1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/assembler.hpp"
  28 #include "c1/c1_CodeStubs.hpp"
  29 #include "c1/c1_Defs.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "gc/shared/cardTable.hpp"
  34 #include "gc/shared/cardTableModRefBS.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "nativeInst_aarch64.hpp"
  37 #include "oops/compiledICHolder.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiExport.hpp"
  40 #include "register_aarch64.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/signature.hpp"
  43 #include "runtime/vframe.hpp"
  44 #include "runtime/vframeArray.hpp"
  45 #include "vmreg_aarch64.inline.hpp"
  46 #if INCLUDE_ALL_GCS
  47 #include "gc/g1/g1CardTable.hpp"
  48 #include "gc/g1/g1BarrierSet.hpp"
  49 #endif
  50 
  51 
  52 // Implementation of StubAssembler
  53 
  54 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
  55   // setup registers
  56   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
  57   assert(oop_result1 != rthread && metadata_result != rthread, "registers must be different");
  58   assert(args_size >= 0, "illegal args_size");
  59   bool align_stack = false;
  60 
  61   mov(c_rarg0, rthread);
  62   set_num_rt_args(0); // Nothing on stack
  63 
  64   Label retaddr;
  65   set_last_Java_frame(sp, rfp, retaddr, rscratch1);
  66 
  67   // do the call
  68   lea(rscratch1, RuntimeAddress(entry));
  69   blrt(rscratch1, args_size + 1, 8, 1);
  70   bind(retaddr);
  71   int call_offset = offset();
  72   // verify callee-saved register
  73 #ifdef ASSERT
  74   push(r0, sp);
  75   { Label L;
  76     get_thread(r0);
  77     cmp(rthread, r0);
  78     br(Assembler::EQ, L);
  79     stop("StubAssembler::call_RT: rthread not callee saved?");
  80     bind(L);
  81   }
  82   pop(r0, sp);
  83 #endif
  84   reset_last_Java_frame(true);
  85   maybe_isb();
  86 
  87   // check for pending exceptions
  88   { Label L;
  89     // check for pending exceptions (java_thread is set upon return)
  90     ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
  91     cbz(rscratch1, L);
  92     // exception pending => remove activation and forward to exception handler
  93     // make sure that the vm_results are cleared
  94     if (oop_result1->is_valid()) {
  95       str(zr, Address(rthread, JavaThread::vm_result_offset()));
  96     }
  97     if (metadata_result->is_valid()) {
  98       str(zr, Address(rthread, JavaThread::vm_result_2_offset()));
  99     }
 100     if (frame_size() == no_frame_size) {
 101       leave();
 102       far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 103     } else if (_stub_id == Runtime1::forward_exception_id) {
 104       should_not_reach_here();
 105     } else {
 106       far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 107     }
 108     bind(L);
 109   }
 110   // get oop results if there are any and reset the values in the thread
 111   if (oop_result1->is_valid()) {
 112     get_vm_result(oop_result1, rthread);
 113   }
 114   if (metadata_result->is_valid()) {
 115     get_vm_result_2(metadata_result, rthread);
 116   }
 117   return call_offset;
 118 }
 119 
 120 
 121 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
 122   mov(c_rarg1, arg1);
 123   return call_RT(oop_result1, metadata_result, entry, 1);
 124 }
 125 
 126 
 127 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
 128   if (c_rarg1 == arg2) {
 129     if (c_rarg2 == arg1) {
 130       mov(rscratch1, arg1);
 131       mov(arg1, arg2);
 132       mov(arg2, rscratch1);
 133     } else {
 134       mov(c_rarg2, arg2);
 135       mov(c_rarg1, arg1);
 136     }
 137   } else {
 138     mov(c_rarg1, arg1);
 139     mov(c_rarg2, arg2);
 140   }
 141   return call_RT(oop_result1, metadata_result, entry, 2);
 142 }
 143 
 144 
 145 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
 146   // if there is any conflict use the stack
 147   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
 148       arg2 == c_rarg1 || arg1 == c_rarg3 ||
 149       arg3 == c_rarg1 || arg1 == c_rarg2) {
 150     stp(arg3, arg2, Address(pre(sp, 2 * wordSize)));
 151     stp(arg1, zr, Address(pre(sp, -2 * wordSize)));
 152     ldp(c_rarg1, zr, Address(post(sp, 2 * wordSize)));
 153     ldp(c_rarg3, c_rarg2, Address(post(sp, 2 * wordSize)));
 154   } else {
 155     mov(c_rarg1, arg1);
 156     mov(c_rarg2, arg2);
 157     mov(c_rarg3, arg3);
 158   }
 159   return call_RT(oop_result1, metadata_result, entry, 3);
 160 }
 161 
 162 // Implementation of StubFrame
 163 
 164 class StubFrame: public StackObj {
 165  private:
 166   StubAssembler* _sasm;
 167 
 168  public:
 169   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
 170   void load_argument(int offset_in_words, Register reg);
 171 
 172   ~StubFrame();
 173 };;
 174 
 175 void StubAssembler::prologue(const char* name, bool must_gc_arguments) {
 176   set_info(name, must_gc_arguments);
 177   enter();
 178 }
 179 
 180 void StubAssembler::epilogue() {
 181   leave();
 182   ret(lr);
 183 }
 184 
 185 #define __ _sasm->
 186 
 187 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
 188   _sasm = sasm;
 189   __ prologue(name, must_gc_arguments);
 190 }
 191 
 192 // load parameters that were stored with LIR_Assembler::store_parameter
 193 // Note: offsets for store_parameter and load_argument must match
 194 void StubFrame::load_argument(int offset_in_words, Register reg) {
 195   __ load_parameter(offset_in_words, reg);
 196 }
 197 
 198 
 199 StubFrame::~StubFrame() {
 200   __ epilogue();
 201 }
 202 
 203 #undef __
 204 
 205 
 206 // Implementation of Runtime1
 207 
 208 #define __ sasm->
 209 
 210 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
 211 
 212 // Stack layout for saving/restoring  all the registers needed during a runtime
 213 // call (this includes deoptimization)
 214 // Note: note that users of this frame may well have arguments to some runtime
 215 // while these values are on the stack. These positions neglect those arguments
 216 // but the code in save_live_registers will take the argument count into
 217 // account.
 218 //
 219 
 220 enum reg_save_layout {
 221   reg_save_frame_size = 32 /* float */ + 32 /* integer */
 222 };
 223 
 224 // Save off registers which might be killed by calls into the runtime.
 225 // Tries to smart of about FP registers.  In particular we separate
 226 // saving and describing the FPU registers for deoptimization since we
 227 // have to save the FPU registers twice if we describe them.  The
 228 // deopt blob is the only thing which needs to describe FPU registers.
 229 // In all other cases it should be sufficient to simply save their
 230 // current value.
 231 
 232 static int cpu_reg_save_offsets[FrameMap::nof_cpu_regs];
 233 static int fpu_reg_save_offsets[FrameMap::nof_fpu_regs];
 234 static int reg_save_size_in_words;
 235 static int frame_size_in_bytes = -1;
 236 
 237 static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers) {
 238   int frame_size_in_bytes = reg_save_frame_size * BytesPerWord;
 239   sasm->set_frame_size(frame_size_in_bytes / BytesPerWord);
 240   int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
 241   OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
 242 
 243   for (int i = 0; i < FrameMap::nof_cpu_regs; i++) {
 244     Register r = as_Register(i);
 245     if (i <= 18 && i != rscratch1->encoding() && i != rscratch2->encoding()) {
 246       int sp_offset = cpu_reg_save_offsets[i];
 247       oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
 248                                 r->as_VMReg());
 249     }
 250   }
 251 
 252   if (save_fpu_registers) {
 253     for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
 254       FloatRegister r = as_FloatRegister(i);
 255       {
 256         int sp_offset = fpu_reg_save_offsets[i];
 257         oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
 258                                   r->as_VMReg());
 259       }
 260     }
 261   }
 262   return oop_map;
 263 }
 264 
 265 static OopMap* save_live_registers(StubAssembler* sasm,
 266                                    bool save_fpu_registers = true) {
 267   __ block_comment("save_live_registers");
 268 
 269   __ push(RegSet::range(r0, r29), sp);         // integer registers except lr & sp
 270 
 271   if (save_fpu_registers) {
 272     for (int i = 30; i >= 0; i -= 2)
 273       __ stpd(as_FloatRegister(i), as_FloatRegister(i+1),
 274               Address(__ pre(sp, -2 * wordSize)));
 275   } else {
 276     __ add(sp, sp, -32 * wordSize);
 277   }
 278 
 279   return generate_oop_map(sasm, save_fpu_registers);
 280 }
 281 
 282 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
 283   if (restore_fpu_registers) {
 284     for (int i = 0; i < 32; i += 2)
 285       __ ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
 286               Address(__ post(sp, 2 * wordSize)));
 287   } else {
 288     __ add(sp, sp, 32 * wordSize);
 289   }
 290 
 291   __ pop(RegSet::range(r0, r29), sp);
 292 }
 293 
 294 static void restore_live_registers_except_r0(StubAssembler* sasm, bool restore_fpu_registers = true)  {
 295 
 296   if (restore_fpu_registers) {
 297     for (int i = 0; i < 32; i += 2)
 298       __ ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
 299               Address(__ post(sp, 2 * wordSize)));
 300   } else {
 301     __ add(sp, sp, 32 * wordSize);
 302   }
 303 
 304   __ ldp(zr, r1, Address(__ post(sp, 16)));
 305   __ pop(RegSet::range(r2, r29), sp);
 306 }
 307 
 308 
 309 
 310 void Runtime1::initialize_pd() {
 311   int i;
 312   int sp_offset = 0;
 313 
 314   // all float registers are saved explicitly
 315   assert(FrameMap::nof_fpu_regs == 32, "double registers not handled here");
 316   for (i = 0; i < FrameMap::nof_fpu_regs; i++) {
 317     fpu_reg_save_offsets[i] = sp_offset;
 318     sp_offset += 2;   // SP offsets are in halfwords
 319   }
 320 
 321   for (i = 0; i < FrameMap::nof_cpu_regs; i++) {
 322     Register r = as_Register(i);
 323     cpu_reg_save_offsets[i] = sp_offset;
 324     sp_offset += 2;   // SP offsets are in halfwords
 325   }
 326 }
 327 
 328 
 329 // target: the entry point of the method that creates and posts the exception oop
 330 // has_argument: true if the exception needs an argument (passed in rscratch1)
 331 
 332 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
 333   // make a frame and preserve the caller's caller-save registers
 334   OopMap* oop_map = save_live_registers(sasm);
 335   int call_offset;
 336   if (!has_argument) {
 337     call_offset = __ call_RT(noreg, noreg, target);
 338   } else {
 339     call_offset = __ call_RT(noreg, noreg, target, rscratch1);
 340   }
 341   OopMapSet* oop_maps = new OopMapSet();
 342   oop_maps->add_gc_map(call_offset, oop_map);
 343 
 344   __ should_not_reach_here();
 345   return oop_maps;
 346 }
 347 
 348 
 349 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
 350   __ block_comment("generate_handle_exception");
 351 
 352   // incoming parameters
 353   const Register exception_oop = r0;
 354   const Register exception_pc  = r3;
 355   // other registers used in this stub
 356 
 357   // Save registers, if required.
 358   OopMapSet* oop_maps = new OopMapSet();
 359   OopMap* oop_map = NULL;
 360   switch (id) {
 361   case forward_exception_id:
 362     // We're handling an exception in the context of a compiled frame.
 363     // The registers have been saved in the standard places.  Perform
 364     // an exception lookup in the caller and dispatch to the handler
 365     // if found.  Otherwise unwind and dispatch to the callers
 366     // exception handler.
 367     oop_map = generate_oop_map(sasm, 1 /*thread*/);
 368 
 369     // load and clear pending exception oop into r0
 370     __ ldr(exception_oop, Address(rthread, Thread::pending_exception_offset()));
 371     __ str(zr, Address(rthread, Thread::pending_exception_offset()));
 372 
 373     // load issuing PC (the return address for this stub) into r3
 374     __ ldr(exception_pc, Address(rfp, 1*BytesPerWord));
 375 
 376     // make sure that the vm_results are cleared (may be unnecessary)
 377     __ str(zr, Address(rthread, JavaThread::vm_result_offset()));
 378     __ str(zr, Address(rthread, JavaThread::vm_result_2_offset()));
 379     break;
 380   case handle_exception_nofpu_id:
 381   case handle_exception_id:
 382     // At this point all registers MAY be live.
 383     oop_map = save_live_registers(sasm, id != handle_exception_nofpu_id);
 384     break;
 385   case handle_exception_from_callee_id: {
 386     // At this point all registers except exception oop (r0) and
 387     // exception pc (lr) are dead.
 388     const int frame_size = 2 /*fp, return address*/;
 389     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
 390     sasm->set_frame_size(frame_size);
 391     break;
 392   }
 393   default:
 394     __ should_not_reach_here();
 395     break;
 396   }
 397 
 398   // verify that only r0 and r3 are valid at this time
 399   __ invalidate_registers(false, true, true, false, true, true);
 400   // verify that r0 contains a valid exception
 401   __ verify_not_null_oop(exception_oop);
 402 
 403 #ifdef ASSERT
 404   // check that fields in JavaThread for exception oop and issuing pc are
 405   // empty before writing to them
 406   Label oop_empty;
 407   __ ldr(rscratch1, Address(rthread, JavaThread::exception_oop_offset()));
 408   __ cbz(rscratch1, oop_empty);
 409   __ stop("exception oop already set");
 410   __ bind(oop_empty);
 411 
 412   Label pc_empty;
 413   __ ldr(rscratch1, Address(rthread, JavaThread::exception_pc_offset()));
 414   __ cbz(rscratch1, pc_empty);
 415   __ stop("exception pc already set");
 416   __ bind(pc_empty);
 417 #endif
 418 
 419   // save exception oop and issuing pc into JavaThread
 420   // (exception handler will load it from here)
 421   __ str(exception_oop, Address(rthread, JavaThread::exception_oop_offset()));
 422   __ str(exception_pc, Address(rthread, JavaThread::exception_pc_offset()));
 423 
 424   // patch throwing pc into return address (has bci & oop map)
 425   __ str(exception_pc, Address(rfp, 1*BytesPerWord));
 426 
 427   // compute the exception handler.
 428   // the exception oop and the throwing pc are read from the fields in JavaThread
 429   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
 430   oop_maps->add_gc_map(call_offset, oop_map);
 431 
 432   // r0: handler address
 433   //      will be the deopt blob if nmethod was deoptimized while we looked up
 434   //      handler regardless of whether handler existed in the nmethod.
 435 
 436   // only r0 is valid at this time, all other registers have been destroyed by the runtime call
 437   __ invalidate_registers(false, true, true, true, true, true);
 438 
 439   // patch the return address, this stub will directly return to the exception handler
 440   __ str(r0, Address(rfp, 1*BytesPerWord));
 441 
 442   switch (id) {
 443   case forward_exception_id:
 444   case handle_exception_nofpu_id:
 445   case handle_exception_id:
 446     // Restore the registers that were saved at the beginning.
 447     restore_live_registers(sasm, id != handle_exception_nofpu_id);
 448     break;
 449   case handle_exception_from_callee_id:
 450     // Pop the return address.
 451     __ leave();
 452     __ ret(lr);  // jump to exception handler
 453     break;
 454   default:  ShouldNotReachHere();
 455   }
 456 
 457   return oop_maps;
 458 }
 459 
 460 
 461 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
 462   // incoming parameters
 463   const Register exception_oop = r0;
 464   // callee-saved copy of exception_oop during runtime call
 465   const Register exception_oop_callee_saved = r19;
 466   // other registers used in this stub
 467   const Register exception_pc = r3;
 468   const Register handler_addr = r1;
 469 
 470   // verify that only r0, is valid at this time
 471   __ invalidate_registers(false, true, true, true, true, true);
 472 
 473 #ifdef ASSERT
 474   // check that fields in JavaThread for exception oop and issuing pc are empty
 475   Label oop_empty;
 476   __ ldr(rscratch1, Address(rthread, JavaThread::exception_oop_offset()));
 477   __ cbz(rscratch1, oop_empty);
 478   __ stop("exception oop must be empty");
 479   __ bind(oop_empty);
 480 
 481   Label pc_empty;
 482   __ ldr(rscratch1, Address(rthread, JavaThread::exception_pc_offset()));
 483   __ cbz(rscratch1, pc_empty);
 484   __ stop("exception pc must be empty");
 485   __ bind(pc_empty);
 486 #endif
 487 
 488   // Save our return address because
 489   // exception_handler_for_return_address will destroy it.  We also
 490   // save exception_oop
 491   __ stp(lr, exception_oop, Address(__ pre(sp, -2 * wordSize)));
 492 
 493   // search the exception handler address of the caller (using the return address)
 494   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, lr);
 495   // r0: exception handler address of the caller
 496 
 497   // Only R0 is valid at this time; all other registers have been
 498   // destroyed by the call.
 499   __ invalidate_registers(false, true, true, true, false, true);
 500 
 501   // move result of call into correct register
 502   __ mov(handler_addr, r0);
 503 
 504   // get throwing pc (= return address).
 505   // lr has been destroyed by the call
 506   __ ldp(lr, exception_oop, Address(__ post(sp, 2 * wordSize)));
 507   __ mov(r3, lr);
 508 
 509   __ verify_not_null_oop(exception_oop);
 510 
 511   // continue at exception handler (return address removed)
 512   // note: do *not* remove arguments when unwinding the
 513   //       activation since the caller assumes having
 514   //       all arguments on the stack when entering the
 515   //       runtime to determine the exception handler
 516   //       (GC happens at call site with arguments!)
 517   // r0: exception oop
 518   // r3: throwing pc
 519   // r1: exception handler
 520   __ br(handler_addr);
 521 }
 522 
 523 
 524 
 525 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
 526   // use the maximum number of runtime-arguments here because it is difficult to
 527   // distinguish each RT-Call.
 528   // Note: This number affects also the RT-Call in generate_handle_exception because
 529   //       the oop-map is shared for all calls.
 530   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
 531   assert(deopt_blob != NULL, "deoptimization blob must have been created");
 532 
 533   OopMap* oop_map = save_live_registers(sasm);
 534 
 535   __ mov(c_rarg0, rthread);
 536   Label retaddr;
 537   __ set_last_Java_frame(sp, rfp, retaddr, rscratch1);
 538   // do the call
 539   __ lea(rscratch1, RuntimeAddress(target));
 540   __ blrt(rscratch1, 1, 0, 1);
 541   __ bind(retaddr);
 542   OopMapSet* oop_maps = new OopMapSet();
 543   oop_maps->add_gc_map(__ offset(), oop_map);
 544   // verify callee-saved register
 545 #ifdef ASSERT
 546   { Label L;
 547     __ get_thread(rscratch1);
 548     __ cmp(rthread, rscratch1);
 549     __ br(Assembler::EQ, L);
 550     __ stop("StubAssembler::call_RT: rthread not callee saved?");
 551     __ bind(L);
 552   }
 553 #endif
 554   __ reset_last_Java_frame(true);
 555   __ maybe_isb();
 556 
 557   // check for pending exceptions
 558   { Label L;
 559     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 560     __ cbz(rscratch1, L);
 561     // exception pending => remove activation and forward to exception handler
 562 
 563     { Label L1;
 564       __ cbnz(r0, L1);                                  // have we deoptimized?
 565       __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 566       __ bind(L1);
 567     }
 568 
 569     // the deopt blob expects exceptions in the special fields of
 570     // JavaThread, so copy and clear pending exception.
 571 
 572     // load and clear pending exception
 573     __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
 574     __ str(zr, Address(rthread, Thread::pending_exception_offset()));
 575 
 576     // check that there is really a valid exception
 577     __ verify_not_null_oop(r0);
 578 
 579     // load throwing pc: this is the return address of the stub
 580     __ mov(r3, lr);
 581 
 582 #ifdef ASSERT
 583     // check that fields in JavaThread for exception oop and issuing pc are empty
 584     Label oop_empty;
 585     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 586     __ cbz(rscratch1, oop_empty);
 587     __ stop("exception oop must be empty");
 588     __ bind(oop_empty);
 589 
 590     Label pc_empty;
 591     __ ldr(rscratch1, Address(rthread, JavaThread::exception_pc_offset()));
 592     __ cbz(rscratch1, pc_empty);
 593     __ stop("exception pc must be empty");
 594     __ bind(pc_empty);
 595 #endif
 596 
 597     // store exception oop and throwing pc to JavaThread
 598     __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
 599     __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
 600 
 601     restore_live_registers(sasm);
 602 
 603     __ leave();
 604 
 605     // Forward the exception directly to deopt blob. We can blow no
 606     // registers and must leave throwing pc on the stack.  A patch may
 607     // have values live in registers so the entry point with the
 608     // exception in tls.
 609     __ far_jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
 610 
 611     __ bind(L);
 612   }
 613 
 614 
 615   // Runtime will return true if the nmethod has been deoptimized during
 616   // the patching process. In that case we must do a deopt reexecute instead.
 617 
 618   Label reexecuteEntry, cont;
 619 
 620   __ cbz(r0, cont);                                 // have we deoptimized?
 621 
 622   // Will reexecute. Proper return address is already on the stack we just restore
 623   // registers, pop all of our frame but the return address and jump to the deopt blob
 624   restore_live_registers(sasm);
 625   __ leave();
 626   __ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
 627 
 628   __ bind(cont);
 629   restore_live_registers(sasm);
 630   __ leave();
 631   __ ret(lr);
 632 
 633   return oop_maps;
 634 }
 635 
 636 
 637 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
 638 
 639   const Register exception_oop = r0;
 640   const Register exception_pc  = r3;
 641 
 642   // for better readability
 643   const bool must_gc_arguments = true;
 644   const bool dont_gc_arguments = false;
 645 
 646   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
 647   bool save_fpu_registers = true;
 648 
 649   // stub code & info for the different stubs
 650   OopMapSet* oop_maps = NULL;
 651   OopMap* oop_map = NULL;
 652   switch (id) {
 653     {
 654     case forward_exception_id:
 655       {
 656         oop_maps = generate_handle_exception(id, sasm);
 657         __ leave();
 658         __ ret(lr);
 659       }
 660       break;
 661 
 662     case throw_div0_exception_id:
 663       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
 664         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
 665       }
 666       break;
 667 
 668     case throw_null_pointer_exception_id:
 669       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
 670         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
 671       }
 672       break;
 673 
 674     case new_instance_id:
 675     case fast_new_instance_id:
 676     case fast_new_instance_init_check_id:
 677       {
 678         Register klass = r3; // Incoming
 679         Register obj   = r0; // Result
 680 
 681         if (id == new_instance_id) {
 682           __ set_info("new_instance", dont_gc_arguments);
 683         } else if (id == fast_new_instance_id) {
 684           __ set_info("fast new_instance", dont_gc_arguments);
 685         } else {
 686           assert(id == fast_new_instance_init_check_id, "bad StubID");
 687           __ set_info("fast new_instance init check", dont_gc_arguments);
 688         }
 689 
 690         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
 691             UseTLAB && FastTLABRefill) {
 692           Label slow_path;
 693           Register obj_size = r2;
 694           Register t1       = r19;
 695           Register t2       = r4;
 696           assert_different_registers(klass, obj, obj_size, t1, t2);
 697 
 698           __ stp(r5, r19, Address(__ pre(sp, -2 * wordSize)));
 699 
 700           if (id == fast_new_instance_init_check_id) {
 701             // make sure the klass is initialized
 702             __ ldrb(rscratch1, Address(klass, InstanceKlass::init_state_offset()));
 703             __ cmpw(rscratch1, InstanceKlass::fully_initialized);
 704             __ br(Assembler::NE, slow_path);
 705           }
 706 
 707 #ifdef ASSERT
 708           // assert object can be fast path allocated
 709           {
 710             Label ok, not_ok;
 711             __ ldrw(obj_size, Address(klass, Klass::layout_helper_offset()));
 712             __ cmp(obj_size, 0u);
 713             __ br(Assembler::LE, not_ok);  // make sure it's an instance (LH > 0)
 714             __ tstw(obj_size, Klass::_lh_instance_slow_path_bit);
 715             __ br(Assembler::EQ, ok);
 716             __ bind(not_ok);
 717             __ stop("assert(can be fast path allocated)");
 718             __ should_not_reach_here();
 719             __ bind(ok);
 720           }
 721 #endif // ASSERT
 722 
 723           // if we got here then the TLAB allocation failed, so try
 724           // refilling the TLAB or allocating directly from eden.
 725           Label retry_tlab, try_eden;
 726           __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy r3 (klass), returns r5
 727 
 728           __ bind(retry_tlab);
 729 
 730           // get the instance size (size is postive so movl is fine for 64bit)
 731           __ ldrw(obj_size, Address(klass, Klass::layout_helper_offset()));
 732 
 733           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
 734 
 735           __ initialize_object(obj, klass, obj_size, 0, t1, t2, /* is_tlab_allocated */ true);
 736           __ verify_oop(obj);
 737           __ ldp(r5, r19, Address(__ post(sp, 2 * wordSize)));
 738           __ ret(lr);
 739 
 740           __ bind(try_eden);
 741           // get the instance size (size is postive so movl is fine for 64bit)
 742           __ ldrw(obj_size, Address(klass, Klass::layout_helper_offset()));
 743 
 744           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
 745           __ incr_allocated_bytes(rthread, obj_size, 0, rscratch1);
 746 
 747           __ initialize_object(obj, klass, obj_size, 0, t1, t2, /* is_tlab_allocated */ false);
 748           __ verify_oop(obj);
 749           __ ldp(r5, r19, Address(__ post(sp, 2 * wordSize)));
 750           __ ret(lr);
 751 
 752           __ bind(slow_path);
 753           __ ldp(r5, r19, Address(__ post(sp, 2 * wordSize)));
 754         }
 755 
 756         __ enter();
 757         OopMap* map = save_live_registers(sasm);
 758         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
 759         oop_maps = new OopMapSet();
 760         oop_maps->add_gc_map(call_offset, map);
 761         restore_live_registers_except_r0(sasm);
 762         __ verify_oop(obj);
 763         __ leave();
 764         __ ret(lr);
 765 
 766         // r0,: new instance
 767       }
 768 
 769       break;
 770 
 771     case counter_overflow_id:
 772       {
 773         Register bci = r0, method = r1;
 774         __ enter();
 775         OopMap* map = save_live_registers(sasm);
 776         // Retrieve bci
 777         __ ldrw(bci, Address(rfp, 2*BytesPerWord));
 778         // And a pointer to the Method*
 779         __ ldr(method, Address(rfp, 3*BytesPerWord));
 780         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
 781         oop_maps = new OopMapSet();
 782         oop_maps->add_gc_map(call_offset, map);
 783         restore_live_registers(sasm);
 784         __ leave();
 785         __ ret(lr);
 786       }
 787       break;
 788 
 789     case new_type_array_id:
 790     case new_object_array_id:
 791       {
 792         Register length   = r19; // Incoming
 793         Register klass    = r3; // Incoming
 794         Register obj      = r0; // Result
 795 
 796         if (id == new_type_array_id) {
 797           __ set_info("new_type_array", dont_gc_arguments);
 798         } else {
 799           __ set_info("new_object_array", dont_gc_arguments);
 800         }
 801 
 802 #ifdef ASSERT
 803         // assert object type is really an array of the proper kind
 804         {
 805           Label ok;
 806           Register t0 = obj;
 807           __ ldrw(t0, Address(klass, Klass::layout_helper_offset()));
 808           __ asrw(t0, t0, Klass::_lh_array_tag_shift);
 809           int tag = ((id == new_type_array_id)
 810                      ? Klass::_lh_array_tag_type_value
 811                      : Klass::_lh_array_tag_obj_value);
 812           __ mov(rscratch1, tag);
 813           __ cmpw(t0, rscratch1);
 814           __ br(Assembler::EQ, ok);
 815           __ stop("assert(is an array klass)");
 816           __ should_not_reach_here();
 817           __ bind(ok);
 818         }
 819 #endif // ASSERT
 820 
 821         if (UseTLAB && FastTLABRefill) {
 822           Register arr_size = r4;
 823           Register t1       = r2;
 824           Register t2       = r5;
 825           Label slow_path;
 826           assert_different_registers(length, klass, obj, arr_size, t1, t2);
 827 
 828           // check that array length is small enough for fast path.
 829           __ mov(rscratch1, C1_MacroAssembler::max_array_allocation_length);
 830           __ cmpw(length, rscratch1);
 831           __ br(Assembler::HI, slow_path);
 832 
 833           // if we got here then the TLAB allocation failed, so try
 834           // refilling the TLAB or allocating directly from eden.
 835           Label retry_tlab, try_eden;
 836           const Register thread =
 837             __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves r19 & r3, returns rthread
 838 
 839           __ bind(retry_tlab);
 840 
 841           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
 842           // since size is positive ldrw does right thing on 64bit
 843           __ ldrw(t1, Address(klass, Klass::layout_helper_offset()));
 844           __ lslvw(arr_size, length, t1);
 845           __ ubfx(t1, t1, Klass::_lh_header_size_shift,
 846                   exact_log2(Klass::_lh_header_size_mask + 1));
 847           __ add(arr_size, arr_size, t1);
 848           __ add(arr_size, arr_size, MinObjAlignmentInBytesMask); // align up
 849           __ andr(arr_size, arr_size, ~MinObjAlignmentInBytesMask);
 850 
 851           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
 852 
 853           __ initialize_header(obj, klass, length, t1, t2);
 854           __ ldrb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
 855           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
 856           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
 857           __ andr(t1, t1, Klass::_lh_header_size_mask);
 858           __ sub(arr_size, arr_size, t1);  // body length
 859           __ add(t1, t1, obj);       // body start
 860           if (!ZeroTLAB) {
 861            __ initialize_body(t1, arr_size, 0, t2);
 862           }
 863           __ verify_oop(obj);
 864 
 865           __ ret(lr);
 866 
 867           __ bind(try_eden);
 868           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
 869           // since size is positive ldrw does right thing on 64bit
 870           __ ldrw(t1, Address(klass, Klass::layout_helper_offset()));
 871           // since size is postive movw does right thing on 64bit
 872           __ movw(arr_size, length);
 873           __ lslvw(arr_size, length, t1);
 874           __ ubfx(t1, t1, Klass::_lh_header_size_shift,
 875                   exact_log2(Klass::_lh_header_size_mask + 1));
 876           __ add(arr_size, arr_size, t1);
 877           __ add(arr_size, arr_size, MinObjAlignmentInBytesMask); // align up
 878           __ andr(arr_size, arr_size, ~MinObjAlignmentInBytesMask);
 879 
 880           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
 881           __ incr_allocated_bytes(thread, arr_size, 0, rscratch1);
 882 
 883           __ initialize_header(obj, klass, length, t1, t2);
 884           __ ldrb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
 885           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
 886           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
 887           __ andr(t1, t1, Klass::_lh_header_size_mask);
 888           __ sub(arr_size, arr_size, t1);  // body length
 889           __ add(t1, t1, obj);       // body start
 890           __ initialize_body(t1, arr_size, 0, t2);
 891           __ verify_oop(obj);
 892 
 893           __ ret(lr);
 894 
 895           __ bind(slow_path);
 896         }
 897 
 898         __ enter();
 899         OopMap* map = save_live_registers(sasm);
 900         int call_offset;
 901         if (id == new_type_array_id) {
 902           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
 903         } else {
 904           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
 905         }
 906 
 907         oop_maps = new OopMapSet();
 908         oop_maps->add_gc_map(call_offset, map);
 909         restore_live_registers_except_r0(sasm);
 910 
 911         __ verify_oop(obj);
 912         __ leave();
 913         __ ret(lr);
 914 
 915         // r0: new array
 916       }
 917       break;
 918 
 919     case new_multi_array_id:
 920       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
 921         // r0,: klass
 922         // r19,: rank
 923         // r2: address of 1st dimension
 924         OopMap* map = save_live_registers(sasm);
 925         __ mov(c_rarg1, r0);
 926         __ mov(c_rarg3, r2);
 927         __ mov(c_rarg2, r19);
 928         int call_offset = __ call_RT(r0, noreg, CAST_FROM_FN_PTR(address, new_multi_array), r1, r2, r3);
 929 
 930         oop_maps = new OopMapSet();
 931         oop_maps->add_gc_map(call_offset, map);
 932         restore_live_registers_except_r0(sasm);
 933 
 934         // r0,: new multi array
 935         __ verify_oop(r0);
 936       }
 937       break;
 938 
 939     case register_finalizer_id:
 940       {
 941         __ set_info("register_finalizer", dont_gc_arguments);
 942 
 943         // This is called via call_runtime so the arguments
 944         // will be place in C abi locations
 945 
 946         __ verify_oop(c_rarg0);
 947 
 948         // load the klass and check the has finalizer flag
 949         Label register_finalizer;
 950         Register t = r5;
 951         __ load_klass(t, r0);
 952         __ ldrw(t, Address(t, Klass::access_flags_offset()));
 953         __ tbnz(t, exact_log2(JVM_ACC_HAS_FINALIZER), register_finalizer);
 954         __ ret(lr);
 955 
 956         __ bind(register_finalizer);
 957         __ enter();
 958         OopMap* oop_map = save_live_registers(sasm);
 959         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), r0);
 960         oop_maps = new OopMapSet();
 961         oop_maps->add_gc_map(call_offset, oop_map);
 962 
 963         // Now restore all the live registers
 964         restore_live_registers(sasm);
 965 
 966         __ leave();
 967         __ ret(lr);
 968       }
 969       break;
 970 
 971     case throw_class_cast_exception_id:
 972       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
 973         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
 974       }
 975       break;
 976 
 977     case throw_incompatible_class_change_error_id:
 978       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
 979         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
 980       }
 981       break;
 982 
 983     case slow_subtype_check_id:
 984       {
 985         // Typical calling sequence:
 986         // __ push(klass_RInfo);  // object klass or other subclass
 987         // __ push(sup_k_RInfo);  // array element klass or other superclass
 988         // __ bl(slow_subtype_check);
 989         // Note that the subclass is pushed first, and is therefore deepest.
 990         enum layout {
 991           r0_off, r0_off_hi,
 992           r2_off, r2_off_hi,
 993           r4_off, r4_off_hi,
 994           r5_off, r5_off_hi,
 995           sup_k_off, sup_k_off_hi,
 996           klass_off, klass_off_hi,
 997           framesize,
 998           result_off = sup_k_off
 999         };
1000 
1001         __ set_info("slow_subtype_check", dont_gc_arguments);
1002         __ push(RegSet::of(r0, r2, r4, r5), sp);
1003 
1004         // This is called by pushing args and not with C abi
1005         // __ ldr(r4, Address(sp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1006         // __ ldr(r0, Address(sp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1007 
1008         __ ldp(r4, r0, Address(sp, (sup_k_off) * VMRegImpl::stack_slot_size));
1009 
1010         Label miss;
1011         __ check_klass_subtype_slow_path(r4, r0, r2, r5, NULL, &miss);
1012 
1013         // fallthrough on success:
1014         __ mov(rscratch1, 1);
1015         __ str(rscratch1, Address(sp, (result_off) * VMRegImpl::stack_slot_size)); // result
1016         __ pop(RegSet::of(r0, r2, r4, r5), sp);
1017         __ ret(lr);
1018 
1019         __ bind(miss);
1020         __ str(zr, Address(sp, (result_off) * VMRegImpl::stack_slot_size)); // result
1021         __ pop(RegSet::of(r0, r2, r4, r5), sp);
1022         __ ret(lr);
1023       }
1024       break;
1025 
1026     case monitorenter_nofpu_id:
1027       save_fpu_registers = false;
1028       // fall through
1029     case monitorenter_id:
1030       {
1031         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1032         OopMap* map = save_live_registers(sasm, save_fpu_registers);
1033 
1034         // Called with store_parameter and not C abi
1035 
1036         f.load_argument(1, r0); // r0,: object
1037         f.load_argument(0, r1); // r1,: lock address
1038 
1039         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), r0, r1);
1040 
1041         oop_maps = new OopMapSet();
1042         oop_maps->add_gc_map(call_offset, map);
1043         restore_live_registers(sasm, save_fpu_registers);
1044       }
1045       break;
1046 
1047     case monitorexit_nofpu_id:
1048       save_fpu_registers = false;
1049       // fall through
1050     case monitorexit_id:
1051       {
1052         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1053         OopMap* map = save_live_registers(sasm, save_fpu_registers);
1054 
1055         // Called with store_parameter and not C abi
1056 
1057         f.load_argument(0, r0); // r0,: lock address
1058 
1059         // note: really a leaf routine but must setup last java sp
1060         //       => use call_RT for now (speed can be improved by
1061         //       doing last java sp setup manually)
1062         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), r0);
1063 
1064         oop_maps = new OopMapSet();
1065         oop_maps->add_gc_map(call_offset, map);
1066         restore_live_registers(sasm, save_fpu_registers);
1067       }
1068       break;
1069 
1070     case deoptimize_id:
1071       {
1072         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1073         OopMap* oop_map = save_live_registers(sasm);
1074         f.load_argument(0, c_rarg1);
1075         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), c_rarg1);
1076 
1077         oop_maps = new OopMapSet();
1078         oop_maps->add_gc_map(call_offset, oop_map);
1079         restore_live_registers(sasm);
1080         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1081         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1082         __ leave();
1083         __ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1084       }
1085       break;
1086 
1087     case throw_range_check_failed_id:
1088       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1089         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1090       }
1091       break;
1092 
1093     case unwind_exception_id:
1094       { __ set_info("unwind_exception", dont_gc_arguments);
1095         // note: no stubframe since we are about to leave the current
1096         //       activation and we are calling a leaf VM function only.
1097         generate_unwind_exception(sasm);
1098       }
1099       break;
1100 
1101     case access_field_patching_id:
1102       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1103         // we should set up register map
1104         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1105       }
1106       break;
1107 
1108     case load_klass_patching_id:
1109       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1110         // we should set up register map
1111         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1112       }
1113       break;
1114 
1115     case load_mirror_patching_id:
1116       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1117         // we should set up register map
1118         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1119       }
1120       break;
1121 
1122     case load_appendix_patching_id:
1123       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1124         // we should set up register map
1125         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1126       }
1127       break;
1128 
1129     case handle_exception_nofpu_id:
1130     case handle_exception_id:
1131       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1132         oop_maps = generate_handle_exception(id, sasm);
1133       }
1134       break;
1135 
1136     case handle_exception_from_callee_id:
1137       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1138         oop_maps = generate_handle_exception(id, sasm);
1139       }
1140       break;
1141 
1142     case throw_index_exception_id:
1143       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1144         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1145       }
1146       break;
1147 
1148     case throw_array_store_exception_id:
1149       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1150         // tos + 0: link
1151         //     + 1: return address
1152         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1153       }
1154       break;
1155 
1156     case predicate_failed_trap_id:
1157       {
1158         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1159 
1160         OopMap* map = save_live_registers(sasm);
1161 
1162         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1163         oop_maps = new OopMapSet();
1164         oop_maps->add_gc_map(call_offset, map);
1165         restore_live_registers(sasm);
1166         __ leave();
1167         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1168         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1169 
1170         __ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1171       }
1172       break;
1173 
1174 
1175     default:
1176       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1177         __ mov(r0, (int)id);
1178         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), r0);
1179         __ should_not_reach_here();
1180       }
1181       break;
1182     }
1183   }
1184   return oop_maps;
1185 }
1186 
1187 #undef __
1188 
1189 const char *Runtime1::pd_name_for_address(address entry) { Unimplemented(); return 0; }