1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.inline.hpp"
  44 #include "oops/klass.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "prims/forte.hpp"
  48 #include "prims/jvmtiExport.hpp"
  49 #include "prims/methodHandles.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/arguments.hpp"
  52 #include "runtime/atomic.hpp"
  53 #include "runtime/biasedLocking.hpp"
  54 #include "runtime/compilationPolicy.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/init.hpp"
  57 #include "runtime/interfaceSupport.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/vframe.hpp"
  63 #include "runtime/vframeArray.hpp"
  64 #include "trace/tracing.hpp"
  65 #include "utilities/copy.hpp"
  66 #include "utilities/dtrace.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/hashtable.inline.hpp"
  69 #include "utilities/macros.hpp"
  70 #include "utilities/xmlstream.hpp"
  71 #ifdef COMPILER1
  72 #include "c1/c1_Runtime1.hpp"
  73 #endif
  74 
  75 // Shared stub locations
  76 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  77 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  78 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  79 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  82 address             SharedRuntime::_resolve_static_call_entry;
  83 
  84 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  85 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  86 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  88 
  89 #ifdef COMPILER2
  90 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  91 #endif // COMPILER2
  92 
  93 
  94 //----------------------------generate_stubs-----------------------------------
  95 void SharedRuntime::generate_stubs() {
  96   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  97   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  98   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  99   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 100   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 101   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 102   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 103 
 104 #if defined(COMPILER2) || INCLUDE_JVMCI
 105   // Vectors are generated only by C2 and JVMCI.
 106   bool support_wide = is_wide_vector(MaxVectorSize);
 107   if (support_wide) {
 108     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 109   }
 110 #endif // COMPILER2 || INCLUDE_JVMCI
 111   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 112   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 113 
 114   generate_deopt_blob();
 115 
 116 #ifdef COMPILER2
 117   generate_uncommon_trap_blob();
 118 #endif // COMPILER2
 119 }
 120 
 121 #include <math.h>
 122 
 123 // Implementation of SharedRuntime
 124 
 125 #ifndef PRODUCT
 126 // For statistics
 127 int SharedRuntime::_ic_miss_ctr = 0;
 128 int SharedRuntime::_wrong_method_ctr = 0;
 129 int SharedRuntime::_resolve_static_ctr = 0;
 130 int SharedRuntime::_resolve_virtual_ctr = 0;
 131 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 132 int SharedRuntime::_implicit_null_throws = 0;
 133 int SharedRuntime::_implicit_div0_throws = 0;
 134 int SharedRuntime::_throw_null_ctr = 0;
 135 
 136 int SharedRuntime::_nof_normal_calls = 0;
 137 int SharedRuntime::_nof_optimized_calls = 0;
 138 int SharedRuntime::_nof_inlined_calls = 0;
 139 int SharedRuntime::_nof_megamorphic_calls = 0;
 140 int SharedRuntime::_nof_static_calls = 0;
 141 int SharedRuntime::_nof_inlined_static_calls = 0;
 142 int SharedRuntime::_nof_interface_calls = 0;
 143 int SharedRuntime::_nof_optimized_interface_calls = 0;
 144 int SharedRuntime::_nof_inlined_interface_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 146 int SharedRuntime::_nof_removable_exceptions = 0;
 147 
 148 int SharedRuntime::_new_instance_ctr=0;
 149 int SharedRuntime::_new_array_ctr=0;
 150 int SharedRuntime::_multi1_ctr=0;
 151 int SharedRuntime::_multi2_ctr=0;
 152 int SharedRuntime::_multi3_ctr=0;
 153 int SharedRuntime::_multi4_ctr=0;
 154 int SharedRuntime::_multi5_ctr=0;
 155 int SharedRuntime::_mon_enter_stub_ctr=0;
 156 int SharedRuntime::_mon_exit_stub_ctr=0;
 157 int SharedRuntime::_mon_enter_ctr=0;
 158 int SharedRuntime::_mon_exit_ctr=0;
 159 int SharedRuntime::_partial_subtype_ctr=0;
 160 int SharedRuntime::_jbyte_array_copy_ctr=0;
 161 int SharedRuntime::_jshort_array_copy_ctr=0;
 162 int SharedRuntime::_jint_array_copy_ctr=0;
 163 int SharedRuntime::_jlong_array_copy_ctr=0;
 164 int SharedRuntime::_oop_array_copy_ctr=0;
 165 int SharedRuntime::_checkcast_array_copy_ctr=0;
 166 int SharedRuntime::_unsafe_array_copy_ctr=0;
 167 int SharedRuntime::_generic_array_copy_ctr=0;
 168 int SharedRuntime::_slow_array_copy_ctr=0;
 169 int SharedRuntime::_find_handler_ctr=0;
 170 int SharedRuntime::_rethrow_ctr=0;
 171 
 172 int     SharedRuntime::_ICmiss_index                    = 0;
 173 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 174 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 175 
 176 
 177 void SharedRuntime::trace_ic_miss(address at) {
 178   for (int i = 0; i < _ICmiss_index; i++) {
 179     if (_ICmiss_at[i] == at) {
 180       _ICmiss_count[i]++;
 181       return;
 182     }
 183   }
 184   int index = _ICmiss_index++;
 185   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 186   _ICmiss_at[index] = at;
 187   _ICmiss_count[index] = 1;
 188 }
 189 
 190 void SharedRuntime::print_ic_miss_histogram() {
 191   if (ICMissHistogram) {
 192     tty->print_cr("IC Miss Histogram:");
 193     int tot_misses = 0;
 194     for (int i = 0; i < _ICmiss_index; i++) {
 195       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 196       tot_misses += _ICmiss_count[i];
 197     }
 198     tty->print_cr("Total IC misses: %7d", tot_misses);
 199   }
 200 }
 201 #endif // PRODUCT
 202 
 203 #if INCLUDE_ALL_GCS
 204 
 205 // G1 write-barrier pre: executed before a pointer store.
 206 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 207   if (orig == NULL) {
 208     assert(false, "should be optimized out");
 209     return;
 210   }
 211   assert(orig->is_oop(true /* ignore mark word */), "Error");
 212   // store the original value that was in the field reference
 213   thread->satb_mark_queue().enqueue(orig);
 214 JRT_END
 215 
 216 // G1 write-barrier post: executed after a pointer store.
 217 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 218   thread->dirty_card_queue().enqueue(card_addr);
 219 JRT_END
 220 
 221 #endif // INCLUDE_ALL_GCS
 222 
 223 
 224 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 225   return x * y;
 226 JRT_END
 227 
 228 
 229 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 230   if (x == min_jlong && y == CONST64(-1)) {
 231     return x;
 232   } else {
 233     return x / y;
 234   }
 235 JRT_END
 236 
 237 
 238 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 239   if (x == min_jlong && y == CONST64(-1)) {
 240     return 0;
 241   } else {
 242     return x % y;
 243   }
 244 JRT_END
 245 
 246 
 247 const juint  float_sign_mask  = 0x7FFFFFFF;
 248 const juint  float_infinity   = 0x7F800000;
 249 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 250 const julong double_infinity  = CONST64(0x7FF0000000000000);
 251 
 252 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 253 #ifdef _WIN64
 254   // 64-bit Windows on amd64 returns the wrong values for
 255   // infinity operands.
 256   union { jfloat f; juint i; } xbits, ybits;
 257   xbits.f = x;
 258   ybits.f = y;
 259   // x Mod Infinity == x unless x is infinity
 260   if (((xbits.i & float_sign_mask) != float_infinity) &&
 261        ((ybits.i & float_sign_mask) == float_infinity) ) {
 262     return x;
 263   }
 264   return ((jfloat)fmod_winx64((double)x, (double)y));
 265 #else
 266   return ((jfloat)fmod((double)x,(double)y));
 267 #endif
 268 JRT_END
 269 
 270 
 271 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 272 #ifdef _WIN64
 273   union { jdouble d; julong l; } xbits, ybits;
 274   xbits.d = x;
 275   ybits.d = y;
 276   // x Mod Infinity == x unless x is infinity
 277   if (((xbits.l & double_sign_mask) != double_infinity) &&
 278        ((ybits.l & double_sign_mask) == double_infinity) ) {
 279     return x;
 280   }
 281   return ((jdouble)fmod_winx64((double)x, (double)y));
 282 #else
 283   return ((jdouble)fmod((double)x,(double)y));
 284 #endif
 285 JRT_END
 286 
 287 #ifdef __SOFTFP__
 288 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 289   return x + y;
 290 JRT_END
 291 
 292 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 293   return x - y;
 294 JRT_END
 295 
 296 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 297   return x * y;
 298 JRT_END
 299 
 300 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 301   return x / y;
 302 JRT_END
 303 
 304 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 305   return x + y;
 306 JRT_END
 307 
 308 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 309   return x - y;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 313   return x * y;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 317   return x / y;
 318 JRT_END
 319 
 320 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 321   return (jfloat)x;
 322 JRT_END
 323 
 324 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 325   return (jdouble)x;
 326 JRT_END
 327 
 328 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 329   return (jdouble)x;
 330 JRT_END
 331 
 332 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 333   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 334 JRT_END
 335 
 336 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 337   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 338 JRT_END
 339 
 340 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 341   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 342 JRT_END
 343 
 344 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 345   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 346 JRT_END
 347 
 348 // Functions to return the opposite of the aeabi functions for nan.
 349 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 350   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 351 JRT_END
 352 
 353 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 354   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 355 JRT_END
 356 
 357 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 358   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 362   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 366   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 370   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 371 JRT_END
 372 
 373 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 374   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 375 JRT_END
 376 
 377 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 378   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 379 JRT_END
 380 
 381 // Intrinsics make gcc generate code for these.
 382 float  SharedRuntime::fneg(float f)   {
 383   return -f;
 384 }
 385 
 386 double SharedRuntime::dneg(double f)  {
 387   return -f;
 388 }
 389 
 390 #endif // __SOFTFP__
 391 
 392 #if defined(__SOFTFP__) || defined(E500V2)
 393 // Intrinsics make gcc generate code for these.
 394 double SharedRuntime::dabs(double f)  {
 395   return (f <= (double)0.0) ? (double)0.0 - f : f;
 396 }
 397 
 398 #endif
 399 
 400 #if defined(__SOFTFP__) || defined(PPC)
 401 double SharedRuntime::dsqrt(double f) {
 402   return sqrt(f);
 403 }
 404 #endif
 405 
 406 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jint)
 410     return max_jint;
 411   if (x <= (jfloat) min_jint)
 412     return min_jint;
 413   return (jint) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jfloat) max_jlong)
 421     return max_jlong;
 422   if (x <= (jfloat) min_jlong)
 423     return min_jlong;
 424   return (jlong) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jint)
 432     return max_jint;
 433   if (x <= (jdouble) min_jint)
 434     return min_jint;
 435   return (jint) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 440   if (g_isnan(x))
 441     return 0;
 442   if (x >= (jdouble) max_jlong)
 443     return max_jlong;
 444   if (x <= (jdouble) min_jlong)
 445     return min_jlong;
 446   return (jlong) x;
 447 JRT_END
 448 
 449 
 450 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 451   return (jfloat)x;
 452 JRT_END
 453 
 454 
 455 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 456   return (jfloat)x;
 457 JRT_END
 458 
 459 
 460 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 461   return (jdouble)x;
 462 JRT_END
 463 
 464 // Exception handling across interpreter/compiler boundaries
 465 //
 466 // exception_handler_for_return_address(...) returns the continuation address.
 467 // The continuation address is the entry point of the exception handler of the
 468 // previous frame depending on the return address.
 469 
 470 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 471   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 472   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 473 
 474   // Reset method handle flag.
 475   thread->set_is_method_handle_return(false);
 476 
 477 #if INCLUDE_JVMCI
 478   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 479   // and other exception handler continuations do not read it
 480   thread->set_exception_pc(NULL);
 481 #endif // INCLUDE_JVMCI
 482 
 483   // The fastest case first
 484   CodeBlob* blob = CodeCache::find_blob(return_address);
 485   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 486   if (nm != NULL) {
 487     // Set flag if return address is a method handle call site.
 488     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 489     // native nmethods don't have exception handlers
 490     assert(!nm->is_native_method(), "no exception handler");
 491     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 492     if (nm->is_deopt_pc(return_address)) {
 493       // If we come here because of a stack overflow, the stack may be
 494       // unguarded. Reguard the stack otherwise if we return to the
 495       // deopt blob and the stack bang causes a stack overflow we
 496       // crash.
 497       bool guard_pages_enabled = thread->stack_guards_enabled();
 498       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 499       if (thread->reserved_stack_activation() != thread->stack_base()) {
 500         thread->set_reserved_stack_activation(thread->stack_base());
 501       }
 502       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 503       return SharedRuntime::deopt_blob()->unpack_with_exception();
 504     } else {
 505       return nm->exception_begin();
 506     }
 507   }
 508 
 509   // Entry code
 510   if (StubRoutines::returns_to_call_stub(return_address)) {
 511     return StubRoutines::catch_exception_entry();
 512   }
 513   // Interpreted code
 514   if (Interpreter::contains(return_address)) {
 515     return Interpreter::rethrow_exception_entry();
 516   }
 517 
 518   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 519   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 520 
 521 #ifndef PRODUCT
 522   { ResourceMark rm;
 523     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 524     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 525     tty->print_cr("b) other problem");
 526   }
 527 #endif // PRODUCT
 528 
 529   ShouldNotReachHere();
 530   return NULL;
 531 }
 532 
 533 
 534 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 535   return raw_exception_handler_for_return_address(thread, return_address);
 536 JRT_END
 537 
 538 
 539 address SharedRuntime::get_poll_stub(address pc) {
 540   address stub;
 541   // Look up the code blob
 542   CodeBlob *cb = CodeCache::find_blob(pc);
 543 
 544   // Should be an nmethod
 545   assert(cb && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 546 
 547   // Look up the relocation information
 548   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 549     "safepoint polling: type must be poll");
 550 
 551 #ifdef ASSERT
 552   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 553     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 554     Disassembler::decode(cb);
 555     fatal("Only polling locations are used for safepoint");
 556   }
 557 #endif
 558 
 559   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 560   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 561   if (at_poll_return) {
 562     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 563            "polling page return stub not created yet");
 564     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 565   } else if (has_wide_vectors) {
 566     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 567            "polling page vectors safepoint stub not created yet");
 568     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 569   } else {
 570     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 571            "polling page safepoint stub not created yet");
 572     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 573   }
 574   log_debug(safepoint)("... found polling page %s exception at pc = "
 575                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 576                        at_poll_return ? "return" : "loop",
 577                        (intptr_t)pc, (intptr_t)stub);
 578   return stub;
 579 }
 580 
 581 
 582 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 583   assert(caller.is_interpreted_frame(), "");
 584   int args_size = ArgumentSizeComputer(sig).size() + 1;
 585   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 586   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 587   assert(GC::gc()->heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 588   return result;
 589 }
 590 
 591 
 592 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 593   if (JvmtiExport::can_post_on_exceptions()) {
 594     vframeStream vfst(thread, true);
 595     methodHandle method = methodHandle(thread, vfst.method());
 596     address bcp = method()->bcp_from(vfst.bci());
 597     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 598   }
 599   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 600 }
 601 
 602 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 603   Handle h_exception = Exceptions::new_exception(thread, name, message);
 604   throw_and_post_jvmti_exception(thread, h_exception);
 605 }
 606 
 607 // The interpreter code to call this tracing function is only
 608 // called/generated when UL is on for redefine, class and has the right level
 609 // and tags. Since obsolete methods are never compiled, we don't have
 610 // to modify the compilers to generate calls to this function.
 611 //
 612 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 613     JavaThread* thread, Method* method))
 614   if (method->is_obsolete()) {
 615     // We are calling an obsolete method, but this is not necessarily
 616     // an error. Our method could have been redefined just after we
 617     // fetched the Method* from the constant pool.
 618     ResourceMark rm;
 619     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 620   }
 621   return 0;
 622 JRT_END
 623 
 624 // ret_pc points into caller; we are returning caller's exception handler
 625 // for given exception
 626 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 627                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 628   assert(cm != NULL, "must exist");
 629   ResourceMark rm;
 630 
 631 #if INCLUDE_JVMCI
 632   if (cm->is_compiled_by_jvmci()) {
 633     // lookup exception handler for this pc
 634     int catch_pco = ret_pc - cm->code_begin();
 635     ExceptionHandlerTable table(cm);
 636     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 637     if (t != NULL) {
 638       return cm->code_begin() + t->pco();
 639     } else {
 640       // there is no exception handler for this pc => deoptimize
 641       cm->make_not_entrant();
 642 
 643       // Use Deoptimization::deoptimize for all of its side-effects:
 644       // revoking biases of monitors, gathering traps statistics, logging...
 645       // it also patches the return pc but we do not care about that
 646       // since we return a continuation to the deopt_blob below.
 647       JavaThread* thread = JavaThread::current();
 648       RegisterMap reg_map(thread, UseBiasedLocking);
 649       frame runtime_frame = thread->last_frame();
 650       frame caller_frame = runtime_frame.sender(&reg_map);
 651       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 652 
 653       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 654     }
 655   }
 656 #endif // INCLUDE_JVMCI
 657 
 658   nmethod* nm = cm->as_nmethod();
 659   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 660   // determine handler bci, if any
 661   EXCEPTION_MARK;
 662 
 663   int handler_bci = -1;
 664   int scope_depth = 0;
 665   if (!force_unwind) {
 666     int bci = sd->bci();
 667     bool recursive_exception = false;
 668     do {
 669       bool skip_scope_increment = false;
 670       // exception handler lookup
 671       Klass* ek = exception->klass();
 672       methodHandle mh(THREAD, sd->method());
 673       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 674       if (HAS_PENDING_EXCEPTION) {
 675         recursive_exception = true;
 676         // We threw an exception while trying to find the exception handler.
 677         // Transfer the new exception to the exception handle which will
 678         // be set into thread local storage, and do another lookup for an
 679         // exception handler for this exception, this time starting at the
 680         // BCI of the exception handler which caused the exception to be
 681         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 682         // argument to ensure that the correct exception is thrown (4870175).
 683         recursive_exception_occurred = true;
 684         exception = Handle(THREAD, PENDING_EXCEPTION);
 685         CLEAR_PENDING_EXCEPTION;
 686         if (handler_bci >= 0) {
 687           bci = handler_bci;
 688           handler_bci = -1;
 689           skip_scope_increment = true;
 690         }
 691       }
 692       else {
 693         recursive_exception = false;
 694       }
 695       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 696         sd = sd->sender();
 697         if (sd != NULL) {
 698           bci = sd->bci();
 699         }
 700         ++scope_depth;
 701       }
 702     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 703   }
 704 
 705   // found handling method => lookup exception handler
 706   int catch_pco = ret_pc - nm->code_begin();
 707 
 708   ExceptionHandlerTable table(nm);
 709   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 710   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 711     // Allow abbreviated catch tables.  The idea is to allow a method
 712     // to materialize its exceptions without committing to the exact
 713     // routing of exceptions.  In particular this is needed for adding
 714     // a synthetic handler to unlock monitors when inlining
 715     // synchronized methods since the unlock path isn't represented in
 716     // the bytecodes.
 717     t = table.entry_for(catch_pco, -1, 0);
 718   }
 719 
 720 #ifdef COMPILER1
 721   if (t == NULL && nm->is_compiled_by_c1()) {
 722     assert(nm->unwind_handler_begin() != NULL, "");
 723     return nm->unwind_handler_begin();
 724   }
 725 #endif
 726 
 727   if (t == NULL) {
 728     ttyLocker ttyl;
 729     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 730     tty->print_cr("   Exception:");
 731     exception->print();
 732     tty->cr();
 733     tty->print_cr(" Compiled exception table :");
 734     table.print();
 735     nm->print_code();
 736     guarantee(false, "missing exception handler");
 737     return NULL;
 738   }
 739 
 740   return nm->code_begin() + t->pco();
 741 }
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 744   // These errors occur only at call sites
 745   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 746 JRT_END
 747 
 748 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 749   // These errors occur only at call sites
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 754   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 755 JRT_END
 756 
 757 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 759 JRT_END
 760 
 761 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 762   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 763   // cache sites (when the callee activation is not yet set up) so we are at a call site
 764   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 765 JRT_END
 766 
 767 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 768   throw_StackOverflowError_common(thread, false);
 769 JRT_END
 770 
 771 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 772   throw_StackOverflowError_common(thread, true);
 773 JRT_END
 774 
 775 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 776   // We avoid using the normal exception construction in this case because
 777   // it performs an upcall to Java, and we're already out of stack space.
 778   Thread* THREAD = thread;
 779   Klass* k = SystemDictionary::StackOverflowError_klass();
 780   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 781   if (delayed) {
 782     java_lang_Throwable::set_message(exception_oop,
 783                                      Universe::delayed_stack_overflow_error_message());
 784   }
 785   Handle exception (thread, exception_oop);
 786   if (StackTraceInThrowable) {
 787     java_lang_Throwable::fill_in_stack_trace(exception);
 788   }
 789   // Increment counter for hs_err file reporting
 790   Atomic::inc(&Exceptions::_stack_overflow_errors);
 791   throw_and_post_jvmti_exception(thread, exception);
 792 }
 793 
 794 #if INCLUDE_JVMCI
 795 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 796   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 797   thread->set_jvmci_implicit_exception_pc(pc);
 798   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 799   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 800 }
 801 #endif // INCLUDE_JVMCI
 802 
 803 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 804                                                            address pc,
 805                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 806 {
 807   address target_pc = NULL;
 808 
 809   if (Interpreter::contains(pc)) {
 810 #ifdef CC_INTERP
 811     // C++ interpreter doesn't throw implicit exceptions
 812     ShouldNotReachHere();
 813 #else
 814     switch (exception_kind) {
 815       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 816       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 817       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 818       default:                      ShouldNotReachHere();
 819     }
 820 #endif // !CC_INTERP
 821   } else {
 822     switch (exception_kind) {
 823       case STACK_OVERFLOW: {
 824         // Stack overflow only occurs upon frame setup; the callee is
 825         // going to be unwound. Dispatch to a shared runtime stub
 826         // which will cause the StackOverflowError to be fabricated
 827         // and processed.
 828         // Stack overflow should never occur during deoptimization:
 829         // the compiled method bangs the stack by as much as the
 830         // interpreter would need in case of a deoptimization. The
 831         // deoptimization blob and uncommon trap blob bang the stack
 832         // in a debug VM to verify the correctness of the compiled
 833         // method stack banging.
 834         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 835         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 836         return StubRoutines::throw_StackOverflowError_entry();
 837       }
 838 
 839       case IMPLICIT_NULL: {
 840         if (VtableStubs::contains(pc)) {
 841           // We haven't yet entered the callee frame. Fabricate an
 842           // exception and begin dispatching it in the caller. Since
 843           // the caller was at a call site, it's safe to destroy all
 844           // caller-saved registers, as these entry points do.
 845           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 846 
 847           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 848           if (vt_stub == NULL) return NULL;
 849 
 850           if (vt_stub->is_abstract_method_error(pc)) {
 851             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 852             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 853             return StubRoutines::throw_AbstractMethodError_entry();
 854           } else {
 855             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 856             return StubRoutines::throw_NullPointerException_at_call_entry();
 857           }
 858         } else {
 859           CodeBlob* cb = CodeCache::find_blob(pc);
 860 
 861           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 862           if (cb == NULL) return NULL;
 863 
 864           // Exception happened in CodeCache. Must be either:
 865           // 1. Inline-cache check in C2I handler blob,
 866           // 2. Inline-cache check in nmethod, or
 867           // 3. Implicit null exception in nmethod
 868 
 869           if (!cb->is_compiled()) {
 870             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 871             if (!is_in_blob) {
 872               // Allow normal crash reporting to handle this
 873               return NULL;
 874             }
 875             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 876             // There is no handler here, so we will simply unwind.
 877             return StubRoutines::throw_NullPointerException_at_call_entry();
 878           }
 879 
 880           // Otherwise, it's a compiled method.  Consult its exception handlers.
 881           CompiledMethod* cm = (CompiledMethod*)cb;
 882           if (cm->inlinecache_check_contains(pc)) {
 883             // exception happened inside inline-cache check code
 884             // => the nmethod is not yet active (i.e., the frame
 885             // is not set up yet) => use return address pushed by
 886             // caller => don't push another return address
 887             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 888             return StubRoutines::throw_NullPointerException_at_call_entry();
 889           }
 890 
 891           if (cm->method()->is_method_handle_intrinsic()) {
 892             // exception happened inside MH dispatch code, similar to a vtable stub
 893             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 894             return StubRoutines::throw_NullPointerException_at_call_entry();
 895           }
 896 
 897 #ifndef PRODUCT
 898           _implicit_null_throws++;
 899 #endif
 900 #if INCLUDE_JVMCI
 901           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 902             // If there's no PcDesc then we'll die way down inside of
 903             // deopt instead of just getting normal error reporting,
 904             // so only go there if it will succeed.
 905             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 906           } else {
 907 #endif // INCLUDE_JVMCI
 908           assert (cm->is_nmethod(), "Expect nmethod");
 909           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 910 #if INCLUDE_JVMCI
 911           }
 912 #endif // INCLUDE_JVMCI
 913           // If there's an unexpected fault, target_pc might be NULL,
 914           // in which case we want to fall through into the normal
 915           // error handling code.
 916         }
 917 
 918         break; // fall through
 919       }
 920 
 921 
 922       case IMPLICIT_DIVIDE_BY_ZERO: {
 923         CompiledMethod* cm = CodeCache::find_compiled(pc);
 924         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 925 #ifndef PRODUCT
 926         _implicit_div0_throws++;
 927 #endif
 928 #if INCLUDE_JVMCI
 929         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 930           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 931         } else {
 932 #endif // INCLUDE_JVMCI
 933         target_pc = cm->continuation_for_implicit_exception(pc);
 934 #if INCLUDE_JVMCI
 935         }
 936 #endif // INCLUDE_JVMCI
 937         // If there's an unexpected fault, target_pc might be NULL,
 938         // in which case we want to fall through into the normal
 939         // error handling code.
 940         break; // fall through
 941       }
 942 
 943       default: ShouldNotReachHere();
 944     }
 945 
 946     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 947 
 948     if (exception_kind == IMPLICIT_NULL) {
 949 #ifndef PRODUCT
 950       // for AbortVMOnException flag
 951       Exceptions::debug_check_abort("java.lang.NullPointerException");
 952 #endif //PRODUCT
 953       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 954     } else {
 955 #ifndef PRODUCT
 956       // for AbortVMOnException flag
 957       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 958 #endif //PRODUCT
 959       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 960     }
 961     return target_pc;
 962   }
 963 
 964   ShouldNotReachHere();
 965   return NULL;
 966 }
 967 
 968 
 969 /**
 970  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 971  * installed in the native function entry of all native Java methods before
 972  * they get linked to their actual native methods.
 973  *
 974  * \note
 975  * This method actually never gets called!  The reason is because
 976  * the interpreter's native entries call NativeLookup::lookup() which
 977  * throws the exception when the lookup fails.  The exception is then
 978  * caught and forwarded on the return from NativeLookup::lookup() call
 979  * before the call to the native function.  This might change in the future.
 980  */
 981 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 982 {
 983   // We return a bad value here to make sure that the exception is
 984   // forwarded before we look at the return value.
 985   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 986 }
 987 JNI_END
 988 
 989 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 990   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 991 }
 992 
 993 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 994 #if INCLUDE_JVMCI
 995   if (!obj->klass()->has_finalizer()) {
 996     return;
 997   }
 998 #endif // INCLUDE_JVMCI
 999   assert(obj->is_oop(), "must be a valid oop");
1000   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1001   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1002 JRT_END
1003 
1004 
1005 jlong SharedRuntime::get_java_tid(Thread* thread) {
1006   if (thread != NULL) {
1007     if (thread->is_Java_thread()) {
1008       oop obj = ((JavaThread*)thread)->threadObj();
1009       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1010     }
1011   }
1012   return 0;
1013 }
1014 
1015 /**
1016  * This function ought to be a void function, but cannot be because
1017  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1018  * 6254741.  Once that is fixed we can remove the dummy return value.
1019  */
1020 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1021   return dtrace_object_alloc_base(Thread::current(), o, size);
1022 }
1023 
1024 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1025   assert(DTraceAllocProbes, "wrong call");
1026   Klass* klass = o->klass();
1027   Symbol* name = klass->name();
1028   HOTSPOT_OBJECT_ALLOC(
1029                    get_java_tid(thread),
1030                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1031   return 0;
1032 }
1033 
1034 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1035     JavaThread* thread, Method* method))
1036   assert(DTraceMethodProbes, "wrong call");
1037   Symbol* kname = method->klass_name();
1038   Symbol* name = method->name();
1039   Symbol* sig = method->signature();
1040   HOTSPOT_METHOD_ENTRY(
1041       get_java_tid(thread),
1042       (char *) kname->bytes(), kname->utf8_length(),
1043       (char *) name->bytes(), name->utf8_length(),
1044       (char *) sig->bytes(), sig->utf8_length());
1045   return 0;
1046 JRT_END
1047 
1048 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1049     JavaThread* thread, Method* method))
1050   assert(DTraceMethodProbes, "wrong call");
1051   Symbol* kname = method->klass_name();
1052   Symbol* name = method->name();
1053   Symbol* sig = method->signature();
1054   HOTSPOT_METHOD_RETURN(
1055       get_java_tid(thread),
1056       (char *) kname->bytes(), kname->utf8_length(),
1057       (char *) name->bytes(), name->utf8_length(),
1058       (char *) sig->bytes(), sig->utf8_length());
1059   return 0;
1060 JRT_END
1061 
1062 
1063 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1064 // for a call current in progress, i.e., arguments has been pushed on stack
1065 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1066 // vtable updates, etc.  Caller frame must be compiled.
1067 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1068   ResourceMark rm(THREAD);
1069 
1070   // last java frame on stack (which includes native call frames)
1071   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1072 
1073   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1074 }
1075 
1076 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1077   CompiledMethod* caller = vfst.nm();
1078 
1079   nmethodLocker caller_lock(caller);
1080 
1081   address pc = vfst.frame_pc();
1082   { // Get call instruction under lock because another thread may be busy patching it.
1083     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1084     return caller->attached_method_before_pc(pc);
1085   }
1086   return NULL;
1087 }
1088 
1089 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1090 // for a call current in progress, i.e., arguments has been pushed on stack
1091 // but callee has not been invoked yet.  Caller frame must be compiled.
1092 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1093                                               vframeStream& vfst,
1094                                               Bytecodes::Code& bc,
1095                                               CallInfo& callinfo, TRAPS) {
1096   Handle receiver;
1097   Handle nullHandle;  //create a handy null handle for exception returns
1098 
1099   assert(!vfst.at_end(), "Java frame must exist");
1100 
1101   // Find caller and bci from vframe
1102   methodHandle caller(THREAD, vfst.method());
1103   int          bci   = vfst.bci();
1104 
1105   Bytecode_invoke bytecode(caller, bci);
1106   int bytecode_index = bytecode.index();
1107 
1108   methodHandle attached_method = extract_attached_method(vfst);
1109   if (attached_method.not_null()) {
1110     methodHandle callee = bytecode.static_target(CHECK_NH);
1111     vmIntrinsics::ID id = callee->intrinsic_id();
1112     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1113     // it attaches statically resolved method to the call site.
1114     if (MethodHandles::is_signature_polymorphic(id) &&
1115         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1116       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1117 
1118       // Adjust invocation mode according to the attached method.
1119       switch (bc) {
1120         case Bytecodes::_invokeinterface:
1121           if (!attached_method->method_holder()->is_interface()) {
1122             bc = Bytecodes::_invokevirtual;
1123           }
1124           break;
1125         case Bytecodes::_invokehandle:
1126           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1127             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1128                                               : Bytecodes::_invokevirtual;
1129           }
1130           break;
1131       }
1132     }
1133   } else {
1134     bc = bytecode.invoke_code();
1135   }
1136 
1137   bool has_receiver = bc != Bytecodes::_invokestatic &&
1138                       bc != Bytecodes::_invokedynamic &&
1139                       bc != Bytecodes::_invokehandle;
1140 
1141   // Find receiver for non-static call
1142   if (has_receiver) {
1143     // This register map must be update since we need to find the receiver for
1144     // compiled frames. The receiver might be in a register.
1145     RegisterMap reg_map2(thread);
1146     frame stubFrame   = thread->last_frame();
1147     // Caller-frame is a compiled frame
1148     frame callerFrame = stubFrame.sender(&reg_map2);
1149 
1150     if (attached_method.is_null()) {
1151       methodHandle callee = bytecode.static_target(CHECK_NH);
1152       if (callee.is_null()) {
1153         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1154       }
1155     }
1156 
1157     // Retrieve from a compiled argument list
1158     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1159 
1160     if (receiver.is_null()) {
1161       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1162     }
1163   }
1164 
1165   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1166 
1167   // Resolve method
1168   if (attached_method.not_null()) {
1169     // Parameterized by attached method.
1170     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1171   } else {
1172     // Parameterized by bytecode.
1173     constantPoolHandle constants(THREAD, caller->constants());
1174     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1175   }
1176 
1177 #ifdef ASSERT
1178   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1179   if (has_receiver) {
1180     assert(receiver.not_null(), "should have thrown exception");
1181     Klass* receiver_klass = receiver->klass();
1182     Klass* rk = NULL;
1183     if (attached_method.not_null()) {
1184       // In case there's resolved method attached, use its holder during the check.
1185       rk = attached_method->method_holder();
1186     } else {
1187       // Klass is already loaded.
1188       constantPoolHandle constants(THREAD, caller->constants());
1189       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1190     }
1191     Klass* static_receiver_klass = rk;
1192     methodHandle callee = callinfo.selected_method();
1193     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1194            "actual receiver must be subclass of static receiver klass");
1195     if (receiver_klass->is_instance_klass()) {
1196       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1197         tty->print_cr("ERROR: Klass not yet initialized!!");
1198         receiver_klass->print();
1199       }
1200       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1201     }
1202   }
1203 #endif
1204 
1205   return receiver;
1206 }
1207 
1208 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1209   ResourceMark rm(THREAD);
1210   // We need first to check if any Java activations (compiled, interpreted)
1211   // exist on the stack since last JavaCall.  If not, we need
1212   // to get the target method from the JavaCall wrapper.
1213   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1214   methodHandle callee_method;
1215   if (vfst.at_end()) {
1216     // No Java frames were found on stack since we did the JavaCall.
1217     // Hence the stack can only contain an entry_frame.  We need to
1218     // find the target method from the stub frame.
1219     RegisterMap reg_map(thread, false);
1220     frame fr = thread->last_frame();
1221     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1222     fr = fr.sender(&reg_map);
1223     assert(fr.is_entry_frame(), "must be");
1224     // fr is now pointing to the entry frame.
1225     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1226   } else {
1227     Bytecodes::Code bc;
1228     CallInfo callinfo;
1229     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1230     callee_method = callinfo.selected_method();
1231   }
1232   assert(callee_method()->is_method(), "must be");
1233   return callee_method;
1234 }
1235 
1236 // Resolves a call.
1237 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1238                                            bool is_virtual,
1239                                            bool is_optimized, TRAPS) {
1240   methodHandle callee_method;
1241   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1242   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1243     int retry_count = 0;
1244     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1245            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1246       // If has a pending exception then there is no need to re-try to
1247       // resolve this method.
1248       // If the method has been redefined, we need to try again.
1249       // Hack: we have no way to update the vtables of arrays, so don't
1250       // require that java.lang.Object has been updated.
1251 
1252       // It is very unlikely that method is redefined more than 100 times
1253       // in the middle of resolve. If it is looping here more than 100 times
1254       // means then there could be a bug here.
1255       guarantee((retry_count++ < 100),
1256                 "Could not resolve to latest version of redefined method");
1257       // method is redefined in the middle of resolve so re-try.
1258       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1259     }
1260   }
1261   return callee_method;
1262 }
1263 
1264 // Resolves a call.  The compilers generate code for calls that go here
1265 // and are patched with the real destination of the call.
1266 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1267                                            bool is_virtual,
1268                                            bool is_optimized, TRAPS) {
1269 
1270   ResourceMark rm(thread);
1271   RegisterMap cbl_map(thread, false);
1272   frame caller_frame = thread->last_frame().sender(&cbl_map);
1273 
1274   CodeBlob* caller_cb = caller_frame.cb();
1275   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1276   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1277 
1278   // make sure caller is not getting deoptimized
1279   // and removed before we are done with it.
1280   // CLEANUP - with lazy deopt shouldn't need this lock
1281   nmethodLocker caller_lock(caller_nm);
1282 
1283   // determine call info & receiver
1284   // note: a) receiver is NULL for static calls
1285   //       b) an exception is thrown if receiver is NULL for non-static calls
1286   CallInfo call_info;
1287   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1288   Handle receiver = find_callee_info(thread, invoke_code,
1289                                      call_info, CHECK_(methodHandle()));
1290   methodHandle callee_method = call_info.selected_method();
1291 
1292   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1293          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1294          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1295          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1296          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1297 
1298   assert(caller_nm->is_alive(), "It should be alive");
1299 
1300 #ifndef PRODUCT
1301   // tracing/debugging/statistics
1302   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1303                 (is_virtual) ? (&_resolve_virtual_ctr) :
1304                                (&_resolve_static_ctr);
1305   Atomic::inc(addr);
1306 
1307   if (TraceCallFixup) {
1308     ResourceMark rm(thread);
1309     tty->print("resolving %s%s (%s) call to",
1310       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1311       Bytecodes::name(invoke_code));
1312     callee_method->print_short_name(tty);
1313     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1314                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1315   }
1316 #endif
1317 
1318   // JSR 292 key invariant:
1319   // If the resolved method is a MethodHandle invoke target, the call
1320   // site must be a MethodHandle call site, because the lambda form might tail-call
1321   // leaving the stack in a state unknown to either caller or callee
1322   // TODO detune for now but we might need it again
1323 //  assert(!callee_method->is_compiled_lambda_form() ||
1324 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1325 
1326   // Compute entry points. This might require generation of C2I converter
1327   // frames, so we cannot be holding any locks here. Furthermore, the
1328   // computation of the entry points is independent of patching the call.  We
1329   // always return the entry-point, but we only patch the stub if the call has
1330   // not been deoptimized.  Return values: For a virtual call this is an
1331   // (cached_oop, destination address) pair. For a static call/optimized
1332   // virtual this is just a destination address.
1333 
1334   StaticCallInfo static_call_info;
1335   CompiledICInfo virtual_call_info;
1336 
1337   // Make sure the callee nmethod does not get deoptimized and removed before
1338   // we are done patching the code.
1339   CompiledMethod* callee = callee_method->code();
1340 
1341   if (callee != NULL) {
1342     assert(callee->is_compiled(), "must be nmethod for patching");
1343   }
1344 
1345   if (callee != NULL && !callee->is_in_use()) {
1346     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1347     callee = NULL;
1348   }
1349   nmethodLocker nl_callee(callee);
1350 #ifdef ASSERT
1351   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1352 #endif
1353 
1354   bool is_nmethod = caller_nm->is_nmethod();
1355 
1356   if (is_virtual) {
1357     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1358     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1359     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1360     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1361                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1362                      CHECK_(methodHandle()));
1363   } else {
1364     // static call
1365     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1366   }
1367 
1368   // grab lock, check for deoptimization and potentially patch caller
1369   {
1370     MutexLocker ml_patch(CompiledIC_lock);
1371 
1372     // Lock blocks for safepoint during which both nmethods can change state.
1373 
1374     // Now that we are ready to patch if the Method* was redefined then
1375     // don't update call site and let the caller retry.
1376     // Don't update call site if callee nmethod was unloaded or deoptimized.
1377     // Don't update call site if callee nmethod was replaced by an other nmethod
1378     // which may happen when multiply alive nmethod (tiered compilation)
1379     // will be supported.
1380     if (!callee_method->is_old() &&
1381         (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1382 #ifdef ASSERT
1383       // We must not try to patch to jump to an already unloaded method.
1384       if (dest_entry_point != 0) {
1385         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1386         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1387                "should not call unloaded nmethod");
1388       }
1389 #endif
1390       if (is_virtual) {
1391         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1392         if (inline_cache->is_clean()) {
1393           inline_cache->set_to_monomorphic(virtual_call_info);
1394         }
1395       } else {
1396         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1397         if (ssc->is_clean()) ssc->set(static_call_info);
1398       }
1399     }
1400 
1401   } // unlock CompiledIC_lock
1402 
1403   return callee_method;
1404 }
1405 
1406 
1407 // Inline caches exist only in compiled code
1408 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1409 #ifdef ASSERT
1410   RegisterMap reg_map(thread, false);
1411   frame stub_frame = thread->last_frame();
1412   assert(stub_frame.is_runtime_frame(), "sanity check");
1413   frame caller_frame = stub_frame.sender(&reg_map);
1414   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1415 #endif /* ASSERT */
1416 
1417   methodHandle callee_method;
1418   JRT_BLOCK
1419     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1420     // Return Method* through TLS
1421     thread->set_vm_result_2(callee_method());
1422   JRT_BLOCK_END
1423   // return compiled code entry point after potential safepoints
1424   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1425   return callee_method->verified_code_entry();
1426 JRT_END
1427 
1428 
1429 // Handle call site that has been made non-entrant
1430 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1431   // 6243940 We might end up in here if the callee is deoptimized
1432   // as we race to call it.  We don't want to take a safepoint if
1433   // the caller was interpreted because the caller frame will look
1434   // interpreted to the stack walkers and arguments are now
1435   // "compiled" so it is much better to make this transition
1436   // invisible to the stack walking code. The i2c path will
1437   // place the callee method in the callee_target. It is stashed
1438   // there because if we try and find the callee by normal means a
1439   // safepoint is possible and have trouble gc'ing the compiled args.
1440   RegisterMap reg_map(thread, false);
1441   frame stub_frame = thread->last_frame();
1442   assert(stub_frame.is_runtime_frame(), "sanity check");
1443   frame caller_frame = stub_frame.sender(&reg_map);
1444 
1445   if (caller_frame.is_interpreted_frame() ||
1446       caller_frame.is_entry_frame()) {
1447     Method* callee = thread->callee_target();
1448     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1449     thread->set_vm_result_2(callee);
1450     thread->set_callee_target(NULL);
1451     return callee->get_c2i_entry();
1452   }
1453 
1454   // Must be compiled to compiled path which is safe to stackwalk
1455   methodHandle callee_method;
1456   JRT_BLOCK
1457     // Force resolving of caller (if we called from compiled frame)
1458     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1459     thread->set_vm_result_2(callee_method());
1460   JRT_BLOCK_END
1461   // return compiled code entry point after potential safepoints
1462   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1463   return callee_method->verified_code_entry();
1464 JRT_END
1465 
1466 // Handle abstract method call
1467 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1468   return StubRoutines::throw_AbstractMethodError_entry();
1469 JRT_END
1470 
1471 
1472 // resolve a static call and patch code
1473 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1474   methodHandle callee_method;
1475   JRT_BLOCK
1476     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1477     thread->set_vm_result_2(callee_method());
1478   JRT_BLOCK_END
1479   // return compiled code entry point after potential safepoints
1480   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1481   return callee_method->verified_code_entry();
1482 JRT_END
1483 
1484 
1485 // resolve virtual call and update inline cache to monomorphic
1486 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1487   methodHandle callee_method;
1488   JRT_BLOCK
1489     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1490     thread->set_vm_result_2(callee_method());
1491   JRT_BLOCK_END
1492   // return compiled code entry point after potential safepoints
1493   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1494   return callee_method->verified_code_entry();
1495 JRT_END
1496 
1497 
1498 // Resolve a virtual call that can be statically bound (e.g., always
1499 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1500 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1501   methodHandle callee_method;
1502   JRT_BLOCK
1503     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1504     thread->set_vm_result_2(callee_method());
1505   JRT_BLOCK_END
1506   // return compiled code entry point after potential safepoints
1507   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1508   return callee_method->verified_code_entry();
1509 JRT_END
1510 
1511 
1512 
1513 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1514   ResourceMark rm(thread);
1515   CallInfo call_info;
1516   Bytecodes::Code bc;
1517 
1518   // receiver is NULL for static calls. An exception is thrown for NULL
1519   // receivers for non-static calls
1520   Handle receiver = find_callee_info(thread, bc, call_info,
1521                                      CHECK_(methodHandle()));
1522   // Compiler1 can produce virtual call sites that can actually be statically bound
1523   // If we fell thru to below we would think that the site was going megamorphic
1524   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1525   // we'd try and do a vtable dispatch however methods that can be statically bound
1526   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1527   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1528   // plain ic_miss) and the site will be converted to an optimized virtual call site
1529   // never to miss again. I don't believe C2 will produce code like this but if it
1530   // did this would still be the correct thing to do for it too, hence no ifdef.
1531   //
1532   if (call_info.resolved_method()->can_be_statically_bound()) {
1533     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1534     if (TraceCallFixup) {
1535       RegisterMap reg_map(thread, false);
1536       frame caller_frame = thread->last_frame().sender(&reg_map);
1537       ResourceMark rm(thread);
1538       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1539       callee_method->print_short_name(tty);
1540       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1541       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1542     }
1543     return callee_method;
1544   }
1545 
1546   methodHandle callee_method = call_info.selected_method();
1547 
1548   bool should_be_mono = false;
1549 
1550 #ifndef PRODUCT
1551   Atomic::inc(&_ic_miss_ctr);
1552 
1553   // Statistics & Tracing
1554   if (TraceCallFixup) {
1555     ResourceMark rm(thread);
1556     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1557     callee_method->print_short_name(tty);
1558     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1559   }
1560 
1561   if (ICMissHistogram) {
1562     MutexLocker m(VMStatistic_lock);
1563     RegisterMap reg_map(thread, false);
1564     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1565     // produce statistics under the lock
1566     trace_ic_miss(f.pc());
1567   }
1568 #endif
1569 
1570   // install an event collector so that when a vtable stub is created the
1571   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1572   // event can't be posted when the stub is created as locks are held
1573   // - instead the event will be deferred until the event collector goes
1574   // out of scope.
1575   JvmtiDynamicCodeEventCollector event_collector;
1576 
1577   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1578   { MutexLocker ml_patch (CompiledIC_lock);
1579     RegisterMap reg_map(thread, false);
1580     frame caller_frame = thread->last_frame().sender(&reg_map);
1581     CodeBlob* cb = caller_frame.cb();
1582     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1583     if (cb->is_compiled()) {
1584       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1585       bool should_be_mono = false;
1586       if (inline_cache->is_optimized()) {
1587         if (TraceCallFixup) {
1588           ResourceMark rm(thread);
1589           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1590           callee_method->print_short_name(tty);
1591           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1592         }
1593         should_be_mono = true;
1594       } else if (inline_cache->is_icholder_call()) {
1595         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1596         if (ic_oop != NULL) {
1597 
1598           if (receiver()->klass() == ic_oop->holder_klass()) {
1599             // This isn't a real miss. We must have seen that compiled code
1600             // is now available and we want the call site converted to a
1601             // monomorphic compiled call site.
1602             // We can't assert for callee_method->code() != NULL because it
1603             // could have been deoptimized in the meantime
1604             if (TraceCallFixup) {
1605               ResourceMark rm(thread);
1606               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1607               callee_method->print_short_name(tty);
1608               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1609             }
1610             should_be_mono = true;
1611           }
1612         }
1613       }
1614 
1615       if (should_be_mono) {
1616 
1617         // We have a path that was monomorphic but was going interpreted
1618         // and now we have (or had) a compiled entry. We correct the IC
1619         // by using a new icBuffer.
1620         CompiledICInfo info;
1621         Klass* receiver_klass = receiver()->klass();
1622         inline_cache->compute_monomorphic_entry(callee_method,
1623                                                 receiver_klass,
1624                                                 inline_cache->is_optimized(),
1625                                                 false, caller_nm->is_nmethod(),
1626                                                 info, CHECK_(methodHandle()));
1627         inline_cache->set_to_monomorphic(info);
1628       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1629         // Potential change to megamorphic
1630         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1631         if (!successful) {
1632           inline_cache->set_to_clean();
1633         }
1634       } else {
1635         // Either clean or megamorphic
1636       }
1637     } else {
1638       fatal("Unimplemented");
1639     }
1640   } // Release CompiledIC_lock
1641 
1642   return callee_method;
1643 }
1644 
1645 //
1646 // Resets a call-site in compiled code so it will get resolved again.
1647 // This routines handles both virtual call sites, optimized virtual call
1648 // sites, and static call sites. Typically used to change a call sites
1649 // destination from compiled to interpreted.
1650 //
1651 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1652   ResourceMark rm(thread);
1653   RegisterMap reg_map(thread, false);
1654   frame stub_frame = thread->last_frame();
1655   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1656   frame caller = stub_frame.sender(&reg_map);
1657 
1658   // Do nothing if the frame isn't a live compiled frame.
1659   // nmethod could be deoptimized by the time we get here
1660   // so no update to the caller is needed.
1661 
1662   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1663 
1664     address pc = caller.pc();
1665 
1666     // Check for static or virtual call
1667     bool is_static_call = false;
1668     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1669 
1670     // Default call_addr is the location of the "basic" call.
1671     // Determine the address of the call we a reresolving. With
1672     // Inline Caches we will always find a recognizable call.
1673     // With Inline Caches disabled we may or may not find a
1674     // recognizable call. We will always find a call for static
1675     // calls and for optimized virtual calls. For vanilla virtual
1676     // calls it depends on the state of the UseInlineCaches switch.
1677     //
1678     // With Inline Caches disabled we can get here for a virtual call
1679     // for two reasons:
1680     //   1 - calling an abstract method. The vtable for abstract methods
1681     //       will run us thru handle_wrong_method and we will eventually
1682     //       end up in the interpreter to throw the ame.
1683     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1684     //       call and between the time we fetch the entry address and
1685     //       we jump to it the target gets deoptimized. Similar to 1
1686     //       we will wind up in the interprter (thru a c2i with c2).
1687     //
1688     address call_addr = NULL;
1689     {
1690       // Get call instruction under lock because another thread may be
1691       // busy patching it.
1692       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1693       // Location of call instruction
1694       call_addr = caller_nm->call_instruction_address(pc);
1695     }
1696     // Make sure nmethod doesn't get deoptimized and removed until
1697     // this is done with it.
1698     // CLEANUP - with lazy deopt shouldn't need this lock
1699     nmethodLocker nmlock(caller_nm);
1700 
1701     if (call_addr != NULL) {
1702       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1703       int ret = iter.next(); // Get item
1704       if (ret) {
1705         assert(iter.addr() == call_addr, "must find call");
1706         if (iter.type() == relocInfo::static_call_type) {
1707           is_static_call = true;
1708         } else {
1709           assert(iter.type() == relocInfo::virtual_call_type ||
1710                  iter.type() == relocInfo::opt_virtual_call_type
1711                 , "unexpected relocInfo. type");
1712         }
1713       } else {
1714         assert(!UseInlineCaches, "relocation info. must exist for this address");
1715       }
1716 
1717       // Cleaning the inline cache will force a new resolve. This is more robust
1718       // than directly setting it to the new destination, since resolving of calls
1719       // is always done through the same code path. (experience shows that it
1720       // leads to very hard to track down bugs, if an inline cache gets updated
1721       // to a wrong method). It should not be performance critical, since the
1722       // resolve is only done once.
1723 
1724       bool is_nmethod = caller_nm->is_nmethod();
1725       MutexLocker ml(CompiledIC_lock);
1726       if (is_static_call) {
1727         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1728         ssc->set_to_clean();
1729       } else {
1730         // compiled, dispatched call (which used to call an interpreted method)
1731         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1732         inline_cache->set_to_clean();
1733       }
1734     }
1735   }
1736 
1737   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1738 
1739 
1740 #ifndef PRODUCT
1741   Atomic::inc(&_wrong_method_ctr);
1742 
1743   if (TraceCallFixup) {
1744     ResourceMark rm(thread);
1745     tty->print("handle_wrong_method reresolving call to");
1746     callee_method->print_short_name(tty);
1747     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1748   }
1749 #endif
1750 
1751   return callee_method;
1752 }
1753 
1754 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1755   // The faulting unsafe accesses should be changed to throw the error
1756   // synchronously instead. Meanwhile the faulting instruction will be
1757   // skipped over (effectively turning it into a no-op) and an
1758   // asynchronous exception will be raised which the thread will
1759   // handle at a later point. If the instruction is a load it will
1760   // return garbage.
1761 
1762   // Request an async exception.
1763   thread->set_pending_unsafe_access_error();
1764 
1765   // Return address of next instruction to execute.
1766   return next_pc;
1767 }
1768 
1769 #ifdef ASSERT
1770 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1771                                                                 const BasicType* sig_bt,
1772                                                                 const VMRegPair* regs) {
1773   ResourceMark rm;
1774   const int total_args_passed = method->size_of_parameters();
1775   const VMRegPair*    regs_with_member_name = regs;
1776         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1777 
1778   const int member_arg_pos = total_args_passed - 1;
1779   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1780   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1781 
1782   const bool is_outgoing = method->is_method_handle_intrinsic();
1783   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1784 
1785   for (int i = 0; i < member_arg_pos; i++) {
1786     VMReg a =    regs_with_member_name[i].first();
1787     VMReg b = regs_without_member_name[i].first();
1788     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1789   }
1790   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1791 }
1792 #endif
1793 
1794 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1795   if (destination != entry_point) {
1796     CodeBlob* callee = CodeCache::find_blob(destination);
1797     // callee == cb seems weird. It means calling interpreter thru stub.
1798     if (callee == cb || callee->is_adapter_blob()) {
1799       // static call or optimized virtual
1800       if (TraceCallFixup) {
1801         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1802         moop->print_short_name(tty);
1803         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1804       }
1805       return true;
1806     } else {
1807       if (TraceCallFixup) {
1808         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1809         moop->print_short_name(tty);
1810         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1811       }
1812       // assert is too strong could also be resolve destinations.
1813       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1814     }
1815   } else {
1816     if (TraceCallFixup) {
1817       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1818       moop->print_short_name(tty);
1819       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1820     }
1821   }
1822   return false;
1823 }
1824 
1825 // ---------------------------------------------------------------------------
1826 // We are calling the interpreter via a c2i. Normally this would mean that
1827 // we were called by a compiled method. However we could have lost a race
1828 // where we went int -> i2c -> c2i and so the caller could in fact be
1829 // interpreted. If the caller is compiled we attempt to patch the caller
1830 // so he no longer calls into the interpreter.
1831 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1832   Method* moop(method);
1833 
1834   address entry_point = moop->from_compiled_entry_no_trampoline();
1835 
1836   // It's possible that deoptimization can occur at a call site which hasn't
1837   // been resolved yet, in which case this function will be called from
1838   // an nmethod that has been patched for deopt and we can ignore the
1839   // request for a fixup.
1840   // Also it is possible that we lost a race in that from_compiled_entry
1841   // is now back to the i2c in that case we don't need to patch and if
1842   // we did we'd leap into space because the callsite needs to use
1843   // "to interpreter" stub in order to load up the Method*. Don't
1844   // ask me how I know this...
1845 
1846   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1847   if (!cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1848     return;
1849   }
1850 
1851   // The check above makes sure this is a nmethod.
1852   CompiledMethod* nm = cb->as_compiled_method_or_null();
1853   assert(nm, "must be");
1854 
1855   // Get the return PC for the passed caller PC.
1856   address return_pc = caller_pc + frame::pc_return_offset;
1857 
1858   // There is a benign race here. We could be attempting to patch to a compiled
1859   // entry point at the same time the callee is being deoptimized. If that is
1860   // the case then entry_point may in fact point to a c2i and we'd patch the
1861   // call site with the same old data. clear_code will set code() to NULL
1862   // at the end of it. If we happen to see that NULL then we can skip trying
1863   // to patch. If we hit the window where the callee has a c2i in the
1864   // from_compiled_entry and the NULL isn't present yet then we lose the race
1865   // and patch the code with the same old data. Asi es la vida.
1866 
1867   if (moop->code() == NULL) return;
1868 
1869   if (nm->is_in_use()) {
1870 
1871     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1872     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1873     if (NativeCall::is_call_before(return_pc)) {
1874       ResourceMark mark;
1875       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1876       //
1877       // bug 6281185. We might get here after resolving a call site to a vanilla
1878       // virtual call. Because the resolvee uses the verified entry it may then
1879       // see compiled code and attempt to patch the site by calling us. This would
1880       // then incorrectly convert the call site to optimized and its downhill from
1881       // there. If you're lucky you'll get the assert in the bugid, if not you've
1882       // just made a call site that could be megamorphic into a monomorphic site
1883       // for the rest of its life! Just another racing bug in the life of
1884       // fixup_callers_callsite ...
1885       //
1886       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1887       iter.next();
1888       assert(iter.has_current(), "must have a reloc at java call site");
1889       relocInfo::relocType typ = iter.reloc()->type();
1890       if (typ != relocInfo::static_call_type &&
1891            typ != relocInfo::opt_virtual_call_type &&
1892            typ != relocInfo::static_stub_type) {
1893         return;
1894       }
1895       address destination = call->destination();
1896       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1897         call->set_destination_mt_safe(entry_point);
1898       }
1899     }
1900   }
1901 IRT_END
1902 
1903 
1904 // same as JVM_Arraycopy, but called directly from compiled code
1905 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1906                                                 oopDesc* dest, jint dest_pos,
1907                                                 jint length,
1908                                                 JavaThread* thread)) {
1909 #ifndef PRODUCT
1910   _slow_array_copy_ctr++;
1911 #endif
1912   // Check if we have null pointers
1913   if (src == NULL || dest == NULL) {
1914     THROW(vmSymbols::java_lang_NullPointerException());
1915   }
1916   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1917   // even though the copy_array API also performs dynamic checks to ensure
1918   // that src and dest are truly arrays (and are conformable).
1919   // The copy_array mechanism is awkward and could be removed, but
1920   // the compilers don't call this function except as a last resort,
1921   // so it probably doesn't matter.
1922   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1923                                         (arrayOopDesc*)dest, dest_pos,
1924                                         length, thread);
1925 }
1926 JRT_END
1927 
1928 // The caller of generate_class_cast_message() (or one of its callers)
1929 // must use a ResourceMark in order to correctly free the result.
1930 char* SharedRuntime::generate_class_cast_message(
1931     JavaThread* thread, Klass* caster_klass) {
1932 
1933   // Get target class name from the checkcast instruction
1934   vframeStream vfst(thread, true);
1935   assert(!vfst.at_end(), "Java frame must exist");
1936   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1937   Klass* target_klass = vfst.method()->constants()->klass_at(
1938     cc.index(), thread);
1939   return generate_class_cast_message(caster_klass, target_klass);
1940 }
1941 
1942 // The caller of class_loader_and_module_name() (or one of its callers)
1943 // must use a ResourceMark in order to correctly free the result.
1944 const char* class_loader_and_module_name(Klass* klass) {
1945   const char* delim = "/";
1946   size_t delim_len = strlen(delim);
1947 
1948   const char* fqn = klass->external_name();
1949   // Length of message to return; always include FQN
1950   size_t msglen = strlen(fqn) + 1;
1951 
1952   bool has_cl_name = false;
1953   bool has_mod_name = false;
1954   bool has_version = false;
1955 
1956   // Use class loader name, if exists and not builtin
1957   const char* class_loader_name = "";
1958   ClassLoaderData* cld = klass->class_loader_data();
1959   assert(cld != NULL, "class_loader_data should not be NULL");
1960   if (!cld->is_builtin_class_loader_data()) {
1961     // If not builtin, look for name
1962     oop loader = klass->class_loader();
1963     if (loader != NULL) {
1964       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1965       if (class_loader_name_oop != NULL) {
1966         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1967         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1968           has_cl_name = true;
1969           msglen += strlen(class_loader_name) + delim_len;
1970         }
1971       }
1972     }
1973   }
1974 
1975   const char* module_name = "";
1976   const char* version = "";
1977   Klass* bottom_klass = klass->is_objArray_klass() ?
1978     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
1979   if (bottom_klass->is_instance_klass()) {
1980     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1981     // Use module name, if exists
1982     if (module->is_named()) {
1983       has_mod_name = true;
1984       module_name = module->name()->as_C_string();
1985       msglen += strlen(module_name);
1986       // Use version if exists and is not a jdk module
1987       if (module->is_non_jdk_module() && module->version() != NULL) {
1988         has_version = true;
1989         version = module->version()->as_C_string();
1990         msglen += strlen("@") + strlen(version);
1991       }
1992     }
1993   } else {
1994     // klass is an array of primitives, so its module is java.base
1995     module_name = JAVA_BASE_NAME;
1996   }
1997 
1998   if (has_cl_name || has_mod_name) {
1999     msglen += delim_len;
2000   }
2001 
2002   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2003 
2004   // Just return the FQN if error in allocating string
2005   if (message == NULL) {
2006     return fqn;
2007   }
2008 
2009   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
2010                class_loader_name,
2011                (has_cl_name) ? delim : "",
2012                (has_mod_name) ? module_name : "",
2013                (has_version) ? "@" : "",
2014                (has_version) ? version : "",
2015                (has_cl_name || has_mod_name) ? delim : "",
2016                fqn);
2017   return message;
2018 }
2019 
2020 char* SharedRuntime::generate_class_cast_message(
2021     Klass* caster_klass, Klass* target_klass) {
2022 
2023   const char* caster_name = class_loader_and_module_name(caster_klass);
2024 
2025   const char* target_name = class_loader_and_module_name(target_klass);
2026 
2027   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2028 
2029   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2030   if (message == NULL) {
2031     // Shouldn't happen, but don't cause even more problems if it does
2032     message = const_cast<char*>(caster_klass->external_name());
2033   } else {
2034     jio_snprintf(message,
2035                  msglen,
2036                  "%s cannot be cast to %s",
2037                  caster_name,
2038                  target_name);
2039   }
2040   return message;
2041 }
2042 
2043 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2044   (void) JavaThread::current()->reguard_stack();
2045 JRT_END
2046 
2047 
2048 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2049 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2050   // Disable ObjectSynchronizer::quick_enter() in default config
2051   // on AARCH64 and ARM until JDK-8153107 is resolved.
2052   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2053       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2054       !SafepointSynchronize::is_synchronizing()) {
2055     // Only try quick_enter() if we're not trying to reach a safepoint
2056     // so that the calling thread reaches the safepoint more quickly.
2057     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2058   }
2059   // NO_ASYNC required because an async exception on the state transition destructor
2060   // would leave you with the lock held and it would never be released.
2061   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2062   // and the model is that an exception implies the method failed.
2063   JRT_BLOCK_NO_ASYNC
2064   oop obj(_obj);
2065   if (PrintBiasedLockingStatistics) {
2066     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2067   }
2068   Handle h_obj(THREAD, obj);
2069   if (UseBiasedLocking) {
2070     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2071     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2072   } else {
2073     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2074   }
2075   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2076   JRT_BLOCK_END
2077 JRT_END
2078 
2079 // Handles the uncommon cases of monitor unlocking in compiled code
2080 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2081    oop obj(_obj);
2082   assert(JavaThread::current() == THREAD, "invariant");
2083   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2084   // testing was unable to ever fire the assert that guarded it so I have removed it.
2085   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2086 #undef MIGHT_HAVE_PENDING
2087 #ifdef MIGHT_HAVE_PENDING
2088   // Save and restore any pending_exception around the exception mark.
2089   // While the slow_exit must not throw an exception, we could come into
2090   // this routine with one set.
2091   oop pending_excep = NULL;
2092   const char* pending_file;
2093   int pending_line;
2094   if (HAS_PENDING_EXCEPTION) {
2095     pending_excep = PENDING_EXCEPTION;
2096     pending_file  = THREAD->exception_file();
2097     pending_line  = THREAD->exception_line();
2098     CLEAR_PENDING_EXCEPTION;
2099   }
2100 #endif /* MIGHT_HAVE_PENDING */
2101 
2102   {
2103     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2104     EXCEPTION_MARK;
2105     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2106   }
2107 
2108 #ifdef MIGHT_HAVE_PENDING
2109   if (pending_excep != NULL) {
2110     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2111   }
2112 #endif /* MIGHT_HAVE_PENDING */
2113 JRT_END
2114 
2115 #ifndef PRODUCT
2116 
2117 void SharedRuntime::print_statistics() {
2118   ttyLocker ttyl;
2119   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2120 
2121   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2122 
2123   SharedRuntime::print_ic_miss_histogram();
2124 
2125   if (CountRemovableExceptions) {
2126     if (_nof_removable_exceptions > 0) {
2127       Unimplemented(); // this counter is not yet incremented
2128       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2129     }
2130   }
2131 
2132   // Dump the JRT_ENTRY counters
2133   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2134   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2135   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2136   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2137   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2138   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2139   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2140 
2141   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2142   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2143   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2144   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2145   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2146 
2147   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2148   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2149   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2150   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2151   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2152   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2153   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2154   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2155   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2156   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2157   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2158   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2159   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2160   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2161   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2162   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2163 
2164   AdapterHandlerLibrary::print_statistics();
2165 
2166   if (xtty != NULL)  xtty->tail("statistics");
2167 }
2168 
2169 inline double percent(int x, int y) {
2170   return 100.0 * x / MAX2(y, 1);
2171 }
2172 
2173 class MethodArityHistogram {
2174  public:
2175   enum { MAX_ARITY = 256 };
2176  private:
2177   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2178   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2179   static int _max_arity;                      // max. arity seen
2180   static int _max_size;                       // max. arg size seen
2181 
2182   static void add_method_to_histogram(nmethod* nm) {
2183     Method* m = nm->method();
2184     ArgumentCount args(m->signature());
2185     int arity   = args.size() + (m->is_static() ? 0 : 1);
2186     int argsize = m->size_of_parameters();
2187     arity   = MIN2(arity, MAX_ARITY-1);
2188     argsize = MIN2(argsize, MAX_ARITY-1);
2189     int count = nm->method()->compiled_invocation_count();
2190     _arity_histogram[arity]  += count;
2191     _size_histogram[argsize] += count;
2192     _max_arity = MAX2(_max_arity, arity);
2193     _max_size  = MAX2(_max_size, argsize);
2194   }
2195 
2196   void print_histogram_helper(int n, int* histo, const char* name) {
2197     const int N = MIN2(5, n);
2198     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2199     double sum = 0;
2200     double weighted_sum = 0;
2201     int i;
2202     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2203     double rest = sum;
2204     double percent = sum / 100;
2205     for (i = 0; i <= N; i++) {
2206       rest -= histo[i];
2207       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2208     }
2209     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2210     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2211   }
2212 
2213   void print_histogram() {
2214     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2215     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2216     tty->print_cr("\nSame for parameter size (in words):");
2217     print_histogram_helper(_max_size, _size_histogram, "size");
2218     tty->cr();
2219   }
2220 
2221  public:
2222   MethodArityHistogram() {
2223     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2224     _max_arity = _max_size = 0;
2225     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2226     CodeCache::nmethods_do(add_method_to_histogram);
2227     print_histogram();
2228   }
2229 };
2230 
2231 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2232 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2233 int MethodArityHistogram::_max_arity;
2234 int MethodArityHistogram::_max_size;
2235 
2236 void SharedRuntime::print_call_statistics(int comp_total) {
2237   tty->print_cr("Calls from compiled code:");
2238   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2239   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2240   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2241   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2242   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2243   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2244   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2245   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2246   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2247   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2248   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2249   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2250   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2251   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2252   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2253   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2254   tty->cr();
2255   tty->print_cr("Note 1: counter updates are not MT-safe.");
2256   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2257   tty->print_cr("        %% in nested categories are relative to their category");
2258   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2259   tty->cr();
2260 
2261   MethodArityHistogram h;
2262 }
2263 #endif
2264 
2265 
2266 // A simple wrapper class around the calling convention information
2267 // that allows sharing of adapters for the same calling convention.
2268 class AdapterFingerPrint : public CHeapObj<mtCode> {
2269  private:
2270   enum {
2271     _basic_type_bits = 4,
2272     _basic_type_mask = right_n_bits(_basic_type_bits),
2273     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2274     _compact_int_count = 3
2275   };
2276   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2277   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2278 
2279   union {
2280     int  _compact[_compact_int_count];
2281     int* _fingerprint;
2282   } _value;
2283   int _length; // A negative length indicates the fingerprint is in the compact form,
2284                // Otherwise _value._fingerprint is the array.
2285 
2286   // Remap BasicTypes that are handled equivalently by the adapters.
2287   // These are correct for the current system but someday it might be
2288   // necessary to make this mapping platform dependent.
2289   static int adapter_encoding(BasicType in) {
2290     switch (in) {
2291       case T_BOOLEAN:
2292       case T_BYTE:
2293       case T_SHORT:
2294       case T_CHAR:
2295         // There are all promoted to T_INT in the calling convention
2296         return T_INT;
2297 
2298       case T_OBJECT:
2299       case T_ARRAY:
2300         // In other words, we assume that any register good enough for
2301         // an int or long is good enough for a managed pointer.
2302 #ifdef _LP64
2303         return T_LONG;
2304 #else
2305         return T_INT;
2306 #endif
2307 
2308       case T_INT:
2309       case T_LONG:
2310       case T_FLOAT:
2311       case T_DOUBLE:
2312       case T_VOID:
2313         return in;
2314 
2315       default:
2316         ShouldNotReachHere();
2317         return T_CONFLICT;
2318     }
2319   }
2320 
2321  public:
2322   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2323     // The fingerprint is based on the BasicType signature encoded
2324     // into an array of ints with eight entries per int.
2325     int* ptr;
2326     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2327     if (len <= _compact_int_count) {
2328       assert(_compact_int_count == 3, "else change next line");
2329       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2330       // Storing the signature encoded as signed chars hits about 98%
2331       // of the time.
2332       _length = -len;
2333       ptr = _value._compact;
2334     } else {
2335       _length = len;
2336       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2337       ptr = _value._fingerprint;
2338     }
2339 
2340     // Now pack the BasicTypes with 8 per int
2341     int sig_index = 0;
2342     for (int index = 0; index < len; index++) {
2343       int value = 0;
2344       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2345         int bt = ((sig_index < total_args_passed)
2346                   ? adapter_encoding(sig_bt[sig_index++])
2347                   : 0);
2348         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2349         value = (value << _basic_type_bits) | bt;
2350       }
2351       ptr[index] = value;
2352     }
2353   }
2354 
2355   ~AdapterFingerPrint() {
2356     if (_length > 0) {
2357       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2358     }
2359   }
2360 
2361   int value(int index) {
2362     if (_length < 0) {
2363       return _value._compact[index];
2364     }
2365     return _value._fingerprint[index];
2366   }
2367   int length() {
2368     if (_length < 0) return -_length;
2369     return _length;
2370   }
2371 
2372   bool is_compact() {
2373     return _length <= 0;
2374   }
2375 
2376   unsigned int compute_hash() {
2377     int hash = 0;
2378     for (int i = 0; i < length(); i++) {
2379       int v = value(i);
2380       hash = (hash << 8) ^ v ^ (hash >> 5);
2381     }
2382     return (unsigned int)hash;
2383   }
2384 
2385   const char* as_string() {
2386     stringStream st;
2387     st.print("0x");
2388     for (int i = 0; i < length(); i++) {
2389       st.print("%08x", value(i));
2390     }
2391     return st.as_string();
2392   }
2393 
2394   bool equals(AdapterFingerPrint* other) {
2395     if (other->_length != _length) {
2396       return false;
2397     }
2398     if (_length < 0) {
2399       assert(_compact_int_count == 3, "else change next line");
2400       return _value._compact[0] == other->_value._compact[0] &&
2401              _value._compact[1] == other->_value._compact[1] &&
2402              _value._compact[2] == other->_value._compact[2];
2403     } else {
2404       for (int i = 0; i < _length; i++) {
2405         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2406           return false;
2407         }
2408       }
2409     }
2410     return true;
2411   }
2412 };
2413 
2414 
2415 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2416 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2417   friend class AdapterHandlerTableIterator;
2418 
2419  private:
2420 
2421 #ifndef PRODUCT
2422   static int _lookups; // number of calls to lookup
2423   static int _buckets; // number of buckets checked
2424   static int _equals;  // number of buckets checked with matching hash
2425   static int _hits;    // number of successful lookups
2426   static int _compact; // number of equals calls with compact signature
2427 #endif
2428 
2429   AdapterHandlerEntry* bucket(int i) {
2430     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2431   }
2432 
2433  public:
2434   AdapterHandlerTable()
2435     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2436 
2437   // Create a new entry suitable for insertion in the table
2438   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2439     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2440     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2441     if (DumpSharedSpaces) {
2442       ((CDSAdapterHandlerEntry*)entry)->init();
2443     }
2444     return entry;
2445   }
2446 
2447   // Insert an entry into the table
2448   void add(AdapterHandlerEntry* entry) {
2449     int index = hash_to_index(entry->hash());
2450     add_entry(index, entry);
2451   }
2452 
2453   void free_entry(AdapterHandlerEntry* entry) {
2454     entry->deallocate();
2455     BasicHashtable<mtCode>::free_entry(entry);
2456   }
2457 
2458   // Find a entry with the same fingerprint if it exists
2459   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2460     NOT_PRODUCT(_lookups++);
2461     AdapterFingerPrint fp(total_args_passed, sig_bt);
2462     unsigned int hash = fp.compute_hash();
2463     int index = hash_to_index(hash);
2464     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2465       NOT_PRODUCT(_buckets++);
2466       if (e->hash() == hash) {
2467         NOT_PRODUCT(_equals++);
2468         if (fp.equals(e->fingerprint())) {
2469 #ifndef PRODUCT
2470           if (fp.is_compact()) _compact++;
2471           _hits++;
2472 #endif
2473           return e;
2474         }
2475       }
2476     }
2477     return NULL;
2478   }
2479 
2480 #ifndef PRODUCT
2481   void print_statistics() {
2482     ResourceMark rm;
2483     int longest = 0;
2484     int empty = 0;
2485     int total = 0;
2486     int nonempty = 0;
2487     for (int index = 0; index < table_size(); index++) {
2488       int count = 0;
2489       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2490         count++;
2491       }
2492       if (count != 0) nonempty++;
2493       if (count == 0) empty++;
2494       if (count > longest) longest = count;
2495       total += count;
2496     }
2497     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2498                   empty, longest, total, total / (double)nonempty);
2499     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2500                   _lookups, _buckets, _equals, _hits, _compact);
2501   }
2502 #endif
2503 };
2504 
2505 
2506 #ifndef PRODUCT
2507 
2508 int AdapterHandlerTable::_lookups;
2509 int AdapterHandlerTable::_buckets;
2510 int AdapterHandlerTable::_equals;
2511 int AdapterHandlerTable::_hits;
2512 int AdapterHandlerTable::_compact;
2513 
2514 #endif
2515 
2516 class AdapterHandlerTableIterator : public StackObj {
2517  private:
2518   AdapterHandlerTable* _table;
2519   int _index;
2520   AdapterHandlerEntry* _current;
2521 
2522   void scan() {
2523     while (_index < _table->table_size()) {
2524       AdapterHandlerEntry* a = _table->bucket(_index);
2525       _index++;
2526       if (a != NULL) {
2527         _current = a;
2528         return;
2529       }
2530     }
2531   }
2532 
2533  public:
2534   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2535     scan();
2536   }
2537   bool has_next() {
2538     return _current != NULL;
2539   }
2540   AdapterHandlerEntry* next() {
2541     if (_current != NULL) {
2542       AdapterHandlerEntry* result = _current;
2543       _current = _current->next();
2544       if (_current == NULL) scan();
2545       return result;
2546     } else {
2547       return NULL;
2548     }
2549   }
2550 };
2551 
2552 
2553 // ---------------------------------------------------------------------------
2554 // Implementation of AdapterHandlerLibrary
2555 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2556 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2557 const int AdapterHandlerLibrary_size = 16*K;
2558 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2559 
2560 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2561   // Should be called only when AdapterHandlerLibrary_lock is active.
2562   if (_buffer == NULL) // Initialize lazily
2563       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2564   return _buffer;
2565 }
2566 
2567 extern "C" void unexpected_adapter_call() {
2568   ShouldNotCallThis();
2569 }
2570 
2571 void AdapterHandlerLibrary::initialize() {
2572   if (_adapters != NULL) return;
2573   _adapters = new AdapterHandlerTable();
2574 
2575   // Create a special handler for abstract methods.  Abstract methods
2576   // are never compiled so an i2c entry is somewhat meaningless, but
2577   // throw AbstractMethodError just in case.
2578   // Pass wrong_method_abstract for the c2i transitions to return
2579   // AbstractMethodError for invalid invocations.
2580   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2581   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2582                                                               StubRoutines::throw_AbstractMethodError_entry(),
2583                                                               wrong_method_abstract, wrong_method_abstract);
2584 }
2585 
2586 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2587                                                       address i2c_entry,
2588                                                       address c2i_entry,
2589                                                       address c2i_unverified_entry) {
2590   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2591 }
2592 
2593 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2594   AdapterHandlerEntry* entry = get_adapter0(method);
2595   if (method->is_shared()) {
2596     // See comments around Method::link_method()
2597     MutexLocker mu(AdapterHandlerLibrary_lock);
2598     if (method->adapter() == NULL) {
2599       method->update_adapter_trampoline(entry);
2600     }
2601     address trampoline = method->from_compiled_entry();
2602     if (*(int*)trampoline == 0) {
2603       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2604       MacroAssembler _masm(&buffer);
2605       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2606       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2607 
2608       if (PrintInterpreter) {
2609         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2610       }
2611     }
2612   }
2613 
2614   return entry;
2615 }
2616 
2617 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2618   // Use customized signature handler.  Need to lock around updates to
2619   // the AdapterHandlerTable (it is not safe for concurrent readers
2620   // and a single writer: this could be fixed if it becomes a
2621   // problem).
2622 
2623   ResourceMark rm;
2624 
2625   NOT_PRODUCT(int insts_size);
2626   AdapterBlob* new_adapter = NULL;
2627   AdapterHandlerEntry* entry = NULL;
2628   AdapterFingerPrint* fingerprint = NULL;
2629   {
2630     MutexLocker mu(AdapterHandlerLibrary_lock);
2631     // make sure data structure is initialized
2632     initialize();
2633 
2634     if (method->is_abstract()) {
2635       return _abstract_method_handler;
2636     }
2637 
2638     // Fill in the signature array, for the calling-convention call.
2639     int total_args_passed = method->size_of_parameters(); // All args on stack
2640 
2641     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2642     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2643     int i = 0;
2644     if (!method->is_static())  // Pass in receiver first
2645       sig_bt[i++] = T_OBJECT;
2646     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2647       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2648       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2649         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2650     }
2651     assert(i == total_args_passed, "");
2652 
2653     // Lookup method signature's fingerprint
2654     entry = _adapters->lookup(total_args_passed, sig_bt);
2655 
2656 #ifdef ASSERT
2657     AdapterHandlerEntry* shared_entry = NULL;
2658     // Start adapter sharing verification only after the VM is booted.
2659     if (VerifyAdapterSharing && (entry != NULL)) {
2660       shared_entry = entry;
2661       entry = NULL;
2662     }
2663 #endif
2664 
2665     if (entry != NULL) {
2666       return entry;
2667     }
2668 
2669     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2670     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2671 
2672     // Make a C heap allocated version of the fingerprint to store in the adapter
2673     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2674 
2675     // StubRoutines::code2() is initialized after this function can be called. As a result,
2676     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2677     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2678     // stub that ensure that an I2C stub is called from an interpreter frame.
2679     bool contains_all_checks = StubRoutines::code2() != NULL;
2680 
2681     // Create I2C & C2I handlers
2682     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2683     if (buf != NULL) {
2684       CodeBuffer buffer(buf);
2685       short buffer_locs[20];
2686       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2687                                              sizeof(buffer_locs)/sizeof(relocInfo));
2688 
2689       MacroAssembler _masm(&buffer);
2690       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2691                                                      total_args_passed,
2692                                                      comp_args_on_stack,
2693                                                      sig_bt,
2694                                                      regs,
2695                                                      fingerprint);
2696 #ifdef ASSERT
2697       if (VerifyAdapterSharing) {
2698         if (shared_entry != NULL) {
2699           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2700           // Release the one just created and return the original
2701           _adapters->free_entry(entry);
2702           return shared_entry;
2703         } else  {
2704           entry->save_code(buf->code_begin(), buffer.insts_size());
2705         }
2706       }
2707 #endif
2708 
2709       new_adapter = AdapterBlob::create(&buffer);
2710       NOT_PRODUCT(insts_size = buffer.insts_size());
2711     }
2712     if (new_adapter == NULL) {
2713       // CodeCache is full, disable compilation
2714       // Ought to log this but compile log is only per compile thread
2715       // and we're some non descript Java thread.
2716       return NULL; // Out of CodeCache space
2717     }
2718     entry->relocate(new_adapter->content_begin());
2719 #ifndef PRODUCT
2720     // debugging suppport
2721     if (PrintAdapterHandlers || PrintStubCode) {
2722       ttyLocker ttyl;
2723       entry->print_adapter_on(tty);
2724       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2725                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2726                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2727       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2728       if (Verbose || PrintStubCode) {
2729         address first_pc = entry->base_address();
2730         if (first_pc != NULL) {
2731           Disassembler::decode(first_pc, first_pc + insts_size);
2732           tty->cr();
2733         }
2734       }
2735     }
2736 #endif
2737     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2738     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2739     if (contains_all_checks || !VerifyAdapterCalls) {
2740       _adapters->add(entry);
2741     }
2742   }
2743   // Outside of the lock
2744   if (new_adapter != NULL) {
2745     char blob_id[256];
2746     jio_snprintf(blob_id,
2747                  sizeof(blob_id),
2748                  "%s(%s)@" PTR_FORMAT,
2749                  new_adapter->name(),
2750                  fingerprint->as_string(),
2751                  new_adapter->content_begin());
2752     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2753 
2754     if (JvmtiExport::should_post_dynamic_code_generated()) {
2755       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2756     }
2757   }
2758   return entry;
2759 }
2760 
2761 address AdapterHandlerEntry::base_address() {
2762   address base = _i2c_entry;
2763   if (base == NULL)  base = _c2i_entry;
2764   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2765   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2766   return base;
2767 }
2768 
2769 void AdapterHandlerEntry::relocate(address new_base) {
2770   address old_base = base_address();
2771   assert(old_base != NULL, "");
2772   ptrdiff_t delta = new_base - old_base;
2773   if (_i2c_entry != NULL)
2774     _i2c_entry += delta;
2775   if (_c2i_entry != NULL)
2776     _c2i_entry += delta;
2777   if (_c2i_unverified_entry != NULL)
2778     _c2i_unverified_entry += delta;
2779   assert(base_address() == new_base, "");
2780 }
2781 
2782 
2783 void AdapterHandlerEntry::deallocate() {
2784   delete _fingerprint;
2785 #ifdef ASSERT
2786   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2787 #endif
2788 }
2789 
2790 
2791 #ifdef ASSERT
2792 // Capture the code before relocation so that it can be compared
2793 // against other versions.  If the code is captured after relocation
2794 // then relative instructions won't be equivalent.
2795 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2796   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2797   _saved_code_length = length;
2798   memcpy(_saved_code, buffer, length);
2799 }
2800 
2801 
2802 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2803   if (length != _saved_code_length) {
2804     return false;
2805   }
2806 
2807   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2808 }
2809 #endif
2810 
2811 
2812 /**
2813  * Create a native wrapper for this native method.  The wrapper converts the
2814  * Java-compiled calling convention to the native convention, handles
2815  * arguments, and transitions to native.  On return from the native we transition
2816  * back to java blocking if a safepoint is in progress.
2817  */
2818 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2819   ResourceMark rm;
2820   nmethod* nm = NULL;
2821 
2822   assert(method->is_native(), "must be native");
2823   assert(method->is_method_handle_intrinsic() ||
2824          method->has_native_function(), "must have something valid to call!");
2825 
2826   {
2827     // Perform the work while holding the lock, but perform any printing outside the lock
2828     MutexLocker mu(AdapterHandlerLibrary_lock);
2829     // See if somebody beat us to it
2830     if (method->code() != NULL) {
2831       return;
2832     }
2833 
2834     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2835     assert(compile_id > 0, "Must generate native wrapper");
2836 
2837 
2838     ResourceMark rm;
2839     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2840     if (buf != NULL) {
2841       CodeBuffer buffer(buf);
2842       double locs_buf[20];
2843       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2844       MacroAssembler _masm(&buffer);
2845 
2846       // Fill in the signature array, for the calling-convention call.
2847       const int total_args_passed = method->size_of_parameters();
2848 
2849       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2850       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2851       int i=0;
2852       if (!method->is_static())  // Pass in receiver first
2853         sig_bt[i++] = T_OBJECT;
2854       SignatureStream ss(method->signature());
2855       for (; !ss.at_return_type(); ss.next()) {
2856         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2857         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2858           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2859       }
2860       assert(i == total_args_passed, "");
2861       BasicType ret_type = ss.type();
2862 
2863       // Now get the compiled-Java layout as input (or output) arguments.
2864       // NOTE: Stubs for compiled entry points of method handle intrinsics
2865       // are just trampolines so the argument registers must be outgoing ones.
2866       const bool is_outgoing = method->is_method_handle_intrinsic();
2867       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2868 
2869       // Generate the compiled-to-native wrapper code
2870       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2871 
2872       if (nm != NULL) {
2873         method->set_code(method, nm);
2874 
2875         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2876         if (directive->PrintAssemblyOption) {
2877           nm->print_code();
2878         }
2879         DirectivesStack::release(directive);
2880       }
2881     }
2882   } // Unlock AdapterHandlerLibrary_lock
2883 
2884 
2885   // Install the generated code.
2886   if (nm != NULL) {
2887     const char *msg = method->is_static() ? "(static)" : "";
2888     CompileTask::print_ul(nm, msg);
2889     if (PrintCompilation) {
2890       ttyLocker ttyl;
2891       CompileTask::print(tty, nm, msg);
2892     }
2893     nm->post_compiled_method_load_event();
2894   }
2895 }
2896 
2897 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2898   assert(thread == JavaThread::current(), "must be");
2899   // The code is about to enter a JNI lazy critical native method and
2900   // _needs_gc is true, so if this thread is already in a critical
2901   // section then just return, otherwise this thread should block
2902   // until needs_gc has been cleared.
2903   if (thread->in_critical()) {
2904     return;
2905   }
2906   // Lock and unlock a critical section to give the system a chance to block
2907   GCLocker::lock_critical(thread);
2908   GCLocker::unlock_critical(thread);
2909 JRT_END
2910 
2911 // -------------------------------------------------------------------------
2912 // Java-Java calling convention
2913 // (what you use when Java calls Java)
2914 
2915 //------------------------------name_for_receiver----------------------------------
2916 // For a given signature, return the VMReg for parameter 0.
2917 VMReg SharedRuntime::name_for_receiver() {
2918   VMRegPair regs;
2919   BasicType sig_bt = T_OBJECT;
2920   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2921   // Return argument 0 register.  In the LP64 build pointers
2922   // take 2 registers, but the VM wants only the 'main' name.
2923   return regs.first();
2924 }
2925 
2926 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2927   // This method is returning a data structure allocating as a
2928   // ResourceObject, so do not put any ResourceMarks in here.
2929   char *s = sig->as_C_string();
2930   int len = (int)strlen(s);
2931   s++; len--;                   // Skip opening paren
2932 
2933   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2934   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2935   int cnt = 0;
2936   if (has_receiver) {
2937     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2938   }
2939 
2940   while (*s != ')') {          // Find closing right paren
2941     switch (*s++) {            // Switch on signature character
2942     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2943     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2944     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2945     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2946     case 'I': sig_bt[cnt++] = T_INT;     break;
2947     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2948     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2949     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2950     case 'V': sig_bt[cnt++] = T_VOID;    break;
2951     case 'L':                   // Oop
2952       while (*s++ != ';');   // Skip signature
2953       sig_bt[cnt++] = T_OBJECT;
2954       break;
2955     case '[': {                 // Array
2956       do {                      // Skip optional size
2957         while (*s >= '0' && *s <= '9') s++;
2958       } while (*s++ == '[');   // Nested arrays?
2959       // Skip element type
2960       if (s[-1] == 'L')
2961         while (*s++ != ';'); // Skip signature
2962       sig_bt[cnt++] = T_ARRAY;
2963       break;
2964     }
2965     default : ShouldNotReachHere();
2966     }
2967   }
2968 
2969   if (has_appendix) {
2970     sig_bt[cnt++] = T_OBJECT;
2971   }
2972 
2973   assert(cnt < 256, "grow table size");
2974 
2975   int comp_args_on_stack;
2976   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2977 
2978   // the calling convention doesn't count out_preserve_stack_slots so
2979   // we must add that in to get "true" stack offsets.
2980 
2981   if (comp_args_on_stack) {
2982     for (int i = 0; i < cnt; i++) {
2983       VMReg reg1 = regs[i].first();
2984       if (reg1->is_stack()) {
2985         // Yuck
2986         reg1 = reg1->bias(out_preserve_stack_slots());
2987       }
2988       VMReg reg2 = regs[i].second();
2989       if (reg2->is_stack()) {
2990         // Yuck
2991         reg2 = reg2->bias(out_preserve_stack_slots());
2992       }
2993       regs[i].set_pair(reg2, reg1);
2994     }
2995   }
2996 
2997   // results
2998   *arg_size = cnt;
2999   return regs;
3000 }
3001 
3002 // OSR Migration Code
3003 //
3004 // This code is used convert interpreter frames into compiled frames.  It is
3005 // called from very start of a compiled OSR nmethod.  A temp array is
3006 // allocated to hold the interesting bits of the interpreter frame.  All
3007 // active locks are inflated to allow them to move.  The displaced headers and
3008 // active interpreter locals are copied into the temp buffer.  Then we return
3009 // back to the compiled code.  The compiled code then pops the current
3010 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3011 // copies the interpreter locals and displaced headers where it wants.
3012 // Finally it calls back to free the temp buffer.
3013 //
3014 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3015 
3016 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3017 
3018   //
3019   // This code is dependent on the memory layout of the interpreter local
3020   // array and the monitors. On all of our platforms the layout is identical
3021   // so this code is shared. If some platform lays the their arrays out
3022   // differently then this code could move to platform specific code or
3023   // the code here could be modified to copy items one at a time using
3024   // frame accessor methods and be platform independent.
3025 
3026   frame fr = thread->last_frame();
3027   assert(fr.is_interpreted_frame(), "");
3028   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3029 
3030   // Figure out how many monitors are active.
3031   int active_monitor_count = 0;
3032   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3033        kptr < fr.interpreter_frame_monitor_begin();
3034        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3035     if (kptr->obj() != NULL) active_monitor_count++;
3036   }
3037 
3038   // QQQ we could place number of active monitors in the array so that compiled code
3039   // could double check it.
3040 
3041   Method* moop = fr.interpreter_frame_method();
3042   int max_locals = moop->max_locals();
3043   // Allocate temp buffer, 1 word per local & 2 per active monitor
3044   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3045   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3046 
3047   // Copy the locals.  Order is preserved so that loading of longs works.
3048   // Since there's no GC I can copy the oops blindly.
3049   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3050   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3051                        (HeapWord*)&buf[0],
3052                        max_locals);
3053 
3054   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3055   int i = max_locals;
3056   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3057        kptr2 < fr.interpreter_frame_monitor_begin();
3058        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3059     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3060       BasicLock *lock = kptr2->lock();
3061       // Inflate so the displaced header becomes position-independent
3062       if (lock->displaced_header()->is_unlocked())
3063         ObjectSynchronizer::inflate_helper(kptr2->obj());
3064       // Now the displaced header is free to move
3065       buf[i++] = (intptr_t)lock->displaced_header();
3066       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3067     }
3068   }
3069   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3070 
3071   return buf;
3072 JRT_END
3073 
3074 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3075   FREE_C_HEAP_ARRAY(intptr_t, buf);
3076 JRT_END
3077 
3078 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3079   AdapterHandlerTableIterator iter(_adapters);
3080   while (iter.has_next()) {
3081     AdapterHandlerEntry* a = iter.next();
3082     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3083   }
3084   return false;
3085 }
3086 
3087 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3088   AdapterHandlerTableIterator iter(_adapters);
3089   while (iter.has_next()) {
3090     AdapterHandlerEntry* a = iter.next();
3091     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3092       st->print("Adapter for signature: ");
3093       a->print_adapter_on(tty);
3094       return;
3095     }
3096   }
3097   assert(false, "Should have found handler");
3098 }
3099 
3100 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3101   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3102                p2i(this), fingerprint()->as_string(),
3103                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3104 
3105 }
3106 
3107 #if INCLUDE_CDS
3108 
3109 void CDSAdapterHandlerEntry::init() {
3110   assert(DumpSharedSpaces, "used during dump time only");
3111   _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3112   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3113 };
3114 
3115 #endif // INCLUDE_CDS
3116 
3117 
3118 #ifndef PRODUCT
3119 
3120 void AdapterHandlerLibrary::print_statistics() {
3121   _adapters->print_statistics();
3122 }
3123 
3124 #endif /* PRODUCT */
3125 
3126 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3127   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3128   thread->enable_stack_reserved_zone();
3129   thread->set_reserved_stack_activation(thread->stack_base());
3130 JRT_END
3131 
3132 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3133   frame activation;
3134   CompiledMethod* nm = NULL;
3135   int count = 1;
3136 
3137   assert(fr.is_java_frame(), "Must start on Java frame");
3138 
3139   while (true) {
3140     Method* method = NULL;
3141     if (fr.is_interpreted_frame()) {
3142       method = fr.interpreter_frame_method();
3143     } else {
3144       CodeBlob* cb = fr.cb();
3145       if (cb != NULL && cb->is_compiled()) {
3146         nm = cb->as_compiled_method();
3147         method = nm->method();
3148       }
3149     }
3150     if ((method != NULL) && method->has_reserved_stack_access()) {
3151       ResourceMark rm(thread);
3152       activation = fr;
3153       warning("Potentially dangerous stack overflow in "
3154               "ReservedStackAccess annotated method %s [%d]",
3155               method->name_and_sig_as_C_string(), count++);
3156       EventReservedStackActivation event;
3157       if (event.should_commit()) {
3158         event.set_method(method);
3159         event.commit();
3160       }
3161     }
3162     if (fr.is_first_java_frame()) {
3163       break;
3164     } else {
3165       fr = fr.java_sender();
3166     }
3167   }
3168   return activation;
3169 }
3170