1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "gc/shenandoah/brooksPointer.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "runtime/vm_version.hpp"
  42 #include "utilities/bitMap.inline.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/heapRegion.hpp"
  46 #include "gc/shenandoah/shenandoahConnectionMatrix.hpp"
  47 #include "gc/shenandoah/shenandoahHeap.hpp"
  48 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  49 #endif // INCLUDE_ALL_GCS
  50 #ifdef TRACE_HAVE_INTRINSICS
  51 #include "trace/traceMacros.hpp"
  52 #endif
  53 
  54 #ifdef ASSERT
  55 #define __ gen()->lir(__FILE__, __LINE__)->
  56 #else
  57 #define __ gen()->lir()->
  58 #endif
  59 
  60 #ifndef PATCHED_ADDR
  61 #define PATCHED_ADDR  (max_jint)
  62 #endif
  63 
  64 void PhiResolverState::reset(int max_vregs) {
  65   // Initialize array sizes
  66   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _virtual_operands.trunc_to(0);
  68   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  69   _other_operands.trunc_to(0);
  70   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  71   _vreg_table.trunc_to(0);
  72 }
  73 
  74 
  75 
  76 //--------------------------------------------------------------
  77 // PhiResolver
  78 
  79 // Resolves cycles:
  80 //
  81 //  r1 := r2  becomes  temp := r1
  82 //  r2 := r1           r1 := r2
  83 //                     r2 := temp
  84 // and orders moves:
  85 //
  86 //  r2 := r3  becomes  r1 := r2
  87 //  r1 := r2           r2 := r3
  88 
  89 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  90  : _gen(gen)
  91  , _state(gen->resolver_state())
  92  , _temp(LIR_OprFact::illegalOpr)
  93 {
  94   // reinitialize the shared state arrays
  95   _state.reset(max_vregs);
  96 }
  97 
  98 
  99 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
 100   assert(src->is_valid(), "");
 101   assert(dest->is_valid(), "");
 102   __ move(src, dest);
 103 }
 104 
 105 
 106 void PhiResolver::move_temp_to(LIR_Opr dest) {
 107   assert(_temp->is_valid(), "");
 108   emit_move(_temp, dest);
 109   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 110 }
 111 
 112 
 113 void PhiResolver::move_to_temp(LIR_Opr src) {
 114   assert(_temp->is_illegal(), "");
 115   _temp = _gen->new_register(src->type());
 116   emit_move(src, _temp);
 117 }
 118 
 119 
 120 // Traverse assignment graph in depth first order and generate moves in post order
 121 // ie. two assignments: b := c, a := b start with node c:
 122 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 123 // Generates moves in this order: move b to a and move c to b
 124 // ie. cycle a := b, b := a start with node a
 125 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 126 // Generates moves in this order: move b to temp, move a to b, move temp to a
 127 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 128   if (!dest->visited()) {
 129     dest->set_visited();
 130     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 131       move(dest, dest->destination_at(i));
 132     }
 133   } else if (!dest->start_node()) {
 134     // cylce in graph detected
 135     assert(_loop == NULL, "only one loop valid!");
 136     _loop = dest;
 137     move_to_temp(src->operand());
 138     return;
 139   } // else dest is a start node
 140 
 141   if (!dest->assigned()) {
 142     if (_loop == dest) {
 143       move_temp_to(dest->operand());
 144       dest->set_assigned();
 145     } else if (src != NULL) {
 146       emit_move(src->operand(), dest->operand());
 147       dest->set_assigned();
 148     }
 149   }
 150 }
 151 
 152 
 153 PhiResolver::~PhiResolver() {
 154   int i;
 155   // resolve any cycles in moves from and to virtual registers
 156   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 157     ResolveNode* node = virtual_operands().at(i);
 158     if (!node->visited()) {
 159       _loop = NULL;
 160       move(NULL, node);
 161       node->set_start_node();
 162       assert(_temp->is_illegal(), "move_temp_to() call missing");
 163     }
 164   }
 165 
 166   // generate move for move from non virtual register to abitrary destination
 167   for (i = other_operands().length() - 1; i >= 0; i --) {
 168     ResolveNode* node = other_operands().at(i);
 169     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 170       emit_move(node->operand(), node->destination_at(j)->operand());
 171     }
 172   }
 173 }
 174 
 175 
 176 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 177   ResolveNode* node;
 178   if (opr->is_virtual()) {
 179     int vreg_num = opr->vreg_number();
 180     node = vreg_table().at_grow(vreg_num, NULL);
 181     assert(node == NULL || node->operand() == opr, "");
 182     if (node == NULL) {
 183       node = new ResolveNode(opr);
 184       vreg_table().at_put(vreg_num, node);
 185     }
 186     // Make sure that all virtual operands show up in the list when
 187     // they are used as the source of a move.
 188     if (source && !virtual_operands().contains(node)) {
 189       virtual_operands().append(node);
 190     }
 191   } else {
 192     assert(source, "");
 193     node = new ResolveNode(opr);
 194     other_operands().append(node);
 195   }
 196   return node;
 197 }
 198 
 199 
 200 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 201   assert(dest->is_virtual(), "");
 202   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 203   assert(src->is_valid(), "");
 204   assert(dest->is_valid(), "");
 205   ResolveNode* source = source_node(src);
 206   source->append(destination_node(dest));
 207 }
 208 
 209 
 210 //--------------------------------------------------------------
 211 // LIRItem
 212 
 213 void LIRItem::set_result(LIR_Opr opr) {
 214   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 215   value()->set_operand(opr);
 216 
 217   if (opr->is_virtual()) {
 218     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 219   }
 220 
 221   _result = opr;
 222 }
 223 
 224 void LIRItem::load_item() {
 225   if (result()->is_illegal()) {
 226     // update the items result
 227     _result = value()->operand();
 228   }
 229   if (!result()->is_register()) {
 230     LIR_Opr reg = _gen->new_register(value()->type());
 231     __ move(result(), reg);
 232     if (result()->is_constant()) {
 233       _result = reg;
 234     } else {
 235       set_result(reg);
 236     }
 237   }
 238 }
 239 
 240 
 241 void LIRItem::load_for_store(BasicType type) {
 242   if (_gen->can_store_as_constant(value(), type)) {
 243     _result = value()->operand();
 244     if (!_result->is_constant()) {
 245       _result = LIR_OprFact::value_type(value()->type());
 246     }
 247   } else if (type == T_BYTE || type == T_BOOLEAN) {
 248     load_byte_item();
 249   } else {
 250     load_item();
 251   }
 252 }
 253 
 254 void LIRItem::load_item_force(LIR_Opr reg) {
 255   LIR_Opr r = result();
 256   if (r != reg) {
 257     _result = _gen->force_opr_to(r, reg);
 258   }
 259 }
 260 
 261 LIR_Opr LIRGenerator::force_opr_to(LIR_Opr op, LIR_Opr reg) {
 262   if (op != reg) {
 263 #if !defined(ARM) && !defined(E500V2)
 264     if (op->type() != reg->type()) {
 265       // moves between different types need an intervening spill slot
 266       op = force_to_spill(op, reg->type());
 267     }
 268 #endif
 269     __ move(op, reg);
 270     return reg;
 271   } else {
 272     return op;
 273   }
 274 }
 275 
 276 ciObject* LIRItem::get_jobject_constant() const {
 277   ObjectType* oc = type()->as_ObjectType();
 278   if (oc) {
 279     return oc->constant_value();
 280   }
 281   return NULL;
 282 }
 283 
 284 
 285 jint LIRItem::get_jint_constant() const {
 286   assert(is_constant() && value() != NULL, "");
 287   assert(type()->as_IntConstant() != NULL, "type check");
 288   return type()->as_IntConstant()->value();
 289 }
 290 
 291 
 292 jint LIRItem::get_address_constant() const {
 293   assert(is_constant() && value() != NULL, "");
 294   assert(type()->as_AddressConstant() != NULL, "type check");
 295   return type()->as_AddressConstant()->value();
 296 }
 297 
 298 
 299 jfloat LIRItem::get_jfloat_constant() const {
 300   assert(is_constant() && value() != NULL, "");
 301   assert(type()->as_FloatConstant() != NULL, "type check");
 302   return type()->as_FloatConstant()->value();
 303 }
 304 
 305 
 306 jdouble LIRItem::get_jdouble_constant() const {
 307   assert(is_constant() && value() != NULL, "");
 308   assert(type()->as_DoubleConstant() != NULL, "type check");
 309   return type()->as_DoubleConstant()->value();
 310 }
 311 
 312 
 313 jlong LIRItem::get_jlong_constant() const {
 314   assert(is_constant() && value() != NULL, "");
 315   assert(type()->as_LongConstant() != NULL, "type check");
 316   return type()->as_LongConstant()->value();
 317 }
 318 
 319 
 320 
 321 //--------------------------------------------------------------
 322 
 323 
 324 void LIRGenerator::init() {
 325   _bs = Universe::heap()->barrier_set();
 326 }
 327 
 328 
 329 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 330 #ifndef PRODUCT
 331   if (PrintIRWithLIR) {
 332     block->print();
 333   }
 334 #endif
 335 
 336   // set up the list of LIR instructions
 337   assert(block->lir() == NULL, "LIR list already computed for this block");
 338   _lir = new LIR_List(compilation(), block);
 339   block->set_lir(_lir);
 340 
 341   __ branch_destination(block->label());
 342 
 343   if (LIRTraceExecution &&
 344       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 345       !block->is_set(BlockBegin::exception_entry_flag)) {
 346     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 347     trace_block_entry(block);
 348   }
 349 }
 350 
 351 
 352 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 353 #ifndef PRODUCT
 354   if (PrintIRWithLIR) {
 355     tty->cr();
 356   }
 357 #endif
 358 
 359   // LIR_Opr for unpinned constants shouldn't be referenced by other
 360   // blocks so clear them out after processing the block.
 361   for (int i = 0; i < _unpinned_constants.length(); i++) {
 362     _unpinned_constants.at(i)->clear_operand();
 363   }
 364   _unpinned_constants.trunc_to(0);
 365 
 366   // clear our any registers for other local constants
 367   _constants.trunc_to(0);
 368   _reg_for_constants.trunc_to(0);
 369 }
 370 
 371 
 372 void LIRGenerator::block_do(BlockBegin* block) {
 373   CHECK_BAILOUT();
 374 
 375   block_do_prolog(block);
 376   set_block(block);
 377 
 378   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 379     if (instr->is_pinned()) do_root(instr);
 380   }
 381 
 382   set_block(NULL);
 383   block_do_epilog(block);
 384 }
 385 
 386 
 387 //-------------------------LIRGenerator-----------------------------
 388 
 389 // This is where the tree-walk starts; instr must be root;
 390 void LIRGenerator::do_root(Value instr) {
 391   CHECK_BAILOUT();
 392 
 393   InstructionMark im(compilation(), instr);
 394 
 395   assert(instr->is_pinned(), "use only with roots");
 396   assert(instr->subst() == instr, "shouldn't have missed substitution");
 397 
 398   instr->visit(this);
 399 
 400   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 401          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 402 }
 403 
 404 
 405 // This is called for each node in tree; the walk stops if a root is reached
 406 void LIRGenerator::walk(Value instr) {
 407   InstructionMark im(compilation(), instr);
 408   //stop walk when encounter a root
 409   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 410     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 411   } else {
 412     assert(instr->subst() == instr, "shouldn't have missed substitution");
 413     instr->visit(this);
 414     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 415   }
 416 }
 417 
 418 
 419 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 420   assert(state != NULL, "state must be defined");
 421 
 422 #ifndef PRODUCT
 423   state->verify();
 424 #endif
 425 
 426   ValueStack* s = state;
 427   for_each_state(s) {
 428     if (s->kind() == ValueStack::EmptyExceptionState) {
 429       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 430       continue;
 431     }
 432 
 433     int index;
 434     Value value;
 435     for_each_stack_value(s, index, value) {
 436       assert(value->subst() == value, "missed substitution");
 437       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 438         walk(value);
 439         assert(value->operand()->is_valid(), "must be evaluated now");
 440       }
 441     }
 442 
 443     int bci = s->bci();
 444     IRScope* scope = s->scope();
 445     ciMethod* method = scope->method();
 446 
 447     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 448     if (bci == SynchronizationEntryBCI) {
 449       if (x->as_ExceptionObject() || x->as_Throw()) {
 450         // all locals are dead on exit from the synthetic unlocker
 451         liveness.clear();
 452       } else {
 453         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 454       }
 455     }
 456     if (!liveness.is_valid()) {
 457       // Degenerate or breakpointed method.
 458       bailout("Degenerate or breakpointed method");
 459     } else {
 460       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 461       for_each_local_value(s, index, value) {
 462         assert(value->subst() == value, "missed substition");
 463         if (liveness.at(index) && !value->type()->is_illegal()) {
 464           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 465             walk(value);
 466             assert(value->operand()->is_valid(), "must be evaluated now");
 467           }
 468         } else {
 469           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 470           s->invalidate_local(index);
 471         }
 472       }
 473     }
 474   }
 475 
 476   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 477 }
 478 
 479 
 480 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 481   return state_for(x, x->exception_state());
 482 }
 483 
 484 
 485 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 486   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 487    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 488    * the class. */
 489   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 490     assert(info != NULL, "info must be set if class is not loaded");
 491     __ klass2reg_patch(NULL, r, info);
 492   } else {
 493     // no patching needed
 494     __ metadata2reg(obj->constant_encoding(), r);
 495   }
 496 }
 497 
 498 
 499 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 500                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 501   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 502   if (index->is_constant()) {
 503     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 504                 index->as_jint(), null_check_info);
 505     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 506   } else {
 507     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 508                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 509     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 510   }
 511 }
 512 
 513 
 514 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 515   CodeStub* stub = new RangeCheckStub(info, index, true);
 516   if (index->is_constant()) {
 517     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 518     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 519   } else {
 520     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 521                 java_nio_Buffer::limit_offset(), T_INT, info);
 522     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 523   }
 524   __ move(index, result);
 525 }
 526 
 527 
 528 
 529 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 530   LIR_Opr result_op = result;
 531   LIR_Opr left_op   = left;
 532   LIR_Opr right_op  = right;
 533 
 534   if (TwoOperandLIRForm && left_op != result_op) {
 535     assert(right_op != result_op, "malformed");
 536     __ move(left_op, result_op);
 537     left_op = result_op;
 538   }
 539 
 540   switch(code) {
 541     case Bytecodes::_dadd:
 542     case Bytecodes::_fadd:
 543     case Bytecodes::_ladd:
 544     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 545     case Bytecodes::_fmul:
 546     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 547 
 548     case Bytecodes::_dmul:
 549       {
 550         if (is_strictfp) {
 551           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 552         } else {
 553           __ mul(left_op, right_op, result_op); break;
 554         }
 555       }
 556       break;
 557 
 558     case Bytecodes::_imul:
 559       {
 560         bool    did_strength_reduce = false;
 561 
 562         if (right->is_constant()) {
 563           int c = right->as_jint();
 564           if (is_power_of_2(c)) {
 565             // do not need tmp here
 566             __ shift_left(left_op, exact_log2(c), result_op);
 567             did_strength_reduce = true;
 568           } else {
 569             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 570           }
 571         }
 572         // we couldn't strength reduce so just emit the multiply
 573         if (!did_strength_reduce) {
 574           __ mul(left_op, right_op, result_op);
 575         }
 576       }
 577       break;
 578 
 579     case Bytecodes::_dsub:
 580     case Bytecodes::_fsub:
 581     case Bytecodes::_lsub:
 582     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 583 
 584     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 585     // ldiv and lrem are implemented with a direct runtime call
 586 
 587     case Bytecodes::_ddiv:
 588       {
 589         if (is_strictfp) {
 590           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 591         } else {
 592           __ div (left_op, right_op, result_op); break;
 593         }
 594       }
 595       break;
 596 
 597     case Bytecodes::_drem:
 598     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 599 
 600     default: ShouldNotReachHere();
 601   }
 602 }
 603 
 604 
 605 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 606   arithmetic_op(code, result, left, right, false, tmp);
 607 }
 608 
 609 
 610 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 611   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 612 }
 613 
 614 
 615 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 616   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 617 }
 618 
 619 
 620 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 621 
 622   if (TwoOperandLIRForm && value != result_op
 623       // Only 32bit right shifts require two operand form on S390.
 624       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 625     assert(count != result_op, "malformed");
 626     __ move(value, result_op);
 627     value = result_op;
 628   }
 629 
 630   assert(count->is_constant() || count->is_register(), "must be");
 631   switch(code) {
 632   case Bytecodes::_ishl:
 633   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 634   case Bytecodes::_ishr:
 635   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 636   case Bytecodes::_iushr:
 637   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 638   default: ShouldNotReachHere();
 639   }
 640 }
 641 
 642 
 643 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 644   if (TwoOperandLIRForm && left_op != result_op) {
 645     assert(right_op != result_op, "malformed");
 646     __ move(left_op, result_op);
 647     left_op = result_op;
 648   }
 649 
 650   switch(code) {
 651     case Bytecodes::_iand:
 652     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 653 
 654     case Bytecodes::_ior:
 655     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 656 
 657     case Bytecodes::_ixor:
 658     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 659 
 660     default: ShouldNotReachHere();
 661   }
 662 }
 663 
 664 
 665 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 666   if (!GenerateSynchronizationCode) return;
 667   // for slow path, use debug info for state after successful locking
 668   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 669   __ load_stack_address_monitor(monitor_no, lock);
 670   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 671   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 672 }
 673 
 674 
 675 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 676   if (!GenerateSynchronizationCode) return;
 677   // setup registers
 678   LIR_Opr hdr = lock;
 679   lock = new_hdr;
 680   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 681   __ load_stack_address_monitor(monitor_no, lock);
 682   __ unlock_object(hdr, object, lock, scratch, slow_path);
 683 }
 684 
 685 #ifndef PRODUCT
 686 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 687   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 688     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 689   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 690     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 691   }
 692 }
 693 #endif
 694 
 695 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 696   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 697   // If klass is not loaded we do not know if the klass has finalizers:
 698   if (UseFastNewInstance && klass->is_loaded()
 699       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 700 
 701     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 702 
 703     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 704 
 705     assert(klass->is_loaded(), "must be loaded");
 706     // allocate space for instance
 707     assert(klass->size_helper() >= 0, "illegal instance size");
 708     const int instance_size = align_object_size(klass->size_helper());
 709     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 710                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 711   } else {
 712     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 713     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 714     __ branch_destination(slow_path->continuation());
 715   }
 716 }
 717 
 718 
 719 static bool is_constant_zero(Instruction* inst) {
 720   IntConstant* c = inst->type()->as_IntConstant();
 721   if (c) {
 722     return (c->value() == 0);
 723   }
 724   return false;
 725 }
 726 
 727 
 728 static bool positive_constant(Instruction* inst) {
 729   IntConstant* c = inst->type()->as_IntConstant();
 730   if (c) {
 731     return (c->value() >= 0);
 732   }
 733   return false;
 734 }
 735 
 736 
 737 static ciArrayKlass* as_array_klass(ciType* type) {
 738   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 739     return (ciArrayKlass*)type;
 740   } else {
 741     return NULL;
 742   }
 743 }
 744 
 745 static ciType* phi_declared_type(Phi* phi) {
 746   ciType* t = phi->operand_at(0)->declared_type();
 747   if (t == NULL) {
 748     return NULL;
 749   }
 750   for(int i = 1; i < phi->operand_count(); i++) {
 751     if (t != phi->operand_at(i)->declared_type()) {
 752       return NULL;
 753     }
 754   }
 755   return t;
 756 }
 757 
 758 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 759   Instruction* src     = x->argument_at(0);
 760   Instruction* src_pos = x->argument_at(1);
 761   Instruction* dst     = x->argument_at(2);
 762   Instruction* dst_pos = x->argument_at(3);
 763   Instruction* length  = x->argument_at(4);
 764 
 765   // first try to identify the likely type of the arrays involved
 766   ciArrayKlass* expected_type = NULL;
 767   bool is_exact = false, src_objarray = false, dst_objarray = false;
 768   {
 769     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 770     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 771     Phi* phi;
 772     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 773       src_declared_type = as_array_klass(phi_declared_type(phi));
 774     }
 775     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 776     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 777     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 778       dst_declared_type = as_array_klass(phi_declared_type(phi));
 779     }
 780 
 781     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 782       // the types exactly match so the type is fully known
 783       is_exact = true;
 784       expected_type = src_exact_type;
 785     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 786       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 787       ciArrayKlass* src_type = NULL;
 788       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 789         src_type = (ciArrayKlass*) src_exact_type;
 790       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 791         src_type = (ciArrayKlass*) src_declared_type;
 792       }
 793       if (src_type != NULL) {
 794         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 795           is_exact = true;
 796           expected_type = dst_type;
 797         }
 798       }
 799     }
 800     // at least pass along a good guess
 801     if (expected_type == NULL) expected_type = dst_exact_type;
 802     if (expected_type == NULL) expected_type = src_declared_type;
 803     if (expected_type == NULL) expected_type = dst_declared_type;
 804 
 805     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 806     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 807   }
 808 
 809   // if a probable array type has been identified, figure out if any
 810   // of the required checks for a fast case can be elided.
 811   int flags = LIR_OpArrayCopy::all_flags;
 812 
 813   if (!src_objarray)
 814     flags &= ~LIR_OpArrayCopy::src_objarray;
 815   if (!dst_objarray)
 816     flags &= ~LIR_OpArrayCopy::dst_objarray;
 817 
 818   if (!x->arg_needs_null_check(0))
 819     flags &= ~LIR_OpArrayCopy::src_null_check;
 820   if (!x->arg_needs_null_check(2))
 821     flags &= ~LIR_OpArrayCopy::dst_null_check;
 822 
 823 
 824   if (expected_type != NULL) {
 825     Value length_limit = NULL;
 826 
 827     IfOp* ifop = length->as_IfOp();
 828     if (ifop != NULL) {
 829       // look for expressions like min(v, a.length) which ends up as
 830       //   x > y ? y : x  or  x >= y ? y : x
 831       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 832           ifop->x() == ifop->fval() &&
 833           ifop->y() == ifop->tval()) {
 834         length_limit = ifop->y();
 835       }
 836     }
 837 
 838     // try to skip null checks and range checks
 839     NewArray* src_array = src->as_NewArray();
 840     if (src_array != NULL) {
 841       flags &= ~LIR_OpArrayCopy::src_null_check;
 842       if (length_limit != NULL &&
 843           src_array->length() == length_limit &&
 844           is_constant_zero(src_pos)) {
 845         flags &= ~LIR_OpArrayCopy::src_range_check;
 846       }
 847     }
 848 
 849     NewArray* dst_array = dst->as_NewArray();
 850     if (dst_array != NULL) {
 851       flags &= ~LIR_OpArrayCopy::dst_null_check;
 852       if (length_limit != NULL &&
 853           dst_array->length() == length_limit &&
 854           is_constant_zero(dst_pos)) {
 855         flags &= ~LIR_OpArrayCopy::dst_range_check;
 856       }
 857     }
 858 
 859     // check from incoming constant values
 860     if (positive_constant(src_pos))
 861       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 862     if (positive_constant(dst_pos))
 863       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 864     if (positive_constant(length))
 865       flags &= ~LIR_OpArrayCopy::length_positive_check;
 866 
 867     // see if the range check can be elided, which might also imply
 868     // that src or dst is non-null.
 869     ArrayLength* al = length->as_ArrayLength();
 870     if (al != NULL) {
 871       if (al->array() == src) {
 872         // it's the length of the source array
 873         flags &= ~LIR_OpArrayCopy::length_positive_check;
 874         flags &= ~LIR_OpArrayCopy::src_null_check;
 875         if (is_constant_zero(src_pos))
 876           flags &= ~LIR_OpArrayCopy::src_range_check;
 877       }
 878       if (al->array() == dst) {
 879         // it's the length of the destination array
 880         flags &= ~LIR_OpArrayCopy::length_positive_check;
 881         flags &= ~LIR_OpArrayCopy::dst_null_check;
 882         if (is_constant_zero(dst_pos))
 883           flags &= ~LIR_OpArrayCopy::dst_range_check;
 884       }
 885     }
 886     if (is_exact) {
 887       flags &= ~LIR_OpArrayCopy::type_check;
 888     }
 889   }
 890 
 891   IntConstant* src_int = src_pos->type()->as_IntConstant();
 892   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 893   if (src_int && dst_int) {
 894     int s_offs = src_int->value();
 895     int d_offs = dst_int->value();
 896     if (src_int->value() >= dst_int->value()) {
 897       flags &= ~LIR_OpArrayCopy::overlapping;
 898     }
 899     if (expected_type != NULL) {
 900       BasicType t = expected_type->element_type()->basic_type();
 901       int element_size = type2aelembytes(t);
 902       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 903           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 904         flags &= ~LIR_OpArrayCopy::unaligned;
 905       }
 906     }
 907   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 908     // src and dest positions are the same, or dst is zero so assume
 909     // nonoverlapping copy.
 910     flags &= ~LIR_OpArrayCopy::overlapping;
 911   }
 912 
 913   if (src == dst) {
 914     // moving within a single array so no type checks are needed
 915     if (flags & LIR_OpArrayCopy::type_check) {
 916       flags &= ~LIR_OpArrayCopy::type_check;
 917     }
 918   }
 919   *flagsp = flags;
 920   *expected_typep = (ciArrayKlass*)expected_type;
 921 }
 922 
 923 
 924 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 925   assert(opr->is_register(), "why spill if item is not register?");
 926 
 927   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 928     LIR_Opr result = new_register(T_FLOAT);
 929     set_vreg_flag(result, must_start_in_memory);
 930     assert(opr->is_register(), "only a register can be spilled");
 931     assert(opr->value_type()->is_float(), "rounding only for floats available");
 932     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 933     return result;
 934   }
 935   return opr;
 936 }
 937 
 938 
 939 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 940   assert(type2size[t] == type2size[value->type()],
 941          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 942   if (!value->is_register()) {
 943     // force into a register
 944     LIR_Opr r = new_register(value->type());
 945     __ move(value, r);
 946     value = r;
 947   }
 948 
 949   // create a spill location
 950   LIR_Opr tmp = new_register(t);
 951   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 952 
 953   // move from register to spill
 954   __ move(value, tmp);
 955   return tmp;
 956 }
 957 
 958 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 959   if (if_instr->should_profile()) {
 960     ciMethod* method = if_instr->profiled_method();
 961     assert(method != NULL, "method should be set if branch is profiled");
 962     ciMethodData* md = method->method_data_or_null();
 963     assert(md != NULL, "Sanity");
 964     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 965     assert(data != NULL, "must have profiling data");
 966     assert(data->is_BranchData(), "need BranchData for two-way branches");
 967     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 968     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 969     if (if_instr->is_swapped()) {
 970       int t = taken_count_offset;
 971       taken_count_offset = not_taken_count_offset;
 972       not_taken_count_offset = t;
 973     }
 974 
 975     LIR_Opr md_reg = new_register(T_METADATA);
 976     __ metadata2reg(md->constant_encoding(), md_reg);
 977 
 978     LIR_Opr data_offset_reg = new_pointer_register();
 979     __ cmove(lir_cond(cond),
 980              LIR_OprFact::intptrConst(taken_count_offset),
 981              LIR_OprFact::intptrConst(not_taken_count_offset),
 982              data_offset_reg, as_BasicType(if_instr->x()->type()));
 983 
 984     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 985     LIR_Opr data_reg = new_pointer_register();
 986     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 987     __ move(data_addr, data_reg);
 988     // Use leal instead of add to avoid destroying condition codes on x86
 989     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 990     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 991     __ move(data_reg, data_addr);
 992   }
 993 }
 994 
 995 // Phi technique:
 996 // This is about passing live values from one basic block to the other.
 997 // In code generated with Java it is rather rare that more than one
 998 // value is on the stack from one basic block to the other.
 999 // We optimize our technique for efficient passing of one value
1000 // (of type long, int, double..) but it can be extended.
1001 // When entering or leaving a basic block, all registers and all spill
1002 // slots are release and empty. We use the released registers
1003 // and spill slots to pass the live values from one block
1004 // to the other. The topmost value, i.e., the value on TOS of expression
1005 // stack is passed in registers. All other values are stored in spilling
1006 // area. Every Phi has an index which designates its spill slot
1007 // At exit of a basic block, we fill the register(s) and spill slots.
1008 // At entry of a basic block, the block_prolog sets up the content of phi nodes
1009 // and locks necessary registers and spilling slots.
1010 
1011 
1012 // move current value to referenced phi function
1013 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1014   Phi* phi = sux_val->as_Phi();
1015   // cur_val can be null without phi being null in conjunction with inlining
1016   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1017     Phi* cur_phi = cur_val->as_Phi();
1018     if (cur_phi != NULL && cur_phi->is_illegal()) {
1019       // Phi and local would need to get invalidated
1020       // (which is unexpected for Linear Scan).
1021       // But this case is very rare so we simply bail out.
1022       bailout("propagation of illegal phi");
1023       return;
1024     }
1025     LIR_Opr operand = cur_val->operand();
1026     if (operand->is_illegal()) {
1027       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1028              "these can be produced lazily");
1029       operand = operand_for_instruction(cur_val);
1030     }
1031     resolver->move(operand, operand_for_instruction(phi));
1032   }
1033 }
1034 
1035 
1036 // Moves all stack values into their PHI position
1037 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1038   BlockBegin* bb = block();
1039   if (bb->number_of_sux() == 1) {
1040     BlockBegin* sux = bb->sux_at(0);
1041     assert(sux->number_of_preds() > 0, "invalid CFG");
1042 
1043     // a block with only one predecessor never has phi functions
1044     if (sux->number_of_preds() > 1) {
1045       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1046       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1047 
1048       ValueStack* sux_state = sux->state();
1049       Value sux_value;
1050       int index;
1051 
1052       assert(cur_state->scope() == sux_state->scope(), "not matching");
1053       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1054       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1055 
1056       for_each_stack_value(sux_state, index, sux_value) {
1057         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1058       }
1059 
1060       for_each_local_value(sux_state, index, sux_value) {
1061         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1062       }
1063 
1064       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1065     }
1066   }
1067 }
1068 
1069 
1070 LIR_Opr LIRGenerator::new_register(BasicType type) {
1071   int vreg = _virtual_register_number;
1072   // add a little fudge factor for the bailout, since the bailout is
1073   // only checked periodically.  This gives a few extra registers to
1074   // hand out before we really run out, which helps us keep from
1075   // tripping over assertions.
1076   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1077     bailout("out of virtual registers");
1078     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1079       // wrap it around
1080       _virtual_register_number = LIR_OprDesc::vreg_base;
1081     }
1082   }
1083   _virtual_register_number += 1;
1084   return LIR_OprFact::virtual_register(vreg, type);
1085 }
1086 
1087 
1088 // Try to lock using register in hint
1089 LIR_Opr LIRGenerator::rlock(Value instr) {
1090   return new_register(instr->type());
1091 }
1092 
1093 
1094 // does an rlock and sets result
1095 LIR_Opr LIRGenerator::rlock_result(Value x) {
1096   LIR_Opr reg = rlock(x);
1097   set_result(x, reg);
1098   return reg;
1099 }
1100 
1101 
1102 // does an rlock and sets result
1103 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1104   LIR_Opr reg;
1105   switch (type) {
1106   case T_BYTE:
1107   case T_BOOLEAN:
1108     reg = rlock_byte(type);
1109     break;
1110   default:
1111     reg = rlock(x);
1112     break;
1113   }
1114 
1115   set_result(x, reg);
1116   return reg;
1117 }
1118 
1119 
1120 //---------------------------------------------------------------------
1121 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1122   ObjectType* oc = value->type()->as_ObjectType();
1123   if (oc) {
1124     return oc->constant_value();
1125   }
1126   return NULL;
1127 }
1128 
1129 
1130 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1131   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1132   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1133 
1134   // no moves are created for phi functions at the begin of exception
1135   // handlers, so assign operands manually here
1136   for_each_phi_fun(block(), phi,
1137                    operand_for_instruction(phi));
1138 
1139   LIR_Opr thread_reg = getThreadPointer();
1140   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1141                exceptionOopOpr());
1142   __ move_wide(LIR_OprFact::oopConst(NULL),
1143                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1144   __ move_wide(LIR_OprFact::oopConst(NULL),
1145                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1146 
1147   LIR_Opr result = new_register(T_OBJECT);
1148   __ move(exceptionOopOpr(), result);
1149   set_result(x, result);
1150 }
1151 
1152 
1153 //----------------------------------------------------------------------
1154 //----------------------------------------------------------------------
1155 //----------------------------------------------------------------------
1156 //----------------------------------------------------------------------
1157 //                        visitor functions
1158 //----------------------------------------------------------------------
1159 //----------------------------------------------------------------------
1160 //----------------------------------------------------------------------
1161 //----------------------------------------------------------------------
1162 
1163 void LIRGenerator::do_Phi(Phi* x) {
1164   // phi functions are never visited directly
1165   ShouldNotReachHere();
1166 }
1167 
1168 
1169 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1170 void LIRGenerator::do_Constant(Constant* x) {
1171   if (x->state_before() != NULL) {
1172     // Any constant with a ValueStack requires patching so emit the patch here
1173     LIR_Opr reg = rlock_result(x);
1174     CodeEmitInfo* info = state_for(x, x->state_before());
1175     __ oop2reg_patch(NULL, reg, info);
1176   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1177     if (!x->is_pinned()) {
1178       // unpinned constants are handled specially so that they can be
1179       // put into registers when they are used multiple times within a
1180       // block.  After the block completes their operand will be
1181       // cleared so that other blocks can't refer to that register.
1182       set_result(x, load_constant(x));
1183     } else {
1184       LIR_Opr res = x->operand();
1185       if (!res->is_valid()) {
1186         res = LIR_OprFact::value_type(x->type());
1187       }
1188       if (res->is_constant()) {
1189         LIR_Opr reg = rlock_result(x);
1190         __ move(res, reg);
1191       } else {
1192         set_result(x, res);
1193       }
1194     }
1195   } else {
1196     set_result(x, LIR_OprFact::value_type(x->type()));
1197   }
1198 }
1199 
1200 
1201 void LIRGenerator::do_Local(Local* x) {
1202   // operand_for_instruction has the side effect of setting the result
1203   // so there's no need to do it here.
1204   operand_for_instruction(x);
1205 }
1206 
1207 
1208 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1209   Unimplemented();
1210 }
1211 
1212 
1213 void LIRGenerator::do_Return(Return* x) {
1214   if (compilation()->env()->dtrace_method_probes()) {
1215     BasicTypeList signature;
1216     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1217     signature.append(T_METADATA); // Method*
1218     LIR_OprList* args = new LIR_OprList();
1219     args->append(getThreadPointer());
1220     LIR_Opr meth = new_register(T_METADATA);
1221     __ metadata2reg(method()->constant_encoding(), meth);
1222     args->append(meth);
1223     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1224   }
1225 
1226   if (x->type()->is_void()) {
1227     __ return_op(LIR_OprFact::illegalOpr);
1228   } else {
1229     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1230     LIRItem result(x->result(), this);
1231 
1232     result.load_item_force(reg);
1233     __ return_op(result.result());
1234   }
1235   set_no_result(x);
1236 }
1237 
1238 // Examble: ref.get()
1239 // Combination of LoadField and g1 pre-write barrier
1240 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1241 
1242   const int referent_offset = java_lang_ref_Reference::referent_offset;
1243   guarantee(referent_offset > 0, "referent offset not initialized");
1244 
1245   assert(x->number_of_arguments() == 1, "wrong type");
1246 
1247   LIRItem reference(x->argument_at(0), this);
1248   reference.load_item();
1249 
1250   // need to perform the null check on the reference objecy
1251   CodeEmitInfo* info = NULL;
1252   if (x->needs_null_check()) {
1253     info = state_for(x);
1254   }
1255 
1256   LIR_Address* referent_field_adr =
1257     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1258 
1259   LIR_Opr result = rlock_result(x);
1260 
1261   __ load(referent_field_adr, result, info);
1262 
1263   // Register the value in the referent field with the pre-barrier
1264   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1265               result /* pre_val */,
1266               false  /* do_load */,
1267               false  /* patch */,
1268               NULL   /* info */);
1269 }
1270 
1271 // Example: clazz.isInstance(object)
1272 void LIRGenerator::do_isInstance(Intrinsic* x) {
1273   assert(x->number_of_arguments() == 2, "wrong type");
1274 
1275   // TODO could try to substitute this node with an equivalent InstanceOf
1276   // if clazz is known to be a constant Class. This will pick up newly found
1277   // constants after HIR construction. I'll leave this to a future change.
1278 
1279   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1280   // could follow the aastore example in a future change.
1281 
1282   LIRItem clazz(x->argument_at(0), this);
1283   LIRItem object(x->argument_at(1), this);
1284   clazz.load_item();
1285   object.load_item();
1286   LIR_Opr result = rlock_result(x);
1287 
1288   // need to perform null check on clazz
1289   if (x->needs_null_check()) {
1290     CodeEmitInfo* info = state_for(x);
1291     __ null_check(clazz.result(), info);
1292   }
1293 
1294   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1295                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1296                                      x->type(),
1297                                      NULL); // NULL CodeEmitInfo results in a leaf call
1298   __ move(call_result, result);
1299 }
1300 
1301 // Example: object.getClass ()
1302 void LIRGenerator::do_getClass(Intrinsic* x) {
1303   assert(x->number_of_arguments() == 1, "wrong type");
1304 
1305   LIRItem rcvr(x->argument_at(0), this);
1306   rcvr.load_item();
1307   LIR_Opr temp = new_register(T_METADATA);
1308   LIR_Opr result = rlock_result(x);
1309 
1310   // need to perform the null check on the rcvr
1311   CodeEmitInfo* info = NULL;
1312   if (x->needs_null_check()) {
1313     info = state_for(x);
1314   }
1315 
1316   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1317   // meaning of these two is mixed up (see JDK-8026837).
1318   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1319   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1320 }
1321 
1322 // java.lang.Class::isPrimitive()
1323 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1324   assert(x->number_of_arguments() == 1, "wrong type");
1325 
1326   LIRItem rcvr(x->argument_at(0), this);
1327   rcvr.load_item();
1328   LIR_Opr temp = new_register(T_METADATA);
1329   LIR_Opr result = rlock_result(x);
1330 
1331   CodeEmitInfo* info = NULL;
1332   if (x->needs_null_check()) {
1333     info = state_for(x);
1334   }
1335 
1336   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1337   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1338   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1339 }
1340 
1341 
1342 // Example: Thread.currentThread()
1343 void LIRGenerator::do_currentThread(Intrinsic* x) {
1344   assert(x->number_of_arguments() == 0, "wrong type");
1345   LIR_Opr reg = rlock_result(x);
1346   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1347 }
1348 
1349 
1350 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1351   assert(x->number_of_arguments() == 1, "wrong type");
1352   LIRItem receiver(x->argument_at(0), this);
1353 
1354   receiver.load_item();
1355   BasicTypeList signature;
1356   signature.append(T_OBJECT); // receiver
1357   LIR_OprList* args = new LIR_OprList();
1358   args->append(receiver.result());
1359   CodeEmitInfo* info = state_for(x, x->state());
1360   call_runtime(&signature, args,
1361                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1362                voidType, info);
1363 
1364   set_no_result(x);
1365 }
1366 
1367 
1368 //------------------------local access--------------------------------------
1369 
1370 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1371   if (x->operand()->is_illegal()) {
1372     Constant* c = x->as_Constant();
1373     if (c != NULL) {
1374       x->set_operand(LIR_OprFact::value_type(c->type()));
1375     } else {
1376       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1377       // allocate a virtual register for this local or phi
1378       x->set_operand(rlock(x));
1379       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1380     }
1381   }
1382   return x->operand();
1383 }
1384 
1385 
1386 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1387   if (opr->is_virtual()) {
1388     return instruction_for_vreg(opr->vreg_number());
1389   }
1390   return NULL;
1391 }
1392 
1393 
1394 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1395   if (reg_num < _instruction_for_operand.length()) {
1396     return _instruction_for_operand.at(reg_num);
1397   }
1398   return NULL;
1399 }
1400 
1401 
1402 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1403   if (_vreg_flags.size_in_bits() == 0) {
1404     BitMap2D temp(100, num_vreg_flags);
1405     _vreg_flags = temp;
1406   }
1407   _vreg_flags.at_put_grow(vreg_num, f, true);
1408 }
1409 
1410 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1411   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1412     return false;
1413   }
1414   return _vreg_flags.at(vreg_num, f);
1415 }
1416 
1417 
1418 // Block local constant handling.  This code is useful for keeping
1419 // unpinned constants and constants which aren't exposed in the IR in
1420 // registers.  Unpinned Constant instructions have their operands
1421 // cleared when the block is finished so that other blocks can't end
1422 // up referring to their registers.
1423 
1424 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1425   assert(!x->is_pinned(), "only for unpinned constants");
1426   _unpinned_constants.append(x);
1427   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1428 }
1429 
1430 
1431 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1432   BasicType t = c->type();
1433   for (int i = 0; i < _constants.length(); i++) {
1434     LIR_Const* other = _constants.at(i);
1435     if (t == other->type()) {
1436       switch (t) {
1437       case T_INT:
1438       case T_FLOAT:
1439         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1440         break;
1441       case T_LONG:
1442       case T_DOUBLE:
1443         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1444         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1445         break;
1446       case T_OBJECT:
1447         if (c->as_jobject() != other->as_jobject()) continue;
1448         break;
1449       }
1450       return _reg_for_constants.at(i);
1451     }
1452   }
1453 
1454   LIR_Opr result = new_register(t);
1455   __ move((LIR_Opr)c, result);
1456   _constants.append(c);
1457   _reg_for_constants.append(result);
1458   return result;
1459 }
1460 
1461 // Various barriers
1462 
1463 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1464                                bool do_load, bool patch, CodeEmitInfo* info) {
1465   // Do the pre-write barrier, if any.
1466   switch (_bs->kind()) {
1467 #if INCLUDE_ALL_GCS
1468     case BarrierSet::G1SATBCTLogging:
1469       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1470       break;
1471     case BarrierSet::ShenandoahBarrierSet:
1472       if (ShenandoahSATBBarrier) {
1473         G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1474       }
1475       break;
1476 #endif // INCLUDE_ALL_GCS
1477     case BarrierSet::CardTableForRS:
1478     case BarrierSet::CardTableExtension:
1479       // No pre barriers
1480       break;
1481     case BarrierSet::ModRef:
1482       // No pre barriers
1483       break;
1484     default      :
1485       ShouldNotReachHere();
1486 
1487   }
1488 }
1489 
1490 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1491   switch (_bs->kind()) {
1492 #if INCLUDE_ALL_GCS
1493     case BarrierSet::G1SATBCTLogging:
1494       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1495       break;
1496     case BarrierSet::ShenandoahBarrierSet:
1497       Shenandoah_post_barrier(addr,  new_val);
1498       break;
1499 #endif // INCLUDE_ALL_GCS
1500     case BarrierSet::CardTableForRS:
1501     case BarrierSet::CardTableExtension:
1502       CardTableModRef_post_barrier(addr,  new_val);
1503       break;
1504     case BarrierSet::ModRef:
1505       // No post barriers
1506       break;
1507     default      :
1508       ShouldNotReachHere();
1509     }
1510 }
1511 
1512 ////////////////////////////////////////////////////////////////////////
1513 #if INCLUDE_ALL_GCS
1514 
1515 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1516                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1517   // First we test whether marking is in progress.
1518   BasicType flag_type;
1519   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1520     flag_type = T_INT;
1521   } else {
1522     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1523               "Assumption");
1524     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1525     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1526     flag_type = T_BOOLEAN;
1527   }
1528   LIR_Opr thrd = getThreadPointer();
1529   LIR_Address* mark_active_flag_addr =
1530     new LIR_Address(thrd,
1531                     in_bytes(JavaThread::satb_mark_queue_offset() +
1532                              SATBMarkQueue::byte_offset_of_active()),
1533                     flag_type);
1534   // Read the marking-in-progress flag.
1535   LIR_Opr flag_val = new_register(T_INT);
1536   __ load(mark_active_flag_addr, flag_val);
1537   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1538 
1539   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1540 
1541   CodeStub* slow;
1542 
1543   if (do_load) {
1544     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1545     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1546 
1547     if (patch)
1548       pre_val_patch_code = lir_patch_normal;
1549 
1550     pre_val = new_register(T_OBJECT);
1551 
1552     if (!addr_opr->is_address()) {
1553       assert(addr_opr->is_register(), "must be");
1554       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1555     }
1556     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1557   } else {
1558     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1559     assert(pre_val->is_register(), "must be");
1560     assert(pre_val->type() == T_OBJECT, "must be an object");
1561     assert(info == NULL, "sanity");
1562 
1563     slow = new G1PreBarrierStub(pre_val);
1564   }
1565 
1566   __ branch(lir_cond_notEqual, T_INT, slow);
1567   __ branch_destination(slow->continuation());
1568 }
1569 
1570 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1571   // If the "new_val" is a constant NULL, no barrier is necessary.
1572   if (new_val->is_constant() &&
1573       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1574 
1575   if (!new_val->is_register()) {
1576     LIR_Opr new_val_reg = new_register(T_OBJECT);
1577     if (new_val->is_constant()) {
1578       __ move(new_val, new_val_reg);
1579     } else {
1580       __ leal(new_val, new_val_reg);
1581     }
1582     new_val = new_val_reg;
1583   }
1584   assert(new_val->is_register(), "must be a register at this point");
1585 
1586   if (addr->is_address()) {
1587     LIR_Address* address = addr->as_address_ptr();
1588     LIR_Opr ptr = new_pointer_register();
1589     if (!address->index()->is_valid() && address->disp() == 0) {
1590       __ move(address->base(), ptr);
1591     } else {
1592       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1593       __ leal(addr, ptr);
1594     }
1595     addr = ptr;
1596   }
1597   assert(addr->is_register(), "must be a register at this point");
1598 
1599   LIR_Opr xor_res = new_pointer_register();
1600   LIR_Opr xor_shift_res = new_pointer_register();
1601   if (TwoOperandLIRForm ) {
1602     __ move(addr, xor_res);
1603     __ logical_xor(xor_res, new_val, xor_res);
1604     __ move(xor_res, xor_shift_res);
1605     __ unsigned_shift_right(xor_shift_res,
1606                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1607                             xor_shift_res,
1608                             LIR_OprDesc::illegalOpr());
1609   } else {
1610     __ logical_xor(addr, new_val, xor_res);
1611     __ unsigned_shift_right(xor_res,
1612                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1613                             xor_shift_res,
1614                             LIR_OprDesc::illegalOpr());
1615   }
1616 
1617   if (!new_val->is_register()) {
1618     LIR_Opr new_val_reg = new_register(T_OBJECT);
1619     __ leal(new_val, new_val_reg);
1620     new_val = new_val_reg;
1621   }
1622   assert(new_val->is_register(), "must be a register at this point");
1623 
1624   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1625 
1626   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1627   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1628   __ branch_destination(slow->continuation());
1629 }
1630 
1631 void LIRGenerator::Shenandoah_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1632   if (! UseShenandoahMatrix) {
1633     // No need for that barrier if not using matrix.
1634     return;
1635   }
1636 
1637   // If the "new_val" is a constant NULL, no barrier is necessary.
1638   if (new_val->is_constant() &&
1639       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1640 
1641   if (!new_val->is_register()) {
1642     LIR_Opr new_val_reg = new_register(T_OBJECT);
1643     if (new_val->is_constant()) {
1644       __ move(new_val, new_val_reg);
1645     } else {
1646       __ leal(new_val, new_val_reg);
1647     }
1648     new_val = new_val_reg;
1649   }
1650   assert(new_val->is_register(), "must be a register at this point");
1651 
1652   if (addr->is_address()) {
1653     LIR_Address* address = addr->as_address_ptr();
1654     LIR_Opr ptr = new_pointer_register();
1655     if (!address->index()->is_valid() && address->disp() == 0) {
1656       __ move(address->base(), ptr);
1657     } else {
1658       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1659       __ leal(addr, ptr);
1660     }
1661     addr = ptr;
1662   }
1663   assert(addr->is_register(), "must be a register at this point");
1664 
1665   LabelObj* L_done = new LabelObj();
1666   __ cmp(lir_cond_equal, new_val, LIR_OprFact::oopConst(NULL_WORD));
1667   __ branch(lir_cond_equal, T_OBJECT, L_done->label());
1668 
1669   ShenandoahConnectionMatrix* matrix = ShenandoahHeap::heap()->connection_matrix();
1670 
1671   LIR_Opr heap_base = new_pointer_register();
1672   __ move(LIR_OprFact::intptrConst(ShenandoahHeap::heap()->first_region_bottom()), heap_base);
1673 
1674   LIR_Opr tmp1 = new_pointer_register();
1675   __ move(new_val, tmp1);
1676   __ sub(tmp1, heap_base, tmp1);
1677   __ unsigned_shift_right(tmp1, LIR_OprFact::intConst(ShenandoahHeapRegion::region_size_shift_jint()), tmp1, LIR_OprDesc::illegalOpr());
1678 
1679   LIR_Opr tmp2 = new_pointer_register();
1680   __ move(addr, tmp2);
1681   __ sub(tmp2, heap_base, tmp2);
1682   __ unsigned_shift_right(tmp2, LIR_OprFact::intConst(ShenandoahHeapRegion::region_size_shift_jint()), tmp2, LIR_OprDesc::illegalOpr());
1683 
1684   LIR_Opr tmp3 = new_pointer_register();
1685   __ move(LIR_OprFact::longConst(matrix->stride_jint()), tmp3);
1686   __ mul(tmp1, tmp3, tmp1);
1687   __ add(tmp1, tmp2, tmp1);
1688 
1689   LIR_Opr tmp4 = new_pointer_register();
1690   __ move(LIR_OprFact::intptrConst((intptr_t) matrix->matrix_addr()), tmp4);
1691   LIR_Address* matrix_elem_addr = new LIR_Address(tmp4, tmp1, T_BYTE);
1692 
1693   LIR_Opr tmp5 = new_register(T_INT);
1694   __ move(matrix_elem_addr, tmp5);
1695   __ cmp(lir_cond_notEqual, tmp5, LIR_OprFact::intConst(0));
1696   __ branch(lir_cond_notEqual, T_BYTE, L_done->label());
1697 
1698   // Aarch64 cannot move constant 1. Load it into a register.
1699   LIR_Opr one = new_register(T_INT);
1700   __ move(LIR_OprFact::intConst(1), one);
1701   __ move(one, matrix_elem_addr);
1702 
1703   __ branch_destination(L_done->label());
1704 }
1705 
1706 #endif // INCLUDE_ALL_GCS
1707 ////////////////////////////////////////////////////////////////////////
1708 
1709 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1710   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1711   assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1712   LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1713   if (addr->is_address()) {
1714     LIR_Address* address = addr->as_address_ptr();
1715     // ptr cannot be an object because we use this barrier for array card marks
1716     // and addr can point in the middle of an array.
1717     LIR_Opr ptr = new_pointer_register();
1718     if (!address->index()->is_valid() && address->disp() == 0) {
1719       __ move(address->base(), ptr);
1720     } else {
1721       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1722       __ leal(addr, ptr);
1723     }
1724     addr = ptr;
1725   }
1726   assert(addr->is_register(), "must be a register at this point");
1727 
1728 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1729   CardTableModRef_post_barrier_helper(addr, card_table_base);
1730 #else
1731   LIR_Opr tmp = new_pointer_register();
1732   if (TwoOperandLIRForm) {
1733     __ move(addr, tmp);
1734     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1735   } else {
1736     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1737   }
1738 
1739   LIR_Address* card_addr;
1740   if (can_inline_as_constant(card_table_base)) {
1741     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1742   } else {
1743     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1744   }
1745 
1746   LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1747   if (UseCondCardMark) {
1748     LIR_Opr cur_value = new_register(T_INT);
1749     if (UseConcMarkSweepGC) {
1750       __ membar_storeload();
1751     }
1752     __ move(card_addr, cur_value);
1753 
1754     LabelObj* L_already_dirty = new LabelObj();
1755     __ cmp(lir_cond_equal, cur_value, dirty);
1756     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1757     __ move(dirty, card_addr);
1758     __ branch_destination(L_already_dirty->label());
1759   } else {
1760     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1761       __ membar_storestore();
1762     }
1763     __ move(dirty, card_addr);
1764   }
1765 #endif
1766 }
1767 
1768 
1769 //------------------------field access--------------------------------------
1770 
1771 // Comment copied form templateTable_i486.cpp
1772 // ----------------------------------------------------------------------------
1773 // Volatile variables demand their effects be made known to all CPU's in
1774 // order.  Store buffers on most chips allow reads & writes to reorder; the
1775 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1776 // memory barrier (i.e., it's not sufficient that the interpreter does not
1777 // reorder volatile references, the hardware also must not reorder them).
1778 //
1779 // According to the new Java Memory Model (JMM):
1780 // (1) All volatiles are serialized wrt to each other.
1781 // ALSO reads & writes act as aquire & release, so:
1782 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1783 // the read float up to before the read.  It's OK for non-volatile memory refs
1784 // that happen before the volatile read to float down below it.
1785 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1786 // that happen BEFORE the write float down to after the write.  It's OK for
1787 // non-volatile memory refs that happen after the volatile write to float up
1788 // before it.
1789 //
1790 // We only put in barriers around volatile refs (they are expensive), not
1791 // _between_ memory refs (that would require us to track the flavor of the
1792 // previous memory refs).  Requirements (2) and (3) require some barriers
1793 // before volatile stores and after volatile loads.  These nearly cover
1794 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1795 // case is placed after volatile-stores although it could just as well go
1796 // before volatile-loads.
1797 
1798 
1799 void LIRGenerator::do_StoreField(StoreField* x) {
1800   bool needs_patching = x->needs_patching();
1801   bool is_volatile = x->field()->is_volatile();
1802   BasicType field_type = x->field_type();
1803   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1804 
1805   CodeEmitInfo* info = NULL;
1806   if (needs_patching) {
1807     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1808     info = state_for(x, x->state_before());
1809   } else if (x->needs_null_check()) {
1810     NullCheck* nc = x->explicit_null_check();
1811     if (nc == NULL) {
1812       info = state_for(x);
1813     } else {
1814       info = state_for(nc);
1815     }
1816   }
1817 
1818 
1819   LIRItem object(x->obj(), this);
1820   LIRItem value(x->value(),  this);
1821 
1822   object.load_item();
1823 
1824   if (is_volatile || needs_patching) {
1825     // load item if field is volatile (fewer special cases for volatiles)
1826     // load item if field not initialized
1827     // load item if field not constant
1828     // because of code patching we cannot inline constants
1829     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1830       value.load_byte_item();
1831     } else  {
1832       value.load_item();
1833     }
1834   } else {
1835     value.load_for_store(field_type);
1836   }
1837 
1838   set_no_result(x);
1839 
1840 #ifndef PRODUCT
1841   if (PrintNotLoaded && needs_patching) {
1842     tty->print_cr("   ###class not loaded at store_%s bci %d",
1843                   x->is_static() ?  "static" : "field", x->printable_bci());
1844   }
1845 #endif
1846 
1847   LIR_Opr obj = object.result();
1848 
1849   if (x->needs_null_check() &&
1850       (needs_patching ||
1851        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1852     // Emit an explicit null check because the offset is too large.
1853     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1854     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1855     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1856   }
1857 
1858   obj = shenandoah_write_barrier(obj, info, x->needs_null_check());
1859   LIR_Opr val = value.result();
1860   if (is_oop && UseShenandoahGC) {
1861     if (! val->is_register()) {
1862       assert(val->is_constant(), "expect constant");
1863     } else {
1864       val = shenandoah_read_barrier(val, NULL, true);
1865     }
1866   }
1867 
1868   LIR_Address* address;
1869   if (needs_patching) {
1870     // we need to patch the offset in the instruction so don't allow
1871     // generate_address to try to be smart about emitting the -1.
1872     // Otherwise the patching code won't know how to find the
1873     // instruction to patch.
1874     address = new LIR_Address(obj, PATCHED_ADDR, field_type);
1875   } else {
1876     address = generate_address(obj, x->offset(), field_type);
1877   }
1878 
1879   if (is_volatile && os::is_MP()) {
1880     __ membar_release();
1881   }
1882 
1883   if (is_oop) {
1884     // Do the pre-write barrier, if any.
1885     pre_barrier(LIR_OprFact::address(address),
1886                 LIR_OprFact::illegalOpr /* pre_val */,
1887                 true /* do_load*/,
1888                 needs_patching,
1889                 (info ? new CodeEmitInfo(info) : NULL));
1890   }
1891 
1892   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1893   if (needs_atomic_access && !needs_patching) {
1894     volatile_field_store(val, address, info);
1895   } else {
1896     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1897     __ store(val, address, info, patch_code);
1898   }
1899 
1900   if (is_oop) {
1901     // Store to object so mark the card of the header
1902     post_barrier(obj, val);
1903   }
1904 
1905   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1906     __ membar();
1907   }
1908 }
1909 
1910 
1911 void LIRGenerator::do_LoadField(LoadField* x) {
1912   bool needs_patching = x->needs_patching();
1913   bool is_volatile = x->field()->is_volatile();
1914   BasicType field_type = x->field_type();
1915 
1916   CodeEmitInfo* info = NULL;
1917   if (needs_patching) {
1918     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1919     info = state_for(x, x->state_before());
1920   } else if (x->needs_null_check()) {
1921     NullCheck* nc = x->explicit_null_check();
1922     if (nc == NULL) {
1923       info = state_for(x);
1924     } else {
1925       info = state_for(nc);
1926     }
1927   }
1928 
1929   LIRItem object(x->obj(), this);
1930 
1931   object.load_item();
1932 
1933 #ifndef PRODUCT
1934   if (PrintNotLoaded && needs_patching) {
1935     tty->print_cr("   ###class not loaded at load_%s bci %d",
1936                   x->is_static() ?  "static" : "field", x->printable_bci());
1937   }
1938 #endif
1939 
1940   LIR_Opr obj = object.result();
1941   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1942   if (x->needs_null_check() &&
1943       (needs_patching ||
1944        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1945        stress_deopt)) {
1946     if (stress_deopt) {
1947       obj = new_register(T_OBJECT);
1948       __ move(LIR_OprFact::oopConst(NULL), obj);
1949     }
1950     // Emit an explicit null check because the offset is too large.
1951     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1952     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1953     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1954   }
1955 
1956   obj = shenandoah_read_barrier(obj, info, x->needs_null_check() && x->explicit_null_check() != NULL);
1957   LIR_Opr reg = rlock_result(x, field_type);
1958   LIR_Address* address;
1959   if (needs_patching) {
1960     // we need to patch the offset in the instruction so don't allow
1961     // generate_address to try to be smart about emitting the -1.
1962     // Otherwise the patching code won't know how to find the
1963     // instruction to patch.
1964     address = new LIR_Address(obj, PATCHED_ADDR, field_type);
1965   } else {
1966     address = generate_address(obj, x->offset(), field_type);
1967   }
1968 
1969   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1970     __ membar();
1971   }
1972 
1973   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1974   if (needs_atomic_access && !needs_patching) {
1975     volatile_field_load(address, reg, info);
1976   } else {
1977     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1978     __ load(address, reg, info, patch_code);
1979   }
1980 
1981   if (is_volatile && os::is_MP()) {
1982     __ membar_acquire();
1983   }
1984 }
1985 
1986 LIR_Opr LIRGenerator::shenandoah_read_barrier(LIR_Opr obj, CodeEmitInfo* info, bool need_null_check) {
1987   if (UseShenandoahGC && ShenandoahReadBarrier) {
1988 
1989     LabelObj* done = new LabelObj();
1990     LIR_Opr result = new_register(T_OBJECT);
1991     __ move(obj, result);
1992     if (need_null_check) {
1993       __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
1994       __ branch(lir_cond_equal, T_LONG, done->label());
1995     }
1996     LIR_Address* brooks_ptr_address = generate_address(result, BrooksPointer::byte_offset(), T_ADDRESS);
1997     __ load(brooks_ptr_address, result, info ? new CodeEmitInfo(info) : NULL, lir_patch_none);
1998 
1999     __ branch_destination(done->label());
2000     return result;
2001   } else {
2002     return obj;
2003   }
2004 }
2005 
2006 LIR_Opr LIRGenerator::shenandoah_write_barrier(LIR_Opr obj, CodeEmitInfo* info, bool need_null_check) {
2007   if (UseShenandoahGC && ShenandoahWriteBarrier) {
2008 
2009     LIR_Opr result = new_register(T_OBJECT);
2010     __ shenandoah_wb(obj, result, info ? new CodeEmitInfo(info) : NULL, need_null_check);
2011     return result;
2012 
2013   } else {
2014     return obj;
2015   }
2016 }
2017 
2018 //------------------------java.nio.Buffer.checkIndex------------------------
2019 
2020 // int java.nio.Buffer.checkIndex(int)
2021 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
2022   // NOTE: by the time we are in checkIndex() we are guaranteed that
2023   // the buffer is non-null (because checkIndex is package-private and
2024   // only called from within other methods in the buffer).
2025   assert(x->number_of_arguments() == 2, "wrong type");
2026   LIRItem buf  (x->argument_at(0), this);
2027   LIRItem index(x->argument_at(1), this);
2028   buf.load_item();
2029   index.load_item();
2030 
2031   LIR_Opr result = rlock_result(x);
2032   if (GenerateRangeChecks) {
2033     CodeEmitInfo* info = state_for(x);
2034     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
2035     if (index.result()->is_constant()) {
2036       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
2037       __ branch(lir_cond_belowEqual, T_INT, stub);
2038     } else {
2039       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
2040                   java_nio_Buffer::limit_offset(), T_INT, info);
2041       __ branch(lir_cond_aboveEqual, T_INT, stub);
2042     }
2043     __ move(index.result(), result);
2044   } else {
2045     // Just load the index into the result register
2046     __ move(index.result(), result);
2047   }
2048 }
2049 
2050 
2051 //------------------------array access--------------------------------------
2052 
2053 
2054 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
2055   LIRItem array(x->array(), this);
2056   array.load_item();
2057   LIR_Opr reg = rlock_result(x);
2058 
2059   CodeEmitInfo* info = NULL;
2060   if (x->needs_null_check()) {
2061     NullCheck* nc = x->explicit_null_check();
2062     if (nc == NULL) {
2063       info = state_for(x);
2064     } else {
2065       info = state_for(nc);
2066     }
2067     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2068       LIR_Opr obj = new_register(T_OBJECT);
2069       __ move(LIR_OprFact::oopConst(NULL), obj);
2070       __ null_check(obj, new CodeEmitInfo(info));
2071     }
2072   }
2073   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2074 }
2075 
2076 
2077 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2078   bool use_length = x->length() != NULL;
2079   LIRItem array(x->array(), this);
2080   LIRItem index(x->index(), this);
2081   LIRItem length(this);
2082   bool needs_range_check = x->compute_needs_range_check();
2083 
2084   if (use_length && needs_range_check) {
2085     length.set_instruction(x->length());
2086     length.load_item();
2087   }
2088 
2089   array.load_item();
2090   if (index.is_constant() && can_inline_as_constant(x->index())) {
2091     // let it be a constant
2092     index.dont_load_item();
2093   } else {
2094     index.load_item();
2095   }
2096 
2097   CodeEmitInfo* range_check_info = state_for(x);
2098   CodeEmitInfo* null_check_info = NULL;
2099   if (x->needs_null_check()) {
2100     NullCheck* nc = x->explicit_null_check();
2101     if (nc != NULL) {
2102       null_check_info = state_for(nc);
2103     } else {
2104       null_check_info = range_check_info;
2105     }
2106     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2107       LIR_Opr obj = new_register(T_OBJECT);
2108       __ move(LIR_OprFact::oopConst(NULL), obj);
2109       __ null_check(obj, new CodeEmitInfo(null_check_info));
2110     }
2111   }
2112 
2113   LIR_Opr ary = array.result();
2114   ary = shenandoah_read_barrier(ary, null_check_info, null_check_info != NULL);
2115 
2116   // emit array address setup early so it schedules better
2117   LIR_Address* array_addr = emit_array_address(ary, index.result(), x->elt_type(), false);
2118 
2119   if (GenerateRangeChecks && needs_range_check) {
2120     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2121       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
2122     } else if (use_length) {
2123       // TODO: use a (modified) version of array_range_check that does not require a
2124       //       constant length to be loaded to a register
2125       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2126       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
2127     } else {
2128       array_range_check(ary, index.result(), null_check_info, range_check_info);
2129       // The range check performs the null check, so clear it out for the load
2130       null_check_info = NULL;
2131     }
2132   }
2133 
2134   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
2135 }
2136 
2137 
2138 void LIRGenerator::do_NullCheck(NullCheck* x) {
2139   if (x->can_trap()) {
2140     LIRItem value(x->obj(), this);
2141     value.load_item();
2142     CodeEmitInfo* info = state_for(x);
2143     __ null_check(value.result(), info);
2144   }
2145 }
2146 
2147 
2148 void LIRGenerator::do_TypeCast(TypeCast* x) {
2149   LIRItem value(x->obj(), this);
2150   value.load_item();
2151   // the result is the same as from the node we are casting
2152   set_result(x, value.result());
2153 }
2154 
2155 
2156 void LIRGenerator::do_Throw(Throw* x) {
2157   LIRItem exception(x->exception(), this);
2158   exception.load_item();
2159   set_no_result(x);
2160   LIR_Opr exception_opr = exception.result();
2161   CodeEmitInfo* info = state_for(x, x->state());
2162 
2163 #ifndef PRODUCT
2164   if (PrintC1Statistics) {
2165     increment_counter(Runtime1::throw_count_address(), T_INT);
2166   }
2167 #endif
2168 
2169   // check if the instruction has an xhandler in any of the nested scopes
2170   bool unwind = false;
2171   if (info->exception_handlers()->length() == 0) {
2172     // this throw is not inside an xhandler
2173     unwind = true;
2174   } else {
2175     // get some idea of the throw type
2176     bool type_is_exact = true;
2177     ciType* throw_type = x->exception()->exact_type();
2178     if (throw_type == NULL) {
2179       type_is_exact = false;
2180       throw_type = x->exception()->declared_type();
2181     }
2182     if (throw_type != NULL && throw_type->is_instance_klass()) {
2183       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2184       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2185     }
2186   }
2187 
2188   // do null check before moving exception oop into fixed register
2189   // to avoid a fixed interval with an oop during the null check.
2190   // Use a copy of the CodeEmitInfo because debug information is
2191   // different for null_check and throw.
2192   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2193     // if the exception object wasn't created using new then it might be null.
2194     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2195   }
2196 
2197   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2198     // we need to go through the exception lookup path to get JVMTI
2199     // notification done
2200     unwind = false;
2201   }
2202 
2203   // move exception oop into fixed register
2204   __ move(exception_opr, exceptionOopOpr());
2205 
2206   if (unwind) {
2207     __ unwind_exception(exceptionOopOpr());
2208   } else {
2209     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2210   }
2211 }
2212 
2213 
2214 void LIRGenerator::do_RoundFP(RoundFP* x) {
2215   LIRItem input(x->input(), this);
2216   input.load_item();
2217   LIR_Opr input_opr = input.result();
2218   assert(input_opr->is_register(), "why round if value is not in a register?");
2219   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2220   if (input_opr->is_single_fpu()) {
2221     set_result(x, round_item(input_opr)); // This code path not currently taken
2222   } else {
2223     LIR_Opr result = new_register(T_DOUBLE);
2224     set_vreg_flag(result, must_start_in_memory);
2225     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2226     set_result(x, result);
2227   }
2228 }
2229 
2230 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2231 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2232 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2233   LIRItem base(x->base(), this);
2234   LIRItem idx(this);
2235 
2236   base.load_item();
2237   if (x->has_index()) {
2238     idx.set_instruction(x->index());
2239     idx.load_nonconstant();
2240   }
2241 
2242   LIR_Opr reg = rlock_result(x, x->basic_type());
2243 
2244   int   log2_scale = 0;
2245   if (x->has_index()) {
2246     log2_scale = x->log2_scale();
2247   }
2248 
2249   assert(!x->has_index() || idx.value() == x->index(), "should match");
2250 
2251   LIR_Opr base_op = base.result();
2252   LIR_Opr index_op = idx.result();
2253 #ifndef _LP64
2254   if (base_op->type() == T_LONG) {
2255     base_op = new_register(T_INT);
2256     __ convert(Bytecodes::_l2i, base.result(), base_op);
2257   }
2258   if (x->has_index()) {
2259     if (index_op->type() == T_LONG) {
2260       LIR_Opr long_index_op = index_op;
2261       if (index_op->is_constant()) {
2262         long_index_op = new_register(T_LONG);
2263         __ move(index_op, long_index_op);
2264       }
2265       index_op = new_register(T_INT);
2266       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2267     } else {
2268       assert(x->index()->type()->tag() == intTag, "must be");
2269     }
2270   }
2271   // At this point base and index should be all ints.
2272   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2273   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2274 #else
2275   if (x->has_index()) {
2276     if (index_op->type() == T_INT) {
2277       if (!index_op->is_constant()) {
2278         index_op = new_register(T_LONG);
2279         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2280       }
2281     } else {
2282       assert(index_op->type() == T_LONG, "must be");
2283       if (index_op->is_constant()) {
2284         index_op = new_register(T_LONG);
2285         __ move(idx.result(), index_op);
2286       }
2287     }
2288   }
2289   // At this point base is a long non-constant
2290   // Index is a long register or a int constant.
2291   // We allow the constant to stay an int because that would allow us a more compact encoding by
2292   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2293   // move it into a register first.
2294   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2295   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2296                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2297 #endif
2298 
2299   BasicType dst_type = x->basic_type();
2300 
2301   LIR_Address* addr;
2302   if (index_op->is_constant()) {
2303     assert(log2_scale == 0, "must not have a scale");
2304     assert(index_op->type() == T_INT, "only int constants supported");
2305     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2306   } else {
2307 #ifdef X86
2308     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2309 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2310     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2311 #else
2312     if (index_op->is_illegal() || log2_scale == 0) {
2313       addr = new LIR_Address(base_op, index_op, dst_type);
2314     } else {
2315       LIR_Opr tmp = new_pointer_register();
2316       __ shift_left(index_op, log2_scale, tmp);
2317       addr = new LIR_Address(base_op, tmp, dst_type);
2318     }
2319 #endif
2320   }
2321 
2322   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2323     __ unaligned_move(addr, reg);
2324   } else {
2325     if (dst_type == T_OBJECT && x->is_wide()) {
2326       __ move_wide(addr, reg);
2327     } else {
2328       __ move(addr, reg);
2329     }
2330   }
2331 }
2332 
2333 
2334 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2335   int  log2_scale = 0;
2336   BasicType type = x->basic_type();
2337 
2338   if (x->has_index()) {
2339     log2_scale = x->log2_scale();
2340   }
2341 
2342   LIRItem base(x->base(), this);
2343   LIRItem value(x->value(), this);
2344   LIRItem idx(this);
2345 
2346   base.load_item();
2347   if (x->has_index()) {
2348     idx.set_instruction(x->index());
2349     idx.load_item();
2350   }
2351 
2352   if (type == T_BYTE || type == T_BOOLEAN) {
2353     value.load_byte_item();
2354   } else {
2355     value.load_item();
2356   }
2357 
2358   set_no_result(x);
2359 
2360   LIR_Opr base_op = base.result();
2361   LIR_Opr index_op = idx.result();
2362 
2363 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2364   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2365 #else
2366 #ifndef _LP64
2367   if (base_op->type() == T_LONG) {
2368     base_op = new_register(T_INT);
2369     __ convert(Bytecodes::_l2i, base.result(), base_op);
2370   }
2371   if (x->has_index()) {
2372     if (index_op->type() == T_LONG) {
2373       index_op = new_register(T_INT);
2374       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2375     }
2376   }
2377   // At this point base and index should be all ints and not constants
2378   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2379   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2380 #else
2381   if (x->has_index()) {
2382     if (index_op->type() == T_INT) {
2383       index_op = new_register(T_LONG);
2384       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2385     }
2386   }
2387   // At this point base and index are long and non-constant
2388   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2389   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2390 #endif
2391 
2392   if (log2_scale != 0) {
2393     // temporary fix (platform dependent code without shift on Intel would be better)
2394     // TODO: ARM also allows embedded shift in the address
2395     LIR_Opr tmp = new_pointer_register();
2396     if (TwoOperandLIRForm) {
2397       __ move(index_op, tmp);
2398       index_op = tmp;
2399     }
2400     __ shift_left(index_op, log2_scale, tmp);
2401     if (!TwoOperandLIRForm) {
2402       index_op = tmp;
2403     }
2404   }
2405 
2406   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2407 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2408   __ move(value.result(), addr);
2409 }
2410 
2411 
2412 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2413   BasicType type = x->basic_type();
2414   LIRItem src(x->object(), this);
2415   LIRItem off(x->offset(), this);
2416 
2417   off.load_item();
2418   src.load_item();
2419 
2420   LIR_Opr value = rlock_result(x, x->basic_type());
2421 
2422   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2423     __ membar();
2424   }
2425 
2426   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2427 
2428 #if INCLUDE_ALL_GCS
2429   // We might be reading the value of the referent field of a
2430   // Reference object in order to attach it back to the live
2431   // object graph. If G1 is enabled then we need to record
2432   // the value that is being returned in an SATB log buffer.
2433   //
2434   // We need to generate code similar to the following...
2435   //
2436   // if (offset == java_lang_ref_Reference::referent_offset) {
2437   //   if (src != NULL) {
2438   //     if (klass(src)->reference_type() != REF_NONE) {
2439   //       pre_barrier(..., value, ...);
2440   //     }
2441   //   }
2442   // }
2443 
2444   if ((UseShenandoahGC || UseG1GC) && type == T_OBJECT) {
2445     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2446     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2447     bool gen_source_check = true;    // Assume we need to check the src object for null.
2448     bool gen_type_check = true;      // Assume we need to check the reference_type.
2449 
2450     if (off.is_constant()) {
2451       jlong off_con = (off.type()->is_int() ?
2452                         (jlong) off.get_jint_constant() :
2453                         off.get_jlong_constant());
2454 
2455 
2456       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2457         // The constant offset is something other than referent_offset.
2458         // We can skip generating/checking the remaining guards and
2459         // skip generation of the code stub.
2460         gen_pre_barrier = false;
2461       } else {
2462         // The constant offset is the same as referent_offset -
2463         // we do not need to generate a runtime offset check.
2464         gen_offset_check = false;
2465       }
2466     }
2467 
2468     // We don't need to generate stub if the source object is an array
2469     if (gen_pre_barrier && src.type()->is_array()) {
2470       gen_pre_barrier = false;
2471     }
2472 
2473     if (gen_pre_barrier) {
2474       // We still need to continue with the checks.
2475       if (src.is_constant()) {
2476         ciObject* src_con = src.get_jobject_constant();
2477         guarantee(src_con != NULL, "no source constant");
2478 
2479         if (src_con->is_null_object()) {
2480           // The constant src object is null - We can skip
2481           // generating the code stub.
2482           gen_pre_barrier = false;
2483         } else {
2484           // Non-null constant source object. We still have to generate
2485           // the slow stub - but we don't need to generate the runtime
2486           // null object check.
2487           gen_source_check = false;
2488         }
2489       }
2490     }
2491     if (gen_pre_barrier && !PatchALot) {
2492       // Can the klass of object be statically determined to be
2493       // a sub-class of Reference?
2494       ciType* type = src.value()->declared_type();
2495       if ((type != NULL) && type->is_loaded()) {
2496         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2497           gen_type_check = false;
2498         } else if (type->is_klass() &&
2499                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2500           // Not Reference and not Object klass.
2501           gen_pre_barrier = false;
2502         }
2503       }
2504     }
2505 
2506     if (gen_pre_barrier) {
2507       LabelObj* Lcont = new LabelObj();
2508 
2509       // We can have generate one runtime check here. Let's start with
2510       // the offset check.
2511       if (gen_offset_check) {
2512         // if (offset != referent_offset) -> continue
2513         // If offset is an int then we can do the comparison with the
2514         // referent_offset constant; otherwise we need to move
2515         // referent_offset into a temporary register and generate
2516         // a reg-reg compare.
2517 
2518         LIR_Opr referent_off;
2519 
2520         if (off.type()->is_int()) {
2521           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2522         } else {
2523           assert(off.type()->is_long(), "what else?");
2524           referent_off = new_register(T_LONG);
2525           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2526         }
2527         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2528         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2529       }
2530       if (gen_source_check) {
2531         // offset is a const and equals referent offset
2532         // if (source == null) -> continue
2533         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2534         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2535       }
2536       LIR_Opr src_klass = new_register(T_OBJECT);
2537       if (gen_type_check) {
2538         // We have determined that offset == referent_offset && src != null.
2539         // if (src->_klass->_reference_type == REF_NONE) -> continue
2540         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2541         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2542         LIR_Opr reference_type = new_register(T_INT);
2543         __ move(reference_type_addr, reference_type);
2544         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2545         __ branch(lir_cond_equal, T_INT, Lcont->label());
2546       }
2547       {
2548         // We have determined that src->_klass->_reference_type != REF_NONE
2549         // so register the value in the referent field with the pre-barrier.
2550         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2551                     value  /* pre_val */,
2552                     false  /* do_load */,
2553                     false  /* patch */,
2554                     NULL   /* info */);
2555       }
2556       __ branch_destination(Lcont->label());
2557     }
2558   }
2559 #endif // INCLUDE_ALL_GCS
2560 
2561   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2562 
2563   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
2564   if (type == T_BOOLEAN) {
2565     LabelObj* equalZeroLabel = new LabelObj();
2566     __ cmp(lir_cond_equal, value, 0);
2567     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
2568     __ move(LIR_OprFact::intConst(1), value);
2569     __ branch_destination(equalZeroLabel->label());
2570   }
2571 }
2572 
2573 
2574 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2575   BasicType type = x->basic_type();
2576   LIRItem src(x->object(), this);
2577   LIRItem off(x->offset(), this);
2578   LIRItem data(x->value(), this);
2579 
2580   src.load_item();
2581   if (type == T_BOOLEAN || type == T_BYTE) {
2582     data.load_byte_item();
2583   } else {
2584     data.load_item();
2585   }
2586   off.load_item();
2587 
2588   set_no_result(x);
2589 
2590   if (x->is_volatile() && os::is_MP()) __ membar_release();
2591   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2592   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2593 }
2594 
2595 
2596 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2597   int lng = x->length();
2598 
2599   for (int i = 0; i < lng; i++) {
2600     SwitchRange* one_range = x->at(i);
2601     int low_key = one_range->low_key();
2602     int high_key = one_range->high_key();
2603     BlockBegin* dest = one_range->sux();
2604     if (low_key == high_key) {
2605       __ cmp(lir_cond_equal, value, low_key);
2606       __ branch(lir_cond_equal, T_INT, dest);
2607     } else if (high_key - low_key == 1) {
2608       __ cmp(lir_cond_equal, value, low_key);
2609       __ branch(lir_cond_equal, T_INT, dest);
2610       __ cmp(lir_cond_equal, value, high_key);
2611       __ branch(lir_cond_equal, T_INT, dest);
2612     } else {
2613       LabelObj* L = new LabelObj();
2614       __ cmp(lir_cond_less, value, low_key);
2615       __ branch(lir_cond_less, T_INT, L->label());
2616       __ cmp(lir_cond_lessEqual, value, high_key);
2617       __ branch(lir_cond_lessEqual, T_INT, dest);
2618       __ branch_destination(L->label());
2619     }
2620   }
2621   __ jump(default_sux);
2622 }
2623 
2624 
2625 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2626   SwitchRangeList* res = new SwitchRangeList();
2627   int len = x->length();
2628   if (len > 0) {
2629     BlockBegin* sux = x->sux_at(0);
2630     int key = x->lo_key();
2631     BlockBegin* default_sux = x->default_sux();
2632     SwitchRange* range = new SwitchRange(key, sux);
2633     for (int i = 0; i < len; i++, key++) {
2634       BlockBegin* new_sux = x->sux_at(i);
2635       if (sux == new_sux) {
2636         // still in same range
2637         range->set_high_key(key);
2638       } else {
2639         // skip tests which explicitly dispatch to the default
2640         if (sux != default_sux) {
2641           res->append(range);
2642         }
2643         range = new SwitchRange(key, new_sux);
2644       }
2645       sux = new_sux;
2646     }
2647     if (res->length() == 0 || res->last() != range)  res->append(range);
2648   }
2649   return res;
2650 }
2651 
2652 
2653 // we expect the keys to be sorted by increasing value
2654 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2655   SwitchRangeList* res = new SwitchRangeList();
2656   int len = x->length();
2657   if (len > 0) {
2658     BlockBegin* default_sux = x->default_sux();
2659     int key = x->key_at(0);
2660     BlockBegin* sux = x->sux_at(0);
2661     SwitchRange* range = new SwitchRange(key, sux);
2662     for (int i = 1; i < len; i++) {
2663       int new_key = x->key_at(i);
2664       BlockBegin* new_sux = x->sux_at(i);
2665       if (key+1 == new_key && sux == new_sux) {
2666         // still in same range
2667         range->set_high_key(new_key);
2668       } else {
2669         // skip tests which explicitly dispatch to the default
2670         if (range->sux() != default_sux) {
2671           res->append(range);
2672         }
2673         range = new SwitchRange(new_key, new_sux);
2674       }
2675       key = new_key;
2676       sux = new_sux;
2677     }
2678     if (res->length() == 0 || res->last() != range)  res->append(range);
2679   }
2680   return res;
2681 }
2682 
2683 
2684 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2685   LIRItem tag(x->tag(), this);
2686   tag.load_item();
2687   set_no_result(x);
2688 
2689   if (x->is_safepoint()) {
2690     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2691   }
2692 
2693   // move values into phi locations
2694   move_to_phi(x->state());
2695 
2696   int lo_key = x->lo_key();
2697   int hi_key = x->hi_key();
2698   int len = x->length();
2699   LIR_Opr value = tag.result();
2700   if (UseTableRanges) {
2701     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2702   } else {
2703     for (int i = 0; i < len; i++) {
2704       __ cmp(lir_cond_equal, value, i + lo_key);
2705       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2706     }
2707     __ jump(x->default_sux());
2708   }
2709 }
2710 
2711 
2712 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2713   LIRItem tag(x->tag(), this);
2714   tag.load_item();
2715   set_no_result(x);
2716 
2717   if (x->is_safepoint()) {
2718     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2719   }
2720 
2721   // move values into phi locations
2722   move_to_phi(x->state());
2723 
2724   LIR_Opr value = tag.result();
2725   if (UseTableRanges) {
2726     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2727   } else {
2728     int len = x->length();
2729     for (int i = 0; i < len; i++) {
2730       __ cmp(lir_cond_equal, value, x->key_at(i));
2731       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2732     }
2733     __ jump(x->default_sux());
2734   }
2735 }
2736 
2737 
2738 void LIRGenerator::do_Goto(Goto* x) {
2739   set_no_result(x);
2740 
2741   if (block()->next()->as_OsrEntry()) {
2742     // need to free up storage used for OSR entry point
2743     LIR_Opr osrBuffer = block()->next()->operand();
2744     BasicTypeList signature;
2745     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2746     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2747     __ move(osrBuffer, cc->args()->at(0));
2748     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2749                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2750   }
2751 
2752   if (x->is_safepoint()) {
2753     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2754 
2755     // increment backedge counter if needed
2756     CodeEmitInfo* info = state_for(x, state);
2757     increment_backedge_counter(info, x->profiled_bci());
2758     CodeEmitInfo* safepoint_info = state_for(x, state);
2759     __ safepoint(safepoint_poll_register(), safepoint_info);
2760   }
2761 
2762   // Gotos can be folded Ifs, handle this case.
2763   if (x->should_profile()) {
2764     ciMethod* method = x->profiled_method();
2765     assert(method != NULL, "method should be set if branch is profiled");
2766     ciMethodData* md = method->method_data_or_null();
2767     assert(md != NULL, "Sanity");
2768     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2769     assert(data != NULL, "must have profiling data");
2770     int offset;
2771     if (x->direction() == Goto::taken) {
2772       assert(data->is_BranchData(), "need BranchData for two-way branches");
2773       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2774     } else if (x->direction() == Goto::not_taken) {
2775       assert(data->is_BranchData(), "need BranchData for two-way branches");
2776       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2777     } else {
2778       assert(data->is_JumpData(), "need JumpData for branches");
2779       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2780     }
2781     LIR_Opr md_reg = new_register(T_METADATA);
2782     __ metadata2reg(md->constant_encoding(), md_reg);
2783 
2784     increment_counter(new LIR_Address(md_reg, offset,
2785                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2786   }
2787 
2788   // emit phi-instruction move after safepoint since this simplifies
2789   // describing the state as the safepoint.
2790   move_to_phi(x->state());
2791 
2792   __ jump(x->default_sux());
2793 }
2794 
2795 /**
2796  * Emit profiling code if needed for arguments, parameters, return value types
2797  *
2798  * @param md                    MDO the code will update at runtime
2799  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2800  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2801  * @param profiled_k            current profile
2802  * @param obj                   IR node for the object to be profiled
2803  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2804  *                              Set once we find an update to make and use for next ones.
2805  * @param not_null              true if we know obj cannot be null
2806  * @param signature_at_call_k   signature at call for obj
2807  * @param callee_signature_k    signature of callee for obj
2808  *                              at call and callee signatures differ at method handle call
2809  * @return                      the only klass we know will ever be seen at this profile point
2810  */
2811 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2812                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2813                                     ciKlass* callee_signature_k) {
2814   ciKlass* result = NULL;
2815   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2816   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2817   // known not to be null or null bit already set and already set to
2818   // unknown: nothing we can do to improve profiling
2819   if (!do_null && !do_update) {
2820     return result;
2821   }
2822 
2823   ciKlass* exact_klass = NULL;
2824   Compilation* comp = Compilation::current();
2825   if (do_update) {
2826     // try to find exact type, using CHA if possible, so that loading
2827     // the klass from the object can be avoided
2828     ciType* type = obj->exact_type();
2829     if (type == NULL) {
2830       type = obj->declared_type();
2831       type = comp->cha_exact_type(type);
2832     }
2833     assert(type == NULL || type->is_klass(), "type should be class");
2834     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2835 
2836     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2837   }
2838 
2839   if (!do_null && !do_update) {
2840     return result;
2841   }
2842 
2843   ciKlass* exact_signature_k = NULL;
2844   if (do_update) {
2845     // Is the type from the signature exact (the only one possible)?
2846     exact_signature_k = signature_at_call_k->exact_klass();
2847     if (exact_signature_k == NULL) {
2848       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2849     } else {
2850       result = exact_signature_k;
2851       // Known statically. No need to emit any code: prevent
2852       // LIR_Assembler::emit_profile_type() from emitting useless code
2853       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2854     }
2855     // exact_klass and exact_signature_k can be both non NULL but
2856     // different if exact_klass is loaded after the ciObject for
2857     // exact_signature_k is created.
2858     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2859       // sometimes the type of the signature is better than the best type
2860       // the compiler has
2861       exact_klass = exact_signature_k;
2862     }
2863     if (callee_signature_k != NULL &&
2864         callee_signature_k != signature_at_call_k) {
2865       ciKlass* improved_klass = callee_signature_k->exact_klass();
2866       if (improved_klass == NULL) {
2867         improved_klass = comp->cha_exact_type(callee_signature_k);
2868       }
2869       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2870         exact_klass = exact_signature_k;
2871       }
2872     }
2873     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2874   }
2875 
2876   if (!do_null && !do_update) {
2877     return result;
2878   }
2879 
2880   if (mdp == LIR_OprFact::illegalOpr) {
2881     mdp = new_register(T_METADATA);
2882     __ metadata2reg(md->constant_encoding(), mdp);
2883     if (md_base_offset != 0) {
2884       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2885       mdp = new_pointer_register();
2886       __ leal(LIR_OprFact::address(base_type_address), mdp);
2887     }
2888   }
2889   LIRItem value(obj, this);
2890   value.load_item();
2891   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2892                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2893   return result;
2894 }
2895 
2896 // profile parameters on entry to the root of the compilation
2897 void LIRGenerator::profile_parameters(Base* x) {
2898   if (compilation()->profile_parameters()) {
2899     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2900     ciMethodData* md = scope()->method()->method_data_or_null();
2901     assert(md != NULL, "Sanity");
2902 
2903     if (md->parameters_type_data() != NULL) {
2904       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2905       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2906       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2907       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2908         LIR_Opr src = args->at(i);
2909         assert(!src->is_illegal(), "check");
2910         BasicType t = src->type();
2911         if (t == T_OBJECT || t == T_ARRAY) {
2912           intptr_t profiled_k = parameters->type(j);
2913           Local* local = x->state()->local_at(java_index)->as_Local();
2914           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2915                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2916                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2917           // If the profile is known statically set it once for all and do not emit any code
2918           if (exact != NULL) {
2919             md->set_parameter_type(j, exact);
2920           }
2921           j++;
2922         }
2923         java_index += type2size[t];
2924       }
2925     }
2926   }
2927 }
2928 
2929 void LIRGenerator::do_Base(Base* x) {
2930   __ std_entry(LIR_OprFact::illegalOpr);
2931   // Emit moves from physical registers / stack slots to virtual registers
2932   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2933   IRScope* irScope = compilation()->hir()->top_scope();
2934   int java_index = 0;
2935   for (int i = 0; i < args->length(); i++) {
2936     LIR_Opr src = args->at(i);
2937     assert(!src->is_illegal(), "check");
2938     BasicType t = src->type();
2939 
2940     // Types which are smaller than int are passed as int, so
2941     // correct the type which passed.
2942     switch (t) {
2943     case T_BYTE:
2944     case T_BOOLEAN:
2945     case T_SHORT:
2946     case T_CHAR:
2947       t = T_INT;
2948       break;
2949     }
2950 
2951     LIR_Opr dest = new_register(t);
2952     __ move(src, dest);
2953 
2954     // Assign new location to Local instruction for this local
2955     Local* local = x->state()->local_at(java_index)->as_Local();
2956     assert(local != NULL, "Locals for incoming arguments must have been created");
2957 #ifndef __SOFTFP__
2958     // The java calling convention passes double as long and float as int.
2959     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2960 #endif // __SOFTFP__
2961     local->set_operand(dest);
2962     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2963     java_index += type2size[t];
2964   }
2965 
2966   if (compilation()->env()->dtrace_method_probes()) {
2967     BasicTypeList signature;
2968     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2969     signature.append(T_METADATA); // Method*
2970     LIR_OprList* args = new LIR_OprList();
2971     args->append(getThreadPointer());
2972     LIR_Opr meth = new_register(T_METADATA);
2973     __ metadata2reg(method()->constant_encoding(), meth);
2974     args->append(meth);
2975     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2976   }
2977 
2978   if (method()->is_synchronized()) {
2979     LIR_Opr obj;
2980     if (method()->is_static()) {
2981       obj = new_register(T_OBJECT);
2982       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2983     } else {
2984       Local* receiver = x->state()->local_at(0)->as_Local();
2985       assert(receiver != NULL, "must already exist");
2986       obj = receiver->operand();
2987     }
2988     assert(obj->is_valid(), "must be valid");
2989 
2990     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2991       LIR_Opr lock = syncLockOpr();
2992       __ load_stack_address_monitor(0, lock);
2993 
2994       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2995       obj = shenandoah_write_barrier(obj, info, false);
2996       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2997 
2998       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2999       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
3000     }
3001   }
3002   if (compilation()->age_code()) {
3003     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
3004     decrement_age(info);
3005   }
3006   // increment invocation counters if needed
3007   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3008     profile_parameters(x);
3009     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
3010     increment_invocation_counter(info);
3011   }
3012 
3013   // all blocks with a successor must end with an unconditional jump
3014   // to the successor even if they are consecutive
3015   __ jump(x->default_sux());
3016 }
3017 
3018 
3019 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3020   // construct our frame and model the production of incoming pointer
3021   // to the OSR buffer.
3022   __ osr_entry(LIR_Assembler::osrBufferPointer());
3023   LIR_Opr result = rlock_result(x);
3024   __ move(LIR_Assembler::osrBufferPointer(), result);
3025 }
3026 
3027 
3028 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3029   assert(args->length() == arg_list->length(),
3030          "args=%d, arg_list=%d", args->length(), arg_list->length());
3031   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3032     LIRItem* param = args->at(i);
3033     LIR_Opr loc = arg_list->at(i);
3034     if (loc->is_register()) {
3035       param->load_item_force(loc);
3036     } else {
3037       LIR_Address* addr = loc->as_address_ptr();
3038       param->load_for_store(addr->type());
3039       if (addr->type() == T_OBJECT) {
3040         __ move_wide(param->result(), addr);
3041       } else
3042         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3043           __ unaligned_move(param->result(), addr);
3044         } else {
3045           __ move(param->result(), addr);
3046         }
3047     }
3048   }
3049 
3050   if (x->has_receiver()) {
3051     LIRItem* receiver = args->at(0);
3052     LIR_Opr loc = arg_list->at(0);
3053     if (loc->is_register()) {
3054       receiver->load_item_force(loc);
3055     } else {
3056       assert(loc->is_address(), "just checking");
3057       receiver->load_for_store(T_OBJECT);
3058       __ move_wide(receiver->result(), loc->as_address_ptr());
3059     }
3060   }
3061 }
3062 
3063 
3064 // Visits all arguments, returns appropriate items without loading them
3065 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3066   LIRItemList* argument_items = new LIRItemList();
3067   if (x->has_receiver()) {
3068     LIRItem* receiver = new LIRItem(x->receiver(), this);
3069     argument_items->append(receiver);
3070   }
3071   for (int i = 0; i < x->number_of_arguments(); i++) {
3072     LIRItem* param = new LIRItem(x->argument_at(i), this);
3073     argument_items->append(param);
3074   }
3075   return argument_items;
3076 }
3077 
3078 
3079 // The invoke with receiver has following phases:
3080 //   a) traverse and load/lock receiver;
3081 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3082 //   c) push receiver on stack
3083 //   d) load each of the items and push on stack
3084 //   e) unlock receiver
3085 //   f) move receiver into receiver-register %o0
3086 //   g) lock result registers and emit call operation
3087 //
3088 // Before issuing a call, we must spill-save all values on stack
3089 // that are in caller-save register. "spill-save" moves those registers
3090 // either in a free callee-save register or spills them if no free
3091 // callee save register is available.
3092 //
3093 // The problem is where to invoke spill-save.
3094 // - if invoked between e) and f), we may lock callee save
3095 //   register in "spill-save" that destroys the receiver register
3096 //   before f) is executed
3097 // - if we rearrange f) to be earlier (by loading %o0) it
3098 //   may destroy a value on the stack that is currently in %o0
3099 //   and is waiting to be spilled
3100 // - if we keep the receiver locked while doing spill-save,
3101 //   we cannot spill it as it is spill-locked
3102 //
3103 void LIRGenerator::do_Invoke(Invoke* x) {
3104   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3105 
3106   LIR_OprList* arg_list = cc->args();
3107   LIRItemList* args = invoke_visit_arguments(x);
3108   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3109 
3110   // setup result register
3111   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3112   if (x->type() != voidType) {
3113     result_register = result_register_for(x->type());
3114   }
3115 
3116   CodeEmitInfo* info = state_for(x, x->state());
3117 
3118   invoke_load_arguments(x, args, arg_list);
3119 
3120   if (x->has_receiver()) {
3121     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3122     receiver = args->at(0)->result();
3123   }
3124 
3125   // emit invoke code
3126   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3127 
3128   // JSR 292
3129   // Preserve the SP over MethodHandle call sites, if needed.
3130   ciMethod* target = x->target();
3131   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3132                                   target->is_method_handle_intrinsic() ||
3133                                   target->is_compiled_lambda_form());
3134   if (is_method_handle_invoke) {
3135     info->set_is_method_handle_invoke(true);
3136     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3137         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3138     }
3139   }
3140 
3141   switch (x->code()) {
3142     case Bytecodes::_invokestatic:
3143       __ call_static(target, result_register,
3144                      SharedRuntime::get_resolve_static_call_stub(),
3145                      arg_list, info);
3146       break;
3147     case Bytecodes::_invokespecial:
3148     case Bytecodes::_invokevirtual:
3149     case Bytecodes::_invokeinterface:
3150       // for loaded and final (method or class) target we still produce an inline cache,
3151       // in order to be able to call mixed mode
3152       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3153         __ call_opt_virtual(target, receiver, result_register,
3154                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3155                             arg_list, info);
3156       } else if (x->vtable_index() < 0) {
3157         __ call_icvirtual(target, receiver, result_register,
3158                           SharedRuntime::get_resolve_virtual_call_stub(),
3159                           arg_list, info);
3160       } else {
3161         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3162         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3163         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3164       }
3165       break;
3166     case Bytecodes::_invokedynamic: {
3167       __ call_dynamic(target, receiver, result_register,
3168                       SharedRuntime::get_resolve_static_call_stub(),
3169                       arg_list, info);
3170       break;
3171     }
3172     default:
3173       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3174       break;
3175   }
3176 
3177   // JSR 292
3178   // Restore the SP after MethodHandle call sites, if needed.
3179   if (is_method_handle_invoke
3180       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3181     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3182   }
3183 
3184   if (x->type()->is_float() || x->type()->is_double()) {
3185     // Force rounding of results from non-strictfp when in strictfp
3186     // scope (or when we don't know the strictness of the callee, to
3187     // be safe.)
3188     if (method()->is_strict()) {
3189       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3190         result_register = round_item(result_register);
3191       }
3192     }
3193   }
3194 
3195   if (result_register->is_valid()) {
3196     LIR_Opr result = rlock_result(x);
3197     __ move(result_register, result);
3198   }
3199 }
3200 
3201 
3202 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3203   assert(x->number_of_arguments() == 1, "wrong type");
3204   LIRItem value       (x->argument_at(0), this);
3205   LIR_Opr reg = rlock_result(x);
3206   value.load_item();
3207   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3208   __ move(tmp, reg);
3209 }
3210 
3211 
3212 
3213 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3214 void LIRGenerator::do_IfOp(IfOp* x) {
3215 #ifdef ASSERT
3216   {
3217     ValueTag xtag = x->x()->type()->tag();
3218     ValueTag ttag = x->tval()->type()->tag();
3219     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3220     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3221     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3222   }
3223 #endif
3224 
3225   LIRItem left(x->x(), this);
3226   LIRItem right(x->y(), this);
3227   left.load_item();
3228   if (can_inline_as_constant(right.value())) {
3229     right.dont_load_item();
3230   } else {
3231     right.load_item();
3232   }
3233 
3234   LIRItem t_val(x->tval(), this);
3235   LIRItem f_val(x->fval(), this);
3236   t_val.dont_load_item();
3237   f_val.dont_load_item();
3238   LIR_Opr reg = rlock_result(x);
3239 
3240   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3241   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3242 }
3243 
3244 #ifdef TRACE_HAVE_INTRINSICS
3245 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3246   CodeEmitInfo* info = state_for(x);
3247   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3248 
3249   assert(info != NULL, "must have info");
3250   LIRItem arg(x->argument_at(0), this);
3251 
3252   arg.load_item();
3253   LIR_Opr klass = new_register(T_METADATA);
3254   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3255   LIR_Opr id = new_register(T_LONG);
3256   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3257   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3258 
3259   __ move(trace_id_addr, id);
3260   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3261   __ store(id, trace_id_addr);
3262 
3263 #ifdef TRACE_ID_META_BITS
3264   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3265 #endif
3266 #ifdef TRACE_ID_CLASS_SHIFT
3267   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3268 #endif
3269 
3270   __ move(id, rlock_result(x));
3271 }
3272 
3273 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
3274   LabelObj* L_end = new LabelObj();
3275 
3276   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3277                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
3278                                            T_OBJECT);
3279   LIR_Opr result = rlock_result(x);
3280   __ move_wide(jobj_addr, result);
3281   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3282   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3283   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3284 
3285   __ branch_destination(L_end->label());
3286 }
3287 
3288 #endif
3289 
3290 
3291 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3292   assert(x->number_of_arguments() == 0, "wrong type");
3293   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3294   BasicTypeList signature;
3295   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3296   LIR_Opr reg = result_register_for(x->type());
3297   __ call_runtime_leaf(routine, getThreadTemp(),
3298                        reg, new LIR_OprList());
3299   LIR_Opr result = rlock_result(x);
3300   __ move(reg, result);
3301 }
3302 
3303 
3304 
3305 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3306   switch (x->id()) {
3307   case vmIntrinsics::_intBitsToFloat      :
3308   case vmIntrinsics::_doubleToRawLongBits :
3309   case vmIntrinsics::_longBitsToDouble    :
3310   case vmIntrinsics::_floatToRawIntBits   : {
3311     do_FPIntrinsics(x);
3312     break;
3313   }
3314 
3315 #ifdef TRACE_HAVE_INTRINSICS
3316   case vmIntrinsics::_getClassId:
3317     do_ClassIDIntrinsic(x);
3318     break;
3319   case vmIntrinsics::_getBufferWriter:
3320     do_getBufferWriter(x);
3321     break;
3322   case vmIntrinsics::_counterTime:
3323     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3324     break;
3325 #endif
3326 
3327   case vmIntrinsics::_currentTimeMillis:
3328     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3329     break;
3330 
3331   case vmIntrinsics::_nanoTime:
3332     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3333     break;
3334 
3335   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3336   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3337   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3338   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3339   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3340 
3341   case vmIntrinsics::_dlog:           // fall through
3342   case vmIntrinsics::_dlog10:         // fall through
3343   case vmIntrinsics::_dabs:           // fall through
3344   case vmIntrinsics::_dsqrt:          // fall through
3345   case vmIntrinsics::_dtan:           // fall through
3346   case vmIntrinsics::_dsin :          // fall through
3347   case vmIntrinsics::_dcos :          // fall through
3348   case vmIntrinsics::_dexp :          // fall through
3349   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3350   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3351 
3352   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3353   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3354 
3355   // java.nio.Buffer.checkIndex
3356   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3357 
3358   case vmIntrinsics::_compareAndSwapObject:
3359     do_CompareAndSwap(x, objectType);
3360     break;
3361   case vmIntrinsics::_compareAndSwapInt:
3362     do_CompareAndSwap(x, intType);
3363     break;
3364   case vmIntrinsics::_compareAndSwapLong:
3365     do_CompareAndSwap(x, longType);
3366     break;
3367 
3368   case vmIntrinsics::_loadFence :
3369     if (os::is_MP()) __ membar_acquire();
3370     break;
3371   case vmIntrinsics::_storeFence:
3372     if (os::is_MP()) __ membar_release();
3373     break;
3374   case vmIntrinsics::_fullFence :
3375     if (os::is_MP()) __ membar();
3376     break;
3377   case vmIntrinsics::_onSpinWait:
3378     __ on_spin_wait();
3379     break;
3380   case vmIntrinsics::_Reference_get:
3381     do_Reference_get(x);
3382     break;
3383 
3384   case vmIntrinsics::_updateCRC32:
3385   case vmIntrinsics::_updateBytesCRC32:
3386   case vmIntrinsics::_updateByteBufferCRC32:
3387     do_update_CRC32(x);
3388     break;
3389 
3390   case vmIntrinsics::_updateBytesCRC32C:
3391   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3392     do_update_CRC32C(x);
3393     break;
3394 
3395   case vmIntrinsics::_vectorizedMismatch:
3396     do_vectorizedMismatch(x);
3397     break;
3398 
3399   default: ShouldNotReachHere(); break;
3400   }
3401 }
3402 
3403 void LIRGenerator::profile_arguments(ProfileCall* x) {
3404   if (compilation()->profile_arguments()) {
3405     int bci = x->bci_of_invoke();
3406     ciMethodData* md = x->method()->method_data_or_null();
3407     ciProfileData* data = md->bci_to_data(bci);
3408     if (data != NULL) {
3409       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3410           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3411         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3412         int base_offset = md->byte_offset_of_slot(data, extra);
3413         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3414         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3415 
3416         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3417         int start = 0;
3418         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3419         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3420           // first argument is not profiled at call (method handle invoke)
3421           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3422           start = 1;
3423         }
3424         ciSignature* callee_signature = x->callee()->signature();
3425         // method handle call to virtual method
3426         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3427         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3428 
3429         bool ignored_will_link;
3430         ciSignature* signature_at_call = NULL;
3431         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3432         ciSignatureStream signature_at_call_stream(signature_at_call);
3433 
3434         // if called through method handle invoke, some arguments may have been popped
3435         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3436           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3437           ciKlass* exact = profile_type(md, base_offset, off,
3438               args->type(i), x->profiled_arg_at(i+start), mdp,
3439               !x->arg_needs_null_check(i+start),
3440               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3441           if (exact != NULL) {
3442             md->set_argument_type(bci, i, exact);
3443           }
3444         }
3445       } else {
3446 #ifdef ASSERT
3447         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3448         int n = x->nb_profiled_args();
3449         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3450             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3451             "only at JSR292 bytecodes");
3452 #endif
3453       }
3454     }
3455   }
3456 }
3457 
3458 // profile parameters on entry to an inlined method
3459 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3460   if (compilation()->profile_parameters() && x->inlined()) {
3461     ciMethodData* md = x->callee()->method_data_or_null();
3462     if (md != NULL) {
3463       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3464       if (parameters_type_data != NULL) {
3465         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3466         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3467         bool has_receiver = !x->callee()->is_static();
3468         ciSignature* sig = x->callee()->signature();
3469         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3470         int i = 0; // to iterate on the Instructions
3471         Value arg = x->recv();
3472         bool not_null = false;
3473         int bci = x->bci_of_invoke();
3474         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3475         // The first parameter is the receiver so that's what we start
3476         // with if it exists. One exception is method handle call to
3477         // virtual method: the receiver is in the args list
3478         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3479           i = 1;
3480           arg = x->profiled_arg_at(0);
3481           not_null = !x->arg_needs_null_check(0);
3482         }
3483         int k = 0; // to iterate on the profile data
3484         for (;;) {
3485           intptr_t profiled_k = parameters->type(k);
3486           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3487                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3488                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3489           // If the profile is known statically set it once for all and do not emit any code
3490           if (exact != NULL) {
3491             md->set_parameter_type(k, exact);
3492           }
3493           k++;
3494           if (k >= parameters_type_data->number_of_parameters()) {
3495 #ifdef ASSERT
3496             int extra = 0;
3497             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3498                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3499                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3500               extra += 1;
3501             }
3502             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3503 #endif
3504             break;
3505           }
3506           arg = x->profiled_arg_at(i);
3507           not_null = !x->arg_needs_null_check(i);
3508           i++;
3509         }
3510       }
3511     }
3512   }
3513 }
3514 
3515 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3516   // Need recv in a temporary register so it interferes with the other temporaries
3517   LIR_Opr recv = LIR_OprFact::illegalOpr;
3518   LIR_Opr mdo = new_register(T_OBJECT);
3519   // tmp is used to hold the counters on SPARC
3520   LIR_Opr tmp = new_pointer_register();
3521 
3522   if (x->nb_profiled_args() > 0) {
3523     profile_arguments(x);
3524   }
3525 
3526   // profile parameters on inlined method entry including receiver
3527   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3528     profile_parameters_at_call(x);
3529   }
3530 
3531   if (x->recv() != NULL) {
3532     LIRItem value(x->recv(), this);
3533     value.load_item();
3534     recv = new_register(T_OBJECT);
3535     __ move(value.result(), recv);
3536   }
3537   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3538 }
3539 
3540 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3541   int bci = x->bci_of_invoke();
3542   ciMethodData* md = x->method()->method_data_or_null();
3543   ciProfileData* data = md->bci_to_data(bci);
3544   if (data != NULL) {
3545     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3546     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3547     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3548 
3549     bool ignored_will_link;
3550     ciSignature* signature_at_call = NULL;
3551     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3552 
3553     // The offset within the MDO of the entry to update may be too large
3554     // to be used in load/store instructions on some platforms. So have
3555     // profile_type() compute the address of the profile in a register.
3556     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3557         ret->type(), x->ret(), mdp,
3558         !x->needs_null_check(),
3559         signature_at_call->return_type()->as_klass(),
3560         x->callee()->signature()->return_type()->as_klass());
3561     if (exact != NULL) {
3562       md->set_return_type(bci, exact);
3563     }
3564   }
3565 }
3566 
3567 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3568   // We can safely ignore accessors here, since c2 will inline them anyway,
3569   // accessors are also always mature.
3570   if (!x->inlinee()->is_accessor()) {
3571     CodeEmitInfo* info = state_for(x, x->state(), true);
3572     // Notify the runtime very infrequently only to take care of counter overflows
3573     int freq_log = Tier23InlineeNotifyFreqLog;
3574     double scale;
3575     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3576       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3577     }
3578     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3579   }
3580 }
3581 
3582 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3583   int freq_log = 0;
3584   int level = compilation()->env()->comp_level();
3585   if (level == CompLevel_limited_profile) {
3586     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3587   } else if (level == CompLevel_full_profile) {
3588     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3589   } else {
3590     ShouldNotReachHere();
3591   }
3592   // Increment the appropriate invocation/backedge counter and notify the runtime.
3593   double scale;
3594   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3595     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3596   }
3597   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3598 }
3599 
3600 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3601   ciMethod* method = info->scope()->method();
3602   MethodCounters* mc_adr = method->ensure_method_counters();
3603   if (mc_adr != NULL) {
3604     LIR_Opr mc = new_pointer_register();
3605     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3606     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3607     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3608     LIR_Opr result = new_register(T_INT);
3609     __ load(counter, result);
3610     __ sub(result, LIR_OprFact::intConst(1), result);
3611     __ store(result, counter);
3612     // DeoptimizeStub will reexecute from the current state in code info.
3613     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3614                                          Deoptimization::Action_make_not_entrant);
3615     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3616     __ branch(lir_cond_lessEqual, T_INT, deopt);
3617   }
3618 }
3619 
3620 
3621 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3622                                                 ciMethod *method, int frequency,
3623                                                 int bci, bool backedge, bool notify) {
3624   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3625   int level = _compilation->env()->comp_level();
3626   assert(level > CompLevel_simple, "Shouldn't be here");
3627 
3628   int offset = -1;
3629   LIR_Opr counter_holder = NULL;
3630   if (level == CompLevel_limited_profile) {
3631     MethodCounters* counters_adr = method->ensure_method_counters();
3632     if (counters_adr == NULL) {
3633       bailout("method counters allocation failed");
3634       return;
3635     }
3636     counter_holder = new_pointer_register();
3637     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3638     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3639                                  MethodCounters::invocation_counter_offset());
3640   } else if (level == CompLevel_full_profile) {
3641     counter_holder = new_register(T_METADATA);
3642     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3643                                  MethodData::invocation_counter_offset());
3644     ciMethodData* md = method->method_data_or_null();
3645     assert(md != NULL, "Sanity");
3646     __ metadata2reg(md->constant_encoding(), counter_holder);
3647   } else {
3648     ShouldNotReachHere();
3649   }
3650   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3651   LIR_Opr result = new_register(T_INT);
3652   __ load(counter, result);
3653   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3654   __ store(result, counter);
3655   if (notify && (!backedge || UseOnStackReplacement)) {
3656     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3657     // The bci for info can point to cmp for if's we want the if bci
3658     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3659     int freq = frequency << InvocationCounter::count_shift;
3660     if (freq == 0) {
3661       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3662     } else {
3663       LIR_Opr mask = load_immediate(freq, T_INT);
3664       __ logical_and(result, mask, result);
3665       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3666       __ branch(lir_cond_equal, T_INT, overflow);
3667     }
3668     __ branch_destination(overflow->continuation());
3669   }
3670 }
3671 
3672 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3673   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3674   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3675 
3676   if (x->pass_thread()) {
3677     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3678     args->append(getThreadPointer());
3679   }
3680 
3681   for (int i = 0; i < x->number_of_arguments(); i++) {
3682     Value a = x->argument_at(i);
3683     LIRItem* item = new LIRItem(a, this);
3684     item->load_item();
3685     args->append(item->result());
3686     signature->append(as_BasicType(a->type()));
3687   }
3688 
3689   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3690   if (x->type() == voidType) {
3691     set_no_result(x);
3692   } else {
3693     __ move(result, rlock_result(x));
3694   }
3695 }
3696 
3697 #ifdef ASSERT
3698 void LIRGenerator::do_Assert(Assert *x) {
3699   ValueTag tag = x->x()->type()->tag();
3700   If::Condition cond = x->cond();
3701 
3702   LIRItem xitem(x->x(), this);
3703   LIRItem yitem(x->y(), this);
3704   LIRItem* xin = &xitem;
3705   LIRItem* yin = &yitem;
3706 
3707   assert(tag == intTag, "Only integer assertions are valid!");
3708 
3709   xin->load_item();
3710   yin->dont_load_item();
3711 
3712   set_no_result(x);
3713 
3714   LIR_Opr left = xin->result();
3715   LIR_Opr right = yin->result();
3716 
3717   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3718 }
3719 #endif
3720 
3721 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3722 
3723 
3724   Instruction *a = x->x();
3725   Instruction *b = x->y();
3726   if (!a || StressRangeCheckElimination) {
3727     assert(!b || StressRangeCheckElimination, "B must also be null");
3728 
3729     CodeEmitInfo *info = state_for(x, x->state());
3730     CodeStub* stub = new PredicateFailedStub(info);
3731 
3732     __ jump(stub);
3733   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3734     int a_int = a->type()->as_IntConstant()->value();
3735     int b_int = b->type()->as_IntConstant()->value();
3736 
3737     bool ok = false;
3738 
3739     switch(x->cond()) {
3740       case Instruction::eql: ok = (a_int == b_int); break;
3741       case Instruction::neq: ok = (a_int != b_int); break;
3742       case Instruction::lss: ok = (a_int < b_int); break;
3743       case Instruction::leq: ok = (a_int <= b_int); break;
3744       case Instruction::gtr: ok = (a_int > b_int); break;
3745       case Instruction::geq: ok = (a_int >= b_int); break;
3746       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3747       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3748       default: ShouldNotReachHere();
3749     }
3750 
3751     if (ok) {
3752 
3753       CodeEmitInfo *info = state_for(x, x->state());
3754       CodeStub* stub = new PredicateFailedStub(info);
3755 
3756       __ jump(stub);
3757     }
3758   } else {
3759 
3760     ValueTag tag = x->x()->type()->tag();
3761     If::Condition cond = x->cond();
3762     LIRItem xitem(x->x(), this);
3763     LIRItem yitem(x->y(), this);
3764     LIRItem* xin = &xitem;
3765     LIRItem* yin = &yitem;
3766 
3767     assert(tag == intTag, "Only integer deoptimizations are valid!");
3768 
3769     xin->load_item();
3770     yin->dont_load_item();
3771     set_no_result(x);
3772 
3773     LIR_Opr left = xin->result();
3774     LIR_Opr right = yin->result();
3775 
3776     CodeEmitInfo *info = state_for(x, x->state());
3777     CodeStub* stub = new PredicateFailedStub(info);
3778 
3779     __ cmp(lir_cond(cond), left, right);
3780     __ branch(lir_cond(cond), right->type(), stub);
3781   }
3782 }
3783 
3784 
3785 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3786   LIRItemList args(1);
3787   LIRItem value(arg1, this);
3788   args.append(&value);
3789   BasicTypeList signature;
3790   signature.append(as_BasicType(arg1->type()));
3791 
3792   return call_runtime(&signature, &args, entry, result_type, info);
3793 }
3794 
3795 
3796 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3797   LIRItemList args(2);
3798   LIRItem value1(arg1, this);
3799   LIRItem value2(arg2, this);
3800   args.append(&value1);
3801   args.append(&value2);
3802   BasicTypeList signature;
3803   signature.append(as_BasicType(arg1->type()));
3804   signature.append(as_BasicType(arg2->type()));
3805 
3806   return call_runtime(&signature, &args, entry, result_type, info);
3807 }
3808 
3809 
3810 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3811                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3812   // get a result register
3813   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3814   LIR_Opr result = LIR_OprFact::illegalOpr;
3815   if (result_type->tag() != voidTag) {
3816     result = new_register(result_type);
3817     phys_reg = result_register_for(result_type);
3818   }
3819 
3820   // move the arguments into the correct location
3821   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3822   assert(cc->length() == args->length(), "argument mismatch");
3823   for (int i = 0; i < args->length(); i++) {
3824     LIR_Opr arg = args->at(i);
3825     LIR_Opr loc = cc->at(i);
3826     if (loc->is_register()) {
3827       __ move(arg, loc);
3828     } else {
3829       LIR_Address* addr = loc->as_address_ptr();
3830 //           if (!can_store_as_constant(arg)) {
3831 //             LIR_Opr tmp = new_register(arg->type());
3832 //             __ move(arg, tmp);
3833 //             arg = tmp;
3834 //           }
3835       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3836         __ unaligned_move(arg, addr);
3837       } else {
3838         __ move(arg, addr);
3839       }
3840     }
3841   }
3842 
3843   if (info) {
3844     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3845   } else {
3846     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3847   }
3848   if (result->is_valid()) {
3849     __ move(phys_reg, result);
3850   }
3851   return result;
3852 }
3853 
3854 
3855 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3856                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3857   // get a result register
3858   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3859   LIR_Opr result = LIR_OprFact::illegalOpr;
3860   if (result_type->tag() != voidTag) {
3861     result = new_register(result_type);
3862     phys_reg = result_register_for(result_type);
3863   }
3864 
3865   // move the arguments into the correct location
3866   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3867 
3868   assert(cc->length() == args->length(), "argument mismatch");
3869   for (int i = 0; i < args->length(); i++) {
3870     LIRItem* arg = args->at(i);
3871     LIR_Opr loc = cc->at(i);
3872     if (loc->is_register()) {
3873       arg->load_item_force(loc);
3874     } else {
3875       LIR_Address* addr = loc->as_address_ptr();
3876       arg->load_for_store(addr->type());
3877       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3878         __ unaligned_move(arg->result(), addr);
3879       } else {
3880         __ move(arg->result(), addr);
3881       }
3882     }
3883   }
3884 
3885   if (info) {
3886     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3887   } else {
3888     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3889   }
3890   if (result->is_valid()) {
3891     __ move(phys_reg, result);
3892   }
3893   return result;
3894 }
3895 
3896 void LIRGenerator::do_MemBar(MemBar* x) {
3897   if (os::is_MP()) {
3898     LIR_Code code = x->code();
3899     switch(code) {
3900       case lir_membar_acquire   : __ membar_acquire(); break;
3901       case lir_membar_release   : __ membar_release(); break;
3902       case lir_membar           : __ membar(); break;
3903       case lir_membar_loadload  : __ membar_loadload(); break;
3904       case lir_membar_storestore: __ membar_storestore(); break;
3905       case lir_membar_loadstore : __ membar_loadstore(); break;
3906       case lir_membar_storeload : __ membar_storeload(); break;
3907       default                   : ShouldNotReachHere(); break;
3908     }
3909   }
3910 }
3911 
3912 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3913   if (x->check_boolean()) {
3914     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3915     if (TwoOperandLIRForm) {
3916       __ move(value, value_fixed);
3917       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3918     } else {
3919       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3920     }
3921     LIR_Opr klass = new_register(T_METADATA);
3922     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3923     null_check_info = NULL;
3924     LIR_Opr layout = new_register(T_INT);
3925     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3926     int diffbit = Klass::layout_helper_boolean_diffbit();
3927     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3928     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3929     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3930     value = value_fixed;
3931   }
3932   return value;
3933 }