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) {
4922   }
4923 
4924   virtual bool doHeapRegion(HeapRegion* r) {
4925     if (!r->is_starts_humongous()) {
4926       return false;
4927     }
4928 
4929     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4930 
4931     oop obj = (oop)r->bottom();
4932     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4933 
4934     // The following checks whether the humongous object is live are sufficient.
4935     // The main additional check (in addition to having a reference from the roots
4936     // or the young gen) is whether the humongous object has a remembered set entry.
4937     //
4938     // A humongous object cannot be live if there is no remembered set for it
4939     // because:
4940     // - there can be no references from within humongous starts regions referencing
4941     // the object because we never allocate other objects into them.
4942     // (I.e. there are no intra-region references that may be missed by the
4943     // remembered set)
4944     // - as soon there is a remembered set entry to the humongous starts region
4945     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4946     // until the end of a concurrent mark.
4947     //
4948     // It is not required to check whether the object has been found dead by marking
4949     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4950     // all objects allocated during that time are considered live.
4951     // SATB marking is even more conservative than the remembered set.
4952     // So if at this point in the collection there is no remembered set entry,
4953     // nobody has a reference to it.
4954     // At the start of collection we flush all refinement logs, and remembered sets
4955     // are completely up-to-date wrt to references to the humongous object.
4956     //
4957     // Other implementation considerations:
4958     // - never consider object arrays at this time because they would pose
4959     // considerable effort for cleaning up the the remembered sets. This is
4960     // required because stale remembered sets might reference locations that
4961     // are currently allocated into.
4962     uint region_idx = r->hrm_index();
4963     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4964         !r->rem_set()->is_empty()) {
4965       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4966                                region_idx,
4967                                (size_t)obj->size() * HeapWordSize,
4968                                p2i(r->bottom()),
4969                                r->rem_set()->occupied(),
4970                                r->rem_set()->strong_code_roots_list_length(),
4971                                next_bitmap->isMarked(r->bottom()),
4972                                g1h->is_humongous_reclaim_candidate(region_idx),
4973                                obj->is_typeArray()
4974                               );
4975       return false;
4976     }
4977 
4978     guarantee(obj->is_typeArray(),
4979               "Only eagerly reclaiming type arrays is supported, but the object "
4980               PTR_FORMAT " is not.", p2i(r->bottom()));
4981 
4982     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4983                              region_idx,
4984                              (size_t)obj->size() * HeapWordSize,
4985                              p2i(r->bottom()),
4986                              r->rem_set()->occupied(),
4987                              r->rem_set()->strong_code_roots_list_length(),
4988                              next_bitmap->isMarked(r->bottom()),
4989                              g1h->is_humongous_reclaim_candidate(region_idx),
4990                              obj->is_typeArray()
4991                             );
4992 
4993     // Need to clear mark bit of the humongous object if already set.
4994     if (next_bitmap->isMarked(r->bottom())) {
4995       next_bitmap->clear(r->bottom());
4996     }
4997     do {
4998       HeapRegion* next = g1h->next_region_in_humongous(r);
4999       _freed_bytes += r->used();
5000       r->set_containing_set(NULL);
5001       _humongous_regions_removed++;
5002       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
5003       r = next;
5004     } while (r != NULL);
5005 
5006     return false;
5007   }
5008 
5009   uint humongous_free_count() {
5010     return _humongous_regions_removed;
5011   }
5012 
5013   size_t bytes_freed() const {
5014     return _freed_bytes;
5015   }
5016 };
5017 
5018 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5019   assert_at_safepoint(true);
5020 
5021   if (!G1EagerReclaimHumongousObjects ||
5022       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5023     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5024     return;
5025   }
5026 
5027   double start_time = os::elapsedTime();
5028 
5029   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5030 
5031   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5032   heap_region_iterate(&cl);
5033 
5034   remove_from_old_sets(0, cl.humongous_free_count());
5035 
5036   G1HRPrinter* hrp = hr_printer();
5037   if (hrp->is_active()) {
5038     FreeRegionListIterator iter(&local_cleanup_list);
5039     while (iter.more_available()) {
5040       HeapRegion* hr = iter.get_next();
5041       hrp->cleanup(hr);
5042     }
5043   }
5044 
5045   prepend_to_freelist(&local_cleanup_list);
5046   decrement_summary_bytes(cl.bytes_freed());
5047 
5048   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5049                                                                     cl.humongous_free_count());
5050 }
5051 
5052 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5053 public:
5054   virtual bool doHeapRegion(HeapRegion* r) {
5055     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5056     G1CollectedHeap::heap()->clear_in_cset(r);
5057     r->set_young_index_in_cset(-1);
5058     return false;
5059   }
5060 };
5061 
5062 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5063   G1AbandonCollectionSetClosure cl;
5064   collection_set->iterate(&cl);
5065 
5066   collection_set->clear();
5067   collection_set->stop_incremental_building();
5068 }
5069 
5070 void G1CollectedHeap::set_free_regions_coming() {
5071   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5072 
5073   assert(!free_regions_coming(), "pre-condition");
5074   _free_regions_coming = true;
5075 }
5076 
5077 void G1CollectedHeap::reset_free_regions_coming() {
5078   assert(free_regions_coming(), "pre-condition");
5079 
5080   {
5081     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5082     _free_regions_coming = false;
5083     SecondaryFreeList_lock->notify_all();
5084   }
5085 
5086   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5087 }
5088 
5089 void G1CollectedHeap::wait_while_free_regions_coming() {
5090   // Most of the time we won't have to wait, so let's do a quick test
5091   // first before we take the lock.
5092   if (!free_regions_coming()) {
5093     return;
5094   }
5095 
5096   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5097 
5098   {
5099     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5100     while (free_regions_coming()) {
5101       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5102     }
5103   }
5104 
5105   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5106 }
5107 
5108 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5109   return _allocator->is_retained_old_region(hr);
5110 }
5111 
5112 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5113   _eden.add(hr);
5114   _g1_policy->set_region_eden(hr);
5115 }
5116 
5117 #ifdef ASSERT
5118 
5119 class NoYoungRegionsClosure: public HeapRegionClosure {
5120 private:
5121   bool _success;
5122 public:
5123   NoYoungRegionsClosure() : _success(true) { }
5124   bool doHeapRegion(HeapRegion* r) {
5125     if (r->is_young()) {
5126       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5127                             p2i(r->bottom()), p2i(r->end()));
5128       _success = false;
5129     }
5130     return false;
5131   }
5132   bool success() { return _success; }
5133 };
5134 
5135 bool G1CollectedHeap::check_young_list_empty() {
5136   bool ret = (young_regions_count() == 0);
5137 
5138   NoYoungRegionsClosure closure;
5139   heap_region_iterate(&closure);
5140   ret = ret && closure.success();
5141 
5142   return ret;
5143 }
5144 
5145 #endif // ASSERT
5146 
5147 class TearDownRegionSetsClosure : public HeapRegionClosure {
5148 private:
5149   HeapRegionSet *_old_set;
5150 
5151 public:
5152   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5153 
5154   bool doHeapRegion(HeapRegion* r) {
5155     if (r->is_old()) {
5156       _old_set->remove(r);
5157     } else if(r->is_young()) {
5158       r->uninstall_surv_rate_group();
5159     } else {
5160       // We ignore free regions, we'll empty the free list afterwards.
5161       // We ignore humongous regions, we're not tearing down the
5162       // humongous regions set.
5163       assert(r->is_free() || r->is_humongous(),
5164              "it cannot be another type");
5165     }
5166     return false;
5167   }
5168 
5169   ~TearDownRegionSetsClosure() {
5170     assert(_old_set->is_empty(), "post-condition");
5171   }
5172 };
5173 
5174 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5175   assert_at_safepoint(true /* should_be_vm_thread */);
5176 
5177   if (!free_list_only) {
5178     TearDownRegionSetsClosure cl(&_old_set);
5179     heap_region_iterate(&cl);
5180 
5181     // Note that emptying the _young_list is postponed and instead done as
5182     // the first step when rebuilding the regions sets again. The reason for
5183     // this is that during a full GC string deduplication needs to know if
5184     // a collected region was young or old when the full GC was initiated.
5185   }
5186   _hrm.remove_all_free_regions();
5187 }
5188 
5189 void G1CollectedHeap::increase_used(size_t bytes) {
5190   _summary_bytes_used += bytes;
5191 }
5192 
5193 void G1CollectedHeap::decrease_used(size_t bytes) {
5194   assert(_summary_bytes_used >= bytes,
5195          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5196          _summary_bytes_used, bytes);
5197   _summary_bytes_used -= bytes;
5198 }
5199 
5200 void G1CollectedHeap::set_used(size_t bytes) {
5201   _summary_bytes_used = bytes;
5202 }
5203 
5204 class RebuildRegionSetsClosure : public HeapRegionClosure {
5205 private:
5206   bool            _free_list_only;
5207   HeapRegionSet*   _old_set;
5208   HeapRegionManager*   _hrm;
5209   size_t          _total_used;
5210 
5211 public:
5212   RebuildRegionSetsClosure(bool free_list_only,
5213                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5214     _free_list_only(free_list_only),
5215     _old_set(old_set), _hrm(hrm), _total_used(0) {
5216     assert(_hrm->num_free_regions() == 0, "pre-condition");
5217     if (!free_list_only) {
5218       assert(_old_set->is_empty(), "pre-condition");
5219     }
5220   }
5221 
5222   bool doHeapRegion(HeapRegion* r) {
5223     if (r->is_empty()) {
5224       // Add free regions to the free list
5225       r->set_free();
5226       r->set_allocation_context(AllocationContext::system());
5227       _hrm->insert_into_free_list(r);
5228     } else if (!_free_list_only) {
5229 
5230       if (r->is_humongous()) {
5231         // We ignore humongous regions. We left the humongous set unchanged.
5232       } else {
5233         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5234         // We now consider all regions old, so register as such. Leave
5235         // archive regions set that way, however, while still adding
5236         // them to the old set.
5237         if (!r->is_archive()) {
5238           r->set_old();
5239         }
5240         _old_set->add(r);
5241       }
5242       _total_used += r->used();
5243     }
5244 
5245     return false;
5246   }
5247 
5248   size_t total_used() {
5249     return _total_used;
5250   }
5251 };
5252 
5253 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5254   assert_at_safepoint(true /* should_be_vm_thread */);
5255 
5256   if (!free_list_only) {
5257     _eden.clear();
5258     _survivor.clear();
5259   }
5260 
5261   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5262   heap_region_iterate(&cl);
5263 
5264   if (!free_list_only) {
5265     set_used(cl.total_used());
5266     if (_archive_allocator != NULL) {
5267       _archive_allocator->clear_used();
5268     }
5269   }
5270   assert(used_unlocked() == recalculate_used(),
5271          "inconsistent used_unlocked(), "
5272          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5273          used_unlocked(), recalculate_used());
5274 }
5275 
5276 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5277   _refine_cte_cl->set_concurrent(concurrent);
5278 }
5279 
5280 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5281   HeapRegion* hr = heap_region_containing(p);
5282   return hr->is_in(p);
5283 }
5284 
5285 // Methods for the mutator alloc region
5286 
5287 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5288                                                       bool force) {
5289   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5290   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5291   if (force || should_allocate) {
5292     HeapRegion* new_alloc_region = new_region(word_size,
5293                                               false /* is_old */,
5294                                               false /* do_expand */);
5295     if (new_alloc_region != NULL) {
5296       set_region_short_lived_locked(new_alloc_region);
5297       _hr_printer.alloc(new_alloc_region, !should_allocate);
5298       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5299       return new_alloc_region;
5300     }
5301   }
5302   return NULL;
5303 }
5304 
5305 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5306                                                   size_t allocated_bytes) {
5307   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5308   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5309 
5310   collection_set()->add_eden_region(alloc_region);
5311   increase_used(allocated_bytes);
5312   _hr_printer.retire(alloc_region);
5313   // We update the eden sizes here, when the region is retired,
5314   // instead of when it's allocated, since this is the point that its
5315   // used space has been recored in _summary_bytes_used.
5316   g1mm()->update_eden_size();
5317 }
5318 
5319 // Methods for the GC alloc regions
5320 
5321 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5322   if (dest.is_old()) {
5323     return true;
5324   } else {
5325     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5326   }
5327 }
5328 
5329 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5330   assert(FreeList_lock->owned_by_self(), "pre-condition");
5331 
5332   if (!has_more_regions(dest)) {
5333     return NULL;
5334   }
5335 
5336   const bool is_survivor = dest.is_young();
5337 
5338   HeapRegion* new_alloc_region = new_region(word_size,
5339                                             !is_survivor,
5340                                             true /* do_expand */);
5341   if (new_alloc_region != NULL) {
5342     // We really only need to do this for old regions given that we
5343     // should never scan survivors. But it doesn't hurt to do it
5344     // for survivors too.
5345     new_alloc_region->record_timestamp();
5346     if (is_survivor) {
5347       new_alloc_region->set_survivor();
5348       _survivor.add(new_alloc_region);
5349       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5350     } else {
5351       new_alloc_region->set_old();
5352       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5353     }
5354     _hr_printer.alloc(new_alloc_region);
5355     bool during_im = collector_state()->during_initial_mark_pause();
5356     new_alloc_region->note_start_of_copying(during_im);
5357     return new_alloc_region;
5358   }
5359   return NULL;
5360 }
5361 
5362 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5363                                              size_t allocated_bytes,
5364                                              InCSetState dest) {
5365   bool during_im = collector_state()->during_initial_mark_pause();
5366   alloc_region->note_end_of_copying(during_im);
5367   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5368   if (dest.is_old()) {
5369     _old_set.add(alloc_region);
5370   }
5371   _hr_printer.retire(alloc_region);
5372 }
5373 
5374 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5375   bool expanded = false;
5376   uint index = _hrm.find_highest_free(&expanded);
5377 
5378   if (index != G1_NO_HRM_INDEX) {
5379     if (expanded) {
5380       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5381                                 HeapRegion::GrainWords * HeapWordSize);
5382     }
5383     _hrm.allocate_free_regions_starting_at(index, 1);
5384     return region_at(index);
5385   }
5386   return NULL;
5387 }
5388 
5389 // Optimized nmethod scanning
5390 
5391 class RegisterNMethodOopClosure: public OopClosure {
5392   G1CollectedHeap* _g1h;
5393   nmethod* _nm;
5394 
5395   template <class T> void do_oop_work(T* p) {
5396     T heap_oop = oopDesc::load_heap_oop(p);
5397     if (!oopDesc::is_null(heap_oop)) {
5398       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5399       HeapRegion* hr = _g1h->heap_region_containing(obj);
5400       assert(!hr->is_continues_humongous(),
5401              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5402              " starting at " HR_FORMAT,
5403              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5404 
5405       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5406       hr->add_strong_code_root_locked(_nm);
5407     }
5408   }
5409 
5410 public:
5411   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5412     _g1h(g1h), _nm(nm) {}
5413 
5414   void do_oop(oop* p)       { do_oop_work(p); }
5415   void do_oop(narrowOop* p) { do_oop_work(p); }
5416 };
5417 
5418 class UnregisterNMethodOopClosure: public OopClosure {
5419   G1CollectedHeap* _g1h;
5420   nmethod* _nm;
5421 
5422   template <class T> void do_oop_work(T* p) {
5423     T heap_oop = oopDesc::load_heap_oop(p);
5424     if (!oopDesc::is_null(heap_oop)) {
5425       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5426       HeapRegion* hr = _g1h->heap_region_containing(obj);
5427       assert(!hr->is_continues_humongous(),
5428              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5429              " starting at " HR_FORMAT,
5430              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5431 
5432       hr->remove_strong_code_root(_nm);
5433     }
5434   }
5435 
5436 public:
5437   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5438     _g1h(g1h), _nm(nm) {}
5439 
5440   void do_oop(oop* p)       { do_oop_work(p); }
5441   void do_oop(narrowOop* p) { do_oop_work(p); }
5442 };
5443 
5444 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5445   CollectedHeap::register_nmethod(nm);
5446 
5447   guarantee(nm != NULL, "sanity");
5448   RegisterNMethodOopClosure reg_cl(this, nm);
5449   nm->oops_do(&reg_cl);
5450 }
5451 
5452 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5453   CollectedHeap::unregister_nmethod(nm);
5454 
5455   guarantee(nm != NULL, "sanity");
5456   UnregisterNMethodOopClosure reg_cl(this, nm);
5457   nm->oops_do(&reg_cl, true);
5458 }
5459 
5460 void G1CollectedHeap::purge_code_root_memory() {
5461   double purge_start = os::elapsedTime();
5462   G1CodeRootSet::purge();
5463   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5464   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5465 }
5466 
5467 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5468   G1CollectedHeap* _g1h;
5469 
5470 public:
5471   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5472     _g1h(g1h) {}
5473 
5474   void do_code_blob(CodeBlob* cb) {
5475     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5476     if (nm == NULL) {
5477       return;
5478     }
5479 
5480     if (ScavengeRootsInCode) {
5481       _g1h->register_nmethod(nm);
5482     }
5483   }
5484 };
5485 
5486 void G1CollectedHeap::rebuild_strong_code_roots() {
5487   RebuildStrongCodeRootClosure blob_cl(this);
5488   CodeCache::blobs_do(&blob_cl);
5489 }