1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullGCScope.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1SerialFullCollector.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/heapRegion.inline.hpp"
  58 #include "gc/g1/heapRegionRemSet.hpp"
  59 #include "gc/g1/heapRegionSet.inline.hpp"
  60 #include "gc/g1/suspendibleThreadSet.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/gcHeapSummary.hpp"
  63 #include "gc/shared/gcId.hpp"
  64 #include "gc/shared/gcLocker.inline.hpp"
  65 #include "gc/shared/gcTimer.hpp"
  66 #include "gc/shared/gcTrace.hpp"
  67 #include "gc/shared/gcTraceTime.inline.hpp"
  68 #include "gc/shared/generationSpec.hpp"
  69 #include "gc/shared/isGCActiveMark.hpp"
  70 #include "gc/shared/preservedMarks.inline.hpp"
  71 #include "gc/shared/referenceProcessor.inline.hpp"
  72 #include "gc/shared/taskqueue.inline.hpp"
  73 #include "logging/log.hpp"
  74 #include "memory/allocation.hpp"
  75 #include "memory/iterator.hpp"
  76 #include "memory/resourceArea.hpp"
  77 #include "oops/oop.inline.hpp"
  78 #include "prims/resolvedMethodTable.hpp"
  79 #include "runtime/atomic.hpp"
  80 #include "runtime/init.hpp"
  81 #include "runtime/orderAccess.inline.hpp"
  82 #include "runtime/vmThread.hpp"
  83 #include "utilities/align.hpp"
  84 #include "utilities/globalDefinitions.hpp"
  85 #include "utilities/stack.inline.hpp"
  86 
  87 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  88 
  89 // INVARIANTS/NOTES
  90 //
  91 // All allocation activity covered by the G1CollectedHeap interface is
  92 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  93 // and allocate_new_tlab, which are the "entry" points to the
  94 // allocation code from the rest of the JVM.  (Note that this does not
  95 // apply to TLAB allocation, which is not part of this interface: it
  96 // is done by clients of this interface.)
  97 
  98 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
  99  private:
 100   size_t _num_dirtied;
 101   G1CollectedHeap* _g1h;
 102   G1CardTable* _g1_ct;
 103 
 104   HeapRegion* region_for_card(jbyte* card_ptr) const {
 105     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 106   }
 107 
 108   bool will_become_free(HeapRegion* hr) const {
 109     // A region will be freed by free_collection_set if the region is in the
 110     // collection set and has not had an evacuation failure.
 111     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 112   }
 113 
 114  public:
 115   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 116     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->g1_card_table()) { }
 117 
 118   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 119     HeapRegion* hr = region_for_card(card_ptr);
 120 
 121     // Should only dirty cards in regions that won't be freed.
 122     if (!will_become_free(hr)) {
 123       *card_ptr = G1CardTable::dirty_card_val();
 124       _num_dirtied++;
 125     }
 126 
 127     return true;
 128   }
 129 
 130   size_t num_dirtied()   const { return _num_dirtied; }
 131 };
 132 
 133 
 134 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 135   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 136 }
 137 
 138 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 139   // The from card cache is not the memory that is actually committed. So we cannot
 140   // take advantage of the zero_filled parameter.
 141   reset_from_card_cache(start_idx, num_regions);
 142 }
 143 
 144 // Returns true if the reference points to an object that
 145 // can move in an incremental collection.
 146 bool G1CollectedHeap::is_scavengable(const void* p) {
 147   HeapRegion* hr = heap_region_containing(p);
 148   return !hr->is_pinned();
 149 }
 150 
 151 // Private methods.
 152 
 153 HeapRegion*
 154 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 155   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 156   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 157     if (!_secondary_free_list.is_empty()) {
 158       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 159                                       "secondary_free_list has %u entries",
 160                                       _secondary_free_list.length());
 161       // It looks as if there are free regions available on the
 162       // secondary_free_list. Let's move them to the free_list and try
 163       // again to allocate from it.
 164       append_secondary_free_list();
 165 
 166       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 167              "empty we should have moved at least one entry to the free_list");
 168       HeapRegion* res = _hrm.allocate_free_region(is_old);
 169       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 170                                       "allocated " HR_FORMAT " from secondary_free_list",
 171                                       HR_FORMAT_PARAMS(res));
 172       return res;
 173     }
 174 
 175     // Wait here until we get notified either when (a) there are no
 176     // more free regions coming or (b) some regions have been moved on
 177     // the secondary_free_list.
 178     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 179   }
 180 
 181   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 182                                   "could not allocate from secondary_free_list");
 183   return NULL;
 184 }
 185 
 186 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 187   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 188          "the only time we use this to allocate a humongous region is "
 189          "when we are allocating a single humongous region");
 190 
 191   HeapRegion* res;
 192   if (G1StressConcRegionFreeing) {
 193     if (!_secondary_free_list.is_empty()) {
 194       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 195                                       "forced to look at the secondary_free_list");
 196       res = new_region_try_secondary_free_list(is_old);
 197       if (res != NULL) {
 198         return res;
 199       }
 200     }
 201   }
 202 
 203   res = _hrm.allocate_free_region(is_old);
 204 
 205   if (res == NULL) {
 206     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 207                                     "res == NULL, trying the secondary_free_list");
 208     res = new_region_try_secondary_free_list(is_old);
 209   }
 210   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 211     // Currently, only attempts to allocate GC alloc regions set
 212     // do_expand to true. So, we should only reach here during a
 213     // safepoint. If this assumption changes we might have to
 214     // reconsider the use of _expand_heap_after_alloc_failure.
 215     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 216 
 217     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 218                               word_size * HeapWordSize);
 219 
 220     if (expand(word_size * HeapWordSize)) {
 221       // Given that expand() succeeded in expanding the heap, and we
 222       // always expand the heap by an amount aligned to the heap
 223       // region size, the free list should in theory not be empty.
 224       // In either case allocate_free_region() will check for NULL.
 225       res = _hrm.allocate_free_region(is_old);
 226     } else {
 227       _expand_heap_after_alloc_failure = false;
 228     }
 229   }
 230   return res;
 231 }
 232 
 233 HeapWord*
 234 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 235                                                            uint num_regions,
 236                                                            size_t word_size,
 237                                                            AllocationContext_t context) {
 238   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 239   assert(is_humongous(word_size), "word_size should be humongous");
 240   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 241 
 242   // Index of last region in the series.
 243   uint last = first + num_regions - 1;
 244 
 245   // We need to initialize the region(s) we just discovered. This is
 246   // a bit tricky given that it can happen concurrently with
 247   // refinement threads refining cards on these regions and
 248   // potentially wanting to refine the BOT as they are scanning
 249   // those cards (this can happen shortly after a cleanup; see CR
 250   // 6991377). So we have to set up the region(s) carefully and in
 251   // a specific order.
 252 
 253   // The word size sum of all the regions we will allocate.
 254   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 255   assert(word_size <= word_size_sum, "sanity");
 256 
 257   // This will be the "starts humongous" region.
 258   HeapRegion* first_hr = region_at(first);
 259   // The header of the new object will be placed at the bottom of
 260   // the first region.
 261   HeapWord* new_obj = first_hr->bottom();
 262   // This will be the new top of the new object.
 263   HeapWord* obj_top = new_obj + word_size;
 264 
 265   // First, we need to zero the header of the space that we will be
 266   // allocating. When we update top further down, some refinement
 267   // threads might try to scan the region. By zeroing the header we
 268   // ensure that any thread that will try to scan the region will
 269   // come across the zero klass word and bail out.
 270   //
 271   // NOTE: It would not have been correct to have used
 272   // CollectedHeap::fill_with_object() and make the space look like
 273   // an int array. The thread that is doing the allocation will
 274   // later update the object header to a potentially different array
 275   // type and, for a very short period of time, the klass and length
 276   // fields will be inconsistent. This could cause a refinement
 277   // thread to calculate the object size incorrectly.
 278   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 279 
 280   // Next, pad out the unused tail of the last region with filler
 281   // objects, for improved usage accounting.
 282   // How many words we use for filler objects.
 283   size_t word_fill_size = word_size_sum - word_size;
 284 
 285   // How many words memory we "waste" which cannot hold a filler object.
 286   size_t words_not_fillable = 0;
 287 
 288   if (word_fill_size >= min_fill_size()) {
 289     fill_with_objects(obj_top, word_fill_size);
 290   } else if (word_fill_size > 0) {
 291     // We have space to fill, but we cannot fit an object there.
 292     words_not_fillable = word_fill_size;
 293     word_fill_size = 0;
 294   }
 295 
 296   // We will set up the first region as "starts humongous". This
 297   // will also update the BOT covering all the regions to reflect
 298   // that there is a single object that starts at the bottom of the
 299   // first region.
 300   first_hr->set_starts_humongous(obj_top, word_fill_size);
 301   first_hr->set_allocation_context(context);
 302   // Then, if there are any, we will set up the "continues
 303   // humongous" regions.
 304   HeapRegion* hr = NULL;
 305   for (uint i = first + 1; i <= last; ++i) {
 306     hr = region_at(i);
 307     hr->set_continues_humongous(first_hr);
 308     hr->set_allocation_context(context);
 309   }
 310 
 311   // Up to this point no concurrent thread would have been able to
 312   // do any scanning on any region in this series. All the top
 313   // fields still point to bottom, so the intersection between
 314   // [bottom,top] and [card_start,card_end] will be empty. Before we
 315   // update the top fields, we'll do a storestore to make sure that
 316   // no thread sees the update to top before the zeroing of the
 317   // object header and the BOT initialization.
 318   OrderAccess::storestore();
 319 
 320   // Now, we will update the top fields of the "continues humongous"
 321   // regions except the last one.
 322   for (uint i = first; i < last; ++i) {
 323     hr = region_at(i);
 324     hr->set_top(hr->end());
 325   }
 326 
 327   hr = region_at(last);
 328   // If we cannot fit a filler object, we must set top to the end
 329   // of the humongous object, otherwise we cannot iterate the heap
 330   // and the BOT will not be complete.
 331   hr->set_top(hr->end() - words_not_fillable);
 332 
 333   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 334          "obj_top should be in last region");
 335 
 336   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 337 
 338   assert(words_not_fillable == 0 ||
 339          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 340          "Miscalculation in humongous allocation");
 341 
 342   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 343 
 344   for (uint i = first; i <= last; ++i) {
 345     hr = region_at(i);
 346     _humongous_set.add(hr);
 347     _hr_printer.alloc(hr);
 348   }
 349 
 350   return new_obj;
 351 }
 352 
 353 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 354   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 355   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 356 }
 357 
 358 // If could fit into free regions w/o expansion, try.
 359 // Otherwise, if can expand, do so.
 360 // Otherwise, if using ex regions might help, try with ex given back.
 361 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 362   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 363 
 364   _verifier->verify_region_sets_optional();
 365 
 366   uint first = G1_NO_HRM_INDEX;
 367   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 368 
 369   if (obj_regions == 1) {
 370     // Only one region to allocate, try to use a fast path by directly allocating
 371     // from the free lists. Do not try to expand here, we will potentially do that
 372     // later.
 373     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 374     if (hr != NULL) {
 375       first = hr->hrm_index();
 376     }
 377   } else {
 378     // We can't allocate humongous regions spanning more than one region while
 379     // cleanupComplete() is running, since some of the regions we find to be
 380     // empty might not yet be added to the free list. It is not straightforward
 381     // to know in which list they are on so that we can remove them. We only
 382     // need to do this if we need to allocate more than one region to satisfy the
 383     // current humongous allocation request. If we are only allocating one region
 384     // we use the one-region region allocation code (see above), that already
 385     // potentially waits for regions from the secondary free list.
 386     wait_while_free_regions_coming();
 387     append_secondary_free_list_if_not_empty_with_lock();
 388 
 389     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 390     // are lucky enough to find some.
 391     first = _hrm.find_contiguous_only_empty(obj_regions);
 392     if (first != G1_NO_HRM_INDEX) {
 393       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 394     }
 395   }
 396 
 397   if (first == G1_NO_HRM_INDEX) {
 398     // Policy: We could not find enough regions for the humongous object in the
 399     // free list. Look through the heap to find a mix of free and uncommitted regions.
 400     // If so, try expansion.
 401     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 402     if (first != G1_NO_HRM_INDEX) {
 403       // We found something. Make sure these regions are committed, i.e. expand
 404       // the heap. Alternatively we could do a defragmentation GC.
 405       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 406                                     word_size * HeapWordSize);
 407 
 408       _hrm.expand_at(first, obj_regions, workers());
 409       g1_policy()->record_new_heap_size(num_regions());
 410 
 411 #ifdef ASSERT
 412       for (uint i = first; i < first + obj_regions; ++i) {
 413         HeapRegion* hr = region_at(i);
 414         assert(hr->is_free(), "sanity");
 415         assert(hr->is_empty(), "sanity");
 416         assert(is_on_master_free_list(hr), "sanity");
 417       }
 418 #endif
 419       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 420     } else {
 421       // Policy: Potentially trigger a defragmentation GC.
 422     }
 423   }
 424 
 425   HeapWord* result = NULL;
 426   if (first != G1_NO_HRM_INDEX) {
 427     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 428                                                        word_size, context);
 429     assert(result != NULL, "it should always return a valid result");
 430 
 431     // A successful humongous object allocation changes the used space
 432     // information of the old generation so we need to recalculate the
 433     // sizes and update the jstat counters here.
 434     g1mm()->update_sizes();
 435   }
 436 
 437   _verifier->verify_region_sets_optional();
 438 
 439   return result;
 440 }
 441 
 442 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 443   assert_heap_not_locked_and_not_at_safepoint();
 444   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 445 
 446   uint dummy_gc_count_before;
 447   uint dummy_gclocker_retry_count = 0;
 448   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 449 }
 450 
 451 HeapWord*
 452 G1CollectedHeap::mem_allocate(size_t word_size,
 453                               bool*  gc_overhead_limit_was_exceeded) {
 454   assert_heap_not_locked_and_not_at_safepoint();
 455 
 456   // Loop until the allocation is satisfied, or unsatisfied after GC.
 457   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 458     uint gc_count_before;
 459 
 460     HeapWord* result = NULL;
 461     if (!is_humongous(word_size)) {
 462       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 463     } else {
 464       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 465     }
 466     if (result != NULL) {
 467       return result;
 468     }
 469 
 470     // Create the garbage collection operation...
 471     VM_G1CollectForAllocation op(gc_count_before, word_size);
 472     op.set_allocation_context(AllocationContext::current());
 473 
 474     // ...and get the VM thread to execute it.
 475     VMThread::execute(&op);
 476 
 477     if (op.prologue_succeeded() && op.pause_succeeded()) {
 478       // If the operation was successful we'll return the result even
 479       // if it is NULL. If the allocation attempt failed immediately
 480       // after a Full GC, it's unlikely we'll be able to allocate now.
 481       HeapWord* result = op.result();
 482       if (result != NULL && !is_humongous(word_size)) {
 483         // Allocations that take place on VM operations do not do any
 484         // card dirtying and we have to do it here. We only have to do
 485         // this for non-humongous allocations, though.
 486         dirty_young_block(result, word_size);
 487       }
 488       return result;
 489     } else {
 490       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 491         return NULL;
 492       }
 493       assert(op.result() == NULL,
 494              "the result should be NULL if the VM op did not succeed");
 495     }
 496 
 497     // Give a warning if we seem to be looping forever.
 498     if ((QueuedAllocationWarningCount > 0) &&
 499         (try_count % QueuedAllocationWarningCount == 0)) {
 500       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 501     }
 502   }
 503 
 504   ShouldNotReachHere();
 505   return NULL;
 506 }
 507 
 508 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 509                                                    AllocationContext_t context,
 510                                                    uint* gc_count_before_ret,
 511                                                    uint* gclocker_retry_count_ret) {
 512   // Make sure you read the note in attempt_allocation_humongous().
 513 
 514   assert_heap_not_locked_and_not_at_safepoint();
 515   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 516          "be called for humongous allocation requests");
 517 
 518   // We should only get here after the first-level allocation attempt
 519   // (attempt_allocation()) failed to allocate.
 520 
 521   // We will loop until a) we manage to successfully perform the
 522   // allocation or b) we successfully schedule a collection which
 523   // fails to perform the allocation. b) is the only case when we'll
 524   // return NULL.
 525   HeapWord* result = NULL;
 526   for (int try_count = 1; /* we'll return */; try_count += 1) {
 527     bool should_try_gc;
 528     uint gc_count_before;
 529 
 530     {
 531       MutexLockerEx x(Heap_lock);
 532       result = _allocator->attempt_allocation_locked(word_size, context);
 533       if (result != NULL) {
 534         return result;
 535       }
 536 
 537       if (GCLocker::is_active_and_needs_gc()) {
 538         if (g1_policy()->can_expand_young_list()) {
 539           // No need for an ergo verbose message here,
 540           // can_expand_young_list() does this when it returns true.
 541           result = _allocator->attempt_allocation_force(word_size, context);
 542           if (result != NULL) {
 543             return result;
 544           }
 545         }
 546         should_try_gc = false;
 547       } else {
 548         // The GCLocker may not be active but the GCLocker initiated
 549         // GC may not yet have been performed (GCLocker::needs_gc()
 550         // returns true). In this case we do not try this GC and
 551         // wait until the GCLocker initiated GC is performed, and
 552         // then retry the allocation.
 553         if (GCLocker::needs_gc()) {
 554           should_try_gc = false;
 555         } else {
 556           // Read the GC count while still holding the Heap_lock.
 557           gc_count_before = total_collections();
 558           should_try_gc = true;
 559         }
 560       }
 561     }
 562 
 563     if (should_try_gc) {
 564       bool succeeded;
 565       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 566                                    GCCause::_g1_inc_collection_pause);
 567       if (result != NULL) {
 568         assert(succeeded, "only way to get back a non-NULL result");
 569         return result;
 570       }
 571 
 572       if (succeeded) {
 573         // If we get here we successfully scheduled a collection which
 574         // failed to allocate. No point in trying to allocate
 575         // further. We'll just return NULL.
 576         MutexLockerEx x(Heap_lock);
 577         *gc_count_before_ret = total_collections();
 578         return NULL;
 579       }
 580     } else {
 581       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 582         MutexLockerEx x(Heap_lock);
 583         *gc_count_before_ret = total_collections();
 584         return NULL;
 585       }
 586       // The GCLocker is either active or the GCLocker initiated
 587       // GC has not yet been performed. Stall until it is and
 588       // then retry the allocation.
 589       GCLocker::stall_until_clear();
 590       (*gclocker_retry_count_ret) += 1;
 591     }
 592 
 593     // We can reach here if we were unsuccessful in scheduling a
 594     // collection (because another thread beat us to it) or if we were
 595     // stalled due to the GC locker. In either can we should retry the
 596     // allocation attempt in case another thread successfully
 597     // performed a collection and reclaimed enough space. We do the
 598     // first attempt (without holding the Heap_lock) here and the
 599     // follow-on attempt will be at the start of the next loop
 600     // iteration (after taking the Heap_lock).
 601     result = _allocator->attempt_allocation(word_size, context);
 602     if (result != NULL) {
 603       return result;
 604     }
 605 
 606     // Give a warning if we seem to be looping forever.
 607     if ((QueuedAllocationWarningCount > 0) &&
 608         (try_count % QueuedAllocationWarningCount == 0)) {
 609       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 610                       "retries %d times", try_count);
 611     }
 612   }
 613 
 614   ShouldNotReachHere();
 615   return NULL;
 616 }
 617 
 618 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 619   assert_at_safepoint(true /* should_be_vm_thread */);
 620   if (_archive_allocator == NULL) {
 621     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 622   }
 623 }
 624 
 625 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 626   // Allocations in archive regions cannot be of a size that would be considered
 627   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 628   // may be different at archive-restore time.
 629   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 630 }
 631 
 632 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 633   assert_at_safepoint(true /* should_be_vm_thread */);
 634   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 635   if (is_archive_alloc_too_large(word_size)) {
 636     return NULL;
 637   }
 638   return _archive_allocator->archive_mem_allocate(word_size);
 639 }
 640 
 641 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 642                                               size_t end_alignment_in_bytes) {
 643   assert_at_safepoint(true /* should_be_vm_thread */);
 644   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 645 
 646   // Call complete_archive to do the real work, filling in the MemRegion
 647   // array with the archive regions.
 648   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 649   delete _archive_allocator;
 650   _archive_allocator = NULL;
 651 }
 652 
 653 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 654   assert(ranges != NULL, "MemRegion array NULL");
 655   assert(count != 0, "No MemRegions provided");
 656   MemRegion reserved = _hrm.reserved();
 657   for (size_t i = 0; i < count; i++) {
 658     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 659       return false;
 660     }
 661   }
 662   return true;
 663 }
 664 
 665 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 666                                             size_t count,
 667                                             bool open) {
 668   assert(!is_init_completed(), "Expect to be called at JVM init time");
 669   assert(ranges != NULL, "MemRegion array NULL");
 670   assert(count != 0, "No MemRegions provided");
 671   MutexLockerEx x(Heap_lock);
 672 
 673   MemRegion reserved = _hrm.reserved();
 674   HeapWord* prev_last_addr = NULL;
 675   HeapRegion* prev_last_region = NULL;
 676 
 677   // Temporarily disable pretouching of heap pages. This interface is used
 678   // when mmap'ing archived heap data in, so pre-touching is wasted.
 679   FlagSetting fs(AlwaysPreTouch, false);
 680 
 681   // Enable archive object checking used by G1MarkSweep. We have to let it know
 682   // about each archive range, so that objects in those ranges aren't marked.
 683   G1ArchiveAllocator::enable_archive_object_check();
 684 
 685   // For each specified MemRegion range, allocate the corresponding G1
 686   // regions and mark them as archive regions. We expect the ranges
 687   // in ascending starting address order, without overlap.
 688   for (size_t i = 0; i < count; i++) {
 689     MemRegion curr_range = ranges[i];
 690     HeapWord* start_address = curr_range.start();
 691     size_t word_size = curr_range.word_size();
 692     HeapWord* last_address = curr_range.last();
 693     size_t commits = 0;
 694 
 695     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 696               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 697               p2i(start_address), p2i(last_address));
 698     guarantee(start_address > prev_last_addr,
 699               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 700               p2i(start_address), p2i(prev_last_addr));
 701     prev_last_addr = last_address;
 702 
 703     // Check for ranges that start in the same G1 region in which the previous
 704     // range ended, and adjust the start address so we don't try to allocate
 705     // the same region again. If the current range is entirely within that
 706     // region, skip it, just adjusting the recorded top.
 707     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 708     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 709       start_address = start_region->end();
 710       if (start_address > last_address) {
 711         increase_used(word_size * HeapWordSize);
 712         start_region->set_top(last_address + 1);
 713         continue;
 714       }
 715       start_region->set_top(start_address);
 716       curr_range = MemRegion(start_address, last_address + 1);
 717       start_region = _hrm.addr_to_region(start_address);
 718     }
 719 
 720     // Perform the actual region allocation, exiting if it fails.
 721     // Then note how much new space we have allocated.
 722     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 723       return false;
 724     }
 725     increase_used(word_size * HeapWordSize);
 726     if (commits != 0) {
 727       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 728                                 HeapRegion::GrainWords * HeapWordSize * commits);
 729 
 730     }
 731 
 732     // Mark each G1 region touched by the range as archive, add it to
 733     // the old set, and set the allocation context and top.
 734     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 735     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 736     prev_last_region = last_region;
 737 
 738     while (curr_region != NULL) {
 739       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 740              "Region already in use (index %u)", curr_region->hrm_index());
 741       curr_region->set_allocation_context(AllocationContext::system());
 742       if (open) {
 743         curr_region->set_open_archive();
 744       } else {
 745         curr_region->set_closed_archive();
 746       }
 747       _hr_printer.alloc(curr_region);
 748       _old_set.add(curr_region);
 749       HeapWord* top;
 750       HeapRegion* next_region;
 751       if (curr_region != last_region) {
 752         top = curr_region->end();
 753         next_region = _hrm.next_region_in_heap(curr_region);
 754       } else {
 755         top = last_address + 1;
 756         next_region = NULL;
 757       }
 758       curr_region->set_top(top);
 759       curr_region->set_first_dead(top);
 760       curr_region->set_end_of_live(top);
 761       curr_region = next_region;
 762     }
 763 
 764     // Notify mark-sweep of the archive
 765     G1ArchiveAllocator::set_range_archive(curr_range, open);
 766   }
 767   return true;
 768 }
 769 
 770 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 771   assert(!is_init_completed(), "Expect to be called at JVM init time");
 772   assert(ranges != NULL, "MemRegion array NULL");
 773   assert(count != 0, "No MemRegions provided");
 774   MemRegion reserved = _hrm.reserved();
 775   HeapWord *prev_last_addr = NULL;
 776   HeapRegion* prev_last_region = NULL;
 777 
 778   // For each MemRegion, create filler objects, if needed, in the G1 regions
 779   // that contain the address range. The address range actually within the
 780   // MemRegion will not be modified. That is assumed to have been initialized
 781   // elsewhere, probably via an mmap of archived heap data.
 782   MutexLockerEx x(Heap_lock);
 783   for (size_t i = 0; i < count; i++) {
 784     HeapWord* start_address = ranges[i].start();
 785     HeapWord* last_address = ranges[i].last();
 786 
 787     assert(reserved.contains(start_address) && reserved.contains(last_address),
 788            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 789            p2i(start_address), p2i(last_address));
 790     assert(start_address > prev_last_addr,
 791            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 792            p2i(start_address), p2i(prev_last_addr));
 793 
 794     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 795     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 796     HeapWord* bottom_address = start_region->bottom();
 797 
 798     // Check for a range beginning in the same region in which the
 799     // previous one ended.
 800     if (start_region == prev_last_region) {
 801       bottom_address = prev_last_addr + 1;
 802     }
 803 
 804     // Verify that the regions were all marked as archive regions by
 805     // alloc_archive_regions.
 806     HeapRegion* curr_region = start_region;
 807     while (curr_region != NULL) {
 808       guarantee(curr_region->is_archive(),
 809                 "Expected archive region at index %u", curr_region->hrm_index());
 810       if (curr_region != last_region) {
 811         curr_region = _hrm.next_region_in_heap(curr_region);
 812       } else {
 813         curr_region = NULL;
 814       }
 815     }
 816 
 817     prev_last_addr = last_address;
 818     prev_last_region = last_region;
 819 
 820     // Fill the memory below the allocated range with dummy object(s),
 821     // if the region bottom does not match the range start, or if the previous
 822     // range ended within the same G1 region, and there is a gap.
 823     if (start_address != bottom_address) {
 824       size_t fill_size = pointer_delta(start_address, bottom_address);
 825       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 826       increase_used(fill_size * HeapWordSize);
 827     }
 828   }
 829 }
 830 
 831 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 832                                                      uint* gc_count_before_ret,
 833                                                      uint* gclocker_retry_count_ret) {
 834   assert_heap_not_locked_and_not_at_safepoint();
 835   assert(!is_humongous(word_size), "attempt_allocation() should not "
 836          "be called for humongous allocation requests");
 837 
 838   AllocationContext_t context = AllocationContext::current();
 839   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 840 
 841   if (result == NULL) {
 842     result = attempt_allocation_slow(word_size,
 843                                      context,
 844                                      gc_count_before_ret,
 845                                      gclocker_retry_count_ret);
 846   }
 847   assert_heap_not_locked();
 848   if (result != NULL) {
 849     dirty_young_block(result, word_size);
 850   }
 851   return result;
 852 }
 853 
 854 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 855   assert(!is_init_completed(), "Expect to be called at JVM init time");
 856   assert(ranges != NULL, "MemRegion array NULL");
 857   assert(count != 0, "No MemRegions provided");
 858   MemRegion reserved = _hrm.reserved();
 859   HeapWord* prev_last_addr = NULL;
 860   HeapRegion* prev_last_region = NULL;
 861   size_t size_used = 0;
 862   size_t uncommitted_regions = 0;
 863 
 864   // For each Memregion, free the G1 regions that constitute it, and
 865   // notify mark-sweep that the range is no longer to be considered 'archive.'
 866   MutexLockerEx x(Heap_lock);
 867   for (size_t i = 0; i < count; i++) {
 868     HeapWord* start_address = ranges[i].start();
 869     HeapWord* last_address = ranges[i].last();
 870 
 871     assert(reserved.contains(start_address) && reserved.contains(last_address),
 872            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 873            p2i(start_address), p2i(last_address));
 874     assert(start_address > prev_last_addr,
 875            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 876            p2i(start_address), p2i(prev_last_addr));
 877     size_used += ranges[i].byte_size();
 878     prev_last_addr = last_address;
 879 
 880     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 881     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 882 
 883     // Check for ranges that start in the same G1 region in which the previous
 884     // range ended, and adjust the start address so we don't try to free
 885     // the same region again. If the current range is entirely within that
 886     // region, skip it.
 887     if (start_region == prev_last_region) {
 888       start_address = start_region->end();
 889       if (start_address > last_address) {
 890         continue;
 891       }
 892       start_region = _hrm.addr_to_region(start_address);
 893     }
 894     prev_last_region = last_region;
 895 
 896     // After verifying that each region was marked as an archive region by
 897     // alloc_archive_regions, set it free and empty and uncommit it.
 898     HeapRegion* curr_region = start_region;
 899     while (curr_region != NULL) {
 900       guarantee(curr_region->is_archive(),
 901                 "Expected archive region at index %u", curr_region->hrm_index());
 902       uint curr_index = curr_region->hrm_index();
 903       _old_set.remove(curr_region);
 904       curr_region->set_free();
 905       curr_region->set_top(curr_region->bottom());
 906       if (curr_region != last_region) {
 907         curr_region = _hrm.next_region_in_heap(curr_region);
 908       } else {
 909         curr_region = NULL;
 910       }
 911       _hrm.shrink_at(curr_index, 1);
 912       uncommitted_regions++;
 913     }
 914 
 915     // Notify mark-sweep that this is no longer an archive range.
 916     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 917   }
 918 
 919   if (uncommitted_regions != 0) {
 920     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 921                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 922   }
 923   decrease_used(size_used);
 924 }
 925 
 926 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 927                                                         uint* gc_count_before_ret,
 928                                                         uint* gclocker_retry_count_ret) {
 929   // The structure of this method has a lot of similarities to
 930   // attempt_allocation_slow(). The reason these two were not merged
 931   // into a single one is that such a method would require several "if
 932   // allocation is not humongous do this, otherwise do that"
 933   // conditional paths which would obscure its flow. In fact, an early
 934   // version of this code did use a unified method which was harder to
 935   // follow and, as a result, it had subtle bugs that were hard to
 936   // track down. So keeping these two methods separate allows each to
 937   // be more readable. It will be good to keep these two in sync as
 938   // much as possible.
 939 
 940   assert_heap_not_locked_and_not_at_safepoint();
 941   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 942          "should only be called for humongous allocations");
 943 
 944   // Humongous objects can exhaust the heap quickly, so we should check if we
 945   // need to start a marking cycle at each humongous object allocation. We do
 946   // the check before we do the actual allocation. The reason for doing it
 947   // before the allocation is that we avoid having to keep track of the newly
 948   // allocated memory while we do a GC.
 949   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 950                                            word_size)) {
 951     collect(GCCause::_g1_humongous_allocation);
 952   }
 953 
 954   // We will loop until a) we manage to successfully perform the
 955   // allocation or b) we successfully schedule a collection which
 956   // fails to perform the allocation. b) is the only case when we'll
 957   // return NULL.
 958   HeapWord* result = NULL;
 959   for (int try_count = 1; /* we'll return */; try_count += 1) {
 960     bool should_try_gc;
 961     uint gc_count_before;
 962 
 963     {
 964       MutexLockerEx x(Heap_lock);
 965 
 966       // Given that humongous objects are not allocated in young
 967       // regions, we'll first try to do the allocation without doing a
 968       // collection hoping that there's enough space in the heap.
 969       result = humongous_obj_allocate(word_size, AllocationContext::current());
 970       if (result != NULL) {
 971         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 972         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 973         return result;
 974       }
 975 
 976       if (GCLocker::is_active_and_needs_gc()) {
 977         should_try_gc = false;
 978       } else {
 979          // The GCLocker may not be active but the GCLocker initiated
 980         // GC may not yet have been performed (GCLocker::needs_gc()
 981         // returns true). In this case we do not try this GC and
 982         // wait until the GCLocker initiated GC is performed, and
 983         // then retry the allocation.
 984         if (GCLocker::needs_gc()) {
 985           should_try_gc = false;
 986         } else {
 987           // Read the GC count while still holding the Heap_lock.
 988           gc_count_before = total_collections();
 989           should_try_gc = true;
 990         }
 991       }
 992     }
 993 
 994     if (should_try_gc) {
 995       // If we failed to allocate the humongous object, we should try to
 996       // do a collection pause (if we're allowed) in case it reclaims
 997       // enough space for the allocation to succeed after the pause.
 998 
 999       bool succeeded;
1000       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1001                                    GCCause::_g1_humongous_allocation);
1002       if (result != NULL) {
1003         assert(succeeded, "only way to get back a non-NULL result");
1004         return result;
1005       }
1006 
1007       if (succeeded) {
1008         // If we get here we successfully scheduled a collection which
1009         // failed to allocate. No point in trying to allocate
1010         // further. We'll just return NULL.
1011         MutexLockerEx x(Heap_lock);
1012         *gc_count_before_ret = total_collections();
1013         return NULL;
1014       }
1015     } else {
1016       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1017         MutexLockerEx x(Heap_lock);
1018         *gc_count_before_ret = total_collections();
1019         return NULL;
1020       }
1021       // The GCLocker is either active or the GCLocker initiated
1022       // GC has not yet been performed. Stall until it is and
1023       // then retry the allocation.
1024       GCLocker::stall_until_clear();
1025       (*gclocker_retry_count_ret) += 1;
1026     }
1027 
1028     // We can reach here if we were unsuccessful in scheduling a
1029     // collection (because another thread beat us to it) or if we were
1030     // stalled due to the GC locker. In either can we should retry the
1031     // allocation attempt in case another thread successfully
1032     // performed a collection and reclaimed enough space.  Give a
1033     // warning if we seem to be looping forever.
1034 
1035     if ((QueuedAllocationWarningCount > 0) &&
1036         (try_count % QueuedAllocationWarningCount == 0)) {
1037       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1038                       "retries %d times", try_count);
1039     }
1040   }
1041 
1042   ShouldNotReachHere();
1043   return NULL;
1044 }
1045 
1046 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1047                                                            AllocationContext_t context,
1048                                                            bool expect_null_mutator_alloc_region) {
1049   assert_at_safepoint(true /* should_be_vm_thread */);
1050   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1051          "the current alloc region was unexpectedly found to be non-NULL");
1052 
1053   if (!is_humongous(word_size)) {
1054     return _allocator->attempt_allocation_locked(word_size, context);
1055   } else {
1056     HeapWord* result = humongous_obj_allocate(word_size, context);
1057     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1058       collector_state()->set_initiate_conc_mark_if_possible(true);
1059     }
1060     return result;
1061   }
1062 
1063   ShouldNotReachHere();
1064 }
1065 
1066 class PostCompactionPrinterClosure: public HeapRegionClosure {
1067 private:
1068   G1HRPrinter* _hr_printer;
1069 public:
1070   bool doHeapRegion(HeapRegion* hr) {
1071     assert(!hr->is_young(), "not expecting to find young regions");
1072     _hr_printer->post_compaction(hr);
1073     return false;
1074   }
1075 
1076   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1077     : _hr_printer(hr_printer) { }
1078 };
1079 
1080 void G1CollectedHeap::print_hrm_post_compaction() {
1081   if (_hr_printer.is_active()) {
1082     PostCompactionPrinterClosure cl(hr_printer());
1083     heap_region_iterate(&cl);
1084   }
1085 
1086 }
1087 
1088 void G1CollectedHeap::abort_concurrent_cycle() {
1089   // Note: When we have a more flexible GC logging framework that
1090   // allows us to add optional attributes to a GC log record we
1091   // could consider timing and reporting how long we wait in the
1092   // following two methods.
1093   wait_while_free_regions_coming();
1094   // If we start the compaction before the CM threads finish
1095   // scanning the root regions we might trip them over as we'll
1096   // be moving objects / updating references. So let's wait until
1097   // they are done. By telling them to abort, they should complete
1098   // early.
1099   _cm->root_regions()->abort();
1100   _cm->root_regions()->wait_until_scan_finished();
1101   append_secondary_free_list_if_not_empty_with_lock();
1102 
1103   // Disable discovery and empty the discovered lists
1104   // for the CM ref processor.
1105   ref_processor_cm()->disable_discovery();
1106   ref_processor_cm()->abandon_partial_discovery();
1107   ref_processor_cm()->verify_no_references_recorded();
1108 
1109   // Abandon current iterations of concurrent marking and concurrent
1110   // refinement, if any are in progress.
1111   concurrent_mark()->abort();
1112 }
1113 
1114 void G1CollectedHeap::prepare_heap_for_full_collection() {
1115   // Make sure we'll choose a new allocation region afterwards.
1116   _allocator->release_mutator_alloc_region();
1117   _allocator->abandon_gc_alloc_regions();
1118   g1_rem_set()->cleanupHRRS();
1119 
1120   // We may have added regions to the current incremental collection
1121   // set between the last GC or pause and now. We need to clear the
1122   // incremental collection set and then start rebuilding it afresh
1123   // after this full GC.
1124   abandon_collection_set(collection_set());
1125 
1126   tear_down_region_sets(false /* free_list_only */);
1127   collector_state()->set_gcs_are_young(true);
1128 }
1129 
1130 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1131   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1132   assert(used() == recalculate_used(), "Should be equal");
1133   _verifier->verify_region_sets_optional();
1134   _verifier->verify_before_gc();
1135   _verifier->check_bitmaps("Full GC Start");
1136 }
1137 
1138 void G1CollectedHeap::prepare_heap_for_mutators() {
1139   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1140   ClassLoaderDataGraph::purge();
1141   MetaspaceAux::verify_metrics();
1142 
1143   // Prepare heap for normal collections.
1144   assert(num_free_regions() == 0, "we should not have added any free regions");
1145   rebuild_region_sets(false /* free_list_only */);
1146   abort_refinement();
1147   resize_if_necessary_after_full_collection();
1148 
1149   // Rebuild the strong code root lists for each region
1150   rebuild_strong_code_roots();
1151 
1152   // Start a new incremental collection set for the next pause
1153   start_new_collection_set();
1154 
1155   _allocator->init_mutator_alloc_region();
1156 
1157   // Post collection state updates.
1158   MetaspaceGC::compute_new_size();
1159 }
1160 
1161 void G1CollectedHeap::abort_refinement() {
1162   if (_hot_card_cache->use_cache()) {
1163     _hot_card_cache->reset_card_counts();
1164     _hot_card_cache->reset_hot_cache();
1165   }
1166 
1167   // Discard all remembered set updates.
1168   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1169   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1170 }
1171 
1172 void G1CollectedHeap::verify_after_full_collection() {
1173   check_gc_time_stamps();
1174   _hrm.verify_optional();
1175   _verifier->verify_region_sets_optional();
1176   _verifier->verify_after_gc();
1177   // Clear the previous marking bitmap, if needed for bitmap verification.
1178   // Note we cannot do this when we clear the next marking bitmap in
1179   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1180   // objects marked during a full GC against the previous bitmap.
1181   // But we need to clear it before calling check_bitmaps below since
1182   // the full GC has compacted objects and updated TAMS but not updated
1183   // the prev bitmap.
1184   if (G1VerifyBitmaps) {
1185     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1186     _cm->clear_prev_bitmap(workers());
1187   }
1188   _verifier->check_bitmaps("Full GC End");
1189 
1190   // At this point there should be no regions in the
1191   // entire heap tagged as young.
1192   assert(check_young_list_empty(), "young list should be empty at this point");
1193 
1194   // Note: since we've just done a full GC, concurrent
1195   // marking is no longer active. Therefore we need not
1196   // re-enable reference discovery for the CM ref processor.
1197   // That will be done at the start of the next marking cycle.
1198   // We also know that the STW processor should no longer
1199   // discover any new references.
1200   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1201   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1202   ref_processor_stw()->verify_no_references_recorded();
1203   ref_processor_cm()->verify_no_references_recorded();
1204 }
1205 
1206 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1207   print_hrm_post_compaction();
1208   heap_transition->print();
1209   print_heap_after_gc();
1210   print_heap_regions();
1211 #ifdef TRACESPINNING
1212   ParallelTaskTerminator::print_termination_counts();
1213 #endif
1214 }
1215 
1216 void G1CollectedHeap::do_full_collection_inner(G1FullGCScope* scope) {
1217   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1218   g1_policy()->record_full_collection_start();
1219 
1220   print_heap_before_gc();
1221   print_heap_regions();
1222 
1223   abort_concurrent_cycle();
1224   verify_before_full_collection(scope->is_explicit_gc());
1225 
1226   gc_prologue(true);
1227   prepare_heap_for_full_collection();
1228 
1229   G1SerialFullCollector serial(scope, ref_processor_stw());
1230   serial.prepare_collection();
1231   serial.collect();
1232   serial.complete_collection();
1233 
1234   prepare_heap_for_mutators();
1235 
1236   g1_policy()->record_full_collection_end();
1237   gc_epilogue(true);
1238 
1239   // Post collection verification.
1240   verify_after_full_collection();
1241 
1242   // Post collection logging.
1243   // We should do this after we potentially resize the heap so
1244   // that all the COMMIT / UNCOMMIT events are generated before
1245   // the compaction events.
1246   print_heap_after_full_collection(scope->heap_transition());
1247 }
1248 
1249 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1250                                          bool clear_all_soft_refs) {
1251   assert_at_safepoint(true /* should_be_vm_thread */);
1252 
1253   if (GCLocker::check_active_before_gc()) {
1254     // Full GC was not completed.
1255     return false;
1256   }
1257 
1258   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1259       collector_policy()->should_clear_all_soft_refs();
1260 
1261   G1FullGCScope scope(explicit_gc, do_clear_all_soft_refs);
1262   do_full_collection_inner(&scope);
1263 
1264   // Full collection was successfully completed.
1265   return true;
1266 }
1267 
1268 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1269   // Currently, there is no facility in the do_full_collection(bool) API to notify
1270   // the caller that the collection did not succeed (e.g., because it was locked
1271   // out by the GC locker). So, right now, we'll ignore the return value.
1272   bool dummy = do_full_collection(true,                /* explicit_gc */
1273                                   clear_all_soft_refs);
1274 }
1275 
1276 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1277   // Include bytes that will be pre-allocated to support collections, as "used".
1278   const size_t used_after_gc = used();
1279   const size_t capacity_after_gc = capacity();
1280   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1281 
1282   // This is enforced in arguments.cpp.
1283   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1284          "otherwise the code below doesn't make sense");
1285 
1286   // We don't have floating point command-line arguments
1287   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1288   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1289   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1290   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1291 
1292   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1293   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1294 
1295   // We have to be careful here as these two calculations can overflow
1296   // 32-bit size_t's.
1297   double used_after_gc_d = (double) used_after_gc;
1298   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1299   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1300 
1301   // Let's make sure that they are both under the max heap size, which
1302   // by default will make them fit into a size_t.
1303   double desired_capacity_upper_bound = (double) max_heap_size;
1304   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1305                                     desired_capacity_upper_bound);
1306   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1307                                     desired_capacity_upper_bound);
1308 
1309   // We can now safely turn them into size_t's.
1310   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1311   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1312 
1313   // This assert only makes sense here, before we adjust them
1314   // with respect to the min and max heap size.
1315   assert(minimum_desired_capacity <= maximum_desired_capacity,
1316          "minimum_desired_capacity = " SIZE_FORMAT ", "
1317          "maximum_desired_capacity = " SIZE_FORMAT,
1318          minimum_desired_capacity, maximum_desired_capacity);
1319 
1320   // Should not be greater than the heap max size. No need to adjust
1321   // it with respect to the heap min size as it's a lower bound (i.e.,
1322   // we'll try to make the capacity larger than it, not smaller).
1323   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1324   // Should not be less than the heap min size. No need to adjust it
1325   // with respect to the heap max size as it's an upper bound (i.e.,
1326   // we'll try to make the capacity smaller than it, not greater).
1327   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1328 
1329   if (capacity_after_gc < minimum_desired_capacity) {
1330     // Don't expand unless it's significant
1331     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1332 
1333     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1334                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1335                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1336 
1337     expand(expand_bytes, _workers);
1338 
1339     // No expansion, now see if we want to shrink
1340   } else if (capacity_after_gc > maximum_desired_capacity) {
1341     // Capacity too large, compute shrinking size
1342     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1343 
1344     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1345                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1346                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1347 
1348     shrink(shrink_bytes);
1349   }
1350 }
1351 
1352 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1353                                                             AllocationContext_t context,
1354                                                             bool do_gc,
1355                                                             bool clear_all_soft_refs,
1356                                                             bool expect_null_mutator_alloc_region,
1357                                                             bool* gc_succeeded) {
1358   *gc_succeeded = true;
1359   // Let's attempt the allocation first.
1360   HeapWord* result =
1361     attempt_allocation_at_safepoint(word_size,
1362                                     context,
1363                                     expect_null_mutator_alloc_region);
1364   if (result != NULL) {
1365     assert(*gc_succeeded, "sanity");
1366     return result;
1367   }
1368 
1369   // In a G1 heap, we're supposed to keep allocation from failing by
1370   // incremental pauses.  Therefore, at least for now, we'll favor
1371   // expansion over collection.  (This might change in the future if we can
1372   // do something smarter than full collection to satisfy a failed alloc.)
1373   result = expand_and_allocate(word_size, context);
1374   if (result != NULL) {
1375     assert(*gc_succeeded, "sanity");
1376     return result;
1377   }
1378 
1379   if (do_gc) {
1380     // Expansion didn't work, we'll try to do a Full GC.
1381     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1382                                        clear_all_soft_refs);
1383   }
1384 
1385   return NULL;
1386 }
1387 
1388 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1389                                                      AllocationContext_t context,
1390                                                      bool* succeeded) {
1391   assert_at_safepoint(true /* should_be_vm_thread */);
1392 
1393   // Attempts to allocate followed by Full GC.
1394   HeapWord* result =
1395     satisfy_failed_allocation_helper(word_size,
1396                                      context,
1397                                      true,  /* do_gc */
1398                                      false, /* clear_all_soft_refs */
1399                                      false, /* expect_null_mutator_alloc_region */
1400                                      succeeded);
1401 
1402   if (result != NULL || !*succeeded) {
1403     return result;
1404   }
1405 
1406   // Attempts to allocate followed by Full GC that will collect all soft references.
1407   result = satisfy_failed_allocation_helper(word_size,
1408                                             context,
1409                                             true, /* do_gc */
1410                                             true, /* clear_all_soft_refs */
1411                                             true, /* expect_null_mutator_alloc_region */
1412                                             succeeded);
1413 
1414   if (result != NULL || !*succeeded) {
1415     return result;
1416   }
1417 
1418   // Attempts to allocate, no GC
1419   result = satisfy_failed_allocation_helper(word_size,
1420                                             context,
1421                                             false, /* do_gc */
1422                                             false, /* clear_all_soft_refs */
1423                                             true,  /* expect_null_mutator_alloc_region */
1424                                             succeeded);
1425 
1426   if (result != NULL) {
1427     assert(*succeeded, "sanity");
1428     return result;
1429   }
1430 
1431   assert(!collector_policy()->should_clear_all_soft_refs(),
1432          "Flag should have been handled and cleared prior to this point");
1433 
1434   // What else?  We might try synchronous finalization later.  If the total
1435   // space available is large enough for the allocation, then a more
1436   // complete compaction phase than we've tried so far might be
1437   // appropriate.
1438   assert(*succeeded, "sanity");
1439   return NULL;
1440 }
1441 
1442 // Attempting to expand the heap sufficiently
1443 // to support an allocation of the given "word_size".  If
1444 // successful, perform the allocation and return the address of the
1445 // allocated block, or else "NULL".
1446 
1447 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1448   assert_at_safepoint(true /* should_be_vm_thread */);
1449 
1450   _verifier->verify_region_sets_optional();
1451 
1452   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1453   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1454                             word_size * HeapWordSize);
1455 
1456 
1457   if (expand(expand_bytes, _workers)) {
1458     _hrm.verify_optional();
1459     _verifier->verify_region_sets_optional();
1460     return attempt_allocation_at_safepoint(word_size,
1461                                            context,
1462                                            false /* expect_null_mutator_alloc_region */);
1463   }
1464   return NULL;
1465 }
1466 
1467 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1468   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1469   aligned_expand_bytes = align_up(aligned_expand_bytes,
1470                                        HeapRegion::GrainBytes);
1471 
1472   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1473                             expand_bytes, aligned_expand_bytes);
1474 
1475   if (is_maximal_no_gc()) {
1476     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1477     return false;
1478   }
1479 
1480   double expand_heap_start_time_sec = os::elapsedTime();
1481   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1482   assert(regions_to_expand > 0, "Must expand by at least one region");
1483 
1484   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1485   if (expand_time_ms != NULL) {
1486     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1487   }
1488 
1489   if (expanded_by > 0) {
1490     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1491     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1492     g1_policy()->record_new_heap_size(num_regions());
1493   } else {
1494     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1495 
1496     // The expansion of the virtual storage space was unsuccessful.
1497     // Let's see if it was because we ran out of swap.
1498     if (G1ExitOnExpansionFailure &&
1499         _hrm.available() >= regions_to_expand) {
1500       // We had head room...
1501       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1502     }
1503   }
1504   return regions_to_expand > 0;
1505 }
1506 
1507 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1508   size_t aligned_shrink_bytes =
1509     ReservedSpace::page_align_size_down(shrink_bytes);
1510   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1511                                          HeapRegion::GrainBytes);
1512   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1513 
1514   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1515   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1516 
1517 
1518   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1519                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1520   if (num_regions_removed > 0) {
1521     g1_policy()->record_new_heap_size(num_regions());
1522   } else {
1523     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1524   }
1525 }
1526 
1527 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1528   _verifier->verify_region_sets_optional();
1529 
1530   // We should only reach here at the end of a Full GC which means we
1531   // should not not be holding to any GC alloc regions. The method
1532   // below will make sure of that and do any remaining clean up.
1533   _allocator->abandon_gc_alloc_regions();
1534 
1535   // Instead of tearing down / rebuilding the free lists here, we
1536   // could instead use the remove_all_pending() method on free_list to
1537   // remove only the ones that we need to remove.
1538   tear_down_region_sets(true /* free_list_only */);
1539   shrink_helper(shrink_bytes);
1540   rebuild_region_sets(true /* free_list_only */);
1541 
1542   _hrm.verify_optional();
1543   _verifier->verify_region_sets_optional();
1544 }
1545 
1546 // Public methods.
1547 
1548 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1549   CollectedHeap(),
1550   _collector_policy(collector_policy),
1551   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1552   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1553   _g1_policy(create_g1_policy(_gc_timer_stw)),
1554   _collection_set(this, _g1_policy),
1555   _dirty_card_queue_set(false),
1556   _is_alive_closure_cm(this),
1557   _is_alive_closure_stw(this),
1558   _ref_processor_cm(NULL),
1559   _ref_processor_stw(NULL),
1560   _bot(NULL),
1561   _hot_card_cache(NULL),
1562   _g1_rem_set(NULL),
1563   _cg1r(NULL),
1564   _g1mm(NULL),
1565   _preserved_marks_set(true /* in_c_heap */),
1566   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1567   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1568   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1569   _humongous_reclaim_candidates(),
1570   _has_humongous_reclaim_candidates(false),
1571   _archive_allocator(NULL),
1572   _free_regions_coming(false),
1573   _gc_time_stamp(0),
1574   _summary_bytes_used(0),
1575   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1576   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1577   _expand_heap_after_alloc_failure(true),
1578   _old_marking_cycles_started(0),
1579   _old_marking_cycles_completed(0),
1580   _in_cset_fast_test() {
1581 
1582   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1583                           /* are_GC_task_threads */true,
1584                           /* are_ConcurrentGC_threads */false);
1585   _workers->initialize_workers();
1586   _verifier = new G1HeapVerifier(this);
1587 
1588   _allocator = G1Allocator::create_allocator(this);
1589 
1590   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1591 
1592   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1593 
1594   // Override the default _filler_array_max_size so that no humongous filler
1595   // objects are created.
1596   _filler_array_max_size = _humongous_object_threshold_in_words;
1597 
1598   uint n_queues = ParallelGCThreads;
1599   _task_queues = new RefToScanQueueSet(n_queues);
1600 
1601   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1602 
1603   for (uint i = 0; i < n_queues; i++) {
1604     RefToScanQueue* q = new RefToScanQueue();
1605     q->initialize();
1606     _task_queues->register_queue(i, q);
1607     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1608   }
1609 
1610   // Initialize the G1EvacuationFailureALot counters and flags.
1611   NOT_PRODUCT(reset_evacuation_should_fail();)
1612 
1613   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1614 }
1615 
1616 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1617                                                                  size_t size,
1618                                                                  size_t translation_factor) {
1619   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1620   // Allocate a new reserved space, preferring to use large pages.
1621   ReservedSpace rs(size, preferred_page_size);
1622   G1RegionToSpaceMapper* result  =
1623     G1RegionToSpaceMapper::create_mapper(rs,
1624                                          size,
1625                                          rs.alignment(),
1626                                          HeapRegion::GrainBytes,
1627                                          translation_factor,
1628                                          mtGC);
1629 
1630   os::trace_page_sizes_for_requested_size(description,
1631                                           size,
1632                                           preferred_page_size,
1633                                           rs.alignment(),
1634                                           rs.base(),
1635                                           rs.size());
1636 
1637   return result;
1638 }
1639 
1640 jint G1CollectedHeap::initialize_concurrent_refinement() {
1641   jint ecode = JNI_OK;
1642   _cg1r = ConcurrentG1Refine::create(&ecode);
1643   return ecode;
1644 }
1645 
1646 jint G1CollectedHeap::initialize() {
1647   CollectedHeap::pre_initialize();
1648   os::enable_vtime();
1649 
1650   // Necessary to satisfy locking discipline assertions.
1651 
1652   MutexLocker x(Heap_lock);
1653 
1654   // While there are no constraints in the GC code that HeapWordSize
1655   // be any particular value, there are multiple other areas in the
1656   // system which believe this to be true (e.g. oop->object_size in some
1657   // cases incorrectly returns the size in wordSize units rather than
1658   // HeapWordSize).
1659   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1660 
1661   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1662   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1663   size_t heap_alignment = collector_policy()->heap_alignment();
1664 
1665   // Ensure that the sizes are properly aligned.
1666   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1667   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1668   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1669 
1670   // Reserve the maximum.
1671 
1672   // When compressed oops are enabled, the preferred heap base
1673   // is calculated by subtracting the requested size from the
1674   // 32Gb boundary and using the result as the base address for
1675   // heap reservation. If the requested size is not aligned to
1676   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1677   // into the ReservedHeapSpace constructor) then the actual
1678   // base of the reserved heap may end up differing from the
1679   // address that was requested (i.e. the preferred heap base).
1680   // If this happens then we could end up using a non-optimal
1681   // compressed oops mode.
1682 
1683   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1684                                                  heap_alignment);
1685 
1686   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1687 
1688   // Create the barrier set for the entire reserved region.
1689   G1CardTable* ct = new G1CardTable(reserved_region());
1690   ct->initialize();
1691   G1BarrierSet* bs = new G1BarrierSet(ct);
1692   bs->initialize();
1693   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1694   set_barrier_set(bs);
1695 
1696   // Create the hot card cache.
1697   _hot_card_cache = new G1HotCardCache(this);
1698 
1699   // Carve out the G1 part of the heap.
1700   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1701   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1702   G1RegionToSpaceMapper* heap_storage =
1703     G1RegionToSpaceMapper::create_mapper(g1_rs,
1704                                          g1_rs.size(),
1705                                          page_size,
1706                                          HeapRegion::GrainBytes,
1707                                          1,
1708                                          mtJavaHeap);
1709   os::trace_page_sizes("Heap",
1710                        collector_policy()->min_heap_byte_size(),
1711                        max_byte_size,
1712                        page_size,
1713                        heap_rs.base(),
1714                        heap_rs.size());
1715   heap_storage->set_mapping_changed_listener(&_listener);
1716 
1717   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1718   G1RegionToSpaceMapper* bot_storage =
1719     create_aux_memory_mapper("Block Offset Table",
1720                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1721                              G1BlockOffsetTable::heap_map_factor());
1722 
1723   G1RegionToSpaceMapper* cardtable_storage =
1724     create_aux_memory_mapper("Card Table",
1725                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1726                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1727 
1728   G1RegionToSpaceMapper* card_counts_storage =
1729     create_aux_memory_mapper("Card Counts Table",
1730                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1731                              G1CardCounts::heap_map_factor());
1732 
1733   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1734   G1RegionToSpaceMapper* prev_bitmap_storage =
1735     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1736   G1RegionToSpaceMapper* next_bitmap_storage =
1737     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1738 
1739   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1740   g1_card_table()->initialize(cardtable_storage);
1741   // Do later initialization work for concurrent refinement.
1742   _hot_card_cache->initialize(card_counts_storage);
1743 
1744   // 6843694 - ensure that the maximum region index can fit
1745   // in the remembered set structures.
1746   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1747   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1748 
1749   // Also create a G1 rem set.
1750   _g1_rem_set = new G1RemSet(this, g1_card_table(), _hot_card_cache);
1751   _g1_rem_set->initialize(max_capacity(), max_regions());
1752 
1753   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1754   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1755   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1756             "too many cards per region");
1757 
1758   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1759 
1760   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1761 
1762   {
1763     HeapWord* start = _hrm.reserved().start();
1764     HeapWord* end = _hrm.reserved().end();
1765     size_t granularity = HeapRegion::GrainBytes;
1766 
1767     _in_cset_fast_test.initialize(start, end, granularity);
1768     _humongous_reclaim_candidates.initialize(start, end, granularity);
1769   }
1770 
1771   // Create the G1ConcurrentMark data structure and thread.
1772   // (Must do this late, so that "max_regions" is defined.)
1773   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1774   if (_cm == NULL || !_cm->completed_initialization()) {
1775     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1776     return JNI_ENOMEM;
1777   }
1778   _cmThread = _cm->cmThread();
1779 
1780   // Now expand into the initial heap size.
1781   if (!expand(init_byte_size, _workers)) {
1782     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1783     return JNI_ENOMEM;
1784   }
1785 
1786   // Perform any initialization actions delegated to the policy.
1787   g1_policy()->init(this, &_collection_set);
1788 
1789   G1BarrierSet::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1790                                                  SATB_Q_FL_lock,
1791                                                  G1SATBProcessCompletedThreshold,
1792                                                  Shared_SATB_Q_lock);
1793 
1794   jint ecode = initialize_concurrent_refinement();
1795   if (ecode != JNI_OK) {
1796     return ecode;
1797   }
1798 
1799   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1800                                                   DirtyCardQ_FL_lock,
1801                                                   (int)concurrent_g1_refine()->yellow_zone(),
1802                                                   (int)concurrent_g1_refine()->red_zone(),
1803                                                   Shared_DirtyCardQ_lock,
1804                                                   NULL,  // fl_owner
1805                                                   true); // init_free_ids
1806 
1807   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1808                                     DirtyCardQ_FL_lock,
1809                                     -1, // never trigger processing
1810                                     -1, // no limit on length
1811                                     Shared_DirtyCardQ_lock,
1812                                     &G1BarrierSet::dirty_card_queue_set());
1813 
1814   // Here we allocate the dummy HeapRegion that is required by the
1815   // G1AllocRegion class.
1816   HeapRegion* dummy_region = _hrm.get_dummy_region();
1817 
1818   // We'll re-use the same region whether the alloc region will
1819   // require BOT updates or not and, if it doesn't, then a non-young
1820   // region will complain that it cannot support allocations without
1821   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1822   dummy_region->set_eden();
1823   // Make sure it's full.
1824   dummy_region->set_top(dummy_region->end());
1825   G1AllocRegion::setup(this, dummy_region);
1826 
1827   _allocator->init_mutator_alloc_region();
1828 
1829   // Do create of the monitoring and management support so that
1830   // values in the heap have been properly initialized.
1831   _g1mm = new G1MonitoringSupport(this);
1832 
1833   G1StringDedup::initialize();
1834 
1835   _preserved_marks_set.init(ParallelGCThreads);
1836 
1837   _collection_set.initialize(max_regions());
1838 
1839   return JNI_OK;
1840 }
1841 
1842 void G1CollectedHeap::stop() {
1843   // Stop all concurrent threads. We do this to make sure these threads
1844   // do not continue to execute and access resources (e.g. logging)
1845   // that are destroyed during shutdown.
1846   _cg1r->stop();
1847   _cmThread->stop();
1848   if (G1StringDedup::is_enabled()) {
1849     G1StringDedup::stop();
1850   }
1851 }
1852 
1853 void G1CollectedHeap::safepoint_synchronize_begin() {
1854   SuspendibleThreadSet::synchronize();
1855 }
1856 
1857 void G1CollectedHeap::safepoint_synchronize_end() {
1858   SuspendibleThreadSet::desynchronize();
1859 }
1860 
1861 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1862   return HeapRegion::max_region_size();
1863 }
1864 
1865 void G1CollectedHeap::post_initialize() {
1866   ref_processing_init();
1867 }
1868 
1869 void G1CollectedHeap::ref_processing_init() {
1870   // Reference processing in G1 currently works as follows:
1871   //
1872   // * There are two reference processor instances. One is
1873   //   used to record and process discovered references
1874   //   during concurrent marking; the other is used to
1875   //   record and process references during STW pauses
1876   //   (both full and incremental).
1877   // * Both ref processors need to 'span' the entire heap as
1878   //   the regions in the collection set may be dotted around.
1879   //
1880   // * For the concurrent marking ref processor:
1881   //   * Reference discovery is enabled at initial marking.
1882   //   * Reference discovery is disabled and the discovered
1883   //     references processed etc during remarking.
1884   //   * Reference discovery is MT (see below).
1885   //   * Reference discovery requires a barrier (see below).
1886   //   * Reference processing may or may not be MT
1887   //     (depending on the value of ParallelRefProcEnabled
1888   //     and ParallelGCThreads).
1889   //   * A full GC disables reference discovery by the CM
1890   //     ref processor and abandons any entries on it's
1891   //     discovered lists.
1892   //
1893   // * For the STW processor:
1894   //   * Non MT discovery is enabled at the start of a full GC.
1895   //   * Processing and enqueueing during a full GC is non-MT.
1896   //   * During a full GC, references are processed after marking.
1897   //
1898   //   * Discovery (may or may not be MT) is enabled at the start
1899   //     of an incremental evacuation pause.
1900   //   * References are processed near the end of a STW evacuation pause.
1901   //   * For both types of GC:
1902   //     * Discovery is atomic - i.e. not concurrent.
1903   //     * Reference discovery will not need a barrier.
1904 
1905   MemRegion mr = reserved_region();
1906 
1907   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1908 
1909   // Concurrent Mark ref processor
1910   _ref_processor_cm =
1911     new ReferenceProcessor(mr,    // span
1912                            mt_processing,
1913                                 // mt processing
1914                            ParallelGCThreads,
1915                                 // degree of mt processing
1916                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1917                                 // mt discovery
1918                            MAX2(ParallelGCThreads, ConcGCThreads),
1919                                 // degree of mt discovery
1920                            false,
1921                                 // Reference discovery is not atomic
1922                            &_is_alive_closure_cm);
1923                                 // is alive closure
1924                                 // (for efficiency/performance)
1925 
1926   // STW ref processor
1927   _ref_processor_stw =
1928     new ReferenceProcessor(mr,    // span
1929                            mt_processing,
1930                                 // mt processing
1931                            ParallelGCThreads,
1932                                 // degree of mt processing
1933                            (ParallelGCThreads > 1),
1934                                 // mt discovery
1935                            ParallelGCThreads,
1936                                 // degree of mt discovery
1937                            true,
1938                                 // Reference discovery is atomic
1939                            &_is_alive_closure_stw);
1940                                 // is alive closure
1941                                 // (for efficiency/performance)
1942 }
1943 
1944 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1945   return _collector_policy;
1946 }
1947 
1948 size_t G1CollectedHeap::capacity() const {
1949   return _hrm.length() * HeapRegion::GrainBytes;
1950 }
1951 
1952 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1953   hr->reset_gc_time_stamp();
1954 }
1955 
1956 #ifndef PRODUCT
1957 
1958 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1959 private:
1960   unsigned _gc_time_stamp;
1961   bool _failures;
1962 
1963 public:
1964   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1965     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1966 
1967   virtual bool doHeapRegion(HeapRegion* hr) {
1968     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1969     if (_gc_time_stamp != region_gc_time_stamp) {
1970       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1971                             region_gc_time_stamp, _gc_time_stamp);
1972       _failures = true;
1973     }
1974     return false;
1975   }
1976 
1977   bool failures() { return _failures; }
1978 };
1979 
1980 void G1CollectedHeap::check_gc_time_stamps() {
1981   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1982   heap_region_iterate(&cl);
1983   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1984 }
1985 #endif // PRODUCT
1986 
1987 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1988   _hot_card_cache->drain(cl, worker_i);
1989 }
1990 
1991 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1992   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1993   size_t n_completed_buffers = 0;
1994   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1995     n_completed_buffers++;
1996   }
1997   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1998   dcqs.clear_n_completed_buffers();
1999   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2000 }
2001 
2002 // Computes the sum of the storage used by the various regions.
2003 size_t G1CollectedHeap::used() const {
2004   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2005   if (_archive_allocator != NULL) {
2006     result += _archive_allocator->used();
2007   }
2008   return result;
2009 }
2010 
2011 size_t G1CollectedHeap::used_unlocked() const {
2012   return _summary_bytes_used;
2013 }
2014 
2015 class SumUsedClosure: public HeapRegionClosure {
2016   size_t _used;
2017 public:
2018   SumUsedClosure() : _used(0) {}
2019   bool doHeapRegion(HeapRegion* r) {
2020     _used += r->used();
2021     return false;
2022   }
2023   size_t result() { return _used; }
2024 };
2025 
2026 size_t G1CollectedHeap::recalculate_used() const {
2027   double recalculate_used_start = os::elapsedTime();
2028 
2029   SumUsedClosure blk;
2030   heap_region_iterate(&blk);
2031 
2032   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2033   return blk.result();
2034 }
2035 
2036 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2037   switch (cause) {
2038     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2039     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2040     case GCCause::_update_allocation_context_stats_inc: return true;
2041     case GCCause::_wb_conc_mark:                        return true;
2042     default :                                           return false;
2043   }
2044 }
2045 
2046 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2047   switch (cause) {
2048     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2049     case GCCause::_g1_humongous_allocation: return true;
2050     default:                                return is_user_requested_concurrent_full_gc(cause);
2051   }
2052 }
2053 
2054 #ifndef PRODUCT
2055 void G1CollectedHeap::allocate_dummy_regions() {
2056   // Let's fill up most of the region
2057   size_t word_size = HeapRegion::GrainWords - 1024;
2058   // And as a result the region we'll allocate will be humongous.
2059   guarantee(is_humongous(word_size), "sanity");
2060 
2061   // _filler_array_max_size is set to humongous object threshold
2062   // but temporarily change it to use CollectedHeap::fill_with_object().
2063   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2064 
2065   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2066     // Let's use the existing mechanism for the allocation
2067     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2068                                                  AllocationContext::system());
2069     if (dummy_obj != NULL) {
2070       MemRegion mr(dummy_obj, word_size);
2071       CollectedHeap::fill_with_object(mr);
2072     } else {
2073       // If we can't allocate once, we probably cannot allocate
2074       // again. Let's get out of the loop.
2075       break;
2076     }
2077   }
2078 }
2079 #endif // !PRODUCT
2080 
2081 void G1CollectedHeap::increment_old_marking_cycles_started() {
2082   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2083          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2084          "Wrong marking cycle count (started: %d, completed: %d)",
2085          _old_marking_cycles_started, _old_marking_cycles_completed);
2086 
2087   _old_marking_cycles_started++;
2088 }
2089 
2090 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2091   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2092 
2093   // We assume that if concurrent == true, then the caller is a
2094   // concurrent thread that was joined the Suspendible Thread
2095   // Set. If there's ever a cheap way to check this, we should add an
2096   // assert here.
2097 
2098   // Given that this method is called at the end of a Full GC or of a
2099   // concurrent cycle, and those can be nested (i.e., a Full GC can
2100   // interrupt a concurrent cycle), the number of full collections
2101   // completed should be either one (in the case where there was no
2102   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2103   // behind the number of full collections started.
2104 
2105   // This is the case for the inner caller, i.e. a Full GC.
2106   assert(concurrent ||
2107          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2108          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2109          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2110          "is inconsistent with _old_marking_cycles_completed = %u",
2111          _old_marking_cycles_started, _old_marking_cycles_completed);
2112 
2113   // This is the case for the outer caller, i.e. the concurrent cycle.
2114   assert(!concurrent ||
2115          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2116          "for outer caller (concurrent cycle): "
2117          "_old_marking_cycles_started = %u "
2118          "is inconsistent with _old_marking_cycles_completed = %u",
2119          _old_marking_cycles_started, _old_marking_cycles_completed);
2120 
2121   _old_marking_cycles_completed += 1;
2122 
2123   // We need to clear the "in_progress" flag in the CM thread before
2124   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2125   // is set) so that if a waiter requests another System.gc() it doesn't
2126   // incorrectly see that a marking cycle is still in progress.
2127   if (concurrent) {
2128     _cmThread->set_idle();
2129   }
2130 
2131   // This notify_all() will ensure that a thread that called
2132   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2133   // and it's waiting for a full GC to finish will be woken up. It is
2134   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2135   FullGCCount_lock->notify_all();
2136 }
2137 
2138 void G1CollectedHeap::collect(GCCause::Cause cause) {
2139   assert_heap_not_locked();
2140 
2141   uint gc_count_before;
2142   uint old_marking_count_before;
2143   uint full_gc_count_before;
2144   bool retry_gc;
2145 
2146   do {
2147     retry_gc = false;
2148 
2149     {
2150       MutexLocker ml(Heap_lock);
2151 
2152       // Read the GC count while holding the Heap_lock
2153       gc_count_before = total_collections();
2154       full_gc_count_before = total_full_collections();
2155       old_marking_count_before = _old_marking_cycles_started;
2156     }
2157 
2158     if (should_do_concurrent_full_gc(cause)) {
2159       // Schedule an initial-mark evacuation pause that will start a
2160       // concurrent cycle. We're setting word_size to 0 which means that
2161       // we are not requesting a post-GC allocation.
2162       VM_G1IncCollectionPause op(gc_count_before,
2163                                  0,     /* word_size */
2164                                  true,  /* should_initiate_conc_mark */
2165                                  g1_policy()->max_pause_time_ms(),
2166                                  cause);
2167       op.set_allocation_context(AllocationContext::current());
2168 
2169       VMThread::execute(&op);
2170       if (!op.pause_succeeded()) {
2171         if (old_marking_count_before == _old_marking_cycles_started) {
2172           retry_gc = op.should_retry_gc();
2173         } else {
2174           // A Full GC happened while we were trying to schedule the
2175           // initial-mark GC. No point in starting a new cycle given
2176           // that the whole heap was collected anyway.
2177         }
2178 
2179         if (retry_gc) {
2180           if (GCLocker::is_active_and_needs_gc()) {
2181             GCLocker::stall_until_clear();
2182           }
2183         }
2184       }
2185     } else {
2186       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2187           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2188 
2189         // Schedule a standard evacuation pause. We're setting word_size
2190         // to 0 which means that we are not requesting a post-GC allocation.
2191         VM_G1IncCollectionPause op(gc_count_before,
2192                                    0,     /* word_size */
2193                                    false, /* should_initiate_conc_mark */
2194                                    g1_policy()->max_pause_time_ms(),
2195                                    cause);
2196         VMThread::execute(&op);
2197       } else {
2198         // Schedule a Full GC.
2199         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2200         VMThread::execute(&op);
2201       }
2202     }
2203   } while (retry_gc);
2204 }
2205 
2206 bool G1CollectedHeap::is_in(const void* p) const {
2207   if (_hrm.reserved().contains(p)) {
2208     // Given that we know that p is in the reserved space,
2209     // heap_region_containing() should successfully
2210     // return the containing region.
2211     HeapRegion* hr = heap_region_containing(p);
2212     return hr->is_in(p);
2213   } else {
2214     return false;
2215   }
2216 }
2217 
2218 #ifdef ASSERT
2219 bool G1CollectedHeap::is_in_exact(const void* p) const {
2220   bool contains = reserved_region().contains(p);
2221   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2222   if (contains && available) {
2223     return true;
2224   } else {
2225     return false;
2226   }
2227 }
2228 #endif
2229 
2230 // Iteration functions.
2231 
2232 // Iterates an ObjectClosure over all objects within a HeapRegion.
2233 
2234 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2235   ObjectClosure* _cl;
2236 public:
2237   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2238   bool doHeapRegion(HeapRegion* r) {
2239     if (!r->is_continues_humongous()) {
2240       r->object_iterate(_cl);
2241     }
2242     return false;
2243   }
2244 };
2245 
2246 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2247   IterateObjectClosureRegionClosure blk(cl);
2248   heap_region_iterate(&blk);
2249 }
2250 
2251 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2252   _hrm.iterate(cl);
2253 }
2254 
2255 void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2256                                               uint worker_id,
2257                                               HeapRegionClaimer *hrclaimer) const {
2258   _hrm.par_iterate(cl, worker_id, hrclaimer);
2259 }
2260 
2261 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2262   _collection_set.iterate(cl);
2263 }
2264 
2265 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2266   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2267 }
2268 
2269 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2270   HeapRegion* result = _hrm.next_region_in_heap(from);
2271   while (result != NULL && result->is_pinned()) {
2272     result = _hrm.next_region_in_heap(result);
2273   }
2274   return result;
2275 }
2276 
2277 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2278   HeapRegion* hr = heap_region_containing(addr);
2279   return hr->block_start(addr);
2280 }
2281 
2282 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2283   HeapRegion* hr = heap_region_containing(addr);
2284   return hr->block_size(addr);
2285 }
2286 
2287 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2288   HeapRegion* hr = heap_region_containing(addr);
2289   return hr->block_is_obj(addr);
2290 }
2291 
2292 bool G1CollectedHeap::supports_tlab_allocation() const {
2293   return true;
2294 }
2295 
2296 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2297   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2298 }
2299 
2300 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2301   return _eden.length() * HeapRegion::GrainBytes;
2302 }
2303 
2304 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2305 // must be equal to the humongous object limit.
2306 size_t G1CollectedHeap::max_tlab_size() const {
2307   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2308 }
2309 
2310 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2311   AllocationContext_t context = AllocationContext::current();
2312   return _allocator->unsafe_max_tlab_alloc(context);
2313 }
2314 
2315 size_t G1CollectedHeap::max_capacity() const {
2316   return _hrm.reserved().byte_size();
2317 }
2318 
2319 jlong G1CollectedHeap::millis_since_last_gc() {
2320   // See the notes in GenCollectedHeap::millis_since_last_gc()
2321   // for more information about the implementation.
2322   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2323     _g1_policy->collection_pause_end_millis();
2324   if (ret_val < 0) {
2325     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2326       ". returning zero instead.", ret_val);
2327     return 0;
2328   }
2329   return ret_val;
2330 }
2331 
2332 void G1CollectedHeap::prepare_for_verify() {
2333   _verifier->prepare_for_verify();
2334 }
2335 
2336 void G1CollectedHeap::verify(VerifyOption vo) {
2337   _verifier->verify(vo);
2338 }
2339 
2340 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2341   return true;
2342 }
2343 
2344 const char* const* G1CollectedHeap::concurrent_phases() const {
2345   return _cmThread->concurrent_phases();
2346 }
2347 
2348 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2349   return _cmThread->request_concurrent_phase(phase);
2350 }
2351 
2352 class PrintRegionClosure: public HeapRegionClosure {
2353   outputStream* _st;
2354 public:
2355   PrintRegionClosure(outputStream* st) : _st(st) {}
2356   bool doHeapRegion(HeapRegion* r) {
2357     r->print_on(_st);
2358     return false;
2359   }
2360 };
2361 
2362 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2363                                        const HeapRegion* hr,
2364                                        const VerifyOption vo) const {
2365   switch (vo) {
2366   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2367   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2368   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2369   default:                            ShouldNotReachHere();
2370   }
2371   return false; // keep some compilers happy
2372 }
2373 
2374 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2375                                        const VerifyOption vo) const {
2376   switch (vo) {
2377   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2378   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2379   case VerifyOption_G1UseMarkWord: {
2380     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2381     return !obj->is_gc_marked() && !hr->is_archive();
2382   }
2383   default:                            ShouldNotReachHere();
2384   }
2385   return false; // keep some compilers happy
2386 }
2387 
2388 void G1CollectedHeap::print_heap_regions() const {
2389   LogTarget(Trace, gc, heap, region) lt;
2390   if (lt.is_enabled()) {
2391     LogStream ls(lt);
2392     print_regions_on(&ls);
2393   }
2394 }
2395 
2396 void G1CollectedHeap::print_on(outputStream* st) const {
2397   st->print(" %-20s", "garbage-first heap");
2398   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2399             capacity()/K, used_unlocked()/K);
2400   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2401             p2i(_hrm.reserved().start()),
2402             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2403             p2i(_hrm.reserved().end()));
2404   st->cr();
2405   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2406   uint young_regions = young_regions_count();
2407   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2408             (size_t) young_regions * HeapRegion::GrainBytes / K);
2409   uint survivor_regions = survivor_regions_count();
2410   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2411             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2412   st->cr();
2413   MetaspaceAux::print_on(st);
2414 }
2415 
2416 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2417   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2418                "HS=humongous(starts), HC=humongous(continues), "
2419                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2420                "AC=allocation context, "
2421                "TAMS=top-at-mark-start (previous, next)");
2422   PrintRegionClosure blk(st);
2423   heap_region_iterate(&blk);
2424 }
2425 
2426 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2427   print_on(st);
2428 
2429   // Print the per-region information.
2430   print_regions_on(st);
2431 }
2432 
2433 void G1CollectedHeap::print_on_error(outputStream* st) const {
2434   this->CollectedHeap::print_on_error(st);
2435 
2436   if (_cm != NULL) {
2437     st->cr();
2438     _cm->print_on_error(st);
2439   }
2440 }
2441 
2442 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2443   workers()->print_worker_threads_on(st);
2444   _cmThread->print_on(st);
2445   st->cr();
2446   _cm->print_worker_threads_on(st);
2447   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2448   if (G1StringDedup::is_enabled()) {
2449     G1StringDedup::print_worker_threads_on(st);
2450   }
2451 }
2452 
2453 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2454   workers()->threads_do(tc);
2455   tc->do_thread(_cmThread);
2456   _cm->threads_do(tc);
2457   _cg1r->threads_do(tc); // also iterates over the sample thread
2458   if (G1StringDedup::is_enabled()) {
2459     G1StringDedup::threads_do(tc);
2460   }
2461 }
2462 
2463 void G1CollectedHeap::print_tracing_info() const {
2464   g1_rem_set()->print_summary_info();
2465   concurrent_mark()->print_summary_info();
2466 }
2467 
2468 #ifndef PRODUCT
2469 // Helpful for debugging RSet issues.
2470 
2471 class PrintRSetsClosure : public HeapRegionClosure {
2472 private:
2473   const char* _msg;
2474   size_t _occupied_sum;
2475 
2476 public:
2477   bool doHeapRegion(HeapRegion* r) {
2478     HeapRegionRemSet* hrrs = r->rem_set();
2479     size_t occupied = hrrs->occupied();
2480     _occupied_sum += occupied;
2481 
2482     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2483     if (occupied == 0) {
2484       tty->print_cr("  RSet is empty");
2485     } else {
2486       hrrs->print();
2487     }
2488     tty->print_cr("----------");
2489     return false;
2490   }
2491 
2492   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2493     tty->cr();
2494     tty->print_cr("========================================");
2495     tty->print_cr("%s", msg);
2496     tty->cr();
2497   }
2498 
2499   ~PrintRSetsClosure() {
2500     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2501     tty->print_cr("========================================");
2502     tty->cr();
2503   }
2504 };
2505 
2506 void G1CollectedHeap::print_cset_rsets() {
2507   PrintRSetsClosure cl("Printing CSet RSets");
2508   collection_set_iterate(&cl);
2509 }
2510 
2511 void G1CollectedHeap::print_all_rsets() {
2512   PrintRSetsClosure cl("Printing All RSets");;
2513   heap_region_iterate(&cl);
2514 }
2515 #endif // PRODUCT
2516 
2517 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2518 
2519   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2520   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2521   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2522 
2523   size_t eden_capacity_bytes =
2524     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2525 
2526   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2527   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2528                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2529 }
2530 
2531 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2532   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2533                        stats->unused(), stats->used(), stats->region_end_waste(),
2534                        stats->regions_filled(), stats->direct_allocated(),
2535                        stats->failure_used(), stats->failure_waste());
2536 }
2537 
2538 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2539   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2540   gc_tracer->report_gc_heap_summary(when, heap_summary);
2541 
2542   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2543   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2544 }
2545 
2546 G1CollectedHeap* G1CollectedHeap::heap() {
2547   CollectedHeap* heap = Universe::heap();
2548   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2549   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2550   return (G1CollectedHeap*)heap;
2551 }
2552 
2553 void G1CollectedHeap::gc_prologue(bool full) {
2554   // always_do_update_barrier = false;
2555   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2556 
2557   // This summary needs to be printed before incrementing total collections.
2558   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2559 
2560   // Update common counters.
2561   increment_total_collections(full /* full gc */);
2562   if (full) {
2563     increment_old_marking_cycles_started();
2564     reset_gc_time_stamp();
2565   } else {
2566     increment_gc_time_stamp();
2567   }
2568 
2569   // Fill TLAB's and such
2570   double start = os::elapsedTime();
2571   accumulate_statistics_all_tlabs();
2572   ensure_parsability(true);
2573   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2574 }
2575 
2576 void G1CollectedHeap::gc_epilogue(bool full) {
2577   // Update common counters.
2578   if (full) {
2579     // Update the number of full collections that have been completed.
2580     increment_old_marking_cycles_completed(false /* concurrent */);
2581   }
2582 
2583   // We are at the end of the GC. Total collections has already been increased.
2584   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2585 
2586   // FIXME: what is this about?
2587   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2588   // is set.
2589 #if defined(COMPILER2) || INCLUDE_JVMCI
2590   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2591 #endif
2592   // always_do_update_barrier = true;
2593 
2594   double start = os::elapsedTime();
2595   resize_all_tlabs();
2596   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2597 
2598   allocation_context_stats().update(full);
2599 
2600   MemoryService::track_memory_usage();
2601   // We have just completed a GC. Update the soft reference
2602   // policy with the new heap occupancy
2603   Universe::update_heap_info_at_gc();
2604 }
2605 
2606 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2607                                                uint gc_count_before,
2608                                                bool* succeeded,
2609                                                GCCause::Cause gc_cause) {
2610   assert_heap_not_locked_and_not_at_safepoint();
2611   VM_G1IncCollectionPause op(gc_count_before,
2612                              word_size,
2613                              false, /* should_initiate_conc_mark */
2614                              g1_policy()->max_pause_time_ms(),
2615                              gc_cause);
2616 
2617   op.set_allocation_context(AllocationContext::current());
2618   VMThread::execute(&op);
2619 
2620   HeapWord* result = op.result();
2621   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2622   assert(result == NULL || ret_succeeded,
2623          "the result should be NULL if the VM did not succeed");
2624   *succeeded = ret_succeeded;
2625 
2626   assert_heap_not_locked();
2627   return result;
2628 }
2629 
2630 void
2631 G1CollectedHeap::doConcurrentMark() {
2632   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2633   if (!_cmThread->in_progress()) {
2634     _cmThread->set_started();
2635     CGC_lock->notify();
2636   }
2637 }
2638 
2639 size_t G1CollectedHeap::pending_card_num() {
2640   size_t extra_cards = 0;
2641   JavaThread *curr = Threads::first();
2642   while (curr != NULL) {
2643     DirtyCardQueue& dcq = curr->dirty_card_queue();
2644     extra_cards += dcq.size();
2645     curr = curr->next();
2646   }
2647   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2648   size_t buffer_size = dcqs.buffer_size();
2649   size_t buffer_num = dcqs.completed_buffers_num();
2650 
2651   return buffer_size * buffer_num + extra_cards;
2652 }
2653 
2654 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2655  private:
2656   size_t _total_humongous;
2657   size_t _candidate_humongous;
2658 
2659   DirtyCardQueue _dcq;
2660 
2661   // We don't nominate objects with many remembered set entries, on
2662   // the assumption that such objects are likely still live.
2663   bool is_remset_small(HeapRegion* region) const {
2664     HeapRegionRemSet* const rset = region->rem_set();
2665     return G1EagerReclaimHumongousObjectsWithStaleRefs
2666       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2667       : rset->is_empty();
2668   }
2669 
2670   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2671     assert(region->is_starts_humongous(), "Must start a humongous object");
2672 
2673     oop obj = oop(region->bottom());
2674 
2675     // Dead objects cannot be eager reclaim candidates. Due to class
2676     // unloading it is unsafe to query their classes so we return early.
2677     if (heap->is_obj_dead(obj, region)) {
2678       return false;
2679     }
2680 
2681     // Candidate selection must satisfy the following constraints
2682     // while concurrent marking is in progress:
2683     //
2684     // * In order to maintain SATB invariants, an object must not be
2685     // reclaimed if it was allocated before the start of marking and
2686     // has not had its references scanned.  Such an object must have
2687     // its references (including type metadata) scanned to ensure no
2688     // live objects are missed by the marking process.  Objects
2689     // allocated after the start of concurrent marking don't need to
2690     // be scanned.
2691     //
2692     // * An object must not be reclaimed if it is on the concurrent
2693     // mark stack.  Objects allocated after the start of concurrent
2694     // marking are never pushed on the mark stack.
2695     //
2696     // Nominating only objects allocated after the start of concurrent
2697     // marking is sufficient to meet both constraints.  This may miss
2698     // some objects that satisfy the constraints, but the marking data
2699     // structures don't support efficiently performing the needed
2700     // additional tests or scrubbing of the mark stack.
2701     //
2702     // However, we presently only nominate is_typeArray() objects.
2703     // A humongous object containing references induces remembered
2704     // set entries on other regions.  In order to reclaim such an
2705     // object, those remembered sets would need to be cleaned up.
2706     //
2707     // We also treat is_typeArray() objects specially, allowing them
2708     // to be reclaimed even if allocated before the start of
2709     // concurrent mark.  For this we rely on mark stack insertion to
2710     // exclude is_typeArray() objects, preventing reclaiming an object
2711     // that is in the mark stack.  We also rely on the metadata for
2712     // such objects to be built-in and so ensured to be kept live.
2713     // Frequent allocation and drop of large binary blobs is an
2714     // important use case for eager reclaim, and this special handling
2715     // may reduce needed headroom.
2716 
2717     return obj->is_typeArray() && is_remset_small(region);
2718   }
2719 
2720  public:
2721   RegisterHumongousWithInCSetFastTestClosure()
2722   : _total_humongous(0),
2723     _candidate_humongous(0),
2724     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2725   }
2726 
2727   virtual bool doHeapRegion(HeapRegion* r) {
2728     if (!r->is_starts_humongous()) {
2729       return false;
2730     }
2731     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2732 
2733     bool is_candidate = humongous_region_is_candidate(g1h, r);
2734     uint rindex = r->hrm_index();
2735     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2736     if (is_candidate) {
2737       _candidate_humongous++;
2738       g1h->register_humongous_region_with_cset(rindex);
2739       // Is_candidate already filters out humongous object with large remembered sets.
2740       // If we have a humongous object with a few remembered sets, we simply flush these
2741       // remembered set entries into the DCQS. That will result in automatic
2742       // re-evaluation of their remembered set entries during the following evacuation
2743       // phase.
2744       if (!r->rem_set()->is_empty()) {
2745         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2746                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2747         G1CardTable* ct = g1h->g1_card_table();
2748         HeapRegionRemSetIterator hrrs(r->rem_set());
2749         size_t card_index;
2750         while (hrrs.has_next(card_index)) {
2751           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2752           // The remembered set might contain references to already freed
2753           // regions. Filter out such entries to avoid failing card table
2754           // verification.
2755           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2756             if (*card_ptr != G1CardTable::dirty_card_val()) {
2757               *card_ptr = G1CardTable::dirty_card_val();
2758               _dcq.enqueue(card_ptr);
2759             }
2760           }
2761         }
2762         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2763                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2764                hrrs.n_yielded(), r->rem_set()->occupied());
2765         r->rem_set()->clear_locked();
2766       }
2767       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2768     }
2769     _total_humongous++;
2770 
2771     return false;
2772   }
2773 
2774   size_t total_humongous() const { return _total_humongous; }
2775   size_t candidate_humongous() const { return _candidate_humongous; }
2776 
2777   void flush_rem_set_entries() { _dcq.flush(); }
2778 };
2779 
2780 void G1CollectedHeap::register_humongous_regions_with_cset() {
2781   if (!G1EagerReclaimHumongousObjects) {
2782     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2783     return;
2784   }
2785   double time = os::elapsed_counter();
2786 
2787   // Collect reclaim candidate information and register candidates with cset.
2788   RegisterHumongousWithInCSetFastTestClosure cl;
2789   heap_region_iterate(&cl);
2790 
2791   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2792   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2793                                                                   cl.total_humongous(),
2794                                                                   cl.candidate_humongous());
2795   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2796 
2797   // Finally flush all remembered set entries to re-check into the global DCQS.
2798   cl.flush_rem_set_entries();
2799 }
2800 
2801 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2802   public:
2803     bool doHeapRegion(HeapRegion* hr) {
2804       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2805         hr->verify_rem_set();
2806       }
2807       return false;
2808     }
2809 };
2810 
2811 uint G1CollectedHeap::num_task_queues() const {
2812   return _task_queues->size();
2813 }
2814 
2815 #if TASKQUEUE_STATS
2816 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2817   st->print_raw_cr("GC Task Stats");
2818   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2819   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2820 }
2821 
2822 void G1CollectedHeap::print_taskqueue_stats() const {
2823   if (!log_is_enabled(Trace, gc, task, stats)) {
2824     return;
2825   }
2826   Log(gc, task, stats) log;
2827   ResourceMark rm;
2828   LogStream ls(log.trace());
2829   outputStream* st = &ls;
2830 
2831   print_taskqueue_stats_hdr(st);
2832 
2833   TaskQueueStats totals;
2834   const uint n = num_task_queues();
2835   for (uint i = 0; i < n; ++i) {
2836     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2837     totals += task_queue(i)->stats;
2838   }
2839   st->print_raw("tot "); totals.print(st); st->cr();
2840 
2841   DEBUG_ONLY(totals.verify());
2842 }
2843 
2844 void G1CollectedHeap::reset_taskqueue_stats() {
2845   const uint n = num_task_queues();
2846   for (uint i = 0; i < n; ++i) {
2847     task_queue(i)->stats.reset();
2848   }
2849 }
2850 #endif // TASKQUEUE_STATS
2851 
2852 void G1CollectedHeap::wait_for_root_region_scanning() {
2853   double scan_wait_start = os::elapsedTime();
2854   // We have to wait until the CM threads finish scanning the
2855   // root regions as it's the only way to ensure that all the
2856   // objects on them have been correctly scanned before we start
2857   // moving them during the GC.
2858   bool waited = _cm->root_regions()->wait_until_scan_finished();
2859   double wait_time_ms = 0.0;
2860   if (waited) {
2861     double scan_wait_end = os::elapsedTime();
2862     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2863   }
2864   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2865 }
2866 
2867 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2868 private:
2869   G1HRPrinter* _hr_printer;
2870 public:
2871   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2872 
2873   virtual bool doHeapRegion(HeapRegion* r) {
2874     _hr_printer->cset(r);
2875     return false;
2876   }
2877 };
2878 
2879 void G1CollectedHeap::start_new_collection_set() {
2880   collection_set()->start_incremental_building();
2881 
2882   clear_cset_fast_test();
2883 
2884   guarantee(_eden.length() == 0, "eden should have been cleared");
2885   g1_policy()->transfer_survivors_to_cset(survivor());
2886 }
2887 
2888 bool
2889 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2890   assert_at_safepoint(true /* should_be_vm_thread */);
2891   guarantee(!is_gc_active(), "collection is not reentrant");
2892 
2893   if (GCLocker::check_active_before_gc()) {
2894     return false;
2895   }
2896 
2897   _gc_timer_stw->register_gc_start();
2898 
2899   GCIdMark gc_id_mark;
2900   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2901 
2902   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2903   ResourceMark rm;
2904 
2905   g1_policy()->note_gc_start();
2906 
2907   wait_for_root_region_scanning();
2908 
2909   print_heap_before_gc();
2910   print_heap_regions();
2911   trace_heap_before_gc(_gc_tracer_stw);
2912 
2913   _verifier->verify_region_sets_optional();
2914   _verifier->verify_dirty_young_regions();
2915 
2916   // We should not be doing initial mark unless the conc mark thread is running
2917   if (!_cmThread->should_terminate()) {
2918     // This call will decide whether this pause is an initial-mark
2919     // pause. If it is, during_initial_mark_pause() will return true
2920     // for the duration of this pause.
2921     g1_policy()->decide_on_conc_mark_initiation();
2922   }
2923 
2924   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2925   assert(!collector_state()->during_initial_mark_pause() ||
2926           collector_state()->gcs_are_young(), "sanity");
2927 
2928   // We also do not allow mixed GCs during marking.
2929   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2930 
2931   // Record whether this pause is an initial mark. When the current
2932   // thread has completed its logging output and it's safe to signal
2933   // the CM thread, the flag's value in the policy has been reset.
2934   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2935 
2936   // Inner scope for scope based logging, timers, and stats collection
2937   {
2938     EvacuationInfo evacuation_info;
2939 
2940     if (collector_state()->during_initial_mark_pause()) {
2941       // We are about to start a marking cycle, so we increment the
2942       // full collection counter.
2943       increment_old_marking_cycles_started();
2944       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2945     }
2946 
2947     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2948 
2949     GCTraceCPUTime tcpu;
2950 
2951     FormatBuffer<> gc_string("Pause ");
2952     if (collector_state()->during_initial_mark_pause()) {
2953       gc_string.append("Initial Mark");
2954     } else if (collector_state()->gcs_are_young()) {
2955       gc_string.append("Young");
2956     } else {
2957       gc_string.append("Mixed");
2958     }
2959     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2960 
2961     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2962                                                                   workers()->active_workers(),
2963                                                                   Threads::number_of_non_daemon_threads());
2964     workers()->update_active_workers(active_workers);
2965     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2966 
2967     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2968     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
2969 
2970     // If the secondary_free_list is not empty, append it to the
2971     // free_list. No need to wait for the cleanup operation to finish;
2972     // the region allocation code will check the secondary_free_list
2973     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2974     // set, skip this step so that the region allocation code has to
2975     // get entries from the secondary_free_list.
2976     if (!G1StressConcRegionFreeing) {
2977       append_secondary_free_list_if_not_empty_with_lock();
2978     }
2979 
2980     G1HeapTransition heap_transition(this);
2981     size_t heap_used_bytes_before_gc = used();
2982 
2983     // Don't dynamically change the number of GC threads this early.  A value of
2984     // 0 is used to indicate serial work.  When parallel work is done,
2985     // it will be set.
2986 
2987     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2988       IsGCActiveMark x;
2989 
2990       gc_prologue(false);
2991 
2992       if (VerifyRememberedSets) {
2993         log_info(gc, verify)("[Verifying RemSets before GC]");
2994         VerifyRegionRemSetClosure v_cl;
2995         heap_region_iterate(&v_cl);
2996       }
2997 
2998       _verifier->verify_before_gc();
2999 
3000       _verifier->check_bitmaps("GC Start");
3001 
3002 #if defined(COMPILER2) || INCLUDE_JVMCI
3003       DerivedPointerTable::clear();
3004 #endif
3005 
3006       // Please see comment in g1CollectedHeap.hpp and
3007       // G1CollectedHeap::ref_processing_init() to see how
3008       // reference processing currently works in G1.
3009 
3010       // Enable discovery in the STW reference processor
3011       if (g1_policy()->should_process_references()) {
3012         ref_processor_stw()->enable_discovery();
3013       } else {
3014         ref_processor_stw()->disable_discovery();
3015       }
3016 
3017       {
3018         // We want to temporarily turn off discovery by the
3019         // CM ref processor, if necessary, and turn it back on
3020         // on again later if we do. Using a scoped
3021         // NoRefDiscovery object will do this.
3022         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3023 
3024         // Forget the current alloc region (we might even choose it to be part
3025         // of the collection set!).
3026         _allocator->release_mutator_alloc_region();
3027 
3028         // This timing is only used by the ergonomics to handle our pause target.
3029         // It is unclear why this should not include the full pause. We will
3030         // investigate this in CR 7178365.
3031         //
3032         // Preserving the old comment here if that helps the investigation:
3033         //
3034         // The elapsed time induced by the start time below deliberately elides
3035         // the possible verification above.
3036         double sample_start_time_sec = os::elapsedTime();
3037 
3038         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3039 
3040         if (collector_state()->during_initial_mark_pause()) {
3041           concurrent_mark()->checkpointRootsInitialPre();
3042         }
3043 
3044         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3045 
3046         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3047 
3048         // Make sure the remembered sets are up to date. This needs to be
3049         // done before register_humongous_regions_with_cset(), because the
3050         // remembered sets are used there to choose eager reclaim candidates.
3051         // If the remembered sets are not up to date we might miss some
3052         // entries that need to be handled.
3053         g1_rem_set()->cleanupHRRS();
3054 
3055         register_humongous_regions_with_cset();
3056 
3057         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3058 
3059         // We call this after finalize_cset() to
3060         // ensure that the CSet has been finalized.
3061         _cm->verify_no_cset_oops();
3062 
3063         if (_hr_printer.is_active()) {
3064           G1PrintCollectionSetClosure cl(&_hr_printer);
3065           _collection_set.iterate(&cl);
3066         }
3067 
3068         // Initialize the GC alloc regions.
3069         _allocator->init_gc_alloc_regions(evacuation_info);
3070 
3071         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3072         pre_evacuate_collection_set();
3073 
3074         // Actually do the work...
3075         evacuate_collection_set(evacuation_info, &per_thread_states);
3076 
3077         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3078 
3079         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3080         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3081 
3082         eagerly_reclaim_humongous_regions();
3083 
3084         record_obj_copy_mem_stats();
3085         _survivor_evac_stats.adjust_desired_plab_sz();
3086         _old_evac_stats.adjust_desired_plab_sz();
3087 
3088         double start = os::elapsedTime();
3089         start_new_collection_set();
3090         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3091 
3092         if (evacuation_failed()) {
3093           set_used(recalculate_used());
3094           if (_archive_allocator != NULL) {
3095             _archive_allocator->clear_used();
3096           }
3097           for (uint i = 0; i < ParallelGCThreads; i++) {
3098             if (_evacuation_failed_info_array[i].has_failed()) {
3099               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3100             }
3101           }
3102         } else {
3103           // The "used" of the the collection set have already been subtracted
3104           // when they were freed.  Add in the bytes evacuated.
3105           increase_used(g1_policy()->bytes_copied_during_gc());
3106         }
3107 
3108         if (collector_state()->during_initial_mark_pause()) {
3109           // We have to do this before we notify the CM threads that
3110           // they can start working to make sure that all the
3111           // appropriate initialization is done on the CM object.
3112           concurrent_mark()->checkpointRootsInitialPost();
3113           collector_state()->set_mark_in_progress(true);
3114           // Note that we don't actually trigger the CM thread at
3115           // this point. We do that later when we're sure that
3116           // the current thread has completed its logging output.
3117         }
3118 
3119         allocate_dummy_regions();
3120 
3121         _allocator->init_mutator_alloc_region();
3122 
3123         {
3124           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3125           if (expand_bytes > 0) {
3126             size_t bytes_before = capacity();
3127             // No need for an ergo logging here,
3128             // expansion_amount() does this when it returns a value > 0.
3129             double expand_ms;
3130             if (!expand(expand_bytes, _workers, &expand_ms)) {
3131               // We failed to expand the heap. Cannot do anything about it.
3132             }
3133             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3134           }
3135         }
3136 
3137         // We redo the verification but now wrt to the new CSet which
3138         // has just got initialized after the previous CSet was freed.
3139         _cm->verify_no_cset_oops();
3140 
3141         // This timing is only used by the ergonomics to handle our pause target.
3142         // It is unclear why this should not include the full pause. We will
3143         // investigate this in CR 7178365.
3144         double sample_end_time_sec = os::elapsedTime();
3145         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3146         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3147         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3148 
3149         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3150         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3151 
3152         if (VerifyRememberedSets) {
3153           log_info(gc, verify)("[Verifying RemSets after GC]");
3154           VerifyRegionRemSetClosure v_cl;
3155           heap_region_iterate(&v_cl);
3156         }
3157 
3158         _verifier->verify_after_gc();
3159         _verifier->check_bitmaps("GC End");
3160 
3161         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3162         ref_processor_stw()->verify_no_references_recorded();
3163 
3164         // CM reference discovery will be re-enabled if necessary.
3165       }
3166 
3167 #ifdef TRACESPINNING
3168       ParallelTaskTerminator::print_termination_counts();
3169 #endif
3170 
3171       gc_epilogue(false);
3172     }
3173 
3174     // Print the remainder of the GC log output.
3175     if (evacuation_failed()) {
3176       log_info(gc)("To-space exhausted");
3177     }
3178 
3179     g1_policy()->print_phases();
3180     heap_transition.print();
3181 
3182     // It is not yet to safe to tell the concurrent mark to
3183     // start as we have some optional output below. We don't want the
3184     // output from the concurrent mark thread interfering with this
3185     // logging output either.
3186 
3187     _hrm.verify_optional();
3188     _verifier->verify_region_sets_optional();
3189 
3190     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3191     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3192 
3193     print_heap_after_gc();
3194     print_heap_regions();
3195     trace_heap_after_gc(_gc_tracer_stw);
3196 
3197     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3198     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3199     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3200     // before any GC notifications are raised.
3201     g1mm()->update_sizes();
3202 
3203     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3204     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3205     _gc_timer_stw->register_gc_end();
3206     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3207   }
3208   // It should now be safe to tell the concurrent mark thread to start
3209   // without its logging output interfering with the logging output
3210   // that came from the pause.
3211 
3212   if (should_start_conc_mark) {
3213     // CAUTION: after the doConcurrentMark() call below,
3214     // the concurrent marking thread(s) could be running
3215     // concurrently with us. Make sure that anything after
3216     // this point does not assume that we are the only GC thread
3217     // running. Note: of course, the actual marking work will
3218     // not start until the safepoint itself is released in
3219     // SuspendibleThreadSet::desynchronize().
3220     doConcurrentMark();
3221   }
3222 
3223   return true;
3224 }
3225 
3226 void G1CollectedHeap::remove_self_forwarding_pointers() {
3227   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3228   workers()->run_task(&rsfp_task);
3229 }
3230 
3231 void G1CollectedHeap::restore_after_evac_failure() {
3232   double remove_self_forwards_start = os::elapsedTime();
3233 
3234   remove_self_forwarding_pointers();
3235   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3236   _preserved_marks_set.restore(&task_executor);
3237 
3238   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3239 }
3240 
3241 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3242   if (!_evacuation_failed) {
3243     _evacuation_failed = true;
3244   }
3245 
3246   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3247   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3248 }
3249 
3250 bool G1ParEvacuateFollowersClosure::offer_termination() {
3251   G1ParScanThreadState* const pss = par_scan_state();
3252   start_term_time();
3253   const bool res = terminator()->offer_termination();
3254   end_term_time();
3255   return res;
3256 }
3257 
3258 void G1ParEvacuateFollowersClosure::do_void() {
3259   G1ParScanThreadState* const pss = par_scan_state();
3260   pss->trim_queue();
3261   do {
3262     pss->steal_and_trim_queue(queues());
3263   } while (!offer_termination());
3264 }
3265 
3266 class G1ParTask : public AbstractGangTask {
3267 protected:
3268   G1CollectedHeap*         _g1h;
3269   G1ParScanThreadStateSet* _pss;
3270   RefToScanQueueSet*       _queues;
3271   G1RootProcessor*         _root_processor;
3272   ParallelTaskTerminator   _terminator;
3273   uint                     _n_workers;
3274 
3275 public:
3276   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3277     : AbstractGangTask("G1 collection"),
3278       _g1h(g1h),
3279       _pss(per_thread_states),
3280       _queues(task_queues),
3281       _root_processor(root_processor),
3282       _terminator(n_workers, _queues),
3283       _n_workers(n_workers)
3284   {}
3285 
3286   void work(uint worker_id) {
3287     if (worker_id >= _n_workers) return;  // no work needed this round
3288 
3289     double start_sec = os::elapsedTime();
3290     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3291 
3292     {
3293       ResourceMark rm;
3294       HandleMark   hm;
3295 
3296       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3297 
3298       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3299       pss->set_ref_processor(rp);
3300 
3301       double start_strong_roots_sec = os::elapsedTime();
3302 
3303       _root_processor->evacuate_roots(pss->closures(), worker_id);
3304 
3305       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3306       // treating the nmethods visited to act as roots for concurrent marking.
3307       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3308       // objects copied by the current evacuation.
3309       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3310                                                       pss->closures()->weak_codeblobs(),
3311                                                       worker_id);
3312 
3313       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3314 
3315       double term_sec = 0.0;
3316       size_t evac_term_attempts = 0;
3317       {
3318         double start = os::elapsedTime();
3319         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3320         evac.do_void();
3321 
3322         evac_term_attempts = evac.term_attempts();
3323         term_sec = evac.term_time();
3324         double elapsed_sec = os::elapsedTime() - start;
3325         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3326         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3327         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3328       }
3329 
3330       assert(pss->queue_is_empty(), "should be empty");
3331 
3332       if (log_is_enabled(Debug, gc, task, stats)) {
3333         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3334         size_t lab_waste;
3335         size_t lab_undo_waste;
3336         pss->waste(lab_waste, lab_undo_waste);
3337         _g1h->print_termination_stats(worker_id,
3338                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3339                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3340                                       term_sec * 1000.0,                          /* evac term time */
3341                                       evac_term_attempts,                         /* evac term attempts */
3342                                       lab_waste,                                  /* alloc buffer waste */
3343                                       lab_undo_waste                              /* undo waste */
3344                                       );
3345       }
3346 
3347       // Close the inner scope so that the ResourceMark and HandleMark
3348       // destructors are executed here and are included as part of the
3349       // "GC Worker Time".
3350     }
3351     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3352   }
3353 };
3354 
3355 void G1CollectedHeap::print_termination_stats_hdr() {
3356   log_debug(gc, task, stats)("GC Termination Stats");
3357   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3358   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3359   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3360 }
3361 
3362 void G1CollectedHeap::print_termination_stats(uint worker_id,
3363                                               double elapsed_ms,
3364                                               double strong_roots_ms,
3365                                               double term_ms,
3366                                               size_t term_attempts,
3367                                               size_t alloc_buffer_waste,
3368                                               size_t undo_waste) const {
3369   log_debug(gc, task, stats)
3370               ("%3d %9.2f %9.2f %6.2f "
3371                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3372                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3373                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3374                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3375                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3376                alloc_buffer_waste * HeapWordSize / K,
3377                undo_waste * HeapWordSize / K);
3378 }
3379 
3380 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3381 private:
3382   BoolObjectClosure* _is_alive;
3383   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3384 
3385   int _initial_string_table_size;
3386   int _initial_symbol_table_size;
3387 
3388   bool  _process_strings;
3389   int _strings_processed;
3390   int _strings_removed;
3391 
3392   bool  _process_symbols;
3393   int _symbols_processed;
3394   int _symbols_removed;
3395 
3396   bool _process_string_dedup;
3397 
3398 public:
3399   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3400     AbstractGangTask("String/Symbol Unlinking"),
3401     _is_alive(is_alive),
3402     _dedup_closure(is_alive, NULL, false),
3403     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3404     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3405     _process_string_dedup(process_string_dedup) {
3406 
3407     _initial_string_table_size = StringTable::the_table()->table_size();
3408     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3409     if (process_strings) {
3410       StringTable::clear_parallel_claimed_index();
3411     }
3412     if (process_symbols) {
3413       SymbolTable::clear_parallel_claimed_index();
3414     }
3415   }
3416 
3417   ~G1StringAndSymbolCleaningTask() {
3418     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3419               "claim value %d after unlink less than initial string table size %d",
3420               StringTable::parallel_claimed_index(), _initial_string_table_size);
3421     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3422               "claim value %d after unlink less than initial symbol table size %d",
3423               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3424 
3425     log_info(gc, stringtable)(
3426         "Cleaned string and symbol table, "
3427         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3428         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3429         strings_processed(), strings_removed(),
3430         symbols_processed(), symbols_removed());
3431   }
3432 
3433   void work(uint worker_id) {
3434     int strings_processed = 0;
3435     int strings_removed = 0;
3436     int symbols_processed = 0;
3437     int symbols_removed = 0;
3438     if (_process_strings) {
3439       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3440       Atomic::add(strings_processed, &_strings_processed);
3441       Atomic::add(strings_removed, &_strings_removed);
3442     }
3443     if (_process_symbols) {
3444       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3445       Atomic::add(symbols_processed, &_symbols_processed);
3446       Atomic::add(symbols_removed, &_symbols_removed);
3447     }
3448     if (_process_string_dedup) {
3449       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3450     }
3451   }
3452 
3453   size_t strings_processed() const { return (size_t)_strings_processed; }
3454   size_t strings_removed()   const { return (size_t)_strings_removed; }
3455 
3456   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3457   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3458 };
3459 
3460 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3461 private:
3462   static Monitor* _lock;
3463 
3464   BoolObjectClosure* const _is_alive;
3465   const bool               _unloading_occurred;
3466   const uint               _num_workers;
3467 
3468   // Variables used to claim nmethods.
3469   CompiledMethod* _first_nmethod;
3470   volatile CompiledMethod* _claimed_nmethod;
3471 
3472   // The list of nmethods that need to be processed by the second pass.
3473   volatile CompiledMethod* _postponed_list;
3474   volatile uint            _num_entered_barrier;
3475 
3476  public:
3477   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3478       _is_alive(is_alive),
3479       _unloading_occurred(unloading_occurred),
3480       _num_workers(num_workers),
3481       _first_nmethod(NULL),
3482       _claimed_nmethod(NULL),
3483       _postponed_list(NULL),
3484       _num_entered_barrier(0)
3485   {
3486     CompiledMethod::increase_unloading_clock();
3487     // Get first alive nmethod
3488     CompiledMethodIterator iter = CompiledMethodIterator();
3489     if(iter.next_alive()) {
3490       _first_nmethod = iter.method();
3491     }
3492     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3493   }
3494 
3495   ~G1CodeCacheUnloadingTask() {
3496     CodeCache::verify_clean_inline_caches();
3497 
3498     CodeCache::set_needs_cache_clean(false);
3499     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3500 
3501     CodeCache::verify_icholder_relocations();
3502   }
3503 
3504  private:
3505   void add_to_postponed_list(CompiledMethod* nm) {
3506       CompiledMethod* old;
3507       do {
3508         old = (CompiledMethod*)_postponed_list;
3509         nm->set_unloading_next(old);
3510       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3511   }
3512 
3513   void clean_nmethod(CompiledMethod* nm) {
3514     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3515 
3516     if (postponed) {
3517       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3518       add_to_postponed_list(nm);
3519     }
3520 
3521     // Mark that this thread has been cleaned/unloaded.
3522     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3523     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3524   }
3525 
3526   void clean_nmethod_postponed(CompiledMethod* nm) {
3527     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3528   }
3529 
3530   static const int MaxClaimNmethods = 16;
3531 
3532   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3533     CompiledMethod* first;
3534     CompiledMethodIterator last;
3535 
3536     do {
3537       *num_claimed_nmethods = 0;
3538 
3539       first = (CompiledMethod*)_claimed_nmethod;
3540       last = CompiledMethodIterator(first);
3541 
3542       if (first != NULL) {
3543 
3544         for (int i = 0; i < MaxClaimNmethods; i++) {
3545           if (!last.next_alive()) {
3546             break;
3547           }
3548           claimed_nmethods[i] = last.method();
3549           (*num_claimed_nmethods)++;
3550         }
3551       }
3552 
3553     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3554   }
3555 
3556   CompiledMethod* claim_postponed_nmethod() {
3557     CompiledMethod* claim;
3558     CompiledMethod* next;
3559 
3560     do {
3561       claim = (CompiledMethod*)_postponed_list;
3562       if (claim == NULL) {
3563         return NULL;
3564       }
3565 
3566       next = claim->unloading_next();
3567 
3568     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3569 
3570     return claim;
3571   }
3572 
3573  public:
3574   // Mark that we're done with the first pass of nmethod cleaning.
3575   void barrier_mark(uint worker_id) {
3576     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3577     _num_entered_barrier++;
3578     if (_num_entered_barrier == _num_workers) {
3579       ml.notify_all();
3580     }
3581   }
3582 
3583   // See if we have to wait for the other workers to
3584   // finish their first-pass nmethod cleaning work.
3585   void barrier_wait(uint worker_id) {
3586     if (_num_entered_barrier < _num_workers) {
3587       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3588       while (_num_entered_barrier < _num_workers) {
3589           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3590       }
3591     }
3592   }
3593 
3594   // Cleaning and unloading of nmethods. Some work has to be postponed
3595   // to the second pass, when we know which nmethods survive.
3596   void work_first_pass(uint worker_id) {
3597     // The first nmethods is claimed by the first worker.
3598     if (worker_id == 0 && _first_nmethod != NULL) {
3599       clean_nmethod(_first_nmethod);
3600       _first_nmethod = NULL;
3601     }
3602 
3603     int num_claimed_nmethods;
3604     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3605 
3606     while (true) {
3607       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3608 
3609       if (num_claimed_nmethods == 0) {
3610         break;
3611       }
3612 
3613       for (int i = 0; i < num_claimed_nmethods; i++) {
3614         clean_nmethod(claimed_nmethods[i]);
3615       }
3616     }
3617   }
3618 
3619   void work_second_pass(uint worker_id) {
3620     CompiledMethod* nm;
3621     // Take care of postponed nmethods.
3622     while ((nm = claim_postponed_nmethod()) != NULL) {
3623       clean_nmethod_postponed(nm);
3624     }
3625   }
3626 };
3627 
3628 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3629 
3630 class G1KlassCleaningTask : public StackObj {
3631   BoolObjectClosure*                      _is_alive;
3632   volatile jint                           _clean_klass_tree_claimed;
3633   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3634 
3635  public:
3636   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3637       _is_alive(is_alive),
3638       _clean_klass_tree_claimed(0),
3639       _klass_iterator() {
3640   }
3641 
3642  private:
3643   bool claim_clean_klass_tree_task() {
3644     if (_clean_klass_tree_claimed) {
3645       return false;
3646     }
3647 
3648     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3649   }
3650 
3651   InstanceKlass* claim_next_klass() {
3652     Klass* klass;
3653     do {
3654       klass =_klass_iterator.next_klass();
3655     } while (klass != NULL && !klass->is_instance_klass());
3656 
3657     // this can be null so don't call InstanceKlass::cast
3658     return static_cast<InstanceKlass*>(klass);
3659   }
3660 
3661 public:
3662 
3663   void clean_klass(InstanceKlass* ik) {
3664     ik->clean_weak_instanceklass_links(_is_alive);
3665   }
3666 
3667   void work() {
3668     ResourceMark rm;
3669 
3670     // One worker will clean the subklass/sibling klass tree.
3671     if (claim_clean_klass_tree_task()) {
3672       Klass::clean_subklass_tree(_is_alive);
3673     }
3674 
3675     // All workers will help cleaning the classes,
3676     InstanceKlass* klass;
3677     while ((klass = claim_next_klass()) != NULL) {
3678       clean_klass(klass);
3679     }
3680   }
3681 };
3682 
3683 class G1ResolvedMethodCleaningTask : public StackObj {
3684   BoolObjectClosure* _is_alive;
3685   volatile jint      _resolved_method_task_claimed;
3686 public:
3687   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3688       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3689 
3690   bool claim_resolved_method_task() {
3691     if (_resolved_method_task_claimed) {
3692       return false;
3693     }
3694     return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3695   }
3696 
3697   // These aren't big, one thread can do it all.
3698   void work() {
3699     if (claim_resolved_method_task()) {
3700       ResolvedMethodTable::unlink(_is_alive);
3701     }
3702   }
3703 };
3704 
3705 
3706 // To minimize the remark pause times, the tasks below are done in parallel.
3707 class G1ParallelCleaningTask : public AbstractGangTask {
3708 private:
3709   G1StringAndSymbolCleaningTask _string_symbol_task;
3710   G1CodeCacheUnloadingTask      _code_cache_task;
3711   G1KlassCleaningTask           _klass_cleaning_task;
3712   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3713 
3714 public:
3715   // The constructor is run in the VMThread.
3716   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3717       AbstractGangTask("Parallel Cleaning"),
3718       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3719       _code_cache_task(num_workers, is_alive, unloading_occurred),
3720       _klass_cleaning_task(is_alive),
3721       _resolved_method_cleaning_task(is_alive) {
3722   }
3723 
3724   // The parallel work done by all worker threads.
3725   void work(uint worker_id) {
3726     // Do first pass of code cache cleaning.
3727     _code_cache_task.work_first_pass(worker_id);
3728 
3729     // Let the threads mark that the first pass is done.
3730     _code_cache_task.barrier_mark(worker_id);
3731 
3732     // Clean the Strings and Symbols.
3733     _string_symbol_task.work(worker_id);
3734 
3735     // Clean unreferenced things in the ResolvedMethodTable
3736     _resolved_method_cleaning_task.work();
3737 
3738     // Wait for all workers to finish the first code cache cleaning pass.
3739     _code_cache_task.barrier_wait(worker_id);
3740 
3741     // Do the second code cache cleaning work, which realize on
3742     // the liveness information gathered during the first pass.
3743     _code_cache_task.work_second_pass(worker_id);
3744 
3745     // Clean all klasses that were not unloaded.
3746     _klass_cleaning_task.work();
3747   }
3748 };
3749 
3750 
3751 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3752                                         bool class_unloading_occurred) {
3753   uint n_workers = workers()->active_workers();
3754 
3755   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3756   workers()->run_task(&g1_unlink_task);
3757 }
3758 
3759 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3760                                        bool process_strings,
3761                                        bool process_symbols,
3762                                        bool process_string_dedup) {
3763   if (!process_strings && !process_symbols && !process_string_dedup) {
3764     // Nothing to clean.
3765     return;
3766   }
3767 
3768   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3769   workers()->run_task(&g1_unlink_task);
3770 
3771 }
3772 
3773 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3774  private:
3775   DirtyCardQueueSet* _queue;
3776   G1CollectedHeap* _g1h;
3777  public:
3778   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3779     _queue(queue), _g1h(g1h) { }
3780 
3781   virtual void work(uint worker_id) {
3782     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3783     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3784 
3785     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3786     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3787 
3788     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3789   }
3790 };
3791 
3792 void G1CollectedHeap::redirty_logged_cards() {
3793   double redirty_logged_cards_start = os::elapsedTime();
3794 
3795   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3796   dirty_card_queue_set().reset_for_par_iteration();
3797   workers()->run_task(&redirty_task);
3798 
3799   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3800   dcq.merge_bufferlists(&dirty_card_queue_set());
3801   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3802 
3803   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3804 }
3805 
3806 // Weak Reference Processing support
3807 
3808 // An always "is_alive" closure that is used to preserve referents.
3809 // If the object is non-null then it's alive.  Used in the preservation
3810 // of referent objects that are pointed to by reference objects
3811 // discovered by the CM ref processor.
3812 class G1AlwaysAliveClosure: public BoolObjectClosure {
3813   G1CollectedHeap* _g1;
3814 public:
3815   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3816   bool do_object_b(oop p) {
3817     if (p != NULL) {
3818       return true;
3819     }
3820     return false;
3821   }
3822 };
3823 
3824 bool G1STWIsAliveClosure::do_object_b(oop p) {
3825   // An object is reachable if it is outside the collection set,
3826   // or is inside and copied.
3827   return !_g1->is_in_cset(p) || p->is_forwarded();
3828 }
3829 
3830 // Non Copying Keep Alive closure
3831 class G1KeepAliveClosure: public OopClosure {
3832   G1CollectedHeap* _g1;
3833 public:
3834   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3835   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3836   void do_oop(oop* p) {
3837     oop obj = *p;
3838     assert(obj != NULL, "the caller should have filtered out NULL values");
3839 
3840     const InCSetState cset_state = _g1->in_cset_state(obj);
3841     if (!cset_state.is_in_cset_or_humongous()) {
3842       return;
3843     }
3844     if (cset_state.is_in_cset()) {
3845       assert( obj->is_forwarded(), "invariant" );
3846       *p = obj->forwardee();
3847     } else {
3848       assert(!obj->is_forwarded(), "invariant" );
3849       assert(cset_state.is_humongous(),
3850              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3851       _g1->set_humongous_is_live(obj);
3852     }
3853   }
3854 };
3855 
3856 // Copying Keep Alive closure - can be called from both
3857 // serial and parallel code as long as different worker
3858 // threads utilize different G1ParScanThreadState instances
3859 // and different queues.
3860 
3861 class G1CopyingKeepAliveClosure: public OopClosure {
3862   G1CollectedHeap*         _g1h;
3863   OopClosure*              _copy_non_heap_obj_cl;
3864   G1ParScanThreadState*    _par_scan_state;
3865 
3866 public:
3867   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3868                             OopClosure* non_heap_obj_cl,
3869                             G1ParScanThreadState* pss):
3870     _g1h(g1h),
3871     _copy_non_heap_obj_cl(non_heap_obj_cl),
3872     _par_scan_state(pss)
3873   {}
3874 
3875   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3876   virtual void do_oop(      oop* p) { do_oop_work(p); }
3877 
3878   template <class T> void do_oop_work(T* p) {
3879     oop obj = oopDesc::load_decode_heap_oop(p);
3880 
3881     if (_g1h->is_in_cset_or_humongous(obj)) {
3882       // If the referent object has been forwarded (either copied
3883       // to a new location or to itself in the event of an
3884       // evacuation failure) then we need to update the reference
3885       // field and, if both reference and referent are in the G1
3886       // heap, update the RSet for the referent.
3887       //
3888       // If the referent has not been forwarded then we have to keep
3889       // it alive by policy. Therefore we have copy the referent.
3890       //
3891       // If the reference field is in the G1 heap then we can push
3892       // on the PSS queue. When the queue is drained (after each
3893       // phase of reference processing) the object and it's followers
3894       // will be copied, the reference field set to point to the
3895       // new location, and the RSet updated. Otherwise we need to
3896       // use the the non-heap or metadata closures directly to copy
3897       // the referent object and update the pointer, while avoiding
3898       // updating the RSet.
3899 
3900       if (_g1h->is_in_g1_reserved(p)) {
3901         _par_scan_state->push_on_queue(p);
3902       } else {
3903         assert(!Metaspace::contains((const void*)p),
3904                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3905         _copy_non_heap_obj_cl->do_oop(p);
3906       }
3907     }
3908   }
3909 };
3910 
3911 // Serial drain queue closure. Called as the 'complete_gc'
3912 // closure for each discovered list in some of the
3913 // reference processing phases.
3914 
3915 class G1STWDrainQueueClosure: public VoidClosure {
3916 protected:
3917   G1CollectedHeap* _g1h;
3918   G1ParScanThreadState* _par_scan_state;
3919 
3920   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3921 
3922 public:
3923   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3924     _g1h(g1h),
3925     _par_scan_state(pss)
3926   { }
3927 
3928   void do_void() {
3929     G1ParScanThreadState* const pss = par_scan_state();
3930     pss->trim_queue();
3931   }
3932 };
3933 
3934 // Parallel Reference Processing closures
3935 
3936 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3937 // processing during G1 evacuation pauses.
3938 
3939 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3940 private:
3941   G1CollectedHeap*          _g1h;
3942   G1ParScanThreadStateSet*  _pss;
3943   RefToScanQueueSet*        _queues;
3944   WorkGang*                 _workers;
3945   uint                      _active_workers;
3946 
3947 public:
3948   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3949                            G1ParScanThreadStateSet* per_thread_states,
3950                            WorkGang* workers,
3951                            RefToScanQueueSet *task_queues,
3952                            uint n_workers) :
3953     _g1h(g1h),
3954     _pss(per_thread_states),
3955     _queues(task_queues),
3956     _workers(workers),
3957     _active_workers(n_workers)
3958   {
3959     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3960   }
3961 
3962   // Executes the given task using concurrent marking worker threads.
3963   virtual void execute(ProcessTask& task);
3964   virtual void execute(EnqueueTask& task);
3965 };
3966 
3967 // Gang task for possibly parallel reference processing
3968 
3969 class G1STWRefProcTaskProxy: public AbstractGangTask {
3970   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3971   ProcessTask&     _proc_task;
3972   G1CollectedHeap* _g1h;
3973   G1ParScanThreadStateSet* _pss;
3974   RefToScanQueueSet* _task_queues;
3975   ParallelTaskTerminator* _terminator;
3976 
3977 public:
3978   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3979                         G1CollectedHeap* g1h,
3980                         G1ParScanThreadStateSet* per_thread_states,
3981                         RefToScanQueueSet *task_queues,
3982                         ParallelTaskTerminator* terminator) :
3983     AbstractGangTask("Process reference objects in parallel"),
3984     _proc_task(proc_task),
3985     _g1h(g1h),
3986     _pss(per_thread_states),
3987     _task_queues(task_queues),
3988     _terminator(terminator)
3989   {}
3990 
3991   virtual void work(uint worker_id) {
3992     // The reference processing task executed by a single worker.
3993     ResourceMark rm;
3994     HandleMark   hm;
3995 
3996     G1STWIsAliveClosure is_alive(_g1h);
3997 
3998     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3999     pss->set_ref_processor(NULL);
4000 
4001     // Keep alive closure.
4002     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4003 
4004     // Complete GC closure
4005     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4006 
4007     // Call the reference processing task's work routine.
4008     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4009 
4010     // Note we cannot assert that the refs array is empty here as not all
4011     // of the processing tasks (specifically phase2 - pp2_work) execute
4012     // the complete_gc closure (which ordinarily would drain the queue) so
4013     // the queue may not be empty.
4014   }
4015 };
4016 
4017 // Driver routine for parallel reference processing.
4018 // Creates an instance of the ref processing gang
4019 // task and has the worker threads execute it.
4020 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4021   assert(_workers != NULL, "Need parallel worker threads.");
4022 
4023   ParallelTaskTerminator terminator(_active_workers, _queues);
4024   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4025 
4026   _workers->run_task(&proc_task_proxy);
4027 }
4028 
4029 // Gang task for parallel reference enqueueing.
4030 
4031 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4032   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4033   EnqueueTask& _enq_task;
4034 
4035 public:
4036   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4037     AbstractGangTask("Enqueue reference objects in parallel"),
4038     _enq_task(enq_task)
4039   { }
4040 
4041   virtual void work(uint worker_id) {
4042     _enq_task.work(worker_id);
4043   }
4044 };
4045 
4046 // Driver routine for parallel reference enqueueing.
4047 // Creates an instance of the ref enqueueing gang
4048 // task and has the worker threads execute it.
4049 
4050 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4051   assert(_workers != NULL, "Need parallel worker threads.");
4052 
4053   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4054 
4055   _workers->run_task(&enq_task_proxy);
4056 }
4057 
4058 // End of weak reference support closures
4059 
4060 // Abstract task used to preserve (i.e. copy) any referent objects
4061 // that are in the collection set and are pointed to by reference
4062 // objects discovered by the CM ref processor.
4063 
4064 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4065 protected:
4066   G1CollectedHeap*         _g1h;
4067   G1ParScanThreadStateSet* _pss;
4068   RefToScanQueueSet*       _queues;
4069   ParallelTaskTerminator   _terminator;
4070   uint                     _n_workers;
4071 
4072 public:
4073   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4074     AbstractGangTask("ParPreserveCMReferents"),
4075     _g1h(g1h),
4076     _pss(per_thread_states),
4077     _queues(task_queues),
4078     _terminator(workers, _queues),
4079     _n_workers(workers)
4080   {
4081     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4082   }
4083 
4084   void work(uint worker_id) {
4085     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4086 
4087     ResourceMark rm;
4088     HandleMark   hm;
4089 
4090     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4091     pss->set_ref_processor(NULL);
4092     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4093 
4094     // Is alive closure
4095     G1AlwaysAliveClosure always_alive(_g1h);
4096 
4097     // Copying keep alive closure. Applied to referent objects that need
4098     // to be copied.
4099     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4100 
4101     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4102 
4103     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4104     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4105 
4106     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4107     // So this must be true - but assert just in case someone decides to
4108     // change the worker ids.
4109     assert(worker_id < limit, "sanity");
4110     assert(!rp->discovery_is_atomic(), "check this code");
4111 
4112     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4113     for (uint idx = worker_id; idx < limit; idx += stride) {
4114       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4115 
4116       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4117       while (iter.has_next()) {
4118         // Since discovery is not atomic for the CM ref processor, we
4119         // can see some null referent objects.
4120         iter.load_ptrs(DEBUG_ONLY(true));
4121         oop ref = iter.obj();
4122 
4123         // This will filter nulls.
4124         if (iter.is_referent_alive()) {
4125           iter.make_referent_alive();
4126         }
4127         iter.move_to_next();
4128       }
4129     }
4130 
4131     // Drain the queue - which may cause stealing
4132     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4133     drain_queue.do_void();
4134     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4135     assert(pss->queue_is_empty(), "should be");
4136   }
4137 };
4138 
4139 void G1CollectedHeap::process_weak_jni_handles() {
4140   double ref_proc_start = os::elapsedTime();
4141 
4142   G1STWIsAliveClosure is_alive(this);
4143   G1KeepAliveClosure keep_alive(this);
4144   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4145 
4146   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4147   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4148 }
4149 
4150 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4151   // Any reference objects, in the collection set, that were 'discovered'
4152   // by the CM ref processor should have already been copied (either by
4153   // applying the external root copy closure to the discovered lists, or
4154   // by following an RSet entry).
4155   //
4156   // But some of the referents, that are in the collection set, that these
4157   // reference objects point to may not have been copied: the STW ref
4158   // processor would have seen that the reference object had already
4159   // been 'discovered' and would have skipped discovering the reference,
4160   // but would not have treated the reference object as a regular oop.
4161   // As a result the copy closure would not have been applied to the
4162   // referent object.
4163   //
4164   // We need to explicitly copy these referent objects - the references
4165   // will be processed at the end of remarking.
4166   //
4167   // We also need to do this copying before we process the reference
4168   // objects discovered by the STW ref processor in case one of these
4169   // referents points to another object which is also referenced by an
4170   // object discovered by the STW ref processor.
4171   double preserve_cm_referents_time = 0.0;
4172 
4173   // To avoid spawning task when there is no work to do, check that
4174   // a concurrent cycle is active and that some references have been
4175   // discovered.
4176   if (concurrent_mark()->cmThread()->during_cycle() &&
4177       ref_processor_cm()->has_discovered_references()) {
4178     double preserve_cm_referents_start = os::elapsedTime();
4179     uint no_of_gc_workers = workers()->active_workers();
4180     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4181                                                    per_thread_states,
4182                                                    no_of_gc_workers,
4183                                                    _task_queues);
4184     workers()->run_task(&keep_cm_referents);
4185     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4186   }
4187 
4188   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4189 }
4190 
4191 // Weak Reference processing during an evacuation pause (part 1).
4192 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4193   double ref_proc_start = os::elapsedTime();
4194 
4195   ReferenceProcessor* rp = _ref_processor_stw;
4196   assert(rp->discovery_enabled(), "should have been enabled");
4197 
4198   // Closure to test whether a referent is alive.
4199   G1STWIsAliveClosure is_alive(this);
4200 
4201   // Even when parallel reference processing is enabled, the processing
4202   // of JNI refs is serial and performed serially by the current thread
4203   // rather than by a worker. The following PSS will be used for processing
4204   // JNI refs.
4205 
4206   // Use only a single queue for this PSS.
4207   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4208   pss->set_ref_processor(NULL);
4209   assert(pss->queue_is_empty(), "pre-condition");
4210 
4211   // Keep alive closure.
4212   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4213 
4214   // Serial Complete GC closure
4215   G1STWDrainQueueClosure drain_queue(this, pss);
4216 
4217   // Setup the soft refs policy...
4218   rp->setup_policy(false);
4219 
4220   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4221 
4222   ReferenceProcessorStats stats;
4223   if (!rp->processing_is_mt()) {
4224     // Serial reference processing...
4225     stats = rp->process_discovered_references(&is_alive,
4226                                               &keep_alive,
4227                                               &drain_queue,
4228                                               NULL,
4229                                               pt);
4230   } else {
4231     uint no_of_gc_workers = workers()->active_workers();
4232 
4233     // Parallel reference processing
4234     assert(no_of_gc_workers <= rp->max_num_q(),
4235            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4236            no_of_gc_workers,  rp->max_num_q());
4237 
4238     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4239     stats = rp->process_discovered_references(&is_alive,
4240                                               &keep_alive,
4241                                               &drain_queue,
4242                                               &par_task_executor,
4243                                               pt);
4244   }
4245 
4246   _gc_tracer_stw->report_gc_reference_stats(stats);
4247 
4248   // We have completed copying any necessary live referent objects.
4249   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4250 
4251   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4252   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4253 }
4254 
4255 // Weak Reference processing during an evacuation pause (part 2).
4256 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4257   double ref_enq_start = os::elapsedTime();
4258 
4259   ReferenceProcessor* rp = _ref_processor_stw;
4260   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4261 
4262   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4263 
4264   // Now enqueue any remaining on the discovered lists on to
4265   // the pending list.
4266   if (!rp->processing_is_mt()) {
4267     // Serial reference processing...
4268     rp->enqueue_discovered_references(NULL, pt);
4269   } else {
4270     // Parallel reference enqueueing
4271 
4272     uint n_workers = workers()->active_workers();
4273 
4274     assert(n_workers <= rp->max_num_q(),
4275            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4276            n_workers,  rp->max_num_q());
4277 
4278     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4279     rp->enqueue_discovered_references(&par_task_executor, pt);
4280   }
4281 
4282   rp->verify_no_references_recorded();
4283   assert(!rp->discovery_enabled(), "should have been disabled");
4284 
4285   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4286   // ensure that it is marked in the bitmap for concurrent marking to discover.
4287   if (collector_state()->during_initial_mark_pause()) {
4288     oop pll_head = Universe::reference_pending_list();
4289     if (pll_head != NULL) {
4290       _cm->mark_in_next_bitmap(pll_head);
4291     }
4292   }
4293 
4294   // FIXME
4295   // CM's reference processing also cleans up the string and symbol tables.
4296   // Should we do that here also? We could, but it is a serial operation
4297   // and could significantly increase the pause time.
4298 
4299   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4300   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4301 }
4302 
4303 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4304   double merge_pss_time_start = os::elapsedTime();
4305   per_thread_states->flush();
4306   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4307 }
4308 
4309 void G1CollectedHeap::pre_evacuate_collection_set() {
4310   _expand_heap_after_alloc_failure = true;
4311   _evacuation_failed = false;
4312 
4313   // Disable the hot card cache.
4314   _hot_card_cache->reset_hot_cache_claimed_index();
4315   _hot_card_cache->set_use_cache(false);
4316 
4317   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4318   _preserved_marks_set.assert_empty();
4319 
4320   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4321 
4322   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4323   if (collector_state()->during_initial_mark_pause()) {
4324     double start_clear_claimed_marks = os::elapsedTime();
4325 
4326     ClassLoaderDataGraph::clear_claimed_marks();
4327 
4328     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4329     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4330   }
4331 }
4332 
4333 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4334   // Should G1EvacuationFailureALot be in effect for this GC?
4335   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4336 
4337   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4338 
4339   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4340 
4341   double start_par_time_sec = os::elapsedTime();
4342   double end_par_time_sec;
4343 
4344   {
4345     const uint n_workers = workers()->active_workers();
4346     G1RootProcessor root_processor(this, n_workers);
4347     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4348 
4349     print_termination_stats_hdr();
4350 
4351     workers()->run_task(&g1_par_task);
4352     end_par_time_sec = os::elapsedTime();
4353 
4354     // Closing the inner scope will execute the destructor
4355     // for the G1RootProcessor object. We record the current
4356     // elapsed time before closing the scope so that time
4357     // taken for the destructor is NOT included in the
4358     // reported parallel time.
4359   }
4360 
4361   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4362   phase_times->record_par_time(par_time_ms);
4363 
4364   double code_root_fixup_time_ms =
4365         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4366   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4367 }
4368 
4369 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4370   // Process any discovered reference objects - we have
4371   // to do this _before_ we retire the GC alloc regions
4372   // as we may have to copy some 'reachable' referent
4373   // objects (and their reachable sub-graphs) that were
4374   // not copied during the pause.
4375   if (g1_policy()->should_process_references()) {
4376     preserve_cm_referents(per_thread_states);
4377     process_discovered_references(per_thread_states);
4378   } else {
4379     ref_processor_stw()->verify_no_references_recorded();
4380     process_weak_jni_handles();
4381   }
4382 
4383   if (G1StringDedup::is_enabled()) {
4384     double fixup_start = os::elapsedTime();
4385 
4386     G1STWIsAliveClosure is_alive(this);
4387     G1KeepAliveClosure keep_alive(this);
4388     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4389 
4390     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4391     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4392   }
4393 
4394   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4395 
4396   if (evacuation_failed()) {
4397     restore_after_evac_failure();
4398 
4399     // Reset the G1EvacuationFailureALot counters and flags
4400     // Note: the values are reset only when an actual
4401     // evacuation failure occurs.
4402     NOT_PRODUCT(reset_evacuation_should_fail();)
4403   }
4404 
4405   _preserved_marks_set.assert_empty();
4406 
4407   // Enqueue any remaining references remaining on the STW
4408   // reference processor's discovered lists. We need to do
4409   // this after the card table is cleaned (and verified) as
4410   // the act of enqueueing entries on to the pending list
4411   // will log these updates (and dirty their associated
4412   // cards). We need these updates logged to update any
4413   // RSets.
4414   if (g1_policy()->should_process_references()) {
4415     enqueue_discovered_references(per_thread_states);
4416   } else {
4417     g1_policy()->phase_times()->record_ref_enq_time(0);
4418   }
4419 
4420   _allocator->release_gc_alloc_regions(evacuation_info);
4421 
4422   merge_per_thread_state_info(per_thread_states);
4423 
4424   // Reset and re-enable the hot card cache.
4425   // Note the counts for the cards in the regions in the
4426   // collection set are reset when the collection set is freed.
4427   _hot_card_cache->reset_hot_cache();
4428   _hot_card_cache->set_use_cache(true);
4429 
4430   purge_code_root_memory();
4431 
4432   redirty_logged_cards();
4433 #if defined(COMPILER2) || INCLUDE_JVMCI
4434   double start = os::elapsedTime();
4435   DerivedPointerTable::update_pointers();
4436   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4437 #endif
4438   g1_policy()->print_age_table();
4439 }
4440 
4441 void G1CollectedHeap::record_obj_copy_mem_stats() {
4442   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4443 
4444   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4445                                                create_g1_evac_summary(&_old_evac_stats));
4446 }
4447 
4448 void G1CollectedHeap::free_region(HeapRegion* hr,
4449                                   FreeRegionList* free_list,
4450                                   bool skip_remset,
4451                                   bool skip_hot_card_cache,
4452                                   bool locked) {
4453   assert(!hr->is_free(), "the region should not be free");
4454   assert(!hr->is_empty(), "the region should not be empty");
4455   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4456   assert(free_list != NULL, "pre-condition");
4457 
4458   if (G1VerifyBitmaps) {
4459     MemRegion mr(hr->bottom(), hr->end());
4460     concurrent_mark()->clearRangePrevBitmap(mr);
4461   }
4462 
4463   // Clear the card counts for this region.
4464   // Note: we only need to do this if the region is not young
4465   // (since we don't refine cards in young regions).
4466   if (!skip_hot_card_cache && !hr->is_young()) {
4467     _hot_card_cache->reset_card_counts(hr);
4468   }
4469   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4470   free_list->add_ordered(hr);
4471 }
4472 
4473 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4474                                             FreeRegionList* free_list,
4475                                             bool skip_remset) {
4476   assert(hr->is_humongous(), "this is only for humongous regions");
4477   assert(free_list != NULL, "pre-condition");
4478   hr->clear_humongous();
4479   free_region(hr, free_list, skip_remset);
4480 }
4481 
4482 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4483                                            const uint humongous_regions_removed) {
4484   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4485     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4486     _old_set.bulk_remove(old_regions_removed);
4487     _humongous_set.bulk_remove(humongous_regions_removed);
4488   }
4489 
4490 }
4491 
4492 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4493   assert(list != NULL, "list can't be null");
4494   if (!list->is_empty()) {
4495     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4496     _hrm.insert_list_into_free_list(list);
4497   }
4498 }
4499 
4500 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4501   decrease_used(bytes);
4502 }
4503 
4504 class G1ParScrubRemSetTask: public AbstractGangTask {
4505 protected:
4506   G1RemSet* _g1rs;
4507   HeapRegionClaimer _hrclaimer;
4508 
4509 public:
4510   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4511     AbstractGangTask("G1 ScrubRS"),
4512     _g1rs(g1_rs),
4513     _hrclaimer(num_workers) {
4514   }
4515 
4516   void work(uint worker_id) {
4517     _g1rs->scrub(worker_id, &_hrclaimer);
4518   }
4519 };
4520 
4521 void G1CollectedHeap::scrub_rem_set() {
4522   uint num_workers = workers()->active_workers();
4523   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4524   workers()->run_task(&g1_par_scrub_rs_task);
4525 }
4526 
4527 class G1FreeCollectionSetTask : public AbstractGangTask {
4528 private:
4529 
4530   // Closure applied to all regions in the collection set to do work that needs to
4531   // be done serially in a single thread.
4532   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4533   private:
4534     EvacuationInfo* _evacuation_info;
4535     const size_t* _surviving_young_words;
4536 
4537     // Bytes used in successfully evacuated regions before the evacuation.
4538     size_t _before_used_bytes;
4539     // Bytes used in unsucessfully evacuated regions before the evacuation
4540     size_t _after_used_bytes;
4541 
4542     size_t _bytes_allocated_in_old_since_last_gc;
4543 
4544     size_t _failure_used_words;
4545     size_t _failure_waste_words;
4546 
4547     FreeRegionList _local_free_list;
4548   public:
4549     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4550       HeapRegionClosure(),
4551       _evacuation_info(evacuation_info),
4552       _surviving_young_words(surviving_young_words),
4553       _before_used_bytes(0),
4554       _after_used_bytes(0),
4555       _bytes_allocated_in_old_since_last_gc(0),
4556       _failure_used_words(0),
4557       _failure_waste_words(0),
4558       _local_free_list("Local Region List for CSet Freeing") {
4559     }
4560 
4561     virtual bool doHeapRegion(HeapRegion* r) {
4562       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4563 
4564       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4565       g1h->clear_in_cset(r);
4566 
4567       if (r->is_young()) {
4568         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4569                "Young index %d is wrong for region %u of type %s with %u young regions",
4570                r->young_index_in_cset(),
4571                r->hrm_index(),
4572                r->get_type_str(),
4573                g1h->collection_set()->young_region_length());
4574         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4575         r->record_surv_words_in_group(words_survived);
4576       }
4577 
4578       if (!r->evacuation_failed()) {
4579         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4580         _before_used_bytes += r->used();
4581         g1h->free_region(r,
4582                          &_local_free_list,
4583                          true, /* skip_remset */
4584                          true, /* skip_hot_card_cache */
4585                          true  /* locked */);
4586       } else {
4587         r->uninstall_surv_rate_group();
4588         r->set_young_index_in_cset(-1);
4589         r->set_evacuation_failed(false);
4590         // When moving a young gen region to old gen, we "allocate" that whole region
4591         // there. This is in addition to any already evacuated objects. Notify the
4592         // policy about that.
4593         // Old gen regions do not cause an additional allocation: both the objects
4594         // still in the region and the ones already moved are accounted for elsewhere.
4595         if (r->is_young()) {
4596           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4597         }
4598         // The region is now considered to be old.
4599         r->set_old();
4600         // Do some allocation statistics accounting. Regions that failed evacuation
4601         // are always made old, so there is no need to update anything in the young
4602         // gen statistics, but we need to update old gen statistics.
4603         size_t used_words = r->marked_bytes() / HeapWordSize;
4604 
4605         _failure_used_words += used_words;
4606         _failure_waste_words += HeapRegion::GrainWords - used_words;
4607 
4608         g1h->old_set_add(r);
4609         _after_used_bytes += r->used();
4610       }
4611       return false;
4612     }
4613 
4614     void complete_work() {
4615       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4616 
4617       _evacuation_info->set_regions_freed(_local_free_list.length());
4618       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4619 
4620       g1h->prepend_to_freelist(&_local_free_list);
4621       g1h->decrement_summary_bytes(_before_used_bytes);
4622 
4623       G1Policy* policy = g1h->g1_policy();
4624       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4625 
4626       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4627     }
4628   };
4629 
4630   G1CollectionSet* _collection_set;
4631   G1SerialFreeCollectionSetClosure _cl;
4632   const size_t* _surviving_young_words;
4633 
4634   size_t _rs_lengths;
4635 
4636   volatile jint _serial_work_claim;
4637 
4638   struct WorkItem {
4639     uint region_idx;
4640     bool is_young;
4641     bool evacuation_failed;
4642 
4643     WorkItem(HeapRegion* r) {
4644       region_idx = r->hrm_index();
4645       is_young = r->is_young();
4646       evacuation_failed = r->evacuation_failed();
4647     }
4648   };
4649 
4650   volatile size_t _parallel_work_claim;
4651   size_t _num_work_items;
4652   WorkItem* _work_items;
4653 
4654   void do_serial_work() {
4655     // Need to grab the lock to be allowed to modify the old region list.
4656     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4657     _collection_set->iterate(&_cl);
4658   }
4659 
4660   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4661     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4662 
4663     HeapRegion* r = g1h->region_at(region_idx);
4664     assert(!g1h->is_on_master_free_list(r), "sanity");
4665 
4666     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4667 
4668     if (!is_young) {
4669       g1h->_hot_card_cache->reset_card_counts(r);
4670     }
4671 
4672     if (!evacuation_failed) {
4673       r->rem_set()->clear_locked();
4674     }
4675   }
4676 
4677   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4678   private:
4679     size_t _cur_idx;
4680     WorkItem* _work_items;
4681   public:
4682     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4683 
4684     virtual bool doHeapRegion(HeapRegion* r) {
4685       _work_items[_cur_idx++] = WorkItem(r);
4686       return false;
4687     }
4688   };
4689 
4690   void prepare_work() {
4691     G1PrepareFreeCollectionSetClosure cl(_work_items);
4692     _collection_set->iterate(&cl);
4693   }
4694 
4695   void complete_work() {
4696     _cl.complete_work();
4697 
4698     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4699     policy->record_max_rs_lengths(_rs_lengths);
4700     policy->cset_regions_freed();
4701   }
4702 public:
4703   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4704     AbstractGangTask("G1 Free Collection Set"),
4705     _cl(evacuation_info, surviving_young_words),
4706     _collection_set(collection_set),
4707     _surviving_young_words(surviving_young_words),
4708     _serial_work_claim(0),
4709     _rs_lengths(0),
4710     _parallel_work_claim(0),
4711     _num_work_items(collection_set->region_length()),
4712     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4713     prepare_work();
4714   }
4715 
4716   ~G1FreeCollectionSetTask() {
4717     complete_work();
4718     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4719   }
4720 
4721   // Chunk size for work distribution. The chosen value has been determined experimentally
4722   // to be a good tradeoff between overhead and achievable parallelism.
4723   static uint chunk_size() { return 32; }
4724 
4725   virtual void work(uint worker_id) {
4726     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4727 
4728     // Claim serial work.
4729     if (_serial_work_claim == 0) {
4730       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4731       if (value == 0) {
4732         double serial_time = os::elapsedTime();
4733         do_serial_work();
4734         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4735       }
4736     }
4737 
4738     // Start parallel work.
4739     double young_time = 0.0;
4740     bool has_young_time = false;
4741     double non_young_time = 0.0;
4742     bool has_non_young_time = false;
4743 
4744     while (true) {
4745       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4746       size_t cur = end - chunk_size();
4747 
4748       if (cur >= _num_work_items) {
4749         break;
4750       }
4751 
4752       double start_time = os::elapsedTime();
4753 
4754       end = MIN2(end, _num_work_items);
4755 
4756       for (; cur < end; cur++) {
4757         bool is_young = _work_items[cur].is_young;
4758 
4759         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4760 
4761         double end_time = os::elapsedTime();
4762         double time_taken = end_time - start_time;
4763         if (is_young) {
4764           young_time += time_taken;
4765           has_young_time = true;
4766         } else {
4767           non_young_time += time_taken;
4768           has_non_young_time = true;
4769         }
4770         start_time = end_time;
4771       }
4772     }
4773 
4774     if (has_young_time) {
4775       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4776     }
4777     if (has_non_young_time) {
4778       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4779     }
4780   }
4781 };
4782 
4783 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4784   _eden.clear();
4785 
4786   double free_cset_start_time = os::elapsedTime();
4787 
4788   {
4789     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4790     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4791 
4792     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4793 
4794     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4795                         cl.name(),
4796                         num_workers,
4797                         _collection_set.region_length());
4798     workers()->run_task(&cl, num_workers);
4799   }
4800   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4801 
4802   collection_set->clear();
4803 }
4804 
4805 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4806  private:
4807   FreeRegionList* _free_region_list;
4808   HeapRegionSet* _proxy_set;
4809   uint _humongous_objects_reclaimed;
4810   uint _humongous_regions_reclaimed;
4811   size_t _freed_bytes;
4812  public:
4813 
4814   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4815     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4816   }
4817 
4818   virtual bool doHeapRegion(HeapRegion* r) {
4819     if (!r->is_starts_humongous()) {
4820       return false;
4821     }
4822 
4823     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4824 
4825     oop obj = (oop)r->bottom();
4826     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4827 
4828     // The following checks whether the humongous object is live are sufficient.
4829     // The main additional check (in addition to having a reference from the roots
4830     // or the young gen) is whether the humongous object has a remembered set entry.
4831     //
4832     // A humongous object cannot be live if there is no remembered set for it
4833     // because:
4834     // - there can be no references from within humongous starts regions referencing
4835     // the object because we never allocate other objects into them.
4836     // (I.e. there are no intra-region references that may be missed by the
4837     // remembered set)
4838     // - as soon there is a remembered set entry to the humongous starts region
4839     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4840     // until the end of a concurrent mark.
4841     //
4842     // It is not required to check whether the object has been found dead by marking
4843     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4844     // all objects allocated during that time are considered live.
4845     // SATB marking is even more conservative than the remembered set.
4846     // So if at this point in the collection there is no remembered set entry,
4847     // nobody has a reference to it.
4848     // At the start of collection we flush all refinement logs, and remembered sets
4849     // are completely up-to-date wrt to references to the humongous object.
4850     //
4851     // Other implementation considerations:
4852     // - never consider object arrays at this time because they would pose
4853     // considerable effort for cleaning up the the remembered sets. This is
4854     // required because stale remembered sets might reference locations that
4855     // are currently allocated into.
4856     uint region_idx = r->hrm_index();
4857     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4858         !r->rem_set()->is_empty()) {
4859       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4860                                region_idx,
4861                                (size_t)obj->size() * HeapWordSize,
4862                                p2i(r->bottom()),
4863                                r->rem_set()->occupied(),
4864                                r->rem_set()->strong_code_roots_list_length(),
4865                                next_bitmap->is_marked(r->bottom()),
4866                                g1h->is_humongous_reclaim_candidate(region_idx),
4867                                obj->is_typeArray()
4868                               );
4869       return false;
4870     }
4871 
4872     guarantee(obj->is_typeArray(),
4873               "Only eagerly reclaiming type arrays is supported, but the object "
4874               PTR_FORMAT " is not.", p2i(r->bottom()));
4875 
4876     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4877                              region_idx,
4878                              (size_t)obj->size() * HeapWordSize,
4879                              p2i(r->bottom()),
4880                              r->rem_set()->occupied(),
4881                              r->rem_set()->strong_code_roots_list_length(),
4882                              next_bitmap->is_marked(r->bottom()),
4883                              g1h->is_humongous_reclaim_candidate(region_idx),
4884                              obj->is_typeArray()
4885                             );
4886 
4887     // Need to clear mark bit of the humongous object if already set.
4888     if (next_bitmap->is_marked(r->bottom())) {
4889       next_bitmap->clear(r->bottom());
4890     }
4891     _humongous_objects_reclaimed++;
4892     do {
4893       HeapRegion* next = g1h->next_region_in_humongous(r);
4894       _freed_bytes += r->used();
4895       r->set_containing_set(NULL);
4896       _humongous_regions_reclaimed++;
4897       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4898       r = next;
4899     } while (r != NULL);
4900 
4901     return false;
4902   }
4903 
4904   uint humongous_objects_reclaimed() {
4905     return _humongous_objects_reclaimed;
4906   }
4907 
4908   uint humongous_regions_reclaimed() {
4909     return _humongous_regions_reclaimed;
4910   }
4911 
4912   size_t bytes_freed() const {
4913     return _freed_bytes;
4914   }
4915 };
4916 
4917 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4918   assert_at_safepoint(true);
4919 
4920   if (!G1EagerReclaimHumongousObjects ||
4921       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4922     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4923     return;
4924   }
4925 
4926   double start_time = os::elapsedTime();
4927 
4928   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4929 
4930   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4931   heap_region_iterate(&cl);
4932 
4933   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4934 
4935   G1HRPrinter* hrp = hr_printer();
4936   if (hrp->is_active()) {
4937     FreeRegionListIterator iter(&local_cleanup_list);
4938     while (iter.more_available()) {
4939       HeapRegion* hr = iter.get_next();
4940       hrp->cleanup(hr);
4941     }
4942   }
4943 
4944   prepend_to_freelist(&local_cleanup_list);
4945   decrement_summary_bytes(cl.bytes_freed());
4946 
4947   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4948                                                                     cl.humongous_objects_reclaimed());
4949 }
4950 
4951 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4952 public:
4953   virtual bool doHeapRegion(HeapRegion* r) {
4954     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4955     G1CollectedHeap::heap()->clear_in_cset(r);
4956     r->set_young_index_in_cset(-1);
4957     return false;
4958   }
4959 };
4960 
4961 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4962   G1AbandonCollectionSetClosure cl;
4963   collection_set->iterate(&cl);
4964 
4965   collection_set->clear();
4966   collection_set->stop_incremental_building();
4967 }
4968 
4969 void G1CollectedHeap::set_free_regions_coming() {
4970   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4971 
4972   assert(!free_regions_coming(), "pre-condition");
4973   _free_regions_coming = true;
4974 }
4975 
4976 void G1CollectedHeap::reset_free_regions_coming() {
4977   assert(free_regions_coming(), "pre-condition");
4978 
4979   {
4980     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4981     _free_regions_coming = false;
4982     SecondaryFreeList_lock->notify_all();
4983   }
4984 
4985   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4986 }
4987 
4988 void G1CollectedHeap::wait_while_free_regions_coming() {
4989   // Most of the time we won't have to wait, so let's do a quick test
4990   // first before we take the lock.
4991   if (!free_regions_coming()) {
4992     return;
4993   }
4994 
4995   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
4996 
4997   {
4998     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4999     while (free_regions_coming()) {
5000       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5001     }
5002   }
5003 
5004   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5005 }
5006 
5007 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5008   return _allocator->is_retained_old_region(hr);
5009 }
5010 
5011 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5012   _eden.add(hr);
5013   _g1_policy->set_region_eden(hr);
5014 }
5015 
5016 #ifdef ASSERT
5017 
5018 class NoYoungRegionsClosure: public HeapRegionClosure {
5019 private:
5020   bool _success;
5021 public:
5022   NoYoungRegionsClosure() : _success(true) { }
5023   bool doHeapRegion(HeapRegion* r) {
5024     if (r->is_young()) {
5025       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5026                             p2i(r->bottom()), p2i(r->end()));
5027       _success = false;
5028     }
5029     return false;
5030   }
5031   bool success() { return _success; }
5032 };
5033 
5034 bool G1CollectedHeap::check_young_list_empty() {
5035   bool ret = (young_regions_count() == 0);
5036 
5037   NoYoungRegionsClosure closure;
5038   heap_region_iterate(&closure);
5039   ret = ret && closure.success();
5040 
5041   return ret;
5042 }
5043 
5044 #endif // ASSERT
5045 
5046 class TearDownRegionSetsClosure : public HeapRegionClosure {
5047 private:
5048   HeapRegionSet *_old_set;
5049 
5050 public:
5051   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5052 
5053   bool doHeapRegion(HeapRegion* r) {
5054     if (r->is_old()) {
5055       _old_set->remove(r);
5056     } else if(r->is_young()) {
5057       r->uninstall_surv_rate_group();
5058     } else {
5059       // We ignore free regions, we'll empty the free list afterwards.
5060       // We ignore humongous regions, we're not tearing down the
5061       // humongous regions set.
5062       assert(r->is_free() || r->is_humongous(),
5063              "it cannot be another type");
5064     }
5065     return false;
5066   }
5067 
5068   ~TearDownRegionSetsClosure() {
5069     assert(_old_set->is_empty(), "post-condition");
5070   }
5071 };
5072 
5073 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5074   assert_at_safepoint(true /* should_be_vm_thread */);
5075 
5076   if (!free_list_only) {
5077     TearDownRegionSetsClosure cl(&_old_set);
5078     heap_region_iterate(&cl);
5079 
5080     // Note that emptying the _young_list is postponed and instead done as
5081     // the first step when rebuilding the regions sets again. The reason for
5082     // this is that during a full GC string deduplication needs to know if
5083     // a collected region was young or old when the full GC was initiated.
5084   }
5085   _hrm.remove_all_free_regions();
5086 }
5087 
5088 void G1CollectedHeap::increase_used(size_t bytes) {
5089   _summary_bytes_used += bytes;
5090 }
5091 
5092 void G1CollectedHeap::decrease_used(size_t bytes) {
5093   assert(_summary_bytes_used >= bytes,
5094          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5095          _summary_bytes_used, bytes);
5096   _summary_bytes_used -= bytes;
5097 }
5098 
5099 void G1CollectedHeap::set_used(size_t bytes) {
5100   _summary_bytes_used = bytes;
5101 }
5102 
5103 class RebuildRegionSetsClosure : public HeapRegionClosure {
5104 private:
5105   bool            _free_list_only;
5106   HeapRegionSet*   _old_set;
5107   HeapRegionManager*   _hrm;
5108   size_t          _total_used;
5109 
5110 public:
5111   RebuildRegionSetsClosure(bool free_list_only,
5112                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5113     _free_list_only(free_list_only),
5114     _old_set(old_set), _hrm(hrm), _total_used(0) {
5115     assert(_hrm->num_free_regions() == 0, "pre-condition");
5116     if (!free_list_only) {
5117       assert(_old_set->is_empty(), "pre-condition");
5118     }
5119   }
5120 
5121   bool doHeapRegion(HeapRegion* r) {
5122     if (r->is_empty()) {
5123       // Add free regions to the free list
5124       r->set_free();
5125       r->set_allocation_context(AllocationContext::system());
5126       _hrm->insert_into_free_list(r);
5127     } else if (!_free_list_only) {
5128 
5129       if (r->is_humongous()) {
5130         // We ignore humongous regions. We left the humongous set unchanged.
5131       } else {
5132         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5133         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5134         r->move_to_old();
5135         _old_set->add(r);
5136       }
5137       _total_used += r->used();
5138     }
5139 
5140     return false;
5141   }
5142 
5143   size_t total_used() {
5144     return _total_used;
5145   }
5146 };
5147 
5148 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5149   assert_at_safepoint(true /* should_be_vm_thread */);
5150 
5151   if (!free_list_only) {
5152     _eden.clear();
5153     _survivor.clear();
5154   }
5155 
5156   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5157   heap_region_iterate(&cl);
5158 
5159   if (!free_list_only) {
5160     set_used(cl.total_used());
5161     if (_archive_allocator != NULL) {
5162       _archive_allocator->clear_used();
5163     }
5164   }
5165   assert(used_unlocked() == recalculate_used(),
5166          "inconsistent used_unlocked(), "
5167          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5168          used_unlocked(), recalculate_used());
5169 }
5170 
5171 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5172   HeapRegion* hr = heap_region_containing(p);
5173   return hr->is_in(p);
5174 }
5175 
5176 // Methods for the mutator alloc region
5177 
5178 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5179                                                       bool force) {
5180   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5181   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5182   if (force || should_allocate) {
5183     HeapRegion* new_alloc_region = new_region(word_size,
5184                                               false /* is_old */,
5185                                               false /* do_expand */);
5186     if (new_alloc_region != NULL) {
5187       set_region_short_lived_locked(new_alloc_region);
5188       _hr_printer.alloc(new_alloc_region, !should_allocate);
5189       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5190       return new_alloc_region;
5191     }
5192   }
5193   return NULL;
5194 }
5195 
5196 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5197                                                   size_t allocated_bytes) {
5198   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5199   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5200 
5201   collection_set()->add_eden_region(alloc_region);
5202   increase_used(allocated_bytes);
5203   _hr_printer.retire(alloc_region);
5204   // We update the eden sizes here, when the region is retired,
5205   // instead of when it's allocated, since this is the point that its
5206   // used space has been recored in _summary_bytes_used.
5207   g1mm()->update_eden_size();
5208 }
5209 
5210 // Methods for the GC alloc regions
5211 
5212 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5213   if (dest.is_old()) {
5214     return true;
5215   } else {
5216     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5217   }
5218 }
5219 
5220 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5221   assert(FreeList_lock->owned_by_self(), "pre-condition");
5222 
5223   if (!has_more_regions(dest)) {
5224     return NULL;
5225   }
5226 
5227   const bool is_survivor = dest.is_young();
5228 
5229   HeapRegion* new_alloc_region = new_region(word_size,
5230                                             !is_survivor,
5231                                             true /* do_expand */);
5232   if (new_alloc_region != NULL) {
5233     // We really only need to do this for old regions given that we
5234     // should never scan survivors. But it doesn't hurt to do it
5235     // for survivors too.
5236     new_alloc_region->record_timestamp();
5237     if (is_survivor) {
5238       new_alloc_region->set_survivor();
5239       _survivor.add(new_alloc_region);
5240       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5241     } else {
5242       new_alloc_region->set_old();
5243       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5244     }
5245     _hr_printer.alloc(new_alloc_region);
5246     bool during_im = collector_state()->during_initial_mark_pause();
5247     new_alloc_region->note_start_of_copying(during_im);
5248     return new_alloc_region;
5249   }
5250   return NULL;
5251 }
5252 
5253 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5254                                              size_t allocated_bytes,
5255                                              InCSetState dest) {
5256   bool during_im = collector_state()->during_initial_mark_pause();
5257   alloc_region->note_end_of_copying(during_im);
5258   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5259   if (dest.is_old()) {
5260     _old_set.add(alloc_region);
5261   }
5262   _hr_printer.retire(alloc_region);
5263 }
5264 
5265 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5266   bool expanded = false;
5267   uint index = _hrm.find_highest_free(&expanded);
5268 
5269   if (index != G1_NO_HRM_INDEX) {
5270     if (expanded) {
5271       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5272                                 HeapRegion::GrainWords * HeapWordSize);
5273     }
5274     _hrm.allocate_free_regions_starting_at(index, 1);
5275     return region_at(index);
5276   }
5277   return NULL;
5278 }
5279 
5280 // Optimized nmethod scanning
5281 
5282 class RegisterNMethodOopClosure: public OopClosure {
5283   G1CollectedHeap* _g1h;
5284   nmethod* _nm;
5285 
5286   template <class T> void do_oop_work(T* p) {
5287     T heap_oop = oopDesc::load_heap_oop(p);
5288     if (!oopDesc::is_null(heap_oop)) {
5289       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5290       HeapRegion* hr = _g1h->heap_region_containing(obj);
5291       assert(!hr->is_continues_humongous(),
5292              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5293              " starting at " HR_FORMAT,
5294              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5295 
5296       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5297       hr->add_strong_code_root_locked(_nm);
5298     }
5299   }
5300 
5301 public:
5302   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5303     _g1h(g1h), _nm(nm) {}
5304 
5305   void do_oop(oop* p)       { do_oop_work(p); }
5306   void do_oop(narrowOop* p) { do_oop_work(p); }
5307 };
5308 
5309 class UnregisterNMethodOopClosure: public OopClosure {
5310   G1CollectedHeap* _g1h;
5311   nmethod* _nm;
5312 
5313   template <class T> void do_oop_work(T* p) {
5314     T heap_oop = oopDesc::load_heap_oop(p);
5315     if (!oopDesc::is_null(heap_oop)) {
5316       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5317       HeapRegion* hr = _g1h->heap_region_containing(obj);
5318       assert(!hr->is_continues_humongous(),
5319              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5320              " starting at " HR_FORMAT,
5321              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5322 
5323       hr->remove_strong_code_root(_nm);
5324     }
5325   }
5326 
5327 public:
5328   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5329     _g1h(g1h), _nm(nm) {}
5330 
5331   void do_oop(oop* p)       { do_oop_work(p); }
5332   void do_oop(narrowOop* p) { do_oop_work(p); }
5333 };
5334 
5335 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5336   assert_locked_or_safepoint(CodeCache_lock);
5337   guarantee(nm != NULL, "sanity");
5338   RegisterNMethodOopClosure reg_cl(this, nm);
5339   nm->oops_do(&reg_cl);
5340 }
5341 
5342 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5343   assert_locked_or_safepoint(CodeCache_lock);
5344   guarantee(nm != NULL, "sanity");
5345   UnregisterNMethodOopClosure reg_cl(this, nm);
5346   nm->oops_do(&reg_cl, true);
5347 }
5348 
5349 void G1CollectedHeap::purge_code_root_memory() {
5350   double purge_start = os::elapsedTime();
5351   G1CodeRootSet::purge();
5352   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5353   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5354 }
5355 
5356 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5357   G1CollectedHeap* _g1h;
5358 
5359 public:
5360   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5361     _g1h(g1h) {}
5362 
5363   void do_code_blob(CodeBlob* cb) {
5364     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5365     if (nm == NULL) {
5366       return;
5367     }
5368 
5369     if (ScavengeRootsInCode) {
5370       _g1h->register_nmethod(nm);
5371     }
5372   }
5373 };
5374 
5375 void G1CollectedHeap::rebuild_strong_code_roots() {
5376   RebuildStrongCodeRootClosure blob_cl(this);
5377   CodeCache::blobs_do(&blob_cl);
5378 }