1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/assembler.hpp"
  28 #include "c1/c1_CodeStubs.hpp"
  29 #include "c1/c1_Defs.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "gc/shared/cardTable.hpp"
  34 #include "gc/shared/cardTableModRefBS.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "nativeInst_aarch64.hpp"
  37 #include "oops/compiledICHolder.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiExport.hpp"
  40 #include "register_aarch64.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/signature.hpp"
  43 #include "runtime/vframe.hpp"
  44 #include "runtime/vframeArray.hpp"
  45 #include "vmreg_aarch64.inline.hpp"
  46 #if INCLUDE_ALL_GCS
  47 #include "gc/g1/g1CardTable.hpp"
  48 #include "gc/g1/g1BarrierSet.hpp"
  49 #endif
  50 
  51 
  52 // Implementation of StubAssembler
  53 
  54 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
  55   // setup registers
  56   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
  57   assert(oop_result1 != rthread && metadata_result != rthread, "registers must be different");
  58   assert(args_size >= 0, "illegal args_size");
  59   bool align_stack = false;
  60 
  61   mov(c_rarg0, rthread);
  62   set_num_rt_args(0); // Nothing on stack
  63 
  64   Label retaddr;
  65   set_last_Java_frame(sp, rfp, retaddr, rscratch1);
  66 
  67   // do the call
  68   lea(rscratch1, RuntimeAddress(entry));
  69   blrt(rscratch1, args_size + 1, 8, 1);
  70   bind(retaddr);
  71   int call_offset = offset();
  72   // verify callee-saved register
  73 #ifdef ASSERT
  74   push(r0, sp);
  75   { Label L;
  76     get_thread(r0);
  77     cmp(rthread, r0);
  78     br(Assembler::EQ, L);
  79     stop("StubAssembler::call_RT: rthread not callee saved?");
  80     bind(L);
  81   }
  82   pop(r0, sp);
  83 #endif
  84   reset_last_Java_frame(true);
  85   maybe_isb();
  86 
  87   // check for pending exceptions
  88   { Label L;
  89     // check for pending exceptions (java_thread is set upon return)
  90     ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
  91     cbz(rscratch1, L);
  92     // exception pending => remove activation and forward to exception handler
  93     // make sure that the vm_results are cleared
  94     if (oop_result1->is_valid()) {
  95       str(zr, Address(rthread, JavaThread::vm_result_offset()));
  96     }
  97     if (metadata_result->is_valid()) {
  98       str(zr, Address(rthread, JavaThread::vm_result_2_offset()));
  99     }
 100     if (frame_size() == no_frame_size) {
 101       leave();
 102       far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 103     } else if (_stub_id == Runtime1::forward_exception_id) {
 104       should_not_reach_here();
 105     } else {
 106       far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 107     }
 108     bind(L);
 109   }
 110   // get oop results if there are any and reset the values in the thread
 111   if (oop_result1->is_valid()) {
 112     get_vm_result(oop_result1, rthread);
 113   }
 114   if (metadata_result->is_valid()) {
 115     get_vm_result_2(metadata_result, rthread);
 116   }
 117   return call_offset;
 118 }
 119 
 120 
 121 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
 122   mov(c_rarg1, arg1);
 123   return call_RT(oop_result1, metadata_result, entry, 1);
 124 }
 125 
 126 
 127 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
 128   if (c_rarg1 == arg2) {
 129     if (c_rarg2 == arg1) {
 130       mov(rscratch1, arg1);
 131       mov(arg1, arg2);
 132       mov(arg2, rscratch1);
 133     } else {
 134       mov(c_rarg2, arg2);
 135       mov(c_rarg1, arg1);
 136     }
 137   } else {
 138     mov(c_rarg1, arg1);
 139     mov(c_rarg2, arg2);
 140   }
 141   return call_RT(oop_result1, metadata_result, entry, 2);
 142 }
 143 
 144 
 145 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
 146   // if there is any conflict use the stack
 147   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
 148       arg2 == c_rarg1 || arg1 == c_rarg3 ||
 149       arg3 == c_rarg1 || arg1 == c_rarg2) {
 150     stp(arg3, arg2, Address(pre(sp, 2 * wordSize)));
 151     stp(arg1, zr, Address(pre(sp, -2 * wordSize)));
 152     ldp(c_rarg1, zr, Address(post(sp, 2 * wordSize)));
 153     ldp(c_rarg3, c_rarg2, Address(post(sp, 2 * wordSize)));
 154   } else {
 155     mov(c_rarg1, arg1);
 156     mov(c_rarg2, arg2);
 157     mov(c_rarg3, arg3);
 158   }
 159   return call_RT(oop_result1, metadata_result, entry, 3);
 160 }
 161 
 162 // Implementation of StubFrame
 163 
 164 class StubFrame: public StackObj {
 165  private:
 166   StubAssembler* _sasm;
 167 
 168  public:
 169   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
 170   void load_argument(int offset_in_words, Register reg);
 171 
 172   ~StubFrame();
 173 };;
 174 
 175 
 176 #define __ _sasm->
 177 
 178 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
 179   _sasm = sasm;
 180   __ set_info(name, must_gc_arguments);
 181   __ enter();
 182 }
 183 
 184 // load parameters that were stored with LIR_Assembler::store_parameter
 185 // Note: offsets for store_parameter and load_argument must match
 186 void StubFrame::load_argument(int offset_in_words, Register reg) {
 187   // rbp, + 0: link
 188   //     + 1: return address
 189   //     + 2: argument with offset 0
 190   //     + 3: argument with offset 1
 191   //     + 4: ...
 192 
 193   __ ldr(reg, Address(rfp, (offset_in_words + 2) * BytesPerWord));
 194 }
 195 
 196 
 197 StubFrame::~StubFrame() {
 198   __ leave();
 199   __ ret(lr);
 200 }
 201 
 202 #undef __
 203 
 204 
 205 // Implementation of Runtime1
 206 
 207 #define __ sasm->
 208 
 209 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
 210 
 211 // Stack layout for saving/restoring  all the registers needed during a runtime
 212 // call (this includes deoptimization)
 213 // Note: note that users of this frame may well have arguments to some runtime
 214 // while these values are on the stack. These positions neglect those arguments
 215 // but the code in save_live_registers will take the argument count into
 216 // account.
 217 //
 218 
 219 enum reg_save_layout {
 220   reg_save_frame_size = 32 /* float */ + 32 /* integer */
 221 };
 222 
 223 // Save off registers which might be killed by calls into the runtime.
 224 // Tries to smart of about FP registers.  In particular we separate
 225 // saving and describing the FPU registers for deoptimization since we
 226 // have to save the FPU registers twice if we describe them.  The
 227 // deopt blob is the only thing which needs to describe FPU registers.
 228 // In all other cases it should be sufficient to simply save their
 229 // current value.
 230 
 231 static int cpu_reg_save_offsets[FrameMap::nof_cpu_regs];
 232 static int fpu_reg_save_offsets[FrameMap::nof_fpu_regs];
 233 static int reg_save_size_in_words;
 234 static int frame_size_in_bytes = -1;
 235 
 236 static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers) {
 237   int frame_size_in_bytes = reg_save_frame_size * BytesPerWord;
 238   sasm->set_frame_size(frame_size_in_bytes / BytesPerWord);
 239   int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
 240   OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
 241 
 242   for (int i = 0; i < FrameMap::nof_cpu_regs; i++) {
 243     Register r = as_Register(i);
 244     if (i <= 18 && i != rscratch1->encoding() && i != rscratch2->encoding()) {
 245       int sp_offset = cpu_reg_save_offsets[i];
 246       oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
 247                                 r->as_VMReg());
 248     }
 249   }
 250 
 251   if (save_fpu_registers) {
 252     for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
 253       FloatRegister r = as_FloatRegister(i);
 254       {
 255         int sp_offset = fpu_reg_save_offsets[i];
 256         oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
 257                                   r->as_VMReg());
 258       }
 259     }
 260   }
 261   return oop_map;
 262 }
 263 
 264 static OopMap* save_live_registers(StubAssembler* sasm,
 265                                    bool save_fpu_registers = true) {
 266   __ block_comment("save_live_registers");
 267 
 268   __ push(RegSet::range(r0, r29), sp);         // integer registers except lr & sp
 269 
 270   if (save_fpu_registers) {
 271     for (int i = 30; i >= 0; i -= 2)
 272       __ stpd(as_FloatRegister(i), as_FloatRegister(i+1),
 273               Address(__ pre(sp, -2 * wordSize)));
 274   } else {
 275     __ add(sp, sp, -32 * wordSize);
 276   }
 277 
 278   return generate_oop_map(sasm, save_fpu_registers);
 279 }
 280 
 281 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
 282   if (restore_fpu_registers) {
 283     for (int i = 0; i < 32; i += 2)
 284       __ ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
 285               Address(__ post(sp, 2 * wordSize)));
 286   } else {
 287     __ add(sp, sp, 32 * wordSize);
 288   }
 289 
 290   __ pop(RegSet::range(r0, r29), sp);
 291 }
 292 
 293 static void restore_live_registers_except_r0(StubAssembler* sasm, bool restore_fpu_registers = true)  {
 294 
 295   if (restore_fpu_registers) {
 296     for (int i = 0; i < 32; i += 2)
 297       __ ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
 298               Address(__ post(sp, 2 * wordSize)));
 299   } else {
 300     __ add(sp, sp, 32 * wordSize);
 301   }
 302 
 303   __ ldp(zr, r1, Address(__ post(sp, 16)));
 304   __ pop(RegSet::range(r2, r29), sp);
 305 }
 306 
 307 
 308 
 309 void Runtime1::initialize_pd() {
 310   int i;
 311   int sp_offset = 0;
 312 
 313   // all float registers are saved explicitly
 314   assert(FrameMap::nof_fpu_regs == 32, "double registers not handled here");
 315   for (i = 0; i < FrameMap::nof_fpu_regs; i++) {
 316     fpu_reg_save_offsets[i] = sp_offset;
 317     sp_offset += 2;   // SP offsets are in halfwords
 318   }
 319 
 320   for (i = 0; i < FrameMap::nof_cpu_regs; i++) {
 321     Register r = as_Register(i);
 322     cpu_reg_save_offsets[i] = sp_offset;
 323     sp_offset += 2;   // SP offsets are in halfwords
 324   }
 325 }
 326 
 327 
 328 // target: the entry point of the method that creates and posts the exception oop
 329 // has_argument: true if the exception needs an argument (passed in rscratch1)
 330 
 331 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
 332   // make a frame and preserve the caller's caller-save registers
 333   OopMap* oop_map = save_live_registers(sasm);
 334   int call_offset;
 335   if (!has_argument) {
 336     call_offset = __ call_RT(noreg, noreg, target);
 337   } else {
 338     call_offset = __ call_RT(noreg, noreg, target, rscratch1);
 339   }
 340   OopMapSet* oop_maps = new OopMapSet();
 341   oop_maps->add_gc_map(call_offset, oop_map);
 342 
 343   __ should_not_reach_here();
 344   return oop_maps;
 345 }
 346 
 347 
 348 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
 349   __ block_comment("generate_handle_exception");
 350 
 351   // incoming parameters
 352   const Register exception_oop = r0;
 353   const Register exception_pc  = r3;
 354   // other registers used in this stub
 355 
 356   // Save registers, if required.
 357   OopMapSet* oop_maps = new OopMapSet();
 358   OopMap* oop_map = NULL;
 359   switch (id) {
 360   case forward_exception_id:
 361     // We're handling an exception in the context of a compiled frame.
 362     // The registers have been saved in the standard places.  Perform
 363     // an exception lookup in the caller and dispatch to the handler
 364     // if found.  Otherwise unwind and dispatch to the callers
 365     // exception handler.
 366     oop_map = generate_oop_map(sasm, 1 /*thread*/);
 367 
 368     // load and clear pending exception oop into r0
 369     __ ldr(exception_oop, Address(rthread, Thread::pending_exception_offset()));
 370     __ str(zr, Address(rthread, Thread::pending_exception_offset()));
 371 
 372     // load issuing PC (the return address for this stub) into r3
 373     __ ldr(exception_pc, Address(rfp, 1*BytesPerWord));
 374 
 375     // make sure that the vm_results are cleared (may be unnecessary)
 376     __ str(zr, Address(rthread, JavaThread::vm_result_offset()));
 377     __ str(zr, Address(rthread, JavaThread::vm_result_2_offset()));
 378     break;
 379   case handle_exception_nofpu_id:
 380   case handle_exception_id:
 381     // At this point all registers MAY be live.
 382     oop_map = save_live_registers(sasm, id != handle_exception_nofpu_id);
 383     break;
 384   case handle_exception_from_callee_id: {
 385     // At this point all registers except exception oop (r0) and
 386     // exception pc (lr) are dead.
 387     const int frame_size = 2 /*fp, return address*/;
 388     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
 389     sasm->set_frame_size(frame_size);
 390     break;
 391   }
 392   default:
 393     __ should_not_reach_here();
 394     break;
 395   }
 396 
 397   // verify that only r0 and r3 are valid at this time
 398   __ invalidate_registers(false, true, true, false, true, true);
 399   // verify that r0 contains a valid exception
 400   __ verify_not_null_oop(exception_oop);
 401 
 402 #ifdef ASSERT
 403   // check that fields in JavaThread for exception oop and issuing pc are
 404   // empty before writing to them
 405   Label oop_empty;
 406   __ ldr(rscratch1, Address(rthread, JavaThread::exception_oop_offset()));
 407   __ cbz(rscratch1, oop_empty);
 408   __ stop("exception oop already set");
 409   __ bind(oop_empty);
 410 
 411   Label pc_empty;
 412   __ ldr(rscratch1, Address(rthread, JavaThread::exception_pc_offset()));
 413   __ cbz(rscratch1, pc_empty);
 414   __ stop("exception pc already set");
 415   __ bind(pc_empty);
 416 #endif
 417 
 418   // save exception oop and issuing pc into JavaThread
 419   // (exception handler will load it from here)
 420   __ str(exception_oop, Address(rthread, JavaThread::exception_oop_offset()));
 421   __ str(exception_pc, Address(rthread, JavaThread::exception_pc_offset()));
 422 
 423   // patch throwing pc into return address (has bci & oop map)
 424   __ str(exception_pc, Address(rfp, 1*BytesPerWord));
 425 
 426   // compute the exception handler.
 427   // the exception oop and the throwing pc are read from the fields in JavaThread
 428   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
 429   oop_maps->add_gc_map(call_offset, oop_map);
 430 
 431   // r0: handler address
 432   //      will be the deopt blob if nmethod was deoptimized while we looked up
 433   //      handler regardless of whether handler existed in the nmethod.
 434 
 435   // only r0 is valid at this time, all other registers have been destroyed by the runtime call
 436   __ invalidate_registers(false, true, true, true, true, true);
 437 
 438   // patch the return address, this stub will directly return to the exception handler
 439   __ str(r0, Address(rfp, 1*BytesPerWord));
 440 
 441   switch (id) {
 442   case forward_exception_id:
 443   case handle_exception_nofpu_id:
 444   case handle_exception_id:
 445     // Restore the registers that were saved at the beginning.
 446     restore_live_registers(sasm, id != handle_exception_nofpu_id);
 447     break;
 448   case handle_exception_from_callee_id:
 449     // Pop the return address.
 450     __ leave();
 451     __ ret(lr);  // jump to exception handler
 452     break;
 453   default:  ShouldNotReachHere();
 454   }
 455 
 456   return oop_maps;
 457 }
 458 
 459 
 460 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
 461   // incoming parameters
 462   const Register exception_oop = r0;
 463   // callee-saved copy of exception_oop during runtime call
 464   const Register exception_oop_callee_saved = r19;
 465   // other registers used in this stub
 466   const Register exception_pc = r3;
 467   const Register handler_addr = r1;
 468 
 469   // verify that only r0, is valid at this time
 470   __ invalidate_registers(false, true, true, true, true, true);
 471 
 472 #ifdef ASSERT
 473   // check that fields in JavaThread for exception oop and issuing pc are empty
 474   Label oop_empty;
 475   __ ldr(rscratch1, Address(rthread, JavaThread::exception_oop_offset()));
 476   __ cbz(rscratch1, oop_empty);
 477   __ stop("exception oop must be empty");
 478   __ bind(oop_empty);
 479 
 480   Label pc_empty;
 481   __ ldr(rscratch1, Address(rthread, JavaThread::exception_pc_offset()));
 482   __ cbz(rscratch1, pc_empty);
 483   __ stop("exception pc must be empty");
 484   __ bind(pc_empty);
 485 #endif
 486 
 487   // Save our return address because
 488   // exception_handler_for_return_address will destroy it.  We also
 489   // save exception_oop
 490   __ stp(lr, exception_oop, Address(__ pre(sp, -2 * wordSize)));
 491 
 492   // search the exception handler address of the caller (using the return address)
 493   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, lr);
 494   // r0: exception handler address of the caller
 495 
 496   // Only R0 is valid at this time; all other registers have been
 497   // destroyed by the call.
 498   __ invalidate_registers(false, true, true, true, false, true);
 499 
 500   // move result of call into correct register
 501   __ mov(handler_addr, r0);
 502 
 503   // get throwing pc (= return address).
 504   // lr has been destroyed by the call
 505   __ ldp(lr, exception_oop, Address(__ post(sp, 2 * wordSize)));
 506   __ mov(r3, lr);
 507 
 508   __ verify_not_null_oop(exception_oop);
 509 
 510   // continue at exception handler (return address removed)
 511   // note: do *not* remove arguments when unwinding the
 512   //       activation since the caller assumes having
 513   //       all arguments on the stack when entering the
 514   //       runtime to determine the exception handler
 515   //       (GC happens at call site with arguments!)
 516   // r0: exception oop
 517   // r3: throwing pc
 518   // r1: exception handler
 519   __ br(handler_addr);
 520 }
 521 
 522 
 523 
 524 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
 525   // use the maximum number of runtime-arguments here because it is difficult to
 526   // distinguish each RT-Call.
 527   // Note: This number affects also the RT-Call in generate_handle_exception because
 528   //       the oop-map is shared for all calls.
 529   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
 530   assert(deopt_blob != NULL, "deoptimization blob must have been created");
 531 
 532   OopMap* oop_map = save_live_registers(sasm);
 533 
 534   __ mov(c_rarg0, rthread);
 535   Label retaddr;
 536   __ set_last_Java_frame(sp, rfp, retaddr, rscratch1);
 537   // do the call
 538   __ lea(rscratch1, RuntimeAddress(target));
 539   __ blrt(rscratch1, 1, 0, 1);
 540   __ bind(retaddr);
 541   OopMapSet* oop_maps = new OopMapSet();
 542   oop_maps->add_gc_map(__ offset(), oop_map);
 543   // verify callee-saved register
 544 #ifdef ASSERT
 545   { Label L;
 546     __ get_thread(rscratch1);
 547     __ cmp(rthread, rscratch1);
 548     __ br(Assembler::EQ, L);
 549     __ stop("StubAssembler::call_RT: rthread not callee saved?");
 550     __ bind(L);
 551   }
 552 #endif
 553   __ reset_last_Java_frame(true);
 554   __ maybe_isb();
 555 
 556   // check for pending exceptions
 557   { Label L;
 558     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 559     __ cbz(rscratch1, L);
 560     // exception pending => remove activation and forward to exception handler
 561 
 562     { Label L1;
 563       __ cbnz(r0, L1);                                  // have we deoptimized?
 564       __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 565       __ bind(L1);
 566     }
 567 
 568     // the deopt blob expects exceptions in the special fields of
 569     // JavaThread, so copy and clear pending exception.
 570 
 571     // load and clear pending exception
 572     __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
 573     __ str(zr, Address(rthread, Thread::pending_exception_offset()));
 574 
 575     // check that there is really a valid exception
 576     __ verify_not_null_oop(r0);
 577 
 578     // load throwing pc: this is the return address of the stub
 579     __ mov(r3, lr);
 580 
 581 #ifdef ASSERT
 582     // check that fields in JavaThread for exception oop and issuing pc are empty
 583     Label oop_empty;
 584     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 585     __ cbz(rscratch1, oop_empty);
 586     __ stop("exception oop must be empty");
 587     __ bind(oop_empty);
 588 
 589     Label pc_empty;
 590     __ ldr(rscratch1, Address(rthread, JavaThread::exception_pc_offset()));
 591     __ cbz(rscratch1, pc_empty);
 592     __ stop("exception pc must be empty");
 593     __ bind(pc_empty);
 594 #endif
 595 
 596     // store exception oop and throwing pc to JavaThread
 597     __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
 598     __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
 599 
 600     restore_live_registers(sasm);
 601 
 602     __ leave();
 603 
 604     // Forward the exception directly to deopt blob. We can blow no
 605     // registers and must leave throwing pc on the stack.  A patch may
 606     // have values live in registers so the entry point with the
 607     // exception in tls.
 608     __ far_jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
 609 
 610     __ bind(L);
 611   }
 612 
 613 
 614   // Runtime will return true if the nmethod has been deoptimized during
 615   // the patching process. In that case we must do a deopt reexecute instead.
 616 
 617   Label reexecuteEntry, cont;
 618 
 619   __ cbz(r0, cont);                                 // have we deoptimized?
 620 
 621   // Will reexecute. Proper return address is already on the stack we just restore
 622   // registers, pop all of our frame but the return address and jump to the deopt blob
 623   restore_live_registers(sasm);
 624   __ leave();
 625   __ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
 626 
 627   __ bind(cont);
 628   restore_live_registers(sasm);
 629   __ leave();
 630   __ ret(lr);
 631 
 632   return oop_maps;
 633 }
 634 
 635 
 636 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
 637 
 638   const Register exception_oop = r0;
 639   const Register exception_pc  = r3;
 640 
 641   // for better readability
 642   const bool must_gc_arguments = true;
 643   const bool dont_gc_arguments = false;
 644 
 645   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
 646   bool save_fpu_registers = true;
 647 
 648   // stub code & info for the different stubs
 649   OopMapSet* oop_maps = NULL;
 650   OopMap* oop_map = NULL;
 651   switch (id) {
 652     {
 653     case forward_exception_id:
 654       {
 655         oop_maps = generate_handle_exception(id, sasm);
 656         __ leave();
 657         __ ret(lr);
 658       }
 659       break;
 660 
 661     case throw_div0_exception_id:
 662       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
 663         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
 664       }
 665       break;
 666 
 667     case throw_null_pointer_exception_id:
 668       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
 669         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
 670       }
 671       break;
 672 
 673     case new_instance_id:
 674     case fast_new_instance_id:
 675     case fast_new_instance_init_check_id:
 676       {
 677         Register klass = r3; // Incoming
 678         Register obj   = r0; // Result
 679 
 680         if (id == new_instance_id) {
 681           __ set_info("new_instance", dont_gc_arguments);
 682         } else if (id == fast_new_instance_id) {
 683           __ set_info("fast new_instance", dont_gc_arguments);
 684         } else {
 685           assert(id == fast_new_instance_init_check_id, "bad StubID");
 686           __ set_info("fast new_instance init check", dont_gc_arguments);
 687         }
 688 
 689         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
 690             UseTLAB && FastTLABRefill) {
 691           Label slow_path;
 692           Register obj_size = r2;
 693           Register t1       = r19;
 694           Register t2       = r4;
 695           assert_different_registers(klass, obj, obj_size, t1, t2);
 696 
 697           __ stp(r5, r19, Address(__ pre(sp, -2 * wordSize)));
 698 
 699           if (id == fast_new_instance_init_check_id) {
 700             // make sure the klass is initialized
 701             __ ldrb(rscratch1, Address(klass, InstanceKlass::init_state_offset()));
 702             __ cmpw(rscratch1, InstanceKlass::fully_initialized);
 703             __ br(Assembler::NE, slow_path);
 704           }
 705 
 706 #ifdef ASSERT
 707           // assert object can be fast path allocated
 708           {
 709             Label ok, not_ok;
 710             __ ldrw(obj_size, Address(klass, Klass::layout_helper_offset()));
 711             __ cmp(obj_size, 0u);
 712             __ br(Assembler::LE, not_ok);  // make sure it's an instance (LH > 0)
 713             __ tstw(obj_size, Klass::_lh_instance_slow_path_bit);
 714             __ br(Assembler::EQ, ok);
 715             __ bind(not_ok);
 716             __ stop("assert(can be fast path allocated)");
 717             __ should_not_reach_here();
 718             __ bind(ok);
 719           }
 720 #endif // ASSERT
 721 
 722           // if we got here then the TLAB allocation failed, so try
 723           // refilling the TLAB or allocating directly from eden.
 724           Label retry_tlab, try_eden;
 725           __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy r3 (klass), returns r5
 726 
 727           __ bind(retry_tlab);
 728 
 729           // get the instance size (size is postive so movl is fine for 64bit)
 730           __ ldrw(obj_size, Address(klass, Klass::layout_helper_offset()));
 731 
 732           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
 733 
 734           __ initialize_object(obj, klass, obj_size, 0, t1, t2, /* is_tlab_allocated */ true);
 735           __ verify_oop(obj);
 736           __ ldp(r5, r19, Address(__ post(sp, 2 * wordSize)));
 737           __ ret(lr);
 738 
 739           __ bind(try_eden);
 740           // get the instance size (size is postive so movl is fine for 64bit)
 741           __ ldrw(obj_size, Address(klass, Klass::layout_helper_offset()));
 742 
 743           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
 744           __ incr_allocated_bytes(rthread, obj_size, 0, rscratch1);
 745 
 746           __ initialize_object(obj, klass, obj_size, 0, t1, t2, /* is_tlab_allocated */ false);
 747           __ verify_oop(obj);
 748           __ ldp(r5, r19, Address(__ post(sp, 2 * wordSize)));
 749           __ ret(lr);
 750 
 751           __ bind(slow_path);
 752           __ ldp(r5, r19, Address(__ post(sp, 2 * wordSize)));
 753         }
 754 
 755         __ enter();
 756         OopMap* map = save_live_registers(sasm);
 757         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
 758         oop_maps = new OopMapSet();
 759         oop_maps->add_gc_map(call_offset, map);
 760         restore_live_registers_except_r0(sasm);
 761         __ verify_oop(obj);
 762         __ leave();
 763         __ ret(lr);
 764 
 765         // r0,: new instance
 766       }
 767 
 768       break;
 769 
 770     case counter_overflow_id:
 771       {
 772         Register bci = r0, method = r1;
 773         __ enter();
 774         OopMap* map = save_live_registers(sasm);
 775         // Retrieve bci
 776         __ ldrw(bci, Address(rfp, 2*BytesPerWord));
 777         // And a pointer to the Method*
 778         __ ldr(method, Address(rfp, 3*BytesPerWord));
 779         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
 780         oop_maps = new OopMapSet();
 781         oop_maps->add_gc_map(call_offset, map);
 782         restore_live_registers(sasm);
 783         __ leave();
 784         __ ret(lr);
 785       }
 786       break;
 787 
 788     case new_type_array_id:
 789     case new_object_array_id:
 790       {
 791         Register length   = r19; // Incoming
 792         Register klass    = r3; // Incoming
 793         Register obj      = r0; // Result
 794 
 795         if (id == new_type_array_id) {
 796           __ set_info("new_type_array", dont_gc_arguments);
 797         } else {
 798           __ set_info("new_object_array", dont_gc_arguments);
 799         }
 800 
 801 #ifdef ASSERT
 802         // assert object type is really an array of the proper kind
 803         {
 804           Label ok;
 805           Register t0 = obj;
 806           __ ldrw(t0, Address(klass, Klass::layout_helper_offset()));
 807           __ asrw(t0, t0, Klass::_lh_array_tag_shift);
 808           int tag = ((id == new_type_array_id)
 809                      ? Klass::_lh_array_tag_type_value
 810                      : Klass::_lh_array_tag_obj_value);
 811           __ mov(rscratch1, tag);
 812           __ cmpw(t0, rscratch1);
 813           __ br(Assembler::EQ, ok);
 814           __ stop("assert(is an array klass)");
 815           __ should_not_reach_here();
 816           __ bind(ok);
 817         }
 818 #endif // ASSERT
 819 
 820         if (UseTLAB && FastTLABRefill) {
 821           Register arr_size = r4;
 822           Register t1       = r2;
 823           Register t2       = r5;
 824           Label slow_path;
 825           assert_different_registers(length, klass, obj, arr_size, t1, t2);
 826 
 827           // check that array length is small enough for fast path.
 828           __ mov(rscratch1, C1_MacroAssembler::max_array_allocation_length);
 829           __ cmpw(length, rscratch1);
 830           __ br(Assembler::HI, slow_path);
 831 
 832           // if we got here then the TLAB allocation failed, so try
 833           // refilling the TLAB or allocating directly from eden.
 834           Label retry_tlab, try_eden;
 835           const Register thread =
 836             __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves r19 & r3, returns rthread
 837 
 838           __ bind(retry_tlab);
 839 
 840           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
 841           // since size is positive ldrw does right thing on 64bit
 842           __ ldrw(t1, Address(klass, Klass::layout_helper_offset()));
 843           __ lslvw(arr_size, length, t1);
 844           __ ubfx(t1, t1, Klass::_lh_header_size_shift,
 845                   exact_log2(Klass::_lh_header_size_mask + 1));
 846           __ add(arr_size, arr_size, t1);
 847           __ add(arr_size, arr_size, MinObjAlignmentInBytesMask); // align up
 848           __ andr(arr_size, arr_size, ~MinObjAlignmentInBytesMask);
 849 
 850           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
 851 
 852           __ initialize_header(obj, klass, length, t1, t2);
 853           __ ldrb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
 854           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
 855           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
 856           __ andr(t1, t1, Klass::_lh_header_size_mask);
 857           __ sub(arr_size, arr_size, t1);  // body length
 858           __ add(t1, t1, obj);       // body start
 859           if (!ZeroTLAB) {
 860            __ initialize_body(t1, arr_size, 0, t2);
 861           }
 862           __ verify_oop(obj);
 863 
 864           __ ret(lr);
 865 
 866           __ bind(try_eden);
 867           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
 868           // since size is positive ldrw does right thing on 64bit
 869           __ ldrw(t1, Address(klass, Klass::layout_helper_offset()));
 870           // since size is postive movw does right thing on 64bit
 871           __ movw(arr_size, length);
 872           __ lslvw(arr_size, length, t1);
 873           __ ubfx(t1, t1, Klass::_lh_header_size_shift,
 874                   exact_log2(Klass::_lh_header_size_mask + 1));
 875           __ add(arr_size, arr_size, t1);
 876           __ add(arr_size, arr_size, MinObjAlignmentInBytesMask); // align up
 877           __ andr(arr_size, arr_size, ~MinObjAlignmentInBytesMask);
 878 
 879           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
 880           __ incr_allocated_bytes(thread, arr_size, 0, rscratch1);
 881 
 882           __ initialize_header(obj, klass, length, t1, t2);
 883           __ ldrb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
 884           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
 885           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
 886           __ andr(t1, t1, Klass::_lh_header_size_mask);
 887           __ sub(arr_size, arr_size, t1);  // body length
 888           __ add(t1, t1, obj);       // body start
 889           __ initialize_body(t1, arr_size, 0, t2);
 890           __ verify_oop(obj);
 891 
 892           __ ret(lr);
 893 
 894           __ bind(slow_path);
 895         }
 896 
 897         __ enter();
 898         OopMap* map = save_live_registers(sasm);
 899         int call_offset;
 900         if (id == new_type_array_id) {
 901           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
 902         } else {
 903           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
 904         }
 905 
 906         oop_maps = new OopMapSet();
 907         oop_maps->add_gc_map(call_offset, map);
 908         restore_live_registers_except_r0(sasm);
 909 
 910         __ verify_oop(obj);
 911         __ leave();
 912         __ ret(lr);
 913 
 914         // r0: new array
 915       }
 916       break;
 917 
 918     case new_multi_array_id:
 919       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
 920         // r0,: klass
 921         // r19,: rank
 922         // r2: address of 1st dimension
 923         OopMap* map = save_live_registers(sasm);
 924         __ mov(c_rarg1, r0);
 925         __ mov(c_rarg3, r2);
 926         __ mov(c_rarg2, r19);
 927         int call_offset = __ call_RT(r0, noreg, CAST_FROM_FN_PTR(address, new_multi_array), r1, r2, r3);
 928 
 929         oop_maps = new OopMapSet();
 930         oop_maps->add_gc_map(call_offset, map);
 931         restore_live_registers_except_r0(sasm);
 932 
 933         // r0,: new multi array
 934         __ verify_oop(r0);
 935       }
 936       break;
 937 
 938     case register_finalizer_id:
 939       {
 940         __ set_info("register_finalizer", dont_gc_arguments);
 941 
 942         // This is called via call_runtime so the arguments
 943         // will be place in C abi locations
 944 
 945         __ verify_oop(c_rarg0);
 946 
 947         // load the klass and check the has finalizer flag
 948         Label register_finalizer;
 949         Register t = r5;
 950         __ load_klass(t, r0);
 951         __ ldrw(t, Address(t, Klass::access_flags_offset()));
 952         __ tbnz(t, exact_log2(JVM_ACC_HAS_FINALIZER), register_finalizer);
 953         __ ret(lr);
 954 
 955         __ bind(register_finalizer);
 956         __ enter();
 957         OopMap* oop_map = save_live_registers(sasm);
 958         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), r0);
 959         oop_maps = new OopMapSet();
 960         oop_maps->add_gc_map(call_offset, oop_map);
 961 
 962         // Now restore all the live registers
 963         restore_live_registers(sasm);
 964 
 965         __ leave();
 966         __ ret(lr);
 967       }
 968       break;
 969 
 970     case throw_class_cast_exception_id:
 971       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
 972         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
 973       }
 974       break;
 975 
 976     case throw_incompatible_class_change_error_id:
 977       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
 978         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
 979       }
 980       break;
 981 
 982     case slow_subtype_check_id:
 983       {
 984         // Typical calling sequence:
 985         // __ push(klass_RInfo);  // object klass or other subclass
 986         // __ push(sup_k_RInfo);  // array element klass or other superclass
 987         // __ bl(slow_subtype_check);
 988         // Note that the subclass is pushed first, and is therefore deepest.
 989         enum layout {
 990           r0_off, r0_off_hi,
 991           r2_off, r2_off_hi,
 992           r4_off, r4_off_hi,
 993           r5_off, r5_off_hi,
 994           sup_k_off, sup_k_off_hi,
 995           klass_off, klass_off_hi,
 996           framesize,
 997           result_off = sup_k_off
 998         };
 999 
1000         __ set_info("slow_subtype_check", dont_gc_arguments);
1001         __ push(RegSet::of(r0, r2, r4, r5), sp);
1002 
1003         // This is called by pushing args and not with C abi
1004         // __ ldr(r4, Address(sp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1005         // __ ldr(r0, Address(sp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1006 
1007         __ ldp(r4, r0, Address(sp, (sup_k_off) * VMRegImpl::stack_slot_size));
1008 
1009         Label miss;
1010         __ check_klass_subtype_slow_path(r4, r0, r2, r5, NULL, &miss);
1011 
1012         // fallthrough on success:
1013         __ mov(rscratch1, 1);
1014         __ str(rscratch1, Address(sp, (result_off) * VMRegImpl::stack_slot_size)); // result
1015         __ pop(RegSet::of(r0, r2, r4, r5), sp);
1016         __ ret(lr);
1017 
1018         __ bind(miss);
1019         __ str(zr, Address(sp, (result_off) * VMRegImpl::stack_slot_size)); // result
1020         __ pop(RegSet::of(r0, r2, r4, r5), sp);
1021         __ ret(lr);
1022       }
1023       break;
1024 
1025     case monitorenter_nofpu_id:
1026       save_fpu_registers = false;
1027       // fall through
1028     case monitorenter_id:
1029       {
1030         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1031         OopMap* map = save_live_registers(sasm, save_fpu_registers);
1032 
1033         // Called with store_parameter and not C abi
1034 
1035         f.load_argument(1, r0); // r0,: object
1036         f.load_argument(0, r1); // r1,: lock address
1037 
1038         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), r0, r1);
1039 
1040         oop_maps = new OopMapSet();
1041         oop_maps->add_gc_map(call_offset, map);
1042         restore_live_registers(sasm, save_fpu_registers);
1043       }
1044       break;
1045 
1046     case monitorexit_nofpu_id:
1047       save_fpu_registers = false;
1048       // fall through
1049     case monitorexit_id:
1050       {
1051         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1052         OopMap* map = save_live_registers(sasm, save_fpu_registers);
1053 
1054         // Called with store_parameter and not C abi
1055 
1056         f.load_argument(0, r0); // r0,: lock address
1057 
1058         // note: really a leaf routine but must setup last java sp
1059         //       => use call_RT for now (speed can be improved by
1060         //       doing last java sp setup manually)
1061         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), r0);
1062 
1063         oop_maps = new OopMapSet();
1064         oop_maps->add_gc_map(call_offset, map);
1065         restore_live_registers(sasm, save_fpu_registers);
1066       }
1067       break;
1068 
1069     case deoptimize_id:
1070       {
1071         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1072         OopMap* oop_map = save_live_registers(sasm);
1073         f.load_argument(0, c_rarg1);
1074         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), c_rarg1);
1075 
1076         oop_maps = new OopMapSet();
1077         oop_maps->add_gc_map(call_offset, oop_map);
1078         restore_live_registers(sasm);
1079         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1080         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1081         __ leave();
1082         __ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1083       }
1084       break;
1085 
1086     case throw_range_check_failed_id:
1087       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1088         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1089       }
1090       break;
1091 
1092     case unwind_exception_id:
1093       { __ set_info("unwind_exception", dont_gc_arguments);
1094         // note: no stubframe since we are about to leave the current
1095         //       activation and we are calling a leaf VM function only.
1096         generate_unwind_exception(sasm);
1097       }
1098       break;
1099 
1100     case access_field_patching_id:
1101       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1102         // we should set up register map
1103         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1104       }
1105       break;
1106 
1107     case load_klass_patching_id:
1108       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1109         // we should set up register map
1110         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1111       }
1112       break;
1113 
1114     case load_mirror_patching_id:
1115       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1116         // we should set up register map
1117         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1118       }
1119       break;
1120 
1121     case load_appendix_patching_id:
1122       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1123         // we should set up register map
1124         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1125       }
1126       break;
1127 
1128     case handle_exception_nofpu_id:
1129     case handle_exception_id:
1130       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1131         oop_maps = generate_handle_exception(id, sasm);
1132       }
1133       break;
1134 
1135     case handle_exception_from_callee_id:
1136       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1137         oop_maps = generate_handle_exception(id, sasm);
1138       }
1139       break;
1140 
1141     case throw_index_exception_id:
1142       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1143         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1144       }
1145       break;
1146 
1147     case throw_array_store_exception_id:
1148       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1149         // tos + 0: link
1150         //     + 1: return address
1151         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1152       }
1153       break;
1154 
1155 #if INCLUDE_ALL_GCS
1156 
1157     case g1_pre_barrier_slow_id:
1158       {
1159         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
1160         // arg0 : previous value of memory
1161 
1162         BarrierSet* bs = Universe::heap()->barrier_set();
1163         if (bs->kind() != BarrierSet::G1BarrierSet) {
1164           __ mov(r0, (int)id);
1165           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), r0);
1166           __ should_not_reach_here();
1167           break;
1168         }
1169 
1170         const Register pre_val = r0;
1171         const Register thread = rthread;
1172         const Register tmp = rscratch1;
1173 
1174         Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1175                                              SATBMarkQueue::byte_offset_of_active()));
1176 
1177         Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1178                                              SATBMarkQueue::byte_offset_of_index()));
1179         Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1180                                         SATBMarkQueue::byte_offset_of_buf()));
1181 
1182         Label done;
1183         Label runtime;
1184 
1185         // Is marking still active?
1186         if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1187           __ ldrw(tmp, in_progress);
1188         } else {
1189           assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
1190           __ ldrb(tmp, in_progress);
1191         }
1192         __ cbzw(tmp, done);
1193 
1194         // Can we store original value in the thread's buffer?
1195         __ ldr(tmp, queue_index);
1196         __ cbz(tmp, runtime);
1197 
1198         __ sub(tmp, tmp, wordSize);
1199         __ str(tmp, queue_index);
1200         __ ldr(rscratch2, buffer);
1201         __ add(tmp, tmp, rscratch2);
1202         f.load_argument(0, rscratch2);
1203         __ str(rscratch2, Address(tmp, 0));
1204         __ b(done);
1205 
1206         __ bind(runtime);
1207         __ push_call_clobbered_registers();
1208         f.load_argument(0, pre_val);
1209         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
1210         __ pop_call_clobbered_registers();
1211         __ bind(done);
1212       }
1213       break;
1214     case g1_post_barrier_slow_id:
1215       {
1216         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
1217 
1218         // arg0: store_address
1219         Address store_addr(rfp, 2*BytesPerWord);
1220 
1221         BarrierSet* bs = Universe::heap()->barrier_set();
1222         CardTableModRefBS* ctbs = barrier_set_cast<CardTableModRefBS>(bs);
1223         CardTable* ct = ctbs->card_table();
1224         assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
1225 
1226         Label done;
1227         Label runtime;
1228 
1229         // At this point we know new_value is non-NULL and the new_value crosses regions.
1230         // Must check to see if card is already dirty
1231 
1232         const Register thread = rthread;
1233 
1234         Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1235                                              DirtyCardQueue::byte_offset_of_index()));
1236         Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1237                                         DirtyCardQueue::byte_offset_of_buf()));
1238 
1239         const Register card_offset = rscratch2;
1240         // LR is free here, so we can use it to hold the byte_map_base.
1241         const Register byte_map_base = lr;
1242 
1243         assert_different_registers(card_offset, byte_map_base, rscratch1);
1244 
1245         f.load_argument(0, card_offset);
1246         __ lsr(card_offset, card_offset, CardTable::card_shift);
1247         __ load_byte_map_base(byte_map_base);
1248         __ ldrb(rscratch1, Address(byte_map_base, card_offset));
1249         __ cmpw(rscratch1, (int)G1CardTable::g1_young_card_val());
1250         __ br(Assembler::EQ, done);
1251 
1252         assert((int)CardTable::dirty_card_val() == 0, "must be 0");
1253 
1254         __ membar(Assembler::StoreLoad);
1255         __ ldrb(rscratch1, Address(byte_map_base, card_offset));
1256         __ cbzw(rscratch1, done);
1257 
1258         // storing region crossing non-NULL, card is clean.
1259         // dirty card and log.
1260         __ strb(zr, Address(byte_map_base, card_offset));
1261 
1262         // Convert card offset into an address in card_addr
1263         Register card_addr = card_offset;
1264         __ add(card_addr, byte_map_base, card_addr);
1265 
1266         __ ldr(rscratch1, queue_index);
1267         __ cbz(rscratch1, runtime);
1268         __ sub(rscratch1, rscratch1, wordSize);
1269         __ str(rscratch1, queue_index);
1270 
1271         // Reuse LR to hold buffer_addr
1272         const Register buffer_addr = lr;
1273 
1274         __ ldr(buffer_addr, buffer);
1275         __ str(card_addr, Address(buffer_addr, rscratch1));
1276         __ b(done);
1277 
1278         __ bind(runtime);
1279         __ push_call_clobbered_registers();
1280         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
1281         __ pop_call_clobbered_registers();
1282         __ bind(done);
1283 
1284       }
1285       break;
1286 #endif
1287 
1288     case predicate_failed_trap_id:
1289       {
1290         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1291 
1292         OopMap* map = save_live_registers(sasm);
1293 
1294         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1295         oop_maps = new OopMapSet();
1296         oop_maps->add_gc_map(call_offset, map);
1297         restore_live_registers(sasm);
1298         __ leave();
1299         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1300         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1301 
1302         __ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1303       }
1304       break;
1305 
1306 
1307     default:
1308       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1309         __ mov(r0, (int)id);
1310         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), r0);
1311         __ should_not_reach_here();
1312       }
1313       break;
1314     }
1315   }
1316   return oop_maps;
1317 }
1318 
1319 #undef __
1320 
1321 const char *Runtime1::pd_name_for_address(address entry) { Unimplemented(); return 0; }