1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/interp_masm.hpp"
  32 #include "interpreter/templateInterpreterGenerator.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "interpreter/bytecodeTracer.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/arrayOop.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/deoptimization.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/synchronizer.hpp"
  48 #include "runtime/timer.hpp"
  49 #include "runtime/vframeArray.hpp"
  50 #include "utilities/debug.hpp"
  51 #include <sys/types.h>
  52 
  53 #ifndef PRODUCT
  54 #include "oops/method.hpp"
  55 #endif // !PRODUCT
  56 
  57 #ifdef BUILTIN_SIM
  58 #include "../../../../../../simulator/simulator.hpp"
  59 #endif
  60 
  61 // Size of interpreter code.  Increase if too small.  Interpreter will
  62 // fail with a guarantee ("not enough space for interpreter generation");
  63 // if too small.
  64 // Run with +PrintInterpreter to get the VM to print out the size.
  65 // Max size with JVMTI
  66 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
  67 
  68 #define __ _masm->
  69 
  70 //-----------------------------------------------------------------------------
  71 
  72 extern "C" void entry(CodeBuffer*);
  73 
  74 //-----------------------------------------------------------------------------
  75 
  76 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  77   address entry = __ pc();
  78 
  79   __ andr(esp, esp, -16);
  80   __ mov(c_rarg3, esp);
  81   // rmethod
  82   // rlocals
  83   // c_rarg3: first stack arg - wordSize
  84 
  85   // adjust sp
  86   __ sub(sp, c_rarg3, 18 * wordSize);
  87   __ str(lr, Address(__ pre(sp, -2 * wordSize)));
  88   __ call_VM(noreg,
  89              CAST_FROM_FN_PTR(address,
  90                               InterpreterRuntime::slow_signature_handler),
  91              rmethod, rlocals, c_rarg3);
  92 
  93   // r0: result handler
  94 
  95   // Stack layout:
  96   // rsp: return address           <- sp
  97   //      1 garbage
  98   //      8 integer args (if static first is unused)
  99   //      1 float/double identifiers
 100   //      8 double args
 101   //        stack args              <- esp
 102   //        garbage
 103   //        expression stack bottom
 104   //        bcp (NULL)
 105   //        ...
 106 
 107   // Restore LR
 108   __ ldr(lr, Address(__ post(sp, 2 * wordSize)));
 109 
 110   // Do FP first so we can use c_rarg3 as temp
 111   __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
 112 
 113   for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
 114     const FloatRegister r = as_FloatRegister(i);
 115 
 116     Label d, done;
 117 
 118     __ tbnz(c_rarg3, i, d);
 119     __ ldrs(r, Address(sp, (10 + i) * wordSize));
 120     __ b(done);
 121     __ bind(d);
 122     __ ldrd(r, Address(sp, (10 + i) * wordSize));
 123     __ bind(done);
 124   }
 125 
 126   // c_rarg0 contains the result from the call of
 127   // InterpreterRuntime::slow_signature_handler so we don't touch it
 128   // here.  It will be loaded with the JNIEnv* later.
 129   __ ldr(c_rarg1, Address(sp, 1 * wordSize));
 130   for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
 131     Register rm = as_Register(i), rn = as_Register(i+1);
 132     __ ldp(rm, rn, Address(sp, i * wordSize));
 133   }
 134 
 135   __ add(sp, sp, 18 * wordSize);
 136   __ ret(lr);
 137 
 138   return entry;
 139 }
 140 
 141 
 142 //
 143 // Various method entries
 144 //
 145 
 146 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 147   // rmethod: Method*
 148   // r13: sender sp
 149   // esp: args
 150 
 151   if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
 152 
 153   // These don't need a safepoint check because they aren't virtually
 154   // callable. We won't enter these intrinsics from compiled code.
 155   // If in the future we added an intrinsic which was virtually callable
 156   // we'd have to worry about how to safepoint so that this code is used.
 157 
 158   // mathematical functions inlined by compiler
 159   // (interpreter must provide identical implementation
 160   // in order to avoid monotonicity bugs when switching
 161   // from interpreter to compiler in the middle of some
 162   // computation)
 163   //
 164   // stack:
 165   //        [ arg ] <-- esp
 166   //        [ arg ]
 167   // retaddr in lr
 168 
 169   address entry_point = NULL;
 170   Register continuation = lr;
 171   switch (kind) {
 172   case Interpreter::java_lang_math_abs:
 173     entry_point = __ pc();
 174     __ ldrd(v0, Address(esp));
 175     __ fabsd(v0, v0);
 176     __ mov(sp, r13); // Restore caller's SP
 177     break;
 178   case Interpreter::java_lang_math_sqrt:
 179     entry_point = __ pc();
 180     __ ldrd(v0, Address(esp));
 181     __ fsqrtd(v0, v0);
 182     __ mov(sp, r13);
 183     break;
 184   case Interpreter::java_lang_math_sin :
 185   case Interpreter::java_lang_math_cos :
 186   case Interpreter::java_lang_math_tan :
 187   case Interpreter::java_lang_math_log :
 188   case Interpreter::java_lang_math_log10 :
 189   case Interpreter::java_lang_math_exp :
 190     entry_point = __ pc();
 191     __ ldrd(v0, Address(esp));
 192     __ mov(sp, r13);
 193     __ mov(r19, lr);
 194     continuation = r19;  // The first callee-saved register
 195     generate_transcendental_entry(kind, 1);
 196     break;
 197   case Interpreter::java_lang_math_pow :
 198     entry_point = __ pc();
 199     __ mov(r19, lr);
 200     continuation = r19;
 201     __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
 202     __ ldrd(v1, Address(esp));
 203     __ mov(sp, r13);
 204     generate_transcendental_entry(kind, 2);
 205     break;
 206   case Interpreter::java_lang_math_fmaD :
 207     if (UseFMA) {
 208       entry_point = __ pc();
 209       __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize));
 210       __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize));
 211       __ ldrd(v2, Address(esp));
 212       __ fmaddd(v0, v0, v1, v2);
 213       __ mov(sp, r13); // Restore caller's SP
 214     }
 215     break;
 216   case Interpreter::java_lang_math_fmaF :
 217     if (UseFMA) {
 218       entry_point = __ pc();
 219       __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize));
 220       __ ldrs(v1, Address(esp, Interpreter::stackElementSize));
 221       __ ldrs(v2, Address(esp));
 222       __ fmadds(v0, v0, v1, v2);
 223       __ mov(sp, r13); // Restore caller's SP
 224     }
 225     break;
 226   default:
 227     ;
 228   }
 229   if (entry_point) {
 230     __ br(continuation);
 231   }
 232 
 233   return entry_point;
 234 }
 235 
 236   // double trigonometrics and transcendentals
 237   // static jdouble dsin(jdouble x);
 238   // static jdouble dcos(jdouble x);
 239   // static jdouble dtan(jdouble x);
 240   // static jdouble dlog(jdouble x);
 241   // static jdouble dlog10(jdouble x);
 242   // static jdouble dexp(jdouble x);
 243   // static jdouble dpow(jdouble x, jdouble y);
 244 
 245 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
 246   address fn;
 247   switch (kind) {
 248   case Interpreter::java_lang_math_sin :
 249     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 250     break;
 251   case Interpreter::java_lang_math_cos :
 252     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 253     break;
 254   case Interpreter::java_lang_math_tan :
 255     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 256     break;
 257   case Interpreter::java_lang_math_log :
 258     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 259     break;
 260   case Interpreter::java_lang_math_log10 :
 261     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 262     break;
 263   case Interpreter::java_lang_math_exp :
 264     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 265     break;
 266   case Interpreter::java_lang_math_pow :
 267     fpargs = 2;
 268     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 269     break;
 270   default:
 271     ShouldNotReachHere();
 272     fn = NULL;  // unreachable
 273   }
 274   const int gpargs = 0, rtype = 3;
 275   __ mov(rscratch1, fn);
 276   __ blrt(rscratch1, gpargs, fpargs, rtype);
 277 }
 278 
 279 // Abstract method entry
 280 // Attempt to execute abstract method. Throw exception
 281 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 282   // rmethod: Method*
 283   // r13: sender SP
 284 
 285   address entry_point = __ pc();
 286 
 287   // abstract method entry
 288 
 289   //  pop return address, reset last_sp to NULL
 290   __ empty_expression_stack();
 291   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
 292   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
 293 
 294   // throw exception
 295   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 296                              InterpreterRuntime::throw_AbstractMethodError));
 297   // the call_VM checks for exception, so we should never return here.
 298   __ should_not_reach_here();
 299 
 300   return entry_point;
 301 }
 302 
 303 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 304   address entry = __ pc();
 305 
 306 #ifdef ASSERT
 307   {
 308     Label L;
 309     __ ldr(rscratch1, Address(rfp,
 310                        frame::interpreter_frame_monitor_block_top_offset *
 311                        wordSize));
 312     __ mov(rscratch2, sp);
 313     __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
 314                            // grows negative)
 315     __ br(Assembler::HS, L); // check if frame is complete
 316     __ stop ("interpreter frame not set up");
 317     __ bind(L);
 318   }
 319 #endif // ASSERT
 320   // Restore bcp under the assumption that the current frame is still
 321   // interpreted
 322   __ restore_bcp();
 323 
 324   // expression stack must be empty before entering the VM if an
 325   // exception happened
 326   __ empty_expression_stack();
 327   // throw exception
 328   __ call_VM(noreg,
 329              CAST_FROM_FN_PTR(address,
 330                               InterpreterRuntime::throw_StackOverflowError));
 331   return entry;
 332 }
 333 
 334 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
 335         const char* name) {
 336   address entry = __ pc();
 337   // expression stack must be empty before entering the VM if an
 338   // exception happened
 339   __ empty_expression_stack();
 340   // setup parameters
 341   // ??? convention: expect aberrant index in register r1
 342   __ movw(c_rarg2, r1);
 343   __ mov(c_rarg1, (address)name);
 344   __ call_VM(noreg,
 345              CAST_FROM_FN_PTR(address,
 346                               InterpreterRuntime::
 347                               throw_ArrayIndexOutOfBoundsException),
 348              c_rarg1, c_rarg2);
 349   return entry;
 350 }
 351 
 352 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 353   address entry = __ pc();
 354 
 355   // object is at TOS
 356   __ pop(c_rarg1);
 357 
 358   // expression stack must be empty before entering the VM if an
 359   // exception happened
 360   __ empty_expression_stack();
 361 
 362   __ call_VM(noreg,
 363              CAST_FROM_FN_PTR(address,
 364                               InterpreterRuntime::
 365                               throw_ClassCastException),
 366              c_rarg1);
 367   return entry;
 368 }
 369 
 370 address TemplateInterpreterGenerator::generate_exception_handler_common(
 371         const char* name, const char* message, bool pass_oop) {
 372   assert(!pass_oop || message == NULL, "either oop or message but not both");
 373   address entry = __ pc();
 374   if (pass_oop) {
 375     // object is at TOS
 376     __ pop(c_rarg2);
 377   }
 378   // expression stack must be empty before entering the VM if an
 379   // exception happened
 380   __ empty_expression_stack();
 381   // setup parameters
 382   __ lea(c_rarg1, Address((address)name));
 383   if (pass_oop) {
 384     __ call_VM(r0, CAST_FROM_FN_PTR(address,
 385                                     InterpreterRuntime::
 386                                     create_klass_exception),
 387                c_rarg1, c_rarg2);
 388   } else {
 389     // kind of lame ExternalAddress can't take NULL because
 390     // external_word_Relocation will assert.
 391     if (message != NULL) {
 392       __ lea(c_rarg2, Address((address)message));
 393     } else {
 394       __ mov(c_rarg2, NULL_WORD);
 395     }
 396     __ call_VM(r0,
 397                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 398                c_rarg1, c_rarg2);
 399   }
 400   // throw exception
 401   __ b(address(Interpreter::throw_exception_entry()));
 402   return entry;
 403 }
 404 
 405 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 406   address entry = __ pc();
 407 
 408   // Restore stack bottom in case i2c adjusted stack
 409   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 410   // and NULL it as marker that esp is now tos until next java call
 411   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 412   __ restore_bcp();
 413   __ restore_locals();
 414   __ restore_constant_pool_cache();
 415   __ get_method(rmethod);
 416 
 417   // Pop N words from the stack
 418   __ get_cache_and_index_at_bcp(r1, r2, 1, index_size);
 419   __ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 420   __ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask);
 421 
 422   __ add(esp, esp, r1, Assembler::LSL, 3);
 423 
 424   // Restore machine SP
 425   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 426   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 427   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 428   __ ldr(rscratch2,
 429          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 430   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
 431   __ andr(sp, rscratch1, -16);
 432 
 433 #ifndef PRODUCT
 434   // tell the simulator that the method has been reentered
 435   if (NotifySimulator) {
 436     __ notify(Assembler::method_reentry);
 437   }
 438 #endif
 439 
 440  __ check_and_handle_popframe(rthread);
 441  __ check_and_handle_earlyret(rthread);
 442 
 443   __ get_dispatch();
 444   __ dispatch_next(state, step);
 445 
 446   return entry;
 447 }
 448 
 449 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 450                                                                int step) {
 451   address entry = __ pc();
 452   __ restore_bcp();
 453   __ restore_locals();
 454   __ restore_constant_pool_cache();
 455   __ get_method(rmethod);
 456   __ get_dispatch();
 457 
 458   // Calculate stack limit
 459   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 460   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 461   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 462   __ ldr(rscratch2,
 463          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 464   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
 465   __ andr(sp, rscratch1, -16);
 466 
 467   // Restore expression stack pointer
 468   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 469   // NULL last_sp until next java call
 470   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 471 
 472 #if INCLUDE_JVMCI
 473   // Check if we need to take lock at entry of synchronized method.  This can
 474   // only occur on method entry so emit it only for vtos with step 0.
 475   if (UseJVMCICompiler && state == vtos && step == 0) {
 476     Label L;
 477     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 478     __ cbz(rscratch1, L);
 479     // Clear flag.
 480     __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
 481     // Take lock.
 482     lock_method();
 483     __ bind(L);
 484   } else {
 485 #ifdef ASSERT
 486     if (UseJVMCICompiler) {
 487       Label L;
 488       __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 489       __ cbz(rscratch1, L);
 490       __ stop("unexpected pending monitor in deopt entry");
 491       __ bind(L);
 492     }
 493 #endif
 494   }
 495 #endif
 496   // handle exceptions
 497   {
 498     Label L;
 499     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 500     __ cbz(rscratch1, L);
 501     __ call_VM(noreg,
 502                CAST_FROM_FN_PTR(address,
 503                                 InterpreterRuntime::throw_pending_exception));
 504     __ should_not_reach_here();
 505     __ bind(L);
 506   }
 507 
 508   __ dispatch_next(state, step);
 509   return entry;
 510 }
 511 
 512 address TemplateInterpreterGenerator::generate_result_handler_for(
 513         BasicType type) {
 514     address entry = __ pc();
 515   switch (type) {
 516   case T_BOOLEAN: __ uxtb(r0, r0);        break;
 517   case T_CHAR   : __ uxth(r0, r0);       break;
 518   case T_BYTE   : __ sxtb(r0, r0);        break;
 519   case T_SHORT  : __ sxth(r0, r0);        break;
 520   case T_INT    : __ uxtw(r0, r0);        break;  // FIXME: We almost certainly don't need this
 521   case T_LONG   : /* nothing to do */        break;
 522   case T_VOID   : /* nothing to do */        break;
 523   case T_FLOAT  : /* nothing to do */        break;
 524   case T_DOUBLE : /* nothing to do */        break;
 525   case T_OBJECT :
 526     // retrieve result from frame
 527     __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
 528     // and verify it
 529     __ verify_oop(r0);
 530     break;
 531   default       : ShouldNotReachHere();
 532   }
 533   __ ret(lr);                                  // return from result handler
 534   return entry;
 535 }
 536 
 537 address TemplateInterpreterGenerator::generate_safept_entry_for(
 538         TosState state,
 539         address runtime_entry) {
 540   address entry = __ pc();
 541   __ push(state);
 542   __ call_VM(noreg, runtime_entry);
 543   __ membar(Assembler::AnyAny);
 544   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 545   return entry;
 546 }
 547 
 548 // Helpers for commoning out cases in the various type of method entries.
 549 //
 550 
 551 
 552 // increment invocation count & check for overflow
 553 //
 554 // Note: checking for negative value instead of overflow
 555 //       so we have a 'sticky' overflow test
 556 //
 557 // rmethod: method
 558 //
 559 void TemplateInterpreterGenerator::generate_counter_incr(
 560         Label* overflow,
 561         Label* profile_method,
 562         Label* profile_method_continue) {
 563   Label done;
 564   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 565   if (TieredCompilation) {
 566     int increment = InvocationCounter::count_increment;
 567     Label no_mdo;
 568     if (ProfileInterpreter) {
 569       // Are we profiling?
 570       __ ldr(r0, Address(rmethod, Method::method_data_offset()));
 571       __ cbz(r0, no_mdo);
 572       // Increment counter in the MDO
 573       const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
 574                                                 in_bytes(InvocationCounter::counter_offset()));
 575       const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
 576       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
 577       __ b(done);
 578     }
 579     __ bind(no_mdo);
 580     // Increment counter in MethodCounters
 581     const Address invocation_counter(rscratch2,
 582                   MethodCounters::invocation_counter_offset() +
 583                   InvocationCounter::counter_offset());
 584     __ get_method_counters(rmethod, rscratch2, done);
 585     const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
 586     __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
 587     __ bind(done);
 588   } else { // not TieredCompilation
 589     const Address backedge_counter(rscratch2,
 590                   MethodCounters::backedge_counter_offset() +
 591                   InvocationCounter::counter_offset());
 592     const Address invocation_counter(rscratch2,
 593                   MethodCounters::invocation_counter_offset() +
 594                   InvocationCounter::counter_offset());
 595 
 596     __ get_method_counters(rmethod, rscratch2, done);
 597 
 598     if (ProfileInterpreter) { // %%% Merge this into MethodData*
 599       __ ldrw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 600       __ addw(r1, r1, 1);
 601       __ strw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 602     }
 603     // Update standard invocation counters
 604     __ ldrw(r1, invocation_counter);
 605     __ ldrw(r0, backedge_counter);
 606 
 607     __ addw(r1, r1, InvocationCounter::count_increment);
 608     __ andw(r0, r0, InvocationCounter::count_mask_value);
 609 
 610     __ strw(r1, invocation_counter);
 611     __ addw(r0, r0, r1);                // add both counters
 612 
 613     // profile_method is non-null only for interpreted method so
 614     // profile_method != NULL == !native_call
 615 
 616     if (ProfileInterpreter && profile_method != NULL) {
 617       // Test to see if we should create a method data oop
 618       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 619       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
 620       __ cmpw(r0, rscratch2);
 621       __ br(Assembler::LT, *profile_method_continue);
 622 
 623       // if no method data exists, go to profile_method
 624       __ test_method_data_pointer(rscratch2, *profile_method);
 625     }
 626 
 627     {
 628       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 629       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_invocation_limit_offset())));
 630       __ cmpw(r0, rscratch2);
 631       __ br(Assembler::HS, *overflow);
 632     }
 633     __ bind(done);
 634   }
 635 }
 636 
 637 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 638 
 639   // Asm interpreter on entry
 640   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 641   // Everything as it was on entry
 642 
 643   // InterpreterRuntime::frequency_counter_overflow takes two
 644   // arguments, the first (thread) is passed by call_VM, the second
 645   // indicates if the counter overflow occurs at a backwards branch
 646   // (NULL bcp).  We pass zero for it.  The call returns the address
 647   // of the verified entry point for the method or NULL if the
 648   // compilation did not complete (either went background or bailed
 649   // out).
 650   __ mov(c_rarg1, 0);
 651   __ call_VM(noreg,
 652              CAST_FROM_FN_PTR(address,
 653                               InterpreterRuntime::frequency_counter_overflow),
 654              c_rarg1);
 655 
 656   __ b(do_continue);
 657 }
 658 
 659 // See if we've got enough room on the stack for locals plus overhead
 660 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 661 // without going through the signal handler, i.e., reserved and yellow zones
 662 // will not be made usable. The shadow zone must suffice to handle the
 663 // overflow.
 664 // The expression stack grows down incrementally, so the normal guard
 665 // page mechanism will work for that.
 666 //
 667 // NOTE: Since the additional locals are also always pushed (wasn't
 668 // obvious in generate_method_entry) so the guard should work for them
 669 // too.
 670 //
 671 // Args:
 672 //      r3: number of additional locals this frame needs (what we must check)
 673 //      rmethod: Method*
 674 //
 675 // Kills:
 676 //      r0
 677 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 678 
 679   // monitor entry size: see picture of stack set
 680   // (generate_method_entry) and frame_amd64.hpp
 681   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 682 
 683   // total overhead size: entry_size + (saved rbp through expr stack
 684   // bottom).  be sure to change this if you add/subtract anything
 685   // to/from the overhead area
 686   const int overhead_size =
 687     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 688 
 689   const int page_size = os::vm_page_size();
 690 
 691   Label after_frame_check;
 692 
 693   // see if the frame is greater than one page in size. If so,
 694   // then we need to verify there is enough stack space remaining
 695   // for the additional locals.
 696   //
 697   // Note that we use SUBS rather than CMP here because the immediate
 698   // field of this instruction may overflow.  SUBS can cope with this
 699   // because it is a macro that will expand to some number of MOV
 700   // instructions and a register operation.
 701   __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
 702   __ br(Assembler::LS, after_frame_check);
 703 
 704   // compute rsp as if this were going to be the last frame on
 705   // the stack before the red zone
 706 
 707   // locals + overhead, in bytes
 708   __ mov(r0, overhead_size);
 709   __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize);  // 2 slots per parameter.
 710 
 711   const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
 712   __ ldr(rscratch1, stack_limit);
 713 
 714 #ifdef ASSERT
 715   Label limit_okay;
 716   // Verify that thread stack limit is non-zero.
 717   __ cbnz(rscratch1, limit_okay);
 718   __ stop("stack overflow limit is zero");
 719   __ bind(limit_okay);
 720 #endif
 721 
 722   // Add stack limit to locals.
 723   __ add(r0, r0, rscratch1);
 724 
 725   // Check against the current stack bottom.
 726   __ cmp(sp, r0);
 727   __ br(Assembler::HI, after_frame_check);
 728 
 729   // Remove the incoming args, peeling the machine SP back to where it
 730   // was in the caller.  This is not strictly necessary, but unless we
 731   // do so the stack frame may have a garbage FP; this ensures a
 732   // correct call stack that we can always unwind.  The ANDR should be
 733   // unnecessary because the sender SP in r13 is always aligned, but
 734   // it doesn't hurt.
 735   __ andr(sp, r13, -16);
 736 
 737   // Note: the restored frame is not necessarily interpreted.
 738   // Use the shared runtime version of the StackOverflowError.
 739   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 740   __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry()));
 741 
 742   // all done with frame size check
 743   __ bind(after_frame_check);
 744 }
 745 
 746 // Allocate monitor and lock method (asm interpreter)
 747 //
 748 // Args:
 749 //      rmethod: Method*
 750 //      rlocals: locals
 751 //
 752 // Kills:
 753 //      r0
 754 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 755 //      rscratch1, rscratch2 (scratch regs)
 756 void TemplateInterpreterGenerator::lock_method() {
 757   // synchronize method
 758   const Address access_flags(rmethod, Method::access_flags_offset());
 759   const Address monitor_block_top(
 760         rfp,
 761         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 762   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 763 
 764 #ifdef ASSERT
 765   {
 766     Label L;
 767     __ ldrw(r0, access_flags);
 768     __ tst(r0, JVM_ACC_SYNCHRONIZED);
 769     __ br(Assembler::NE, L);
 770     __ stop("method doesn't need synchronization");
 771     __ bind(L);
 772   }
 773 #endif // ASSERT
 774 
 775   // get synchronization object
 776   {
 777     Label done;
 778     __ ldrw(r0, access_flags);
 779     __ tst(r0, JVM_ACC_STATIC);
 780     // get receiver (assume this is frequent case)
 781     __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
 782     __ br(Assembler::EQ, done);
 783     __ load_mirror(r0, rmethod);
 784 
 785 #ifdef ASSERT
 786     {
 787       Label L;
 788       __ cbnz(r0, L);
 789       __ stop("synchronization object is NULL");
 790       __ bind(L);
 791     }
 792 #endif // ASSERT
 793 
 794     __ bind(done);
 795   }
 796 
 797   // add space for monitor & lock
 798   __ sub(sp, sp, entry_size); // add space for a monitor entry
 799   __ sub(esp, esp, entry_size);
 800   __ mov(rscratch1, esp);
 801   __ str(rscratch1, monitor_block_top);  // set new monitor block top
 802   // store object
 803   __ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes()));
 804   __ mov(c_rarg1, esp); // object address
 805   __ lock_object(c_rarg1);
 806 }
 807 
 808 // Generate a fixed interpreter frame. This is identical setup for
 809 // interpreted methods and for native methods hence the shared code.
 810 //
 811 // Args:
 812 //      lr: return address
 813 //      rmethod: Method*
 814 //      rlocals: pointer to locals
 815 //      rcpool: cp cache
 816 //      stack_pointer: previous sp
 817 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 818   // initialize fixed part of activation frame
 819   if (native_call) {
 820     __ sub(esp, sp, 14 *  wordSize);
 821     __ mov(rbcp, zr);
 822     __ stp(esp, zr, Address(__ pre(sp, -14 * wordSize)));
 823     // add 2 zero-initialized slots for native calls
 824     __ stp(zr, zr, Address(sp, 12 * wordSize));
 825   } else {
 826     __ sub(esp, sp, 12 *  wordSize);
 827     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));      // get ConstMethod
 828     __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase
 829     __ stp(esp, rbcp, Address(__ pre(sp, -12 * wordSize)));
 830   }
 831 
 832   if (ProfileInterpreter) {
 833     Label method_data_continue;
 834     __ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
 835     __ cbz(rscratch1, method_data_continue);
 836     __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
 837     __ bind(method_data_continue);
 838     __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize));  // save Method* and mdp (method data pointer)
 839   } else {
 840     __ stp(zr, rmethod, Address(sp, 6 * wordSize));        // save Method* (no mdp)
 841   }
 842 
 843   // Get mirror and store it in the frame as GC root for this Method*
 844   __ load_mirror(rscratch1, rmethod);
 845   __ stp(rscratch1, zr, Address(sp, 4 * wordSize));
 846 
 847   __ ldr(rcpool, Address(rmethod, Method::const_offset()));
 848   __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset()));
 849   __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes()));
 850   __ stp(rlocals, rcpool, Address(sp, 2 * wordSize));
 851 
 852   __ stp(rfp, lr, Address(sp, 10 * wordSize));
 853   __ lea(rfp, Address(sp, 10 * wordSize));
 854 
 855   // set sender sp
 856   // leave last_sp as null
 857   __ stp(zr, r13, Address(sp, 8 * wordSize));
 858 
 859   // Move SP out of the way
 860   if (! native_call) {
 861     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 862     __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 863     __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 864     __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
 865     __ andr(sp, rscratch1, -16);
 866   }
 867 }
 868 
 869 // End of helpers
 870 
 871 // Various method entries
 872 //------------------------------------------------------------------------------------------------------------------------
 873 //
 874 //
 875 
 876 // Method entry for java.lang.ref.Reference.get.
 877 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 878 #if INCLUDE_ALL_GCS
 879   // Code: _aload_0, _getfield, _areturn
 880   // parameter size = 1
 881   //
 882   // The code that gets generated by this routine is split into 2 parts:
 883   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 884   //    2. The slow path - which is an expansion of the regular method entry.
 885   //
 886   // Notes:-
 887   // * In the G1 code we do not check whether we need to block for
 888   //   a safepoint. If G1 is enabled then we must execute the specialized
 889   //   code for Reference.get (except when the Reference object is null)
 890   //   so that we can log the value in the referent field with an SATB
 891   //   update buffer.
 892   //   If the code for the getfield template is modified so that the
 893   //   G1 pre-barrier code is executed when the current method is
 894   //   Reference.get() then going through the normal method entry
 895   //   will be fine.
 896   // * The G1 code can, however, check the receiver object (the instance
 897   //   of java.lang.Reference) and jump to the slow path if null. If the
 898   //   Reference object is null then we obviously cannot fetch the referent
 899   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 900   //   regular method entry code to generate the NPE.
 901   //
 902   // This code is based on generate_accessor_entry.
 903   //
 904   // rmethod: Method*
 905   // r13: senderSP must preserve for slow path, set SP to it on fast path
 906 
 907   address entry = __ pc();
 908 
 909   const int referent_offset = java_lang_ref_Reference::referent_offset;
 910   guarantee(referent_offset > 0, "referent offset not initialized");
 911 
 912   if (UseG1GC) {
 913     Label slow_path;
 914     const Register local_0 = c_rarg0;
 915     // Check if local 0 != NULL
 916     // If the receiver is null then it is OK to jump to the slow path.
 917     __ ldr(local_0, Address(esp, 0));
 918     __ cbz(local_0, slow_path);
 919 
 920     // Load the value of the referent field.
 921     const Address field_address(local_0, referent_offset);
 922     __ load_heap_oop(local_0, field_address);
 923 
 924     __ mov(r19, r13);   // Move senderSP to a callee-saved register
 925     // Generate the G1 pre-barrier code to log the value of
 926     // the referent field in an SATB buffer.
 927     __ enter(); // g1_write may call runtime
 928     __ g1_write_barrier_pre(noreg /* obj */,
 929                             local_0 /* pre_val */,
 930                             rthread /* thread */,
 931                             rscratch2 /* tmp */,
 932                             true /* tosca_live */,
 933                             true /* expand_call */);
 934     __ leave();
 935     // areturn
 936     __ andr(sp, r19, -16);  // done with stack
 937     __ ret(lr);
 938 
 939     // generate a vanilla interpreter entry as the slow path
 940     __ bind(slow_path);
 941     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 942     return entry;
 943   }
 944 #endif // INCLUDE_ALL_GCS
 945 
 946   // If G1 is not enabled then attempt to go through the accessor entry point
 947   // Reference.get is an accessor
 948   return NULL;
 949 }
 950 
 951 /**
 952  * Method entry for static native methods:
 953  *   int java.util.zip.CRC32.update(int crc, int b)
 954  */
 955 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 956   if (UseCRC32Intrinsics) {
 957     address entry = __ pc();
 958 
 959     // rmethod: Method*
 960     // r13: senderSP must preserved for slow path
 961     // esp: args
 962 
 963     Label slow_path;
 964     // If we need a safepoint check, generate full interpreter entry.
 965     ExternalAddress state(SafepointSynchronize::address_of_state());
 966     unsigned long offset;
 967     __ adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset);
 968     __ ldrw(rscratch1, Address(rscratch1, offset));
 969     assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code");
 970     __ cbnz(rscratch1, slow_path);
 971 
 972     // We don't generate local frame and don't align stack because
 973     // we call stub code and there is no safepoint on this path.
 974 
 975     // Load parameters
 976     const Register crc = c_rarg0;  // crc
 977     const Register val = c_rarg1;  // source java byte value
 978     const Register tbl = c_rarg2;  // scratch
 979 
 980     // Arguments are reversed on java expression stack
 981     __ ldrw(val, Address(esp, 0));              // byte value
 982     __ ldrw(crc, Address(esp, wordSize));       // Initial CRC
 983 
 984     __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
 985     __ add(tbl, tbl, offset);
 986 
 987     __ ornw(crc, zr, crc); // ~crc
 988     __ update_byte_crc32(crc, val, tbl);
 989     __ ornw(crc, zr, crc); // ~crc
 990 
 991     // result in c_rarg0
 992 
 993     __ andr(sp, r13, -16);
 994     __ ret(lr);
 995 
 996     // generate a vanilla native entry as the slow path
 997     __ bind(slow_path);
 998     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
 999     return entry;
1000   }
1001   return NULL;
1002 }
1003 
1004 /**
1005  * Method entry for static native methods:
1006  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1007  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1008  */
1009 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1010   if (UseCRC32Intrinsics) {
1011     address entry = __ pc();
1012 
1013     // rmethod,: Method*
1014     // r13: senderSP must preserved for slow path
1015 
1016     Label slow_path;
1017     // If we need a safepoint check, generate full interpreter entry.
1018     ExternalAddress state(SafepointSynchronize::address_of_state());
1019     unsigned long offset;
1020     __ adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset);
1021     __ ldrw(rscratch1, Address(rscratch1, offset));
1022     assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code");
1023     __ cbnz(rscratch1, slow_path);
1024 
1025     // We don't generate local frame and don't align stack because
1026     // we call stub code and there is no safepoint on this path.
1027 
1028     // Load parameters
1029     const Register crc = c_rarg0;  // crc
1030     const Register buf = c_rarg1;  // source java byte array address
1031     const Register len = c_rarg2;  // length
1032     const Register off = len;      // offset (never overlaps with 'len')
1033 
1034     // Arguments are reversed on java expression stack
1035     // Calculate address of start element
1036     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1037       __ ldr(buf, Address(esp, 2*wordSize)); // long buf
1038       __ ldrw(off, Address(esp, wordSize)); // offset
1039       __ add(buf, buf, off); // + offset
1040       __ ldrw(crc,   Address(esp, 4*wordSize)); // Initial CRC
1041     } else {
1042       __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
1043       __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1044       __ ldrw(off, Address(esp, wordSize)); // offset
1045       __ add(buf, buf, off); // + offset
1046       __ ldrw(crc,   Address(esp, 3*wordSize)); // Initial CRC
1047     }
1048     // Can now load 'len' since we're finished with 'off'
1049     __ ldrw(len, Address(esp, 0x0)); // Length
1050 
1051     __ andr(sp, r13, -16); // Restore the caller's SP
1052 
1053     // We are frameless so we can just jump to the stub.
1054     __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
1055 
1056     // generate a vanilla native entry as the slow path
1057     __ bind(slow_path);
1058     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1059     return entry;
1060   }
1061   return NULL;
1062 }
1063 
1064 // Not supported
1065 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1066   return NULL;
1067 }
1068 
1069 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1070   // Bang each page in the shadow zone. We can't assume it's been done for
1071   // an interpreter frame with greater than a page of locals, so each page
1072   // needs to be checked.  Only true for non-native.
1073   if (UseStackBanging) {
1074     const int n_shadow_pages = JavaThread::stack_shadow_zone_size() / os::vm_page_size();
1075     const int start_page = native_call ? n_shadow_pages : 1;
1076     const int page_size = os::vm_page_size();
1077     for (int pages = start_page; pages <= n_shadow_pages ; pages++) {
1078       __ sub(rscratch2, sp, pages*page_size);
1079       __ str(zr, Address(rscratch2));
1080     }
1081   }
1082 }
1083 
1084 
1085 // Interpreter stub for calling a native method. (asm interpreter)
1086 // This sets up a somewhat different looking stack for calling the
1087 // native method than the typical interpreter frame setup.
1088 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1089   // determine code generation flags
1090   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1091 
1092   // r1: Method*
1093   // rscratch1: sender sp
1094 
1095   address entry_point = __ pc();
1096 
1097   const Address constMethod       (rmethod, Method::const_offset());
1098   const Address access_flags      (rmethod, Method::access_flags_offset());
1099   const Address size_of_parameters(r2, ConstMethod::
1100                                        size_of_parameters_offset());
1101 
1102   // get parameter size (always needed)
1103   __ ldr(r2, constMethod);
1104   __ load_unsigned_short(r2, size_of_parameters);
1105 
1106   // Native calls don't need the stack size check since they have no
1107   // expression stack and the arguments are already on the stack and
1108   // we only add a handful of words to the stack.
1109 
1110   // rmethod: Method*
1111   // r2: size of parameters
1112   // rscratch1: sender sp
1113 
1114   // for natives the size of locals is zero
1115 
1116   // compute beginning of parameters (rlocals)
1117   __ add(rlocals, esp, r2, ext::uxtx, 3);
1118   __ add(rlocals, rlocals, -wordSize);
1119 
1120   // Pull SP back to minimum size: this avoids holes in the stack
1121   __ andr(sp, esp, -16);
1122 
1123   // initialize fixed part of activation frame
1124   generate_fixed_frame(true);
1125 #ifndef PRODUCT
1126   // tell the simulator that a method has been entered
1127   if (NotifySimulator) {
1128     __ notify(Assembler::method_entry);
1129   }
1130 #endif
1131 
1132   // make sure method is native & not abstract
1133 #ifdef ASSERT
1134   __ ldrw(r0, access_flags);
1135   {
1136     Label L;
1137     __ tst(r0, JVM_ACC_NATIVE);
1138     __ br(Assembler::NE, L);
1139     __ stop("tried to execute non-native method as native");
1140     __ bind(L);
1141   }
1142   {
1143     Label L;
1144     __ tst(r0, JVM_ACC_ABSTRACT);
1145     __ br(Assembler::EQ, L);
1146     __ stop("tried to execute abstract method in interpreter");
1147     __ bind(L);
1148   }
1149 #endif
1150 
1151   // Since at this point in the method invocation the exception
1152   // handler would try to exit the monitor of synchronized methods
1153   // which hasn't been entered yet, we set the thread local variable
1154   // _do_not_unlock_if_synchronized to true. The remove_activation
1155   // will check this flag.
1156 
1157    const Address do_not_unlock_if_synchronized(rthread,
1158         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1159   __ mov(rscratch2, true);
1160   __ strb(rscratch2, do_not_unlock_if_synchronized);
1161 
1162   // increment invocation count & check for overflow
1163   Label invocation_counter_overflow;
1164   if (inc_counter) {
1165     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1166   }
1167 
1168   Label continue_after_compile;
1169   __ bind(continue_after_compile);
1170 
1171   bang_stack_shadow_pages(true);
1172 
1173   // reset the _do_not_unlock_if_synchronized flag
1174   __ strb(zr, do_not_unlock_if_synchronized);
1175 
1176   // check for synchronized methods
1177   // Must happen AFTER invocation_counter check and stack overflow check,
1178   // so method is not locked if overflows.
1179   if (synchronized) {
1180     lock_method();
1181   } else {
1182     // no synchronization necessary
1183 #ifdef ASSERT
1184     {
1185       Label L;
1186       __ ldrw(r0, access_flags);
1187       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1188       __ br(Assembler::EQ, L);
1189       __ stop("method needs synchronization");
1190       __ bind(L);
1191     }
1192 #endif
1193   }
1194 
1195   // start execution
1196 #ifdef ASSERT
1197   {
1198     Label L;
1199     const Address monitor_block_top(rfp,
1200                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1201     __ ldr(rscratch1, monitor_block_top);
1202     __ cmp(esp, rscratch1);
1203     __ br(Assembler::EQ, L);
1204     __ stop("broken stack frame setup in interpreter");
1205     __ bind(L);
1206   }
1207 #endif
1208 
1209   // jvmti support
1210   __ notify_method_entry();
1211 
1212   // work registers
1213   const Register t = r17;
1214   const Register result_handler = r19;
1215 
1216   // allocate space for parameters
1217   __ ldr(t, Address(rmethod, Method::const_offset()));
1218   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1219 
1220   __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
1221   __ andr(sp, rscratch1, -16);
1222   __ mov(esp, rscratch1);
1223 
1224   // get signature handler
1225   {
1226     Label L;
1227     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1228     __ cbnz(t, L);
1229     __ call_VM(noreg,
1230                CAST_FROM_FN_PTR(address,
1231                                 InterpreterRuntime::prepare_native_call),
1232                rmethod);
1233     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1234     __ bind(L);
1235   }
1236 
1237   // call signature handler
1238   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1239          "adjust this code");
1240   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
1241          "adjust this code");
1242   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1243           "adjust this code");
1244 
1245   // The generated handlers do not touch rmethod (the method).
1246   // However, large signatures cannot be cached and are generated
1247   // each time here.  The slow-path generator can do a GC on return,
1248   // so we must reload it after the call.
1249   __ blr(t);
1250   __ get_method(rmethod);        // slow path can do a GC, reload rmethod
1251 
1252 
1253   // result handler is in r0
1254   // set result handler
1255   __ mov(result_handler, r0);
1256   // pass mirror handle if static call
1257   {
1258     Label L;
1259     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1260     __ tbz(t, exact_log2(JVM_ACC_STATIC), L);
1261     // get mirror
1262     __ load_mirror(t, rmethod);
1263     // copy mirror into activation frame
1264     __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
1265     // pass handle to mirror
1266     __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
1267     __ bind(L);
1268   }
1269 
1270   // get native function entry point in r10
1271   {
1272     Label L;
1273     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1274     address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1275     __ mov(rscratch2, unsatisfied);
1276     __ ldr(rscratch2, rscratch2);
1277     __ cmp(r10, rscratch2);
1278     __ br(Assembler::NE, L);
1279     __ call_VM(noreg,
1280                CAST_FROM_FN_PTR(address,
1281                                 InterpreterRuntime::prepare_native_call),
1282                rmethod);
1283     __ get_method(rmethod);
1284     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1285     __ bind(L);
1286   }
1287 
1288   // pass JNIEnv
1289   __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
1290 
1291   // It is enough that the pc() points into the right code
1292   // segment. It does not have to be the correct return pc.
1293   __ set_last_Java_frame(esp, rfp, (address)NULL, rscratch1);
1294 
1295   // change thread state
1296 #ifdef ASSERT
1297   {
1298     Label L;
1299     __ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
1300     __ cmp(t, _thread_in_Java);
1301     __ br(Assembler::EQ, L);
1302     __ stop("Wrong thread state in native stub");
1303     __ bind(L);
1304   }
1305 #endif
1306 
1307   // Change state to native
1308   __ mov(rscratch1, _thread_in_native);
1309   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1310   __ stlrw(rscratch1, rscratch2);
1311 
1312   // Call the native method.
1313   __ blrt(r10, rscratch1);
1314   __ maybe_isb();
1315   __ get_method(rmethod);
1316   // result potentially in r0 or v0
1317 
1318   // make room for the pushes we're about to do
1319   __ sub(rscratch1, esp, 4 * wordSize);
1320   __ andr(sp, rscratch1, -16);
1321 
1322   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1323   // in order to extract the result of a method call. If the order of these
1324   // pushes change or anything else is added to the stack then the code in
1325   // interpreter_frame_result must also change.
1326   __ push(dtos);
1327   __ push(ltos);
1328 
1329   // change thread state
1330   __ mov(rscratch1, _thread_in_native_trans);
1331   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1332   __ stlrw(rscratch1, rscratch2);
1333 
1334   if (os::is_MP()) {
1335     if (UseMembar) {
1336       // Force this write out before the read below
1337       __ dsb(Assembler::SY);
1338     } else {
1339       // Write serialization page so VM thread can do a pseudo remote membar.
1340       // We use the current thread pointer to calculate a thread specific
1341       // offset to write to within the page. This minimizes bus traffic
1342       // due to cache line collision.
1343       __ serialize_memory(rthread, rscratch2);
1344     }
1345   }
1346 
1347   // check for safepoint operation in progress and/or pending suspend requests
1348   {
1349     Label Continue;
1350     {
1351       unsigned long offset;
1352       __ adrp(rscratch2, SafepointSynchronize::address_of_state(), offset);
1353       __ ldrw(rscratch2, Address(rscratch2, offset));
1354     }
1355     assert(SafepointSynchronize::_not_synchronized == 0,
1356            "SafepointSynchronize::_not_synchronized");
1357     Label L;
1358     __ cbnz(rscratch2, L);
1359     __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
1360     __ cbz(rscratch2, Continue);
1361     __ bind(L);
1362 
1363     // Don't use call_VM as it will see a possible pending exception
1364     // and forward it and never return here preventing us from
1365     // clearing _last_native_pc down below. So we do a runtime call by
1366     // hand.
1367     //
1368     __ mov(c_rarg0, rthread);
1369     __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1370     __ blrt(rscratch2, 1, 0, 0);
1371     __ maybe_isb();
1372     __ get_method(rmethod);
1373     __ reinit_heapbase();
1374     __ bind(Continue);
1375   }
1376 
1377   // change thread state
1378   __ mov(rscratch1, _thread_in_Java);
1379   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1380   __ stlrw(rscratch1, rscratch2);
1381 
1382   // reset_last_Java_frame
1383   __ reset_last_Java_frame(true);
1384 
1385   if (CheckJNICalls) {
1386     // clear_pending_jni_exception_check
1387     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1388   }
1389 
1390   // reset handle block
1391   __ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
1392   __ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes()));
1393 
1394   // If result is an oop unbox and store it in frame where gc will see it
1395   // and result handler will pick it up
1396 
1397   {
1398     Label no_oop, not_weak, store_result;
1399     __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1400     __ cmp(t, result_handler);
1401     __ br(Assembler::NE, no_oop);
1402     // Unbox oop result, e.g. JNIHandles::resolve result.
1403     __ pop(ltos);
1404     __ cbz(r0, store_result);   // Use NULL as-is.
1405     STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u);
1406     __ tbz(r0, 0, not_weak);    // Test for jweak tag.
1407     // Resolve jweak.
1408     __ ldr(r0, Address(r0, -JNIHandles::weak_tag_value));
1409 #if INCLUDE_ALL_GCS
1410     if (UseG1GC) {
1411       __ enter();                   // Barrier may call runtime.
1412       __ g1_write_barrier_pre(noreg /* obj */,
1413                               r0 /* pre_val */,
1414                               rthread /* thread */,
1415                               t /* tmp */,
1416                               true /* tosca_live */,
1417                               true /* expand_call */);
1418       __ leave();
1419     }
1420 #endif // INCLUDE_ALL_GCS
1421     __ b(store_result);
1422     __ bind(not_weak);
1423     // Resolve (untagged) jobject.
1424     __ ldr(r0, Address(r0, 0));
1425     __ bind(store_result);
1426     __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
1427     // keep stack depth as expected by pushing oop which will eventually be discarded
1428     __ push(ltos);
1429     __ bind(no_oop);
1430   }
1431 
1432   {
1433     Label no_reguard;
1434     __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
1435     __ ldrw(rscratch1, Address(rscratch1));
1436     __ cmp(rscratch1, JavaThread::stack_guard_yellow_reserved_disabled);
1437     __ br(Assembler::NE, no_reguard);
1438 
1439     __ pusha(); // XXX only save smashed registers
1440     __ mov(c_rarg0, rthread);
1441     __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1442     __ blrt(rscratch2, 0, 0, 0);
1443     __ popa(); // XXX only restore smashed registers
1444     __ bind(no_reguard);
1445   }
1446 
1447   // The method register is junk from after the thread_in_native transition
1448   // until here.  Also can't call_VM until the bcp has been
1449   // restored.  Need bcp for throwing exception below so get it now.
1450   __ get_method(rmethod);
1451 
1452   // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
1453   // rbcp == code_base()
1454   __ ldr(rbcp, Address(rmethod, Method::const_offset()));   // get ConstMethod*
1455   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));          // get codebase
1456   // handle exceptions (exception handling will handle unlocking!)
1457   {
1458     Label L;
1459     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
1460     __ cbz(rscratch1, L);
1461     // Note: At some point we may want to unify this with the code
1462     // used in call_VM_base(); i.e., we should use the
1463     // StubRoutines::forward_exception code. For now this doesn't work
1464     // here because the rsp is not correctly set at this point.
1465     __ MacroAssembler::call_VM(noreg,
1466                                CAST_FROM_FN_PTR(address,
1467                                InterpreterRuntime::throw_pending_exception));
1468     __ should_not_reach_here();
1469     __ bind(L);
1470   }
1471 
1472   // do unlocking if necessary
1473   {
1474     Label L;
1475     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1476     __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
1477     // the code below should be shared with interpreter macro
1478     // assembler implementation
1479     {
1480       Label unlock;
1481       // BasicObjectLock will be first in list, since this is a
1482       // synchronized method. However, need to check that the object
1483       // has not been unlocked by an explicit monitorexit bytecode.
1484 
1485       // monitor expect in c_rarg1 for slow unlock path
1486       __ lea (c_rarg1, Address(rfp,   // address of first monitor
1487                                (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1488                                           wordSize - sizeof(BasicObjectLock))));
1489 
1490       __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
1491       __ cbnz(t, unlock);
1492 
1493       // Entry already unlocked, need to throw exception
1494       __ MacroAssembler::call_VM(noreg,
1495                                  CAST_FROM_FN_PTR(address,
1496                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1497       __ should_not_reach_here();
1498 
1499       __ bind(unlock);
1500       __ unlock_object(c_rarg1);
1501     }
1502     __ bind(L);
1503   }
1504 
1505   // jvmti support
1506   // Note: This must happen _after_ handling/throwing any exceptions since
1507   //       the exception handler code notifies the runtime of method exits
1508   //       too. If this happens before, method entry/exit notifications are
1509   //       not properly paired (was bug - gri 11/22/99).
1510   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1511 
1512   // restore potential result in r0:d0, call result handler to
1513   // restore potential result in ST0 & handle result
1514 
1515   __ pop(ltos);
1516   __ pop(dtos);
1517 
1518   __ blr(result_handler);
1519 
1520   // remove activation
1521   __ ldr(esp, Address(rfp,
1522                     frame::interpreter_frame_sender_sp_offset *
1523                     wordSize)); // get sender sp
1524   // remove frame anchor
1525   __ leave();
1526 
1527   // resture sender sp
1528   __ mov(sp, esp);
1529 
1530   __ ret(lr);
1531 
1532   if (inc_counter) {
1533     // Handle overflow of counter and compile method
1534     __ bind(invocation_counter_overflow);
1535     generate_counter_overflow(continue_after_compile);
1536   }
1537 
1538   return entry_point;
1539 }
1540 
1541 //
1542 // Generic interpreted method entry to (asm) interpreter
1543 //
1544 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1545   // determine code generation flags
1546   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1547 
1548   // rscratch1: sender sp
1549   address entry_point = __ pc();
1550 
1551   const Address constMethod(rmethod, Method::const_offset());
1552   const Address access_flags(rmethod, Method::access_flags_offset());
1553   const Address size_of_parameters(r3,
1554                                    ConstMethod::size_of_parameters_offset());
1555   const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
1556 
1557   // get parameter size (always needed)
1558   // need to load the const method first
1559   __ ldr(r3, constMethod);
1560   __ load_unsigned_short(r2, size_of_parameters);
1561 
1562   // r2: size of parameters
1563 
1564   __ load_unsigned_short(r3, size_of_locals); // get size of locals in words
1565   __ sub(r3, r3, r2); // r3 = no. of additional locals
1566 
1567   // see if we've got enough room on the stack for locals plus overhead.
1568   generate_stack_overflow_check();
1569 
1570   // compute beginning of parameters (rlocals)
1571   __ add(rlocals, esp, r2, ext::uxtx, 3);
1572   __ sub(rlocals, rlocals, wordSize);
1573 
1574   // Make room for locals
1575   __ sub(rscratch1, esp, r3, ext::uxtx, 3);
1576   __ andr(sp, rscratch1, -16);
1577 
1578   // r3 - # of additional locals
1579   // allocate space for locals
1580   // explicitly initialize locals
1581   {
1582     Label exit, loop;
1583     __ ands(zr, r3, r3);
1584     __ br(Assembler::LE, exit); // do nothing if r3 <= 0
1585     __ bind(loop);
1586     __ str(zr, Address(__ post(rscratch1, wordSize)));
1587     __ sub(r3, r3, 1); // until everything initialized
1588     __ cbnz(r3, loop);
1589     __ bind(exit);
1590   }
1591 
1592   // And the base dispatch table
1593   __ get_dispatch();
1594 
1595   // initialize fixed part of activation frame
1596   generate_fixed_frame(false);
1597 #ifndef PRODUCT
1598   // tell the simulator that a method has been entered
1599   if (NotifySimulator) {
1600     __ notify(Assembler::method_entry);
1601   }
1602 #endif
1603   // make sure method is not native & not abstract
1604 #ifdef ASSERT
1605   __ ldrw(r0, access_flags);
1606   {
1607     Label L;
1608     __ tst(r0, JVM_ACC_NATIVE);
1609     __ br(Assembler::EQ, L);
1610     __ stop("tried to execute native method as non-native");
1611     __ bind(L);
1612   }
1613  {
1614     Label L;
1615     __ tst(r0, JVM_ACC_ABSTRACT);
1616     __ br(Assembler::EQ, L);
1617     __ stop("tried to execute abstract method in interpreter");
1618     __ bind(L);
1619   }
1620 #endif
1621 
1622   // Since at this point in the method invocation the exception
1623   // handler would try to exit the monitor of synchronized methods
1624   // which hasn't been entered yet, we set the thread local variable
1625   // _do_not_unlock_if_synchronized to true. The remove_activation
1626   // will check this flag.
1627 
1628    const Address do_not_unlock_if_synchronized(rthread,
1629         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1630   __ mov(rscratch2, true);
1631   __ strb(rscratch2, do_not_unlock_if_synchronized);
1632 
1633   // increment invocation count & check for overflow
1634   Label invocation_counter_overflow;
1635   Label profile_method;
1636   Label profile_method_continue;
1637   if (inc_counter) {
1638     generate_counter_incr(&invocation_counter_overflow,
1639                           &profile_method,
1640                           &profile_method_continue);
1641     if (ProfileInterpreter) {
1642       __ bind(profile_method_continue);
1643     }
1644   }
1645 
1646   Label continue_after_compile;
1647   __ bind(continue_after_compile);
1648 
1649   bang_stack_shadow_pages(false);
1650 
1651   // reset the _do_not_unlock_if_synchronized flag
1652   __ strb(zr, do_not_unlock_if_synchronized);
1653 
1654   // check for synchronized methods
1655   // Must happen AFTER invocation_counter check and stack overflow check,
1656   // so method is not locked if overflows.
1657   if (synchronized) {
1658     // Allocate monitor and lock method
1659     lock_method();
1660   } else {
1661     // no synchronization necessary
1662 #ifdef ASSERT
1663     {
1664       Label L;
1665       __ ldrw(r0, access_flags);
1666       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1667       __ br(Assembler::EQ, L);
1668       __ stop("method needs synchronization");
1669       __ bind(L);
1670     }
1671 #endif
1672   }
1673 
1674   // start execution
1675 #ifdef ASSERT
1676   {
1677     Label L;
1678      const Address monitor_block_top (rfp,
1679                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1680     __ ldr(rscratch1, monitor_block_top);
1681     __ cmp(esp, rscratch1);
1682     __ br(Assembler::EQ, L);
1683     __ stop("broken stack frame setup in interpreter");
1684     __ bind(L);
1685   }
1686 #endif
1687 
1688   // jvmti support
1689   __ notify_method_entry();
1690 
1691   __ dispatch_next(vtos);
1692 
1693   // invocation counter overflow
1694   if (inc_counter) {
1695     if (ProfileInterpreter) {
1696       // We have decided to profile this method in the interpreter
1697       __ bind(profile_method);
1698       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1699       __ set_method_data_pointer_for_bcp();
1700       // don't think we need this
1701       __ get_method(r1);
1702       __ b(profile_method_continue);
1703     }
1704     // Handle overflow of counter and compile method
1705     __ bind(invocation_counter_overflow);
1706     generate_counter_overflow(continue_after_compile);
1707   }
1708 
1709   return entry_point;
1710 }
1711 
1712 //-----------------------------------------------------------------------------
1713 // Exceptions
1714 
1715 void TemplateInterpreterGenerator::generate_throw_exception() {
1716   // Entry point in previous activation (i.e., if the caller was
1717   // interpreted)
1718   Interpreter::_rethrow_exception_entry = __ pc();
1719   // Restore sp to interpreter_frame_last_sp even though we are going
1720   // to empty the expression stack for the exception processing.
1721   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1722   // r0: exception
1723   // r3: return address/pc that threw exception
1724   __ restore_bcp();    // rbcp points to call/send
1725   __ restore_locals();
1726   __ restore_constant_pool_cache();
1727   __ reinit_heapbase();  // restore rheapbase as heapbase.
1728   __ get_dispatch();
1729 
1730 #ifndef PRODUCT
1731   // tell the simulator that the caller method has been reentered
1732   if (NotifySimulator) {
1733     __ get_method(rmethod);
1734     __ notify(Assembler::method_reentry);
1735   }
1736 #endif
1737   // Entry point for exceptions thrown within interpreter code
1738   Interpreter::_throw_exception_entry = __ pc();
1739   // If we came here via a NullPointerException on the receiver of a
1740   // method, rmethod may be corrupt.
1741   __ get_method(rmethod);
1742   // expression stack is undefined here
1743   // r0: exception
1744   // rbcp: exception bcp
1745   __ verify_oop(r0);
1746   __ mov(c_rarg1, r0);
1747 
1748   // expression stack must be empty before entering the VM in case of
1749   // an exception
1750   __ empty_expression_stack();
1751   // find exception handler address and preserve exception oop
1752   __ call_VM(r3,
1753              CAST_FROM_FN_PTR(address,
1754                           InterpreterRuntime::exception_handler_for_exception),
1755              c_rarg1);
1756 
1757   // Calculate stack limit
1758   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1759   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1760   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1761   __ ldr(rscratch2,
1762          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1763   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
1764   __ andr(sp, rscratch1, -16);
1765 
1766   // r0: exception handler entry point
1767   // r3: preserved exception oop
1768   // rbcp: bcp for exception handler
1769   __ push_ptr(r3); // push exception which is now the only value on the stack
1770   __ br(r0); // jump to exception handler (may be _remove_activation_entry!)
1771 
1772   // If the exception is not handled in the current frame the frame is
1773   // removed and the exception is rethrown (i.e. exception
1774   // continuation is _rethrow_exception).
1775   //
1776   // Note: At this point the bci is still the bxi for the instruction
1777   // which caused the exception and the expression stack is
1778   // empty. Thus, for any VM calls at this point, GC will find a legal
1779   // oop map (with empty expression stack).
1780 
1781   //
1782   // JVMTI PopFrame support
1783   //
1784 
1785   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1786   __ empty_expression_stack();
1787   // Set the popframe_processing bit in pending_popframe_condition
1788   // indicating that we are currently handling popframe, so that
1789   // call_VMs that may happen later do not trigger new popframe
1790   // handling cycles.
1791   __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1792   __ orr(r3, r3, JavaThread::popframe_processing_bit);
1793   __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1794 
1795   {
1796     // Check to see whether we are returning to a deoptimized frame.
1797     // (The PopFrame call ensures that the caller of the popped frame is
1798     // either interpreted or compiled and deoptimizes it if compiled.)
1799     // In this case, we can't call dispatch_next() after the frame is
1800     // popped, but instead must save the incoming arguments and restore
1801     // them after deoptimization has occurred.
1802     //
1803     // Note that we don't compare the return PC against the
1804     // deoptimization blob's unpack entry because of the presence of
1805     // adapter frames in C2.
1806     Label caller_not_deoptimized;
1807     __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
1808     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1809                                InterpreterRuntime::interpreter_contains), c_rarg1);
1810     __ cbnz(r0, caller_not_deoptimized);
1811 
1812     // Compute size of arguments for saving when returning to
1813     // deoptimized caller
1814     __ get_method(r0);
1815     __ ldr(r0, Address(r0, Method::const_offset()));
1816     __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
1817                                                     size_of_parameters_offset())));
1818     __ lsl(r0, r0, Interpreter::logStackElementSize);
1819     __ restore_locals(); // XXX do we need this?
1820     __ sub(rlocals, rlocals, r0);
1821     __ add(rlocals, rlocals, wordSize);
1822     // Save these arguments
1823     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1824                                            Deoptimization::
1825                                            popframe_preserve_args),
1826                           rthread, r0, rlocals);
1827 
1828     __ remove_activation(vtos,
1829                          /* throw_monitor_exception */ false,
1830                          /* install_monitor_exception */ false,
1831                          /* notify_jvmdi */ false);
1832 
1833     // Inform deoptimization that it is responsible for restoring
1834     // these arguments
1835     __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1836     __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
1837 
1838     // Continue in deoptimization handler
1839     __ ret(lr);
1840 
1841     __ bind(caller_not_deoptimized);
1842   }
1843 
1844   __ remove_activation(vtos,
1845                        /* throw_monitor_exception */ false,
1846                        /* install_monitor_exception */ false,
1847                        /* notify_jvmdi */ false);
1848 
1849   // Restore the last_sp and null it out
1850   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1851   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1852 
1853   __ restore_bcp();
1854   __ restore_locals();
1855   __ restore_constant_pool_cache();
1856   __ get_method(rmethod);
1857 
1858   // The method data pointer was incremented already during
1859   // call profiling. We have to restore the mdp for the current bcp.
1860   if (ProfileInterpreter) {
1861     __ set_method_data_pointer_for_bcp();
1862   }
1863 
1864   // Clear the popframe condition flag
1865   __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
1866   assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
1867 
1868 #if INCLUDE_JVMTI
1869   {
1870     Label L_done;
1871 
1872     __ ldrb(rscratch1, Address(rbcp, 0));
1873     __ cmpw(r1, Bytecodes::_invokestatic);
1874     __ br(Assembler::EQ, L_done);
1875 
1876     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1877     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1878 
1879     __ ldr(c_rarg0, Address(rlocals, 0));
1880     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
1881 
1882     __ cbz(r0, L_done);
1883 
1884     __ str(r0, Address(esp, 0));
1885     __ bind(L_done);
1886   }
1887 #endif // INCLUDE_JVMTI
1888 
1889   // Restore machine SP
1890   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1891   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1892   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1893   __ ldr(rscratch2,
1894          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1895   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
1896   __ andr(sp, rscratch1, -16);
1897 
1898   __ dispatch_next(vtos);
1899   // end of PopFrame support
1900 
1901   Interpreter::_remove_activation_entry = __ pc();
1902 
1903   // preserve exception over this code sequence
1904   __ pop_ptr(r0);
1905   __ str(r0, Address(rthread, JavaThread::vm_result_offset()));
1906   // remove the activation (without doing throws on illegalMonitorExceptions)
1907   __ remove_activation(vtos, false, true, false);
1908   // restore exception
1909   // restore exception
1910   __ get_vm_result(r0, rthread);
1911 
1912   // In between activations - previous activation type unknown yet
1913   // compute continuation point - the continuation point expects the
1914   // following registers set up:
1915   //
1916   // r0: exception
1917   // lr: return address/pc that threw exception
1918   // rsp: expression stack of caller
1919   // rfp: fp of caller
1920   // FIXME: There's no point saving LR here because VM calls don't trash it
1921   __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize)));  // save exception & return address
1922   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1923                           SharedRuntime::exception_handler_for_return_address),
1924                         rthread, lr);
1925   __ mov(r1, r0);                               // save exception handler
1926   __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize)));  // restore exception & return address
1927   // We might be returning to a deopt handler that expects r3 to
1928   // contain the exception pc
1929   __ mov(r3, lr);
1930   // Note that an "issuing PC" is actually the next PC after the call
1931   __ br(r1);                                    // jump to exception
1932                                                 // handler of caller
1933 }
1934 
1935 
1936 //
1937 // JVMTI ForceEarlyReturn support
1938 //
1939 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1940   address entry = __ pc();
1941 
1942   __ restore_bcp();
1943   __ restore_locals();
1944   __ empty_expression_stack();
1945   __ load_earlyret_value(state);
1946 
1947   __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
1948   Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
1949 
1950   // Clear the earlyret state
1951   assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
1952   __ str(zr, cond_addr);
1953 
1954   __ remove_activation(state,
1955                        false, /* throw_monitor_exception */
1956                        false, /* install_monitor_exception */
1957                        true); /* notify_jvmdi */
1958   __ ret(lr);
1959 
1960   return entry;
1961 } // end of ForceEarlyReturn support
1962 
1963 
1964 
1965 //-----------------------------------------------------------------------------
1966 // Helper for vtos entry point generation
1967 
1968 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1969                                                          address& bep,
1970                                                          address& cep,
1971                                                          address& sep,
1972                                                          address& aep,
1973                                                          address& iep,
1974                                                          address& lep,
1975                                                          address& fep,
1976                                                          address& dep,
1977                                                          address& vep) {
1978   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1979   Label L;
1980   aep = __ pc();  __ push_ptr();  __ b(L);
1981   fep = __ pc();  __ push_f();    __ b(L);
1982   dep = __ pc();  __ push_d();    __ b(L);
1983   lep = __ pc();  __ push_l();    __ b(L);
1984   bep = cep = sep =
1985   iep = __ pc();  __ push_i();
1986   vep = __ pc();
1987   __ bind(L);
1988   generate_and_dispatch(t);
1989 }
1990 
1991 //-----------------------------------------------------------------------------
1992 
1993 // Non-product code
1994 #ifndef PRODUCT
1995 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1996   address entry = __ pc();
1997 
1998   __ push(lr);
1999   __ push(state);
2000   __ push(RegSet::range(r0, r15), sp);
2001   __ mov(c_rarg2, r0);  // Pass itos
2002   __ call_VM(noreg,
2003              CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
2004              c_rarg1, c_rarg2, c_rarg3);
2005   __ pop(RegSet::range(r0, r15), sp);
2006   __ pop(state);
2007   __ pop(lr);
2008   __ ret(lr);                                   // return from result handler
2009 
2010   return entry;
2011 }
2012 
2013 void TemplateInterpreterGenerator::count_bytecode() {
2014   Register rscratch3 = r0;
2015   __ push(rscratch1);
2016   __ push(rscratch2);
2017   __ push(rscratch3);
2018   __ mov(rscratch3, (address) &BytecodeCounter::_counter_value);
2019   __ atomic_add(noreg, 1, rscratch3);
2020   __ pop(rscratch3);
2021   __ pop(rscratch2);
2022   __ pop(rscratch1);
2023 }
2024 
2025 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; }
2026 
2027 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; }
2028 
2029 
2030 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2031   // Call a little run-time stub to avoid blow-up for each bytecode.
2032   // The run-time runtime saves the right registers, depending on
2033   // the tosca in-state for the given template.
2034 
2035   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2036          "entry must have been generated");
2037   __ bl(Interpreter::trace_code(t->tos_in()));
2038   __ reinit_heapbase();
2039 }
2040 
2041 
2042 void TemplateInterpreterGenerator::stop_interpreter_at() {
2043   Label L;
2044   __ push(rscratch1);
2045   __ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
2046   __ ldr(rscratch1, Address(rscratch1));
2047   __ mov(rscratch2, StopInterpreterAt);
2048   __ cmpw(rscratch1, rscratch2);
2049   __ br(Assembler::NE, L);
2050   __ brk(0);
2051   __ bind(L);
2052   __ pop(rscratch1);
2053 }
2054 
2055 #ifdef BUILTIN_SIM
2056 
2057 #include <sys/mman.h>
2058 #include <unistd.h>
2059 
2060 extern "C" {
2061   static int PAGESIZE = getpagesize();
2062   int is_mapped_address(u_int64_t address)
2063   {
2064     address = (address & ~((u_int64_t)PAGESIZE - 1));
2065     if (msync((void *)address, PAGESIZE, MS_ASYNC) == 0) {
2066       return true;
2067     }
2068     if (errno != ENOMEM) {
2069       return true;
2070     }
2071     return false;
2072   }
2073 
2074   void bccheck1(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2075   {
2076     if (method != 0) {
2077       method[0] = '\0';
2078     }
2079     if (bcidx != 0) {
2080       *bcidx = -2;
2081     }
2082     if (decode != 0) {
2083       decode[0] = 0;
2084     }
2085 
2086     if (framesize != 0) {
2087       *framesize = -1;
2088     }
2089 
2090     if (Interpreter::contains((address)pc)) {
2091       AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
2092       Method* meth;
2093       address bcp;
2094       if (fp) {
2095 #define FRAME_SLOT_METHOD 3
2096 #define FRAME_SLOT_BCP 7
2097         meth = (Method*)sim->getMemory()->loadU64(fp - (FRAME_SLOT_METHOD << 3));
2098         bcp = (address)sim->getMemory()->loadU64(fp - (FRAME_SLOT_BCP << 3));
2099 #undef FRAME_SLOT_METHOD
2100 #undef FRAME_SLOT_BCP
2101       } else {
2102         meth = (Method*)sim->getCPUState().xreg(RMETHOD, 0);
2103         bcp = (address)sim->getCPUState().xreg(RBCP, 0);
2104       }
2105       if (meth->is_native()) {
2106         return;
2107       }
2108       if(method && meth->is_method()) {
2109         ResourceMark rm;
2110         method[0] = 'I';
2111         method[1] = ' ';
2112         meth->name_and_sig_as_C_string(method + 2, 398);
2113       }
2114       if (bcidx) {
2115         if (meth->contains(bcp)) {
2116           *bcidx = meth->bci_from(bcp);
2117         } else {
2118           *bcidx = -2;
2119         }
2120       }
2121       if (decode) {
2122         if (!BytecodeTracer::closure()) {
2123           BytecodeTracer::set_closure(BytecodeTracer::std_closure());
2124         }
2125         stringStream str(decode, 400);
2126         BytecodeTracer::trace(meth, bcp, &str);
2127       }
2128     } else {
2129       if (method) {
2130         CodeBlob *cb = CodeCache::find_blob((address)pc);
2131         if (cb != NULL) {
2132           if (cb->is_nmethod()) {
2133             ResourceMark rm;
2134             nmethod* nm = (nmethod*)cb;
2135             method[0] = 'C';
2136             method[1] = ' ';
2137             nm->method()->name_and_sig_as_C_string(method + 2, 398);
2138           } else if (cb->is_adapter_blob()) {
2139             strcpy(method, "B adapter blob");
2140           } else if (cb->is_runtime_stub()) {
2141             strcpy(method, "B runtime stub");
2142           } else if (cb->is_exception_stub()) {
2143             strcpy(method, "B exception stub");
2144           } else if (cb->is_deoptimization_stub()) {
2145             strcpy(method, "B deoptimization stub");
2146           } else if (cb->is_safepoint_stub()) {
2147             strcpy(method, "B safepoint stub");
2148           } else if (cb->is_uncommon_trap_stub()) {
2149             strcpy(method, "B uncommon trap stub");
2150           } else if (cb->contains((address)StubRoutines::call_stub())) {
2151             strcpy(method, "B call stub");
2152           } else {
2153             strcpy(method, "B unknown blob : ");
2154             strcat(method, cb->name());
2155           }
2156           if (framesize != NULL) {
2157             *framesize = cb->frame_size();
2158           }
2159         }
2160       }
2161     }
2162   }
2163 
2164 
2165   JNIEXPORT void bccheck(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2166   {
2167     bccheck1(pc, fp, method, bcidx, framesize, decode);
2168   }
2169 }
2170 
2171 #endif // BUILTIN_SIM
2172 #endif // !PRODUCT